
POLITECHNIKA WARSZAWSKA Rok akademicki
WYDZIAŁ ELEKTRONIKI 2001/2002
I TECHNIK INFORMACYJNYCH
INSTYTUT TELEKOMUNIKACJI

PRACA DYPLOMOWA

MAGISTERSKA

Michał Konrad Rój

Wprowadzenie do standardu Parlay/OSA

Praca wykonana pod kierunkiem:

dr inż. Jarosława Domaszewicza

........................

Ocena pracy

................................

Podpis przewodniczącego komisji

Warszawa 2002

Wprowadzenie do standardu Parlay/OSA

Niniejsza praca w zwarty i przystępny sposób opisuje zestaw interfejsów programistycznych
(API) Parlay/OSA. API to, pozwalające na tworzenie usług telekomunikacyjnych niezależnym
usługodawcom, zawiera szereg elementów takich jak możliwości tworzenia połączeń w sieci,
komunikację z użytkownikami, usługi lokalizacyjne, nalicznie kosztów i inne. Interfejs Par-
lay/OSA jest zdefiniowany w specyfikacjach ETSI oraz 3GPP.

Pierwsza część pracy jest wprowadzeniem do standardu oraz zastosowanego modelu, a także
opisem architektury systemu. W części drugiej opisana jest funkcjonalność wszystkich obec-
nych w systemie modułów. W części trzeciej pracy pokazano prostą usługę telekomunikacyjną
stworzoną przy użyciu Parlay/OSA API. Do zaimplementowania usługi wykorzystano język
Java, zaś testy przeprowadzono na symulatorze Parlay/OSA firmy Ericsson.

Praca ta ma w dużym stopniu charakter opisowy. Nie omówiono tu przykładów usług, które
można zrealizować za pomocą Parlay/OSA. Sygnalizowana są tu jednak ogromne możliwości
integracji sieci telekomunikacyjnych i świata technik informacyjnych (IT), które otwierają nowe
możliwości dystrybuowania produktów, usług i informacji.

Życiorys

Urodziłem się 19 lutego 1977 roku w Puławach. Swoją edukację rozpocząłem w roku 1984 w
Szkole Podstawowej im. Adama Mickiewicza w Puławach. W roku 1992 rozpocząłem naukę w
Liceum Ogólnokształcącym im. Adama Czartoryskiego w Puławach. Po maturze, w roku 1996
zdałem pomyślnie egzaminy i zostałem przyjęty na wydział Elektroniki i Technik Informa-
cyjnych Politechniki Warszawskiej. Po czterech latach studiów, w roku 2000, złożyłem pracę
inżynierską pt. „Implementation of H.323 Terminal” (poprzedzoną publikacją na Krajowym
Sympozjum Telekomunikacyjnym w Bydgoszczy). Po obronie pracy rozpocząłem studia mag-
isterskie, skupiając się na tzw. „otwartych API”. Teraz, po dwóch kolejnych latach studiów,
składam pracę dyplomową magisterską pt. „Introduction to Parlay/OSA APIs” (poprzedzoną,
podobnie jak praca inżynierska, artykułem na bydgoskim KST).

WARSAW UNIVERSITY OF TECHNOLOGY Academic year
THE FACULTY OF ELECTRONICS 2001/2002
AND INFORMATION TECHNOLOGY
INSTITUTE OF TELECOMMUNICATIONS

MASTER OF SCIENCE

THESIS

Michał Konrad Rój

An Introduction to Parlay/OSA APIs

Scientific Advisor:

Jarosław Domaszewicz, PhD

Warsaw 2002

An Introduction to Parlay/OSA APIs

The goal of this work is to introduce the reader to Parlay/OSA APIs in concise way. The
Parlay/OSA APIs is a set of programming interfaces that allow independent service vendors
creating telecommunication services. The APIs include (among others): call control part, user
interaction part, localization, charging and accounting features. Parlay/OSA interfaces are ETSI
and 3GPP standards.

The first part of the work is the introduction to the Parlay/OSA information model. Next,
whole the APIs’ functionality is discussed. Finally, a simple telecommunications service is
described. The service has been implemented in Java and tested with Ericsson OSA/Parlay
Simulator.

Contents

1 Introduction 1
1.1 Current Trends in Telecommunications Services 1
1.2 New Approach to Service Creation . 2
1.3 Parlay/OSA information model . 4

1.3.1 Functional model . 4
1.3.2 Business model . 5

1.4 Parlay/OSA – History, Presence and Future 6
1.5 About this Work . 7

2 Supporting technologies 8
2.1 Object-Orientation . 8
2.2 UML . 11
2.3 CORBA . 13
2.4 Java . 14

3 The Architecture of Parlay/OSA APIs 16
3.1 API-based Protocol . 16
3.2 Building Blocks . 17
3.3 Structure of a typical SCF . 18
3.4 Fault tolerance and Scalability . 19

4 APIs’ functionality, SCF by SCF 22
4.1 Framework . 24

4.1.1 Framework Access Session API . 26
4.1.2 Framework-to-Service API . 29
4.1.3 Framework-to-Enterprise API . 33
4.1.4 Framework-to-Application API . 36

4.2 Call Control SCF . 40
4.2.1 GCCS . 41
4.2.2 MPCCS . 44
4.2.3 MMCCS . 47
4.2.4 CCCS . 50

4.3 User Interaction SCF . 54
4.4 Mobility SCF . 57

4.4.1 User Location Interfaces . 60
4.4.2 User Location Camel Interfaces . 60
4.4.3 User Location Emergency Interfaces 60

i

CONTENTS ii

4.4.4 User Status Interfaces . 60
4.5 Terminal Capabilities SCF . 61
4.6 Data Session Control SCF . 64
4.7 Generic Messaging SCF . 67
4.8 Connectivity Manager SCF . 70
4.9 Account Management SCF . 73
4.10 Charging SCF . 76

5 Service Design in Parlay/OSA 79
5.1 Introduction . 79
5.2 Testing platform . 79
5.3 Application . 80

6 Conclusions 89

A Acronyms 90

B Glossary 92

C Source code 94
C.1 MyAppEvent.java . 94
C.2 MyAppEventQueue.java . 94
C.3 MyAppInit.java . 95
C.4 MyAppLogic.java . 97
C.5 AppCall.java . 100
C.6 AppCallControlManager.java . 102

List of Figures

1.1 Service Logic / Infrastructure separation . 2
1.2 Possible locations of applications in Parlay/OSA 3
1.3 The Parlay/OSA functional entities . 4
1.4 The business entities defined in Parlay/OSA 5

2.1 A class in UML . 12
2.2 Inheritance in UML . 12
2.3 Sequence diagram in UML . 12
2.4 Calling local and remote operation in CORBA environment 13
2.5 IDL source – definition of modules, data structures and an interface 15

3.1 Application and gateway: how Parlay/OSA APIs are used 16
3.2 How the gateway is built: the framework and SCFs 17
3.3 Communication between objects in Parlay/OSA APIs 18
3.4 A typical SCF: service manager and other objects 19
3.5 Setting and using supplementary callbacks . 20
3.6 Division of the application . 21

4.1 Central role of the framework in Parlay/OSA architecture. 24
4.2 Framework event chain . 24
4.3 Service profiles - subscription assignment groups (SAGs) relation 33
4.4 Dependence among the call and the call service manager interfaces. 40
4.5 The GCCS’ call model . 41
4.6 The MPCCS’ call model . 44
4.7 The MMCCS’ call model . 47
4.8 The CCCS’ call model . 50
4.9 The Generic Messaging call model . 67

5.1 Application logic – pseudocode . 81
5.2 Enabling call notification . 82
5.3 The IDL definition of the TpCallEventCriteria structure 82
5.4 Java source code for the MyAppLogic.createOrigEventCriteria() method 84
5.5 Java source code for MyAppLogic.monitorNumbers() – registering events . . . 84
5.6 Event notification diagram . 85
5.7 Java source code for the AppCall.callEventNotify() method. 86
5.8 Java source code for the application’s logic main loop (in MyAppLogic) 86

iii

LIST OF FIGURES iv

5.9 Java source code for the MyAppLogic.translateModulo10() method 87
5.10 Java source code for the MyAppLogic.doRouteReq() method – call routing . . 87
5.11 Java source code for MyAppLogic.doDessignCall() – deassigning from the call 88

List of Tables

1.1 Parlay/OSA specifications family . 7

4.1 Service capability features (SCFs), as defined in Parlay/OSA 23
4.2 Framework Access Session API application’s primitives 27
4.3 Framework-to-service API SCF provider’s primitives 30
4.4 Framework-to-service API framework’s primitives 31
4.5 Framework-to-enterprise API enterprise operator’s primitives 34
4.6 Framework-to-application API application’s primitives 37
4.7 Framework-to-application API gateway’s primitives 38
4.8 Generic Call Control SCF’s API primitives – called by application 42
4.9 Generic Call Control SCF’s API primitives - called by gateway 43
4.10 New MPCCS SCF’s API application’s primitives over GCCS primitives 45
4.11 New MMCCS SCF’s API application’s primitives over MPCCS primitives . . 48
4.12 New MMCCS SCF’s API gateway’s primitives over MPCCS primitives 48
4.13 New CCCS SCF’s API application’s primitives over MMCCS primitives 51
4.14 New CCCS SCF’s API gateway’s primitives over MMCCS primitives 52
4.15 User Interaction API application’s primitives 55
4.16 User Interaction API gateway’s primitives . 55
4.17 Mobility SCF’s API application’s primitives 58
4.18 Mobility SCF’s API gateway’s primitives . 59
4.19 Terminal Capabilities SCF’s API application’s primitives 62
4.20 Data Session Control SCF’s API application’s primitives 65
4.21 Data Session Control SCF’s API gateway’s primitives 65
4.22 Generic Messaging SCF’s API application’s primitives 68
4.23 Generic Messaging SCF’s API gateway’s primitives 68
4.24 Connectivity Manager SCF’s API primitives 71
4.25 Account Management SCF’s API application’s primitives 74
4.26 Account Management SCF’s API gateway’s primitives 74
4.27 Charging SCF’s API application’s primitives 77

v

Chapter 1

Introduction

1.1 Current Trends in Telecommunications Services

Today’s telecommunications industry has become one of the fastest growing ones. This devel-
opment is mainly due to introducing new, revolutionary services. Data transmission, mobile
telephony and e-everything caused a great impact on people’s ways of communication.

Recently, the meaning of the term “telecommunications service” has widened. The tra-
ditional, speech telephony services (fixed and mobile) constitute a diminishing piece of the
telecommunications cake. The new important actors include: SMS services, WAP, user inter-
action (e.g. virtual banking, voting), micro payment, and location services. People are more
willing to use their devices (e.g. mobile phones) to deal with new tasks. Furthermore, they
demand for new services.

Additionally, there had been some changes in the whole organization of the telecom world.
Started with the breakup of AT&T in the United States, the changes brought about the compet-
itive market. New enterprises appear. They do not always own their own infrastructure (which
is already built), but develop their new ways to the existing one.

Traditionally, the telecommunications world has been quite hermetic. New services are de-
ployed inside telecom domains by a limited number of telecom engineers. Usually, the solutions
are not portable and are developed using highly specialized tools. This approach has two major
drawbacks:

• Mass services Only those services that will be used (and paid for) by a great number of
consumers are deployed. Otherwise they are not worth investing in. As such, the services
are usually quite simple. No niches exist.

• Slow deployment Infrastructure-owning telecom operators are usually huge companies,
where any idea requires taking decisions on many levels of management. It takes time.

Until quite recently, there was no simple way to allow independent value added service
providers (VASPs), sometimes referred to as independent service providers (ISPs), to offer
their services directly through the telecommunications network. It happened occasionally, but
the VASP had to integrate its system with the telecom’s internal systems (e.g. with service

1

CHAPTER 1. INTRODUCTION 2

control points in case of intelligent network). This negatively affected VASP’s flexibility in
creating new services.

1.2 New Approach to Service Creation

So far, many actions have been undertaken to help the telecommunications world to be more
dynamic and flexible. It quickly became obvious that it was not possible without “opening of the
network”, i.e. allowing entities outside the telecommunications operator’s domain controlling
the operator’s resources. Naturally, to some limited and manageable degree.

The idea described here is the “service logic” located the outside telecom domains. The real
service is then based in separate system and (somehow) uses the telecom’s infrastructure. This
is depicted in Fig. 1.1.

VASP

VASP

VASP

Gateway

Infrastructure

End Users

Operator’s domain

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���

���
���
���

Fig. 1.1: Service Logic / Infrastructure separation

Value added service providers reside at the top part of the figure. They offer their specialized
services to telecommunications network users (the bottom part of the figure). The telecom
operator is now employed as a kind of broker. To use the operator’s infrastructure, VASPs use a
certain set of basic features. These features show the VASPs a model, which represents some of
telecommunications network functional parts. For example, such a feature can give the VASP
opportunity to interact with users willing get access to VASP’s databases or localize the user (to
find the nearest office, bank, shop, etc.).

CHAPTER 1. INTRODUCTION 3

The benefits are evident: on one hand, VASPs can offer their services in a new medium, on
the other hand, the telecom operator can increase its income from the usage of its infrastructure.
Moreover, the services VASPs offer may be too costly or even impossible for the operator to
deploy. This seems to be an everyone-wins game. Nevertheless, the major drawback may be
the security of the operator’s infrastructure. This will be discussed later.

The solution described here, called Parlay/OSA APIs, is now practically the only mature
and already-being-deployed standard. The standard, which is also widely supported by major
telecommunications players. Service logic in this architecture is located here in so-called client
application or simply application. The application communicates with the telecom operator by
means of a special protocol, which is actually a strictly defined distributed application program-
ming interface (API). This API allows the telecom operator to give some restricted access to
its infrastructure for authorized applications. Additionally, the API provides a special model of
the telecommunications processes, which hides many complex aspects of telecommunications
systems architecture. On top of that, the model is portable, i.e. applications can cooperate with
various telecommunications networks (e.g. fixed, mobile, 2G, 3G, etc.).

Despite the API described here was mainly developed to “open up” telecom networks, it
can be used as well inside the telecom domain. Fig. 1.2 a) and b) compare the two cases.

Gateway

Telecom
Domain

a) b)

API

Application

API

Application

Gateway

API

Application
Telecom
Domain

VASP VASP

Application Application

APIAPI

Fig. 1.2: Possible locations of applications in Parlay/OSA

Using a high level programming interface may be much simpler than using lower-level pro-
tocols/APIs to create telecommunications services (although they are more powerful). Obvi-
ously, services deployed in “vertical” manner, that is, when the infrastructure is altered in many
levels/layers, could be, owing to multiple optimizations, very efficient. But it would be also ex-
tremely slow, and services would be difficult to extend [1]. Besides, the hardware manufacturers
have already started to produce gateways which may be controlled by the use of Parlay/OSA
APIs. Therefore, a single telecom operator does not have to develop its own solutions. In addi-
tion, the first Software Development Kits (SDKs) are being introduced (e.g. Appium GBox [2])
as well as Parlay/OSA gateways (e.g. Ericsson Jambala [3]) and network simulators (e.g. Er-
icsson OSA/Parlay simulator [4]). It can make development of the services simpler and more
robust, even inside telecom domains.

CHAPTER 1. INTRODUCTION 4

1.3 Parlay/OSA information model

This section describes the the Parlay/OSA information model in both functional and business
layers.

1.3.1 Functional model

The information model in Parlay/OSA consists of four types of actors, which are usually re-
ferred as Parlay/OSA entities. All entities are shown in Fig. 1.3.

Subscribes functionality
Authorizes applications

Gets access

Uses SCFs

Enterprise Operator

Client Application Framework

Service Capability Feature Service Capability

Fig. 1.3: The Parlay/OSA functional entities

Their functionality is as follows:

• Service Capability Feature (SCF) This entity is responsible for supplying a certain part
of the network functionality. The supplied functionality, or a service capability, is a
narrow, separated piece of network capabilities, e.g. a user interaction functionality or a
call control functionality.

• Framework This is the “heart” of Parlay/OSA APIs. It collects one or more SCFs and
presents them to other entities. From the other side, the framework is a place where
enterprise operators subscribe network functionality and client applications get access to
SCFs.

• Enterprise operator This entity is responsible for subscribing some network functional-
ity for client applications, and requesting an appropriate quality of service. An enterprise
operator does not use the SCFs itself – client applications are entities that use SCF on
behalf of enterprise operators.

• Client Application This is the entity which uses SCFs and makes use of them to create
new value-added services.

CHAPTER 1. INTRODUCTION 5

1.3.2 Business model

Fig. 1.4 shows one possible business model used in Parlay/OSA. An ordinary font is used for
terms denoting business entities, while the Parlay/OSA functional equivalents are written in
italics.

(Enterprise Operator)
Service Subscriber

Service Consumer

Authorizes applications

Retailer
(Framework)

Network Resources
(Service Capability)

Application
Developer

Uses SCF

Subscribes services

Gets access

(Client Application Provider)

Provides

Service Supplier
(Service Capability Feature Provider)

Fig. 1.4: The business entities defined in Parlay/OSA

Each entity in the figure is a separate business but in some cases several entities may be part
of a single business (e.g. service supplier and retailer). Specifically, all entities may be part of
the same carrier. In such case a service subscriber entity may not be needed at all.

Notice that in this context the term service means “service capability feature” (SCF), i.e.
a piece of functionality provided by service suppliers. This convention is widely used in all
Parlay/OSA specifications. However, in this work, which is of a broader subject, the term
service is used in meaning of “value added service” i.e. the result of client applications’ work.
To avoid ambiguity, apart from this section, the term service will not be used in service supplier
meaning, and the acronym “SCF” will be used instead.

Business entities are described as follows:

• Service Supplier Provides basic telecommunications services (goods) to service con-
sumers. Typically, this will be a network operator.

• Retailer Distributes the services among service consumers in accordance with service
suppliers, service subscribers and its own policies. This will be run by a network operator
or a recognized institution.

• Service Subscriber Subscribes services to (somehow related to it) service consumers.
Typically, this is a VASP, it may be for instance a company, bank or an institution.

• Service Consumer VASP; uses (telecommunications basic) services. It may be a service
subscriber’s affiliate or a related (e.g. outsourced) company; contains a business logic.

• Application Developer Provides IT solutions to service consumers.

CHAPTER 1. INTRODUCTION 6

1.4 Parlay/OSA – History, Presence and Future

The Parlay Group was formed in March 1998 by five companies (BT, Microsoft, Nortel Net-
works, Siemens, and Ulticom)[5] planning to create an interface, which could give secure ac-
cess to internal telecom operator’s space. Since the idea of opening the telecommunications
networks had been present quite a long time before the Parlay initiative appeared1, the working
group could make use of existing concepts, and the API version 1.0 (Parlay API phase one) was
ready in December 1998. It included generic call control (GCC), messaging and generic user
interaction interface sets. As it was still a very early version, two more releases of this phase
appeared (1.1 and 1.2). Since Parlay 1.2, published in September 1999, was the most mature
release, all first Parlay implementations (like Eurescom P909 [7]) were based on this version.
Meanwhile, six more companies (AT&T, Cegetel, Cisco, Ericsson, IBM, and Lucent) joined the
Parlay Group.

Parlay Phase 2, released in 2000, widened the API’s functionality: Parlay’s call control was
enhanced by multi-party, multimedia, and conference features and the mobility functionality
was added. January 2001 brought version 2.1 of the API, now the most common release, which
is the base for many contemporary Parlay-compatible products.

In the same time, ETSI and 3GPP started a joint initiative the define an open API for the
3rd generation networks (the idea was roughly the same as the Parlay’s). The APIs were called
Open System Architecture (OSA)2. It briefly became clear that Parlay API could be adapted to
fulfill the OSA’s goals. OSA APIs were based on Parlay Phase 2 with some improvements and
additional interfaces.

Fortunately, the Parlay Group, 3GPP, and ETSI met the agreement, and working together
under the name of Joint API Group, they released the OSA version 1, which is known as the
Parlay 3.0 APIs (phase 3). That is why the interfaces described in this work are called Par-
lay/OSA APIs. As for today (10 Sept. 2002) the Parlay 3.1 API is ready, but accessible only for
the Parlay Group members. According to the Parlay Group’s strategy (discussed in presentation
“View of the future” [8]) this one is going to include UML–XML mapping (note below – Parlay
X). Now, the Parlay Group consists of over 50 member companies and Parlay/OSA APIs appear
to be the only significant standard in this area.

Parlay Phase 4 is expected at the end of 2002. This phase is going to be backward compatible
with phase 3 specification (until now, the APIs are still being changed). Parlay 4 is also expected
to include mapping to popular telecommunications protocols (what it still lacks).

There are also works on a so-called Parlay X ([9, 10]), which is the XML version of the
Parlay APIs. These new APIs could be easily integrated with web services and the Internet,
and are being designed to be much more simple for programmers. Parlay X will probably open
telecommunications networks to the IT industry event broader than “raw” Parlay/OSA APIs.

The Parlay Group, ETSI and 3GPP specification versions are compared in Fig. 1.1.
The specifications are available from: Parlay (www.parlay.org), ETSI (www.etsi.org),

3GPP (www.3gpp.org). 3GPP specification is more simple than the other two: it does not
include multimedia and conference functionality (from call control), nor generic messaging,
nor connectivity management. Specification names: ETSI (ES 201 919), 3GPP (TS 29.198). In

1For example Telecommunications Information Networking Architecture (TINA) [6].
2Now, the OSA acronym is translated into Open System Access

CHAPTER 1. INTRODUCTION 7

Tab. 1.1: Parlay/OSA specifications family

Date Parlay ETSI 3GPP
1998/1999 v1.0,v1.1 - -
Sept 1999 v1.2 - -
2000 v2.0 - -
2000/2001 v2.1 v0.1 v3.x (Rel. 99)
2001 v3.0 v1.0 v4.2 (Rel. 4)
2002 v3.1 v1.1 v4.3 (Rel. 4)

addition, OSA includes protocol mappings: ETSI (TR 101 917), 3GPP (29.998).

1.5 About this Work

This work was designed to present Parlay/OSA APIs in a concise and precise manner, and to
save the reader hours of digging through the Parlay Group / ETSI standard documents. Compar-
ing to them, this work is less formal but claims to be more easy-readable. On the other hand, this
is complex enough to show the functionality of any single service capability feature provided
by the API and, additionally, show the general architecture and procedures used in Parlay/OSA
standards. In the author’s view, it fills the gap between overall journal articles (which, still, were
the great source of the information for the author) and the APIs definition.

Chapter 2, introduces the reader to some supporting technologies that are used by the Par-
lay/OSA standards (e.g. UML, CORBA), and those ones that seem to be essential in applying
the API (e.g. Java). This theoretical chapter gives also the quick view of objects-oriented mod-
elling to readers not familiar with objects.

The description of how the API-based systems are built can be found in Chapter 3, while
functional issues are discussed in Chapter 4.

Chapter 5 is about the general idea of how Parlay/OSA applications should be created. A
working client application implementation is introduced here. The application was designed
for the Ericsson OSA/Parlay Simulator and tested within this environment. The source code is
provided.

It should be also noted, that this work shows especially the application developer’s point
of view. Nevertheless, it does not discuss the professional techniques of telecommunication
service design and development, which are now a very broad area of knowledge, too broad for
the space limitations of this thesis.

Appendices include acronyms (Appendix A), glossary (Appendix B), and the full source
code (Appendix C).

Some aspects discussed here were presented in cooperation with Dr. Jarosław Domaszewicz
in the article “Service Creation with Parlay/OSA API” [11], which was submitted (and pre-
sented) at the National Telecommunications Conference in September 2002.

Chapter 2

Supporting technologies

This chapter describes the technologies to which Parlay/OSA APIs are strictly linked. Although
the APIs are not entirely technology-independent, the supporting technologies are ubiquitous,
and being broadly used and accepted by the IT community. They are standards with support
from many organizations and companies, with free tools and platforms available. Note, that
those technologies have not been the case for older service creation approaches.

First, we discuss object-oriented modelling approach (see J. Rumbaugh’s et al. work [12]
for more details). Note that we focus on those aspects that are present in Parlay/OSA APIs.

Next, elements of Unified Modeling Language (UML) are introduced. Since it is not possi-
ble to learn UML from this chapter, the author provides some bibliography here.
To start with UML, the famous “UML Distilled” [13] could be a good choice. The UML au-
thors’ “UML: User Guide” [14] and other books of this serial are great sources of information
for every UML practitioner as well. For all those who plan to develop applications with UML,
the Bernd Oestereich’s book [15] could be a good starting point. The UML specification [16],
although quite complex, may be also useful.

The section that follows describes CORBA and middleware-related issues. Middleware is
an essence of Parlay/OSA APIs, because it allows application programming interface to be em-
ployed as telecommunication protocol. For more information about CORBA, refer the OMG’s
web page [17]. The Orfali’s et al. work about distributed objects [18] may be helpful here.

Finally, some features of the Java programming language are discussed. The author referred
on-line available Bruce Eckel’s “Thinking in Java” [19], Sun’s Java 2 documentation [20] and
The Java Tutorial [21] while working on this thesis.

2.1 Object-Orientation

To fully understand Parlay/OSA APIs one has to be familiar with the object technology. This
section briefly introduces the reader to objects. The object-orientation described here is the
“Java OO”1, which sometimes differs slightly from other “OOs”, e.g. the “C++ OO”. All ex-
amples are given in Java.

1OO is the acronym for object-orientation or object-oriented

8

CHAPTER 2. SUPPORTING TECHNOLOGIES 9

Objects were introduced to easily identify and control various items (like people, things
or phenomena). In any approach to objects there is a number of special features, which are
discussed below:

1. Classification
Any object can be a member of a certain class of objects (which determines the object’s
type). A class has a signature (or a name), which makes it distinguishable from other
classes.

Assume that there are two classes defined: the Call class (identified with a call in
telecommunications) and the CallLeg class (identified with a party in that call). Call
and CallLeg are names (signatures) of classes.

Now, let us go back to objects. Theoretically, there may exist an unlimited number of
objects of a given class. Suppose that the myCall object is of the Call class. Similarly,
userOne and userTwo are objects of the CallLeg class. To state that in Java, we simply
put the class’s name and then the variable’s name:

Call myCall;
CallLeg userOne;
CallLeg userTwo;

2. Instantiation
Although myCall, userOne and userTwo were called “objects” above (which is a very
common manner), that is not that simple. Variables are rather kinds of handles (or point-
ers) to objects than real objects.

Primarily, if they are defined as in the example above, they point nothing. Every object
has to be created before being used. To do that, Java uses the new operator. The following
example shows how it will be used:

myCall = new Call();
userOne = new CallLeg();
userTwo = new CallLeg();

Now all the variables may be called object references, because they refer to concrete
objects. This example reveals the next important feature of objects: ability to be created
in any moment.

Note that many object references can point the same object:

Call hisCall, herCall;
hisCall = myCall;
herCall = hisCall;

Now all three object references point the object named initially myCall.

CHAPTER 2. SUPPORTING TECHNOLOGIES 10

3. Object properties
A class defines two types of properties attached an object of that class:

• Behaviour, i.e. what operations can the object do (for instance: the object can route
calls)

• Attributes, or how the object looks like, for example: the call object has the attribute
defining a number of call legs attached

Objects cannot change the behaviour defined by their class. But attributes may be treated
as variables of objects, e.g. the myCall object may have zero, one or two CallLeg objects
associated.

4. Inheritance and Polymorphism
Inheritance is an action of applying all the properties of the parent class (the class from
which we inherit) to the descendant one. The parent class is usually called base class or
superclass while the child class (the “heir”) is called subclass, derived class or simply
inherited class. For example, let the MultiPartyCall class be a derived class from
the previously mentioned Call class. Every MultiPartyCall is Call, so the following
action is possible:

Call aCall = new MultiPartyCall();

Similarly, every method that takes the Call-class object as its argument can be also called
with the MultiPartyCall-class object as its argument. And it must be treated as the
Call-class object if necessary. The process of using a derived class as its superclass is
called generalization.

Let the Call and the MultiPartyCall have a method called howManyParties(). The
method returns the number of parties involved in th call. It differs in implementation for
the Call and MultiPartyCall class. Now, imagine the situation, shown as follows:

Call aCall;
if(aCondition == true)
aCall = new MultiPartyCall();
else
aCall = new Call();

aCall.howManyParties();

In this case – which method will be called? The Call’s or the MultiPartyCall’s one?
The answer is that it depends on the aCondition variable and, directly, on the type of the
aCall object.

This is called polymorphism, which allows calling operations objects, even if the opera-
tion’s implementation is not know in the moment of program compiling.

CHAPTER 2. SUPPORTING TECHNOLOGIES 11

5. Abstraction and Interfaces
Another fundamental idea of object orientation is abstraction, i.e. use of nonspecific,
abstract ideas. For example a “fruit” is a general idea expressing an apple as well as a
plum as well as any other fruit. There are no fruits in the world that are just fruits. In this
case a fruit is an abstract item. There are usually numerous concrete items related to one
abstract item. Such relations are created by using inheritance.

Abstract classes cannot be instanced (object of these types cannot be created with the new
operator. Actually, they cannot be created at all). In consequence, unless abstract classes
are employed as base classes they are useless.

A meaningful concept in the theory of objects is interface. Interfaces describe behaviour
only - they contain only public methods but not attributes2.

Naturally, interfaces can inherit from other interfaces as well as they can be “super-
interfaces”. Abstract and concrete classes inherit from interfaces to acquire their func-
tionality. In the nomenclature of Java, when a class inherits from an interface, it imple-
ments that interface, while when a class inherits from another class, it extends the class.
Interfaces differ from abstract classes in the fact that more than one interface can be a
base interface for its derived class.

2.2 UML

The Unified Modeling Language is a graphical language, which is used to specifying, design-
ing, creating and documenting elements of information systems [14]. It uses object-oriented
modelling approach and it can be primarily used when creating/documenting object-oriented
systems. Because it is impossible to describe even a small subset of UML here (it is a very
complex language now), we will discuss only those elements of UML, which are used in this
thesis, especially some types diagrams.

UML defines a broad spectrum of various diagrams. Parlay/OSA APIs make use of a few
of them – class diagrams, state diagrams and sequence diagrams. This thesis uses even a fewer
number – class diagrams and (mainly) sequence diagrams.

Class diagrams show relations among classes and interfaces in information systems: how
they are linked, how they can cooperate and whether they are relatives (by means of inheritance).
The essential element in such a diagram is class. Its graphical representation is a rectangle
divided into three parts, as shown in Fig. 2.1.

The top part is the name of the class (Class name here). In the middle part, all attributes
of the class and their types are enumerated (attribute 1 of type type 1 and attribute 2 of
type type 2). The bottom part enumerates all operations that may be performed on the class.
The plus sign (+) tells that the attributes or operations are public (could be accessed from other
objects). In addition, if there are no attributes or operations in the class, the respective parts are
left empty.

2Unfortunately, there are some inconsistencies among existing object applications. Some of them allow inter-
faces possess attributes (e.g. OMG IDL), while others do not (e.g. Java)

CHAPTER 2. SUPPORTING TECHNOLOGIES 12

Class name
+attribute 1: type 1
+attribute 2: type 2
+operation 1()
+operation 2()

Fig. 2.1: A class in UML

Inheritance between classes is shown by an arrow from the inherited class to the base class,
as shown in Fig. 2.2.

Base Class

Child Class

Fig. 2.2: Inheritance in UML

If the class is an interface it can be marked with the keyword <<interface>>. Such “«”
and “»” bracketed keywords are called in UML stereotypes and are used to specify details about
items or operations.

The next type of UML diagram is sequence diagram. Sequence diagrams were introduced
to allow showing what is happening to the system and objects in time. Such diagrams contain
objects and show operations undertaken on those objects. The higher an operation is placed the
earlier it takes place. An exemplary sequence diagram is shown in Fig. 2.3.

Object1: Class1 Object2: Class2

1: operation1

2: operation2

3: operation’s2 return

time

Fig. 2.3: Sequence diagram in UML

Fig. 2.3 illustrates how two objects (Object1 of the Class1 class, and Object2 of the
Class2 class) exchange communicates. They do it be means of calling operations on each
other. The first operation, named operation1(), is undertaken by Object1 on the peer object.
Although it is not depicted in Fig. 2.3, the operation may be taking parameters or return a value;
it can also take some time. Usually, it is enough to place just an operation’s name to show how

CHAPTER 2. SUPPORTING TECHNOLOGIES 13

the system works, other details can be omitted. On the other hand, if there is a need for it, all
operation’s parameters can be described in the diagram, for instance:

String operation1(in String text, in int number, out Class2 reference);

instead of simply

operation1();

The second operation in the diagram, operation2(), is called by the Object2 on Object1.
This one “blocks” the second object’s thread for a while (the blocking is represented by the rect-
angle on the Object2 line). After having finished, the returned value is passed to the Object2.

Although many commercial UML editors support code generation from UML diagrams,
there are no formal mapping from UML to programming languages. Consequently, two dif-
ferent tools could generate non-compatible source code. That is why UML diagrams in Par-
lay/OSA APIs have rather descriptive purposes.

2.3 CORBA

In quite a narrow sense, the common object request brokerage architecture (CORBA) is a stan-
dard of distributing applications across multiple platforms. The standard allows objects to be
located on separate systems (processes) but cooperate and communicate as if they were all
implemented locally. The CORBA mechanisms are transparent, what means that whole the
protocol and network complexity is hidden from the developer’s eyes.

To illustrate it in an example, Fig. 2.4 compares calling two operations. Both are called by
the object mainObject (which is located on System 1), but the first is called on the local object
(System 1) and the other is called on the remote one (System 2).

obj1:Object1mainObject obj2:Object2

1: operation1()

System 1 System 2

2: operation2()

Fig. 2.4: Calling local and remote operation in CORBA environment

For a CORBA programmer both cases may be treated in the same way, no difference where
they are located. A Java procedure (operation(), a method of mainObject), which calls the
two operations, may look like below:

CHAPTER 2. SUPPORTING TECHNOLOGIES 14

public void operation (Object1 obj1, Object2 obj2)
{

obj1.operation1();
obj2.operation2();

}

Looking at this simple program it is even not possible to guess whether the program is
distributed. Actually, the difference is in how the Object2 is defined. This is not shown above
since the implementor of the operation() procedure does not have to know the application’s
details.

The architecture of the presented system is as follows: Object2 and its methods must be
implemented on the System’s 2 side. None of objects located on System 1 need to know
how the System’s 2 objects are implemented. They are only users of these objects. But there
is something the user need to be familiar with. It is a proper interface definition. One of the
CORBA essential features is a special language used to define interfaces.

Interface description language (IDL) allows to create prototypes and data types, i.e. all that
is needed to define APIs. Since IDL is purely a descriptive language [22], it does not provide
any features to write procedures, not at the client’s nor at the server’s side.

An IDL program must be compiled into a specified programming language (C, C++, Java
or any other). As a result, appropriate source files are generated (e.g. .h and .c files for C),
which must be incorporated into the program that uses CORBA objects 3. Moreover, owing to
IDL, the client and server objects may be created using different programming languages.

A sample of an IDL source (taken from Parlay v3.0 IDL) is shown in Fig. 2.5.
The figure shows all the most important features of IDL syntax. Namespaces are created

using the module keyword (lines 1,2,3), which is translated into package in Java. Structures,
which are defined with the struct keyword (line 4), are simply classes with public elements
in Java. Next, enum, which is used to define enumeration types (static class in Java) and the
exception keyword to define exceptions. Finally, an interface is defined in line 17 with the
keyword interface (also interface in Java), with the base interface specified by colon (the
extends keyword in Java) and a method with one in parameter is declared (lines 18,19). The
method might raise an exception (line 20).

In addition to what was said before, every program that uses the CORBA system has access
to a so-called ORB object. This object provides some procedures that may be very useful for
CORBA programmer, e.g. naming service (means of resolving objects by textual name and
acquiring their references) and many other auxiliary functions.

2.4 Java

Java has been chosen as the programming language for all the examples and the application
presented in this work. Since Java programming language is not discussed here, the motivations
of using this language are enumerated below:

3There are also means to use remote objects without knowing the interfaces. This dynamic way in not used in
Parlay/OSA APIs and will be discussed here

CHAPTER 2. SUPPORTING TECHNOLOGIES 15

1 module org {
2 module c s a p i {
3 module t e rmcap {
4 s t r u c t T p T e r m i n a l C a p a b i l i t i e s {
5 T p S t r i n g T e r m i n a l C a p a b i l i t i e s ;
6 TpBoolean S t a t u s C o d e ;
7 } ;
8 enum T p T e r m i n a l C a p a b i l i t i e s E r r o r {
9 P_TERMCAP_ERROR_UNDEFINED ,

10 P_TERMCAP_INVALID_TERMINALID ,
11 P_TERMCAP_SYSTEM_FAILURE
12 } ;
13 e x c e p t i o n P_INVALID_TERMINAL_ID {
14 T p S t r i n g E x t r a I n f o r m a t i o n ;
15 } ;
16

17 i n t e r f a c e I p T e r m i n a l C a p a b i l i t i e s : I p I n t e r f a c e {
18 T p T e r m i n a l C a p a b i l i t i e s g e t T e r m i n a l C a p a b i l i t i e s (
19 in T p S t r i n g t e r m i n a l I d e n t i t y)
20 r a i s e s (TpCommonExceptions , P_INVALID_TERMINAL_ID) ;
21 } ;
22 } ;
23 } ;
24 } ;

Fig. 2.5: IDL source – definition of modules, data structures and an interface

• Java is an object-oriented language that perfectly suits the UML’s Parlay/OSA APIs defi-
nition.

• Java is very portable. Its virtual machines implementations and compilers exist for ev-
ery significant platform. The examples given here may be run by broad community of
developers.

• CORBA mechanisms and tools are freely distributed with Java Standard Edition [23]. As
for other languages (like C++) it is usually needed to choose and install additional ORB
libraries.

• Java is very similar to the C and C++ programming languages and the programs should
be understandable even for those who do not know Java but are familiar with C-like
languages.

• Java is the most frequently chosen programming language for Parlay/OSA-based imple-
mentations. In consequence, the author had access to many interesting examples and
procedures which, partly, have been used here.

• Ericsson’s Parlay/OSA Simulator [4], which is employed as a gateway for the applica-
tion presented in this work, provides many useful sub-procedures and features which are
written in Java (in source code or in .jar files).

Chapter 3

The Architecture of Parlay/OSA APIs

This chapter discusses the architecture of the Parlay/OSA-based system, that is: where it is
located, and how it is built, how the objects are spread across multiple CORBA hosts and how
they cooperate.

3.1 API-based Protocol

For a telecommunications engineer, Parlay/OSA APIs should be treated rather as a telecommu-
nications protocol than as what we used to call an “API”. Using interfaces, objects and the dis-
tributed platform (CORBA) has greatly increased the protocol’s potentials – applications can be
deployed with very little effort (no binary compatibility issues, no message encoding/decoding,
...) and the whole system is easily scalable. But still – this API is a telecommunications proto-
col, which above all gives VASPs an opportunity to communicate with telecom operators.

Parlay/OSA APIs must be used by both the application and gateway to communicate. The
APIs (or a protocol in form of a programming interface) may be deeply integrated into applica-
tion/gateway programs and mixed with other APIs.

Fig. 3.1 shows the exemplary internal structure of the application and the gateway. Note

Database API Internet Access

logic
Application main

Database API

Parlay/OSA

API

Parlay/OSA

API

logic
Gateway main

Telecom.
protocols
APIs, e.g.

CAP API, etc

SIP API,
MAP API,

CORBA

GatewayApplication

Fig. 3.1: Application and gateway: how Parlay/OSA APIs are used

16

CHAPTER 3. THE ARCHITECTURE OF PARLAY/OSA APIS 17

that all other APIs shown in the Fig. – database API, protocol APIs – are not elements of the
Parlay/OSA APIs nor they are defined nor required for the system to work correctly.

The application and the gateway must both support the API (have some objects and proce-
dures implemented), and, until now, it must be the same version of the APIs, from the same
author1. They communicate over the CORBA system, which allows message exchange (in
form of operations called on CORBA objects). The CORBA system is located over a TCP/IP
medium, which may be, obviously, the Internet. But to ensure greater security, a dedicated
transmission medium should be used [10].

3.2 Building Blocks

The real API architecture is more complicated than the application–gateway model presented
above. In the first place, the gateway is divided into one or more so-called service capability
servers (SCSs). An SCS is a kind of gateway, which provides certain network functionality or,
in other words, basic building blocks for telecommunications services’ creation. The blocks
are called service capability features (SCFs) (refer Fig. 3.2). Different SCFs, as defined by

SCF

SCF

...

SCS 2 ...Framework SCF

SCF ...

SCS 1

OSA Gateway

Core Network

Application

Fig. 3.2: How the gateway is built: the framework and SCFs

Parlay/OSA APIs, have their functionalities separated. For example, one SCF provides user
location in mobile networks, while another – the call control feature, and so on. On the contrary,
the SCF’s functionalities may be combined by the application, e.g. it can localize the user and
supervise his/her calls at the same time. The list of all SCFs will be introduced in the next
section (Table 4.1).

As seen in the Fig. 3.2, one of the SCSes is called framework. A framework is the Par-
lay/OSA architectural element, which is always present in any gateway. Theoretically, in a min-
imalistic case, there could be no other SCSs apart from the framework in a gateway. However,
the framework provides some very common functionality (like SCF access and authentication
capabilities) but does not offer network capabilities itself. Consequently, a framework-only ar-
chitecture would have no practical sense, because no real service capability features would be

1For example, former versions of 3GPP OSA, ETSI OSA and Parlay API version, even if almost identical, will
not work together.

CHAPTER 3. THE ARCHITECTURE OF PARLAY/OSA APIS 18

offered to the application. In other words, there would be nothing to add value to for a value-
added service provider. On the other hand, the architecture would be perfectly correct from
the APIs’ point of view, which do not specify the number of SCFs in the gateway (it may vary
from zero to hundreds of items). What is more, during the application’s lifetime, the number of
accessible SCFs may change. For instance, in case of a sport event, a new conference SCF may
appear to allow transmission of competitions and tele-conference supporting. This example re-
veals an important issue related to the Parlay/OSA APIs – they define a dynamic system, where
SCSes and SCFs may be added and subtracted, and where no strong relation between different
SCFs is present. Moreover, the architecture was designed in such manner, that it is possible for
various vendors to offer functionalities through a common framework.

3.3 Structure of a typical SCF

Elements of the call model (playing roles as calls, call legs, and other items) are usually repre-
sented by two objects: at gateway’s and the application’s side. The application-side objects are
called callback objects, because they are often employed as callbacks (from the application’s
point of view), i.e. their methods are called by the gateway to inform it about a certain events in
the network. The application interfaces’ names start with the IpApp prefix (in contrast to sim-
ply Ip for gateway objects). Callback objects have to be implemented at the application’s side.
Since their bodies form a part of the application logic, they must be customized procedures,
designed and written by application developers. A simple scenario is presented in Fig. 3.3.

appCcMgr:
IpAppCallControlManager

AppLogic ccMgr:
IpCallControlManager

1: Set Callback "appCcMgr" for the Event "X"

Application Gateway

2: Notify of Event "X"

Fig. 3.3: Communication between objects in Parlay/OSA APIs

The AppLogic object calls the “Set Callback” operation on the remote ccMgr object. It
specifies the type of the event (X), which is going to be monitored, and the callback object refer-
ence (appCcMgr). After a certain period of time, the event X appears in the network. Then, the
gateway uses the previously received object appCcMgr to call the “Notify of Event” operation
on this object.

This example shows one more essential thing about the APIs. The CORBA object refer-
ences are exchanged between the application and the gateway by means of method’s parameters
and returned values. Here, in the first operation, the callback object is passed to the gateway.
Similarly, the gateway objects may be (and are) passed to the application by the use of methods.

CHAPTER 3. THE ARCHITECTURE OF PARLAY/OSA APIS 19

But in such an architecture there must be one initial gateway’s object, to which the applica-
tion has a reference (or vice versa – initial application’s object with a reference at the gateway)
to be used to start this chain of object exchanging. Parlay/OSA APIs define such an object,
and the object is located at the gateway’s side. The interface, which is implemented by this
object, is called IpInitial. The means of how the application can acquire this initial object
reference is not defined by the specification. It could be requested from a well-known CORBA
nameserver, or transformed from a “stringified” object (compare 2.3), which may be placed on
the FTP, LDAP or any other site.

Once the application possesses the object reference, it does not know whether it points
a correct object or even whether it is the IpInitial one. If so, it does not know whether
the IpInitial is not a “fake object”. To ensure that the reference is the desired one, the
application must initiate authentication procedures (actually, it does not have any other choice
– the IpInitial interface defines the one and only method, initiateAuthentication()).
After successful mutual authentication (both the gateway and the application may authenticate
the peer), the application is given the access to the rest of the framework functionality.

Access to SCFs is given by means of so-called service manager objects which are first con-
tact objects with every SCF (Fig. 3.4). Object references to them are passed to the framework
by SCF providers, and then applications are given the reference if they request.

Service Manager

Object1
Object2

Object3

Fig. 3.4: A typical SCF: service manager and other objects

3.4 Fault tolerance and Scalability

The callback technique (augmented by middleware technology) gives the opportunity to create
very reliable, efficient and scalable solutions. Initially, Parlay/OSA APIs allow setting more
than one callback objects for the same monitoring event in the network. It does not mean that
all of callbacks are informed when the event appears, but the second, third, and other callbacks
are treated as supplementary callbacks, i.e. they are used only if the primary callback fails. Let
us consider an example illustrated in Fig. 3.5.

The application calls the “Set Callback” operation twice, but every time it uses a different
callback object as the operation’s parameter2. When an event appears, the primary callback
(appCcMgrPrimary) is used to call the “Notify of Event” operation. However, it fails (due to
the application crash, overload, etc). The gateway detects the failure (using CORBA mecha-

2Note, that despite it is not shown in the figure, these callback objects should belong at least to different
processes

CHAPTER 3. THE ARCHITECTURE OF PARLAY/OSA APIS 20

appCcMgrSecondary:
IpAppCallControlManager

AppLogic ccMgr:
IpCallControlManager

1: Set Callback "appCcMgrPrimary" for the Event "X"

Application Gateway

3: Notify of Event "X"

appCcMgrPrimary:
IpAppCallControlManager

2: Set Callback "appCcMgrSecondary" for the Event "X"

4: Failure

5: Notify of Event "X"

Fig. 3.5: Setting and using supplementary callbacks

nisms) and calls the operation on the second, supplementary callback (appCcMgrSecondary).
Fortunately, this one succeeds.

Naturally, the two callbacks need not to be the part of the same process (in meaning of op-
erating system). Owing to middleware, they could be (or rather should be) located in separate
execution environments or, to improve reliability in greater extent, on separate servers (in phys-
ical meaning). This separation can “distribute” the application even more than the gateway is
distributed.

This mechanism may be useful when upgrading the system, in software as well as in hard-
ware meaning. For instance, it could be a “hot upgrade”, i.e. without shutdowning the whole
system to do that. The primary server can be turned off, in that time all the events are served by
supplementary callbacks. In the meantime, the server is being upgraded (e.g. more memory is
being added), and finally, the server is turned on and the application properly booted. Similarly,
the application can be upgraded by setting new (upgraded) callback objects and unsetting the
older ones.

The application may be also divided because the efficiency and scalability reasons. In case
of many various events being monitored by the application, especially if they require high com-
putational power, it may be necessary to place different callback objects on separate servers.
This could be also applied to the same event but different address ranges, e.g. events concerning
numbers starting with 12345 (user "A", among others) are going to be served by callback_1,
while numbers starting with 12346 (user "B") – by callback_2. This case is shown in Fig. 3.6.

Here, the application is built of 2 servers, each implementing one callback object. The
gateway detects that the X event appeared twice in the network, for user A and user B. But, in spite
of the same event, the users are served by different callbacks. The separation of callbacks does
not need to be caused by efficiency issues only. It could be a part of an application logic to apply
those users to various callbacks, e.g. depending to what kind of SCFs they have subscribed.

The next important feature of such an architecture is scalability. In any moment the system
can be enlarged by one on more servers and the appropriate callbacks transferred or added to
them.

CHAPTER 3. THE ARCHITECTURE OF PARLAY/OSA APIS 21

Application

Gateway

Server 1

Server 2

callback_1

callback_2

Notify of Event "X"
for User "A"

Notify of Event "X"
for User "B"

Fig. 3.6: Division of the application

Chapter 4

APIs’ functionality, SCF by SCF

Parlay/OSA APIs are defined by a set of documents that describe all the programming inter-
faces and related issues, including finite state machine’s description data structures and relevant
information models. Since the Unified Modeling Language has been used to define the APIs,
in addition to programming language–independence, the documents are more easily-readable
than in case of ordinary API or protocol definitions. However, the APIs are designed among
others to system developers and they have to cover any aspect of the APIs. And this definition’s
complexity motivated the author to write this, descriptive chapter.

The chapter describes all the OSA service capability features (SCFs), as defined in ETSI
OSA version 1 (to be more specific: final draft v1.1.1, dated 2001-12) [24]. The SCFs are some
pieces of functionality of the telecommunications network, usually very basic ones, which are
provided by SCF providers to application providers. Then, the application uses those pieces
to create more powerful and more complex services (to put it in another way – the application
provider adds value to those basic features supplied with SCFs).

OSA version 1 defines nine SCFs. Parlay v3.0, which includes all the SCFs defined by
OSA, adds two more SCFs (which, on the contrary, will not be thoroughly discussed in this
work). All the SCFs described here (with respective section numbers) are shown in Table 4.1.
The common part of the API, framework, consisting of 4 separate API sets, is described in
Section 4.1.

This chapter is designed in the following manner: first goes an overall description of a given
SCF (or the framework); next, more specific information are discussed about features, or so-
called primitives, which are supported by the SCF. The concept of primitives does not come
from the specifications. It is introduced here for exposition purposes. In primitive we mean
behaviour, which can be requested via the API, e.g. “connect a user with a specified address” or
“terminate the call”. The primitives are written in English sentences and this is more descrip-
tive than interface operations’ names used by the specifications1. In this description, some of
primitives’ names are perfectly equal their corresponding methods, while some primitives are
simplified versions (e.g. when a procedure is distributed or if it requires more than one operation
call). Some less important (or auxiliary) operations are not presented to keep the description

1Usually the features of SCFs are explained in the form of the interfaces’ operations. Nevertheless, this ap-
proach seems to be too hard for an unexperienced user, especially due to complex data types.

22

CHAPTER 4. APIS’ FUNCTIONALITY, SCF BY SCF 23

Tab. 4.1: Service capability features (SCFs), as defined in Parlay/OSA

Name Functionality Section
Call Control Generic voice calls, multi-party calls, multimedia

calls and conferences
4.2

User Interaction Interaction with users: sending and receiving textual
messages (e.g. SMSes), playing announcements on
terminals

4.3

Mobility User localization and user status (functionality not
limited to mobile users)

4.4

Terminal Capabilities Querying user terminal capabilities 4.5
Data Session Control Data transmission session management (e.g. GPRS) 4.6
Generic Messaging Mail, mailfolder and Mailbox management. 4.7
Connectivity Manager VPN and QoS management 4.8
Account Manager Monitoring of users’ billings 4.9
Charging Charging user for using the application and other re-

sources
4.10

clearer.
After description of primitives, their typical order is presented. Primitives, which are called

by the application are marked with (App), by SCF provider – (Svc), enterprise operator – (En-
tOp), framework – (Fw). If the described feature may be used by multiple entities it is marked
as (App) (as the most common case).

Finally, at the end of each description, the interface’s names (and a short description) of
described API are given.

CHAPTER 4. APIS’ FUNCTIONALITY, SCF BY SCF 24

4.1 Framework

Framework [25] is a part of Parlay/OSA APIs, which is used by all other Parlay/OSA entities. It
provides a number of common interfaces (e.g. gateway access) and some auxiliary functionality.

Fig. 4.1 shows how framework is linked to other entities of Parlay/OSA architecture.

Framework

Application

Enterprise
Operator

SCF Provider

Fw−to−EntOp

API

Fw−to−App

API

Svc−to−App

API

Access Session

Access Session Access Session

API

API

API

Fw−to−App

API

Fig. 4.1: Central role of the framework in Parlay/OSA architecture.

From all three types of Parlay/OSA entities’ point of view, the framework is a kind of broker.
First, it collects information from SCF providers (any such provider has to register its SCFs into
the framework). Then, it stores the information, and, using the stored data, it can grant a direct
SCF access to applications. It also maintains the register of which applications are allowed to
use which SCFs (as the enterprise operator requests). Finally, it allows SCF providers to set
some load policy, i.e. how many applications can use their features.

For applications, it provides many useful features, like application authorization, discovery
of existing SCFs and choosing the desirable ones, fault management, etc.

The framework’s typical procedure chain is shown in Fig. 4.2. Besides the framework, there

Framework

3. Get Access to Framework

Enterprise
Operator

4. Subscribe SCF "S"
 for Application "A"

1. Get Access to Framework
2. Register SCF "S"

SCF Provider

6. Discover Services

Application "A"

7. Get SCF "S"
10. Give "S" Service

Manager

9: Give "S" Service Manager

5. Get Access to Framework

8: Get "S" Service Manager

Fig. 4.2: Event chain linked to framework.

CHAPTER 4. APIS’ FUNCTIONALITY, SCF BY SCF 25

are three other Parlay/OSA entities illustrated in Fig. 4.2: an enterprise operator, a SCF provider
and an application.

First, every single entity has to gain access to the framework (steps 1, 3 and 5). The SCF
provider registers its “S” SCF to the framework (step 2) and since then it is available for other
entities. The enterprise operator first subscribes the “S” SCF for the “A” application (step 4). In
some cases the framework might follow its own policy for enabling registered SCFs to appli-
cations, but this is the typical Parlay/OSA business model’s scenario. In step 6, the application
discovers SCFs that have been already registered to the framework. It finds “S” in this manner.
Next, the application requests access to the “S” SCF, expecting acquiring the service manager
object reference (step 7). But before the framework will be able to do this, it has to acquire
the reference itself from the SCF provider’s object factory (step 8). Finally, the desired object
reference is passed to the application.

In the Parlay/OSA model, one framework can “serve” many various SCF providers. Conse-
quently, the application can pick then the most appropriate, for instance the cheapest, solution.
Similarly, one application may use many instances of the same SCF, to allow users of many
mobile carriers use localization services.

CHAPTER 4. APIS’ FUNCTIONALITY, SCF BY SCF 26

4.1.1 Framework Access Session API

The Framework Access Session API is used by all other types of Parlay/OSA entities: applica-
tions, enterprise operators and SCF providers. This is the “first contact” with the framework,
and there is no other way to get access to the framework. The application primitives delivered
by the API are described in Table 4.2.

CHAPTER 4. APIS’ FUNCTIONALITY, SCF BY SCF 27

Tab. 4.2: Framework Access Session API application’s primitives

Primitive Description
Start Authentication The first operation called on the framework. The authenti-

cation, even in case of a trusted party (it could be simplified
then), is a mandatory part of framework procedures.

Request Framework Access Upon successful authentication, it enables the access to the
framework and its features.

End Framework Access Ends the framework session. The entity can no longer ac-
cess framework interfaces.

List Available Framework
Features

This gives a list of framework features which are available
at time. Possible features include: SCF discovery, event
notification feature, load management, etc. Note, that some
of them may be not available (e.g. not implemented).

Request the X Framework
Feature

Allows choosing and using a specific framework feature X.

CHAPTER 4. APIS’ FUNCTIONALITY, SCF BY SCF 28

Typical order of primitives:

1. Start Authentication (App)

2. Request Framework Access (App)

3. List Available Framework Features (App)

4. Request the SCF Discovery Framework Feature (App)

Description of interfaces:

• IpInitial – this is the framework’s initial contact. It is used by applications as well
as enterprise operators and SCF providers willing to communicate with the framework.
This interface’s object reference must be accessible by applications and may be acquired
in many ways (e.g. from CORBA name services).

• IpAPILevelAuthentication and IpClientAPILevelAuthentication – the pair of
interfaces used to authenticate the client (an application, enterprise operator or an SCF
provider) into the framework and vice versa. The additional interface, IpAuthentication
(the super-interface to the IpAPILevelAuthentication interface), defines the means of
requesting access the framework.

• IpAccess and IpClientAccess – the pair representing an access to the framework.
IpAccess is acquired upon successful authentication.

CHAPTER 4. APIS’ FUNCTIONALITY, SCF BY SCF 29

4.1.2 Framework-to-Service API

This API is located between the SCF provider and the framework. First, it allows SCF providers
register the SCFs they offer, so that the SCFs become present in the framework and applications
can discover them. The second function is to provide the service manager object reference on
any framework’s request, giving an opportunity the functionality can be used by many applica-
tions (if needed).

Notice that you do not have to be familiar with this API when you want to design and
implement only client applications. Nonetheless, it may be useful to know the API to fully
understand the system behaviour. Tables 4.3 and 4.4 show the primitives supported by the API.

CHAPTER 4. APIS’ FUNCTIONALITY, SCF BY SCF 30

Tab. 4.3: Framework-to-service API SCF provider’s primitives

Primitive Description
Register SCF This is used by an SCF provider to register a new SCF to

the framework. The SCF’s name and its properties are sup-
plied.

Unregister SCF Unregisters the (previously registered) SCF.
Announce / Unannounce SCF
Availability

These two primitives are used to tell the framework that the
SCF is available (fully functional and ready to be used by
applications) or unavailable in the moment. Note that call-
ing the “Register SCF” primitive is not enough to provide
the SCF’s functionality. SCF availability must be signalled
to the framework beforehand.

List SCF Types Lists all SCF types supported by the framework, e.g.
Generic Call Control or Mobility .

Describe SCF Type This gives the SCF provider properties of a given registered
SCF.

Discover SCFs Get a list of registered SCF instances that have given prop-
erties. It is up to the framework whether it reveals only this
SCF provider’s registered SCFs or any others.

Are you Operational? This question can be asked to the framework to ensure that
the peer is workable.

Set the X SCF Unavailable This primitive turns the X SCF off. Now, the framework
can no longer offer it to applications.

Check Fault Statistics This primitive checks the fault statistics for the framework.
Enable Heartbeating This primitive is used to make the framework give a spe-

cial signal (a “pulse”) to the SCF provider. The pulses are
repeated periodically until disabled.

Disable Heartbeating Turns off the periodical heartbeating.
Check Load Statistics This checks the load statistics i.e. whether it is in a normal

state, or it is overloaded (e.g. cannot cope with forthcoming
calls) for applications that use the SCF.

Turn on/off Load Reporting These two primitives are used to enable the periodic load
reporting of the application load.

Report Load Conditions Change This primitive is called when the load conditions change
(e.g. an application no longer overloaded).

What is the Time? This primitive allows the framework and the SCF provider
synchronize their clocks.

Notify of an Event This primitive is called on the framework by the SCF
provider when the SCF has changed its state, e.g. has be-
come unavailable.

CHAPTER 4. APIS’ FUNCTIONALITY, SCF BY SCF 31

Tab. 4.4: Framework-to-service API framework’s primitives

Primitive Description
Create Service Manager This primitive is used by the framework to request the SCF

provider to create a new service manager object and return
its reference to the framework. It is further passed to the
SCF-requesting application.

Destroy Service Manager Framework tells that a given SCF is no longer used by ap-
plications. Now it can be released now.

Report Framework Fault Informs the SCF provider about a serious fault in the frame-
work. The provider cannot use the framework until it re-
covers.

Report Framework Recovery Tells the SCF provider that the previously reported fault is
no longer valid. The application can use the framework.

Are you Operational? This question can be asked to the SCF provider to ensure
that the peer is workable.

The X SCF is no longer used This primitive tells the SCF provider that the application
stopped using the X SCF (e.g. as the result of a failure).
The SCF provider should reestablish normal network event
handling.

Check Fault Statistics This primitive checks the fault statistics for the SCF
provider .

Enable Heartbeating This primitive is used to make the SCF provider give a spe-
cial signal (a “pulse”) to the framework. The pulses are
repeated periodically until disabled.

Disable Heartbeating Turns off the periodical heartbeating.
Check Load Statistics This checks the load statistics of a given SCF, i.e. whether

it is in a normal state, or it is overloaded (e.g. cannot cope
with forthcoming calls).

Turn on/off Load Reporting These two primitives are used to enable the periodic load
reporting of the SCF’s load.

Report Load Conditions Change This primitive is called when the load conditions change
(e.g. an application or the framework is no longer over-
loaded).

What is the Time? This primitive allows the framework and the SCF provider
synchronize their clocks.

Turn on/off Event Notification This primitive enables/disables the notification of SCFs’
conditions (is it available, or not).

CHAPTER 4. APIS’ FUNCTIONALITY, SCF BY SCF 32

Typical order of primitives:

1. Register SCF (Svc)

2. Announce SCF Availability (Svc)

3. Create Service Manager (Fw)

4. Unannounce SCF Availability (Svc)

5. Unregister SCF (Svc)

Description of interfaces:

• IpFwServiceRegistration – used to register and unregister SCFs into the framework.

• IpServiceInstanceLifecycleManager – this interface is provided to the framework
by the SCF and is a “factory” of proper service manager objects. When an application
requests a service manager (by signing a service agreement), the framework first uses this
interface to acquire an object reference of the appropriate service manager and then pass
it further to the application.

• IpFwServiceDiscovery – discover SCFs which are already registered into framework.

• IpFwFaultManager and IpSvcFaultManager – these interfaces allow exchanging in-
formation about serious problems encountered in the framework and in the application
(similar to fw-to-app API).

• IpFwHeartBeatMgmt and IpSvcHeartBeatMgmt, and specified interfaces: IpFwHeartBeat
and IpSvcHeartBeat – a periodically repeated “pulse”, which means: “I am still alive”
(similar to fw-to-app API).

• IpFwLoadManager and IpSvcLoadManager – allows congestion level monitoring of the
framework and applications.

• IpFwOAM and IpSvcOAM – interfaces used to synchronize time and date between the
framework and an SCF provider (similar to fw-to-app API).

CHAPTER 4. APIS’ FUNCTIONALITY, SCF BY SCF 33

4.1.3 Framework-to-Enterprise API

This API is used by the enterprise operator only. Enterprise operator is in charge of SCF sub-
scription (for its applications) from the framework. The model supplied by this API is presented
in Fig. 4.3.

SAG 2App 2.1

App 2.2

SAG 1App 1.1

App 1.2

Service
Contract 1

Service

Service

Service

Service
Profile 2.2

Profile 2.1

Profile 1.2

Profile 1.1

Contract 2
Service

Fig. 4.3: Service profiles - subscription assignment groups (SAGs) relation

Before applications will be able to use SCFs, any single application must become a member
of so-called subscription assignment group (SAG). A SAG is simply a means of applying the
same access privileges to multiple applications.

SCFs, on the other hand, are represented by service profiles (the list of properties: the SCF
type, start and expiry date, exact values of possible resources, e.g. the number of simultaneous
calls), which are collected into service contracts. To allow applications from a given SAG
access SCFs, the SAG has to be assigned to appropriate service profile (arrows in the Figure).
All primitives of this API are shown in Table 4.5. Note, that the “gateway” primitives are not
present in this API.

CHAPTER 4. APIS’ FUNCTIONALITY, SCF BY SCF 34

Tab. 4.5: Framework-to-enterprise API enterprise operator’s primitives

Primitive Description
Create/Delete Application This creates (or deletes) a new (framework representation

of) application related to a given enterprise operator.
Create/Delete SAG This creates/deletes a (new) SAG.
Add/Remove Application to/from
given SAG

This can be used to apply an application to (or remove
from) a given SAG.

Show all Applications of given
SAG

This is used to get information about what application
have already been applied to a given SAG.

Describe SAG Returns the description of the SAG.
List all SAGs Returns a list of all SAGs that have been created.
List all Applications Returns a list of all applications no matter which SAG

they are applied to.
Create a Service Profile Creates a new service profile (including all related infor-

mations).
Assign SAG to Service Profile Assigns a SAG to a given service profile. Note that no

raw application can be applied – even if there are a single
application applied to a profile it must be contained by a
SAG.

Deassign SAG from Service Profile Deassign (remove) a SAG from a given profile.
List all Service Profiles Returns all defined service profiles.
Describe Service Profile Returns a description of a service profile.
Show all SAGs assigned to Service
Profile

Returns all SAGs that have been assigned to a given ser-
vice profile

Create/Modify/Delete Service
Contract

This is used to perform operations on structures called
service contracts, consisting of: service requester, billing
contact, start/end dates, service name and ID, and service
properties. After creating service contract, the proper
SCFs are ready to be requested by applications.

Describe Service Contract Returns all details about a given service contract.
List Service Contracts List all created service contracts.
Modify/Delete Enterprise Operator
Account

This account identifies an enterprise operator within the
framework domain. It is created off-line by a framework
operator. These two operations allow enterprise operator
delete or modify its account only.

Describe Enterprise Operator Returns some details about the enterprise operator.

CHAPTER 4. APIS’ FUNCTIONALITY, SCF BY SCF 35

Typical order of primitives:

1. Create Application (EntOp)

2. Create SAG (EntOp)

3. Create Service Profile (EntOp)

4. Add Application to SAG (EntOp)

5. Assign SAG to Service Profile (EntOp)

6. Create Service Contract (EntOp)

Description of interfaces:

• IpClientAppManagement – this interface allows creating, modifying and deleting ap-
plications associated with the enterprise operator. Additionally, it allows whole groups
of applications (SAGs) being created and filled with applications. The next interface,
IpClientAppInfoQuery, allows checking which applications and SAGs are already present
in the framework and which applications belong to certain SAGs.

• IpServiceProfileManagement and IpServiceProfileInfoQuery – these are used to
control (create/destroy) service profiles and assign SAGs to them.

• IpServiceContractManagement and IpServiceContractInfoQuery – these two in-
terfaces are used to manage service contracts (create, modify and delete them).

• IpEntOpAccountManagement and IpEntOpAccountInfoQuery – these two interfaces
are used to make make some operations (data modifications) on Enterprise Operator Ac-
count (enterprise operator’s representation within the framework). There are no way in
the OSA API to create such accounts; they must be created manually or off-line by the
framework operator before any enterprise operator can access the framework.

CHAPTER 4. APIS’ FUNCTIONALITY, SCF BY SCF 36

4.1.4 Framework-to-Application API

This API is used by applications and enterprise operators. It defines essential features for those
entities like SCF discovery, SCF selection and others. Every application that want to get access
to networks functionality (by acquiring an appropriate SCF reference) has to go through at least
a few procedures described here. The API’s primitives are shown in Tables 4.6 and 4.7.

CHAPTER 4. APIS’ FUNCTIONALITY, SCF BY SCF 37

Tab. 4.6: Framework-to-application API application’s primitives

Primitive Description
List SCF Types Lists all available types of SCFs, e.g. Generic Call Control,

User Interaction and others.
Describe SCF Type SCF type may be not enough. This gives user detailed in-

formation about a given SCF.
Discover SCFs Get a list of registered SCF instances that have certain prop-

erties. Note that there could be more than one instance of
an SCF returned, e.g. there could be several Generic Call
Control providers, everyone in charge of its own number
area.

List Subscribed SCFs Lists all of SCFs subscribed by the enterprise operator until
now.

Select SCF Selects the desired SCF. As the result, a special “token” is
returned, which may be later used to sign the service agree-
ment and get access to the SCF.

Sign Service Agreement Digitally signs a service agreement document. If the pro-
cedures are successful, the proper SCF’s object reference is
returned.

Terminate Service Agreement Digitally signs a service termination document.
Are you Operational? This question allows to ensure that the framework is work-

able.
Enable Heartbeating This primitive is used to make the framework give a spe-

cial signal (a “pulse”) to the application. The pulses are
repeated periodically until disabled.

Disable Heartbeating Turns off the periodical heartbeating.
Check Load Statistics This checks the load statistics of a given SCF, i.e. whether

it is in a normal state, or it is overloaded (e.g. cannot cope
with forthcoming calls).

Turn on/off Load Reporting These two primitives are used to enable/disable periodic
load reporting from the framework (or specified SCF).

What is the Time? This primitive allows the framework and the application
synchronize their clocks.

Turn on/off Event Notification This primitive enables/disables the notification of SCFs’
conditions (is it available, or not).

CHAPTER 4. APIS’ FUNCTIONALITY, SCF BY SCF 38

Tab. 4.7: Framework-to-application API gateway’s primitives

Primitive Description
Report Framework Fault Informs the application about a serious fault in the frame-

work. The application cannot use the framework until it
recovers.

Report Framework Recovery Tells the application that the previously reported fault is no
longer valid. The application can use the framework again.

Are you Operational? This question can be asked to the application by the frame-
work to ensure that the peer is workable.

Set the X SCF Unavailable This primitive turns the X SCF off. Now, the application
can no longer use it .

Enable Heartbeating This primitive is used to make the application give a spe-
cial signal (a “pulse”) to the framework. The pulses are
repeated periodically until disabled.

Disable Heartbeating Turns off the periodical heartbeating.
Check Load Statistics This primitive allows framework to get informed whether

the application is overloaded.
Turn on/off Load Reporting These two primitives are used to enable/disable periodic

load reporting from the application.
What is the Time? This primitive allows the framework and the application

synchronize their clocks.
Notify of an Event This primitive is called by the framework when the SCF

has changed its state, i.e. became (un)available.

CHAPTER 4. APIS’ FUNCTIONALITY, SCF BY SCF 39

Typical order of primitives:

1. List SCF Types (App)

2. Describe SCF Type (may be used for all possible types) (App)

3. Discover SCFs (App)

4. Select SCF (App)

5. Sign Service Agreement (App)

Description of interfaces:

• IpServiceDiscovery – discover which SCFs are registered into the framework. Acquire
the first contact to them.

• IpServiceAgreementManagement and IpAppServiceAgreementManagement – these
interfaces are used to mutually sign the proper service agreement between an application
and the picked SCF provider. It is one step before acquiring an SCF’s service manager
interface.

• IpEventNotification and IpAppEventNotification – information about which SCFs
are available or unavailable in the moment.

• IpFaultManager and IpAppFaultManager – these interfaces allow exchanging infor-
mation about serious problems encountered in the framework and in the application. They
are usable to ensure network integration.

• IpHeartBeatManagement and IpAppHeartBeatManagement, – these interfaces allow
to create heartbeat session, e.g. a continuously repeated message: “I am still alive”. The
message is sent from the application to the framework and from the framework to the
application.

• IpHeartBeat and IpAppHeartBeat – represent a heartbeat session. These interfaces
define the pulse() method, which is called periodically by a peer.

• IpLoadManager and IpAppLoadManager – gives the opportunity to set load management
policies and to control the congestion level (e.g. when the application cannot deal with
new, incoming calls).

• IpOAM and IpAppOAM – interfaces used to synchronize time and date between framework
and application.

CHAPTER 4. APIS’ FUNCTIONALITY, SCF BY SCF 40

4.2 Call Control SCF

Call Control (CC) SCF [26] is the hugest part of Parlay/OSA APIs. And the most significant
so far. It defines call control interfaces, which allow creating, destroying and managing calls in
any form (e.g. voice-carrying). The SCF is divided into four modules, starting from voice-only,
two-party Generic Call Control Service (GCCS) to Multiparty Call Control Service (MPCCS)
to Multimedia Call Control Service (MMCCS) and, finally, to the most complex Conference
Call Control (CCCS).

The inheritance diagram for “call” and the “call control manager” (service manager) inter-
faces is presented in Fig. 4.4. Although in former Parlay API versions (Phase 1 and 2) the base

IpCallControlManager

IpMultiPartyCallControlManager

IpMultiMediaCallControlManager

IpConfCallControlManager

 Service Managers:

IpCall

IpMultiPartyCall

IpMultiMediaCall

IpConfCall

Call interfaces:

GCCS

MPCCS

MMCCS

CCCS

Fig. 4.4: Dependence among the call and the call service manager interfaces.

interfaces for all the CC APIs were GCCS interfaces, in Phase 3 interfaces the dependency was
broken. Excluding GCCS, all CC “call” and “call control manager” base interfaces are MPCCS
ones. However, all the more complex SCFs support the GCCS’ call model. Consequently, on
the functional layer, GCCS is the base for other modules. Because in this chapter functional
features only are described, the GCCS is treated as if any other module inherited its function-
ality. Any single primitive which can be found in GCCS’ description can be also applied to
MPCCS, MMCCS and CCCS.

The sections that follow describe every call control module.

CHAPTER 4. APIS’ FUNCTIONALITY, SCF BY SCF 41

4.2.1 GCCS

Generic Call Control Service (GCCS) is a versatile set of interfaces, which could be applied to
various networks. They support two party-calls only and give no direct control over parties in
a call. The call model in Generic CCS is very simple. As shown in Fig. 4.5, it consists of two
objects: of type IpCall (on the application’s side) and of type IpAppCall (on the gateway’s
side). The parties (up to two) are not explicitly represented in this model.

appCall:IpAppCall call:IpCall

Application Gateway

Fig. 4.5: The GCCS’ call model

New calls may be created on the users’ request as well as by the application (in such case
the call is usually referred as third party call). Calls may be also destroyed by the application.
The application can turn on monitoring of specified users and events in the network. Finally,
the application may specify the charge plan (how and whom to charge for the service)2. Tables
4.8 and 4.9 present the list of possible operations.

2The Call Control SCF includes this very simple charging mechanisms, but the the Charging SCF (Section
4.10) defines much more complex and powerful API.

CHAPTER 4. APIS’ FUNCTIONALITY, SCF BY SCF 42

Tab. 4.8: Generic Call Control SCF’s API primitives – called by application

Primitive Description
Register Event This primitive allows the application to specify the event

that will be monitored by the network. An event may be
for instance: “offhook event”, „busy”, “answer from called
party”, etc. When the event appears, the gateway notifies
the application (by the “Notify of Event” primitive – Table
4.9).

Unregister Event This primitive is used to unregister an event (which was
previously registered with the “Register Event” primitive).

Connect Call with Specified Ad-
dress

This primitive connects the call to the specified user. It can
be used after being informed (from the gateway) about a
call attempt in the network (“Notify of Event”) or it can be
a third party (application-initiated) call as well.

Deassign from Call The application will be no longer assigned to the call. The
call will be handled by the network in ordinary way.

Create Call This primitive allows creating a call by the application (a
third party call).

End call This primitive ends the specified call. The entire call is
ended, all parties are disconnected by the network.

Set Charge Plan This primitive specifies the user who will be charged for
the call (originating, destination or, possibly, another user).
Additionally, the primitive sets a so-called charge plan for
a call, i.e. the way the user is charged. Charge plans are
operator-specific.

Set Load Control This primitive is used to set the maximum number of calls
that the gateway may pass to the application per certain
time interval, e.g. allows 1 call per 10 milliseconds (100
calls secondly).

CHAPTER 4. APIS’ FUNCTIONALITY, SCF BY SCF 43

Tab. 4.9: Generic Call Control SCF’s API primitives - called by gateway

Primitive Description
Notify of Event Once the event criteria (specified by the “Register Event”

primitive) have been met, this primitive is passed by the
gateway to the application.

Connect Response This primitive is passed to the application after a specified
progress with connecting the call (e.g. the destination user
answers a call, ringing timeout is reached, etc.).

Typical order of primitives for user-generated calls:

1. Register Event “address collected” (App)

2. Notify of Event (Svc)

3. Connect Call with Specified Address (App)

4. Deassign from Call (App)

5. Unregister Event (App)

Typical order of primitives for third party calls:

1. Create Call (App)

2. Connect Call with Specified Address (user A) (App)

3. Connect Response (from user A) (Svc)

4. Connect Call with Specified Address (user B) (App)

5. Deassign from Call (App)

Description of interfaces:

Service Manager: IpCallControlManager

• IpCallControlManager and IpAppCallControlManager – interfaces used to create,
supervise and destroy calls; allow enabling and disabling event notification.

• IpCall and IpAppCall – represent a call (at the gateway’s and application’s side, respec-
tively); allow routing calls and setting charging polices.

CHAPTER 4. APIS’ FUNCTIONALITY, SCF BY SCF 44

4.2.2 MPCCS

Multiparty Call Control Service (MPCCS) is a set of interfaces that provide GCCS’s functional-
ity, and additionally, it defines the multi-point conference functionality. Since this functionality
is not supported in some networks (like in fixed POTS networks), this set probably will not be
available everywhere.

On the API level, MPCCS differs from the GCCS’s interfaces and the inheritance relations
between respective interfaces have been broken.

In this model, every single call party is represented by a so-called call leg. It is possible to
add/subtract call legs to/from the call object during a call. Fig. 4.6 shows objects in a typical
2-party call based on MPCCS.

appCall:IpAppMultiPartyCall call:IpMultiPartyCall

Application Gateway

appLeg1:IpAppCallLeg

appLeg2:IpAppCallLeg

leg1:IpCallLeg

leg2:IpCallLeg

Fig. 4.6: The MPCCS’ call model

The new features of the MPCCS SCF (comparing to GCCS) are presented in Table 4.10.
Notice that MPCCS supports all the primitives presented in Section 4.2.1, in Tables 4.8 (for
applications) and 4.9 (for gateway). They are not showed here to not double the information.
Notice also that the “gateway table” is absent here since this module does not provide new
functionality.

CHAPTER 4. APIS’ FUNCTIONALITY, SCF BY SCF 45

Tab. 4.10: New MPCCS SCF’s API application’s primitives over GCCS primitives

Primitive Description
Create Call Leg Creates and returns a new call leg (related to a specified

call). At this moment the newly created call leg is an object
at the gateway’s side not related to any real user/address in
the network.

Show Call Legs This primitive is used to get all the call legs (which are
identified by addresses) related to the call specified in a pa-
rameter.

Route Call Leg This primitive links a user (specified by an address) to the
call leg. Once linked (connected), the user may be able or
not to send and receive any call-related media streams (it
depends to primitive’s parameters). If not – the applica-
tion should call the “Attach Media to Call Leg” primitive
(below).

Create and Route Call Leg This primitive creates a new call leg and immediately starts
routing procedures to the specified address. Note that in the
result of this primitive two call legs are created – the first
one directly, and the second indirectly if routing is success-
ful.

Attach Media to Call Leg After calling this primitive the call leg will be able to send
and receive all the call-related media streams. In other
words, in will be able to speak and hear. Note that before
calling this primitive, the call leg is “dump”.

Detach Media from Call Leg Detaches the call leg from all call media streams. The call
leg becomes “dump” again.

Release Call Leg This primitive releases the specified call leg, i.e. closes all
media streams and removes the user from the call.

CHAPTER 4. APIS’ FUNCTIONALITY, SCF BY SCF 46

Typical order of primitives:

1. Create Call (no users now) (App)

2. Create and Route Call Leg (two users in the call) (App)

3. Create Call Leg (App)

4. Route Call Leg (three users) (App)

5. Attach media (App)

6. Deassign from Call (App)

Description of interfaces:

Service Manager: IpMultiPartyCallControlManager

• IpMultiPartyCallControlManager and IpAppMultiPartyCallControlManager – in-
terfaces used to create and supervise multi-party calls, and enabling/disabling call notifi-
cation.

• IpMultiPartyCall and IpAppMultiPartyCall – represent the call on the SCF’s and
application’s side, respectively. They Allow call routing, acquiring call details, call de-
struction, and charging. Direct call leg control is possible.

• IpCallLeg and IpAppCallLeg – these interfaces represent a party in the call. They may
be created, destroyed and managed.

CHAPTER 4. APIS’ FUNCTIONALITY, SCF BY SCF 47

4.2.3 MMCCS

Multimedia Call Control Service (MMCCS) defines some mechanisms which may be used
when multimedia calls are involved (like in case of H.323 terminals). In addition to multimedia
versions of call and call leg interfaces, the special interface IpMultiMediaStream was defined,
which represents, following the H.323-based naming convention, a pair of uni-directional chan-
nels of the same media type but opposite direction (for audio and video) or a bi-directional
logical channel (for data). Fig. 4.7 shows a 2-party, 2-stream (audio+video) multimedia call.

appCall:IpAppMultiPartyCall call:IpMultiPartyCall

Application Gateway

appLeg1:IpAppCallLeg

appLeg2:IpAppCallLeg

leg1:IpCallLeg

leg2:IpAppCallLeg

audioStream1:
IpMultiMediaStream

videoStream1:
IpMultiMediaStream

audioStream2:
IpMultiMediaStream

videoStream2:
IpMultiMediaStream

Fig. 4.7: The MMCCS’ call model

In the figure, two call legs are controlled by the application. Physically, there are two streams
in the call. Every call leg “owns” two media stream objects but they are separate objects, even
if they physically point the same streams.

Tables 4.11 and 4.12 describe the new features comparing to MPCCS that appear in MM-
CCS. Notice that the MMCCS is inherited from MPCCS and it supports all the MPCCS’s oper-
ations: Create Call (Leg), Route Call Leg, Release Call (Leg) and others.

CHAPTER 4. APIS’ FUNCTIONALITY, SCF BY SCF 48

Tab. 4.11: New MMCCS SCF’s API application’s primitives over MPCCS primitives

Primitive Description
Enable Media Notification This primitive enables multimedia stream detection. When

specified conditions are met, i.e. a certain user opens a
stream of a specified type (e.g. voice) and properties (e.g.
the G.732.1 audio codec), the application will be notified.

Supervise Volume This primitive is used to set amount of granted data for the
call. If the amount is exceeded, the application will be no-
tified and the call treated as the application decides (e.g. it
will be released).

Attach Stream to Party This primitive attaches a given multimedia stream to a
party. From this moment, the party (represented by a call
leg) will be able to send/receive data through the stream.

Enable Stream Notification The primitive turns on/off stream event notification, i.e.
whether the stream is added/subtracted to/from the call.

Subtract Stream from Call This primitive, used by the application, removes the stream
from the call.

Tab. 4.12: New MMCCS SCF’s API gateway’s primitives over MPCCS primitives

Primitive Description
Notify of Media Event This primitive is used by the gateway when certain criteria

are met in network. The application will be informed about
the event, all parties involved in the call and all attached
media streams.

Notify of Stream Event This primitive is used by the gateway to tell the application
that the monitored stream-related event appeared.

CHAPTER 4. APIS’ FUNCTIONALITY, SCF BY SCF 49

Typical order of primitives:

1. Enable Media Notification (App)

2. Notify of Media Event (Svc)

3. Enable Stream Notification (App)

4. Notify of Stream Event (Svc)

5. Attach Stream to Party (App)

6. Subtract Stream from Call (App)

7. Stop supervising call (App)

Description of interfaces:

Service Manager: IpMultiMediaCallControlManager

• IpMultiMediaCallControlManager and IpAppMultiMediaCallControlManager – the
pair of interfaces responsible for creating new multimedia calls and managing call event
notification.

• IpMultiMediaCall and IpAppMultiMediaCall – these interfaces represent a multime-
dia call; have the same functionality as Multi-Party Call interfaces (part of MPCCS), but
these are enhanced by volume supervision.

• IpMultiMediaCallLeg and IpAppMultiMediaCallLeg – represent a party (identified
by an address) in a multimedia call; linked to zero or more multimedia streams.

• IpMultiMediaStream – represents a multimedia stream, i.e. audio/video/data bi-directional
data stream.

CHAPTER 4. APIS’ FUNCTIONALITY, SCF BY SCF 50

4.2.4 CCCS

This module (Conference Call Control Service) provides the conference features. In this model,
presented in Fig. 4.8, a conference is a certain abstraction which includes one (or more) so-
called sub-conferences. The conference interfaces (of types IpConfCall at the gateway’s
and IpAppConfCall at the application’s side) and sub-conference ones (IpSubConfCall and
IpAppSubConfCall) objects are inherited from the multimedia call interfaces (IpMultiMediaCall
and IpAppMultiMediaCall). In consequence, any conference is a call and any sub-conference
is also a call. And, as every call, the conferences and sub-conferences are the collections of call
legs (representing parties in the call).

appConf:IpAppConfCall conf:IpConfCall

Application Gateway

appSubConf:IpAppSubConfCall subConf:IpSubConfCall

appLeg1:IpAppCallLeg

appLeg2:IpAppCallLeg

leg1:IpCallLeg

leg2:IpCallLeg

Fig. 4.8: The CCCS’ call model

The difference between conference and sub-conference is that the former have the oppor-
tunity to create sub-conferences, but the latter (sub-conference) have quite a wide spectrum of
more specific operations. The operations include: splitting and merging sub-conference, mov-
ing parties from one to another conference, choosing the chair and the likes. Every conference
has also defined a conference policy, i.e. whether the conference can be joined, what kind of
media is allowed and if the conference is chaired. All the CCCS’s operations are presented in
Tables 4.13 and 4.14.

CHAPTER 4. APIS’ FUNCTIONALITY, SCF BY SCF 51

Tab. 4.13: New CCCS SCF’s API application’s primitives over MMCCS primitives

Primitive Description
Create New Conference This primitive (called by the application) is used to create

a new conference object. The number of participants and
sub-conferences are specified, but the number may be ex-
cessed in future (although the resources are not guaranteed
for those “extra” participants).

Reserve Resources This primitive is used to reserve certain amount of band-
width resources in the network for a specified number of
conference participants at the specified time for a given pe-
riod of time. At the requested time, if resources can be re-
served, the gateway informs the application with the “Con-
ference Created” primitive.

Free Resources This primitive releases the previously reserved resources.
Create New Sub-conference This primitive creates a new sub-conference.
Split Sub-conference This allows splitting a sub-conference into two ones (the

new sub-conference appears). The parties which have to
be transferred to the new sub-conference are specified with
this primitive.

Merge Sub-conference This merges a sub-conference into other one. The merged
sub-conference is released, all its call legs now start to be-
long to the target conference.

Move Call Leg This primitive moves the specified call leg from one sub-
conference into another.

Inspect Video This specifies which video stream will be sent to the chair
of the conference.

Appoint Speaker This primitive is used to give a user the permission to talk
(in multi-user conferences not all of participants may be
allowed to speak simultaneously).

Select Chair This selects the chair of the conference from the group of
call legs.

Set Conference Policy This primitive allows setting policy during a call (in an ad-
hoc manner).

CHAPTER 4. APIS’ FUNCTIONALITY, SCF BY SCF 52

Tab. 4.14: New CCCS SCF’s API gateway’s primitives over MMCCS primitives

Primitive Description
Conference Created The gateway uses this primitive to tell the application that

the (previously requested with the Reserve Resources prim-
itive) conference has been created and the resources re-
served.

Party Joined Conference This primitive is passed from the gateway to the application
when a party has joined the conference.

Party Left Conference This primitive is passed from the gateway to the application
when a party has left the conference.

CHAPTER 4. APIS’ FUNCTIONALITY, SCF BY SCF 53

Typical order of primitives:

1. Create New Conference (App)

2. Create New Sub-conference (App)

3. Party Joined Conference(Svc)

4. Party Joined Conference (Svc)

5. Split Sub-conference (App)

6. Release Call (in this case “Call” means “Conference”) (App)

Description of interfaces:

Service Manager: IpConfCallControlManager

• IpConfCallControlManage and IpAppConfCallControlManager – the purpose of these
interfaces is to create conferences and reserve some resources for a given period of time.

• IpConfCall and IpAppConfCall – represent a conference; since they are inherited from
IpMultiMedia(App)Call they support all the multi-party and multi-media call features.

• IpSubConfCall and IpAppSubConfCall – represent a sub-conference; allow splitting
and merging sub-conferences, moving call legs, chair selecting, giving a speaker the floor,
and choosing the video stream for the chair; inherited from IpMultiMedia(App)Call.

CHAPTER 4. APIS’ FUNCTIONALITY, SCF BY SCF 54

4.3 User Interaction SCF

This SCF [27] is used to allow the application communicate interactively with users. The ap-
plication can send textual messages to the user (like “Enter PIN”, “Type password” and others);
additionally, it may order the network to play specified voice announcement to the user. As
for the application, it can collect messages typed by users on their terminals (PINs, SMSes) to
further process them.

There are two sets of the User Interaction (UI) interfaces. The first set, represented by inter-
faces IpUI and IpAppUI, is a standalone set – the application may interact (e.g. send messages)
with users separately from any call. The other set, represented by interfaces IpUICall and
IpAppUICall, is related to an existing call (as described in section 4.2). The UICall inter-
faces are inherited from the UI interfaces. In addition, they define possibility to record voice
messages (e.g. to replay them later). Both sets are shown in tables 4.15 and 4.16.

CHAPTER 4. APIS’ FUNCTIONALITY, SCF BY SCF 55

Tab. 4.15: User Interaction API application’s primitives

Primitive Description
Enable UI Notification This primitive allows to enable notification about user’s UI

activity (which is usually a typing of a textual message, but
the operator may widen the spectrum of possible activities).
As a parameter, the application specifies the user’s address.

Disable UI Notification Turns off the notifications previously turned on by the “En-
able UI Notification” primitive.

Send Information to User The application uses this primitive to send information (e.g.
textual) to the user or play an announcement on the user’s
terminal.

Collect Information from User The primitive requests that the gateway should collect some
data (e.g. textual) from a specified user. The application
specifies the criterion of that type of data should be col-
lected.

Record Message (UICall only) Requests to record (save) all what is being
told during the call.

Delete Message (UICall only) Deletes the message (which had been previ-
ously recorded with the “Record Message” primitive).

Tab. 4.16: User Interaction API gateway’s primitives

Primitive Description
Notify of UI Event This primitive is used by the gateway to signal to the ap-

plication the activity of monitored users. The activity is
usually a short textual message.

CHAPTER 4. APIS’ FUNCTIONALITY, SCF BY SCF 56

Typical order of primitives:

1. Enable UI Notification (App)

2. Notify of UI Event (Svc)

3. Send Information to User (App)

4. Collect Information from User (App)

5. Disable UI Notification (App)

Description of interfaces:

Service Manager: IpUIManager

• IpUIManager and IpAppUIManager – these two interfaces are used to create, destroy
and control user interaction session. IpUIManager provides both the IpUI and IpUICall
object factory.

• IpUI and IpAppUI – represent a user interaction session (on the gateway and on the
application side, respectively).

• IpUICall and IpAppUICall – represent a user interaction session (this one is always
linked to a call).

CHAPTER 4. APIS’ FUNCTIONALITY, SCF BY SCF 57

4.4 Mobility SCF

This SCF [28] has two main functions. First, it has the user location features. They may be
used to localize the position of mobile, fixed or IP-telephony terminal. The other function of
this SCF is called User Status (US) feature, i.e. user’s reachability in the specified moment.

The location features have been divided into three modules:

1. User Location (UL) Feature – this module is used to acquire the geographical position of
a given user. The returned values are latitude, longitude and uncertainty shape.

2. User Location Camel (ULC) Feature – the information that may be acquired with this
module are rather network-based that geographical. The geographical coordinates can be
also returned if requested (and supported).

3. User Location Emergency (ULE) Feature – this module is used to automatically localize
the user in case of an emergency call (e.g. police, fire, ambulance services).

The features of the User Location module and the User Status module primitives are pre-
sented in Tables 4.17 and 4.18. Since UCL and ULE modules may be viewed as “special cases”
of UL, they are not shown here.

CHAPTER 4. APIS’ FUNCTIONALITY, SCF BY SCF 58

Tab. 4.17: Mobility SCF’s API application’s primitives

Primitive Description
Localize User This primitive allows to localize a given user (specified by

the address).
Enable Localization Reporting This primitive is used to turn on periodic user localization.

The message about actual user position is send to the appli-
cation every specified period of time.

Disable Localization Reporting This primitive turns off the periodic user localization (en-
abled with the “Enable Localization Reporting” primitive).

Enable Triggered Localization This primitive allows the application to set certain triggers
on a user. When the user meets given conditions (i.e. en-
ters or leaves the specified area) the application will be in-
formed about the fact.

Disable Triggered Localization This primitive turns off the triggered user localization (en-
abled with the “Enable Triggered Localization” primitive).

Determine User Status This operation determines the user’s state. The state can be
reachable, unreachable or busy.

Enable Triggered State Reporting This primitive is used to turn on user state monitoring. The
application will be informed only if the user’s state changes
(e.g. he/she just becomes reachable).

Disable Triggered State Report-
ing

This primitive turns off the specified state reporting (en-
abled with the “Enable Triggered State Reporting” primi-
tive).

CHAPTER 4. APIS’ FUNCTIONALITY, SCF BY SCF 59

Tab. 4.18: Mobility SCF’s API gateway’s primitives

Primitive Description
Report Localization This primitive is a localization report sent to the application

from the gateway periodically after the “Enable Localiza-
tion Reporting” operation has been called.

User Enters/Leaves Area This primitive is send from the gateway to the applica-
tion when a monitored user enters/leaves the specified area.
Such primitives are set only if there was a former “Enable
Triggered Localization” call.

User Status Changed This primitive is send from the gateway to the application
if the monitored user’s status has changed. This notifying
takes place only if it was formerly enabled by the “Enable
Triggered State Reporting” primitive.

CHAPTER 4. APIS’ FUNCTIONALITY, SCF BY SCF 60

Typical order of primitives:

1. Enable Localization Reporting (App)

2. User Enters Area (Svc)

3. Disable Localization Reporting (App)

4.4.1 User Location Interfaces

Service Manager: IpUserLocation

• IpUserLocation and IpAppUserLocation – interfaces that allow enabling/disabling
user location features (described in Tables 4.17 and 4.18).

• IpTriggeredUserLocation and IpAppTriggeredUserLocation – these two interfaces
are inherited from IpUserLocation and IpAppUserLocation, respectively. The “trig-
gered” interfaces enhance the functionality by adding trigger functionality (the applica-
tion is informed when the user enters of leaves certain region/area).

4.4.2 User Location Camel Interfaces

Service Manager: IpUserLocationCamel

• IpUserLocationCamel and IpAppUserLocationCamel – these interfaces allow using
the “Camel” of location features (network localization instead of the geographic one).
These two include the trigger functionality.

4.4.3 User Location Emergency Interfaces

Service Manager: IpUserLocationEmergency

• IpUserLocationEmergency and IpAppUserLocationEmergency – the “Emergency”
versions of the above interfaces.

4.4.4 User Status Interfaces

Service Manager: IpUserStatus

• IpUserStatus and IpAppUserStatus – these two interfaces contain all the User Status
(US) functionality. They include trigger functionality.

CHAPTER 4. APIS’ FUNCTIONALITY, SCF BY SCF 61

4.5 Terminal Capabilities SCF

This SCF [29], the smallest one, is used to acquire some information about user terminal which
is specified by address. The information returned is not fully defined by Parlay/OSA APIs. It
is expected to include URLs, terminal attributes and other values3. Table 4.19 shows supported
operations.

3The reader may be surprised that some APIs’ elements may be not specified in those strictly-defined APIs.
However, to improve flexibility, many data elements in Parlay/OSA APIs are defined as “strings”, and those string
values are not specified by the standard. Thus the API is both coherent and flexible.

CHAPTER 4. APIS’ FUNCTIONALITY, SCF BY SCF 62

Tab. 4.19: Terminal Capabilities SCF’s API application’s primitives

Primitive Description
Get Terminal Capabilities This primitive returns a data set about a given user terminal

(e.g. mobile phone)

CHAPTER 4. APIS’ FUNCTIONALITY, SCF BY SCF 63

Description of interfaces:

Service Manager: IpTerminalCapabilities

• IpTerminalCapabilities interface is the only interface that has one method, which is
called getTerminalCapabilities().

CHAPTER 4. APIS’ FUNCTIONALITY, SCF BY SCF 64

4.6 Data Session Control SCF

This SCF [30] is used to manage data sessions (DS), like the GPRS ones. It has a simple call
model, which is in some aspects similar to the GCCS model. The main difference is that here
all calls are initiated by terminals, i.e. there is no possibility to create third party calls. Tables
4.20 and 4.21 present the primitives for this SCF.

CHAPTER 4. APIS’ FUNCTIONALITY, SCF BY SCF 65

Tab. 4.20: Data Session Control SCF’s API application’s primitives

Primitive Description
Enable DS Notification This primitive turns on the specified data session events

monitoring (“DS setup”, “DS established”, “DS QoS
Changed”).

Disable DS Notification This primitive turns off event monitoring enabled with the
“Enable DS Notification”.

Connect Call with Specified Ad-
dress

This primitive routes the call to the specified user. It is used
by the application after having acquired an event from the
gateway.

Release Session This primitive releases an existing data session and all the
related resources (at the gateway side and in the network).

Set Charging Plan for Session This primitive requests how the data session must be
charged (currency, amount of money, time interval per a
“tick”).

Supervise Session This primitive enables session supervision, i.e. allows the
application setting how much bytes may be sent during a
single session and how to treat the session if the limits have
been reached (e.g. to release it).

Tab. 4.21: Data Session Control SCF’s API gateway’s primitives

Primitive Description
Report the X Event This primitive tells the application that the monitored event

has appeared. The event information (addresses, event
name, QoS class) is passed with this primitive.

Supervision Data Session Report This primitive is sent by the gateway to tell the application
that the volume limits have been reached; the gateway be-
haves in the way specified in the “Supervise Session” prim-
itive parameters.

CHAPTER 4. APIS’ FUNCTIONALITY, SCF BY SCF 66

Typical order of primitives:

1. Enable DS Notification (App)

2. Report Event (Svc)

3. Set Charging Plan for Session (App)

4. Connect Call with Specified Address (App)

5. Supervision Data Session Report (Svc)

6. Release Session (App)

Description of interfaces:

Service Manager: IpAppDataSessionControlManager

• IpAppDataSessionControlManager and IpDataSessionControlManager – the pair
of interfaces used to create sessions and manage event notifications.

• IpAppDataSession and IpDataSession – represent a session (which is the equivalent
of a call in Call Control SCF); allow connecting, setting charging plans, and session
supervision.

CHAPTER 4. APIS’ FUNCTIONALITY, SCF BY SCF 67

4.7 Generic Messaging SCF

This SCF [31] delivers mechanisms which are used to manage (send, acquire) messages. In this
model (presented in the Fig. 4.9), a message resembles an e-mail: it is described by a sender,
an addressee, a specified format, and other properties. Messages are collected in folders and
folders are attached to mailboxes. A single messaging manager (the service manager for this
SCF) may open several mailboxes at the same time.

Notice that the application have no access to the messages’ bodies (text, attachments) nor
cannot generate the content. All it can do is getting and sending messages, and performing of
operations on messages’ properties (addresses, dates, carbon copies, ...).

box:IpMailBox

Application Gateway

inbox:IpMailboxFolder

mesg1:IpMessage

mesg2:IpMessage

...

outbox:IpMailboxFolder

...

Fig. 4.9: The Generic Messaging call model

As shown in the Fig. 4.9, all mailboxes, folders and messages are located at the gateway’s
side – there are no App versions of those interfaces. The figure presents a mailbox with two two
folders. The mailbox, like every mailbox in this model has an owner. The folders are called
inbox and outbox, and these two are always present in every Generic Messaging (GM) SCF
instance. Putting a message to the outbox folder means sending it. Naturally, the GM SCF
supports the event notification features (that a new message has arrived), but this is achieved
by means of the manager and app-manager interfaces (not shown in the figure). All the SCF’s
primitives are presented in Tables 4.22 and 4.23.

CHAPTER 4. APIS’ FUNCTIONALITY, SCF BY SCF 68

Tab. 4.22: Generic Messaging SCF’s API application’s primitives

Primitive Description
Enable Message Notification This primitive is used to enable notification of arriving mes-

sages.
Disable Message Notification This primitive disables the specified message notification

(enabled with the “Enable Message Notification” primi-
tive).

Lock Mailbox This primitive locks the mailbox. If locked, no other appli-
cations/threads can access the mailbox.

Unlock Mailbox This primitive unlocks the mailbox (formerly locked with
the “Lock Mailbox” primitive).

Modify Mailbox Properties This primitive is used to modify mailbox properties, i.e.
mailbox identifier, mailbox owner, folders and dates.

Remove Mailbox This primitive removes the mailbox and all included fold-
ers/messages.

Create Folder This primitive creates a new folder.
Open Folder This primitive opens a (previously created) folder; once

opened, it can be accessed.
Get Message This primitive is used to get messages from a specified

folder; once a message is “got” it can be accessed.
Put Message This primitive is used to put the message to a folder; if the

message is “put” to the outbox folder, it will be sent to the
addressee.

Modify Folder Properties This primitive is used to modify folder properties.
Close Folder This primitive closes the folder; no further access until it is

opened again.
Remove Folder This primitive removes the folder and all messages inside.
Get Message Properties This primitive is used to acquire message’s properties, i.e.

sender, subject, dates (when sent, when received, ...), size,
format, and so on.

Modify Message Properties This primitive allows to modify message’s properties (com-
pare “Get Message Properties”, above).

Remove Message This primitive removes the message from a specified folder.

Tab. 4.23: Generic Messaging SCF’s API gateway’s primitives

Primitive Description
Message Arrived This primitive is used by the gateway to notify the applica-

tion that a new message has just arrived.

CHAPTER 4. APIS’ FUNCTIONALITY, SCF BY SCF 69

Typical order of primitives:

1. Enable Message Notification (App)

2. Message Arrived (Svc)

3. Lock Mailbox (App)

4. Open Folder inbox (App)

5. Get Message (App)

6. Get Message Properties (App)

7. Modify Message Properties (App)

8. Put Message into outbox (App)

9. Close Folder inbox (App)

10. Unlock Mailbox (App)

Description of interfaces:

Service Manager: IpMessagingManager

• IpMessagingManager and IpAppMessagingManager – the pair of interfaces that allow
message arrival management, opening mailboxes and detecting faults in mailboxes.

• IpMailbox – represents a mailbox; gives access to folders.

• IpMailboxFolder – represents a folder; allows putting and getting (sending and acquir-
ing) messages; gives access to them.

• IpMessage – represents a message; its properties may be modified, and the message may
be taken and put from/to various folders.

CHAPTER 4. APIS’ FUNCTIONALITY, SCF BY SCF 70

4.8 Connectivity Manager SCF

This SCF [32] is used by the enterprise operator (note: not the application). Its purpose is
to manage virtual private networks (VPNs), i.e. which sites they include and how they are
connected by means of virtual provisioned pipes (VPrPs). VPrP is a link between 2 sites, a time
slot for instance. A collection of VPrPs is called a virtual provisioned network (VPrN). Sites
and networks cannot be created or modified using this API. They must be defined using off-line
methods which are not defined Parlay/OSA.

Virtual provisioned pipes are created inside virtual provisioned networks at the request of the
enterprise operator. The enterprise operator uses so-called quality of service (QoS) templates to
create them. In short, every VPrP is associated with a QoS template. A template is a kind of a
pattern defining every detail about QoS. First, it has a type (e.g. “Gold”, “Silver” or “Bronze”).
It has also a set of properties, e.g. call policy, bandwidth, delay, jitter, packet loss and others.
Templates cannot be created by the enterprise operator. Many properties may be specified only
by the SCF provider and thus they are read-only for the enterprise operator. Other properties can
be changed. It is the SCF provider who sets which properties are read-only and which are not
for the enterprise operator (e.g. the provider may allow enterprise operator setting bandwidth,
but not delay). The primitives supported by this SCF are shown in Table 4.24. They are all
generated by the enterprise operator.

CHAPTER 4. APIS’ FUNCTIONALITY, SCF BY SCF 71

Tab. 4.24: Connectivity Manager SCF’s API primitives

Primitive Description
Get Site List This primitive returns the full list of sites which form the

VPN (or enterprise network, as it is called here)
Get Site Details The primitive is used to acquire some specific information

about a given site: the list of service access points (SAPs),
site location, description, and IP subnet details (in case of
an IP network).

Get Template List This primitive returns the list of possible QoS templates.
Get Template Details This primitive acquires information about the template: its

type, description, associated SLA, QoS details and validity
(when the template can be used, e.g. only in weekends).

Get VPrP List This primitive acquires the list of all virtual provisioned
pipes of the virtual provisioned network.

Create VPrP This primitive creates a new virtual provisioned pipe.
Delete VPrP This primitive deletes an existing virtual provisioned pipe.
Get VPrP Details This primitive acquires VPrP details, i.e. SLA, QoS de-

tails, validity and status (whether it is active, pending or
disallowed).

CHAPTER 4. APIS’ FUNCTIONALITY, SCF BY SCF 72

Typical order of primitives:

1. Get Template List (EntOp)

2. Get Template Details (EntOp)

3. Create VPrP (EntOp)

4. Get VPrP Details (EntOp)

5. Delete VPrP (EntOp)

Description of interfaces:

Service Manager: IpConnectivityManager

• IpConnectivityManager – the service manager; gives access to QoS menus and enter-
prise network objects.

• IpEnterpriseNetwork – this represents the enterprise network; gives access to network
sites and the related VPrN.

• IpEnterpriseNetworkSite – this represents any network site in the enterprise network.

• IpQoSMenu – this interfaces gives access to QoS templates.

• IpQoSTemplate – this represents a QoS template.

• IpVPrN – represents a virtual provisioned network (a collection of VPrPs).

• IpVPrP – represents a virtual provisioned pipe.

CHAPTER 4. APIS’ FUNCTIONALITY, SCF BY SCF 73

4.9 Account Management SCF

This SCF [33] is used to retrieve information related to user’s accounts maintained by the op-
erator and the money they are being (and have been) charged by the operator. Note, that the
application cannot change the state of the account; only inquire about it. Tables 4.25 and 4.26
show the most important primitives.

CHAPTER 4. APIS’ FUNCTIONALITY, SCF BY SCF 74

Tab. 4.25: Account Management SCF’s API application’s primitives

Primitive Description
Enable Account Notification This primitive enables the notification about any charging

activity for a specified users. The activity can be specified
in a parameter and it may be: “charging event”, “recharg-
ing”, “account is low”, “account is zero” and “account is
disabled”.

Disable Account Notification This primitive disables the notification (enabled with the
“Enable Account Notification” primitive).

Query Balance This is used to acquire the specific information about a
given account including detailed information about amount
of money charged.

Get Transaction History This retrieves the history of transactions for a given user
within a given time period.

Tab. 4.26: Account Management SCF’s API gateway’s primitives

Primitive Description
Report the X Event This primitive (called by the gateway on the application)

tells that the monitored event has appeared.

CHAPTER 4. APIS’ FUNCTIONALITY, SCF BY SCF 75

Typical order of primitives:

1. Enable Account Notification for “charging event” (App)

2. Report the charging event for User A (Svc)

3. Report the charging event for User B (Svc)

4. Disable Account Notification (App)

5. Get Transaction History for User C (App)

Description of interfaces:

Service Manager: IpAccountManager

• IpAccountManager and IpAppAccountManager – a pair of interfaces supporting the
functionality described above.

CHAPTER 4. APIS’ FUNCTIONALITY, SCF BY SCF 76

4.10 Charging SCF

This SCF [34] is was designed to charge users, i.e. to measure and reserve money 4 on user’s
account (maintained by the operator). This SCF many be used, for example, to build a billing
application. First, some amount of money can be reserved by the applications in the framework.
Next, during a call, the amount may be added and subtracted from the reserved amount, depend-
ing on the price for the application’s usage. Table 4.27 shows the most important features of
this SCF’s API. All presented primitives are application’s primitives.

4this SCF may be also used to operate on specified units (e-mails, bytes of data, etc.), not only money. However,
to make the description clear, we do not discuss this case here.

CHAPTER 4. APIS’ FUNCTIONALITY, SCF BY SCF 77

Tab. 4.27: Charging SCF’s API application’s primitives

Primitive Description
Reserve X Amount of Money This primitive is used to reserve a given amount of money.
Release Reservation This primitive is used to release a reservation made with

the “Reserve Amount of Money” primitive.
Debit Amount of Money This primitive subtracts some amount of money from the

reserved amount. The debit depends on the price of the
service usage.

Credit Amount of Money Add some amount of money to the previously reserved
amount. This may happen, for instance, in case of bonus
rechargements.

Get Amount of Money Left The primitive returns the amount of money that has left
from the reserved amount.

Rate the A User This primitive is used to present the pricing information to
the specified end user A.

CHAPTER 4. APIS’ FUNCTIONALITY, SCF BY SCF 78

Typical order of primitives:

1. Reserve 10 EUR (App)

2. Debit 1 EUR (App)

3. Get Amount of Money Left (App)

4. Debit 1.5 EUR (App)

5. Release Reservation (App)

Description of interfaces:

Service Manager: IpChargingManager

• IpChargingManager and IpAppChargingManager – this pair is used to create charging
sessions (every single session is linked to a specified user).

• IpChargingSession and IpAppChargingSession – these interfaces represent a charg-
ing session. All the operations (described in the Table 4.27) may be undertaken on the
IpChargingSession interface, while the latter one is used to acquire responses.

Chapter 5

Service Design in Parlay/OSA

5.1 Introduction

This chapter describes how to develop an application using Parlay/OSA. It describes in details
which objects must be implemented, and how they should behave (in form of UML diagrams).
Some author’s solutions are presented here (like inter-object communication, synchronization)
and source code fragments in Java are provided. The full application’s sources are also available
(Appendix C).

During the research, the author found several references to Parlay/OSA test applications.
The very first ones were developed by big companies, especially the Parlay Group members,
like Lucent [35] or Ericsson [4]. Other implementations were academic projects: G. Weitoft
and P. von Dolwitz in their MSc thesis [36] described a Parlay non-middleware application and
“gateway”. They (manually) generated the Java APIs from IDL sources and integrated this with
the INAP protocol. P. Ebben in his MSc thesis [37] discusses the integrity aspects of using
Parlay/OSA and tests the implementation with the SPIN program. One of the earliest imple-
mentation is the one presented as a part of Eurescom P909 project [7]. This implementation is
based on Parlay v1.2.

The author hopes that by now the application described here and the examples would be
useful for someone who tries to create an application in Parlay/OSA, and especially for all
those who want to get familiar with the potentials of the APIs.

5.2 Testing platform

Very fortunately, during the research on this work, Ericsson published its free platform called
“Ericsson OSA/Parlay Simulator”. It saved the author much effort with designing a Parlay/OSA
gateway.

The simulator, written entirely in Java, is built of a network part and a Parlay/OSA gateway
part. The network part allows to built a simple network consisting of a set of terminals (mobile
phones) and to assign addresses to them. Once the network is built, calls may be started from
terminals (by typing telephone numbers). They are routed to specified addresses.

79

CHAPTER 5. SERVICE DESIGN IN PARLAY/OSA 80

The Parlay/OSA gateway part is strictly linked to the network part. Naturally, the network
can work without any Parlay/OSA application, but the whole default behaviour may be changed
and altered by applications.

Here, apart from the framework module, the gateway is built of two SCFs: Call Control and
User Interaction. They both are not fully implemented (not all methods are workable). Besides,
this implementation is based on the 3GPP version (release 4) of the APIs [38] (based on Parlay
phase 2, compare Section 1.4), which is much smaller than original Parlay APIs. Especially,
is does not support multimedia and conference modules. However, the spectrum of supported
features in the Ericsson gateway is broad enough to allow creating powerful applications.

Two applications are provided with the simulator as examples: “Call Barring”, and “Web
Dial”. They are very useful examples of how to use the Parlay/OSA APIs. What is more,
every application includes some common classes provided by Ericsson (packages, placed in
com.ericsson are named: datastructures, configuration, parlay, tracebug), which
have some framework mechanisms implemented (e.g. authorization, getting access). They all
are put to Java archive file classes.jar and are used by the application presented below. This
helped to separate the author’s code from the Ericsson’s. Additionally, the Ericsson’s applica-
tions and the gateway use a special library, security.jar, which implements security proce-
dures, i.e. encrypting, digital signing and supporting classes. All 3GPP OSA interfaces were
provided in the parlay3gpp.jar file, which were generated from appropriate IDL sources,
compiled with Java and archived with Java archiver (jar).

5.3 Application

The application presented here is simply a number translation application. In other words, the
application is informed any time when a specified user types a specified number. Then, the
application’s logic changes the destination number, and, in consequence, the calling user is
routed to the new (translated) number.

There can exist many variations of number translation. First, some numbers may be trans-
lated for all subscribers in the same manner in a given area (that is how IN’s 0800 works). Next,
some users may be treated independently and their destination numbers translated differently.

In the case being described here, only one user is monitored. The triggered telephone num-
ber is “1”. If the user types a number of equal or greater value than 10, it is rerouted to number
value modulo 10. Otherwise, it will be routed the number requested. This example will show
how simple would be writing fairly exotic applications.

To achieve this goal, the application uses the GCCS module of the Call Control SCF. The
pseudocode for the application is shown in Fig. 5.1. The pseudocode uses primitives, which
are described in Tables 4.8 and 4.9 (Section 4.2.1). The “Create New Destination Address”
procedure returns a new destination address.

Note that the application is working in its own thread. The gateway has also its (separate)
thread. If any of them call a method on the peer’s object, it is done in the thread of method’s
callee.

When using the GCCS module, the two following interfaces have to be implemented by the
application: IpAppCallControlManager and IpAppCall. Their purpose is to work as callback

CHAPTER 5. SERVICE DESIGN IN PARLAY/OSA 81

1 R e g i s t e r Event (" Address Analyzed Event ") ;
2 do {
3 w a i t f o r " N o t i f y o f Event " from gateway ;
4 newAddress = C r e a t e New D e s t i n a t i o n Address (d i a l e d A d d r e s s) ;
5 Connect User wi th S p e c i f i e d Address (newAddress) ;
6 D e a s s i g n from C a l l ;
7 } whi le (t rue) ;

Fig. 5.1: Application logic – pseudocode

objects: the former is an event collector and the latter – application’s representation of a call.
Since those two interfaces cannot be instantiated theirselves (interfaces are always abstract),
the following classes implement them: the AppCallControlManager class (which implements
IpAppCallControlManager) and AppCall (which implements IpAppCall). They are placed
in files AppCallControlManager.java and AppCall.java, respectively.

Additionally, some specific classes have been developed as parts of the application. They
all are prefixed with MyApp to show that they are implementation-specific (not defined by Par-
lay/OSA APIs):

• MyAppInit – the object of this class is responsible for initializing CORBA system, ac-
quiring the IpInitial object from the CORBA name service, authenticating and get-
ting access to the framework and discovering available SCFs (all this by using Ericsson-
provided procedures). Then, it acquires the GCCS’ call control service manager object
(IpCallControlManager). Finally, it creates the application logic object (MyAppLogic,
below) passing to it the service manager’s reference. File: MyAppInit.java.

• MyAppLogic is the “main logic” of the application. First, it enables call notification by
calling appropriate method on the IpCallControlManager-class object. Next, it starts
waiting. When an event appears, it is processed here: the destination address is computed
and it is passed to the gateway. After that, the application deassigns from the call, and
starts waiting for next events. File: MyAppLogic.java

• MyAppEvent – this class represents an event (and all related data) that appears at the
gateway and is passed to the application. File: MyAppEvent.java

• MyAppEventQueue – this is a queue of events. This FIFO queue is used by the callback
object (AppCallControlManager) to put all the events it gets from the gateway. Then
the events (MyAppEvent) are taken by the application logic (MyAppLogic).

The queue implements two methods: get() (used by the application logic) and put()
(used by the callback objects). The methods are synchronized (i.e. thread-safe). If there
are no events while calling get(), then the thread is blocked until a new event appears.
File: MyAppEventQueue.java

Furthermore, the following jar files (described in Section 5.2) are included to the program:
parlay3gpp.jar, security.jar, classes.jar.

CHAPTER 5. SERVICE DESIGN IN PARLAY/OSA 82

Since the framework procedures were not developed by the author, they will be not described
here at all. Usually those procedures follow the similar pattern but they may include very
specific procedures (e.g. authorization methods). However, the initial procedures’ development
should not influence the application logic’s development. In the application presented here, the
initial procedures (MyAppInit) are separated from the application logic (MyAppLogic).

The description of the application starts in the moment when it already possesses an object
reference to the call control manager object. What happens next is presented in Fig. 5.2.

appCcMgr:
AppCallControlManager:
IpAppCallControlManager

appLogic:MyAppLogic

1: <<create>>

2: Preparation of the
eventCriteria object
(event name and
monitored addresses)

ccMgr:
IpCallControlManager

3: enableCallNotification
(appCcMgr, eventCriteria, out assign)

Application Gateway

Fig. 5.2: Enabling call notification

First, a new AppCallControlManager object (derived from the IpAppCallControlManager
interface) is created at the application’s side.

Next, the event details and the appropriate user’s address must be prepared. In Parlay/OSA
there is a special structure, which contains all data needed. The TpCallEventCriteria struc-
ture is defined in IDL as shown in Fig. 5.3. The two first fields are addresses ranges: destination

1 s t r u c t T p C a l l E v e n t C r i t e r i a {
2 TpAddressRange D e s t i n a t i o n A d d r e s s ;
3 TpAddressRange O r i g i n a t i n g A d d r e s s ;
4 TpCallEventName CallEventName ;
5 T p C a l l N o t i f i c a t i o n T y p e C a l l N o t i f i c a t i o n T y p e ;
6 TpCallMonitorMode MonitorMode ;
7 } ;

Fig. 5.3: The IDL definition of the TpCallEventCriteria structure

address and originating address. Addresses in Parlay/OSA may have various forms: telephone
E.164 numbers, IPv4 and IPv6 addresses (multicast as well as unicast), URL, SMTP, X.400,
and a few others. That is why the special wrapper class, TpAddress, was introduced.

The TpAddressRange class, which is used as the address type in Fig. 5.3, has broader mean-
ing: the address string can cover many possible addresses due to using wildcards (in TpAddress
they are forbidden). Parlay/OSA defines two wildcards: “*” (meaning zero or more characters)
and “?”, meaning only one character. The examples of E.164 addresses are: “12345*” – all
numbers starting with “12345”; “12345?” – all six-digit numbers starting with “12345”; “*” –
any address.

CHAPTER 5. SERVICE DESIGN IN PARLAY/OSA 83

In the program presented here, the originating address is “1” but the destination can be any
address. Then “*” is set in the DestinationAddress field (filling of the structure is shown in
Fig. 5.4).

The next field, TpCallEventName, specifies the name of event. The possible events are:

• Offhook event the user has just started calling procedures, the line is hung, but no num-
bers have been collected yet.

• Address collected event the user has typed a number but it has not been checked yet (at
the network’s side). The address may be incorrect or not full.

• Address analyzed event in this moment the address has been checked – it has correct
form.

• Called party busy the destination user’s terminal is busy

• Called party unreachable the destination user is unreachable

• No answer from called party the destination user has not answered the call during a
specified time period.

• Route select failure the call could not be routed to the destination address (e.g. due to
network overload).

• Answer from called party the destination user has answered the call

The event type that is set here is Address analyzed event. This means that the application
will be informed once the originating user has typed a correct telephone number.

The next field (line 5 in Fig. 5.3), of the type TpCallNotificationType, tells what should
happen to the call in the network once the event occurs. The usual manner is to interrupt the
call until the application has done its job. But it is also possible continue processing of the call
in the network (in such case the application would not have the possibility of routing the call).
Here, all the calls will be interrupted.

The last field of the Fig. 5.3’s structure is MonitorMode. It specifies the party the monitored
event refers to. It could be either an originating or destination party. Here, we are interested in
the originating party event (Address analyzed event). The source code of the procedure filling
the TpCallEventCriteria’s fields as requested is shown in Fig. 5.4.

The procedure, called createOrigEventCriteria() (“Orig” – because it always sets the
criteria for originating user), takes three parameters: two addresses (originating and desti-
nation) and the event name (P_EVENT_GCCS_ADDRESS_ANALYSED_EVENT.value). While the
event name is defined as an integer number (int) in Java, it could be also set in more user-
friendly manner by specifying static member event of a corresponding class. This method is
called here as follows:

c r e a t e O r i g E v e n t C r i t e r i a (new S t r i n g ("1") ,
P_EVENT_GCCS_ADDRESS_ANALYSED_EVENT . v a l u e) ;

CHAPTER 5. SERVICE DESIGN IN PARLAY/OSA 84

1 T p C a l l E v e n t C r i t e r i a c r e a t e O r i g E v e n t C r i t e r i a (
2 S t r i n g o r i g i n a t i n g ,
3 i n t event_name) {
4 T p C a l l E v e n t C r i t e r i a ec = new T p C a l l E v e n t C r i t e r i a () ;
5 ec . D e s t i n a t i o n A d d r e s s = nonOsaCrea teE164Address ("∗") ;
6 ec . O r i g i n a t i n g A d d r e s s = nonOsaCrea teE164Address (o r i g i n a t i n g) ;
7 ec . Cal lEventName = event_name ;
8 ec . C a l l N o t i f i c a t i o n T y p e = T p C a l l N o t i f i c a t i o n T y p e . P_ORIGINATING ;
9 ec . MonitorMode = TpCallMonitorMode . P_CALL_MONITOR_MODE_INTERRUPT ;

10 re turn ec ;
11 }

Fig. 5.4: Java source code for the MyAppLogic.createOrigEventCriteria() method

The program uses a special procedure, which creates an E.164 address based on given string.
The procedure is called nonOsaCreateE164Address(). This procedure and other parts of the
application’s source code are presented in Appendix C.

Once the AppCallControlManager and TpCallEventCriteria objects are created, the
event has to be registered. The method, which is the API equivalent for the “Register Event”
primitive, is named enableCallNotification(). The respective source code is shown in
Fig. 5.5. The Parlay/OSA’a method call is here included in the monitorNumbers() MyAppLogic’s
method.

1 i n t monitorNumbers (I p C a l l C o n t r o l M a n a g e r mgr ,
2 IpAppCa l lCon t ro lManage r appMgr ,
3 S t r i n g o r i g i n a t _ a d d r e s s) {
4

5 T p C a l l E v e n t C r i t e r i a ec = c r e a t e O r i g E v e n t C r i t e r i a (o r i g i n a t _ a d d r e s s ,
6 new S t r i n g ("∗") ,
7 P_EVENT_GCCS_ADDRESS_ANALYSED_EVENT . v a l u e) ;
8 I n t H o l d e r a s s i g n m e n t = new I n t H o l d e r () ;
9

10 t r y {
11 mgr . e n a b l e C a l l N o t i f i c a t i o n (appMgr , ec , a s s i g n m e n t) ;
12 } catch (E x c e p t i o n e) {
13 / ∗ E x c e p t i o n h a n d l i n g ∗ /
14 }
15 re turn a s s i g n m e n t . v a l u e ;
16 }

Fig. 5.5: Java source code for MyAppLogic.monitorNumbers() – registering events

As seen in Fig. 5.5, the enableCallNotification() method takes three parameters. The
first two are our newly created objects. The last parameter is a returned value. The value, called
assignment ID, is a handle assigned to each enableCallNotification() call. This handle
will be further used as a parameter in any “Notify of Event” operation; it can be also used to
disable this call notification. Note, that the assignment ID value is not a plain Java’s int but an

CHAPTER 5. SERVICE DESIGN IN PARLAY/OSA 85

IntHolder object. Holder objects are created by IDL compilers as implementation of out-type
parameters because there is no direct way to pass a value from inside a method to the method’s
caller.

After having called the enableCallNotification() method, the application starts waiting
for events. The event appearance and the application’s behaviour are illustrated in Fig. 5.6.

MyAppLogic

appCcMgr:
AppCallControlManager:
IpAppCallControlManager

ccMgr:
IpCallControlManager

call: IpCall3: callEventNotify()

6: callEventNotify()

appCall:
AppCall:
IpAppCall

4: <<create>>

7: appCall

9: "Creating new Destination Address"
10: routeReq()

11: deassignCall()

Application Gateway

1: "Event in network"

2: <<create>>

osaEventQueue:
MyAppEventQueue

5: put(event)

8: get(event)

Fig. 5.6: Event notification diagram

In the first step, the network informs the gateway that a monitored event has appeared.
Since the network–gateway protocol is not covered by Parlay/OSA APIs, this may have var-
ious forms. Here, an operation “Event in Network” is called on the ccMgr object (of type
IpCallControlManager). Then, the ccMgr creates a new IpCall object (step 2). The Par-
lay/OSA method, callEventNotify(), is called in step 3 (its body is presented in Fig. 5.7).
The method has four parameters. The first parameter is a structure called TpCallIdentifier,
which contains a reference to the IpCall object and the call ID (integer). The second parameter
is the event’s description: event name and addresses: originating and the destination addresses1.
The third parameter is assignment ID, which must be of the same value as the assignment ID
returned from respective enableCallNotification() call. The fourth and last parameter is
out-type. The application uses this one to pass an IpAppCall object reference to the gateway.
But before the callEventNotify() method returns, it has to create a new AppCall object
(step 4) and put the information about the event to the queue (object osaEventQueue of type
MyAppEventQueue) in step 5. Next, the MyAppLogic object is informed about the event with
the callEventNotify() method call (notice, that this is the same name as the IpAppCall’s,
but since the MyAppLogic class is non-standard, the MyAppLogic’s name might be different).
Once awaken, the MyAppLogic’ simply gets the event object from the queue. It should be un-
derlined, that until the IpAppCall’s callEventNotify() method returns (steps 3-7), it blocks
the gateway’s thread. Therefore it should last as shortly as possible. No application’s logic
elements should be present there. Moreover, it is forbidden to call Parlay/OSA methods from
callback object’s methods (e.g. routeReq()). That is why all relevant information is passed to
the MyAppLogic and then the method finishes, returning the expected object reference (step 7).

1 Speaking truthfully, it also contains two more addresses – original destination address and redirecting address
(both may be useful if the address has been rerouted more than once)

CHAPTER 5. SERVICE DESIGN IN PARLAY/OSA 86

The AppCall.callEventNotify() is presented in Fig. 5.7. The logic object, shown in
the figure, if a MyAppLogic object which must be passed to each created object to allow them
to communicate with the application’s logic.

1 p u b l i c vo id c a l l E v e n t N o t i f y (
2 T p C a l l I d e n t i f i e r c a l l R e f e r e n c e ,
3 T p C a l l E v e n t I n f o e v e n t I n f o ,
4 i n t a s s i g n m e n t I D ,
5 IpAppCa l lHo lde r a p p C a l l R e f) {
6 a p p C a l l R e f . v a l u e = new AppCall (l o g i c) ;
7 l o g i c . c a l l E v e n t N o t i f y (c a l l R e f e r e n c e ,
8 e v e n t I n f o , a s s i g n m e n t I D) ; / ∗ push i t f u r t h e r ∗ /
9 }

Fig. 5.7: Java source code for the AppCall.callEventNotify() method.

The application has been asleep since then. Now, it is being awaken. Initially, the appli-
cation tries to determine the new destination address, which is the application’s purpose (step
9 in Fig. 5.6). Next, once the new address is ready, the application calls two methods on the
gateway’s call object. In step 10, the routeReq() method is called, which requests routing the
call to the specified destination address. In step 11, the application calls the deassignCall()
method, which deassigns the application from the call. Obviously, the call is not released now.
By calling the method the application tells the gateway that it is no longer interested in the call.
The application has done what it was expected to do.

In this implementation the application’s logic works in a loop. The whole loop is presented
in Fig. 5.8.

1 do {
2 MyAppEvent anEven t = osaEventQueue . g e t () ;
3

4 i f (anEven t . e v e n t I n f o . Cal lEventName ==
5 P_EVENT_GCCS_ADDRESS_ANALYSED_EVENT . v a l u e) {
6 S t r i n g a d d r S t r i n g = t r a n s l a t e M o d u l o 1 0 (anEven t .
7 e v e n t I n f o . D e s t i n a t i o n A d d r e s s . A d d r S t r i n g) ;
8 doRouteReq (anEven t , a d d r S t r i n g) ;
9 d o D e a s s i g n C a l l (anEven t) ;

10 } e l s e {
11 / ∗ Thi s s e c t i o n s h o u l d n ’ t be r e a c h e d ∗ /
12 }
13 } whi le (t rue) ;

Fig. 5.8: Java source code for the application’s logic main loop (in MyAppLogic)

At the beginning of the loop, line 2, the application tries to acquire the first event (anEvent)
from the queue (osaEventQueue) by calling the get() method. If the queue is empty, the
thread is blocked. It will be unblocked when an event appears. Otherwise the event is acquired
immediately.

CHAPTER 5. SERVICE DESIGN IN PARLAY/OSA 87

Once acquired, the event is stored in the anEvent variable. If the event is the Address
analyzed event (it must be – no other events have been registered), the application calls the
translateModulo10() method. This method is the “real” telecommunications service. As the
argument it takes the original destination address and the new destination address is returned.

The translateModulo10() method’s body is shown in Figure 5.9 but it could be any other
method of the similar API (getting a string and returning another string).

1 S t r i n g t r a n s l a t e M o d u l o 1 0 (S t r i n g a d d r e s s T o T r a n s l a t e) {
2 i n t a d d r I n t = I n t e g e r . p a r s e I n t (a d d r e s s T o T r a n s l a t e) ;
3 S t r i n g a d d r e s s T r a n s l a t e d ;
4 i f (a d d r I n t > 1 0) {
5 a d d r I n t = (a d d r I n t % 1 0) ;
6 a d d r e s s T r a n s l a t e d = I n t e g e r . t o S t r i n g (a d d r I n t) ;
7 } e l s e {
8 a d d r e s s T r a n s l a t e d = a d d r e s s T o T r a n s l a t e ;
9 }

10 re turn a d d r e s s T r a n s l a t e d ;
11 }

Fig. 5.9: Java source code for the MyAppLogic.translateModulo10() method

The address is converted into integer, the modulo operation is undertaken and the result is
converted back to string. Finally, this result is returned.

Coming back to Fig. 5.8, in the next step the new string is used to route the call to the new
destination address. It is done by calling the doRouteReq() method (line 8). This method is a
private wrapper to routeReq() and is presented in Fig. 5.10.

1 p r i v a t e void doRouteReq (MyAppEvent e v e n t , S t r i n g n e w D e s t i n a t i o n) {
2 I n t H o l d e r c a l l L e g S e s s i o n I D = new I n t H o l d e r () ;
3 t r y {
4 e v e n t . c a l l I d . C a l l R e f e r e n c e . r o u t e R e q (
5 e v e n t . c a l l I d . C a l l S e s s i o n I D ,
6 new T p C a l l R e p o r t R e q u e s t [0] ,
7 nonOsaCrea teE164Address (n e w D e s t i n a t i o n) ,
8 e v e n t . e v e n t I n f o . O r i g i n a t i n g A d d r e s s ,
9 e v e n t . e v e n t I n f o . O r i g i n a l D e s t i n a t i o n A d d r e s s ,

10 e v e n t . e v e n t I n f o . D e s t i n a t i o n A d d r e s s ,
11 e v e n t . e v e n t I n f o . C a l l A p p I n f o ,
12 c a l l L e g S e s s i o n I D) ;
13 } catch (T p G e n e r a l E x c e p t i o n e) {
14 / ∗ E x c e p t i o n h a n d l i n g ∗ /
15 } catch (E x c e p t i o n exc) {
16 / ∗ E x c e p t i o n h a n d l i n g ∗ /
17 }
18 }

Fig. 5.10: Java source code for the MyAppLogic.doRouteReq() method – call routing

CHAPTER 5. SERVICE DESIGN IN PARLAY/OSA 88

The routeReq() method is used to request the call to be routed to the destination address.
The method takes 8 parameters. The most important parameter is the third one, which is the
destination address.

After successful doRouteReq() call, the application deassigns from the call by calling the
doDeassignCall() method. The method is presented in Fig. 5.11.

1 void d o D e a s s i g n C a l l (MyAppEvent e v e n t) {
2 t r y {
3 e v e n t . c a l l I d . C a l l R e f e r e n c e . d e a s s i g n C a l l (
4 e v e n t . c a l l I d . C a l l S e s s i o n I D) ;
5 } catch (E x c e p t i o n exc) {
6 / ∗ E x c e p t i o n h a n d l i n g ∗ /
7 }
8 }

Fig. 5.11: Java source code for MyAppLogic.doDessignCall() – deassigning from the call

Upon successful calling of this method, the application comes back to the beginning of the
loop taking the next event.

The application shown here is a very simplified (just-workable) Parlay/OSA client applica-
tion. The main goal was to show that it works, and that after some initial effort, service creation
can be very simple. The application presented here may be now upgraded (empty methods
properly filled, exception handling included and, especially, the application logic altered).

Chapter 6

Conclusions

The main goal of this work was to describe Parlay/OSA APIs in simple form. Since the work
was initially planned to be purely descriptive, the author is glad to be able to write and run a
Parlay/OSA application (mostly due to Ericsson Parlay/OSA Simulator).

However, probably in future, Parlay/OSA applications will not be developed in the manner
presented here (using raw APIs). Applicationis will be generated by means of Parlay/OSA
SDKs, which will simplify the whole process and make the future applications more error-proof.
It is also possible, that in future, most applications will be developed in a higher abstraction
layer (using Parlay X). The raw Parlay/OSA APIs will be then employed in so-called Parlay X
gateways.

This work does not discuss the professional techniques of service creation. Conformance
testing, deadlock, livelock detection and other issues are not analysed here since it is quite
complex area of knowledge not to be covered here. Refer to G. Holtzmann book [39] or other
works on protocol/service development if you are interested in those issues.

Moreover, the code presented here is hand-written, no code-generators have been used. In
case of more complex services, techniques like UML or SDL modelling may be very useful.
The discussion of using such techniquies with Parlay/OSA APIs may be found in Koltsidas et
al. work [40].

89

Appendix A

Acronyms

3GPP Third-Generation Partnership Project

API Application Programming Interface

CAMEL Customised Applications for Mobile Network Enhanced Logic

CAP CAMEL Applicaton Part/Protocol

CCCS Conference Call Control Service

CGI Cell Global Identity

CORBA Common Object Request Broker Architecture

ETSI European Telecommunications Standards Institute

GCCS Generic Call Control Service

GSM Global System for Mobile Communication

IDL Interface Description Language

IN Intelligent Network

IN Internet Protocol

LAI Location Area Identity

MAP Mobile Applicaton Part

MCC Mobile Country Code

MMCCS MultiMedia Call Control Service

MNC Mobile Network Code

MPCCS MultiParty Call Control Service

90

APPENDIX A. ACRONYMS 91

OO Object-Oriented

OSA Open System Architecture

PSTN Pubic Switched Telephone Network

QoS Quality of Service

SAG Subscription Application Group

SCF Service Capability Feature

SCP Service Control Point

SCS Service Capability Server

SDK Software Development Kit

SIP Session Initiation Protocol

SLA Service Level Agreement

SMS Short Message System

TINA Telecommunications Information Networking Architecture

UL User Location

ULC User Location Camel

ULE User Location Emergency

UML Unified Modeling Language

UMTS Universal Mobile Telecommunications System

USSD Unstructured Supplementary Services Data

VLR Visitor Location Register

VASP Value Added Service Provider

VPN Virtual Private Network

VPrN Virtual Provisioned Network

VPrP Virtual Provisioned Pipe

WAP Wireless Application Protocol

XML eXtensible Markup Language

Appendix B

Glossary

The following definitions are taken from Parlay 3.0 specification [41]:

• (Client) Applications Services, which are designed using SCFs

• Service Capabilities Bearers defined by parameters, and/or mechanisms needed to real-
ize services (they are located within networks and under network control).

• Service Capability Feature Functionality offered by service capabilities that are acces-
sible via the standardized OSA interface.

• Service Capability Server Functional entity providing OSA interfaces toward an appli-
cation.

• Value Added Service Provider Provides services other that basic telecommunications
service for which additional charges may be incurred.

The following definitions, even though not specified directly in the specification, have the
meaning as follows:

• Application provider An entity, which provides applications and controls them. Usu-
ally, terms “application provider” and “value added service provider” may be used inter-
changeably.

• Enterprise Operator The entity that subscribes SCFs for certain groups of client ap-
plications (note – it does not use those SCFs). In many cases enterprise operator does
not have to be present in Parlay/OSA-based system. There is not always need for SCF
subscribing

• (Parlay/OSA) Entity Each of the four functional items present in Parlay/OSA: applica-
tion, enterprise operator, framework, or SCF provider.

• Gateway In the very first approach it is a collection of all SCSes (including the frame-
work); in closer look it can also be a single SCS.

92

APPENDIX B. GLOSSARY 93

• Network The network operator’s resources. The exact meaning depends on the SCF
context: a “network” may be a whole PSTN system, IP network or even a single PC
computer.

• (Network) Operator This term is widely used in Parlay/OSA documents. It means an
entity that has control over certain network resources. Here, “operator” may be treated as
a synonym for “SCF Provider”.

• SCF Provider The entity which provides the network functionality to applications in
form of Service Capability Feature (SCF). It must register into the framework before its
capabilities may be used.

• User A network operator’s subscriber, which uses its telecommunications services. This
term appears in following contexts: to localize the user, to connect the user with, to give
users an opportunity to, user interaction.

Appendix C

Source code

C.1 MyAppEvent.java
1 import org . o p e n _ s e r v i c e _ a c c e s s . cc . gcc s . T p C a l l I d e n t i f i e r ;
2 import org . o p e n _ s e r v i c e _ a c c e s s . cc . gcc s . T p C a l l E v e n t I n f o ;
3

4 /∗∗
5 ∗ MyAppEvent i s a c l a s s r e p r e s e n t i n g an e v e n t . I t has 3 p u b l i c
6 ∗ a t t r i b u t e s : c a l l ID (c a l l o b j e c t r e f e r e n c e + i t s d e s c r i p t o r) ,
7 ∗ e v e n t d e t a i l s , and so−c a l l e d a s s i g n m e n t ID (i n t e g e r) .
8 ∗ /
9 p u b l i c c l a s s MyAppEvent {

10 p u b l i c T p C a l l I d e n t i f i e r c a l l I d ;
11 p u b l i c T p C a l l E v e n t I n f o e v e n t I n f o ;
12 p u b l i c i n t a s s i g n m e n t I D ;
13

14 MyAppEvent (T p C a l l I d e n t i f i e r c i d ,
15 T p C a l l E v e n t I n f o e i ,
16 i n t a) {
17 c a l l I d = c i d ;
18 e v e n t I n f o = e i ;
19 a s s i g n m e n t I D = a ;
20 }
21 }

C.2 MyAppEventQueue.java
1 import j a v a . u t i l . ∗ ;
2

3 /∗∗
4 ∗ MyAppEventQueue i s a c o l l e c t i o n o f e v e n t s . C a l l b a c k o b j e c t s
5 ∗ use t h i s l i s t t o p u t any e v e n t t h a t a p p e a r , and t h e a p p p l i c a t i o n
6 ∗ l o g i c o b j e c t u s e s t h i s l i s t t o g e t e v e n t s .
7 ∗ /
8 p u b l i c c l a s s MyAppEventQueue {
9 L i s t l i s t ;

10

11 p u b l i c MyAppEventQueue () {

94

APPENDIX C. SOURCE CODE 95

12 l i s t = new A r r a y L i s t () ;
13 }
14

15 p u b l i c synchronized void p u t (MyAppEvent e v e n t) {
16 l i s t . add (e v e n t) ;
17 n o t i f y A l l () ;
18 }
19

20 p u b l i c synchronized MyAppEvent g e t () {
21 i f (s i z e () = = 0) do {
22 t r y {
23 w a i t () ;
24 } catch (E x c e p t i o n e) {
25 System . out . p r i n t l n (" (MyAppEventQueue . g e t ()) : " + e) ;
26 System . e x i t (1) ;
27 }
28 } whi le (s i z e () = = 0) ;
29

30 re turn (MyAppEvent) l i s t . remove (0) ;
31 }
32

33 p u b l i c synchronized i n t s i z e () {
34 re turn l i s t . s i z e () ;
35 }
36 }

C.3 MyAppInit.java
1 / ∗ E r i c s s o n ’ s s t u f f , used t o s i m p i f y t h e program ∗ /
2 import com . e r i c s s o n . p a r l a y . a p p l i c a t i o n . s e r v i c e p r o v i s i o n . ∗ ;
3 import com . e r i c s s o n . t r a c e d e b u g . ∗ ;
4

5 / ∗ CORBA s t u f f ∗ /
6 import org . omg .CORBA. ∗ ;
7 / ∗ CORBA naming s e r v i c e s ∗ /
8 import org . omg . CosNaming . ∗ ;
9

10 / ∗ Framework (n o t used i n o t h e r modules) ∗ /
11 import org . o p e n _ s e r v i c e _ a c c e s s . f w _ c l i e n t . d i s c o v e r y . I p S e r v i c e D i s c o v e r y ;
12 import org . o p e n _ s e r v i c e _ a c c e s s . T p S e r v i c e ;
13 import org . o p e n _ s e r v i c e _ a c c e s s . I p I n t e r f a c e ;
14 import org . o p e n _ s e r v i c e _ a c c e s s . T p G e n e r a l E x c e p t i o n ;
15

16 / ∗ C a l l C o n t r o l s e r v i c e manager ∗ /
17 import org . o p e n _ s e r v i c e _ a c c e s s . cc . gcc s . I p C a l l C o n t r o l M a n a g e r ;
18

19 / ∗ Java S t u f f ∗ /
20 import j a v a . i o . ∗ ;
21 import j a v a . u t i l . ∗ ;
22

23 /∗∗
24 ∗ The MyAppInit c l a s s i s r e s p o n s i b l e f o r t h e a p p l i c a t i o n ’ s i n i t i a l s e q u e n c e .
25 ∗ I f a l l s u c c e e d s , t h e MyAppInit o b j e c t c r e a t s an MyAppLogic i n s t a n c e .

APPENDIX C. SOURCE CODE 96

26 ∗ /
27 p u b l i c c l a s s MyAppInit
28 implements S e r v i c e S t a t u s L i s t e n e r { / / i t must be implemented when u s i n g
29 / / E r i c s s o n ’ s framework p r o c e d u r e s
30 p r i v a t e ORB theORB ;
31 / ∗ These v a r i a b l e s a r e used by E r i c s s o n ’ s Fw p r o c e d u r e s ∗ /
32 p u b l i c s t a t i c S t r i n g SIGNING_ALGORITHM = "P_NONE" ;
33 p u b l i c s t a t i c S t r i n g CF_APP_ID = " t e s t _ a p p l i c a t i o n 1 " ;
34 p u b l i c s t a t i c S t r i n g CF_APP_KEY = "3 A47B193823F7D88 " ;
35 p r i v a t e S e r v i c e P r o v i d e r t h e S e r v i c e P r o v i d e r ; / / a s d e f i n e d by E r i c s s o n
36

37 p r i v a t e I p C a l l C o n t r o l M a n a g e r theCCM ;
38

39 p u b l i c s t a t i c vo id main (S t r i n g a r g s []) {
40 t r y {
41 System . out . p r i n t l n (
42 " (main) : S t a r t i n g t h e MyAppInit o b j e c t ") ;
43 new MyAppInit (a r g s) ;
44 } catch (E x c e p t i o n e) {
45 System . out . p r i n t l n (" (MyAppInit) : Cannot p r o c e e d , e x i t t i n g ") ;
46 }
47 }
48

49 p u b l i c MyAppInit (S t r i n g a r g s []) throws E x c e p t i o n {
50 / ∗ The f o l l o w i n g v a r i a b l e s a r e f o r E r i c s s o n s i m u l a t o r p u r p o s e s ∗ /
51 S e r v i c e P r o v i s i o n C o n s t a n t s . TRACE_ACTIVE = f a l s e ;
52 S e r v i c e P r o v i s i o n C o n s t a n t s . COMPILE_TARGET_IS_JSCS = f a l s e ;
53

54 / ∗ Let ’ s g e t t h e ORB , c o n n e c t t o name s e r v i c e and
55 r e g i s t e r t o t h e framework ∗ /
56 theORB = ORB. i n i t (a r g s , n u l l) ;
57 System . out . p r i n t l n (" (MyAppInit) : C o n n e c t i n g t o OSA Gateway ") ;
58 t r y {
59 t h e S e r v i c e P r o v i d e r = new S e r v i c e P r o v i d e r (theORB ,
60 CF_APP_ID , CF_APP_KEY , t h i s) ;
61 } catch (E x c e p t i o n e) {
62 System . out . p r i n t l n (" (MyAppInit) : Couldn ’ t c o n n e c t ") ;
63 throw e ;
64 }
65

66 / ∗ Get t h e C a l l C o n t r o l S e r v i c e Manager ∗ /
67 System . out . p r i n t l n (" (MyAppInit) : G e t t i n g GCCS Manager ") ;
68 theCCM = CCMProvider . g e t (t h e S e r v i c e P r o v i d e r , SIGNING_ALGORITHM) ;
69

70 / ∗ And s t a r t t h e main a p p l i c a t i o n l o g i c (AppLogic o b j e c t) ∗ /
71 System . out . p r i n t l n (" (MyAppInit) : S t a r t i n g AppLogic ") ;
72 MyAppLogic appLogic = new MyAppLogic (theCCM) ;
73 }
74

75 p u b l i c vo id s e r v i c e T e r m i n a t e d (I p I n t e r f a c e i f a c e) { }
76 }

APPENDIX C. SOURCE CODE 97

C.4 MyAppLogic.java
1 import org . o p e n _ s e r v i c e _ a c c e s s . ∗ ;
2 import org . o p e n _ s e r v i c e _ a c c e s s . cc . gcc s . T p C a l l I d e n t i f i e r ;
3 import org . o p e n _ s e r v i c e _ a c c e s s . cc . gcc s . T p C a l l E v e n t I n f o ;
4 import org . o p e n _ s e r v i c e _ a c c e s s . cc . gcc s . T p C a l l R e p o r t ;
5 import org . o p e n _ s e r v i c e _ a c c e s s . cc . gcc s . T p C a l l E v e n t C r i t e r i a ;
6 import org . o p e n _ s e r v i c e _ a c c e s s . cc . gcc s . T p C a l l R e p o r t R e q u e s t ;
7 import org . o p e n _ s e r v i c e _ a c c e s s . cc . gcc s . T p C a l l N o t i f i c a t i o n T y p e ;
8 import org . o p e n _ s e r v i c e _ a c c e s s . cc . gcc s . I p C a l l C o n t r o l M a n a g e r ;
9 import org . o p e n _ s e r v i c e _ a c c e s s . cc . gcc s . IpAppCa l lCon t ro lManage r ;

10 import org . o p e n _ s e r v i c e _ a c c e s s . cc . gcc s . P_EVENT_GCCS_ADDRESS_ANALYSED_EVENT ;
11 import org . o p e n _ s e r v i c e _ a c c e s s . cc . TpGCCSException ;
12 import org . o p e n _ s e r v i c e _ a c c e s s . cc . TpCallMonitorMode ;
13 import org . o p e n _ s e r v i c e _ a c c e s s . u i . ∗ ;
14

15 import org . omg . CosNaming . ∗ ;
16 import org . omg .CORBA. ∗ ;
17 import j a v a . u t i l . ∗ ;
18

19 /∗∗
20 ∗ MyAppLogic implemen t s t h e a p p l i c a t i o n ’ s l o g i c . I t c o u l d be m o d i f i e d i n
21 ∗ a ve ry s i m p l e way . Th i s v e r s i o n u s e s t h e GCCS SCF . The s e r v i c e i s
22 ∗ a d d r e s s t r a n s l a t i o n .
23 ∗ /
24 p u b l i c c l a s s MyAppLogic {
25 MyAppEventQueue osaEventQueue ;
26 I p C a l l C o n t r o l M a n a g e r ccMgr ;
27 S t r i n g number ;
28

29 MyAppLogic (I p C a l l C o n t r o l M a n a g e r ccMgr_param) {
30 osaEventQueue = new MyAppEventQueue () ;
31 ccMgr = ccMgr_param ;
32

33 s t a r t _ l o g i c () ;
34 }
35

36 / ∗ The main p r o c e d u r e o f t h e s e r v i c e ∗ /
37 void s t a r t _ l o g i c () {
38 System . out . p r i n t l n (" (MyAppLogic) : S t a r t i n g " +
39 " m o n i t o r i n g f o r number " + number) ;
40

41 / ∗ R e g i s t e r number (s) a t t h e gateway ∗ /
42 moni torOr igNumbers (ccMgr ,
43 new AppCal lCon t ro lManager (t h i s) , number) ;
44

45 System . out . p r i n t l n (" (MyAppLogic) : E n t e r i n g loop ") ;
46 do {
47 / ∗ Wait f o r ne twork e v e n t s ∗ /
48 MyAppEvent anEven t = osaEventQueue . g e t () ;
49

50 System . out . p r i n t l n (" (MyAppLogic) : " +
51 " Got e v e n t . Event ID : " +

APPENDIX C. SOURCE CODE 98

52 anEven t . e v e n t I n f o . Cal lEventName +
53 " , from a d d r e s s : " + anEven t . e v e n t I n f o .
54 O r i g i n a t i n g A d d r e s s . A d d r S t r i n g) ;
55

56 / ∗ Check t h e e v e n t (o f what t y p e i s i t) ∗ /
57 i f (anEven t . e v e n t I n f o . Cal lEventName ==
58 P_EVENT_GCCS_ADDRESS_ANALYSED_EVENT . v a l u e) {
59 / ∗ T r a n s l a t e t h e a d d r e s s ∗ /
60 S t r i n g a d d r S t r i n g = t r a n s l a t e M o d u l o 1 0 (
61 anEven t . e v e n t I n f o . D e s t i n a t i o n A d d r e s s . A d d r S t r i n g) ;
62 / ∗ Route t o new a d d r e s s ∗ /
63 doRouteReq (anEven t , a d d r S t r i n g) ;
64 / ∗ D e a s s i g n from c a l l ∗ /
65 d o D e a s s i g n C a l l (anEven t . c a l l I d) ;
66 } e l s e {
67 System . out . p r i n t l n (" (MyAppLogic) : unknown e v e n t ") ;
68 }
69 } whi le (t rue) ;
70 }
71

72 / ∗ Thi s method i s c a l l e d from AppCal lCont ro lManage . c a l l E v e n t N o t i f y () .
73 I t p u t s an e v e n t t o t h e queue ∗ /
74 p u b l i c vo id c a l l E v e n t N o t i f y (
75 T p C a l l I d e n t i f i e r c a l l R e f e r e n c e ,
76 T p C a l l E v e n t I n f o e v e n t I n f o ,
77 i n t a s s i g n m e n t I D) {
78 osaEventQueue . p u t (new MyAppEvent (c a l l R e f e r e n c e ,
79 e v e n t I n f o , a s s i g n m e n t I D)) ;
80 }
81

82 p u b l i c vo id r o u t e R e s (i n t c a l l S e s s i o n I D ,
83 T p C a l l R e p o r t e v e n t R e p o r t ,
84 i n t c a l l L e g S e s s i o n I D)
85 {}
86

87 / ∗ Thi s method r o u t e s t h e p a r t y (i d e n t i f i e d by e v e n t . c a l l I d) t o t h e
88 new a d d r e s s (s p e c i f i e d i n t h e n e w D e s t i n a t i o n p a r a m e t e r) ∗ /
89 p r i v a t e void doRouteReq (MyAppEvent e v e n t , S t r i n g n e w D e s t i n a t i o n) {
90 I n t H o l d e r c a l l L e g S e s s i o n I D = new I n t H o l d e r () ;
91 t r y {
92 e v e n t . c a l l I d . C a l l R e f e r e n c e . r o u t e R e q (
93 e v e n t . c a l l I d . C a l l S e s s i o n I D ,
94 new T p C a l l R e p o r t R e q u e s t [0] ,
95 myAppCreateE164Address (n e w D e s t i n a t i o n) ,
96 e v e n t . e v e n t I n f o . O r i g i n a t i n g A d d r e s s ,
97 e v e n t . e v e n t I n f o . O r i g i n a l D e s t i n a t i o n A d d r e s s ,
98 e v e n t . e v e n t I n f o . D e s t i n a t i o n A d d r e s s ,
99 e v e n t . e v e n t I n f o . C a l l A p p I n f o ,

100 c a l l L e g S e s s i o n I D) ;
101 } catch (T p G e n e r a l E x c e p t i o n e) {
102 System . out . p r i n t l n (" (MyAppLogic) : " +
103 " Caught OSA e x c e p t i o n , num : " + e . e x c e p t i o n T y p e) ;
104 } catch (E x c e p t i o n exc) {

APPENDIX C. SOURCE CODE 99

105 System . out . p r i n t l n (" (MyAppLogic) : " +
106 " doRouteReq () e x c e p t i o n : " + exc) ;
107 }
108 }
109

110 / ∗ D e a s i g n s t h e a p p l i c a t i o n from t h e c a l l ∗ /
111 void d o D e a s s i g n C a l l (T p C a l l I d e n t i f i e r c a l l I d) {
112 t r y {
113 c a l l I d . C a l l R e f e r e n c e . d e a s s i g n C a l l (
114 c a l l I d . C a l l S e s s i o n I D) ;
115 } catch (E x c e p t i o n exc) {
116 System . out . p r i n t l n (" (MyAppLogic) : " +
117 " d e a s s i g n C a l l () e x c e p t i o n : " + exc) ;
118 }
119 }
120

121 / ∗ R e g i s t e r s e v e n t " a d d r e s s a n a l y s e d e v e n t " a t t h e gateway .
122 The o r i g i n a t i n g p a r t y i s s p e c i f i e d (by t h e o r i g i n a t i n g _ a d d r e s s
123 p a r a m e t e r) ∗ /
124 i n t moni torOr igNumbers (I p C a l l C o n t r o l M a n a g e r mgr ,
125 IpAppCa l lCon t ro lManage r appMgr ,
126 S t r i n g o r i g i n a t i n g _ a d d r e s s) {
127

128 T p C a l l E v e n t C r i t e r i a ec = c r e a t e O r i g E v e n t C r i t e r i a (
129 o r i g i n a t i n g _ a d d r e s s , new S t r i n g ("∗") ,
130 P_EVENT_GCCS_ADDRESS_ANALYSED_EVENT . v a l u e) ;
131 I n t H o l d e r a s s i g n m e n t = new I n t H o l d e r () ;
132

133 System . out . p r i n t l n (" (MyAppLogic) : " +
134 " c a l l i n g e n a b l e C a l l N o t i f i c a t i o n () ") ;
135 t r y {
136 / ∗ Thi s i s t h e P a r l a y /OSA e v e n t r e g i s t r a t i o n o p e r a t i o n ∗ /
137 mgr . e n a b l e C a l l N o t i f i c a t i o n (appMgr ,
138 ec , a s s i g n m e n t) ;
139 } catch (T p G e n e r a l E x c e p t i o n e) {
140 System . out . p r i n t l n (" (MyAppLogic) : " +
141 " Caught OSA g e n e r a l e x c e p t i o n i n " +
142 " e n a b l e C a l l N o t i f i c a t i o n () , num : " + e . e x c e p t i o n T y p e) ;
143 } catch (TpGCCSException e) {
144 System . out . p r i n t l n (" (MyAppLogic) : " +
145 " Caught GCCS e x c e p t i o n i n " +
146 " e n a b l e C a l l N o t i f i c a t i o n () , num : " + e . e x c e p t i o n T y p e) ;
147 }
148 re turn a s s i g n m e n t . v a l u e ;
149 }
150

151 / ∗ Thi s method c r e a t e s an a p p r o p r i a t e T p C a l l E v e n t C r i t e r i a s t r u c t u r e ,
152 c o n t a i n i n g t h e e v e n t d e s c r i p t i o n and m o n i t o r e d a d d r e s s e s ∗ /
153 T p C a l l E v e n t C r i t e r i a c r e a t e O r i g E v e n t C r i t e r i a (S t r i n g o r i g i n a t i n g ,
154 S t r i n g d e s t i n a t i o n , i n t event_num) {
155 T p C a l l E v e n t C r i t e r i a ec = new T p C a l l E v e n t C r i t e r i a () ;
156 ec . D e s t i n a t i o n A d d r e s s = myAppCreateE164Address (d e s t i n a t i o n) ;
157 ec . O r i g i n a t i n g A d d r e s s = myAppCreateE164Address (o r i g i n a t i n g) ;

APPENDIX C. SOURCE CODE 100

158 ec . Cal lEventName = event_num ;
159 ec . C a l l N o t i f i c a t i o n T y p e = T p C a l l N o t i f i c a t i o n T y p e . P_ORIGINATING ;
160 ec . MonitorMode = TpCallMonitorMode . P_CALL_MONITOR_MODE_INTERRUPT ;
161 re turn ec ;
162 }
163

164 / ∗ Thi s method r e t u r n s an E . 1 6 4 a d d r e s s s t r u c t u r e (based on
165 t h e a d d r e s s p a r a m e t e r) ∗ /
166 TpAddress myAppCreateE164Address (S t r i n g a d d r e s s) {
167 TpAddress add r = new TpAddress () ;
168 add r . P l an = TpAddressP lan . P_ADDRESS_PLAN_E164 ;
169 add r . P r e s e n t a t i o n =
170 T p A d d r e s s P r e s e n t a t i o n . P_ADDRESS_PRESENTATION_ALLOWED ;
171 add r . S c r e e n i n g = T p A d d r e s s S c r e e n i n g .
172 P_ADDRESS_SCREENING_USER_VERIFIED_PASSED ;
173 add r . A d d r S t r i n g = new S t r i n g (a d d r e s s) ; / / Address s t r i n g
174 add r . Name = new S t r i n g (" ") ;
175 add r . S u b A d d r e s s S t r i n g = new S t r i n g (" ") ;
176 re turn add r ;
177 }
178

179 / ∗ Thi s method t r a n s l a t e s an a d d r e s s s t r i n g i n t o a new (d e s t i n a t i o n)
180 a d d r e s s ∗ /
181 S t r i n g t r a n s l a t e M o d u l o 1 0 (S t r i n g a d d r e s s T o T r a n s l a t e) {
182 i n t a d d r I n t = I n t e g e r . p a r s e I n t (a d d r e s s T o T r a n s l a t e) ;
183 S t r i n g a d d r e s s T r a n s l a t e d ;
184 i f (a d d r I n t > 1 0) {
185 a d d r I n t = (a d d r I n t % 1 0) ;
186 a d d r e s s T r a n s l a t e d = I n t e g e r . t o S t r i n g (a d d r I n t) ;
187 } e l s e {
188 a d d r e s s T r a n s l a t e d = a d d r e s s T o T r a n s l a t e ;
189 }
190 re turn a d d r e s s T r a n s l a t e d ;
191 }
192 }

C.5 AppCall.java
1 import org . o p e n _ s e r v i c e _ a c c e s s . cc . T p C a l l F a u l t ;
2 import org . o p e n _ s e r v i c e _ a c c e s s . cc . T p C a l l E r r o r ;
3 import org . o p e n _ s e r v i c e _ a c c e s s . cc . gcc s . _ IpAppCal l ImplBase ;
4 import org . o p e n _ s e r v i c e _ a c c e s s . cc . gcc s . T p C a l l R e p o r t ;
5 import org . o p e n _ s e r v i c e _ a c c e s s . cc . gcc s . TpCa l lEndedRepor t ;
6 import org . o p e n _ s e r v i c e _ a c c e s s . cc . gcc s . T p C a l l I n f o R e p o r t ;
7

8 /∗∗
9 ∗ AppCall i s a c l a s s i m p l e m e n t i n g IpAppCal l i n t e r f a c e .

10 ∗ Thi s i s a c o l l e c t i o n o f c a l l b a c k methods . Most o f them
11 ∗ a r e s t i l l empty now .
12 ∗ /
13 p u b l i c c l a s s AppCall ex tends _IpAppCal l ImplBase {
14 MyAppLogic l o g i c ; / / r e f e r e n c e t o appLogic
15 / / a l l e v e n t s a r e p a s s e d t h e r e

APPENDIX C. SOURCE CODE 101

16

17 p u b l i c vo id r o u t e R e s (i n t c a l l S e s s i o n I D ,
18 T p C a l l R e p o r t e v e n t R e p o r t ,
19 i n t c a l l L e g S e s s i o n I D) {
20 l o g i c . r o u t e R e s (c a l l S e s s i o n I D , e v e n t R e p o r t , c a l l L e g S e s s i o n I D) ;
21 }
22

23 p u b l i c vo id r o u t e E r r (i n t c a l l S e s s i o n I D ,
24 T p C a l l E r r o r e r r o r I n d i c a t i o n ,
25 i n t c a l l L e g S e s s i o n I D) {
26 System . out . p r i n t l n (" (AppCall) : r o u t e E r r () c a l l e d ") ;
27 }
28

29 p u b l i c vo id g e t C a l l I n f o R e s (i n t c a l l S e s s i o n I D ,
30 T p C a l l I n f o R e p o r t c a l l I n f o R e p o r t) {
31 System . out . p r i n t l n (" (AppCall) : g e t C a l l I n f o R e s () c a l l e d ") ;
32 }
33

34 p u b l i c vo id g e t C a l l I n f o E r r (i n t c a l l S e s s i o n I D ,
35 T p C a l l E r r o r e r r o r I n d i c a t i o n) {
36 System . out . p r i n t l n (" (AppCall) : g e t C a l l I n f o E r r () c a l l e d ") ;
37 }
38

39 p u b l i c vo id s u p e r v i s e C a l l R e s (i n t c a l l S e s s i o n I D ,
40 i n t r e p o r t , i n t usedTime) {
41 System . out . p r i n t l n (" (AppCall) : s u p e r v i s e C a l l R e s () c a l l e d ") ;
42 }
43

44 p u b l i c vo id s u p e r v i s e C a l l E r r (i n t c a l l S e s s i o n I D ,
45 T p C a l l E r r o r e r r o r I n d i c a t i o n) {
46 System . out . p r i n t l n (" (AppCall) : s u p e r v i s e C a l l E r r () c a l l e d ") ;
47 }
48

49 p u b l i c vo id c a l l F a u l t D e t e c t e d (i n t c a l l S e s s i o n I D ,
50 T p C a l l F a u l t f a u l t) {
51 System . out . p r i n t l n (" (AppCall) : c a l l F a u l t D e t e c t e d () c a l l e d ") ;
52 }
53

54 p u b l i c vo id g e t M o r e D i a l l e d D i g i t s R e s (i n t c a l l S e s s i o n I D ,
55 S t r i n g d i g i t s) {
56 System . out . p r i n t l n (" (AppCall) : g e t M o r e D i a l l e d D i g i t s R e s () c a l l e d ") ;
57 }
58

59 p u b l i c vo id g e t M o r e D i a l l e d D i g i t s E r r (i n t c a l l S e s s i o n I D ,
60 T p C a l l E r r o r e r r o r I n d i c a t i o n) {
61 System . out . p r i n t l n (" (AppCall) : g e t M o r e D i a l l e d D i g i t s E r r () c a l l e d ") ;
62 }
63

64 p u b l i c vo id c a l l E n d e d (i n t c a l l S e s s i o n I D ,
65 TpCal lEndedRepor t r e p o r t) {
66 System . out . p r i n t l n (" (AppCall) : c a l l E n d e d () c a l l e d ") ;
67 }
68

APPENDIX C. SOURCE CODE 102

69 / ∗ ∗ C o n s t r u c t o r ∗ /
70 AppCall (MyAppLogic l o g i c R e f e r e n c e) {
71 l o g i c = l o g i c R e f e r e n c e ;
72 }
73 }

C.6 AppCallControlManager.java
1 import org . o p e n _ s e r v i c e _ a c c e s s . cc . gcc s . _ IpAppCa l lCon t ro lManage r ImplBase ;
2 import org . o p e n _ s e r v i c e _ a c c e s s . cc . gcc s . T p C a l l I d e n t i f i e r ;
3 import org . o p e n _ s e r v i c e _ a c c e s s . cc . gcc s . T p C a l l E v e n t I n f o ;
4 import org . o p e n _ s e r v i c e _ a c c e s s . cc . gcc s . IpAppCa l lHo lde r ;
5

6 /∗∗
7 ∗ AppCal lCon t ro lManager i s a c l a s s i m p l e m e n t i n g IpAppCa l lCon t ro lManage r
8 ∗ i n t e r f a c e . The most i m p o r t a n t c a l l b a c k method i s c a l l E v e n t N o t i f y () .
9 ∗ The r e s t a r e empty .

10 ∗ /
11 p u b l i c c l a s s AppCal lCon t ro lManager ex tends _IpAppCa l lCon t ro lManage r ImplBase {
12 MyAppLogic l o g i c ;
13

14 p u b l i c vo id c a l l E v e n t N o t i f y (
15 T p C a l l I d e n t i f i e r c a l l R e f e r e n c e ,
16 T p C a l l E v e n t I n f o e v e n t I n f o ,
17 i n t a s s i g n m e n t I D ,
18 IpAppCa l lHo lde r a p p C a l l R e f) {
19

20 System . out . p r i n t l n (" (AppCal lCon t ro lManager) : c a l l E v e n t N o t i f y () c a l l e d ") ;
21

22 a p p C a l l R e f . v a l u e = new AppCall (l o g i c) ;
23 l o g i c . c a l l E v e n t N o t i f y (c a l l R e f e r e n c e ,
24 e v e n t I n f o , a s s i g n m e n t I D) ; / ∗ push i t f u r t h e r ∗ /
25 }
26

27 p u b l i c vo id c a l l A b o r t e d (i n t c a l l R e f e r e n c e) {
28 System . out . p r i n t l n (" (AppCal lCon t ro lManager) : c a l l A b o r t e d () c a l l e d ") ;
29 }
30

31 p u b l i c vo id c a l l N o t i f i c a t i o n I n t e r r u p t e d () {
32 System . out . p r i n t l n (" (AppCal lCon t ro lManager) : " +
33 " c a l l N o t i f i c a t i o n I n t e r r u p t e d () c a l l e d ") ;
34 }
35

36 p u b l i c vo id c a l l N o t i f i c a t i o n C o n t i n u e d () {
37 System . out . p r i n t l n (" (AppCal lCon t ro lManager) : " +
38 " c a l l N o t i f i c a t i o n C o n t i n u e d () c a l l e d ") ;
39 }
40

41 p u b l i c vo id c a l l O v e r l o a d E n c o u n t e r e d (i n t a s s i g n m e n t I D) {
42 System . out . p r i n t l n (" (AppCal lCon t ro lManager) : " +
43 " c a l l O v e r l o a d E n c o u n t e r e d () c a l l e d ") ;
44 }
45

APPENDIX C. SOURCE CODE 103

46 p u b l i c vo id c a l l O v e r l o a d C e a s e d (i n t a s s i g n m e n t I D) {
47 System . out . p r i n t l n (" (AppCal lCon t ro lManager) : " +
48 " c a l l O v e r l o a d C e a s e d () c a l l e d ") ;
49 }
50

51 / ∗ ∗ C o n s t r u c t o r ∗ /
52 AppCal lCon t ro lManager (MyAppLogic l o g i c R e f e r e n c e) {
53 l o g i c = l o g i c R e f e r e n c e ;
54 }
55 }

Bibliography

[1] J.L. Bakker et al. Rapid Development and Delievery of Converged Services Using APIs.
Bell Labs Technical Journal, 7-9 2000.

[2] Appium. GBox Application platform. <http://www.appium.com>.

[3] Ericsson. JAMBALA Platform. <http://learning.ericsson.net/in/jambala.html>.

[4] Ericsson. OSA/Parlay Simulator, 2002. Available from:
<http://www.ericsson.com/mobilityworld>, registration required.

[5] Steve Davis Simon Beddus, Gary Bruce. Opening Up Networks with JAIN Parlay. IEEE
Communications Magazine, pages 136–143, April 2000.

[6] TINA-Consortium. TINA Service Architecture Version 5.0, 1997. Available from:
<http://www.tinac.com>.

[7] EURESCOM. Eurescom project p909. Deliverables and sources available from:
<http://www.eurescom.de>.

[8] Martin Cookson Steve Davis. Parlay Septemberfest: View of the Future, September 2001.
Available from: <http://www.parlay.org>.

[9] Zygmunt Lozinski. Parlay. In Eurescom P1110 WorkShop, Heidelberg, Germany, Febru-
ary 2002.

[10] Ard-Jan Moerdijk and Lucas Klostermann. Opening the Networks with Parlay/OSA APIs:
Standards and Aspects behind the APIs. Draft version to be resubmitted to IEEE Commu-
nications Magazine.

[11] Michał Rój and Jarosław Domaszewicz. Tworzenie usługi telekomunikacyjnej wykorzys-
tującej Parlay/OSA API. In Krajowe Sympozjum Telekomunikacyjne, September 2002.

[12] James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy, William
Lorensen. Object-Oriented Modeling And Design. Prentice-Hall, 1991.

[13] Martin Fowler, Kendall Scott. UML Distilled: A Brief Guide to the Standard Object
Modeling Language. Addison-Wesley.

104

BIBLIOGRAPHY 105

[14] Grady Booch, James Rumbaugh, and Ivar Jacobson. The Unified Modeling Language:
User Guide. WNT, Warszawa, 2001. Polish translation: "UML: podręcznik użytkownika".

[15] Bernd Oestereich. Developing software with UML. Addison-Wesley and Longman, 1999.

[16] Object Management Group. OMG Unified Modeling Language Specification, version 1.3,
1999. Available from: <http://www.rational.com/uml>.

[17] Object Management Group. CORBA Homepage. <http://www.omg.org/corba>.

[18] Robert Orfali, Dan Harkey, and Jeri Edwards. The Essential Distributed Objects Survival
Guide. John Wiley and Sons, 1996.

[19] Bruce Eckel. Thinking in Java. 2000. Available from: <http://www.BruceEckel.com>.

[20] Sun Microsystems. Java(TM) 2 SDK, Standard Edition Documentation. Technical report,
2000. Available from: <http://java.sun.com>.

[21] Sun Microsystems. The Java(TM) Tutorial: A practical guide for programmers. Technical
report. Available from: <http://java.sun.com/docs/books/tutorial>.

[22] Object Management Group. OMG IDL Syntax and Semantics, 2000. Part of CORBA
v2.4 documentation, Available from: <http://www.omg.org>.

[23] Sun Microsystems. The Java(TM) Standard Edition (J2SE). Available from:
<http://java.sun.com/j2se>.

[24] Open Service Access; API. ETSI Standard ES 201 915, ETSI/The Parlay Group, 2001.

[25] OSA API, Part 3: Framework. ETSI Standard ES 201 915-3, ETSI/The Parlay Group,
2001.

[26] OSA API, Part 4: Call Control SCF. ETSI Standard ES 201 915-4, ETSI/The Parlay
Group, 2001.

[27] OSA API, Part 5: User Interaction SCF. ETSI Standard ES 201 915-5, ETSI/The Parlay
Group, 2001.

[28] OSA API, Part 6: Mobility SCF. ETSI Standard ES 201 915-6, ETSI/The Parlay Group,
2001.

[29] OSA API, Part 7: Terminal Capabilities SCF. ETSI Standard ES 201 915-4, ETSI/The
Parlay Group, 2001.

[30] OSA API, Part 8: Data Session Control SCF. ETSI Standard ES 201 915-8, ETSI/The
Parlay Group, 2001.

[31] OSA API, Part 9: Generic Messaging SCF. ETSI Standard ES 201 915-9, ETSI/The
Parlay Group, 2001.

BIBLIOGRAPHY 106

[32] OSA API, Part 10: Connectivity Manager SCF. ETSI Standard ES 201 915-10, ETSI/The
Parlay Group, 2001.

[33] OSA API, Part 11: Account Management SCF. ETSI Standard ES 201 915-11, ETSI/The
Parlay Group, 2001.

[34] OSA API, Part 12: Charging SCF. ETSI Standard ES 201 915-12, ETSI/The Parlay
Group, 2001.

[35] M.Wegdam J.W. Hellenthal, F.J.M Panken. Validation of the Parlay API through proto-
typing. In Proceedings of IEEE Intelligent Networks Workshop, 6-8 May 2001.

[36] Gabriel Weitoft, Petter von Dolwitz. Integrating the Intelligent Network with Next Gen-
eration Service Architectures. Master’s thesis, Department of Communication Systems;
Lund Institute of Technology, 2000.

[37] P. Ebben. On Integrity of Telecommunications Networks when Controlled via the Parlay
API. Master’s thesis, Katolieke Universiteit Nijmegen, 2001.

[38] OSA APIs Specification. 3GPP Standard TS 29.198 (R4), Third Generation Partnership
Project, 2001. Available from: <http://www.3gpp.org/ftp/Specs/latest>.

[39] Gerard J. Holzmann. Design and Validation of Computer Protocols. Prentice-Hall, 1991.

[40] Markos Koltsidas, Ognjen Ornjat, Lionel Sacks. Development of Parlay-based Ser-
vices Using UML and SDL. In Third IFIP/IEEE International Conference on Manage-
ment of Multimedia Networks and Services (MMNS), September 2000. Available from:
<http://www.ee.ucl.ac.uk/ oprnjat/Prnj00c.pdf>.

[41] OSA API, Part 1: Overview. ETSI Standard ES 201 915-1, ETSI/The Parlay Group, 2001.

	Introduction
	Current Trends in Telecommunications Services
	New Approach to Service Creation
	Parlay/OSA information model
	Functional model
	Business model

	Parlay/OSA -- History, Presence and Future
	About this Work

	Supporting technologies
	Object-Orientation
	UML
	CORBA
	Java

	The Architecture of Parlay/OSA APIs
	API-based Protocol
	Building Blocks
	Structure of a typical SCF
	Fault tolerance and Scalability

	APIs' functionality, SCF by SCF
	Framework
	Framework Access Session API
	Framework-to-Service API
	Framework-to-Enterprise API
	Framework-to-Application API

	Call Control SCF
	GCCS
	MPCCS
	MMCCS
	CCCS

	User Interaction SCF
	Mobility SCF
	User Location Interfaces
	User Location Camel Interfaces
	User Location Emergency Interfaces
	User Status Interfaces

	Terminal Capabilities SCF
	Data Session Control SCF
	Generic Messaging SCF
	Connectivity Manager SCF
	Account Management SCF
	Charging SCF

	Service Design in Parlay/OSA
	Introduction
	Testing platform
	Application

	Conclusions
	Acronyms
	Glossary
	Source code
	MyAppEvent.java
	MyAppEventQueue.java
	MyAppInit.java
	MyAppLogic.java
	AppCall.java
	AppCallControlManager.java

