
Opportunistic Pervasive Computing with Domain-oriented Virtual Machines

J. Domaszewicz, M. Rój, A. Pruszkowski
Institute of Telecommunications, Warsaw University of Technology

Nowowiejska 15/19, 00-665 Warsaw, Poland
{j.domaszewicz, m.roj, a.pruszkowski}@tele.pw.edu.pl

Abstract

The paper targets heterogeneous sensor-actuator
networks, in which nodes differ as to resources
(sensors and actuators) they are equipped with. Each
node contributes its specific sensors and actuators to
be used by applications. The key assumption of
“opportunistic pervasive computing” is that the actual
mix of nodes (and that of available resources) is not
known in advance to the programmer. An opportunistic
pervasive computing application is supposed to take
the best advantage of whatever sensors and actuators
happen to be available in the network. The paper
presents a technique that can be used in middleware
layers supporting such applications. The technique
uses virtual machines to orderly expose sensor and
actuator resources of a node to the programmer. The
virtual machines are domain-oriented, node specific,
and able to work with the resources at multiple levels
of abstraction. They can be implemented on severely
constrained nodes (e.g., of the TinyOS class).

1. Introduction

The paper targets heterogeneous sensor-actuator
networks of tiny, constrained, embedded nodes (e.g., a
home network of nodes embedded into everyday
objects, like a lamp or refrigerator). The network is
heterogeneous in that the nodes differ in sensor and
actuator resources they are equipped with (we
consistently use the term “resources” to denote a
node’s sensors and actuators). A node embedded into
a lamp may offer an actuator allowing an application to
switch the lamp on and off; it may also contain
a sensor that makes it possible to determine the lamp’s
current state. Clearly, a node embedded into a
refrigerator is likely to offer a collection of sensors and

This work was supported in part by the Polish Ministry of

Science and Higher Education, project no. 3 T11D 011 28.

actuators of very different functionality (e.g., a
temperature sensor and a sensor detecting a door
opening event). Each node contributes its specific
sensors and actuators to be used by pervasive
computing applications.

The key assumption behind opportunistic pervasive
computing is that the actual mix of nodes (and thus that
of available sensors and actuators) is not fully known
to the application programmer. The assumption is true
whenever (a) applications are written not for a specific
network, but for an entire class of target networks, and
(b) the target networks unavoidably differ in their
composition. The former statement can be justified in
terms of development cost. The latter one is true
whenever networks grow without any master plan
(e.g., this is the case for home networks of intelligent
everyday objects).

By definition, an opportunistic pervasive
computing application is supposed to take the best
advantage of (offer the best possible functionality with)
whatever resources happen to be available in the
network where the application runs. One can think of
such applications in two ways. The first one, which
could be called bottom up, is to assume some minimal
resources as a prerequisite, and search for opportunities
to make a better job, if more than the minimal
resources are available. The other one, top down, is to
assume some maximal resources that the application is
capable of using and scale down gracefully as the
actual resources are less than maximal. A similar
concept of opportunistic computing is presented in [1].

Clearly, the development of opportunistic pervasive
computing applications is far from trivial. We would
like to ease the programmer’s job by pushing a number
of recurring tasks into a middleware. Certainly, many
complex tasks, especially those of “algorithmic” nature
are likely to stay in the application layer. However,
even if the programmer is to be freed only from minor
(but troublesome) “programming” chores, the effort
seems to be worthwhile.

This paper contributes a technique that can be used
in middleware layers for opportunistic pervasive

© 2006 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works,
for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

computing with heterogeneous sensor-actuator
networks. The technique, domain-oriented virtual
machines, is a part of the ROVERS middleware [2].
However, we believe that it is of much wider
applicability. It can be applied in a whole class of
mobile code-based systems. Importantly, domain-
oriented virtual machines can be implemented on
severely constrained nodes (e.g., of the TinyOS class).

This paper is organized as follows. Domain-
oriented virtual machines are described in detail in
Section 2. A class of middleware layers in which the
technique can be applied is discussed in Section 3.
Possible applications to opportunistic pervasive
computing are outlined in Section 4. Related work is
reported in Section 5. The paper is concluded in
Section 6.

2. Domain-oriented virtual machines

Each node of a heterogeneous sensor-actuator
network has its own mix of resources (sensors and
actuators). In this section we present a method to
systematically expose a node’s resources to the
programmer. We assume that each node is equipped
with a virtual machine (the primary motivation for the
virtual machine is to support mobile code). In our
approach, the resources of a node are available through
the node’s virtual machine. The virtual machines, as
presented in this paper, are (a) domain-oriented,
(b) node-specific, and (c) able to work with resources
at multiple levels of abstraction.

2.1. Virtual machine architecture

The virtual machine architecture is tailored towards
event-driven programming. The virtual machine
generates events and executes instructions. Software
running on the virtual machine consists of event
handlers, and each event handler is composed of
instructions.

We start by specifying the sets of all possible
events and instructions, E and I , respectively. Both
events and instructions can be classified into generic
and non-generic: NGEGEE ∪= and NGIGII ∪= .
Generic events and instructions are supported by all
virtual machines, no matter what the resources of the
underlying nodes are. An example of a generic event is
TimerEvent, the timer expiry event (it is assumed that
each node is equipped with a timer). Examples of
generic instructions are typical and include arithmetic
instructions (add), data movement instructions (load),
program control instructions (jump), etc. There is
nothing special about generic events and instructions.

Non-generic events and instructions, the elements
of NGE and NGI , are used to expose sensors and
actuators to the programmer. We postulate that they
represent the underlying resources not at a low,
physical level, but at an abstract, domain-oriented level
(thus making the virtual machines themselves domain-
oriented). A specific non-generic event or instruction
should imply the meaning of the interaction with the
resource, the kind of object the node is embedded in,
and possibly the location of the object, all expressed in
some high-level domain terminology.

For example, consider the domain of home objects
and a node that is embedded in a ceiling lamp located
in a kitchen. Assume the node is equipped with a
switch. The lamp can be switched on and off either by
a human or programmatically. Then the lamp switch
could be represented by two non-generic events and
three non-generic instructions, as shown in Fig. 1. The
figure also shows a possible representation, two non-
generic events, for a sensor built into a refrigerator’s
door. Note the level of abstraction and “semantic
richness” of the non-generic items shown in Fig. 1.

Kitchen ceiling lamp switch
events CeilingLampInKitchenSwitchedOnEvent

CeilingLampInKitchenSwitchedOffEvent
instructions switchOffCeilingLampInKitchen

switchOnCeilingLampInKitchen
isCeilingLampInKitchenOn

Refrigerator door sensor
events RefrigeratorDoorOpenEvent

RefrigeratorDoorClosedEvent
instructions -

Figure 1. Non-generic instructions and events

for an actuator and a sensor

The classification of all the instructions and events

into generic and non-generic is illustrated in Fig. 2 (the
home environment being the target domain). Just a few
representative samples are given for each of the four
categories. In particular, the sets of non-generic items
can be very large. To properly describe a domain,
NGE and NGI may have hundreds or even thousands
of elements.

Figure 2. Classification of the home domain

virtual machine building blocks

GI (samples):

add
push
call

NGI (samples):

switchOnDisplay
switchOnPDADisplay
switchOffPDADisplay
isOnDeskLamp
switchOffHomeItemInKitchen
turnDownCeilingLampInHall

GE (samples):

OnceEvent
TimerEvent
PowerDownEvent

NGE (samples):

LightSourceSwitchedOffEvent
CeilingLampInDiningRoomEvent
DisplayInHallSwitchedOnEvent
LightSourceTurnedDownEvent
LightSourceEvent
CeilingLampInKitchenEvent

 Instructions (I) Events (E)

Generic
(G)

Non-
generic
(NG)

Any specific node is likely to be equipped with
only a handful of resources. For example, a node
embedded into a lamp may not have other resources
but the lamp switch. As a result, most virtual machines
are going to support only a few non-generic events and
instructions (tiny subsets of the whole sets NGE and
NGI). Moreover, due to the network heterogeneity,
the subsets for two different virtual machines are most
likely to be different as well. To reflect this in our
notation, the subsets of NGE and NGI supported by a
virtual machine v will be denoted by)(vNGE and

)(vNGI , respectively. The event set and the instruction
set of a virtual machine v will therefore be

)()(vNGEGEvE ∪= and)()(vNGIGIvI ∪= . Virtual
machines are node-specific in that their event and
instructions sets differ: on top of all generic items, each
virtual machine supports its unique collection of non-
generic ones.

The decision as to which non-generic items
from NGE and NGI should a virtual machine support
is made by the designer of the underlying node. The
key factors are the resources of the node and the
functionality of the object it is to be embedded in. For
example, a virtual machine in a desk lamp node may
have the instruction set shown in Fig. 3. Three non-
generic instructions have been added to represent a
switch, which happens to be the only resource of the
node.

add

call

jump

move

……..

switchOnDeskLamp

switchOffDeskLamp

isDeskLampOn

NGI(v): non-generic
(VM-dependent)
instructions

GI: generic
(VM-independent)
instructions

Figure 3. Instruction set I(v)
for a desk lamp virtual machine v

A noteworthy feature is that generic and non-

generic items are used in a program in exactly the same
way, simply as events and instructions.

2.2. Ontology-driven non-generic items

The sets NGE and NGI are meant to include all

meaningful events and instructions that can possibly be
considered within the target domain. It would be next
to impossible to produce them by hand. Instead, what
is needed is a formal, modular model of the domain,
out of which all the non-generic events and instructions
could be systematically derived by a computer.

In our approach, an ontology is used to model the
target domain. The ontology contains basic domain-
specific concepts and relationships. The ontology is
developed first (we use the OWL language). Then, a
software tool, called ontology preprocessor, accepts
the ontology as its input and produces all the non-
generic events and instructions as its output (see Fig. 4)
[3]. The ontology preprocessor derives the non-generic
items by automatically combining existing concepts
(OWL classes) into more complex ones.

Onto logy

Ontology preprocessor

Instructions

Ins tructions

NG E

NG I

Figure 4. Ontology preprocessor

In our current implementation, the original

ontology organizes its concepts into multiple modular
hierarchies. For example, there may be three of those
for the home domain: an interaction with resources
hierarchy, an object hierarchy, and a location hierarchy
(see Fig. 5 for a greatly simplified view).

LightSource

CeilingLamp

Display

PDADisplay

HomeItemInteract

TurnUp

SwitchOffGetLevel

TurnDown

SwitchOn

IsOff

Location

Hall
Kitchen

DeskLamp

Actuate

ReactTo

TurnedUp

TurnedDown

SwitchedOn

Opened

SwitchedOff

Closed

Appliance
Refrigerator

interactsWith

isLocatedIn

Sense

IsOn
DiningRoom

Figure 5. Concept hierarchies
for the home domain

The ontology preprocessor produces non-generic

items by following relations and combining concepts
(classes) from different hierarchies. For example,
combining TurnUp from the interaction hierarchy,
CeilingLamp from the object hierarchy, and
Kitchen from the location hierarchy gives rise to the

turnUpCeilingLampInKitchen instruction1. (Not
all combinations make sense; the ontology
preprocessor generates only meaningful ones.)

The concept combining process is fully OWL-
compliant in that a combined concept can be expressed

1 To differentiate instructions from events, we do not capitalize

the names of the former.

as a new ontology (OWL) class. For example, the
above instruction could be written as in Fig. 6 (we use
the more compact description logic notation, rather
than OWL). The capability to turn down a specific
ceiling lamp in a specific kitchen could be considered
an instance of the instruction class.

Figure 6. Non-generic instruction

as a computer-derived ontology class

Even though it may be useful to look at a non-
generic item as a class (see the next subsection), for
most purposes it suffices to consider it to be a simple,
“atomic” entity. In particular, we never work directly
with any instances of an event or instruction class.

As can easily be seen, even an original ontology of
a fairly limited size can give rise to a huge number of
derived concepts. This is not a problem, however, as
the latter are generated by a computer. A resulting big
catalogue of non-generic items can be conveniently
browsed by node designers and programmers alike.

2.3. Event and instruction inheritance

The above derivation procedure implies a useful

relationship between non-generic items. Specifically,
when a non-generic item is interpreted as an ontology
class (in fact, it is a class), it may happen to be an
(ontological) subclass of some other non-generic item.
For example, the switchOnDeskLamp instruction
class is an (ontological) subclass of the
switchOnLightSource instruction class. This
relationship strongly resembles class inheritance
known in object-oriented programming, and we borrow
the term. We say that switchOnDeskLamp inherits
from switchOnLightSource.

To provide a general definition, the non-generic
instruction A inherits from the non-generic instruction
B if the class corresponding to A is an (ontological)
subclass of the class corresponding to B. We then call A
a sub-instruction of B, and B a super-instruction of A.
Such an inheritance relationship can be similarly
defined for events. Parts of the “inheritance graphs” for
non-generic events and instructions derived from the
ontology shown in Fig. 4 are presented in Fig. 7 and 8.
A graph of all the events from which
LightSourceInKitchenSwitchedOnEvent inherits
(all of its super-events) is given in Fig. 9.

Event

LightSourceEvent

CeilingLampEvent

CeilingLampBrokenEvent

DisplayEvent

DeskLampEvent

DeskLampSwitchedOnEvent

DeskLampSwitchedOffEvent

CeilingLampBrokenInKitchenEvent

PDADisplaySwichedOnEvent

PDADisplayEvent

Figure 7. Part of non-generic
event inheritance graph

Instruction

isOnLightSource

isOnCeilingLamp

isOnAppliance

isOnRefrigerator

isOnDeskLampInKitchen

switchOnLightSource

isOnCeilingLampInBathroom

isOnRefrigeratorInKitchen

isOn switchOn turnDown

isOnDeskLamp

turnDownLightSource

switchOnCeilingLampswitchOnDeskLamp

switchOnCeilingLampInKitchenInKitchen

switchOnDeskLampInKitchen

Figure 8. Part of non-generic instruction
inheritance graph

Event

LightSourceEvent KitchenEvent

LightSourceInKitchenEvent

SwitchedOnEvent

LightSourceSwitchedOnEvent

LightSourceInKitchenSwitchedOnEvent

SwitchedOnInKitchenEvent

Figure 9. All super-events for
LightSourceinKitchenSwitchedOnEvent

In object-oriented programming, if the Car class is

a subclass of the Vehicle class, then every car is a
vehicle. We adopt a similar approach for events and
instructions. However, at this point it suffices to treat
non-generic item classes as atomic entities: we do not
consider instances (objects) at all. We identify non-
generic items directly. For example, as
CeilingLampEvent inherits from LightSource-
Event, we say that CeilingLampEvent is
LightSourceEvent. Similarly, as switchOnDesk-
Lamp inherits from switchOnLightSource, we say
that switchOnDeskLamp is switchOnLightSource.
Intuitively, referring to the last example, to switch a
desk lamp is definitely to switch a light source. The
former offers a higher level of specificity, and the

latter – a higher level of abstraction. Obviously, the
identification is only one-way: to switch a light source
is not necessarily to switch a desk lamp. An
operational significance for this inheritance-based one-
way identification is presented below.

2.4. Micro-agent

In this section we describe a mobile agent that is

developed for a domain-oriented virtual machine. As
its architecture is simple enough for it to run on
severely constrained nodes, we call it a micro-
agent [2]. We assume that a pervasive computing
application is composed of communicating and
cooperating micro-agents. To take advantage of all
resources available in a heterogeneous sensor-actuator
network, micro-agents comprising a single application
usually run on different nodes.

In accordance with event-driven programming, a
micro-agent is simply a collection of event handlers for
some set of events; the handlers, as usual, consist of
instructions. Both the events and instructions can be
either generic or non-generic. A micro-agent’s
execution amounts to invoking its handlers in response
to corresponding events.

As, by definition, not all the non-generic events and
instructions are available on every virtual machine, it is
important to clearly identify all the non-generic items
used by a micro-agent. The sets of all non-generic
events, for which the micro-agent m has a handler and
of all non-generic instructions occurring in any of its
handlers are denoted by)(mNGE and)(mNGI ,
respectively.

2.5. Micro-agent hosting

A micro-agent can run on a node only if sensors

and actuators that the micro-agent needs to do its job
are available there. As explained, a micro-agent refers
to sensors and actuators through non-generic events
and instructions. Therefore, if a micro-agent uses a
non-generic item, one implicitly requires that the item
be supported by a target virtual machine. Clearly, not
every micro-agent can run on every virtual machine. A
micro-agent m can run on a virtual machine v if and
only if v supports all the non-generic items used
by m . Without inheritance, one would write the
condition simply as)()(vNGEmNGE ⊂ and

)()(vNGImNGI ⊂ . However, this time, when talking
about non-generic items supported by a virtual
machine, we take into account their inheritance-based
one-way identification.

For example, let a micro-agent use the
switchOnLightSource instruction, which is not

in)(vNGI . Without inheritance-based identification,
the micro-agent could not run on v . However, if

)(vNGI includes switchOnDeskLamp, which is a
sub-instruction of switchOnLightSource, then the
latter is also implicitly supported by v . In that case the
micro-agent can run on v (provided there are no
problems with other non-generic items used by the
micro-agent). The switchOnDeskLamp sub-
instruction is executed whenever the switchOn-

LightSource super-instruction were to be executed
(note that the micro-agent does not specify what kind
of light source is to be switched on). Similarly, if a
micro-agent has a handler for the DeskLampEvent
event, which is not in)(vNGE , but the
DeskLampSwitchedOnEvent sub-event is in

)(vNGE , then the handler for the super-event is
invoked whenever the sub-event occurs.

A virtual machine, on which a micro-agent can run,
is called a host for the micro-agent. A virtual machine
is a host if and only if every non-generic item used by
the micro-agent is available at a level of specificity
equal to or higher than that required by the micro-
agent.

To define a host more formally, we introduce some
notation. For an event (instruction) x , let)(superx
denote the set of all super-events (super-instructions)
of x in NGE (NGI). Similarly, let)(sub x denote the
set of all sub-events (sub-instructions) of x in NGE
(NGI). (Note that)(superx and)(sub x include x
itself). Finally, let),(host ⋅⋅ be the predicate
representing the relation of being a host.

A virtual machine v is a host for a micro-agent m ,
(),(host mv is true) if and only if

U
)(

)(super)(

vNGE

mNGE
∈

⊂
e

e and U
)(

)(super)(

vNGI

mNGI
∈

⊂
i

i .

Equivalently,),(host mv is true if and only if for each

)(mNGE∈e , we have ∅≠∩)()(sub vNGEe , and for
each)(mNGI∈i , we have ∅≠∩)()(sub vNGIi .

2.6. Micro-agent execution

We now describe how a micro-agent is executed on

a virtual machine that is a host for the micro-agent.
There are two basic processes involved: invoking event
handlers and executing instructions. We cover events
first. An event handler is invoked in two situations: (a)
when a generic event occurs, and the micro-agent has a
handler for it, and (b) when a non-generic event e
occurs ()(vNGE∈e), and the micro-agent has a handler
for a super-event of e (which may be e itself). In the
latter case we have ∅≠∩)()(super mNGEe .

Actually, when a non-generic event e occurs, there
may be more than one super-event of e , for which
there is a handler (i.e., the set)()(super mNGE∩e may
have more than one element). In that case, the handlers
for all the super-events of e are invoked. The handlers
for more-specific super-events of e are invoked before
those for less specific ones.

 The event handling mechanism leads to
noteworthy “playing with the levels of abstraction.”
Let for some)(mNGE∈e , the set)()(sub vNGE∩e
contain more than one element, as in Fig. 10. There,
whichever of the three sub-events occurs, it is handled
by a single handler – that of the super-event
LightSourceEvent. It can be said that the micro-
agent does not distinguish between the three sub-
events; at the micro-agent’s level of abstraction, all of
them are handled as a single event.

Now, let for some non-generic event)(vNGE∈e ,
the set)()(super mNGE∩e contain more than one
element, as in Fig. 11. There, whenever Ceiling-

LampInKitchenSwitchedOnEvent occurs, it is
handled by three different handlers – those of its super-
events. It can be said that the micro-agent handles the
same event at three different levels of abstraction.

As for the micro-agent’s instructions, generic ones
are simply executed. For a non-generic instruction

)(mNGI∈i , its sub-instruction supported by the
virtual machine (i.e., an element of)()(sub vNGI ∩i),
which could be i itself, is executed. If there is more
then one sub-instruction (i.e.,)()(sub vNGI ∩i contains
more than one element), it is up to the virtual machine
to pick the sub-instruction to be executed. For
example, in a case of a more advanced ontology than
the one shown in Fig. 5,)(vNGI could include the
alertSoundLowPitch and alertSoundHighPitch
instructions. If a micro-agent used alertSound, then
it would be up to the virtual machine to alert with a
low pitch sound or a high pitch sound.

LightSourceEvent

LightSourceSwitchedOnEvent

LightSourceInKitchenSwitchedOffEvent

CeilingLampSwitchedOffEvent

NGE(v) NGE(m)

Figure 10. Multiple events handled at a higher
level of abstraction as a common super-event

HomeItemSwitchedOnEvent

LightSourceSwitchedOnEvent

LightSourceInKitchenSwitchedOnEventCeilingLampInKitchenSwitchedOnEvent

NGE(v) NGE(m)

Figure 11. Single event handled at different
levels of abstraction

2.7. Implementation issues

The technique of domain-oriented virtual machines

is quite lightweight and can be implemented on tiny
sensor nodes (e.g., of the TinyOS class). Only an
implementation of the non-generic part of a virtual
machine needs to be considered. A simple approach is
as follows (we focus on events for the sake of
example). Let each event NGE∈e have a unique
numerical event code, which can be stored as a binary
string (the codes can be generated by the ontology
preprocessor). Then for a node’s virtual machine v
and for each event)(vNGE∈e , the node should store
the codes of all the super-events of e (i.e., the
elements of)(supere). As can easily be seen, this
information and a simple search suffices to check if,

for a given micro-agent m , U
)(

)(super)(
vNGE

mNGE
∈

⊂
e

e

holds (this is done to determine if the virtual machine
is a host for the micro-agent). It is equally simple to
find the set)()(super mNGE∩e (this is done to
implement event handling). Essentially the same
approach can be applied for non-generic instructions.

3. Prospective middleware layers

The technique of domain-oriented virtual machines
is of use in a whole class of middleware layers for
heterogeneous sensor-actuator networks.

A prospective middleware, in which the technique
is applicable, satisfies the following basic architectural
assumptions: (1) each node of the network has a
domain-oriented, node-specific virtual machine; (2) a
pervasive computing application (or at least a part of it)
consists of mobile agents, whose architecture matches
that of the domain-oriented virtual machine (one
example of such a mobile agent architecture, the
micro-agent, has been presented); (3) the application
interacts with the environment by means of the mobile
agents, through non-generic events and instructions.

A further architectural assumption, given below,
seems to ensure that the technique of domain-oriented

virtual machines offers most value. The assumption
goes beyond the approach presented so far in the paper.

The middleware layer preferably offers a primitive
enabling a mobile agent to dispatch another mobile
agent. The dispatching primitive is in fact a request
that an instance of the dispatched agent be created on
some of its hosts. The primitive may have modes, e.g.,
a broadcast mode (instantiate on all available hosts)
and an anycast mode (instantiate on a single host). If
no host is found, then no instance is created. The
dispatching service is implemented by the middleware
through appropriate host-finding routing protocols. A
part of the implementation is a module (present in the
middleware at each node) that evaluates the),(host mv

predicate for a node’s virtual machine v and a micro-
agent m .

If non-generic events and instructions (or the
underlying sensors and actuators) are thought of as
services offered by nodes, then the agent dispatching
primitive entails an implicit (transparent to the
programmer) service discovery.

Note that we do not assume anything about how a
prospective middleware layer takes care of
communications and coordination between the mobile
agents. One approach is presented in [2]. However,
many others are possible.

4. Applications to opportunistic computing

Domain-oriented virtual machines seem to be a
convenient facility in opportunistic pervasive
computing. In this section we provide some arguments
to justify the claim. We assume that a middleware
layer incorporating domain-oriented virtual machines
satisfies the assumptions presented above.

The key advantage of resource (service) discovery
done by dispatching a mobile agent is that sought
resources can be described (and requested) at different
levels of abstraction; this offers the programmer great
flexibility in defining her needs. It is possible to
specify different aspects of a resource with different
specificity. For example, the embedding object can be
described in quite general terms, while the location –
quite precisely (or vice versa).

One approach to an unknown sensor-actuator
network is to use a high level of abstraction (i.e., to
dispatch agents, which are not very demanding in
terms of specificity). Some matching resources will
probably be found at that level, although at the expense
of low “resolution” of the working of an application.

If the above approach is not good enough, an
opportunistic pervasive computing application can
keep dispatching mobile agents that are successively
less demanding in terms of specificity. At the

beginning, very demanding (specific) agents are
dispatched to achieve full functionality. If no hosts for
those are found (because required resources are not
available), somewhat less demanding agents are
dispatched. The process is repeated until the right level
of abstraction is achieved.

A high level of abstraction is not necessarily
something to be avoided; sometimes it may be used on
purpose to refer to great many resources in a concise
way. Assume that an event inheritance graph contains
two high level events, HumanEvent and
MachineEvent, and that each more specific event is
identified with either one or the other. Then, to detect
all events generated by a human being, it is sufficient
to have a very simple agent with just one handler (for
HumanEvent) and to dispatch the agent in the
broadcast mode. A quite abstract piece of context
information (“somebody is at home”) can be obtained
this way, without any explicit context synthesis.

Another case of using a high level of abstraction on
purpose is when the programmer does not care how a
given piece of functionality is delivered to the user
(e.g., an alert can be displayed on whatever device
happens to be available).

A useful feature of domain-oriented virtual
machines is that an agent can work on a new node that
offers non-generic items unknown at the time the agent
was developed. This is the case as long as the new non-
generic items are sub-events (sub-instructions) of those
used by the agent.

Some of the issues raised in this section have a
flavor of object-oriented programming (which also has
to do varying levels of abstraction). The unique feature
of domain-oriented virtual machines is that domain
abstractions can be “embedded” into severely
constrained sensor-actuator nodes.

5. Related work

We could find very little work directly related to
domain-oriented virtual machines, as presented in this
paper. Node-specific virtual machines in pervasive
computing are presented in [4]. However, the
heterogeneity there has to do with computing power of
underlying nodes. In our approach, the network is
homogeneous in terms of computing power, but
heterogeneous as to available sensors and actuators.

A programming paradigm that fits the node-specific
virtual machine approach is the prototype-based
programming, as referenced by the Self language [5].
It can be characterized as a classless object-oriented
programming model. Objects are not instantiated from
classes but derived from other objects. Their methods
can be freely modified (added, removed from the

object). This is similar to our micro-agents freely
composed of instructions and events.

Below we highlight some work that, in our opinion,
could be used in opportunistic pervasive computing,
but is not directly linked to the domain-oriented virtual
machines approach. A common trait here is
programming for an unknown and changing
environment.

One of the problems is how to refer to an unknown
number of nodes present in the environment. Naturally,
a middleware layer could enable the programmer to
“manually” discover the nodes and manage individual
node references (which would need to be periodically
updated). A much more programmer-friendly approach
is discussed in [6] and [7]. In both approaches, special
references, each pointing to multiple objects, are used.
In [6], they are called multi-references (as opposed to
mono-references). In [7], they are called omnihandles
(as opposed to unihandles). In either approach, the
programmer can handle multiple nodes by using a
single reference.

Dynamically changing references to resources are
the source of another problem: even if the reference
has been “acquired,” it can quickly become out-dated
once the resource disappears. A programming model to
facilitate this problem is based on strong and weak
references [6]. Strong references always point to the
same object. Weak references can point to different
objects during their lifetime and are automatically
associated with available objects by the middleware.
(Note that a similar mechanism is used in some
programming languages, e.g., Java, but its purpose is to
help in garbage collection).

Another level of programming abstraction, which
in some way can be used in opportunistic pervasive
computing, is offered by so-called macroprogramming
(exemplified by the Kairos system [8] and the
Regiment language [9]). Compared to multi-references
and omnihandles, the macroprogramming approach
goes a step further. The goal is to program the whole
network as a single entity. New abstractions, such as
regions, streams, or areas have been introduced. They
group multiple nodes and sensor readings together.

A holistic approach to programming unknown,
changing environments, called ambient-oriented
programming (AmOP), is discussed in [10]. AmOP
exploits an object-oriented model with non-blocking
communications primitives and combines the
prototype-based programming with the actor model.

Neighborhood abstractions, which are of great use
in opportunistic pervasive computing, have been
discussed in [11] and [12]. Both systems use special
abstractions of the node’s neighborhood, which is
defined as nodes sharing some attributes. Once
defined, the neighborhood is maintained by the

middleware, which will automatically update the list of
nodes belonging to the neighborhood.

6. Conclusion

The concept of opportunistic pervasive computing

has been briefly described, and the technique of
domain-oriented virtual machines has been presented
in detail. Possible ways to apply domain-oriented
virtual machines to opportunistic pervasive computing
have been outlined; we plan to study them further.
Clearly, much more work is needed to realize the
vision of opportunistic pervasive computing.

7. References

[1] McGee, D.R. and Cohen, P.R.: “Use what you've got:
Steps toward opportunistic computing”, Technical Report,
2000, School of Science and Engineering, Oregon Health and
Science University.
[2] Domaszewicz, J., et al.: “ROVERS: Pervasive Computing
Platform for Heterogeneous Sensor-Actuator Networks”,
Mobile Distributed Computing (MDC'06), 2006, Niagara-
Falls, NY, USA.
[3] Domaszewicz, J. and Rój, M.: “Lightweight Ontology-
driven Representations in Pervasive Computing”, Network
Centric Ubiquit. Systems (NCUS’05), 2005, Nagasaki, Japan
[4] Palmer, D.: “A Virtual Machine Generator for
Heterogeneous Smart Spaces”, Virtual Machine Research
and Technology Symposium (VM'04). 2004. San Jose, USA
[5] Ungar, D. and Smith R. B.: “Self: The Power of
Simplicity”, Object-Oriented Programming, Systems,
Languages and Applications (OOPSLA’87), 1987, Orlando,
USA
[6] Van Cutsem, T., Dedecker, J., Mostinckx, S., and De
Meuter, W.: “Abstractions for Context-aware Object
References”, Building Software for Pervasive Computing,
OOPSLA'05 Workshop. 2005. San Diego, CA, USA.
[7] Bischof, H.-P. and Kaminsky, A.: “Many-to-Many
Invocation: A new framework for building collaborative
applications in ad hoc networks”. Ad Hoc Communication
and Collaboration in Ubiquitous Computing Environments
(CSCW’02), 2002, New Orleans, USA.
[8] Gummadi, R., Gnawali, O., and Govindan, R.: “Macro-
programming Wireless Sensor Networks Using Kairos”,
Distr. Computing in Sensor Systems (DCOSS’05), 2005
[9] Newton, R. and Welsh, M.: “Region Streams: Functional
Macroprogramming for Sensor Networks”, Data
Management for Sensor Networks, 2004, Toronto, Canada.
[10] Dedecker, J., et al.: “Ambient-Oriented Programming”,
Object-Oriented Programming, Systems, Languages and
Applications (OOPSLA’05), 2005, San Diego, CA, USA.
[11] Whitehouse, K., Sharp, C., Brewer, E., and Culler, D.:
“Hood: A Neighborhood Abstraction for Sensor Networks”,
Mobile Systems, Applications and Services (MobiSys'04),
2004, Boston, MA, USA.
[12] Welsh, M. and Mainland, G.: Programming sensor
networks using abstract regions, Networked Systems Design
and Implementation (NSDI'04), 2004, San Francisco, USA.

