© 2008 IEEE. Personal use of this material is pteali Permission from IEEE must be obtained foodiler uses, in any current ¢
future media, including reprinting/republishingghmnaterial for advertising or promotional purposgeating new collective works|
for resale or redistribution to servers or listsreuse of any copyrighted component of this warkther works.

Ontology-based Use Cases for Design-time and Runtime Composition of
M obile Services

Michat Ré}, Per Hakon Melarfd Jacqueline FlochJarostaw Domaszewitz
! nstitite of Telecommunications, Warsaw University of Technology
2JNTEF ICT, System Devel opment and Security
mroj @tele.pw.edu.pl, per.h.meland@sintef.no,
jacqueline.floch@sintef.no, domaszew@tel e.pw.edu.pl

Abstract

This paper presents application of ontology-based
modelling and reasoning related to the different
phases of the lifecycle of mobile services. Ontology-
based descriptions complement traditional design-time
and runtime models allowing more complex
reasoning. We present use cases for ontologies that
may be applied at design time, deployment time and/or
runtime. Some important characteristics of our
approach are: 1. ontological descriptions define
complex artefacts that are built from simpler ones
defined in an ontology; 2. a single ontology can be
used for specifying various artefacts and for reasoning
on various aspects at different phases of the service
lifecycle; 3. an artefact can be used for various
purposes. This paper provides examples of ontological
descriptions along with use cases, and discusses the
applicability of the approach.

1. Introduction

One of the core challenges of service engineesng i
to find practical ways to model services and servic
features independently of each other, such thaicssr
may be composed into well functioning systems that
satisfy their requirements. Service composition in
general involves discovery, reuse and static
composition at design time as well as dynamic
discovery, deployment and binding at runtime. The
lack of machine-readable semantics currently reguir
human intervention for automated service discovery
and composition, thus hampering ease-of-use are eas
of-composition. Ontology-based modelling tries to
solve this problem by adding significance to the
traditional modelling languages, and thus enabling
more complex reasoning during discovery and
composition.

The SIMS project introducessemantic interfaces
to specify the collaborative behaviour of service
components and the goals that can be achievedgihrou
collaborative behaviour, and to guarantee compiyibi
in static and dynamic component compositions. SIMS
addresses semantics at two levels: 1. UML is used t
specify the semantic interface behaviour of service
components, and the progress that might be achieved
in a collaborative behaviour [1], 2. ontologies ased
to define extra-functional properties of services,
service components and other service entities aatev
for discovery and composition. For example, we use
ontologies to specifycollaboration goals, i.e. the
desirable outcome achieved through a collaborative
behaviour. Even though most service entities have
representations in both UML and ontology universes,
these representations do not overlap but complement
each other. While the detailed behaviour descmgtio
in UML allow us to validate the safety and liveness
properties of service collaborations, the ontolabic
descriptions allow us to reason on other properties
such as service intention and required device
capabilities. Ontological descriptions are also
exploited to provide developers and end-users with
additional information about services. Ontologies
provide added value in that sense. Modelling and
validation using UML are not discussed in this pape
We rather concentrate on the ontological approach b
introducing artefacts we have found useful for
reasoning during service discovery and composition,
and discuss use cases for design- time and runtime.

Unlike the Service Oriented Architecture paradigm
(SOA), where services are normally understood as
capabilities provided by a service provider to evise
consumer, our work considers collaborative services
that entail collaborations between several autonsmo

! Semantic Interfaces for Mobile Services (SIMS),
http://www.ist-sims.org/

=

entities that may behave in a proactive manner and service roles. Services are complex structures
may take initiatives towards each other. This Edzl modelled by composite collaborations (Figure 1).
for telecom services, but also for a large class of
services such as attentive services, context-aware
services, notification services and ambient irdelice.

<

o SEtUP:SetUP. -\ N\
---inviter SELp-Setup inviee-- (0 Y
“receiver X accepter | = ateet]
“rel el o -rel_ee’ ,

< rel_er-=_ 7 <_rel>ef; /

1.1 Contribution and outline

The main contributions of this paper are the o
identification of useful semantic information nedde >~ Xrel_aRelease
beyond behaviour semantics in order to facilitéte t e
discovery and composition of services, and the
definition of associated ontology-based use cases f
design-time and runtime.

The structure of this paper is as follows. We first
introduce the SIMS concepts needed to understand th
ontology-based approach (Section 2). After preagnti
the ontological artefacts and some related usescase
(Sections 3 and 4), we illustrate the approachguain
case study (Section 5). Finally we discuss relateck
(Section 6), before we end with a summary and our
conclusions (Section 7).

Figure 1. Composite collaboration with two roles

Service roles are characterized lsemantic
interfaces and interface dependency graphs that are
used to validate interactions between service rahes
to compose them [2]. A semantic interface represant
partial behaviour of the service role in an intémac
towards another service role. Semantic interfaces a
specified by state machines (Figure 2) with semanti
of message passing allowing validation of safety
properties.

2. Semantic Interfaces for M obile Services:

j sm: Simple_Interface_Role J
approach overview

Simple_State_1

The core research of SIMS is to provide new mean: signal sendin

/Simple_Sig_1

to specify services, to develop well-formed Simple_ 593
components that realize these services and compo: T _ Event that
services with compatibility guarantee. Semantic Simple_State_2 triggers the goal
interfaces combined with an ontology are instruraent)
to a goal driven_develo_pment process, qnd enabl sme.Sig s
automat_e_d service d|scover_y, selection _ and — T’é@
composition mechanisms at runtime. The overview ol Mg‘;al
this technological context is necessary to truly S
understand how we benefit from ontologies. < bansiionGoal =
2.1 Fundamental concepts [(simpte_Stte 3
ep Simple_Sig_4 Finjl_@tate_l
A central concept of SIMS is the principle of a

service collaboration. A service is defined as a
collaboration between distributesdrvice components

and delivers functionality to its environment. Bee
components are software entities that may partake i
multiple services. To ease component design and
validation, we distinguish between the service sole
that a component plays in different services. Im ou
approach we specify services using UML2.0
collaborations [1]. We distinguish between elemgnta
and composite collaborations, the former defines a
simple interaction between the interfaces of two
service roles, the latter a structure of interagtin

Figure 2. The state machine of a semantic interface

Beyond safety properties we express liveness
properties using so-callesgrvice goals. Service goals
describe that something desirable may occur [3]; as
such they do not describe a behaviour, but rather a
abstract concept of the desired behaviour outcdviee.
distinguish betweemole goals that are associated to
events in the behaviour of semantic interfaces or
service roles, andollaboration goals that express
what might be achieved thorough an elementary
collaboration. A service specification should camta

collaboration goal sequence, which specifies the

actions, activities and their attributes. It has ke

dependencies between the goals of the elementaryavailable prior the service design phase.

collaborations that form

collaboration.

the composite service

2.2 The SIMS service lifecycle

A generic lifecycle of a mobile service is shown in
Figure 3.

DESIGN — IMPLEMENT
Soecify the service Implement the service

' components
1
|

v

DEPLOY ———» DISCOVER

Find the service

Make the service ;

available !
1
|
v

INSTALL— RUN
Download and install Play a service role
the service components during service execution

Figure 3. The SIMS service lifecycle

A service designer specifies a service using
collaborations, semantic interfaces and goals. In
addition, the service designer produces ontological
descriptions for the designed entities. Service
components realising the specified behaviour are
developed, unless the service designer is ablintb f

and reuse existing components (upper dotted arrow).

Different parties can implement service components,
provided the service specification is followed.
A service provider deploys service specifications

and components so they are available for discovery.

Services can be discovered through various meads, a
may eventually result in the end user downloading
components to her device. Alternatively, the user
already has a component that is able to play thzete
service role (lower dotted arrow).

This lifecycle benefits from support provided by
ontologies; the next sections focus on this.

3. Describing entities with ontology

In SIMS, an ontology spans two layers: the higker i
called SIMS ontology of telecommunication services
(in short: SIMS ontology) and the lower is a set of so-
called ontology-driven artefacts (ODAs). The SIMS
ontology contains a number of concepts of the
telecommunication domain relating to services,

Ontology-driven artefacts (ODAs) are used to
define SIMS-specific entities, and created using
concepts, relations and properties found in the SIM
ontology. In addition to a “vocabulary,” the ontgio
enables different types of ODAs to be constructed b
the service designer in the service design phase

Both layers are implemented using the Web
Ontology Languages (OWL) [4]. From a technical
point of view, an ODA is an OWL class constructgd b
using classes from the SIMS ontology and tying them
together with relations using so-called class
constructors provided by the underlying ontology
language (OWL1)

3.1 SIM S ontology sample concepts
The SIMS ontology itself is not discussed in this

paper. We rather concentrate on providing a “tasfe”
it by showing a selection of concepts in Figure 4.

Establishment @
DataReceiving @

DataSending
ConnectivityType

“ =
LongRange
ShortRange i _ Connectivity
Text Connectivity /|
Message
Multimedia :
Message !

aIIpaper
InstanMessagingSesssion

Figure 4. SIMS ontology: sample concepts

Bluetooth
MultimediaCall @

The ontology contains a number of concepts (ovals
in the figure). Some concepts are organized in €pic
subconcept hierarchies (linked with solid arrovesy.
the ConnectivityType concept has two subconcepts:
ShortRangeConnectivity and LongRangeConnectivity.

In addition, the ontology can contain individuals
(instances of concepts), shown as rectangles in the
figure Bluetooth is the only individual in the above

2 Some types of ODAs, such as user preferences
ODAs, can be built or generated in later phases.

® The most prominent class constructors in OWL are
existential and universal restrictions.

example; the type of this individual is the
ShortRangeConnectivity concept). Dotted arrows
represent restrictions on properties (which are
unnamed in the figure). Example properties are
refersToCommunication (used to define a specific
entity as referring a specific type of communical}jo
hasParticipant (used to specify what kind of
participants are involved) dnasNetworkConnectivity
(used to specify the network technology involvadhs

as wireless, fixed, etc.).

3.2 Typesof ODAsin SIMS

We apply different kinds of ODAs to formally
express semantic properties of the concepts mesation
above. The following sections present five diffare
kinds of ODAs, one per section, exemplified withca
called Manchester OWL syntax [5], which has a more
concise syntax than “pure” OWL. Other ODA types
exist but not mentioned in this paper.

3.2.1 Service ODA. The Service ODA contains the
general description of what the service is abauts |
specified by providing a general type of the sevic
(e.g. voice communication, a multimedia conference,
etc.) and its attributes (such as number of paditis,
media involved, and types of devices required).

The service ODA can help the end users searching
and subscribing for services based on their atiiut

Establishment
that refersToCommunication some MultimediaCall

and refersToData some
(StructuredData that hasMimeType
value video/avi)

3.23 Device ODA. This ODA describes the
capabilities of devices (such as ability to display
pictures). The ODA contains information about the
type of the device, and its hardware and software
attributes. The type of the device can indicati¢ i a
smart phone, PDA, or PC/laptop. Hardware attributes
capture the display or audio capabilities, memory,
connectivity, etc. while software attributes would
typically indicate if a browser is available, the
multimedia codecs, etc.

Device ODAs can be helpful for the service
designers: when designing a service and its
components, it may be useful to find out what types
devices the service components can run on. Finally,
Service ODA can be taken into account along with th
Device and Component ODAs, in order to look for
components that can realize or partially realize a
specific service (e.g. for a given service typeg can
find components suitable for different classes of
devices).

The following definition describes a simple GSM
mobile phone:

Device

can be also easier to understand the service addedhat isDescribedByDevComponent some

value with such ODA.

The following is an example of a service ODA (this
is a conference with at least 2 participants witteg
or audio involved):

MultimediaCall

that containsStream some VideoStream
and containsStream some AudioStream
and hasParticipant some CommunicationParticipant
and hasParticipant min 2

3.2.2 Goal ODA. Service goals are expressed with
goal ODAs, e.g. role goals are connected to states
the state machines of the semantic interfaces (&igu
2). Goal ODAs represent what is to be achieved (e.g
“establishment”, “detachment”, ‘“initiation”) and
additional attributes (e.g., specifying what shoblg
established).

Goal ODAs can be used to find out if two semantic
interfaces have goals that are semantically close,
thus to filter what semantic interfaces may bedatkd
for interaction. The following goal example deseska
multimedia call with a video/avi mime type:

(HardwarePlatform
that containElements some (Keyboard
that hasTextInputCapable value "true"~~boolean
) and containElements some (Display
that hasColourCapable value "false"~”~boolean)
and hasVoicelnputCapable value "true"~”boolea
n)
and isDescribedByDevComponent some (SoftwarePla
tform
that acceptMime value text/plain)
and isDescribedByDevComponent some (NetworkCh
aracteristics
that supportNetworkBearers value GSM_CSD_MSI
SDN)

3.2.4 Component ODA. The component ODA gives
an abstract description of the component, desayibin
the how the component participates in the senitse,
features and its limitations.

Since the component ODA is built using the same
ontology as the service ODA, it is possible to find
services (Service ODAs) which can be accessed
through a given component, and conversely it is
possible to find what components (Component ODAS)
can realize a specific service (described by ai&erv

ODA). Also, with this ODA, one can check what
devices will handle a specified component, by
comparing Component ODAs with Device ODAs. It is
also possible to provide the user with information

(2) finding components which realize a specific
service, (3) finding compatible components. However
the latter is only discussed for RT. In additiorD®-

specific use case is described (4) checking if the

about what goals can be achieved by a component andsequence of service goals is correct. Other usesel
to compare new components with components already cases, but not described Herare: (5) subscribing for

installed by the user thus allowing for serviceerol
learning.

The following component ODA example describes
a component to be installed on a mobile phone,
providing instant messaging exchange functionality
over Bluetooth. It requires a proper device class t
work properly (a Bluetooth-enabled phone), with the
possibility of achieving a specific goal (message
sending/receiving) and implements the functionadity
the instant messaging service). Its OWL definiias
follows:

Component
that requiresDevice some (UserTerminal
that isDescribedBy some (HardwarePlatform
that containElements some (Bluetooth
that supportBluetoothProfiles
value GenericObjectExchangeBluetoothProfile))
and isDescribedBy some (SoftwarePlatform
that acceptMime value text/plain))
and achievesGoal some (MessageSending
or MessageReceiving)
and canRealizeService some InstantMessaging

3.2.5 User preferences ODA. User preferences ODA
describes the user wishes about the service prdyvide
expressed in terms of selected properties of thécee

services with specific features, (6) finding noraddu
semantic interfaces for subtype validation, (7)
checking if the device can be used in a servicg, (8
complying with user preferences in service executio
(9) checking consistency between elementary
collaboration goals, (10) checking consistency leetw
devices and components.

4.1 Find services with specific features

At design time, a service designer wants to craate
service, but before that, she should check if sach
service already exists or there might be sometttiag
she could build upon (this service could be created
others within her organisation or by outsiders who
have publicly released their Service ODAs). She
expresses the relevant service features by building
simple service ODA covering her needs and a search
returns a set of services (if any) that will bejsabfor
closer inspection. The search itself can be made on
various levels of abstraction (more general / more
specific) by exploiting the concept relations ireth
ontology.

At runtime, a user wishes to achieve some
functionality and is looking for a service that can

or service goals. The user preferences ODA can be support this. He can specify the service featuregsh

matched with other types of ODA, e.g., the goal or
service ODAs, and be taken into consideration leefor
the user accesses the service.

interested in, and a service repository presents
available service candidates. He can then broveseth
services and download components for the most

The following example expresses that a user prefers promising one.

free instant messaging services:

UserPreferences
that hasPreferenceGoal some (Establishment
that refersToCommunication some

(FreeService and InstantMessaging))

4. Ontology-related use cases

This section describes what we consider to be the

most promising use cases for ODAs during desige tim
creation (DT) and run-time discovery of mobile
services (RT). At DT the main stakeholder is the
service designer, while at RT the stakeholdersttzee
service provider and the end user of the service.

Three of the following use cases are used in both

DT and RT: (1) finding services with specific feas),

An example is as follows. Assume that there is a
service as specified in Section 3.2.1 that is @efim
some DT/RT repository. A user/developer searches fo
services able to carry video which are not limibgda
number of participants. She builds an ODA which can
look as follows:

Communication
that containsStream some VideoStream

After the query is done, the service specified in
Section 3.2.1 is returned as a match. In that case,
information about the limitation on the number of
participants will also be given to the user/develop

4 See the publicly available reports hitp://ist-
sims.orgho have these explained.

4.2 Find components realizing a specific
service 4.4 Find compatible components

By comparing Component ODAs and Service The Component ODAs provide a way to limit the
ODAs it is possible to find all services relatedao search space for compatible components. We say that
given component and vice versa. At design time, the one component isompatible to another component if
service designer can find the components thatptlagt the former can be put in place of the latter withou
service roles specified for the service or compatib loosing (partial) functionality. It means that tlater
roles, and thus can participate to the service. At can provide a wider functionality than the formert b
runtime, components can be found, and consequentlynever more limited.
downloaded, based on desirable service features. A We search for compatible components if we want
user can also identify that components installediisn (1) to upgrade an existing to a newer version (&g.
device can be used in services they were not @ligin ~~ more stable one), (2) to extend the existing corapbn
downloaded for. with new features.

For example, the service designer wants to know if ~ The example for this use case is as follows:
there are any components implementing the instant Assume that a user has a Bluetooth instant messenge
messaging service, she makes a very simple artefactcomponent installed as described in Section 3Th4.

consisting of one concept only: user likes the component very much due to its nice
features and would like to have a similar component
InstantMessaging (in terms of functionality), which can run on a efd

range of network than Bluetooth. Then he makes a
Assuming that the repository of components query: “find all components compatible to my cutren
contains the Component ODA as defined in Section component.” A list of detected components is

3.2.4, this component will be returned to the desig displayed to the user. One of them supports Blubtoo

and other kinds of connectivity (such as GPRS).nThe
4.3 Check if the sequence of goals is in the the user decides to download and install the
right order component.

Notice that the compatibility between components

This use case allows a service designer to check ofcannot be ensured only by making ontology-based

two or more goals used in a goal sequence are giyope comparisons. Theoretically, incompatible components
ordered. By defining sequence rule relations in the can provide the very same functionality (and hebee,

telecom relation, it is possible to detect that dneer described with identical ODAs). The full component
of two or more elementary collaboration goals ase n compatibility can be checked using other UML-based
consistent. validation techniques developed in SIMS. ODA-based

Consider the following example; a service architect matching is useful for filtering out the unsuitable
creates a conference service, where, among others, components because the validation itself is time-

achievement of two goals is desirable: consuming. In these terms, the two technologiesdas
« Invitation to a multimedia conference (goal A) on ontology- and UML-reasoning complement each
« Establishment of a multimedia conference (d@®jal other very well.

Assume that both goals are defined for elementary
collaborations and their semantics defined by ODAs. 5. Case study: A virtual meeting place
Goal B may be defined as specified in Section 3.2.2
and goal A may be defined in a similar way. If the The following case study describes the creation and
developer specifies a goal sequence where goal A isuse of a single but compound service where we take
achieved before goal B, reasoning on the ODAs shoul advantage of the use cases described in the pgeviou
make it possible to detect a wrong ordering andrinf section. The service itself is not revolutionarguycan
the developer about this sequence inconsistency.find similar functionality already offered differen
Knowledge thatestablishment of a conference takes mobile device manufacturers and mobile operatars, b
place beforenvitation of participants is expressed in notice how the SIMS technology solves design time
the SIMS ontology. and run-time issues.

This use case should benefit service designers by In a virtual meeting place you would like people
assisting them during service creation and to assur sharing a common interest or a common task (e.g. a
that incorrect services will not be created. company or a charitable institution) to interacthwi

each other seamlessly
boundaries and across multiple means of
communication. Actors of the meeting place service
are (among others)participants (everyone who

participates in the service) andcantroller (the one

who can create eonference within the meeting place,

invite others and other things related to the
conference). Figure 5 shows the composite
collaboration diagram of how such a service might
look like. The hexagons are service roles (playgd b

service components), while the ovals are elementary

collaborations connecting two semantic interfaces.

At design time the service designer looks for samil
services as described by the use case in section 4.
Ontological concepts related tmnference would be
natural search criteria. A set of matching existing

regardless of geographic4.4, these components could be found compatible as

long as the voice data is the only thing transterre

The virtual meeting place is a service that hasibee
realized as a demo of the SIMS technology using bot
existing and new components for mobile devices,
taking advantage of centralized middleware for run-
time reasoning.

6. Related work

Application of ontologies in SIMS is an original
merge of use cases at design-time and runtime. When
we separate the use cases into concrete phasesnwe ¢
find similarities with existing approaches.

At runtime, similar approaches have been
developed in the area of Semantic Web Services

services can then be used to find components she ca (Sws). Two most prominent technologies are Web

reuse in her new meeting place service, as deschjpe
the use case in section 4.2. Let's say a compatdat
to play the conference role is found and reusee& Th
conference role will have a set of semantic intfa

Service Modeling Ontology (WSMO) [6] and OWL-S
[7]. Both WSMO and OWL-S use ontologies to
describe functionality ofservices. Common to the
SIMS and SWS approaches, a domain ontology is used

which can be used to create the required dualsto puild artefact to represent specific entitiesy.(e

(corresponding interfaces) for the other roles thidlt
have to be played by newly implemented components.
The use case in section 4.3 helps the service rrsig
to define the right goal sequences (show with asriow
Figure 5).

S_setup \

\

Controller '} (" MeetingPlace

7 L-==-<

\

Figure 5. The design of a virtual meeting place

Now, let's jump to runtime. Three users are
participating within the same meeting place, andldo
now like to setup a common voice conference. Two of

them have components realizing the voice
communication t@lk), while the third one has a
component that supports voice and video

communication. As described in the use case inosect

goals, preconditions, assumptions in WSMO, service
type, effects in OWL-S). The same vocabulary is used
for building the “advertisements” (descriptionsvdiat

is provided) and the “requests” (descriptions oatils
desired) to be matched at runtime. The artefacts
defined in SWS are different from those in SIMSisTh
results mainly from different understanding and
definition for services. SWS addressagb services
that may be defined as “a computational entity Wlisc
able to achieve users’ goals by invocation” [6],ileh
SIMS address collaborative services. Another
difference is that service providers offering Web
services are responsible for their creation and
management, and services that are discovered are
ready to be consumed. In SIMS, a service reswts fr

a collaboration between components possibly
developed by different stakeholders. The concept of
service discovery is extended and discovery might
require downloading and instantiation of a service
components.

Benefits from applying ontologies at design time
have already been presented in the literature.dberi
and Wouters [8] point that using precise terminglog
(from an ontology) to annotate software entities
addresses the problem of language ambiguity. Ehis i
of interest in the case of complex services andelar
service systems, where component development
usually involves different developers. Since th®ISI
ontology-based use cases cover most of the enpigst
the services are built of, annotation can be widely
applied. Happel and others [9] present how software

artefacts (especially in software libraries) carebsily Specification," presented at 8th International @oerfice of
reused if properly annotated with ontologies. The Model Driven Engineering Languages and Systems5200
authors exploit ontology-based queries, which, when

ontologies are involved, are a very flexible metms [82(]e ;]\;ic'z?;‘“gggoi- ,?rizé;ﬁegng%sitgggéAﬁ%?:ﬁ;
acquire relevant information. In a .5|m|lar way the Systems Design: 125] International SDL Forum, Grads
SIMS use cases also support reusing (e.g., services Norway, 2005

components, elementary collaborations) and querying ' '

(e.g., available services). Using ontologies tasass [3] B. Alpern and F. Schneider, "Recognizing satstyl

software engineering is addressed by the W3C jieness," Comell University, Computer Science axement
initiative, “Ontology Driven Architectures and TR86-727, 1986.

Potential Uses of the Semantic Web in Systems and
Software Engineering’ Several uses described in the [4] S. Bechhofer, F. van Harmelen, J. Hendler,drricks,
document (such as “Software Lifecycle Support”) are D. L. McGuinness, P. F. Patel-Schneider, and LSt&in,
covered by the SIMS approach. "OWL Web Ontology Language Reference," vol. 2005,
2005.

7. Summary and conclusions [5] M. Horridge, N. Drummond, J. Goodwin, A. Recté.
. . Stevens, and H. Wang, "The Manchester OWL Syntax,"

This paper shows a novel way of exploiting presented at OWL Experiences and Directions Worksho
ontologies, which can be summarized by the foll@vin - (OWLED'06) at the ISWC'06, Athens, Georgia, USAQG0D
points: (1) ontology use in many phases of theiserv
lifecycle, (2) the use of so-called ontology-driven [6] D. Roman, U. Keller, H. Lausen, J. d. Bruijn, [Rira, M.
artefacts, (3) ontology techniques combined witeot Stollberg, A. Polleres, C. Feier, C. Bussler, and-énsel,
techniques within a single framework. In contrast t "Web Service Modeling OntologyApplied Ontology, vol.
approaches where ontologies are used for a singlel, pp. 77-106, 2005.
purpose such as to discover a web service or to _ N _
facilitate communication between designers and [7] OWL Services Coalition, "OWL-S: Semantic Markigy
developers, in SIMS a single ontology finds its ise '/eP Services, version 1.0,” 2004.
tmhgn)c;npt)gl?)sg?f dﬁcgnfoarrtglfzec;gn:hgtjrg:)esisr.eastzgzﬂc?lI [8] D. Deridder and B. Wogters,_"The use of ontchéasgas a

. backbone for software engineering tooRrbceedings of the

service design pha§e are exploited at design-time, o rth Australian Knowledge Acquisition Workshop
deployment and runtime phases. AKAWO9, pp. 187-200, 1999.

Selected use cases are currently being validated by
the SIMS demo applications. The authors will examin [9] H.-J. Happel and S. Seedorf, "Applications aft@ogies
which use cases are most useful for different kioids in Software Engineering," presented at 2nd Intéonat

users (service designers, component developers, andNorkshop on Semantic Web Enabled Software Engingeri
end users of services). (SWESE 2006), Athens, GA, USA, 2006.

8. Acknowledgements

Our work is funded by the European Community
under the Sixth Framework Programme, contract FP6-
IST-027610 SIMS. The contribution of Cyril Carrez t
the specification of the virtual meeting place smis
gratefully acknowledged. We would also like to tkan
Richard Sanders for comments and fruitful advice
when writing this paper.

9. References

[1] R. Sanders, H. Castejon, F. Kraemer, and RkBree
"Using UML 2.0 Collaborations for Compositional Siee

® http://www.w3.0rg/2001/sw/BestPractices/SE/ODA/

