
ROVERS: Pervasive Computing Platform
for Heterogeneous Sensor-Actuator Networks

J. Domaszewicz, M. Rój, A. Pruszkowski, M.Golański, and K. Kacperski
Institute of Telecommunications, Warsaw University of Technology

ul. Nowowiejska 15/19, 00-665 Warsaw, Poland
e-mail: meag@tele.pw.edu.pl

Abstract

The paper presents a programming model for a
new pervasive computing middleware. The
middleware, called ROVERS, targets an environment
composed of tiny, resource-constrained, wirelessly
communicating nodes embedded into everyday objects.
The environment is heterogeneous in that each node is
equipped with a unique set of sensors and actuators.
The nodes establish an ad-hoc network and contribute
their specific resources. The ROVERS layer transforms
the network into a distributed pervasive computing
platform. The ROVERS application is an evolving tree
of cooperating, mobile micro-agents. The tree adapts
to available resources and the current context. It is
largely decoupled from the concept of the physical
node. ROVERS provides the programmer with implicit
resource discovery, inter-agent communications with
logical addressing, minimization of application-
generated traffic, ontology-driven representation of
sensor and actuator resources, as well as support for
component-based programming. The programming
model lends itself to an implementation for a miniature
operating system, like TinyOS.

1. Introduction

This paper targets a pervasive computing

environment composed of tiny, unobtrusive, resource-
constrained nodes embedded into everyday objects.
Each node contributes some resources to the
computing environment. A node’s resources can be
classified into generic and non-generic.

Generic resources are those available at every node
(e.g., computing capability, basic peripherals, and
wireless connectivity). Non-generic resources are those
available at some nodes, but not at others. A node’s

 This work was supported in part by the Polish Ministry of

Education and Science, project no. 3 T11D 011 28.

non-generic resources depend mainly on the
functionality of the object the node is embedded in.
Primary examples of non-generic resources are sensors
and actuators. A node embedded into a lamp may offer
an actuator allowing a program to switch the lamp on
and off, as well as a sensor that makes it possible to
determine the lamp’s current state. Clearly, a node
embedded into a refrigerator is likely to offer sensors
and actuators of very different functionality. The
environment described here is inherently
heterogeneous: each node offers a unique collection of
non-generic resources. These resources are critical, as
they allow applications to interact with the physical
world.

Nodes are deployed into the environment without
any planning or particular order. Consequently, the
programmer cannot assume any particular mix or
topology of the nodes. A node configuration, although
unknown, is quasi-static; it changes only occasionally
(a new node may be added or an existing one may be
moved to another location). Finally, the nodes are not
supported by any infrastructure. They establish a
system by forming an ad-hoc network.

The goal of this work is to develop a middleware
layer for the above-described environment of unknown
to the programmer, heterogeneous, resource-
constrained sensor-actuator networks. Key postulated
features of the new middleware, called ROVERS, are
the following. It should largely free the programmer
from the concept of the physical node. It should
provide implicit resource discovery, convenient
communications services, minimization of application-
generated traffic, systematic (actually – ontology-
driven) representation of sensors and actuators, as well
as support for component-based programming. In the
spirit of active sensor networks [1], it should be
possible to freely deploy a new application on the
resulting platform. Moreover, multiple, independent
applications should be able to run concurrently. At the
same time, the middleware should lend itself to an

© 2006 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works,
for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

implementation for a miniature operating system, like
TinyOS [2].

The main contribution of this paper is a
programming model satisfying the above postulates.
The programming model, while offering an abstract
view of the network, motivates a number of research
problems of wider significance.

This paper is organized as follows. The ROVERS
programming model is presented in Section 2.
Application deployment is explained in Section 3. A
programming example is provided in Section 4.
Related work in the area of middleware for pervasive
computing is referred to in Section 5. The paper is
concluded and further work is outlined in Section 6.

2. ROVERS programming model

2.1. Logical structure of ROVERS application

A ROVERS application is a collection of

lightweight, cooperating, concurrently running entities,
called micro-agents. Micro-agents are organized into a
hierarchical, tree-like structure (see Fig. 1.). The terms
“boss” and “subordinate” will be used to denote a
micro-agent’s parent and child, respectively (in order
to perform its tasks, the boss micro-agent uses results
of the work of its subordinates). Usually, the leaves of
the tree are micro-agents that interact with the physical
environment by acquiring context information through
sensors or effecting change through actuators. Higher-
level micro-agents act as context synthesizers and
decision makers.

Figure 1. A ROVERS application (micro-agents

requiring special resources are in grey)

A subordinate is created by its boss by means of a

ROVERS primitive called hiring. At the beginning,
only the root micro-agent exists. The root hires its
subordinates. They, in turn, hire theirs, and so on.
Hiring may occur at any time, possibly as a result of
some specific context.

Once a subordinate is created, it can exchange
messages with the boss through a dedicated, point-to-
point, best-effort communications channel. The
channel is set up and fully maintained by ROVERS.
Addressing messages to the boss is implicit.
Subordinates are addressed by ROVERS-assigned
handles.

A boss and subordinate see each other through the
latter’s micro-agent interface. In fact, while hiring, the
boss specifies the subordinate’s interface, not
implementation. An interface specifies what messages
can be exchanged between the two. The subordinate
sends reports, and the boss sends commands. For
example, the interface of a temperature acquiring
micro-agent may include a temperature report and a
command to change the reporting period.
Comprehensive libraries of reusable ROVERS micro-
agents, implementing useful interfaces, can be
developed.

Some micro-agents require special resources
(sensors or actuators) to do their job. For example, the
temperature acquiring micro-agent requires a
temperature sensor. The sensor, however, may not be
available on any physical node. In that case, the
subordinate micro-agent will not be created by
ROVERS, even though it has been hired. If it is too
difficult for the boss to work without the subordinate, it
may simply quit. If this process is repeated higher up
the tree hierarchy, entire sub-trees may eventually be
missing. The goal, however, is to make the application
run even though some resources are not available. To
compensate for the lack of knowledge about the
deployment environment, micro-agents should be
written so that they degrade their performance
gracefully in case some of their subordinates are
missing.

As follows from the above, the application tree is
not fixed. It evolves as micro-agents hire their
subordinates. It also depends on resources available in
the environment.

The mindset of the ROVERS programmer is not
node-centric; it is micro-agent-centric. The application
is developed as a collection of communicating logical
entities (micro-agents), some of which may interact
with the world through sensors and actuators. As
explained below, deploying and maintaining an
application in an actual environment (discovering
resources, allocating micro-agents to physical nodes,
maintaining multi-hop communications channels, etc.)
is done entirely by ROVERS.

2.2. Micro-agent internals

The ROVERS middleware adopts event-driven

programming. The micro-agent is a collection of event
handlers, each handling a specific ROVERS event. An
event handler is a sequence of ROVERS instructions.
Execution of a micro-agent amounts to occasional
execution of one of its event handlers. All instructions
are non-blocking; the time to execute a micro-agent’s
event handler is short and predictable. In between
events, the micro-agent is inactive.

The ROVERS events and instructions include (a)
typical programming constructs (e.g., a timer
expiration event or a looping instruction), (b) micro-
agent management primitives (hiring instructions), (c)
micro-agent communications primitives (sending and
receiving of a command or report), and (d) sensor and
actuator representation primitives (e.g., a smoke
detection event or an instruction yielding a reading
from a temperature sensor).

All the events and instructions, except for the
typical ones, constitute ROVERS primitives,
summarized in Table 1. The notation and usage are
exemplified in Section 4.

In order to derive sensor and actuator
representation primitives in a systematic way, a target
domain (e.g., home) is modeled by an ontology. An
ontology preprocessor tool is used to generate a full
(possibly huge) collection of instructions and events
for the domain (samples are given in Table 1). Our
initial work on this novel approach has been presented
in [3].

Table 1. Key ROVERS primitives

(I/E – instruction/event, G/N – generic/non-generic)

Name Type Functionality

Micro-agent management
ROVERS.hireGeneric I,G hire a generic subordinate
ROVERS.hireNonGeneric I,G hire a non-generic

subordinate
ROVERS.getMicroAgent I,G get a handle to a hired

subordinate
Micro-agent communications
Boss.report I,G send a report to the boss
subordinate.command I,G send a command to the

subordinate
report name E,G report reception event
command name E,G command reception event
Sensor and actuator representation (samples)
Node.getTempInKitchen I,N get the kitchen temperature
Node.switchOnDeskLamp I,N switch a desk lamp on
Node.RefrigeratorDoorOpen E,N refrigerator door open event

2.3. Non-generic primitives and micro-agents

The ROVERS events and instructions form a

micro-agent execution environment provided by
physical nodes; they can be thought of as building
blocks for a virtual machine. Just as nodes differ in
terms of their resources, so do their virtual machines. If
an event or instruction is available on every node, it is
generic; otherwise, it is non-generic. All the events and
instructions, except for the sensor and actuator
representation primitives, are generic. The latter are
non-generic because each node has its unique set of
sensors and actuators. On top of all the generic events

and instructions, a node supports its own collection
(usually only a handful) of non-generic ones.

If each event handled by a micro-agent is generic,
and so is each instruction contained in any of its
handlers, then the micro-agent is generic. Otherwise, it
is non-generic.

A micro-agent can run on a node only if all events
and instructions it uses are supported by the node’s
virtual machine. A generic micro-agent can run on any
node. A node that provides all non-generic primitives
needed by a non-generic micro-agent is called a host
for this micro-agent. A non-generic micro-agent can
run only on its hosts. The number of hosts is not
known in advance to the programmer; it depends on a
specific deployment environment. There may be more
than one host, just one, or none at all.

The unknown number of hosts gives rise to the
question of which of them to use when hiring a non-
generic micro-agent. Currently, two programmer-
selectable modes are included. In the broadcast hiring
mode, an instance is created on every available host. In
the anycast hiring mode, at most one instance (on a
host picked by ROVERS) is created, no matter how
many hosts are available. For each mode, the
programmer should take into account the possibility
that no instances are created at all (no hosts).

3. ROVERS application deployment

A ROVERS application may be preinstalled on a

usual embedded node or on a minimal, stand-alone
“application pill.” Another option is to inject the
application through a gateway node. In either case,
there is a single physical node, called the origin, where
the root micro-agent gets “hired” by ROVERS.
Different applications may have different origins.

Starting at the origin, the running application may
spread all over the environment. Each micro-agent may
eventually run on a different node. Efficient micro-
agent to physical node mapping is achieved through
micro-agent mobility. Both generic and non-generic
micro-agents are mobile, although for different
reasons. Also, a different concept of code mobility is
employed in each case.

The micro-agent to node mapping (micro-agent
mobility) is in either case completely transparent to the
programmer. Except hire, there are no code mobility
primitives. All mobility-related decisions and
operations are performed exclusively by ROVERS.

3.1. Non-generic micro-agent mobility

The reason for non-generic micro-agent mobility of

is to move a micro-agent to a host (or all available
hosts, depending on the hiring mode). When a non-

generic micro-agent is hired, ROVERS takes care of
finding hosts, moving the micro-agent’s code there,
and instantiating the micro-agent (weak mobility). No
mobility after that is allowed; the micro-agent runs on
one node until it terminates.

When developing a non-generic micro-agent, the
programmer is aware that its instance will be hosted by
some physical node (i.e., a host). As explained below,
this node-centric treatment of non-generic micro-
agents is contrary to that of generic ones (which are
node-indifferent).

Non-generic events and instructions can be thought
of as services that a node offers. An application takes
advantage of them through its non-generic micro-
agents. Non-generic micro-agent mobility amounts to
implicit (ROVERS-provided) service discovery.

3.2. Generic micro-agent mobility

By definition, a generic micro-agent can run on any

node. When a generic micro-agent is hired, it is
immediately instantiated. Initially, the subordinate and
its boss run on the same node.

The reason for generic micro-agent mobility is (a)
to reduce the total amount of traffic produced by the
application or (b) to offload an overcrowded node.
Traffic reduction is usually achieved by moving a boss
closer (in terms of the number of hops) to its data-
generating subordinates. When ROVERS decides that
moving a generic micro-agent to a neighboring node
would achieve any of the two objectives, the micro-
agent is transferred there, along with its execution state
(strong mobility). Thus generic micro-agents can be
moved freely by ROVERS (based on the above, non-
functional criteria). Any node-related notion (e.g.,
location) is not applicable to them. The programmer
does not think of nodes when developing generic
micro-agents.

4. ROVERS programming example

A simple kitchen-related application has been

developed to illustrate the ROVERS programming
model. Its job is to detect smoke and turn on a fan, if
needed. The tree is shown in Fig. 2.

Figure 2. The kitchen application tree

As can be seen, the generic root micro-agent,

KitchenAirManager, hires two non-generic

subordinates: SmokeDetector and KitchenFan. The
former is hired in the broadcast mode (as denoted by
the thick line), and the latter in anycast.

The source code for the entire application is
presented in Figs. 3-5. It is written in our informal
notation called “ROVERS C,” inspired by the nesC
programming language [2]. The ROVERS primitives
and ROVERS C keywords are in bold. Many items
have a prefix enhancing readability, e.g., Boss. (the
report sending primitive), Node. (non-generic events or
instructions), or ROVERS. (some generic primitives).

Micro-agent interfaces for the subordinates are
given in Fig. 3. The smoke detector sends a report
alerting about high smoke level. The fan micro-agent
sends a report alerting that the fan is on and accepts
commands to turn the fan on and off. The fan interface
also includes a report and command for establishing
boss-subordinate communications (ping() and
pong()), explained below.

interface ISmokeDetector{report smokeLevelHigh();}
interface IKitchenFanManager {
 report fanOn(), ping();
 command turnOn(), turnOff(), pong();
}

Figure 3. Micro-agent interfaces

The smoke detector micro-agent implementation is

given in Fig. 4. The implemented interface is declared
with the delivers keyword. The micro-agent contains
three event handlers. A node’s smoke sensor is
represented by two non-generic events:
Node.smokeAlertOn and Node.smokeAlertOff. The
fact that these events are used makes the micro-agent
non-generic and insures that ROVERS will instantiate
it only on nodes equipped with a smoke sensor. No
non-generic instructions are used by the micro-agent.
In the handler for the generic timer expiry event, a high
smoke level report is conditionally sent to the boss.
This is the only way this micro-agent communicates
with its boss, as declared in the ISmokeDetector
interface.

microagent SmokeDetector delivers ISmokeDetector {
 int alert = FALSE;
 event timer{if(alert == TRUE) Boss.smokeLevelHigh();}
 event Node.smokeAlertOn{alert = TRUE;}
 event Node.smokeAlertOff{alert = FALSE;}
}

Figure 4. The SmokeDetector micro-agent

The kitchen fan micro-agent implementation is

given in Fig. 5. Four events are handled; three of them
are communications events (command receptions). In
the timer expiry handler, the fan status is reported.

KitchenFan

KitchenAirManager SmokeDetector

microagent KitchenFan delivers IKitchenFan
{
 event timer {
 if(!ROVERS.gotCommand()) Boss.ping();
 if(Node.getKitchenFanStatus() == ON) Boss.fanOn();
 }
 command turnOn() {Node.turnOnKitchenFan();}
 command turnOff() {Node.turnOffKitchenFan();}
 command pong(){}
}

Figure 5. The KitchenFan micro-agent

A node’s fan switching actuator is represented by

the three non-generic kitchen fan instructions.
Consider, for example, Node.turnOnKitchenFan().
Note that the instruction specifies not only an object
the node is embedded in (a fan), but also the logical
location of the object. The instruction has been derived
from a home domain ontology that included logical
locations. ROVERS will instantiate the micro-agent
only on nodes equipped with a fan switch and located
in a kitchen.

The KitchenAirManager root micro-agent is given
in Fig. 6 (its logic has been greatly simplified for
brevity). The interfaces of hired subordinates are
declared with the hires keyword (of course, in a
general case, a micro-agent can both deliver and hire).
As can be seen, the boss deals only with the interfaces
of its subordinates, not their implementations.

microagent KitchenAirManager
 hires ISmokeDetector, IKitchenFan
{
 int smokeFreePeriods = MAX_PERIODS;
 ROVERS.MicroAgent fanManager = NULL;
 event once{
 ROVERS.hireNonGeneric(ISmokeDetector,BROADCAST);
 ROVERS.hireNonGeneric(IKitchenFan,ANYCAST);
 }
 event timer{
 if(smokeFreePeriods < MAX_PERIODS){
 fanManager.turnOn();
 smokeFreePeriods++;
 }
 }
 report ISmokeDetector.smokeLevelHigh(){
 smokeFreePeriods = 0;
 }
 report IFanManager.fanOn(){
 fanManager = ROVERS.getMicroAgent();
 if(smokeFreePeriods == MAX_PERIODS)
 fanManager.turnOff();
 }
 report IFanManager.ping(){
 fanManager = ROVERS.getMicroAgent();
 fanManager.pong();
 }
}

Figure 6. The KitchenAirManager micro-agent

The once event, known from the Maté virtual

machine, is generated by ROVERS when a micro-
agent is instantiated. In the once event handler, the

smoke detector and kitchen fan micro-agents are hired,
in the broadcast and anycast mode, respectively. The
application detects smoke using all available smoke
sensors, no matter where located. A single fan located
in the kitchen is turned on if smoke is detected.

The handlers for timer expiry and three
communications events (report receptions) follow. The
micro-agent turns the fan off if no smoke has been
detected by any of the sensors for a number of timer
periods.

The fanManager variable is intended to store the
handle for a subordinate. The handle is needed to
identify a subordinate for different purposes, including
sending a command. The handle can be retrieved by
the ROVERS.getMicroAgent() primitive only while
handling a report from the subordinate. The exchange
of the ping() and pong() messages of the
IKitchenFan interface ensures that the kitchen air
manager obtains the handle for the kitchen fan.

If a command is sent with an un-initialized micro-
agent handle, the sending instruction is quietly
discarded by ROVERS.

A deployment example for the KitchenAirManager
application is presented in Fig. 7.

Figure 7. A deployment of KitchenAirManager

The origin (the physical node through which the

application is injected, and the root micro-agent is
instantiated) is marked with the asterisk. As can be
seen, ROVERS has instantiated the non-generic micro-
agents (the grey circles) at their hosts (F – fan, S –
smoke detector), according to their hiring modes. Also,
ROVERS has detected that it pays to move the generic
root (the white circle) towards smoke sensors to
minimize traffic generated by the application. This
illustrates non-generic and generic micro-agent
mobility, respectively.

5. Related work

Middleware support for open pervasive computing

and active wireless sensor networks is a dynamic
research area. A number of middleware layers
comparable to ROVERS have been described in the
literature. These systems include Maté [4], SensorWare
[5], Agilla [6], SmartMessages [7], DFuse [8],

F

F

S

S

*

MagnetOS [9], Solar [10], PIECES [11], Deluge [12],
Impala [13], among others.

In spite of a large number of competing systems,
we believe that ROVERS offers the programmer a
unique abstraction of a sensor-actuator network. To the
best of our knowledge, none of the above systems
offers the following in a single, coherent package: (1)
micro-agent-centric (not node-centric) programming,
(2) implicit resource discovery (viz. non-generic
micro-agent mobility), (3) convenient communications
services (viz. communications channel with a logical
addressing scheme), (4) implicit minimization of
application-generated traffic (viz. generic micro-agent
mobility), (5) ontology-driven representation of
sensors and actuators, and (6) support for component-
based programming (viz. micro-agent interfaces). We
justify this claim with a couple of examples.

In Maté, there is no support for a distributed
application built of heterogeneous agents. Maté is
primarily a system to generate application-specific, but
homogeneous virtual machines. Moreover, node-
centric view of Maté-based applications differs
significantly from our approach.

In Agilla, there is no notion of a distributed
application; agents are injected into a network
separately, and different agents are not functionally
coupled (as in ROVERS). Agilla agents are addressed
by location (not by attributes); thus the system is not
aimed at location-unaware nodes. Also, in Agilla,
agent mobility has to be handled by the programmer.

In SensorWare, there is no implicit resource
discovery. A SensorWare script has to explicitly
inquire about the presence of a sensor or actuator.
Moreover, just as in Agilla, script mobility is under the
programmer’s control.

In systems like Deluge and Impala, the main
feature is efficient code propagation, and not full
support for the active network paradigm.

Quite a few of the competing systems (e.g.,
PIECES, SmartMessages, Solar, MagnetOS) have been
implemented on resource-rich, PDA-like platforms.
Our experience in resource-constrained systems
indicates that ROVERS mechanisms are lightweight
enough to be implementable on TinyOS-like nodes.

6. Conclusions and further work

The ROVERS middleware offers a simple and

abstract programming model for heterogeneous sensor-
actuator networks. The programming model, in turn,
gives rise to meaningful research problems. They
include protocols for micro-agent mobility. In
particular, non-generic micro-agent mobility requires
protocols for attribute-based addressing (non-generic
events and instructions supported by a node can be

thought of as the node’s attributes). Relatively little
work has been done in this area. An original idea
included in the programming model and requiring
further work is the derivation of lightweight
programming artifacts (events and instructions) from
an ontology [3]. More work is also needed on how to
better support writing pervasive computing
applications for an unknown mix of nodes.

We are currently working on all of the above
problems. Each of them is apparently meaningful in its
own right. In addition, we are implementing the
system. While the programming model is not tied to
any specific architecture, the TinyOS platform has
been picked as the implementation testbed.

7. References

[1] Levis, P. and Culler, D, “Active Sensor Networks”, in
Proceedings of NSDI 2005, Boston, USA, 2005
[2] Gay, D., et al., “The nesC Language: A Holistic
Approach to Networked Embedded Systems”, in Proceedings
of PLDI 03, San Diego, California, USA, 2003
[3] Domaszewicz, J. and Rój, M., “Lightweight Ontology-
driven Representations in Pervasive Computing,” in
Proceedings of NCUS 05, Nagasaki, Japan, Springer, 2005
[4] Levis, P. and Culler, D., “Maté: A Tiny Virtual Machine
for Sensor Networks”, in Proceedings of ASPLOS-X, San
Jose, CA, USA, 2002
[5] Boulis, A., Han, C.-C., and Srivastava, M.B., “Design and
Implementation of a Framework for Efficient and
Programmable Sensor Networks”, in Proceedings of ACM
MobiSys 2003, San Francisco, California, USA
[6] Fok, C.-L., Roman, G.-C., and Lu, C., “Rapid
Development and Flexible Deployment of Adaptive Wireless
Sensor Network Applications”, in Proceedings of ICDCS
2005, Columbus, Ohio, USA, 2005
[7] Kang, P., et al., “Smart Messages: A Distributed
Computing Platform for Networks of Embedded Systems”,
The Computer Journal, 2004. 47(4): p. 475-494.
[8] Kumar, R., et al., “DFuse: A Framework for Distributed
Data Fusion”, in Proceedings of ACM SenSys 2003, Los
Angeles, CA, USA, 2003
[9] Barr, R., et al., “On the Need for System-Level Support
for Ad Hoc and Sensor Networks”, Operating System
Review, 2002. 36(2): p. 1-5.
[10] Guanling, C., Li, M., and Kotz, D., “Design and
implementation of a large-scale context fusion network”, in
Proceedings of MobiQuitous'04, Boston, USA, 2004
[11] Liu, J., et al., “State-Centric Programming for Sensor-
Actuator Network Systems”, IEEE Pervasive Computing,
2003. 2(4).
[12] Hui, J. and Culler, D., “The Dynamic Behavior of a Data
Dissemination Protocol for Network Programming at Scale”,
in Proceedings of SenSys’04, Baltimore, MD, USA, 2004
[13] Liu, T. and Martonosi, M., “Impala: a middleware
system for managing autonomic, parallel sensor systems”, in
Proceedings of PPoPP’03, San Diego, California, 2003

