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Abstract 
  

The paper presents a programming model for a 
new pervasive computing middleware. The 
middleware, called ROVERS, targets an environment 
composed of tiny, resource-constrained, wirelessly 
communicating nodes embedded into everyday objects. 
The environment is heterogeneous in that each node is 
equipped with a unique set of sensors and actuators. 
The nodes establish an ad-hoc network and contribute 
their specific resources. The ROVERS layer transforms 
the network into a distributed pervasive computing 
platform. The ROVERS application is an evolving tree 
of cooperating, mobile micro-agents. The tree adapts 
to available resources and the current context. It is 
largely decoupled from the concept of the physical 
node. ROVERS provides the programmer with implicit 
resource discovery, inter-agent communications with 
logical addressing, minimization of application-
generated traffic, ontology-driven representation of 
sensor and actuator resources, as well as support for 
component-based programming. The programming 
model lends itself to an implementation for a miniature 
operating system, like TinyOS. 

 
1. Introduction 

 
This paper targets a pervasive computing 

environment composed of tiny, unobtrusive, resource-
constrained nodes embedded into everyday objects. 
Each node contributes some resources to the 
computing environment. A node’s resources can be 
classified into generic and non-generic. 

Generic resources are those available at every node 
(e.g., computing capability, basic peripherals, and 
wireless connectivity). Non-generic resources are those 
available at some nodes, but not at others. A node’s 
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non-generic resources depend mainly on the 
functionality of the object the node is embedded in. 
Primary examples of non-generic resources are sensors 
and actuators. A node embedded into a lamp may offer 
an actuator allowing a program to switch the lamp on 
and off, as well as a sensor that makes it possible to 
determine the lamp’s current state. Clearly, a node 
embedded into a refrigerator is likely to offer sensors 
and actuators of very different functionality. The 
environment described here is inherently 
heterogeneous: each node offers a unique collection of 
non-generic resources. These resources are critical, as 
they allow applications to interact with the physical 
world. 

Nodes are deployed into the environment without 
any planning or particular order. Consequently, the 
programmer cannot assume any particular mix or 
topology of the nodes. A node configuration, although 
unknown, is quasi-static; it changes only occasionally 
(a new node may be added or an existing one may be 
moved to another location). Finally, the nodes are not 
supported by any infrastructure. They establish a 
system by forming an ad-hoc network. 

The goal of this work is to develop a middleware 
layer for the above-described environment of unknown 
to the programmer, heterogeneous, resource-
constrained sensor-actuator networks. Key postulated 
features of the new middleware, called ROVERS, are 
the following. It should largely free the programmer 
from the concept of the physical node. It should 
provide implicit resource discovery, convenient 
communications services, minimization of application-
generated traffic, systematic (actually – ontology-
driven) representation of sensors and actuators, as well 
as support for component-based programming. In the 
spirit of active sensor networks [1], it should be 
possible to freely deploy a new application on the 
resulting platform. Moreover, multiple, independent 
applications should be able to run concurrently. At the 
same time, the middleware should lend itself to an 
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implementation for a miniature operating system, like 
TinyOS [2]. 

The main contribution of this paper is a 
programming model satisfying the above postulates. 
The programming model, while offering an abstract 
view of the network, motivates a number of research 
problems of wider significance. 

This paper is organized as follows. The ROVERS 
programming model is presented in Section 2. 
Application deployment is explained in Section 3. A 
programming example is provided in Section 4. 
Related work in the area of middleware for pervasive 
computing is referred to in Section 5. The paper is 
concluded and further work is outlined in Section 6. 

 
2. ROVERS programming model 

 
2.1. Logical structure of ROVERS application 

 
A ROVERS application is a collection of 

lightweight, cooperating, concurrently running entities, 
called micro-agents. Micro-agents are organized into a 
hierarchical, tree-like structure (see Fig. 1.). The terms 
“boss”  and “subordinate” will be used to denote a 
micro-agent’s parent and child, respectively (in order 
to perform its tasks, the boss micro-agent uses results 
of the work of its subordinates). Usually, the leaves of 
the tree are micro-agents that interact with the physical 
environment by acquiring context information through 
sensors or effecting change through actuators. Higher-
level micro-agents act as context synthesizers and 
decision makers. 

 
Figure 1. A ROVERS application (micro-agents 

requiring special resources are in grey) 
 
A subordinate is created by its boss by means of a 

ROVERS primitive called hiring. At the beginning, 
only the root micro-agent exists. The root hires its 
subordinates. They, in turn, hire theirs, and so on. 
Hiring may occur at any time, possibly as a result of 
some specific context. 

Once a subordinate is created, it can exchange 
messages with the boss through a dedicated, point-to-
point, best-effort communications channel. The 
channel is set up and fully maintained by ROVERS. 
Addressing messages to the boss is implicit. 
Subordinates are addressed by ROVERS-assigned 
handles. 

A boss and subordinate see each other through the 
latter’s micro-agent interface. In fact, while hiring, the 
boss specifies the subordinate’s interface, not 
implementation. An interface specifies what messages 
can be exchanged between the two. The subordinate 
sends reports, and the boss sends commands. For 
example, the interface of a temperature acquiring 
micro-agent may include a temperature report and a 
command to change the reporting period. 
Comprehensive libraries of reusable ROVERS micro-
agents, implementing useful interfaces, can be 
developed. 

Some micro-agents require special resources 
(sensors or actuators) to do their job. For example, the 
temperature acquiring micro-agent requires a 
temperature sensor. The sensor, however, may not be 
available on any physical node. In that case, the 
subordinate micro-agent will not be created by 
ROVERS, even though it has been hired. If it is too 
difficult for the boss to work without the subordinate, it 
may simply quit. If this process is repeated higher up 
the tree hierarchy, entire sub-trees may eventually be 
missing. The goal, however, is to make the application 
run even though some resources are not available. To 
compensate for the lack of knowledge about the 
deployment environment, micro-agents should be 
written so that they degrade their performance 
gracefully in case some of their subordinates are 
missing. 

As follows from the above, the application tree is 
not fixed. It evolves as micro-agents hire their 
subordinates. It also depends on resources available in 
the environment. 

The mindset of the ROVERS programmer is not 
node-centric; it is micro-agent-centric. The application 
is developed as a collection of communicating logical 
entities (micro-agents), some of which may interact 
with the world through sensors and actuators. As 
explained below, deploying and maintaining an 
application in an actual environment (discovering 
resources, allocating micro-agents to physical nodes, 
maintaining multi-hop communications channels, etc.) 
is done entirely by ROVERS. 

 
2.2. Micro-agent internals 

 
The ROVERS middleware adopts event-driven 

programming. The micro-agent is a collection of event 
handlers, each handling a specific ROVERS event. An 
event handler is a sequence of ROVERS instructions. 
Execution of a micro-agent amounts to occasional 
execution of one of its event handlers. All instructions 
are non-blocking; the time to execute a micro-agent’s 
event handler is short and predictable. In between 
events, the micro-agent is inactive. 



The ROVERS events and instructions include (a) 
typical programming constructs (e.g., a timer 
expiration event or a looping instruction), (b) micro-
agent management primitives (hiring instructions), (c) 
micro-agent communications primitives (sending and 
receiving of a command or report), and (d) sensor and 
actuator representation primitives (e.g., a smoke 
detection event or an instruction yielding a reading 
from a temperature sensor). 

All the events and instructions, except for the 
typical ones, constitute ROVERS primitives, 
summarized in Table 1. The notation and usage are 
exemplified in Section 4. 

In order to derive sensor and actuator 
representation primitives in a systematic way, a target 
domain (e.g., home) is modeled by an ontology. An 
ontology preprocessor tool is used to generate a full 
(possibly huge) collection of instructions and events 
for the domain (samples are given in Table 1). Our 
initial work on this novel approach has been presented 
in [3]. 

 
Table 1. Key ROVERS primitives 

(I/E – instruction/event, G/N – generic/non-generic) 
 

Name Type Functionality 

Micro-agent management 
ROVERS.hireGeneric I,G hire a generic subordinate 
ROVERS.hireNonGeneric I,G hire a non-generic 

subordinate 
ROVERS.getMicroAgent I,G get a handle to a hired 

subordinate 
Micro-agent communications 
Boss.report I,G send a report to the boss 
subordinate.command I,G send a command to the 

subordinate 
report name E,G report reception event 
command name E,G command reception event 
Sensor and actuator representation (samples) 
Node.getTempInKitchen I,N get the kitchen temperature 
Node.switchOnDeskLamp I,N switch a desk lamp on 
Node.RefrigeratorDoorOpen E,N refrigerator door open event 

 
2.3. Non-generic primitives and micro-agents 

 
The ROVERS events and instructions form a 

micro-agent execution environment provided by 
physical nodes; they can be thought of as building 
blocks for a virtual machine. Just as nodes differ in 
terms of their resources, so do their virtual machines. If 
an event or instruction is available on every node, it is 
generic; otherwise, it is non-generic. All the events and 
instructions, except for the sensor and actuator 
representation primitives, are generic. The latter are 
non-generic because each node has its unique set of 
sensors and actuators. On top of all the generic events 

and instructions, a node supports its own collection 
(usually only a handful) of non-generic ones. 

If each event handled by a micro-agent is generic, 
and so is each instruction contained in any of its 
handlers, then the micro-agent is generic. Otherwise, it 
is non-generic. 

A micro-agent can run on a node only if all events 
and instructions it uses are supported by the node’s 
virtual machine. A generic micro-agent can run on any 
node. A node that provides all non-generic primitives 
needed by a non-generic micro-agent is called a host 
for this micro-agent. A non-generic micro-agent can 
run only on its hosts. The number of hosts is not 
known in advance to the programmer; it depends on a 
specific deployment environment. There may be more 
than one host, just one, or none at all. 

The unknown number of hosts gives rise to the 
question of which of them to use when hiring a non-
generic micro-agent. Currently, two programmer-
selectable modes are included. In the broadcast hiring 
mode, an instance is created on every available host. In 
the anycast hiring mode, at most one instance (on a 
host picked by ROVERS) is created, no matter how 
many hosts are available. For each mode, the 
programmer should take into account the possibility 
that no instances are created at all (no hosts). 

 
3. ROVERS application deployment 

 
A ROVERS application may be preinstalled on a 

usual embedded node or on a minimal, stand-alone 
“application pill.” Another option is to inject the 
application through a gateway node. In either case, 
there is a single physical node, called the origin, where 
the root micro-agent gets “hired” by ROVERS. 
Different applications may have different origins. 

Starting at the origin, the running application may 
spread all over the environment. Each micro-agent may 
eventually run on a different node. Efficient micro-
agent to physical node mapping is achieved through 
micro-agent mobility. Both generic and non-generic 
micro-agents are mobile, although for different 
reasons. Also, a different concept of code mobility is 
employed in each case. 

The micro-agent to node mapping (micro-agent 
mobility) is in either case completely transparent to the 
programmer. Except hire, there are no code mobility 
primitives. All mobility-related decisions and 
operations are performed exclusively by ROVERS. 

 
3.1. Non-generic micro-agent mobility 

 
The reason for non-generic micro-agent mobility of 

is to move a micro-agent to a host (or all available 
hosts, depending on the hiring mode). When a non-



generic micro-agent is hired, ROVERS takes care of 
finding hosts, moving the micro-agent’s code there, 
and instantiating the micro-agent (weak mobility). No 
mobility after that is allowed; the micro-agent runs on 
one node until it terminates. 

When developing a non-generic micro-agent, the 
programmer is aware that its instance will be hosted by 
some physical node (i.e., a host). As explained below, 
this node-centric treatment of non-generic micro-
agents is contrary to that of generic ones (which are 
node-indifferent). 

Non-generic events and instructions can be thought 
of as services that a node offers. An application takes 
advantage of them through its non-generic micro-
agents. Non-generic micro-agent mobility amounts to 
implicit (ROVERS-provided) service discovery. 

 
3.2. Generic micro-agent mobility 

 
By definition, a generic micro-agent can run on any 

node. When a generic micro-agent is hired, it is 
immediately instantiated. Initially, the subordinate and 
its boss run on the same node. 

The reason for generic micro-agent mobility is (a) 
to reduce the total amount of traffic produced by the 
application or (b) to offload an overcrowded node. 
Traffic reduction is usually achieved by moving a boss 
closer (in terms of the number of hops) to its data-
generating subordinates.  When ROVERS decides that 
moving a generic micro-agent to a neighboring node 
would achieve any of the two objectives, the micro-
agent is transferred there, along with its execution state 
(strong mobility). Thus generic micro-agents can be 
moved freely by ROVERS (based on the above, non-
functional criteria). Any node-related notion (e.g., 
location) is not applicable to them. The programmer 
does not think of nodes when developing generic 
micro-agents. 

 
4. ROVERS programming example 

 
A simple kitchen-related application has been 

developed to illustrate the ROVERS programming 
model. Its job is to detect smoke and turn on a fan, if 
needed. The tree is shown in Fig. 2. 

 
Figure 2. The kitchen application tree 

 
As can be seen, the generic root micro-agent, 

KitchenAirManager, hires two non-generic 

subordinates: SmokeDetector and KitchenFan. The 
former is hired in the broadcast mode (as denoted by 
the thick line), and the latter in anycast. 

The source code for the entire application is 
presented in Figs. 3-5. It is written in our informal 
notation called “ROVERS C,” inspired by the nesC 
programming language [2]. The ROVERS primitives 
and ROVERS C keywords are in bold. Many items 
have a prefix enhancing readability, e.g., Boss. (the 
report sending primitive), Node. (non-generic events or 
instructions),  or ROVERS. (some generic primitives). 

Micro-agent interfaces for the subordinates are 
given in Fig. 3. The smoke detector sends a report 
alerting about high smoke level. The fan micro-agent 
sends a report alerting that the fan is on and accepts 
commands to turn the fan on and off. The fan interface 
also includes a report and command for establishing 
boss-subordinate communications (ping() and 
pong()), explained below. 

interface ISmokeDetector{report smokeLevelHigh();} 
interface IKitchenFanManager { 
 report fanOn(), ping(); 
 command turnOn(), turnOff(), pong(); 
} 

Figure 3. Micro-agent interfaces 
 
The smoke detector micro-agent implementation is 

given in Fig. 4. The implemented interface is declared 
with the delivers keyword. The micro-agent contains 
three event handlers. A node’s smoke sensor is 
represented by two non-generic events: 
Node.smokeAlertOn and Node.smokeAlertOff. The 
fact that these events are used makes the micro-agent 
non-generic and insures that ROVERS will instantiate 
it only on nodes equipped with a smoke sensor. No 
non-generic instructions are used by the micro-agent. 
In the handler for the generic timer expiry event, a high 
smoke level report is conditionally sent to the boss. 
This is the only way this micro-agent communicates 
with its boss, as declared in the ISmokeDetector 
interface. 

microagent SmokeDetector delivers ISmokeDetector { 
 int alert = FALSE; 
 event timer{if(alert == TRUE) Boss.smokeLevelHigh();} 
 event Node.smokeAlertOn{alert = TRUE;} 
 event Node.smokeAlertOff{alert = FALSE;} 
} 

Figure 4. The SmokeDetector micro-agent 
 
The kitchen fan micro-agent implementation is 

given in Fig. 5. Four events are handled; three of them 
are communications events (command receptions). In 
the timer expiry handler, the fan status is reported. 

KitchenFan 

KitchenAirManager SmokeDetector 



microagent KitchenFan delivers IKitchenFan 
{ 
 event timer { 
  if(!ROVERS.gotCommand()) Boss.ping(); 
  if(Node.getKitchenFanStatus() == ON) Boss.fanOn(); 
 } 
 command turnOn() {Node.turnOnKitchenFan();} 
 command turnOff() {Node.turnOffKitchenFan();} 
 command pong(){} 
} 

Figure 5. The KitchenFan micro-agent 
 
A node’s fan switching actuator is represented by 

the three non-generic kitchen fan instructions. 
Consider, for example, Node.turnOnKitchenFan(). 
Note that the instruction specifies not only an object 
the node is embedded in (a fan), but also the logical 
location of the object. The instruction has been derived 
from a home domain ontology that included logical 
locations. ROVERS will instantiate the micro-agent 
only on nodes equipped with a fan switch and located 
in a kitchen. 

The KitchenAirManager root micro-agent is given 
in Fig. 6 (its logic has been greatly simplified for 
brevity). The interfaces of hired subordinates are 
declared with the hires keyword (of course, in a 
general case, a micro-agent can both deliver and hire). 
As can be seen, the boss deals only with the interfaces 
of its subordinates, not their implementations. 

microagent KitchenAirManager 
 hires ISmokeDetector, IKitchenFan 
{ 
 int smokeFreePeriods = MAX_PERIODS; 
 ROVERS.MicroAgent fanManager = NULL; 
 event once{ 
  ROVERS.hireNonGeneric(ISmokeDetector,BROADCAST); 
  ROVERS.hireNonGeneric(IKitchenFan,ANYCAST); 
 } 
 event timer{ 
  if(smokeFreePeriods < MAX_PERIODS){ 
   fanManager.turnOn(); 
   smokeFreePeriods++; 
  } 
 } 
 report ISmokeDetector.smokeLevelHigh(){ 
  smokeFreePeriods = 0; 
 } 
 report IFanManager.fanOn(){ 
  fanManager = ROVERS.getMicroAgent(); 
  if(smokeFreePeriods == MAX_PERIODS) 
   fanManager.turnOff(); 
 } 
 report IFanManager.ping(){ 
  fanManager = ROVERS.getMicroAgent(); 
  fanManager.pong(); 
 } 
} 

 
Figure 6. The KitchenAirManager micro-agent 

 
The once event, known from the Maté virtual 

machine, is generated by ROVERS when a micro-
agent is instantiated. In the once event handler, the 

smoke detector and kitchen fan micro-agents are hired, 
in the broadcast and anycast mode, respectively. The 
application detects smoke using all available smoke 
sensors, no matter where located. A single fan located 
in the kitchen is turned on if smoke is detected. 

The handlers for timer expiry and three 
communications events (report receptions) follow. The 
micro-agent turns the fan off if no smoke has been 
detected by any of the sensors for a number of timer 
periods. 

The fanManager variable is intended to store the 
handle for a subordinate. The handle is needed to 
identify a subordinate for different purposes, including 
sending a command. The handle can be retrieved by 
the ROVERS.getMicroAgent() primitive only while 
handling a report from the subordinate. The exchange 
of the ping() and pong() messages of the 
IKitchenFan interface ensures that the kitchen air 
manager obtains the handle for the kitchen fan. 

If a command is sent with an un-initialized micro-
agent handle, the sending instruction is quietly 
discarded by ROVERS. 

A deployment example for the KitchenAirManager 
application is presented in Fig. 7. 

 
Figure 7. A deployment of KitchenAirManager 

 
The origin (the physical node through which the 

application is injected, and the root micro-agent is 
instantiated) is marked with the asterisk. As can be 
seen, ROVERS has instantiated the non-generic micro-
agents (the grey circles) at their hosts (F – fan, S – 
smoke detector), according to their hiring modes. Also, 
ROVERS has detected that it pays to move the generic 
root (the white circle) towards smoke sensors to 
minimize traffic generated by the application. This 
illustrates non-generic and generic micro-agent 
mobility, respectively. 

 
5. Related work 

 
Middleware support for open pervasive computing 

and active wireless sensor networks is a dynamic 
research area. A number of middleware layers 
comparable to ROVERS have been described in the 
literature. These systems include Maté [4], SensorWare 
[5], Agilla [6], SmartMessages [7], DFuse [8], 
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MagnetOS [9], Solar [10], PIECES [11], Deluge [12], 
Impala [13], among others. 

In spite of a large number of competing systems, 
we believe that ROVERS offers the programmer a 
unique abstraction of a sensor-actuator network. To the 
best of our knowledge, none of the above systems 
offers the following in a single, coherent package: (1) 
micro-agent-centric (not node-centric) programming, 
(2) implicit resource discovery (viz. non-generic 
micro-agent mobility), (3) convenient communications 
services (viz. communications channel with a logical 
addressing scheme), (4) implicit minimization of 
application-generated traffic (viz. generic micro-agent 
mobility), (5) ontology-driven representation of 
sensors and actuators, and (6) support for component-
based programming (viz. micro-agent interfaces). We 
justify this claim with a couple of examples. 

In Maté, there is no support for a distributed 
application built of heterogeneous agents. Maté is 
primarily a system to generate application-specific, but 
homogeneous virtual machines. Moreover, node-
centric view of Maté-based applications differs 
significantly from our approach. 

In Agilla, there is no notion of a distributed 
application; agents are injected into a network 
separately, and different agents are not functionally 
coupled (as in ROVERS). Agilla agents are addressed 
by location (not by attributes); thus the system is not 
aimed at location-unaware nodes. Also, in Agilla, 
agent mobility has to be handled by the programmer. 

In SensorWare, there is no implicit resource 
discovery. A SensorWare script has to explicitly 
inquire about the presence of a sensor or actuator. 
Moreover, just as in Agilla, script mobility is under the 
programmer’s control. 

In systems like Deluge and Impala, the main 
feature is efficient code propagation, and not full 
support for the active network paradigm. 

Quite a few of the competing systems (e.g., 
PIECES, SmartMessages, Solar, MagnetOS) have been 
implemented on resource-rich, PDA-like platforms. 
Our experience in resource-constrained systems 
indicates that ROVERS mechanisms are lightweight 
enough to be implementable on TinyOS-like nodes. 

 
6. Conclusions and further work 

 
The ROVERS middleware offers a simple and 

abstract programming model for heterogeneous sensor-
actuator networks. The programming model, in turn, 
gives rise to meaningful research problems. They 
include protocols for micro-agent mobility. In 
particular, non-generic micro-agent mobility requires 
protocols for attribute-based addressing (non-generic 
events and instructions supported by a node can be 

thought of as the node’s attributes). Relatively little 
work has been done in this area. An original idea 
included in the programming model and requiring 
further work is the derivation of lightweight 
programming artifacts (events and instructions) from 
an ontology [3]. More work is also needed on how to 
better support writing pervasive computing 
applications for an unknown mix of nodes. 

We are currently working on all of the above 
problems. Each of them is apparently meaningful in its 
own right. In addition, we are implementing the 
system. While the programming model is not tied to 
any specific architecture, the TinyOS platform has 
been picked as the implementation testbed.  
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