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Abstract 
  

The paper targets heterogeneous sensor-actuator 
networks, in which nodes differ as to resources 
(sensors and actuators) they are equipped with. Each 
node contributes its specific sensors and actuators to 
be used by applications. The key assumption of 
“opportunistic pervasive computing” is that the actual 
mix of nodes (and that of available resources) is not 
known in advance to the programmer. An opportunistic 
pervasive computing application is supposed to take 
the best advantage of whatever sensors and actuators 
happen to be available in the network. The paper 
presents a technique that can be used in middleware 
layers supporting such applications. The technique 
uses virtual machines to orderly expose sensor and 
actuator resources of a node to the programmer. The 
virtual machines are domain-oriented, node specific, 
and able to work with the resources at multiple levels 
of abstraction. They can be implemented on severely 
constrained nodes (e.g., of the TinyOS class). 
 
1. Introduction 
 

The paper targets heterogeneous sensor-actuator 
networks of tiny, constrained, embedded nodes (e.g., a 
home network of nodes embedded into everyday 
objects, like a lamp or refrigerator). The network is 
heterogeneous in that the nodes differ in sensor and 
actuator resources they are equipped with (we 
consistently use the term “resources” to denote a 
node’s sensors and actuators). A node embedded into 
a lamp may offer an actuator allowing an application to 
switch the lamp on and off; it may also contain 
a sensor that makes it possible to determine the lamp’s 
current state. Clearly, a node embedded into a 
refrigerator is likely to offer a collection of sensors and 
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actuators of very different functionality (e.g., a 
temperature sensor and a sensor detecting a door 
opening event). Each node contributes its specific 
sensors and actuators to be used by pervasive 
computing applications. 

The key assumption behind opportunistic pervasive 
computing is that the actual mix of nodes (and thus that 
of available sensors and actuators) is not fully known 
to the application programmer. The assumption is true 
whenever (a) applications are written not for a specific 
network, but for an entire class of target networks, and 
(b) the target networks unavoidably differ in their 
composition. The former statement can be justified in 
terms of development cost. The latter one is true 
whenever networks grow without any master plan 
(e.g., this is the case for home networks of intelligent 
everyday objects). 

By definition, an opportunistic pervasive 
computing application is supposed to take the best 
advantage of (offer the best possible functionality with) 
whatever resources happen to be available in the 
network where the application runs. One can think of 
such applications in two ways. The first one, which 
could be called bottom up, is to assume some minimal 
resources as a prerequisite, and search for opportunities 
to make a better job, if more than the minimal 
resources are available. The other one, top down, is to 
assume some maximal resources that the application is 
capable of using and scale down gracefully as the 
actual resources are less than maximal. A similar 
concept of opportunistic computing is presented in [1]. 

Clearly, the development of opportunistic pervasive 
computing applications is far from trivial. We would 
like to ease the programmer’s job by pushing a number 
of recurring tasks into a middleware. Certainly, many 
complex tasks, especially those of “algorithmic” nature 
are likely to stay in the application layer. However, 
even if the programmer is to be freed only from minor 
(but troublesome) “programming” chores, the effort 
seems to be worthwhile.  

This paper contributes a technique that can be used 
in middleware layers for opportunistic pervasive 
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computing with heterogeneous sensor-actuator 
networks. The technique, domain-oriented virtual 
machines, is a part of the ROVERS middleware [2]. 
However, we believe that it is of much wider 
applicability. It can be applied in a whole class of 
mobile code-based systems. Importantly, domain-
oriented virtual machines can be implemented on 
severely constrained nodes (e.g., of the TinyOS class). 

This paper is organized as follows. Domain-
oriented virtual machines are described in detail in 
Section 2. A class of middleware layers in which the 
technique can be applied is discussed in Section 3. 
Possible applications to opportunistic pervasive 
computing are outlined in Section 4. Related work is 
reported in Section 5. The paper is concluded in 
Section 6. 
 
2. Domain-oriented virtual machines 
 

Each node of a heterogeneous sensor-actuator 
network has its own mix of resources (sensors and 
actuators). In this section we present a method to 
systematically expose a node’s resources to the 
programmer. We assume that each node is equipped 
with a virtual machine (the primary motivation for the 
virtual machine is to support mobile code). In our 
approach, the resources of a node are available through 
the node’s virtual machine. The virtual machines, as 
presented in this paper, are (a) domain-oriented, 
(b) node-specific, and (c) able to work with resources 
at multiple levels of abstraction. 
 
2.1. Virtual machine architecture 
 

The virtual machine architecture is tailored towards 
event-driven programming. The virtual machine 
generates events and executes instructions. Software 
running on the virtual machine consists of event 
handlers, and each event handler is composed of 
instructions. 

We start by specifying the sets of all possible 
events and instructions, E  and I , respectively. Both 
events and instructions can be classified into generic 
and non-generic: NGEGEE ∪=  and NGIGII ∪= . 
Generic events and instructions are supported by all 
virtual machines, no matter what the resources of the 
underlying nodes are. An example of a generic event is 
TimerEvent, the timer expiry event (it is assumed that 
each node is equipped with a timer). Examples of 
generic instructions are typical and include arithmetic 
instructions (add), data movement instructions (load), 
program control instructions (jump), etc. There is 
nothing special about generic events and instructions. 

Non-generic events and instructions, the elements 
of NGE  and NGI , are used to expose sensors and 
actuators to the programmer. We postulate that they 
represent the underlying resources not at a low, 
physical level, but at an abstract, domain-oriented level 
(thus making the virtual machines themselves domain-
oriented). A specific non-generic event or instruction 
should imply the meaning of the interaction with the 
resource, the kind of object the node is embedded in, 
and possibly the location of the object, all expressed in 
some high-level domain terminology.  

For example, consider the domain of home objects 
and a node that is embedded in a ceiling lamp located 
in a kitchen. Assume the node is equipped with a 
switch. The lamp can be switched on and off either by 
a human or programmatically. Then the lamp switch 
could be represented by two non-generic events and 
three non-generic instructions, as shown in Fig. 1. The 
figure also shows a possible representation, two non-
generic events, for a sensor built into a refrigerator’s 
door. Note the level of abstraction and “semantic 
richness” of the non-generic items shown in Fig. 1. 
 

Kitchen ceiling lamp switch 
events CeilingLampInKitchenSwitchedOnEvent 

CeilingLampInKitchenSwitchedOffEvent 
instructions switchOffCeilingLampInKitchen 

switchOnCeilingLampInKitchen 
isCeilingLampInKitchenOn 

Refrigerator door sensor 
events RefrigeratorDoorOpenEvent 

RefrigeratorDoorClosedEvent 
instructions - 

 
Figure 1. Non-generic instructions and events 

for an actuator and a sensor  
 
The classification of all the instructions and events 

into generic and non-generic is illustrated in Fig. 2 (the 
home environment being the target domain). Just a few 
representative samples are given for each of the four 
categories. In particular, the sets of non-generic items 
can be very large. To properly describe a domain, 
NGE  and NGI  may have hundreds or even thousands 
of elements.  

 
Figure 2. Classification of the home domain  

virtual machine building blocks  

GI (samples): 
 
add 
push 
call 

NGI (samples): 
 
switchOnDisplay 
switchOnPDADisplay 
switchOffPDADisplay 
isOnDeskLamp 
switchOffHomeItemInKitchen 
turnDownCeilingLampInHall 
 

GE (samples): 
 
OnceEvent 
TimerEvent 
PowerDownEvent 

NGE (samples): 
 
LightSourceSwitchedOffEvent 
CeilingLampInDiningRoomEvent 
DisplayInHallSwitchedOnEvent 
LightSourceTurnedDownEvent 
LightSourceEvent 
CeilingLampInKitchenEvent 
 

 Instructions (I) Events (E) 

Generic 
(G) 

Non-
generic 
(NG) 



Any specific node is likely to be equipped with 
only a handful of resources. For example, a node 
embedded into a lamp may not have other resources 
but the lamp switch. As a result, most virtual machines 
are going to support only a few non-generic events and 
instructions (tiny subsets of the whole sets NGE  and 
NGI ). Moreover, due to the network heterogeneity, 
the subsets for two different virtual machines are most 
likely to be different as well. To reflect this in our 
notation, the subsets of NGE  and NGI  supported by a 
virtual machine v  will be denoted by )(vNGE  and 

)(vNGI , respectively. The event set and the instruction 
set of a virtual machine v  will therefore be 

)()( vNGEGEvE ∪=  and )()( vNGIGIvI ∪= . Virtual 
machines are node-specific in that their event and 
instructions sets differ: on top of all generic items, each 
virtual machine supports its unique collection of non-
generic ones.  

The decision as to which non-generic items 
from NGE  and NGI  should a virtual machine support 
is made by the designer of the underlying node. The 
key factors are the resources of the node and the 
functionality of the object it is to be embedded in. For 
example, a virtual machine in a desk lamp node may 
have the instruction set shown in Fig. 3. Three non- 
generic instructions have been added to represent a 
switch, which happens to be the only resource of the 
node. 
 

add

call

jump

move

……..

switchOnDeskLamp

switchOffDeskLamp

isDeskLampOn

NGI(v): non-generic
(VM-dependent)
instructions

GI: generic 
(VM-independent) 
instructions

 
 

Figure 3. Instruction set I(v) 
for a desk lamp virtual machine v 

 
A noteworthy feature is that generic and non-

generic items are used in a program in exactly the same 
way, simply as events and instructions.  
 
2.2. Ontology-driven non-generic items  

 
The sets NGE  and NGI  are meant to include all 

meaningful events and instructions that can possibly be 
considered within the target domain. It would be next 
to impossible to produce them by hand. Instead, what 
is needed is a formal, modular model of the domain, 
out of which all the non-generic events and instructions 
could be systematically derived by a computer.    

In our approach, an ontology is used to model the 
target domain. The ontology contains basic domain-
specific concepts and relationships. The ontology is 
developed first (we use the OWL language). Then, a 
software tool, called ontology preprocessor, accepts 
the ontology as its input and produces all the non-
generic events and instructions as its output (see Fig. 4) 
[3]. The ontology preprocessor derives the non-generic 
items by automatically combining existing concepts 
(OWL classes) into more complex ones. 

 

Onto logy

Ontology preprocessor

Instructions

Ins tructions

NG E

NG I

 
Figure 4. Ontology preprocessor 

 
In our current implementation, the original 

ontology organizes its concepts into multiple modular 
hierarchies. For example, there may be three of those 
for the home domain: an interaction with resources 
hierarchy, an object hierarchy, and a location hierarchy 
(see Fig. 5 for a greatly simplified view). 

 

LightSource

CeilingLamp

Display

PDADisplay

HomeItemInteract

TurnUp

SwitchOffGetLevel

TurnDown

SwitchOn

IsOff

Location

Hall
Kitchen

DeskLamp

Actuate

ReactTo

TurnedUp

TurnedDown

SwitchedOn

Opened

SwitchedOff

Closed

Appliance
Refrigerator

interactsWith

isLocatedIn

Sense

IsOn
DiningRoom

 
 

Figure 5. Concept hierarchies  
for the home domain 

 
The ontology preprocessor produces non-generic 

items by following relations and combining concepts 
(classes) from different hierarchies. For example, 
combining TurnUp from the interaction hierarchy, 
CeilingLamp from the object hierarchy, and 
Kitchen from the location hierarchy gives rise to the 

turnUpCeilingLampInKitchen instruction1. (Not 
all combinations make sense; the ontology 
preprocessor generates only meaningful ones.)  

The concept combining process is fully OWL-
compliant in that a combined concept can be expressed 
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as a new ontology (OWL) class. For example, the 
above instruction could be written as in Fig. 6 (we use 
the more compact description logic notation, rather 
than OWL). The capability to turn down a specific 
ceiling lamp in a specific kitchen could be considered 
an instance of the instruction class. 

 

 

 
Figure 6. Non-generic instruction  

as a computer-derived ontology class  
 

Even though it may be useful to look at a non-
generic item as a class (see the next subsection), for 
most purposes it suffices to consider it to be a simple, 
“atomic” entity. In particular, we never work directly 
with any instances of an event or instruction class. 

As can easily be seen, even an original ontology of 
a fairly limited size can give rise to a huge number of 
derived concepts. This is not a problem, however, as 
the latter are generated by a computer. A resulting big 
catalogue of non-generic items can be conveniently 
browsed by node designers and programmers alike. 
 
2.3. Event and instruction inheritance 

 
The above derivation procedure implies a useful 

relationship between non-generic items. Specifically, 
when a non-generic item is interpreted as an ontology 
class (in fact, it is a class), it may happen to be an 
(ontological) subclass of some other non-generic item. 
For example, the switchOnDeskLamp instruction 
class is an (ontological) subclass of the 
switchOnLightSource instruction class. This 
relationship strongly resembles class inheritance 
known in object-oriented programming, and we borrow 
the term. We say that switchOnDeskLamp inherits 
from switchOnLightSource.  

To provide a general definition, the non-generic 
instruction A inherits from the non-generic instruction 
B if the class corresponding to A is an (ontological) 
subclass of the class corresponding to B. We then call A 
a sub-instruction of B, and B a super-instruction of A. 
Such an inheritance relationship can be similarly 
defined for events. Parts of the “inheritance graphs” for 
non-generic events and instructions derived from the 
ontology shown in Fig.  4 are presented in Fig. 7 and 8. 
A graph of all the events from which 
LightSourceInKitchenSwitchedOnEvent inherits 
(all of its super-events) is given in Fig. 9. 

Event

LightSourceEvent

CeilingLampEvent

CeilingLampBrokenEvent

DisplayEvent

DeskLampEvent

DeskLampSwitchedOnEvent

DeskLampSwitchedOffEvent

CeilingLampBrokenInKitchenEvent

PDADisplaySwichedOnEvent

PDADisplayEvent

 
 

Figure 7. Part of non-generic  
event inheritance graph 

 
 

Instruction

isOnLightSource

isOnCeilingLamp

isOnAppliance

isOnRefrigerator

isOnDeskLampInKitchen

switchOnLightSource

isOnCeilingLampInBathroom

isOnRefrigeratorInKitchen

isOn switchOn turnDown

isOnDeskLamp

turnDownLightSource

switchOnCeilingLampswitchOnDeskLamp

switchOnCeilingLampInKitchenInKitchen

switchOnDeskLampInKitchen

 
 

Figure 8. Part of non-generic instruction 
inheritance graph 

 
Event

LightSourceEvent KitchenEvent

LightSourceInKitchenEvent

SwitchedOnEvent

LightSourceSwitchedOnEvent

LightSourceInKitchenSwitchedOnEvent

SwitchedOnInKitchenEvent

 
 

Figure 9. All super-events for 
LightSourceinKitchenSwitchedOnEvent  

 
In object-oriented programming, if the Car class is 

a subclass of the Vehicle class, then every car is a 
vehicle. We adopt a similar approach for events and 
instructions. However, at this point it suffices to treat 
non-generic item classes as atomic entities: we do not 
consider instances (objects) at all. We identify non-
generic items directly.  For example, as 
CeilingLampEvent inherits from LightSource-
Event, we say that CeilingLampEvent is 
LightSourceEvent. Similarly, as switchOnDesk-
Lamp inherits from switchOnLightSource, we say 
that switchOnDeskLamp is switchOnLightSource. 
Intuitively, referring to the last example, to switch a 
desk lamp is definitely to switch a light source. The 
former offers a higher level of specificity, and the 



latter – a higher level of abstraction. Obviously, the 
identification is only one-way: to switch a light source 
is not necessarily to switch a desk lamp. An 
operational significance for this inheritance-based one-
way identification is presented below.  
 
2.4. Micro-agent 

 
In this section we describe a mobile agent that is 

developed for a domain-oriented virtual machine. As 
its architecture is simple enough for it to run on 
severely constrained nodes, we call it a micro-
agent [2]. We assume that a pervasive computing 
application is composed of communicating and 
cooperating micro-agents. To take advantage of all 
resources available in a heterogeneous sensor-actuator 
network, micro-agents comprising a single application 
usually run on different nodes. 

In accordance with event-driven programming, a 
micro-agent is simply a collection of event handlers for 
some set of events; the handlers, as usual, consist of 
instructions.  Both the events and instructions can be 
either generic or non-generic. A micro-agent’s 
execution amounts to invoking its handlers in response 
to corresponding events.  

As, by definition, not all the non-generic events and 
instructions are available on every virtual machine, it is 
important to clearly identify all the non-generic items 
used by a micro-agent. The sets of all non-generic 
events, for which the micro-agent m  has a handler and 
of all non-generic instructions occurring in any of its 
handlers are denoted by )(mNGE  and )(mNGI , 
respectively.  
 
2.5. Micro-agent hosting 

 
A micro-agent can run on a node only if sensors 

and actuators that the micro-agent needs to do its job 
are available there. As explained, a micro-agent refers 
to sensors and actuators through non-generic events 
and instructions. Therefore, if a micro-agent uses a 
non-generic item, one implicitly requires that the item 
be supported by a target virtual machine. Clearly, not 
every micro-agent can run on every virtual machine. A 
micro-agent m  can run on a virtual machine v  if and 
only if v  supports all the non-generic items used 
by m . Without inheritance, one would write the 
condition simply as )()( vNGEmNGE ⊂  and 

)()( vNGImNGI ⊂ . However, this time, when talking 
about non-generic items supported by a virtual 
machine, we take into account their inheritance-based 
one-way identification.  

For example, let a micro-agent use the 
switchOnLightSource instruction, which is not 

in )(vNGI . Without inheritance-based identification, 
the micro-agent could not run on v .  However, if 

)(vNGI  includes switchOnDeskLamp, which is a 
sub-instruction of switchOnLightSource, then the 
latter is also implicitly supported by v . In that case the 
micro-agent can run on v  (provided there are no 
problems with other non-generic items used by the 
micro-agent). The switchOnDeskLamp sub-
instruction is executed whenever the switchOn-

LightSource super-instruction were to be executed 
(note that the micro-agent does not specify what kind 
of light source is to be switched on). Similarly, if a 
micro-agent has a handler for the DeskLampEvent 
event, which is not in )(vNGE , but the 
DeskLampSwitchedOnEvent sub-event is in 

)(vNGE , then the handler for the super-event is 
invoked whenever the sub-event occurs. 

A virtual machine, on which a micro-agent can run, 
is called a host for the micro-agent.  A virtual machine 
is a host if and only if every non-generic item used by 
the micro-agent is available at a level of specificity 
equal to or higher than that required by the micro-
agent. 

To define a host more formally, we introduce some 
notation. For an event (instruction) x , let )(superx  
denote the set of all super-events (super-instructions) 
of x  in NGE  ( NGI ). Similarly, let )(sub x  denote the 
set of all sub-events (sub-instructions) of x  in NGE  
( NGI ). (Note that )(superx  and )(sub x  include x  
itself). Finally, let ),(host ⋅⋅  be the predicate 
representing the relation of being a host. 

A virtual machine v  is a host for a micro-agent m , 
( ),(host mv  is true) if and only if 

U
)(

)(super)(

vNGE

mNGE
∈

⊂
e

e  and U
)(

)(super)(

vNGI

mNGI
∈

⊂
i

i . 

Equivalently, ),(host mv  is true if and only if for each 

)(mNGE∈e , we have ∅≠∩ )( )(sub vNGEe , and for 
each )(mNGI∈i , we have ∅≠∩ )()(sub vNGIi .  
 
2.6. Micro-agent execution 

 
We now describe how a micro-agent is executed on 

a virtual machine that is a host for the micro-agent. 
There are two basic processes involved: invoking event 
handlers and executing instructions. We cover events 
first. An event handler is invoked in two situations: (a) 
when a generic event occurs, and the micro-agent has a 
handler for it, and (b) when a non-generic event e  
occurs ( )(vNGE∈e ), and the micro-agent has a handler 
for a super-event of e  (which may be e  itself). In the 
latter case we have ∅≠∩ )( )(super mNGEe .  



Actually, when a non-generic event e  occurs, there 
may be more than one super-event of e , for which 
there is a handler (i.e., the set )( )(super mNGE∩e  may 
have more than one element). In that case, the handlers 
for all the super-events of e  are invoked. The handlers 
for more-specific super-events of e  are invoked before 
those for less specific ones. 

 The event handling mechanism leads to 
noteworthy “playing with the levels of abstraction.”  
Let for some )(mNGE∈e , the set )()(sub vNGE∩e  
contain more than one element, as in Fig. 10. There, 
whichever of the three sub-events occurs, it is handled 
by a single handler – that of the super-event 
LightSourceEvent. It can be said that the micro-
agent does not distinguish between the three sub-
events; at the micro-agent’s level of abstraction, all of 
them are handled as a single event. 

Now, let for some non-generic event )(vNGE∈e , 
the set )()(super mNGE∩e  contain more than one 
element, as in Fig. 11. There, whenever Ceiling-

LampInKitchenSwitchedOnEvent occurs, it is 
handled by three different handlers – those of its super-
events. It can be said that the micro-agent handles the 
same event at three different levels of abstraction. 

As for the micro-agent’s instructions, generic ones 
are simply executed. For a non-generic instruction 

)(mNGI∈i ,  its sub-instruction supported by the 
virtual machine (i.e., an element of )()(sub vNGI ∩i ), 
which could be i  itself, is executed. If there is more 
then one sub-instruction (i.e., )()(sub vNGI ∩i  contains 
more than one element), it is up to the virtual machine 
to pick the sub-instruction to be executed. For 
example, in a case of a more advanced ontology than 
the one shown in Fig. 5, )(vNGI  could include the 
alertSoundLowPitch and alertSoundHighPitch 
instructions. If a micro-agent used alertSound, then 
it would be up to the virtual machine to alert with a 
low pitch sound or a high pitch sound. 

 
 

LightSourceEvent

LightSourceSwitchedOnEvent

LightSourceInKitchenSwitchedOffEvent

CeilingLampSwitchedOffEvent

NGE(v) NGE(m)

 
 

Figure 10. Multiple events handled at a higher 
level of abstraction as a common super-event 

 

HomeItemSwitchedOnEvent

LightSourceSwitchedOnEvent

LightSourceInKitchenSwitchedOnEventCeilingLampInKitchenSwitchedOnEvent

NGE(v) NGE(m)

 
 

Figure 11. Single event handled at different 
levels of abstraction  

 
2.7. Implementation issues 

 
The technique of domain-oriented virtual machines 

is quite lightweight and can be implemented on tiny 
sensor nodes (e.g., of the TinyOS class). Only an 
implementation of the non-generic part of a virtual 
machine needs to be considered. A simple approach is 
as follows (we focus on events for the sake of 
example). Let each event NGE∈e  have a unique 
numerical event code, which can be stored as a binary 
string (the codes can be generated by the ontology 
preprocessor). Then for a node’s virtual machine v  
and for each event )(vNGE∈e , the node should store 
the codes of all the super-events of e  (i.e., the 
elements of )(supere ). As can easily be seen, this 
information and a simple search suffices to check if, 

for a given micro-agent m , U
)(

)(super)(
vNGE

mNGE
∈

⊂
e

e  

holds (this is done to determine if the virtual machine 
is a host for the micro-agent). It is equally simple to 
find the set )( )(super mNGE∩e  (this is done to 
implement event handling). Essentially the same 
approach can be applied for non-generic instructions.  
 
3. Prospective middleware layers 
 

The technique of domain-oriented virtual machines 
is of use in a whole class of middleware layers for 
heterogeneous sensor-actuator networks.  

A prospective middleware, in which the technique 
is applicable, satisfies the following basic architectural 
assumptions: (1) each node of the network has a 
domain-oriented, node-specific virtual machine; (2) a 
pervasive computing application (or at least a part of it) 
consists of mobile agents, whose architecture matches 
that of the domain-oriented virtual machine (one 
example of such a mobile agent architecture, the 
micro-agent, has been presented); (3) the application 
interacts with the environment by means of the mobile 
agents, through non-generic events and instructions. 

A further architectural assumption, given below, 
seems to ensure that the technique of domain-oriented 



virtual machines offers most value. The assumption 
goes beyond the approach presented so far in the paper. 

The middleware layer preferably offers a primitive 
enabling a mobile agent to dispatch another mobile 
agent. The dispatching primitive is in fact a request 
that an instance of the dispatched agent be created on 
some of its hosts. The primitive may have modes, e.g., 
a broadcast mode (instantiate on all available hosts) 
and an anycast mode (instantiate on a single host). If 
no host is found, then no instance is created. The 
dispatching service is implemented by the middleware 
through appropriate host-finding routing protocols. A 
part of the implementation is a module (present in the 
middleware at each node) that evaluates the ),(host mv  

predicate for a node’s virtual machine v  and a micro-
agent m . 

If non-generic events and instructions (or the 
underlying sensors and actuators) are thought of as 
services offered by nodes, then the agent dispatching 
primitive entails an implicit (transparent to the 
programmer) service discovery. 

Note that we do not assume anything about how a 
prospective middleware layer takes care of 
communications and coordination between the mobile 
agents. One approach is presented in [2]. However, 
many others are possible. 
 
4. Applications to opportunistic computing 
 

Domain-oriented virtual machines seem to be a 
convenient facility in opportunistic pervasive 
computing. In this section we provide some arguments 
to justify the claim. We assume that a middleware 
layer incorporating domain-oriented virtual machines 
satisfies the assumptions presented above. 

The key advantage of resource (service) discovery 
done by dispatching a mobile agent is that sought 
resources can be described (and requested) at different 
levels of abstraction; this offers the programmer great 
flexibility in defining her needs. It is possible to 
specify different aspects of a resource with different 
specificity. For example, the embedding object can be 
described in quite general terms, while the location – 
quite precisely (or vice versa).  

One approach to an unknown sensor-actuator 
network is to use a high level of abstraction (i.e., to 
dispatch agents, which are not very demanding in 
terms of specificity). Some matching resources will 
probably be found at that level, although at the expense 
of low “resolution” of the working of an application. 

If the above approach is not good enough, an 
opportunistic pervasive computing application can 
keep dispatching mobile agents that are successively 
less demanding in terms of specificity. At the 

beginning, very demanding (specific) agents are 
dispatched to achieve full functionality. If no hosts for 
those are found (because required resources are not 
available), somewhat less demanding agents are 
dispatched. The process is repeated until the right level 
of abstraction is achieved. 

A high level of abstraction is not necessarily 
something to be avoided; sometimes it may be used on 
purpose to refer to great many resources in a concise 
way. Assume that an event inheritance graph contains 
two high level events, HumanEvent and 
MachineEvent, and that each more specific event is 
identified with either one or the other.  Then, to detect 
all events generated by a human being, it is sufficient 
to have a very simple agent with just one handler (for 
HumanEvent) and to dispatch the agent in the 
broadcast mode. A quite abstract piece of context 
information (“somebody is at home”) can be obtained 
this way, without any explicit context synthesis. 

Another case of using a high level of abstraction on 
purpose is when the programmer does not care how a 
given piece of functionality is delivered to the user 
(e.g., an alert can be displayed on whatever device 
happens to be available). 

A useful feature of domain-oriented virtual 
machines is that an agent can work on a new node that 
offers non-generic items unknown at the time the agent 
was developed. This is the case as long as the new non-
generic items are sub-events (sub-instructions) of those 
used by the agent. 

Some of the issues raised in this section have a 
flavor of object-oriented programming (which also has 
to do varying levels of abstraction). The unique feature 
of domain-oriented virtual machines is that domain 
abstractions can be “embedded” into severely 
constrained sensor-actuator nodes. 
 
5. Related work  
 

We could find very little work directly related to 
domain-oriented virtual machines, as presented in this 
paper. Node-specific virtual machines in pervasive 
computing are presented in [4]. However, the 
heterogeneity there has to do with computing power of 
underlying nodes. In our approach, the network is 
homogeneous in terms of computing power, but 
heterogeneous as to available sensors and actuators.  

A programming paradigm that fits the node-specific 
virtual machine approach is the prototype-based 
programming, as referenced by the Self language [5]. 
It can be characterized as a classless object-oriented 
programming model. Objects are not instantiated from 
classes but derived from other objects. Their methods 
can be freely modified (added, removed from the 



object). This is similar to our micro-agents freely 
composed of instructions and events.   

Below we highlight some work that, in our opinion, 
could be used in opportunistic pervasive computing, 
but is not directly linked to the domain-oriented virtual 
machines approach. A common trait here is 
programming for an unknown and changing 
environment. 

One of the problems is how to refer to an unknown 
number of nodes present in the environment. Naturally, 
a middleware layer could enable the programmer to 
“manually” discover the nodes and manage individual 
node references (which would need to be periodically 
updated). A much more programmer-friendly approach 
is discussed in [6] and [7]. In both approaches, special 
references, each pointing to multiple objects, are used. 
In [6], they are called multi-references (as opposed to 
mono-references). In [7], they are called omnihandles 
(as opposed to unihandles). In either approach, the 
programmer can handle multiple nodes by using a 
single reference. 

Dynamically changing references to resources are 
the source of another problem: even if the reference 
has been “acquired,” it can quickly become out-dated 
once the resource disappears. A programming model to 
facilitate this problem is based on strong and weak 
references [6].  Strong references always point to the 
same object. Weak references can point to different 
objects during their lifetime and are automatically 
associated with available objects by the middleware. 
(Note that a similar mechanism is used in some 
programming languages, e.g., Java, but its purpose is to 
help in garbage collection). 

Another level of programming abstraction, which 
in some way can be used in opportunistic pervasive 
computing, is offered by so-called macroprogramming 
(exemplified by the Kairos system [8] and the 
Regiment language [9]). Compared to multi-references 
and omnihandles, the macroprogramming approach 
goes a step further. The goal is to program the whole 
network as a single entity. New abstractions, such as 
regions, streams, or areas have been introduced. They 
group multiple nodes and sensor readings together. 

A holistic approach to programming unknown, 
changing environments, called ambient-oriented 
programming (AmOP), is discussed in [10]. AmOP 
exploits an object-oriented model with non-blocking 
communications primitives and combines the 
prototype-based programming with the actor model.  

Neighborhood abstractions, which are of great use 
in opportunistic pervasive computing, have been 
discussed in [11] and [12]. Both systems use special 
abstractions of the node’s neighborhood, which is 
defined as nodes sharing some attributes. Once 
defined, the neighborhood is maintained by the 

middleware, which will automatically update the list of 
nodes belonging to the neighborhood. 

 
6. Conclusion 

 
The concept of opportunistic pervasive computing 

has been briefly described, and the technique of 
domain-oriented virtual machines has been presented 
in detail. Possible ways to apply domain-oriented 
virtual machines to opportunistic pervasive computing 
have been outlined; we plan to study them further.  
Clearly, much more work is needed to realize the 
vision of opportunistic pervasive computing.  
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