© 2006 IEEE. Personal use of this material is ptteali Permission from IEEE must be obtained foo#ier uses, in any current or
future media, including reprinting/republishinggmaterial for advertising or promotional purposesating new collective works,
for resale or redistribution to servers or listsyeuse of any copyrighted component of this warkther works.

ROVERS: Pervasive Computing Platform
for Heter ogeneous Sensor-Actuator Networks

J. Domaszewicz, M. RQj, A. Pruszkowski, M.Gig&i, and K. Kacperski
Institute of Telecommunications, Warsaw Universityechnology
ul. Nowowiejska 15/19, 00-665 Warsaw, Poland
e-mail: meag@tele.pw.edu.pl

Abstract non-generic resources depend mainly on the
functionality of the object the node is embedded in

The paper presents a programming model for a Prlcrlnar¥ e>t<amp'IA(\es 0:; non-%er&zn(ér_efour?es are n?fo
new pervasive computing middleware. The and actuators. A node embedded Into a lamp may ofie

middleware, called ROVERS, targets an environment@" actuator allowing a program to switch f[he Iarr_lp N
composed of tiny, resource-constrained, wirelessly gntd Off.’ asﬂ\:velll as ? sensor tthatt tmakgls |t|possmbled
communicating nodes embedded into everyday objects.e grrg:jned ne ampfg current Sl'i eI. eafL; Y, a node
The environment is heterogeneous in that each sode embedded into a re rlgerat_or IS TIkely to_ otter sers
equipped with a unique set of sensors and actuators and_ actuators of very different fun_cnona}llty. The
The nodes establish an ad-hoc network and congibut nVironment) described here IS inherently
their specific resources. The ROVERS layer tramséor heterogen_eous. each node offers a unique coIIe_o_ﬁon
the network into a distributed pervasive computing nhon-gel?enc reslgurges. The;e resourpﬁs ﬁre clzlagal
platform. The ROVERS application is an evolving tre t eBI/da ow applications to interact with the physic
of cooperating, mobile micro-agents. The tree aslapt worN .d deoloved i h . ith

to available resources and the current contextislt odes are deployed Into the environment without
largely decoupled from the concept of the physical any planning or particular order. Consequently, the

node. ROVERS provides the programmer with implicit tproglramm?rtﬁannoé assAumed any pf).artlcE:_Iar mllx or
resource discovery, inter-agent communications with opology of the nodes. A node configuration, aligiou

logical addressing, minimization of application- unknown, is quasi-static; it changes (_)n!y occasigna
generated traffic, ontology-driven representatioh o (a new node may be added or an existing one may be

sensor and actuator resources, as well as support f moved to another Ioga‘uon). Finally, the nodes e
component-based programming. The programming supported by any infrastructure. They establish a

model lends itself to an implementation for a ntinia system by forming an ad-hpc network. .
operating system, like TinyOS The goal of this work is to develop a middleware

layer for the above-described environment of unkmow

to the programmer, heterogeneous, resource-
constrained sensor-actuator networks. Key postililate
features of the new middleware, called ROVERS, are

Th's paper targets a pervasive —computing o following. It should largely free the prograntme
environment composed of tiny, unobtrusive, resource from the concept of the physical node. It should
constrained nodes embedded into everyday ObjeCtsprovide implicit resource discovery, convenient

Each tpode Qont“bUtFSA sorge, resources to tSecommunications services, minimization of applicatio
computing environment. nodess resources can egenerated traffic, systematic (actually — ontology-

classified into generic and non-generic. driven) representation of sensors and actuatorselis

Generic resources are .those a\(ailable_ at every nodgg support for component-based programming. In the
(e.g., computing capability, basic peripherals, and spirit of active sensor networks [1], it should be

Wirgless connectivity). Non-generic resources hosé¢ _possible to freely deploy a new application on the
available at some nodes, but not at others. A 1sode resulting platform. Moreover, multiple, independent
applications should be able to run concurrentlythie

This work was supported in part by the Polish Miyisof same time, the middleware should lend itself to an
Education and Science, project no. 3 T11D 011 28.

1. Introduction

implementation for a miniature operating systerke li A boss and subordinate see each other through the
TinyOS [2]. latter’'s micro-agent interfaceln fact, while hiring, the
The main contribution of this paper is a boss specifies the subordinate’s interface, not
programming model satisfying the above postulates.implementation. An interface specifies what message
The programming model, while offering an abstract can be exchanged between the two. The subordinate
view of the network, motivates a number of research sendsreports and the boss sendsommands For
problems of wider significance. example, the interface of a temperature acquiring
This paper is organized as follows. The ROVERS micro-agent may include a temperature report and a
programming model is presented in Section 2. command to change the reporting period.
Application deployment is explained in Section 3. A Comprehensive libraries of reusable ROVERS micro-
programming example is provided in Section 4. agents, implementing useful interfaces, can be
Related work in the area of middleware for pervasiv developed.
computing is referred to in Section 5. The paper is Some micro-agents require special resources

concluded and further work is outlined in Section 6 (sensors or actuators) to do their job. For exanthle
temperature acquiring micro-agent requires a

2. ROVERS programming model temperature sensor. The sensor, however, may not be
available on any physical node. In that case, the

2.1. Logical structure of ROVERS application subordinate micro-agent will not be created by

ROVERS, even though it has been hired. If it is too
A ROVERS application is a collection of difficult for the boss to work without the subordite, it

lightweight, cooperating, concurrently running &as, may simply quit. If this process is repeated higher
called micro-agents Micro-agents are organized into a the tree hierarchy, entire sub-trees may eventuzly
hierarchical, tree-like structure (see Fig. 1.)eTarms Missing. The goal, however, is to make the appioat
“poss” and “subordinate” will be used to denote a un even though some resources are not available. T
micro-agent’s parent and child, respectively (inlesr compensate for _the lack of_ knowledge about the
to perform its tasks, the boss micro-agent usesitses deployment environment, micro-agents should be
of the work of its subordinates). Usually, the lesiof ~ Written so that they degrade their performance

the tree are micro-agents that interact with thysjaal gracefully in case some of their subordinates are
environment by acquiring context information throug ~ MISSING. o .
sensors or effecting change through actuators. éigh As follows from the above, the application tree is
level micro-agents act as context synthesizers andot fixed. It evolves as micro-agents hire their
decision makers. subordinates. It also depends on resources awiiabl

the environment.

The mindset of the ROVERS programmer is not
node-centric; it is micro-agent-centric. The apgticn
is developed as a collection of communicating labic
—D entities (micro-agents), some of which may interact
with the world through sensors and actuators. As
explained below, deploying and maintaining an
application in an actual environment (discovering
resources, allocating micro-agents to physical apde
maintaining multi-hop communications channels,)etc.
8s done entirely by ROVERS.

Figure 1. A ROVERS application (micro-agents
requiring special resources are in grey)

A subordinate is created by its boss by means of
ROVERS primitive calledhiring. At the beginning,
only the root micro-agent exists. The root hires it
subordinates. They, in turn, hire theirs, and so on
Hiring may occur at any time, possibly as a resflt
some specific context.

Once a subordinate is created, it can exchang
messages with the boss through a dedicated, pmint-t
point, best-effort communications channel. The
channel is set up and fully maintained by ROVERS.
Addressing messages to the boss is implicit.
Subordinates are addressed by ROVERS-assigne
handles.

2.2. Micro-agent internals

The ROVERS middleware adopts event-driven
eprogramming. The micro-agent is a collection ofrgve
handlers, each handling a specROVERS evenfAn
event handler is a sequenceROVERS instructions
Execution of a micro-agent amounts to occasional
execution of one of its event handlers. All instrores
gre non-blocking; the time to execute a micro-agent
event handler is short and predictable. In between
events, the micro-agent is inactive.

The ROVERS events and instructions include (a)
typical programming constructs (e.g., a timer
expiration event or a looping instruction), (b) noic
agent management primitives (hiring instructiors),
micro-agent communications primitives (sending and
receiving of a command or report), and (d) sensor a
actuator representation primitives (e.g.,
detection event or an instruction yielding a regdin
from a temperature sensor).

All the events and instructions, except for the
typical ones, constitute ROVERS primitives,

a smoke

and instructions, a node supports its own collectio
(usually only a handful) of non-generic ones.

If each event handled by a micro-agent is generic,
and so is each instruction contained in any of its
handlers, then the micro-agent is generic. Othenviis
is non-generic.

A micro-agent can run on a node only if all events
and instructions it uses are supported by the sode’
virtual machine. A generic micro-agent can run og a
node. A node that provides all non-generic prinaisiv
needed by a non-generic micro-agent is calldtbst

summarized in Table 1. The notation and usage arefor this micro-agent. A non-generic micro-agent can

exemplified in Section 4.

In order to derive sensor and actuator
representation primitives in a systematic way, rgda
domain (e.g., home) is modeled by an ontology. An
ontology preprocessor tool is used to generatella fu
(possibly huge) collection of instructions and egen
for the domain (samples are given in Table 1). Our
initial work on this novel approach has been pressén
in [3].

Table 1. Key ROVERS primitives
(I/E = instruction/event, G/N — generic/non-generic)

Name Type Functionality
Micro-agent management
ROVERS.hireGeneric 1,G hire a generic subordinate
ROVERS.hireNonGeneric I,G hire a non-generic

subordinate
get a handle to a hired
subordinate

ROVERS.getMicroAgent 1,G

Micro-agent communications

Bossreport 1,G send a report to the boss

subordinatecommand 1,G send a command to the
subordinate

reportname E,G report reception event

commanchame E,G command reception event

Sensor and actuator representation (samples)

Node.getTemplinKitchen I,N get the kitchen tempertu
Node.switchOnDeskLamp ILN switch a desk lamp on
Node.RefrigeratorDoorOpen E,N refrigerator doorropeent

2.3. Non-generic primitives and micro-agents

The ROVERS events and instructions form a
micro-agent execution environment provided by
physical nodes; they can be thought of as building
blocks for a virtual machine. Just as nodes differ
terms of their resources, so do their virtual maesi If
an event or instruction is available on every nodis,
generig otherwise, it imon-generic All the events and
instructions, except for the sensor
representation primitives, are generic. The later

non-generic because each node has its unique set o

sensors and actuators. On top of all the genegatsv

and actuator

run only on its hosts. The number of hosts is not
known in advance to the programmer; it depends on a
specific deployment environment. There may be more
than one host, just one, or none at all.

The unknown number of hosts gives rise to the
guestion of which of them to use when hiring a non-
generic micro-agent. Currently, two programmer-
selectable modes are included. In Hieadcast hiring
mode an instance is created on every available host. |
the anycast hiring modeat most one instance (on a
host picked by ROVERS) is created, no matter how
many hosts are available. For each mode, the
programmer should take into account the possibility
that no instances are created at all (no hosts).

3. ROVERS application deployment

A ROVERS application may be preinstalled on a
usual embedded node or on a minimal, stand-alone
“application pill.” Another option is to inject the
application through a gateway node. In either case,
there is a single physical node, called the originere
the root micro-agent gets “hired” by ROVERS.
Different applications may have different origins.

Starting at the origin, the running application may
spread all over the environment. Each micro-ageay m
eventually run on a different node. Efficient micro
agent to physical node mapping is achieved through
micro-agent mobility. Both generic and non-generic
micro-agents are mobile, although for different
reasons. Also, a different concept of code mobikty
employed in each case.

The micro-agent to node mapping (micro-agent
mobility) is in either case completely transparenthe
programmer. Exceptire, there are no code mobility
primitives. All mobility-related decisions and
operations are performed exclusively by ROVERS.

3.1. Non-generic micro-agent mobility
f The reason for non-generic micro-agent mobility of

IS to move a micro-agent to a host (or all avadabl
hosts, depending on the hiring mode). When a non-

generic micro-agent is hired, ROVERS takes care ofsubordinates:SmokeDet ector and KitchenFan. The
finding hosts, moving the micro-agent’s code there, former is hired in the broadcast mode (as denoted b

and instantiating the micro-agent (weak mobilityp the thick line), and the latter in anycast.
mobility after that is allowed; the micro-agent suon The source code for the entire application is
one node until it terminates. presented in Figs. 3-5. It is written in our infam

When developing a non-generic micro-agent, the notation called “ROVERS C,” inspired by the nesC
programmer is aware that its instance will be rebéie programming language [2]. The ROVERS primitives
some physical node (i.e., a host). As explainedwel and ROVERS C keywords are in bold. Many items
this node-centric treatment of non-generic micro- have a prefix enhancing readability, e.Boss. (the
agents is contrary to that of generic ones (whigh a report sending primitive)Node. (non-generic events or
node-indifferent). instructions), OROVERS. (some generic primitives).

Non-generic events and instructions can be thought Micro-agent interfaces for the subordinates are
of as services that a node offers. An applicatakes given in Fig. 3. The smoke detector sends a report
advantage of them through its non-generic micro- alerting about high smoke level. The fan micro-agen
agents. Non-generic micro-agent mobility amounts to sends a report alerting that the fan is on andpisce

implicit (ROVERS-provided) service discovery. commands to turn the fan on and off. The fan iafeaf
also includes a report and command for establishing
3.2. Generic micro-agent mobility boss-subordinate communications pi g() and

pong()), explained below.
By definition, a generic micro-agent can run on any
node. When a generic micro-agent is hired, it iS |iyerface | SokeDetector{report snokeLevel H gh();}

immediately instantiated. Initially, the subordi@and interf?c;e Ig&;:hen_lian?.ganager {
; report fan , ping();
its boss run on the same node. comand turncn(). turnGf(), pong():

The reason for generic micro-agent mobility is (a) |}
to reduce the total amount of traffic produced bg t
application or (b) to offload an overcrowded node. Figure 3. Micro-agent interfaces
Traffic reduction is usually achieved by moving@sé
closer (in terms of the number of hops) to its data The smoke detector micro-agent implementation is
generating subordinates. When ROVERS decides thagiven in Fig. 4. The implemented interface is desda
moving a generic micro-agent to a neighboring node with thedel i vers keyword. The micro-agent contains
would achieve any of the two objectives, the micro- three event handlers. A node’s smoke sensor is
agent is transferred there, along with its execusitate represented by two non-generic events:
(strong mobility). Thus generic micro-agents can be Node. snokeAl ert On and Node. snokeAl ert Off. The
moved freely by ROVERS (based on the above, non-fact that these events are used makes the micrd-age
functional criteria). Any node-related notion (e.g. non-generic and insures that ROVERS will instaatiat
location) is not applicable to them. The programmer it only on nodes equipped with a smoke sensor. No
does not think of nodes when developing generic non-generic instructions are used by the micro-agen

micro-agents. In the handler for the generic timer expiry evenhigh
smoke level report is conditionally sent to the sos
4. ROVERS programming example This is the only way this micro-agent communicates

with its boss, as declared in thesnokeDet ector

A simple kitchen-related application has been interface.
developed to illustrate the ROVERS programming
model. Its job is to detect smoke and turn on a iflan nicroagent ShwokeDetector del i vers | SwkeDet ector {

i i i int alert = FALSE
needed. The tree is shown in Fig. 2. event tiner{if(alert = TRE) Boss. snokeLevel H gh():)
Ki t chenFan event Node. snokeA ert Ofa ert = TRE }

event Node. snokeA ertGf{al ert = FASE}

}

Ki t chenAi r Manager y SmokeDet ect or Figure 4. The SmokeDetector micro-agent

Figure 2. The kitchen application tree The kitchen fan micro-agent implementation is
given in Fig. 5. Four events are handled; threthein
As can be seen, the generic root micro-agent, @€ communications events (command receptions). In
Ki t chenAi r Manager , hires two non-generic the timer expiry handler, the fan status is regbrte

nicroagent Kt chenFan del i vers 1K t chenFan smoke detector and kitchen fan micro-agents aeshir

. in the broadcast and anycast mode, respectivelg. Th
event tiner {

if (! ROVERS got Gonmand()) Boss. pi ng(); application detects smoke using all available smoke
i f(Node. get Ki t chenFanS atus() = QN Boss. fann(); sensors, no matter where located. A single fantéoca
iommnd turnOn() {Node. t urnQnKi t chenFan() : } in the kitchen is turned on if smoke is detected.
command turnGif () {Node.turnGf K tchenFan();} The handlers for timer expiry and three
conmand pong() {} communications events (report receptions) followe T
! micro-agent turns the fan off if no smoke has been
Figure 5. The KitchenFan micro-agent detgc(;ed by any of the sensors for a number ofrtime
periods.

A node’s fan switching actuator is represented by ~ The fanManager variable is intended to store the

Consider, for exampleNode. t ur nnKi t chenFan() . identify a subordinate for different purposes, intthg
Note that the instruction specifies not only anegbj ~ Sending a command. The handle can be retrieved by
the node is embedded in (a fan), but also the bgic the ROVERS. getM croAgent () primitive only while
location of the object. The instruction has beeriveel handling a report from the subordinate. The exchang
from a home domain ontology that included logical ©f the ping() and pong() messages of the
locations. ROVERS will instantiate the micro-agent ! Ki tchenFan interface ensures that the kitchen air
only on nodes equipped with a fan swithd located manager obtains the handle for the kitchen fan.
in a kitchen. If a command is sent with an un-initialized micro-
The Ki t chenAi r Manager root micro-agent is given agent handle, the sending instruction is quietly
in Fig. 6 (its logic has been greatly simplifiedr fo discarded by ROVERS.
brevity). The interfaces of hired subordinates are A deployment example for the t chenAi r Manager
declared with thenires keyword (of course, in a applicationis presented in Fig. 7.
general case, a micro-agent can both deliver arg). hi
As can be seen, the boss deals only with the atesf
of its subordinates, not their implementations.

nmcroagent KitchenAi r Manager
hires | ShokeDetector, |KitchenFan

int snokeFr eePeriods = MX FER 5
ROBERS McroAgent fanhanager = NULL;

event once{
%H ﬁgwﬁﬂgﬂ gg: E’?‘éﬁg}gﬁw? Figure 7. A deployment of KitchenAirManager
eivs?tsn:)nggeFEriods p—— The origin (the physical node through which the
fanMinager. turnQn(); application is injected, and the root micro-agest i
snokeFr eePeri ods+ instantiated) is marked with the asterisk. As can b
seen, ROVERS has instantiated the non-generic micro
report | Swkelet ect or. snokelevel H gh(){ agents (the grey circles) at their hosts (F — fan;
}Sn“’ke':reepe” ods =0 smoke detector), according to their hiring moddsoA
report | FanManager . f anQn(){ ROVERS has detected that it pays to move the generi
{??ﬁ”mﬁggémftm’?%e%3 root (the white circle) towards smoke sensors to
fanMinager. turn@f(); minimize traffic generated by the application. This
1ep0rt | Fanhanager . pi ng() { illustrates non-generic and generic micro-agent
fanMinager = ROVERS get McroAgent () ; mobility, respectively.
fanMenager . pong() ;
}} 5. Related work

Middleware support for open pervasive computing

Figure 6. The KitchenAirManager micro-agent and active wireless sensor networks is a dynamic

research area. A number of middleware layers

The once event, known from the Maté virtual comparable to ROVERS have been described in the
machine, is generated by ROVERS when a micro- jiterature. These systems include Maté [4], SensoeV
agent is instantiated. In thence event handler, the [5], Agilla [6], SmartMessages [7], DFuse [8],

MagnetOS [9], Solar [10], PIECES [11], Deluge [12], thought of as the node’s attributes). Relativetyleli
Impala [13], among others. work has been done in this area. An original idea

In spite of a large number of competing systems, included in the programming model and requiring
we believe that ROVERS offers the programmer a further work is the derivation of lightweight
unique abstraction of a sensor-actuator networkh® programming artifacts (events and instructionsyfro
best of our knowledge, none of the above systemsan ontology [3]. More work is also needed on how to
offers the following in a single, coherent packade: better support writing pervasive computing
micro-agent-centric (not node-centric) programming, applications for an unknown mix of nodes.

(2) implicit resource discovery (viz. non-generic We are currently working on all of the above
micro-agent mobility), (3) convenient communicason problems. Each of them is apparently meaningfulsin
services (viz. communications channel with a lolgica own right. In addition, we are implementing the
addressing scheme), (4) implicit minimization of system. While the programming model is not tied to
application-generated traffic (viz. generic micigeat any specific architecture, the TinyOS platform has
mobility), (5) ontology-driven representation of been picked as the implementation testbed.

sensors and actuators, and (6) support for componen

based programming (viz. micro-agent interfaces). We 7. Refer ences

justify this claim with a couple of examples.

In Mate, there is no support for a distributed [1] Levis, P. and Culler, D, “Active Sensor Netwstkin
application built of heterogeneous agents. Maté is Proceedings of NSDI 2005, Boston, USA, 2005
primarily a system to generate application-specbiag [2] Gay, D., et al., “The nesC Language: A Holistic
homogeneous virtual machines. Moreover, node- Approach to Networked Embedded Systems”, in Prdoged

centric view of Maté-based applications differs Of PLDI03, San Diego, California, USA, 2003
significantly from our approach. [3] Domaszewicz, J. and R¢j, M., “Lightweight Oragy-

: : : . driven Representations in Pervasive Computing,” in
In A.glll.a, there is no .nlotlon of a distributed Proceedings of NCUS 05, Nagasaki, Japan, Spri2§es
application; agents are injected into a network [4] Levis, P. and Culler, D., “Maté: A Tiny Virtuaéflachine

separately, and different agents are not functipnal for sensor Networks”, in Proceedings of ASPLOS-¥nS
coupled (as in ROVERS). Agilla agents are addressedjose, CA, USA, 2002
by location (not by attributes); thus the systenmas [5] Boulis, A., Han, C.-C., and Srivastava, M.BQésign and
aimed at location-unaware nodes. Also, in Agilla, Implementation of a Framework for Efficient and
agent mobility has to be handled by the programmer. Programmable Sensor N(_etworks”,. in I?roceedings oMAC
In SensorWare, there is no implicit resource I[\g]ObIFSglf 2‘?3L53’|;§:::§'5081 Cca"foargg"n LIfA c. “Rapid
o o s 1 oo DEvSEpE a1d e oot of Aptse o
. . . . A ensor Network Applications”, in Proceedings of
Moreover, just as in Agilla, script mobility is uadthe 2005, Columbus, Ohio, USA, 2005
programmer’s control. [7] Kang, P., et al, “Smart Messages: A Distrilsite
In systems like Deluge and Impala, the main Computing Platform for Networks of Embedded Systems
feature is efficient code propagation, and not full The Computer JournaR004. 47(4): p. 475-494.
support for the active network paradigm. [8] Kumar, R., et al., “DFuse: A Framework for Dibuted
Quite a few of the competing systems (e.g., Data Fusion”, in Proceedings of ACM SenSys 2003s Lo
PIECES, SmartMessages, Solar, MagnetOS) have beefingeles, CA, USA, 2003
implemented on resource-rich, PDA-like platforms. [°] Bar. R., et al., “On the Need for System-Lelpport
Our experience in resource-constrained systemsg’r Ad Hoc and .Sensor Networks”, Operating System
- . . . eview, 2002. 36(2): p. 1-5.
indicates that ROVERS mechanisms are lightweight [10] Guanling, C., Li, M., and Kotz, D., “Design @n

enough to be implementable on TinyOS-like nodes. jmplementation of a large-scale context fusion ek in
Proceedings of MobiQuitous'04, Boston, USA, 2004

6. Conclusions and further wor k [11] Liu, J., et al., “State-Centric Programming f®ensor-
Actuator Network Systems’|EEE Pervasive Computing

: : 2003. 2(4).
The ROVERS middleware offers a simple and [12] Hui, J. and Culler, D., “The Dynamic Behavigra Data

abstract programming model for heFerogeneoug SensorDissemination Protocol for Network Programming e&l8”,
actuator networks. The programming model, in turn, ; Proceedings of SenSys'04, Baltimore, MD, USAQ20
gives rise to meaningful research problems. They[13] Liu, T. and Martonosi, M., “Impala: a middlevea
include protocols for micro-agent mobility. In system for managing autonomic, parallel sensoesyst, in
particular, non-generic micro-agent mobility re@sir Proceedings of PPoPP’03, San Diego, California3200
protocols for attribute-based addressing (non-gener

events and instructions supported by a node can be

