Use cases for matching semantic annotations
of API operations

Michat R6j

Institute of Telecommunications,
Warsaw University of Technology
mroj@tele.pw.edu.pl

Semantic annotation of application programmingrfiatees (APIs) can enable
various functionalities useful for software engirgedn this paper we discuss
selected applications for semantically annotated @égerations; we focus on
applications which exploit matching of APl operatotogether. We describe
several use cases which are aimed for both APkysey., finding desired API
operations or checking API portability) and API ide€rs (e.g., checking APIs
for redundancy or completeness). The paper outhngsssible implementation
of the approach and discusses its advantagesraitdtions.

1 Introduction

Application programming interface (API) is a soutmmle level interface that allows
applications access functionality exposed in artrabsway and provided by entities
such as operating systems or libraries.

We can observe an increasing number of APIs novsadayamples include new
APIs for mobile devices or Web APIs. Number, sind aomplexity of current APls
result in a relatively high amount of effort neededyet familiar with APIs and start
using them. Existing tools such as IDEs addresk ptmblems only in a limited way.

To facilitate programming with APIs, multiple resela activities have been
initiated (e.g., [1-3]). The activities have shownmteresting results in supporting
programmers (e.g., they ease the process of sagréti example code snippets or
software artifacts of specific functionality).

Available approaches employ a variety of techn@sgiSemantic technologies,
one of the options here, have proven to be useftdsks such as API artifact search
for reuse or application composition. The techn@egcan improve the process of
API artifact discovery (e.g., in large API libras)eby using logic-based inference,
enabling users with precise vocabulary to be useddilding queries or translating
user queries into meaningful domain-specific exgimess. A prominent example (and
one of the earliest approaches of this kind) isSLl®SIE system [4].

In contrast to typical applications of semantichtemlogies, we postulate a very
simple communication model between a tool whichpsufs programmers in API-
related programming tasks and its user. We asshatdhe user points only the name
of an API artifact (or a set of artifacts) and tlians a specific tool’s functionality; no

2 Michat R6j

domain-specific vocabulary is presented to or nexglfrom the user. Our motivation
is to make the user interface possibly simple amditive. In addition, such simplicity
can enable easier integration with software devakag tools.

The API artifact type we focus on AP operatioA. In our approach we assume
that API operations are semantically annotated thedannotations express the API
operations’ core functionality (i.e., they descrildeat the API operation do).

The key technique used to implement our approachméching two API
operations. The matching result can be one ofdtewing (we assume that there are
two semantically annotated API operatiomgA andopB):

(1) bothopAandopBdo exactly the same thing,

(2) opA offers wider functionality thanpB (i.e.,opAcovers fully the functionality

offered byopB and extends it with new elements),

(3) opA offers narrower functionality thawpB (opposite to case 2),

(4) no meaningful relationship is discovered.

We assume that matching of operations from diffefd®is is possible.

This paper describes several use cases which ailalde if relationships between
API operations (as described above) can be detethedidentified use cases include
the ones aimed for API users (finding desired APRErations or checking API
portability) and the ones aimed for API designerketking APl redundancy and
completeness).

2 Related work

A typical use case for semantically annotated APRIdiscovery of existing artifacts
for reuse. This is often made by letting the usempose a query using domain-
specific terminology acquired from an ontology. Stdpproach is described, e.g.,
in [4-6]. Another use case is composition of aplins from elements distributed
across the network. Such approach is described,ie[§].

Literature positions known to the author do notctdiée use cases exploiting
matching descriptions of API operations togethdre Tonceptually closest idea to the
one postulated in this paper is described in [B&ntic annotation of API operations
are used to sequence API operations in an apptepoiaer within an application
under development. In [5] not whole API operatiohghctionality is described but
API operations’ parameters and return values. Petens) are matched with return
values and when they it', a sample code sequénesmtomatically generated, where
API operations that return a specific kind of imf@ation precede the ones that use the
information as parameters.

1 In API operationswe understand those API artifacts which are usegprogrammers to
communicate information and initiate behavior. Dagiag to a programming environment,
API operations are called differently, e.g., ‘sulttines’, ‘functions’, ‘operations’, ‘methods’,
‘commands’, etc. Examples of API operations are théntf() and MoveFile()
functions, therkdi r command or thei | e: canExecut e() method.

Use cases for matching semantic annotations ofopBtations 3

3 Use cases

In this section we present a list of generic ussesahat exploit matching of API
operations. The use cases have been developec author as a result of research
and experiments with semantically annotated APlrajmans. We do not claim that
the selection of use cases is complete, howevey,akpress a range of different (and
possibly inspirational) functions.

In the use cases we assume the existence of aviach is able to collect input
data from its user, match API operations and dispdsults (in Section 4 we outline
implementation ideas of such a tool). In all ussesathe tool's input and output data
is a name (or names) of API operations or a nameés) of whole APIs.

The use cases are of two groups. First, use caS&dJUL5 are aimed for API users
(those who use existing APIs). Second, use case8-WCY are aimed for API
designers (those who design/develop new APIshdulsl be noted, however, that the
described use cases are not strictly tied to aifspegoup of users and, slightly
modified, can be used for different purposes thapgased below.

UC1: Finding functionally similar APl operations in another API

Assume that an API user knows ARAp, better then APN,p. However, APIYap
must be used in the current task. The API userasiged with means to make the
following query “Find me an API operation in ARhp, which provides the similar
functionality as API operatio® in the APIX,p.” As a result of this query execution,
the user is provided an API operation (or a seklf operations) ir¥ap; which have
the similar functionality to th® API operation.

UC2: Reducing API diversity in an application

This use case is about checking the source codedatatting if the code uses
multiple APIs from the same functional domain (fxample the APl user mixes
Windowsmemory allocation functions witle standard librarymemory allocation
functions). If so, the API user is proposed to fynthe code to use a single API;
possible changes in the code are proposed.

UC3: Finding API operations of wider or narrower functionality in the API

This use case is about finding all API operatiomkich have wider (or narrower)
functionality comparing to the one pointed. Finditvgder’ functionality can be
useful in situations where the existing functiotyatif a program needs to be extended
(e.g., until now the program uses an API operatidtrat deletes directories, but a
future version will need to delete both files andectories). A ‘narrower’ API
operation can be useful if the goal is to makepiegram code as safe as possible.
For instance, if files are the only type of enstiégo be deleted, the used API
operations should not be able to delete other kifidstities (such as directories).

4 Michat R6j

UC4: Semantic comparison of two APIs

This use case is about semantically comparing tRts AThe comparison is made by
matching the functionality of all API operationstime API. A report is generated as
the result of the comparison, including, for ing@nAPI operations which are present
in one API and not present in the other API.

UCS5: Checking if a program can be ported to anotheenvironment

This use case is about checking if a program wrifte one programming platform

(represented by a set of APIs) can be ported tthang@rogramming platform. The

checking is based on the semantics of API operatised in the code — if all used
API operations have their semantic counterparthéntarget platform (a set of APIs),
the program is considered ‘portable’. An extensiwinthis use case can be a
generation of a list of ‘portable platforms’ from set of known programming

platforms. In addition, a report can be generatedtaining the proposed API

operation mapping from the source platform to #rgét platform.

UCS6: Detecting ‘semantic redundancy’ in an API

This use case is about detecting ‘redundant’ ARrafons (i.e., APl operations with
shared functionality with other API operations)cB@nalysis can be made in order to
make API more consistent (e.g., to redesign thetdBimit its redundancy).

UCT7: Checking ‘semantic functional completeness’ adin API

This use case is about checking if the API is ‘fiomally complete’, i.e., if it
supports all the functions typically available forgiven API domain (otherwise the
API can be called ‘functionally incomplete’). Thisse case can be used in order to
detect and possibly update an incomplete API byradithe missing API operations.

4 Proposed implementation

Our proposed implementation requires the followagments: (1) a domain-specific
ontology which contains the terminology that carused to express the semantics of
API operations, (2) a set of descriptions of APlegtions’ functionalities
(i.e., semantic annotations of API operations).

A domain-specific ontology contains different caiggs of basic domain-specific
concepts (e.g.actions such asdpening, ‘closing, ‘deleting and objects such as
‘file’ or ‘directory). Semantic annotations of API operations al@ssesdescribed in
terms of concepts from a domain-specific ontolotye concepts are combined
together in order to precisely express the API afj@n’'s semantics. For instance, by
combining the actiondeleting with object ‘directory and attribute émpty, the

Use cases for matching semantic annotations ofopBtations 5

semantics ofin API operation used for deleting empty directegan be expressed.
By combining a relatively limited set of conceptsdifferent ways, a high number of
different API operations can be described.

In our experimental platform both ontology and ARleration’s descriptions are
encoded in OWL. We use OWL class constructors, eegtrictions and intersection
expressions, to build the descriptions (our apgrdacrepresenting API operations is
similar to the one used to express advertisemargj).

In Section 1 we described four result types forahiag AP| operations. Matching
API operations is implemented by means of matclONgL classes representing API
operations semantics. We perform two kinds of chegkif two classes are
equivalent or if two classes are in a class-subcladationship. Those simple
matching methods have proven to serve well fovisermatchmaking [8] and are
typically available from ontology processing andsening engines (such as Jena [9]).
We implement API operation matching by using OWassl matching as follows:

(1) ‘both API operations do the exactly same thinigé annotation class fopAis

equivalent to the annotation class é@B,

(2) ‘opA offers wider functionality thampB: the annotation class faspB is a

subclass ofhe annotation class fopA

(3) ‘opB offers wider functionality thampA: the annotation class faspAis a

subclass othe annotation class fopB,

(4) ‘no meaningful relationship is discovered’: eoof the above holds.
Implementation of use cases presented in Sectigith3the above matching methods
is relatively easy. We assume that for a specifiel Aperation’s identifier (e.g.,
‘printf()’), its semantic annotation (i.e., an OWL clasg) ba retrieved. Similarly,
for a given semantic annotation, the API operatadentifier can be retrieved. As
said earlier, when interfacing with the user, otlilg API operations’ identifiers are
used.

UC1, UC3 and UC6 are implemented in quite a similay. For instance, UC3 is
implemented by simply comparing the source semamimtation of API operation to
all semantic annotations of API operations in #rgét APl (which is the same as the
source API). We check if they are superclassese(haider’ functionality) or
subclasses (have ‘narrower’ functionality). UC1, tirn, checks the two above
relationships and also the ‘equivalence’ relatigmsiThe target API in UC1 is
different from the source API. UCB6, similarly, disers all the relationships checked
in UC1 but the source and target APIs are the same.

In UC4, we check for each API operation in the seuAPI if there are API
operations of ‘exactly the same’ or ‘wider’ functaity in the target API and vice
versa. The results are used to prepare a reporevthe APIs are contrasted.

Implementation of UC2, UC5 and UC7 is more compédaand is not discussed
here. However, in all cases the core techniqueating OWL classes (semantic
annotations of API operations) together for beingequivalence or super/subclass
relationships.

2 UC2 and UCS require code analysis procedures whil& tequires an APl to be matched
against a ‘reference complete API'.

6 Michat RGj

5 Discussion, summary and conclusions

This paper presents a set of use cases for mataengantic (ontology-based)
annotations of API operations. In the use casesptiology content is not revealed to
the programmer and all the semantic representatioomplexity is hidden behind the
facade of simple relationships between API openatié distinguishing feature of the
approach is that is allows operating on both sigd and multiple APIs, which, in
our opinion, allows novel and original functiona.

Our approach uses intuitive notions of ‘doing tlvaatly same thing’ or ‘offering
wider/narrower functionality’ when applied to APperations. We showed that these
relationships can be easily expressed with simphkology classes matching
techniques (checking for semantic equivalence abdwsmption).

Our preliminary results with an experimental domaintology with a set of
semantic annotations of API operations from thréfergnt APls and a prototype
implementation of selected use cases (UC1, UC3i@6) are encouraging. We
observe new means of gathering knowledge from aisalyf both APIs and source
code, which might be useful at different stageapylication/API development.

The approach presented in this paper has the folgplimitations. First, we focus
on detecting if two AP| operations ‘do exactly tlgame thing’ and ‘offer
wider/narrower functionality’. In some cases, hoegwetection of other kinds of
relationships might be useful (e.g., that two APperations ‘offer a shared
functionality’). We plan to investigate those ca$egher, which might result in a
revised set of use cases.

Second, the applicability of some use cases igdinby different programming
abstractions available for different platforms. Batienge is, for instance, to develop
inter-platform domain-specific ontologies. We shattit can be at least problematic
for some domains (for instance, the UNIX file abstions are different from the
Windows file abstraction in many points).

Finally, our proposed approach requires both dgrent of quality domain-
specific ontologies and ontology-based descriptiohsAPI operations. This is a
costly task, which should be justified by profiterh using the approach. Automation
of the ontology/annotation generation process ntigh&n important factor here.

References

[1] Bajracharya, S., J. Ossher, and C. Logesrching API usage examples in code
repositories with sourcerer API seardhroceedings of 2010 ICSE Workshop on
Search-driven Development: Users, Infrastructuom|§ and Evaluation. 2010, Cape
Town, South Africa: ACM. 5-8.

[2] Hummel, O., W. Janjic, and C. Atkinso@pde Conjurer: Pulling Reusable Software out of
Thin Air. IEEE Software, 20085(5): p. 45-52, IEEE.

[3] Stylos, J. and B.A. Myerddica: A Web-Search Tool for Finding APl Componemtd a
ExamplesProceedings of the Visual Languages and HumanrCe&wmputing.

2006: IEEE Computer Society. 195-202.

Use cases for matching semantic annotations ofopBtations 7

[4] Devanbu, P.T., R.J. Brachman, P.G. Selfridge,BuWil. Ballard.LaSSIE: a knowledge-
based software information systemProceedings of the 12th international
conference on software engineerid®90. Nice, France: IEEE.

[5] Eberhart, A. and S. AgarwamartAPI - Associating Ontologies and APIs for Rapi
Application Developmenin Ontologien in der und fur die Softwaretechnik
Workshop anlésslich der Modellierung 20@904. Marburg/Lahn.

[6] Oberle, D., S. Lamparter, S. Grimm, D. Vrande8. Staab, and A. Gangemgwards
ontologies for formalizing modularization and commuwmation in large software
systemsApplied Ontology, 20061(2): p. 163-202.

[7] Kazakov, M.L. and H. Abdulral)n aspects of software integration based on logical
inference Applied Mathematics Bulletin of Russian Academy oie®ce, 20034 p.
71-78.

[8] Li, L. and I. HorrocksA software framework for matchmaking based on semevset
technologylnternational Journal of Electronic Commerce, 2@4): p. 39-60.

[9] Carroll, J., I. Dickinson, and C. Dollidena: Implementing the Semantic Web
Recommendations Proc. of World Wide Web Conferen@904. New York, USA.

