© 2006 IEEE. Personal use of this material is ptteati Permission from IEEE must be obtained foo#ikr uses, in any current or
future media, including reprinting/republishinggmaterial for advertising or promotional purposeeating new collective works,
for resale or redistribution to servers or listsy@use of any copyrighted component of this warkther works.

Opportunistic Pervasive Computing with Domain-oriented Virtual Machines

J. Domaszewicz, M. R¢j, A. Pruszkowski
Institute of Telecommunications, Warsaw Universityechnology
Nowowiejska 15/19, 00-665 Warsaw, Poland
{j. domaszewicz, m.roj, a.pruszkowski}@tele.pw.ddu.p

Abstract actuators of very different functionality (e.g., a
temperature sensor and a sensor detecting a door
opening event). Each node contributes its specific
sensors and actuators to be used by pervasive
computing applications.

The key assumption behind opportunistic pervasive
computing is that the actual mix of nodes (and thas
of available sensors and actuators) is not fullgvikm
to the application programmer. The assumptionus tr
whenever (a) applications are written not for actfjie
network, but for an entire class of target netwpeksd

The paper targets heterogeneous sensor-actuator
networks, in which nodes differ as to resources
(sensors and actuators) they are equipped with.hEac
node contributes its specific sensors and actuators
be used by applications. The key assumption of
“opportunistic pervasive computing” is that the aat
mix of nodes (and that of available resources)ads n
known in advance to the programmer. An opportunisti

pervasive computing application is supposed to take - . - .
the best advantage of whatever sensors and actiator (b) the target networks unavoidably differ in their
composition. The former statement can be justifred

happen to be available in the network. The papert ¢ devel N t The latt is 1
presents a technique that can be used in middleware erms of development Cost. e latter one Is true

layers supporting such applications. The technique whene\rl‘er_ne;tlworks %rovxa without ani m?§ter"plan
uses virtual machines to orderly expose sensor and(e'g"(; IS 'E.t ?case or home networks of igefit
actuator resources of a node to the programmer. The®Veryday objec S)-

virtual machines are domain-oriented, node specific By . deflnm(_Jn, . an opportunistic.  pervasive
and able to work with the resources at multipleelsv computing application is supposed to take the best

of abstraction. They can be implemented on severeI)f'j‘dV‘"‘m"’“;’e of (offer the best possible functi_onaﬁilﬁ)
constrained nodes (e.g., of the TinyOS class) whatever resources happen to be available in the
= ' network where the application runs. One can thifik o

. such applications in two ways. The first one, which
1. Introduction could be calledottom up is to assume some minimal
resources as a prerequisite, and search for opyites.
The paper targets heterogeneous sensor-actuatoto make a better job, if more than the minimal
networks of tiny, constrained, embedded nodes,(a.g. resources are available. The other dop,down is to
home network of nodes embedded into everydayassume some maximal resources that the appliciation
objects, like a lamp or refrigerator). The netwisk  capable of using and scale down gracefully as the
heterogeneous in that the nodes differ in sensdr an actual resources are less than maximal. A similar
actuator resources they are equipped with (we concept of opportunistic computing is presentefdjn
consistently use the term “resources” to denote a Clearly, the development of opportunistic pervasive
node’s sensors and actuators). A node embedded int@omputing applications is far from trivial. We wdul
a lamp may offer an actuator allowing an applicatio like to ease the programmer’s job by pushing a remb
switch the lamp on and off; it may also contain of recurring tasks into a middleware. Certainly,nya
a sensor that makes it possible to determine the'ta complex tasks, especially those of “algorithmictura
current state. Clearly, a node embedded into aare likely to stay in the application layer. Howgve
refrigerator is likely to offer a collection of smgrs and  even if the programmer is to be freed only from onin
(but troublesome) “programming” chores, the effort
seems to be worthwhile.
~This work was supported in part by the Polish Muyisof This paper contributes a technique that can be used
Science and Higher Education, project no. 3 T11DZ8. in middleware layers for opportunistic pervasive




computing with  heterogeneous sensor-actuator  Non-generic events and instructions, the elements
networks. The techniquedomain-oriented virtual of NGE and NGI, are used to expose sensors and
machinesis a part of the ROVERS middleware [2]. actuators to the programmer. We postulate that they
However, we believe that it is of much wider represent the underlying resources not at a low,
applicability. It can be applied in a whole class o physical level, but at an abstraggmain-orientedevel
mobile code-based systems. Importantly, domain- (thus making the virtual machines themselves domain
oriented virtual machines can be implemented onoriented). A specific non-generic event or instiomct
severely constrained nodes (e.g., of the TinyOSsgla should imply the meaning of the interaction witke th
This paper is organized as follows. Domain- resource, the kind of object the node is embedded i
oriented virtual machines are described in detail i and possibly the location of the object, all expessin
Section 2. A class of middleware layers in whick th some high-level domain terminology.
technique can be applied is discussed in Section 3. For example, consider the domain of home objects
Possible applications to opportunistic pervasive and a node that is embedded in a ceiling lamp éocat
computing are outlined in Section 4. Related wark i in a kitchen. Assume the node is equipped with a
reported in Section 5. The paper is concluded in switch. The lamp can be switched on and off either

Section 6. a human or programmatically. Then the lamp switch
could be represented by two non-generic events and
2. Domain-oriented virtual machines three non-generic instructions, as shown in Figl'te

figure also shows a possible representation, two no
Each node of a heterogeneous sensor-actuatogeneric events, for a sensor built into a refrigerta
network has its own mix of resources (sensors anddoor. Note the level of abstraction and “semantic
actuators). In this section we present a method torichness” of the non-generic items shown in Fig. 1.
systematically expose a node’s resources to the

programmer. We assume that each node is equipped Kitchen ceiling lamp switch

i i i i R H events CeilingLamplInKitchenSwitchedOnEvent
Wlth a V|rtuaI. maghlne (the primary r_notlvat|on fitre CaiingLamplnKitchenSwitchedOffEvent
virtual machine is to support mobile Coqe)- In our instructions switchOffCeilingLamplInKitchen
approach, the resources of a node are availatweghr switchOnCeilingLamplinKitchen

isCeilingLampInKitchenOn

the node’s virtual machine. The virtual machines, a

. . . . Refrigerator door sensor
presented in this paper, are (a) domain-oriented, -
. X events RefrigeratorDoorOpenEvent
(b) node-specific, and (c) able to work with resmsr RefrigeratorDoorClosedEvent
at multiple levels of abstraction. instructions -
2.1. Virtual machine architecture Figure 1. Non-generic instructions and events

for an actuator and a sensor

The virtual machine architecture is tailored tovgard
event-driven programming. The virtual machine The classification of all the instructions and egen
generates events and executes instructions. Seftwarinto generic and non-generic is illustrated in Eidthe
running on the virtual machine consists of event home environment being the target domain). Justva f
handlers, and each event handler is composed ofepresentative samples are given for each of the fo
instructions. categories. In particular, the sets of non-genigims

We start by specifying the sets of all possible can be very large. To properly describe a domain,
events and instruction& and | , respectively. Both NGE and NGI may have hundreds or even thousands
events and instructions can be classified igemeric of elements.
and non-generic E=GEONGE and | =Gl ONGI .

. . . Instructions (I Events (E
Generic events and instructions are supported by al : O : ©)
Gl (samples): GE (samples):

virtual machines, no matter what the resourceshef t Generic | aca oneetvent
underlying nodes are. An example of a generic eigent @) | TimerEvent

. . . .. call PowerDownEvent
Ti mer Event , the timer expiry event (it is assumed that

. . M . NGI (samples): NGE (samples):
eaCh nOde IS eqUIpped Wlth a tlmer) Examples Of switchOnDisplay LightSourceSwitched OffEvent
generic instructions are typical and include argfim Non- | svitchonPDADisplay CeilingLampinDiningRoomEvent
. . . . generic switchOffPDADisplay DisplayInHallSwitchedOnEvent
instructions 4dd), data movement instructionolad), — “g)” | St enenn | i
program Control |nst|’uct|0nsl |anp)’ etC There |S turnDownCeilingLamplinHall CeilingLamplInKitchenEvent
nothing special about generic events and instrastio Figure 2. Classification of the home domain

virtual machine building blocks



Any specific node is likely to be equipped with In our approach, an ontology is used to model the
only a handful of resources. For example, a nodetarget domain. The ontology contains basic domain-
embedded into a lamp may not have other resourcespecific concepts and relationships. The ontology i

but the lamp switch. As a result, most virtual nmnaeh
are going to support only a few non-generic evants
instructions (tiny subsets of the whole s&tSE and
NGI ). Moreover, due to the network heterogeneity,
the subsets for two different virtual machines raiest
likely to be different as well. To reflect this iour
notation, the subsets ®fGE and NGI supported by a
virtual machinev will be denoted byNGE(v) and
NGI(v) , respectively. Thevent seaind thdanstruction
set of a virtual machine v will therefore be
E(v) =GE ONGE(v) and I(v)=GI ONGI(v). Virtual
machines arenode-specificin that their event and
instructions sets differ: on top of all generiaiitg each
virtual machine supports its unique collection ohn
generic ones.

The decision as to which non-generic items
fromNGE and NGI should a virtual machine support

developed first (we use the OWL language). Then, a
software tool, calledontology preprocesspraccepts
the ontology as its input and produces all the non-
generic events and instructions as its output Féget)

[3]. The ontology preprocessor derives the non-gene
items by automatically combining existing concepts
(OWL classes) into more complex ones.

S
Ontology preprocessor ——»|

Ontology
|

Figure 4. Ontology preprocessor

In our current implementation, the original
ontology organizes its concepts into multiple madul
hierarchies. For example, there may be three dfetho
for the home domain: an interaction with resources

is made by the designer of the underlying node. Thehierarchy, an object hierarchy, and a locationariry
key factors are the resources of the node and the(see Fig. 5 for a greatly simplified view).

functionality of the object it is to be embedded For

example, a virtual machine in a desk lamp node may

have the instruction set shown in Fig. 3. Three-non

generic instructions have been added to represent a

switch, which happens to be the only resource ef th
node.

Gl: generic
(VM-independent)
instructions

move
switchOnDeskLamp
switchOffDeskLamp
isDeskLampOn

NGI(v): non-generic
(VM-dependent)
instructions

Figure 3. Instruction set I(v)
for a desk lamp virtual machine v

A noteworthy feature is that generic and non-
generic items are used in a program in exacthystme
way, simply as events and instructions.

2.2. Ontology-driven non-generic items

The setsNGE and NGI are meant to include all
meaningful events and instructions that can pog&iel
considered within the target domain. It would betne

to impossible to produce them by hand. Instead,twha
is needed is a formal, modular model of the domain,

out of which all the non-generic events and instoms
could be systematically derived by a computer.

Figure 5. Concept hierarchies
for the home domain

The ontology preprocessor produces non-generic
items by following relations and combining concepts
(classes) from different hierarchies. For example,
combining TurnUp from the interaction hierarchy,
Cei lingLamp from the object hierarchy, and
Ki t chen from the location hierarchy gives rise to the
t ur nUpCei | i ngLanpl nKi t chen instructiort. (Not
all combinations make sense; the ontology
preprocessor generates only meaningful ones.)

The concept combining process is fully OWL-
compliant in that a combined concept can be exptess

! To differentiate instructions from events, we du papitalize
the names of the former.



as a new ontology (OWL) class. For example, the
above instruction could be written as in Fig. 6 (e
the more compact description logic notation, rather
than OWL). The capability to turn down a specific
ceiling lamp in a specific kitchen could be consatk

an instance of the instruction class.

turnlpCeilingLamplnK itchen Turnlp 1
JinteractsWith. Lamp M JisLocatedI n. Kitehen)

Figure 6. Non-generic instruction
as a computer-derived ontology class

Even though it may be useful to look at a non-
generic item as a class (see the next subsecfimn),
most purposes it suffices to consider it to benapte,
“atomic” entity. In particular, we never work ditbc
with any instances of an event or instruction class

As can easily be seen, even an original ontology of
a fairly limited size can give rise to a huge numbk
derived concepts. This is not a problem, however, a
the latter are generated by a computer. A resultigg
catalogue of non-generic items can be conveniently
browsed by node designers and programmers alike.

2.3. Event and instruction inheritance

The above derivation procedure implies a useful
relationship between non-generic items. Specifjcall
when a non-generic item is interpreted as an ogjolo
class (in fact, it is a class), it may happen toabe
(ontological) subclass of some other non-geneemit
For example, thesw t chOnDeskLanp instruction
class is an (ontological) subclass of the
swi t chOnLi ght Source instruction class. This
relationship strongly resembles class inheritance
known in object-oriented programming, and we borrow
the term. We say thatwi t chOnDeskLanp inherits
from swi t chOnLi ght Sour ce.

To provide a general definition, the non-generic
instructionA inherits from the non-generic instruction
B if the class corresponding t is an (ontological)
subclass of the class corresponding.téVe then calA
a sub-instructionof B, andB a super-instructiorof A.
Such an inheritance relationship can be similarly
defined for events. Parts of the “inheritance gsdgbr
non-generic events and instructions derived from th
ontology shown in Fig. 4 are presented in Fignd &

A graph of all the events from which
Li ght Sour cel nKi t chenSwi t chedOnEvent inherits
(all of its super-events) is given in Fig. 9.

LightSourceEvent DisplayEvent

‘CellmgLampEvem‘ ‘ DeskLampEvent ‘ ‘ PDADisplayEvent
A

CeilingLampBrokenEvent

‘DeskLampSwnchedOnEvem‘ ‘ PDADisplaySwichedOnEvent ‘

DeskLampSwitchedOffEvent

‘ CeilingLampBrokeninKitchenEvent ‘

Figure 7. Part of non-generic
event inheritance graph

turnDown

witchOnDeskLamplinKitchen ‘

isOnDeskLamplnKitchen

O . ‘ switchOnCeilingLamplnKitcheninKitchen ‘

Figure 8. Part of non-generic instruction
inheritance graph

Event
v?v

KitchenEvent

LightSourceEvent SwitchedOnEvent

‘ LightSourceSwitchedOnEvent ‘ SwitchedOnlInKitchenEvent ‘

‘ LightSourcelnKitchenEvent ‘

‘ LightSourcelnKitchenSwitchedOnEvent

Figure 9. All super-events for
Li ght Sour cei nKi t chenSwi t chedOnEvent

In object-oriented programming, if ti@r class is
a subclass of th&ehi cl e class, then every car is a
vehicle. We adopt a similar approach for events and
instructions. However, at this point it sufficestteat
non-generic item classes as atomic entities: weato
consider instances (objects) at all. We identifyn-no

generic items directly. For example, as
Cei | i ngLanpEvent inherits from Li ght Sour ce-
Event, we say that CeilingLanpEvent s

Li ght Sour ceEvent . Similarly, assw t chOnDesk-
Lanp inherits fromswi t chOnLi ght Sour ce, we say
thatswi t chOnDeskLanp is swi t chOnLi ght Sour ce.
Intuitively, referring to the last example, to setita
desk lamp is definitely to switch a light sourceheT
former offers a higher level o$pecificity and the



latter —a higher level o&bstraction Obviously, the  in NGI(v). Without inheritance-based identification,
identification is only one-way: to switch a lightiece the micro-agent could not run om. However, if
is not necejssg_rily to SWich_ a quk lamp. An NGI(v) includes swi t chOnDeskLanp, which is a
\?vgerﬁ:ﬂﬁ!;ﬁgg'?sn(r:ssg)nrtggSbg:g\?vr'tance'baeed' sub-instruction ofswi t chOnLi ght Sour ce, then the

y P ' latter is also implicitly supported by . In that case the
micro-agent can run onv (provided there are no
problems with other non-generic items used by the
micro-agent).  The switchOnDeskLanp  sub-
instruction is executed whenever thenit chOn-
Li ght Sour ce super-instruction were to be executed
(note that the micro-agent does not specify whatl ki
of light source is to be switched on). Similarly,a

2.4. Micro-agent

In this section we describe a mobile agent that is
developed for a domain-oriented virtual machine. As
its architecture is simple enough for it to run on
severely constrained nodes, we call it naicro-
agent[2]. We assume that a pervasive computing .
application is composed of communicating and m|cro-agent. has a handler for timesklLanmpEvent
cooperating micro-agents. To take advantage of allevent, which is not in NGE(v), but the
resources available in a heterogeneous sensortactua DeskLanpSwi t chedOnEvent — sub-event is in
network, micro-agents comprising a single applarati  NGE(v), then the handler for the super-event is

usually run on different nodes. invoked whenever the sub-event occurs.
In accordance with event-driven programming, a A virtual machine, on which a micro-agent can run,
micro-agent is simply a collection of event hanslifar is called ahostfor the micro-agent. A virtual machine

some set of events; the handlers, as usual, caofsist is a host if and only if every non-generic item disgy
instructions. Both the events and instructions ban the micro-agent is available at a level of speitific
either generic or non-generic. A micro-agent’s equal to or higher than that required by the micro-
execution amounts to invoking its handlers in resgo  agent.
to corresponding events. To define a host more formally, we introduce some
As, by definition, not all the non-generic eventisla  notation. For an event (instructiony, let supetx)
instructions are available on every virtual machihis denote the set of all super-events (super-instuos)i
important to clearly identify all the non-generterns  of x in NGE (NGI ). Similarly, let sunx) denote the

used by a micro-agent. The sets of all non-genericget of all sub-events (sub-instructions) ofin NGE
events, for which the micro-agent has a handler and (NGI). (Note that supe(x) and sut(x) include x

of all non-generic instructions occurring in any it
handlers are denoted bWGE(m) and NGI(m),
respectively.

itself). Finally, let hostQ) be the predicate

representing the relation of being a host.
A virtual machinev is a host for a micro-agemt ,

2.5. Micro-agent hosting (host(v,m) is  true) if and only if
NGE(m) O Usupe(e) and NGI(m)O Usupe(i).
A micro-agent can run on a node only if sensors GINGE(V) iONGI (v)

and actuators that the micro-agent needs to dbis  pqivalently, hosgv,m) is true if and only if for each
are available there. As explained, a micro-ageferse

to sensors and actuators through non-generic event$£Z NGE(m), we have sube) n NGE(v) # 0, and for
and instructions. Therefore, if a micro-agent uges €achiONGI(m), we havesuki) n NGI(v) # 0.
non-generic item, one implicitly requires that ftem

be supported by a target virtual machine. Clearby, 2.6. Micro-agent execution

every micro-agent can run on every virtual machie.

micro-agentm can run on a virtual machine if and We now describe how a micro-agent is executed on
only if v supports all the non-generic items used a virtual machine that is a host for the micro-agen
by m. Without inheritance, one would write the There are two basic processes involved: invokirenev
conditon simply as NGE(m)ONGE(v) and handlers and executing instructions. We cover avent
NGI(m) 0 NGI(v) . However, this time, when talking first. An event' handler is invoked in two ;ituatiaorQa)
about non-generic items supported by a virtual when a generic event occurs, and the mmrq-agenaha
machine, we take into account their inheritancesbbas handler for it, and (b) when.a non-generic event
one-way identification. occurs @ONGE(v)), and the micro-agent has a handler
swi t chOnLi ght Sour ce instruction, which is not latter case we havsupefe) n NGE(m) # D .



Actually, when a non-generic eveatoccurs, there
may be more than one super-event eqf for which
there is a handler (i.e., the s®tpefe) n NGE(m) may
have more than one element). In that case, theldrand
for all the super-events af are invoked. The handlers
for more-specific super-events efare invoked before
those for less specific ones.

The event handling mechanism leads
noteworthy “playing with the levels of abstraction.
Let for some eONGE(m), the set sule) n NGE(v)
contain more than one element, as in Fig. 10. There
whichever of the three sub-events occurs, it igdheh
by a single handler — that of the super-event
Li ght Sour ceEvent. It can be said that the micro-
agent does not distinguish between the three sub
events; at the micro-agent’s level of abstractedhpf
them are handled as a single event.

Now, let for some non-generic eveatINGE(v),
the set supefe)n NGE(m) contain more than one
element, as in Fig. 11. There, whenewgi | i ng-
Lanpl nKi t chenSwi t chedOnEvent occurs, it is
handled by three different handlers — those ofutser-
events. It can be said that the micro-agent hanties
same event at three different levels of abstraction

As for the micro-agent’s instructions, generic ones
are simply executed. For a non-generic instruction
iONGI(m), its sub-instruction supported by the
virtual machine (i.e., an element afi(i) n NGI(v) ),
which could bei itself, is executed. If there is more
then one sub-instruction (i.esuk(i) n NGI(v) contains
more than one element), it is up to the virtual hiae
to pick the sub-instruction to be executed. For

to

NGE(m)

‘ HomeltemSwitchedOnEvent ‘

7y

‘ LightSource SwitchedOnEvent ‘

£

LightSourcelnKitchenSwitchedOnEvent ‘

‘ CeilingLamplInKitchenSwitchedOnEvent

Figure 11. Single event handled at different
levels of abstraction

2.7. Implementation issues

The technique of domain-oriented virtual machines
is quite lightweight and can be implemented on tiny
'sensor nodes (e.g., of the TinyOS class). Only an
implementation of the non-generic part of a virtual
machine needs to be considered. A simple appreach i
as follows (we focus on events for the sake of
example). Let each even¢éONGE have a unique
numericalevent codewhich can be stored as a binary
string (the codes can be generated by the ontology
preprocessor). Then for a node’s virtual machine
and for each even¢ONGE(v) , the node should store
the codes of all the super-events ef (i.e., the
elements of supefe) ). As can easily be seen, this

information and a simple search suffices to chdgk i

for a given micro-agenin, NGE(m) O Usupe(e)
eINGE(V)

holds (this is done to determine if the virtual imae

is a host for the micro-agent). It is equally simpd

find the set supefe) n NGE(m) (this is done to

example, in a case of a more advanced ontology tharimPlement event handling). Essentially the same

the one shown in Fig. 5NGI(v) could include the
al ert SoundLowPi t ch andal ert SoundHi ghPi t ch
instructions. If a micro-agent used er t Sound, then
it would be up to the virtual machine to alert wih
low pitch sound or a high pitch sound.

T

NGE(v)

— T

NGE(m)

‘ LightSourceEvent ‘

‘ LightSourceSwitchedOnEvent

k/

‘ LightSourcelnKitchenSwitchedOffEvent ’,

(
~—

‘ CeilingLampSwitchedOffEvent

w

Figure 10. Multiple events handled at a higher
level of abstraction as a common super-event

approach can be applied for non-generic instrustion
3. Prospective middleware layers

The technique of domain-oriented virtual machines
is of use in a whole class of middleware layers for
heterogeneous sensor-actuator networks.

A prospective middleware, in which the technique
is applicable, satisfies the following basic arebitiral
assumptions: (1) each node of the network has a
domain-oriented, node-specific virtual machine; &)
pervasive computing application (or at least a phit)
consists of mobile agents, whose architecture neatch
that of the domain-oriented virtual machine (one
example of such a mobile agent architecture, the
micro-agent, has been presented); (3) the appitati
interacts with the environment by means of the heobi
agents, through non-generic events and instructions

A further architectural assumption, given below,
seems to ensure that the technique of domain-edent



virtual machines offers most value. The assumption beginning, very demanding (specific) agents are
goes beyond the approach presented so far in fer.pa dispatched to achieve full functionality. If no t®$or

The middleware layer preferably offers a primitive those are found (because required resources are not
enabling a mobile agent to dispatch another mobileavailable), somewhat less demanding agents are
agent. The dispatching primitive is in fact a resjue dispatched. The process is repeated until the rayet
that an instance of the dispatched agent be cremted of abstraction is achieved.
some of its hosts. The primitive may have modes, e. A high level of abstraction is not necessarily
a broadcast mode (instantiate on all availableshost something to be avoided; sometimes it may be used o
and an anycast mode (instantiate on a single hidst). purpose to refer to great many resources in a senci
no host is found, then no instance is created. Theway. Assume that an event inheritance graph comtain
dispatching service is implemented by the middlewvar two high level events, HumanEvent and
through appropriate host-finding routing protoco®s.  Machi neEvent, and that each more specific event is
part of the implementation is a module (preserthi&n  identified with either one or the other. Thengdeect

middleware at each node) that evaluatesHts(v, m) all events generated by a human being, it is saffic
predicate for a node’s virtual machireand a micro- ~ to have a very simple agent with just one handiar (
agentm. HumanEvent) and to dispatch the agent in the

If non-generic events and instructions (or the broadcast mode. A quite abstract piece of context
underlying sensors and actuators) are thought of agnhformation (*somebody is at home”) can be obtained
services offered by nodes, then the agent dispagchi this way, without any explicit context synthesis.
primitive entails an implicit (transparent to the Another case of using a high level of abstraction o
programmer) service discovery. purpose is when the programmer does not care how a

Note that we do not assume any‘thing about how agiven piece of fUnCtionality is delivered to theeus
prospective middleware layer takes care of (€.g., an alert can be displayed on whatever device
communications and coordination between the mobile happens to be available).
agents. One approach is presented in [2]. However, A useful feature of domain-oriented virtual
many others are possible. machines is that an agent can work on a new nate th

offers non-generic items unknown at the time thenag
i ~ati ot i was developed. This is the case as long as thennaw
4. Applications to opportunistic computing generic items are sub-events (sub-instructionshage
used by the agent.

Some of the issues raised in this section have a
flavor of object-oriented programming (which alsash
to do varying levels of abstraction). The uniquatfiee
of domain-oriented virtual machines is that domain
abstractions can be “embedded” into severely
constrained sensor-actuator nodes.

Domain-oriented virtual machines seem to be a
convenient facility in opportunistic pervasive
computing. In this section we provide some argusient
to justify the claim. We assume that a middleware
layer incorporating domain-oriented virtual maclsine
satisfies the assumptions presented above.

The key advantage of resource (service) discovery
done by dispatching a mobile agent is that sought
resources can be described (and requested) atediffe
levels of abstraction; this offers the programmezag
flexibility in defining her needs. It is possible t
specify different aspects of a resource with dédfer
specificity. For example, the embedding object ban
described in quite general terms, while the locatio
quite precisely (or vice versa).

One approach to an unknown sensor-actuator
network is to use a high level of abstraction (ite.
dispatch agents, which are not very demanding in
terms of specificity). Some matching resources will
probably be found at that level, although at theesmse

5. Related wor k

We could find very little work directly related to
domain-oriented virtual machines, as presentedis t
paper. Node-specific virtual machines in pervasive
computing are presented in [4]. However, the
heterogeneity there has to do with computing pavfer
underlying nodes. In our approach, the network is
homogeneous in terms of computing power, but
heterogeneous as to available sensors and actuators

A programming paradigm that fits the node-specific
virtual machine approach is th@rototype-based

of low “resolution” of the working of an applicatio programming as referenced by the Self language [5].
If the above approach is not good enough, an It can be characterized as a classless objectteden

opportunistic pervasive computing application can Pregramming model. Objects are not instantiatechfro

; ; ; : lasses but derived from other objects. Their nmatho
keep dispatching mobile agents that are succegsivel ¢ .
less demanding in terms of specificity. At the can be freely modified (added, removed from the



object). This is similar to our micro-agents freely middleware, which will automatically update the lig
composed of instructions and events. nodes belonging to the neighborhood.

Below we highlight some work that, in our opinion,
could be used in opportunistic pervasive computing, 6. Conclusion
but isnot directly linked to the domain-oriented virtual
machines approach. A common trait here is
programming for an unknown and changing ha
environment.

One of the problems is how to refer to an unknown
number of nodes present in the environment. Ndyyral
a middleware layer could enable the programmer to
“manually” discover the nodes and manage individual
node references (which would need to be periogicall
updated). A much more programmer-friendly approach
is discussed in [6] and [7]. In both approachescip
references, each pointing to multiple objects, umed.
In [6], they are callednulti-referenceqas opposed to
mono-referencds In [7], they are calle@mnihandles ~ [1] McGee, D.R. and Cohen, P.R.: "Use what you'st g
(as opposed tamnihandle. In either approach, the Steps toward opportunistic computing”, Technicalp&e,

programmer can handle multiple nodes by using a 2000 School of Science and Engineering, Oregorithiaad
Science University.

single refe_rence. . [2] Domaszewicz, J., et al.: “ROVERS: Pervasive @ating
Dynamically changing references to resources arepjatform for Heterogeneous Sensor-Actuator Networks
the source of another problem: even if the refezenc mobile Distributed Computing (MDC'06), 2006, Niagar
has been “acquired,” it can quickly become out-date Falls, NY, USA.
once the resource disappears. A programming model t [3] Domaszewicz, J. and R6j, M.: “Lightweight Oragly-
facilitate this problem is based mtrong and weak  driven Representations in Pervasive Computing”, ek
references [6]. Strong references always poirtheo ~ Centric Ubiquit. Systems (NCUS'05), 2005, Nagasa&pan
same object. Weak references can point to different[#] Palmer, D.. “A Virtual Machine Generator for
objects during their lifetime and are automatically Heterogeneous Smart Spaces”, Virtual Machine Rekear

: : . . . and Technology Symposium (VM'04). 2004. San JO
associated with available objects by the middleware [5] Ungar Dgyan{j pSmIi:Ih R(. B ?‘Self: The Po\;sﬁr of

(Note that a similar mechanism is used in some gjmpiicity”, Object-Oriented  Programming, ~ Systems,
programming languages, e.g., Java, but its purisd®e | anguages and Applications (OOPSLA'87), 1987, Gitan
help in garbage collection). USA

Another level of programming abstraction, which [6] Van Cutsem, T., Dedecker, J., Mostinckx, S.d dbe
in some way can be used in opportunistic pervasiveMeuter, W.: “Abstractions for Context-aware Object
computing, is offered by so-calledacroprogramming Referenc?s”, Building Software for.Pervasive Cormuyt
(exemplified by the Kairos system [8] and the OOPSLA0SWorkshop. 2005. San Diego, CA, USA.
Regiment language [9]). Compared to multi-reference [7] Bischof, H.-P. and Kaminsky, A. “Many-to-Many

d ihand| th . hInvocation: A new framework for building collabarat
and omnihandies, the macroprogramming approac applications in ad hoc networks”. Ad Hoc Commuriaat

goes a step further. The goal is to program thelevho ang Collaboration in Ubiquitous Computing Enviromise
network as a single entity. New abstractions, sagh  (CSCw'02), 2002, New Orleans, USA.

regions streams or areashave been introduced. They [8] Gummadi, R., Gnawali, O., and Govindan, R.: ‘tvta
group multiple nodes and sensor readings together.  programming Wireless Sensor Networks Using Kairos”,
A holistic approach to programming unknown, Distr. Computing in Sensor Systems (DCOSS'05), 2005
changing environments, called ambient-oriented [9] Newton, R. and Welsh, M.: “Region Streams: Rioral
programming (AmOP), is discussed in [10]. AmOP Macroprogramming  for  Sensor  Networks”, Data

exploits an object-oriented model with non-blocking '[\ig]n aDg:dn;gil(te:oSSir:s;r-l\l{itr\;]vgir:ﬁt,_é(i%t,tgg rg?;;,rg:gg
communications primitives and combines the o o .

i - Object-Oriented Programming, Systems, Languages and

prototype-based programming with the actor model.  appjications (OOPSLA'05), 2005, San Diego, CA, USA.
Neighborhood abstractions, which are of great use[11] whitehouse, K., Sharp, C., Brewer, E., andl&€uiD.:

in opportunistic pervasive computing, have been “Hood: A Neighborhood Abstraction for Sensor Netisst

discussed in [11] and [12]. Both systems use specia Mobile Systems, Applications and Services (Mobi®4¥'

abstractions of the node’s neighborhood, which is 2004, Boston, MA, USA.

defined as nodes sharing some attributes. Oncdl2] Welsh, M. and Mainland, G.: Programming sensor

. ; ; P networks using abstract regions, Networked Systessgn
defined, the neighborhood is maintained by the and Implementation (NSDI04), 2004, San FranciStA.

The concept of opportunistic pervasive computing
s been briefly described, and the technique of
domain-oriented virtual machines has been presented
in detail. Possible ways to apply domain-oriented
virtual machines to opportunistic pervasive computi
have been outlined; we plan to study them further.
Clearly, much more work is needed to realize the
vision of opportunistic pervasive computing.

7. References



