
Lightweight Ontology-driven Representations

in Pervasive Computing

Jarosław Domaszewicz and Michał Rój1

Institute of Telecommunications, Warsaw University of Technology

Nowowiejska 15/19, 00-665 Warsaw, Poland

j.domaszewicz@tele.pw.edu.pl, m.roj@tele.pw.edu.pl

Abstract. A clearly specified representation of diverse entities is needed to

refer to them in pervasive computing applications. Examples of such entities

include physical objects, operations, sensor and actuator resources, or logical

locations. We propose a novel way to systematically generate representations of

entities for programmable pervasive computing platforms made of tiny

embedded nodes. Our original idea is to generate a very lightweight, though

semantically-rich, representation from a possibly complex ontological

specification. At the platform development phase, a domain ontology is used to

describe the target environment. A preprocessing tool produces the ontology-

driven, lightweight representation, which comes in two flavors: a human-

readable one, to be used for programming, and a binary one, to be used at

runtime. Our approach makes it possible to take advantage of all the benefits of

ontology-based modeling and, at the same time, to obtain a representation light

enough to be embedded in even the tiniest nodes.

1 Introduction

Pervasive computing applications may need to refer to a great variety of entities to

perform their tasks2. Categories of such entities include physical objects, operations to

be performed on those objects, various resources (e.g., sensors and actuators), and

logical locations. The applications refer to entities to discover, control, or use them in

some way. By “representation” we mean any agreed upon convention enabling the

applications to unambiguously refer to entities. A programmable pervasive computing

platform should clearly specify how to represent entities that might be of interest to

the applications. Application programmers need a human-friendly representation

(e.g., descriptive identifiers or function names) to refer to entities in their source code.

At runtime, deployed applications and the pervasive computing platform need a

common binary representation.

In many pervasive computing platforms the representation of entities is not

generated in a systematic way. A common practice is to produce a representation in

1 The order of authors was determined by a coin flip.
2 The research reported in this paper has been partly supported by the Polish Ministry of

Scientific Research and Information Technology, grant no. 3T11D 011 28.

2 Jarosław Domaszewicz and Michał Rój

an ad-hoc manner, e.g., by arbitrary assignment of identifiers to arbitrarily selected

entities.

 We believe that a good representation of entities in pervasive computing should

result from a systematic procedure. Specifically, the representation should be derived

from an explicit, formal domain model of the pervasive computing platform’s target

environment (i.e., the domain where the applications run). The model should be

comprehensive enough to capture all relevant aspects of the domain, including

possible diversity of entities. To ensure high quality of the model, it should be created

by domain experts, not programmers.

Producing a so-called ontology is an excellent way to model a domain. Ontologies

are in widespread use in Semantic Web, and they have been successfully used in

pervasive computing. However, most ontology-based techniques require relatively big

amounts of memory and processing power, especially when a domain ontology itself

is used at runtime (which is the case for all ontology-based pervasive computing

systems known to us).

Applying ontologies becomes challenging if the target pervasive computing

platform consists exclusively of tiny, energy-constrained, battery-powered nodes, like

Berkeley Motes [1]. As in such a system there is no room for any big central

repository or server, the representation must be stored and processed locally, by the

nodes themselves. It has to be extremely lightweight and compact. This case is the

focus of the paper.

This paper makes the following contribution. We propose to methodically generate

ontology-driven representations of entities for pervasive computing platforms made of

tiny embedded nodes. Our original idea is to produce a very lightweight, though

semantically rich, representation of entities (down to binary encodings) from a

possibly complex ontological specification.

The paper is organized as follows. In Section 2, we discuss related work. In

Section 3 we present our approach in general terms. Section 4 gives an example of a

domain ontology and a lightweight ontology-driven representation and how the final

representation is acquired. In Section 5, we give a specific example of how it can be

used to represent sensor and actuator resources in a pervasive computing middleware.

The paper is concluded in Section 6.

2 Related work

Ontology-based domain modeling has an established position in the field of pervasive

computing. For example, a so-called GAS ontology is used to model the functionality

of devices [2]. The ontology, which aims at augmented home objects (such as

“eLamp,” or “eBook”), defines operations that can be performed on devices (e.g.,

switch on/off). In a different approach [3], capabilities (sampling rate, physical units,

etc.) of sensor nodes in a wireless sensor network are ontologically described, and the

ontology is used mainly to dynamically calibrate the whole system.

In the above examples, the ontology itself is present at runtime. Handling an

ontology directly is definitely not suitable for small, Berkeley Mote-class nodes. Even

if the ontology is kept as small as possible (e.g., GAS-CO in the GAS architecture

Lightweight Ontology-driven Representations

in Pervasive Computing 3

[2]), and lightweight ontology languages are employed (e.g., OWL-Lite in [3]), a

node has to be more a PDA than a mote. The primary difference between our

approach and the above ones is that in our case not the ontology itself but an

ontology-derived lightweight representation suitable for tiny embedded nodes is used

at runtime.

We also identified several areas of ontology-derived software artifacts - in fields

other than pervasive computing. Usually, ontological models are used to generate a

class hierarchy in object-oriented languages (especially Java). For example, Jena API

[4] includes a program called schemagen3, which generates Java representations of

concepts from an OWL [5] ontology. Also, a class generator has been included into

the Protégé OWL plugin4. A general approach to mapping OWL into Java is

discussed in [6]. Algorithms and simple heuristics to generate class diagrams from

ontologies are presented in [7]. An ontology editor able to generate knowledge from

ontologies in various formats (including Java classes) is introduced in [8].

Even though our approach shares some similarities with the above ones,

representations of entities generated with our approach are lighter and more

elementary and so can be aimed at tiny embedded nodes. In particular, we claim that

exploring the possibility of deriving simple (yet semantically meaningful) binary

encodings from a complex, abstract ontology has not been done before.

A very recent, promising attempt to employ ontologies in software engineering is

presented in [9]. Our work can contribute to those efforts.

The techniques presented is this paper can be applied in existing pervasive

computing platforms, in which the representations are produced in an ad-hoc way. To

the best of our knowledge such platforms include Agilla [10], tinyDB [11], tinyLIME

[12], as well as many others.

3 Lightweight ontology-driven representations

Our key idea is presented in Fig. 1. We propose a tool, called “ontology

preprocessor,” that takes a domain ontology as its input and produces a lightweight

representation for a category of entities as its output. The representation comes in two

parts, named O-API and O-ABI.

Ontology

Ontology-based representation Ontology-derived lightweight representation

O-ABI

O-API
Ontology

preprocessor

Fig. 1. Deriving lightweight representation from an ontology

3 http://jena.sourceforge.net/how-to/schemagen.html
4 http://protege.stanford.edu/plugins/owl/

4 Jarosław Domaszewicz and Michał Rój

 The ontology is created by a domain expert. It describes the target environment

(e.g., home, office), where a pervasive computing platform is to be deployed. In

particular, it may classify and describe different kinds of objects, logical locations, or

resources (e.g., sensors and actuators) that are common in the target environment. The

ontology can be as big and complex as desired.

The ontology preprocessor, which derives the lightweight representation, is not tied

to any specific ontology. It is ontology-independent, so ontologies for various

domains can be used as its input. We are currently developing algorithms for ontology

preprocessing. Some preliminary results are presented in the next section.

The ontology preprocessor produces the representation of entities in two flavors:

O-API and O-ABI. They bear some resemblance to, but are not the same as, a regular

API and ABI (i.e., Application Programming Interface and Application Binary

Interface, respectively). The main difference between O-API and O-ABI is that the

former is targeted at humans (programmers) and the latter at machines (compilers and

the runtime system).

O-API is meant to be used by programmers to refer to entities in source code. In O-

API, entities are represented by human-readable, meaningful names, e.g., constant

identifiers. O-API should be simple enough to be usable by a programmer without

any background in ontology engineering. Even though full O-API can be big (its size

grows with that of the ontology), any single application is likely to use only a small

subset.

O-ABI is meant to be used by applications to refer to entities when interacting with

the system software of the pervasive computing platform. In O-ABI, entities are

represented by simple binary encodings “understood” by the system software.

Normally, there is a one-to-one correspondence between O-API names and O-ABI

encodings.

The O-ABI representation is lightweight in that it can be embedded into even most

severely constrained nodes. While full O-ABI can be quite big (just as the ontology

and O-API), any single node is likely to be related to only a fairly limited number of

entities. For example, an intelligent node embedded into an object is usually equipped

with a handful of sensors and actuators. Handling a limited number of binary

encodings is possible even if a node’s processing power, memory, or available energy

are extremely scarce.

4 Deriving O-API and O-ABI from ontology: an example

We now provide a simple example of what the input ontology and the derived

lightweight representation may look like. Consider a pervasive computing platform

where the entities to be represented are operations that can be performed on home

objects by embedded nodes. A part of a home domain ontology for this case might be

the one presented in Fig. 2. The ontology consists of three basic hierarchies:

HomeItem, Location, and Operation. They classify home objects (for brevity we

include light sources and meters only), logical locations of the objects, and possible

operations, respectively.

Lightweight Ontology-driven Representations

in Pervasive Computing 5

Fig. 2. A simple home domain ontology

All the Operation instances either affect an object’s state (the

ControlOperation operations) or to inquire about it (the ObserveOperation

operations). The discrete state variables are handled with SwitchOperation and

ObserveSwitchOperation operations, while the continuous state variables with

TurnOperation and ObserveKnobOperation operations. The operations are

linked to home item classes using the controls and observes properties. For

example, since ControlOperation is linked to HomeItem using the controls

property, LightSource can be controlled with any ControlOperation (note that

properties are “inherited” here). In our ontology we assumed that only permanently

attached objects (the FixedLightSource class) have a logical location.

A part of a lightweight representation that could be produced from this ontology by

an ontology preprocessor is shown in Tab. 1. To produce entities we used a simple

algorithm. For every “concrete” operation class (turnUp, turnDown, switchOn,

switchOff, isOn, isOff and getLevel) we follow the controls and observes

properties. We explore all possible paths from an Operation class to a HomeItem

class (example paths are turnUp-controls-FloorLamp and getLevel-

observes-Thermometer). Then we go further, by following the isLocatedIn

property. For instance, for fixed light sources we explore paths consisting of three

classes, such as turnUp-controls-FloorLamp-islocatedIn-Hall and

6 Jarosław Domaszewicz and Michał Rój

turnUp-controls-FloorLamp-isLocatedIn-Kitchen. Then we can assign an

API name to every path (e.g., turnUp-controls-FloorLamp-islocatedIn-

Hall becomes turnUpFloorLampInHall). For a more complex ontology, the

algorithm can follow longer paths and produce more semantically rich operations.

Proper ontological modeling ensures that all the paths (and corresponding entities)

are meaningful. For example, for mobile light sources there are no paths that include a

logical location and so an entity like switchOnMobileLightSourceInKitchen is

not produced by the algorithm. As another example, assume the controls operation

is restricted not to take on values in the Meter class (the restriction not shown in Fig.

2). Then entities like turnUpThermometer are not produced.

Tab.1 O-API and O-ABI pairs for the category of operations, based on the

ontology presented in Fig. 2. O-ABI encodings have been selected arbitrarily.

O-API O-ABI

switchOnHomeItem 0x00

… …

switchOnLightSource 0x10

… …

switchOnMobileLightSource 0x40

… …

switchOnFixedLightSource 0x50

… …

switchOnFixedLightSourceInHall 0x60

switchOnFixedLightSourceInKitchen 0x61

… …

switchOnCeilingLamp 0x70

… …

switchOnCeilingLampInHall 0x80

… …

Some remarks are in order at this point. The entities (in this case – operations) are

no longer selected in an arbitrary fashion. The set of entities is systematically derived

from the ontology. Thus, ontology preprocessing produces not only representations of

entities, but, in a sense, the entities themselves.

In our example, there is no direct mapping between entities and existing classes of

the domain ontology (or their instances). Rather, the entities are “produced” by

manipulating and combining concepts present in the domain ontology. Thus, the

ontology processor can be considered as a value adding tool. We are working on an

approach allowing the entities to be expressed in OWL, as new concepts based on the

ones present in the original ontology.

Different relationships captured by the ontology may be reflected in some

structuring of the derived set of entities. One example is a hierarchical structuring. For

example, the increasing specificity in the object hierarchy leads to increasingly

specific operations (compare switchOnLightSource, switchOnFixedLight-

Source, and switchOnCeilingLamp). Whenever an object has an additional

attribute (e.g., a logical location), an even more specific operation (e.g., switchOn-

CeilingLampInKitchen) can be produced. Another example of structuring the set

of entities is semantically organizing their binary encodings (explained in Section 5).

Lightweight Ontology-driven Representations

in Pervasive Computing 7

The entities might include quite complex and abstract concepts (“semantic

richness”). For example, switchOnCeilingLampInKitchen conveys information

on what activity is to be taken (switching on), what the object of the operation is (a

ceiling lamp), and where the operation is to be performed (in the kitchen). Even such

semantically rich entities are ultimately represented by simple O-ABI encodings.

Even though the example covers the category of operations, our approach could be

applied to other categories of entities as well. Some obvious examples are the objects

themselves (e.g., KitchenCeilingLamp), sensors and actuators embedded in the

objects (e.g., DeskLampSwitch), logical locations (e.g., HallWithWallLamp), and

events generated by users (e.g., CeilingLampSwitchedOn). The choice of category

depends on the architecture of a pervasive computing platform.

A lightweight representation of entities, like the one presented in Fig. 3., can in

principle be produced by hand in an ad-hoc manner. However, such a task quickly

becomes unfeasible and the resulting representation hardly maintainable, even if the

domain is described with only a moderate number of concepts.

5 ROVERS: exposing a node’s resources through a virtual machine

In this section we provide an example of applying a lightweight, ontology-driven

representation in a pervasive computing platform. The example is based on ROVERS

– a middleware that we are developing [13]. The middleware targets peer-to-peer

networks of constrained heterogeneous nodes. The nodes are embedded in everyday

objects and equipped with different combinations of resources, primarily sensors and

actuators.

In ROVERS, applications are composed of tiny collaborating mobile code units,

called micro-agents5. To enable code mobility, a virtual machine is deployed on each

node. As nodes differ in terms of resources they are equipped with, so do their virtual

machines. A node’s virtual machine is specified by instructions it can execute. All

possible instructions are classified into generic and non-generic. Generic ones, like

arithmetic operations or program flow instructions are supported by the virtual

machine on every node.

In ROVERS, a node’s sensor and actuator resources are represented by (non-

generic) instructions of the node’s virtual machine. For example, a temperature sensor

may be represented by the getLevelThermometer instruction, while a desk lamp’s

switch by the switchOnDeskLamp, switchOffDeskLamp, isOnDeskLamp, and

isOffDeskLamp instructions. A node’s virtual machine supports only those non-

generic instructions that represent the node’s sensors and actuators.

An instruction (generic or non-generic) has a human-readable name and a binary

encoding. The names constitute a specific assembly language, while the encodings – a

machine language. What is unique is that the non-generic parts of the both languages

are derived from a domain ontology as O-API and O-ABI, respectively.

5 We cover only those aspects of ROVERS that are directly related to the topic of this paper.

8 Jarosław Domaszewicz and Michał Rój

An instruction encoding space may look like the one presented in Fig. 3. The

instructions shadowed in Fig. 3 (a) and (b) might be supported by nodes embedded

into a desk lamp and a thermometer, respectively. As each node is equipped with only

a small number of sensors and actuators, handling the ontology-derived representation

of resources amounts to interpreting a couple of encodings.

…

2

1

0

switchOnDeskLamp

switchOffDeskLamp

isOnDeskLamp

isOffDeskLamp

…

getLevelThermometer

…

Call

Branch

Add

ontology-driven

non-generic

instructions

generic

instructions

…

2

1

0

…

isOnCeilingLamp

isOffCeilingLamp

…

getLevelThermometer

…

Call

Branch

Add

…

isOnCeilingLamp

isOffCeilingLamp

…

switchOnDeskLamp

switchOffDeskLamp

isOnDeskLamp

isOffDeskLamp

…

 (a) (b)

Fig. 3. An example of the instruction encoding space for ROVERS virtual machines. A specific

virtual machine supports the shadowed items only: (a) a desk lamp, (b) a thermometer

5.1 Semantically-structured binary encodings

The instruction encoding space presented in Fig. 3 does not suggest any structuring of

the binary encodings (O-ABI). However, deriving the encodings from an ontology, as

advocated in this paper, gives rise to an additional benefit – being able to

automatically organize them based on their semantics. This subsection gives an

example of such O-ABI structuring. The goal of this particular one is to reduce the

size of ROVERS micro-agents’ binaries (and so the energy cost of their mobility).

The structuring is based on the following observation. Consider the home

environment domain. Assume that the ontology classifies domain concepts into sub-

domains. Examples might include the “physical” sub-domain (temperature, pressure,

humidity, etc.), the lighting sub-domain (ceiling lamps, desk lamps, etc.), or the

heating sub-domain. Since each micro-agent should do a single job well, non-generic

instructions used by most micro-agents are likely to originate exclusively from a

single sub-domain. For example, a temperature reporting micro-agent might use the

getLevelThermometer instruction, originating from the “physical” sub-domain, as

its only non-generic instruction. Similarly, a “light manager” micro-agent would use

instructions from the lighting sub-domain. Of course, a complete application will

likely include micro-agents working in different sub-domains.

The above observation could be used to structure the encoding space of the

ROVERS virtual machine instructions. Assume there are no more than 128 generic

Lightweight Ontology-driven Representations

in Pervasive Computing 9

instructions and no more than 128 non-generic ones originating from a single sub-

domain. Then the instruction encoding space could be the one presented in Fig. 4.

heating sub-domain

generic

lighting sub-domain

generic

physical sub-domain

generic

256

256

256

128

65536
…

Fig. 4. Semantically-structured O-ABI

 The space is divided into 256-instruction segments. The lower half of each

segment is occupied by the generic instructions (which in effect have multiple

encodings), while the upper half belongs to non-generic ones originating from a single

sub-domain. Assume there is a generic “segment prefix” instruction that specifies the

segment that the subsequent instructions belong to (until the next segment prefix

instruction). Then, in spite of the fact that the encoding allows as many as 216/2 =

32768 non-generic instructions, each instruction can be encoded with only 8 bits.

Obviously, the average encoding efficiency (number of bits per instruction) depends

on how often the segment prefix instruction is used. Since a typical micro-agent is

limited to a single sub-domain, only one segment prefix instruction per micro-agent is

needed, and the average encoding efficiency approaches 8 bits per instruction.

Even though the example pertains to the ROVERS middleware, semantic

structuring of binary encodings seems to be a promising technique of wider

applicability. It is easy to implement as a feature of O-ABI generation.

6 Summary and future work

This paper presents a novel approach to using ontologies in the development of

pervasive computing platforms. We made initial experiments with generating

representations from OWL ontologies, using the Jena API [4]. Our plan now is to

develop more advanced ontology preprocessing algorithms. One of the challenges is

to make them ontology-independent, so ontologies for various domains can be used as

inputs. In addition, we plan to make the ontology preprocessor tunable so that, for

example, the “granularity” of generated entities can be specified as a parameter.

10 Jarosław Domaszewicz and Michał Rój

References

1. Hill, J., Horton, M., Kling, R., and Krishnamurthy, L.: The Platforms Enabling

Wireless Sensor Networks. Communications of the ACM, 2004. 47(6).

2. Christopoulou, E., Goumopoulos, C., Zaharakis, I., and Kameas, A.: An Ontology-

based Conceptual Model for Composing Context-Aware Applications. in Workshop

on Advanced Context Modelling, Reasoning and Management in conjunction with

Sixth International Conference on Ubiquitous Computing (UbiComp 2004). 2004.

Nottingham, England.

3. Avancha, S., Patel, C., and Joshi, A.: Ontology-driven Adaptive Sensor Networks. in

First Annual International Conference on Mobile and Ubiquitous Systems:

Networking and Services (MobiQuitous '04). 2004. Boston, USA.

4. McBride, B.: Jena: A Semantic Web Toolkit. IEEE Internet Computing, 2002. 6(6):

p. 55 - 59.

5. Bechhofer, S., et al.: OWL Web Ontology Language Reference,

http://www.w3.org/TR/owl-ref/, July 2005

6. Kalyanpur, A., Pastor, D.J., Battle, S., and Padget, J.: Automatic mapping of OWL

ontologies into Java. in Sixteenth International Conference on Software Engineering

and Knowledge Engineering (SEKE). 2004.

7. Bonancin, R. and Baranauskas, C.C.: From Ontology Charts to Class Diagrams:

Semantic Analysis Aiding Systems Design. in International Conference on Enterprise

Information Systems. 2004. Porto, Portugal.

8. Mian, P.G. and de Almeida Falbo, R.: Building Ontologies in a Domain Oriented

Software Engineering Environment. in IX Congreso Argentino de Ciencias de la

Computación. 2003. La Plata, Argentina.

9. Tetlow, P., et al.: Ontology Driven Architectures and Potential Uses of the Semantic

Web in Software Engineering, http://www.w3.org/2001/sw/BestPractices/SE/ODA/,

June 2005

10. Fok, C.-L., Roman, G.-C., and Lu, C.: Rapid Development and Flexible Deployment

of Adaptive Wireless Sensor Network Applications. in 24th International Conference

on Distributed Computing Systems (ICDCS'05). 2005. Columbus, Ohio, USA.

11. Madden, S., Franklin, M.J., Hellerstein, J.M., and Hong, W.: The design of an

acquisitional query processor for sensor networks. in International Conference on

Management of Data. 2003. San Diego, California.

12. Curino, C., et al.: Tiny Lime: Bridging Mobile and Sensor Networks through

Middleware. in 3rd IEEE International Conference on Pervasive Computing and

Communications (PerCom 2005). 2005. Kauai Island, Hawaii.

13. ROVERS Homepage, http://meag.tele.pw.edu.pl/ROVERS/index.htm, July 2005

