
Implementing H.323 terminal: H.245
Subsystem

Michał Konrad Rój

Implementing H.323 terminal: H.245 Subsystem
by Michał Konrad Rój

Revision History

Revision 0.8 25 Nov 2001
(After one year-break): corrections;
Revision 0.7 22 Sep 2000
Corrections; This version was submitted as the author’s B.Sc. thesis
Revision 0.6 19 Sep 2000
Added: API proporsals; improved: entities description
Revision 0.5 15 Sep 2000
Many errors found; improved diagrams
Revision 0.4 5 Sep 2000
Added: sequence diagrams
Revision 0.3 1 Sep 2000
Added: tutorial, implementation proporsal; Improved: figures
Revision 0.2 23 Aug 2000
Added: entities description, figures
Revision 0.1 16 Aug 2000
First draft for supervisor’s reviev

Abstract

This work relates to H.245 control protocol, the protocol that is used to exchange signalling information
between H.323 endpoints. It is defined by ITU-T Recommendation H.245. Although all the descriptions
is this work refer to the H.323 multimedia terminal, most of the H.245 capabilities refer also to the other
endpoints (MCU, Gatekeepers, H-series terminals).

The first chapter introduces the essential terms and capabilities of a system based on ITU-T Rec. H.245.
Since the compatibility with the Recommendation is the most important goal of this work, the chapter is
elemental. In the next chapter all mandatory H.245 parts in H.323 terminal are described in details. Finally, a
design and implementation of the H.245-based system are described. The system was developed during the
author’s gradutating process.

This work doesnot describe the ASN.1 encoding (but it has to be mentioned here) nor Call Signalling
procedures used to establish the control channel. These aspects are beyond the scope of this work.

Table of Contents
1. H.245 Tutorial ... 9

1.1. Rationale... 9
1.2. Basic Concepts.. 10

1.2.1. Control Channel.. 10
1.2.2. Messages and Procedures... 11
1.2.3. H.245 Signalling Entities.. 12

1.3. Description of Entities.. 16
1.3.1. Capability Exchange Signalling Entity... 17
1.3.2. Master Slave Determination Signalling Entity... 19
1.3.3. Uni-directional Logical Channel Signalling Entity.. 21
1.3.4. Close Logical Channel Signalling Entity.. 23
1.3.5. Mode Request Signalling Entity... 25
1.3.6. Round Trip Delay Signalling Entity... 26

2. H.245 in H.323.. 29

3. H.245 Subsystem Implementation.. 35

3.1. Architecture.. 35
3.2. Implementing Entities... 40
3.3. Implementing primitives and messages.. 43
3.4. Programming Interface... 43

Bibliography .. 47

5

6

List of Figures
1-1. Connection between H.323 terminals... 9
1-2. Signalling Entities... 13
1-3. H.245 Protocol Stack.. 14
1-4. Diagram Symbols.. 17
1-5. Capability Exchange (CESE).. 18
1-6. Master Slave Determination (MSDSE)... 20
1-7. Logical Channel Signalling Entity (LCSE).. 22
1-8. Close Logical Channel Signalling Entity (CLCSE).. 24
1-9. Mode Request Signalling Entity (MRSE)... 25
1-10. Round Trip Delay Signalling Entity (RTDSE)... 26
2-1. H.245 Initial Sequence.. 30
2-2. Opening logical channels.. 31
2-3. CLCSE and MRSE procedures... 32
2-4. Closing the connection.. 33
3-1. H.245 Subsystem.. 35
3-2. H.245 Managers.. 36
3-3. User Manager Pseudocode.. 36
3-4. TCP Manager Pseudocode.. 37
3-5. H.245 Subsystem Internals... 39
3-6. Conversion of SDL blocks into code.. 41
3-7. Structures.. 43
3-8. H.245 Subsystem API... 43

7

8

Chapter 1. H.245 Tutorial
This tutorial introduces fundamental concepts of the H.245 communication protocol. The chap-

ter is based on the recommendation[1] only; what follows is the author’s interpretation of the
standard. The way H.245 is used in the H.323 terminal is covered inChapter 2.

1.1. Rationale
Almost every contemporary communication system requires one or more signalization channels

apart from the channels where multimedia data is exchanged. For example, multimedia terminals
must establish the exact moment of the beginning of the transmission to not to lose any data.

C1

C2

C3

C
4

SU

M3

M2

M1

M4

M5

M6

US

C1

C2

C3

C
4

M5 M3 M1

M6 M4 M2

Figure 1-1. Connection between H.323 terminals

The typical scenario of H.323 terminal connection is outlined inFigure 1-1. Two terminals (dotted
rectangles) have a special modules (signed as C1..C4), which make up theSystem Control Unitof
the H.323 terminal. The first signalization (calledRAS) is performed between the terminal and a
so-calledGatekeeper. The RAS link is represented as a curved line (the top of the figure). Two next
signalization links are established between presented terminals. They are represented as the two
horizontal dotted lines. The upper link is acall signalling link, controlled by theCall Signalling
module (C2). It is opened between two terminals to signal that a new connection is requested.
If the call signalling procedures succeed (the called terminal agrees to open a new session), a
so-calledcontrol channelis opened (the lower link). After that the call signalling connection is
usually closed (though it can be used later for additional signalling purposes). The two lower links,
which are illustrated by multiple block arrows at the figure, represent media transmission, which
follows RTP/RTCP protocol.

9

Chapter 1. H.245 Tutorial

All the mentioned signalization links have their appropriate functionality. They are defined
by different recommendations, for instance RAS and call signalling are defined inITU-T Rec.
H.225.0[5]. The control channel is defined inITU-T Rec. H.245[1], while RTP/RTCP is defined
in RFC 1889[6]. The most complex signalization system is the one related to the control channel
(described here). The following functions are performed over the control channel (the list is not
exhaustive):

• Exchanging properties of terminals. It is used to inform the remote terminal about supported
capabilities. The capabilities are supported audio/video codecs, protocol identifier, and modes a
terminal can work in. Once the exchange is successfully finished, a terminal knows what types
of audio/video formats the other end can understand.

• Opening and closing logical channels. Once a terminal knows about the other end’s capabilities
it can choose the format (encoding) of media it wants to transmit. It notifies the other of its
choice by opening logical channels.

• Measuring delay in the control channel. Checking if the other endpoint is still alive.

• Establishing and managing maintenance loops.

• Picking the master terminal. A successful completion of some of the activities mentioned above
requires designating one of the terminals as “master” and the other as “slave” (there is no
democracy in multimedia terminals). Only the master terminal can initiate certain actions.

• Closing the session between the two endpoints.

These tasks cannot be performed without a special protocol. H.323 terminals use such a protocol,
the one defined inITU-T Rec. H.245. The recommendation defines a peer-to-peer protocol, which
may be used by a number of different teleconferencing systems (e.g., based on ITU-T Rec. H.310,
H.323, H.324[9]). Not all of the H.245 features are used by any of these systems. The H.323
terminal uses just a subset of all the H.245 features.

1.2. Basic Concepts

1.2.1. Control Channel
After the termination of call signalling procedures, all information exchanged between two ter-

minals is sent in so-called logical channels. Logical channel is defined in quite an abstract way
in the [2] as “Channel used to carry the information streams between two H.323 endpoints. (...)
There is no relationship between a logical channel and a physical channel.” It is becauseITU-T

10

Chapter 1. H.245 Tutorial

Rec. H.323determines neither transmission nor network protocol for data exchange. In TCP/IP
networks logical channel is a UDP-UDP relationship or a TCP session. Generally, audio and
video streams use unreliable protocols (UDP), and data and control streams use reliable proto-
cols (TCP). The control channel is a reliable logical channel used to exchange H.245 control
information. There is exactly one control channel between two endpoints. The control channel is
bi-directional and is established as the first logical channel in a given session. A regular protocol
for opening logical channels does not apply in the case of the control channel. The TCP ports that
are used by the control channel are assigned dynamically by both terminals (they are not well-
known ports). The called terminal sends a message to the calling one. The message contains, as
one of its parameters, the number of a TCP port assigned by the called terminal to the control
channel. This number is then used to create a TCP connection by the calling terminal. The details
of establishing the channel are described in[5] and[2] and are beyond the scope of this work.
All other logical channels in a given session are controlled (opened and closed) using the control
channel.

The simple introduction to H.323-related protocols can be found in[8].

1.2.2. Messages and Procedures
Information is transmitted in the control channel in chunks calledmessages. All the messages

are defined in an ASN.1 form (refer[3], [4] for details). According to ASN.1, messages are defined
by the root of the H.245 logical tree called “Multimedia System Control Message”. Every message
is defined by a specific node in this tree. The subnodes of a message’s node are called message’s
parametersin this work. Some messages may have many complex parameters. If a message is
about to be transmitted, it must be transformed from its logical tree into a bit-stream representation
(In the H.323 terminal shown inFigure 1-1this task is accomplished by the C3 module.

There are four types of messages: requests, responses, commands and indications. Acommand
is a message that makes the other terminal do something; it does not require any response from
the other end. AnIndication is a message that just informs the other end about the current state
of the terminal. It does not require any response or action. ARequestis acommandthat requires
a response. Aresponseis just an answer to a request. There are about fifty messages defined in
ITU-T Rec. H.245 (refer[1] for details).

Most H.245 messages can be assigned to a procedure. For instance, messages calledOpen-

LogicalChannel , OpenLogicalChannelReject , OpenLogicalChannelAcknowledge ,
CloseLogicalChannel form the set of messages used by the procedure for opening and
closing logical channel messages. They are described more thoroughly inSection 1.2.3and
Section 1.3.

11

Chapter 1. H.245 Tutorial

The other messages do not belong to any procedure. They may be used separately. The exam-
ples include theFunctionNotUnderstood indication (sent if message was not understood), and
FunctionNotSupported indication in case of an unsupported message . Another message of
this type isSendTerminalCapabilitySet command. Once it is received, the terminal must
start capability exchange procedures (share its capabilities with the remote terminal). A session
between two terminals is closed as a result of theEndSession command. No other messages
can be sent after this command; the control channel is closed. There are many more similar com-
mands and indications defined in[1]. The messages that are mandatory in the H.323 terminal are
described inChapter 2.

1.2.3. H.245 Signalling Entities
The request/response messages cannot be used randomly in H.245 protocol. The special se-

quence of those messages is defined. The algorithms how these messages are used are grouped
in special procedures. These procedures are usually quite complex and must take care of timers,
protocol errors, non-standard responses, a lack of responses, etc. They cover variety of situations.
The H.245 procedures have one more important capability: multiple procedures can work simul-
taneously. For example, there can be proceeded two or more opening channels negotiations in the
same time without interfering each other. To allow that, several “signalling entities” are present
in every terminal, which uses the control channel as specified inITU-T Rec. H.245. A signalling

12

Chapter 1. H.245 Tutorial

entity defines algorithms of most of the control channel procedures.

SEUser

H.245 Control Channel

User

User

User

User

User

SE

SE

SE

SE

SE

Figure 1-2. Signalling Entities

Figure 1-2illustrates the H.245 entity system. SE is a signalling entity. User is a module that an
entity communicates with. Every entity has a single user assigned to it. And every user has one
entity under its control. In the case described here, multiple entities may not be assigned to one
user (to allow that entity identifiers must be introduced; but this is an implementation problem).

Every entity and its user have their equivalent at the other side (remote terminal). It is the same
type entity. An entity initiating a procedure will be called the local entity. The user of the local
entity will be called the local user. The peers will be called the remote entity and the remote user,
respectively. The local entity and local user are shown in figures on the left hand side. TheITU-T
Rec. H.245describes algorithms, data structures, messages and interface for any signalling entity.
This behaviour of every entity is called aprocedureis this work.

Signalling entity is a description of algorithms and variables (like a class in object-oriented
programming). Consequently, to make it work, instances of signalling entities are needed. An
instance is a separate object, which can be created and destroyed (like an object in OOP). Some
signalling entities may have multiple instances; some of them have exactly one. The number of
instances and the moments of their creation (and destruction) are explained inSection 1.3.

The terms “signalling entity” and “instance of signalling entity” are used interchangeably below
(while it causes no ambiguity).

13

Chapter 1. H.245 Tutorial

Any signalling entity must communicate with its peer using messages and with its user us-
ing so-called primitives. The user dispatches commissions to its entity in the form of primitives
and this makes the entity start required actions (send, receive and analyze messages). The entity
answers the user in the form of primitives, too.ITU-T Rec. H.245does not define the form of
primitives, just their meaning. The primitives contain parameters. These parameters correspond
directly to message parameters. For example, while opening a new logical channel, the primi-
tive ESTABLISH.request must be passed by the user to the entity responsible for opening logical
channels. This primitive contains a parameter (FORWARD_PARAM) that describes properties
of the desired logical channel (especially encoding algorithms). Then a corresponding message
(OpenLogicalChannel) is prepared by the entity. The message includes a parameter that con-
veys exactly the same information as FORWARD_PARAM. Then the message is encoded and
sent to the peer.

Figure 1-3shows how signalling entities and their users communicate. RTDSE and LCSE are
names of certain entities, they are described later. Primitives are exchanged between entities and
users. This communication may be also treated as a direct communication between the users (the
local user with the remote user), like in the case of the other stack layers. Messages are sent from
an entity to its peer over the control channel.

LCSE
User

LCSE
User

RTDSE
User

RTDSE
User

LCSE LCSE
RTDSE RTDSE

TCP layerTCP layer

IP layer IP layer

lower layers lower layers

Messages

Primitives

Control Channel

Figure 1-3. H.245 Protocol Stack

All the entities share one control channel but messages are always delivered to the proper entity.

There are four types of primitives: a request, a response, an indication and a confirmation (abbre-

14

Chapter 1. H.245 Tutorial

viated in the[1] asconfirm). They are named using the following rule: “Primitive Task”.“Primitive
Type”, e.g., ESTABLISH.request, ESTABLISH.response, TRANSFER.confirm, etc. A request
primitive is passed to a signalling entity to initiate a procedure (e.g., ESTABLISH.request starts
an opening logical channel procedure); an indication primitive is passed from the remote entity
to the remote user after receiving the first message of the procedure from the local entity. It indi-
cates to the remote user that the procedure was initiated. Usually, once an indication primitive is
passed to the remote user, the remote entity starts waiting for the reply from the user (e.g., ESTAB-
LISH.indication primitive asks the remote user whether or not to open a logical channel). If the re-
mote user agrees, it passes a response primitive to the remote entity (e.g., ESTABLISH.response).
Confirm primitives are generally passed from the local entity to the local user. They signal that the
given procedure has finished successfully (the only exception to this rule is described inSection
1.3.2).

There are two types of signalling entities: outgoing and incoming. Anoutgoing entityis located
at the calling side (the side that starts a procedure). Anincoming entityis located at the called side.
In this work a calling entity is named also a local entity, a called entity is named a remote entity.
For instance, if the local terminal is going to open a logical channel, the local user responsible
for opening the channel, passes the ESTABLISH.request primitive to the outgoing logical channel
signalling entity. Next, the messageOpenLogicalChannel is sent over the control channel to the
incoming signalling entity. The outgoing and incoming entities of a procedure operate differently
and are described in details in[1].

Some of the signalling entities work as both: outgoing and incoming. In that case the calling
and the called side operate the same way.

What is inside a signalling entity? Signalling entities are described as state machines. Receiving
a primitive, a message or a timer expiry can change the state of a signalling entity. A state change
involves performing some activities. The most common state of almost all the entities is the IDLE
state (the state of inactivity). Protocol errors and unsupported functions are handled from outside
the entities. Messages not understood are ignored. No user is informed about such a message, and
no entity changes its state. If an entity receives a message not appropriate to its state, it must be
handled appropriately (e.g., receiving a response message without any previous request message
does not change the state of the entity). An entity must be ready for such situations. They cannot
make the entity work in an unpredictable way. Most entities are equipped with timers. All timeout
errors are passed to the user by the entity in a form of a primitive. After sending a message to
the peer, a timer is set. Thus, the entity is prepared for lack of a response; it will be reactivated
after some time (usually 5 seconds). Additionally, entities are responsible for supporting counters.
If certain activities fail a number of times, they are abandoned. This feature saves an entity from
infinite loops.

The following entities have been defined in ITU-T Rec. H.245: Master Slave Determination

15

Chapter 1. H.245 Tutorial

Signalling Entity (MSDSE), Capabilities Exchange Signalling Entity (CESE), Uni-directional
Logical Channel Signalling Entity (LCSE), Bi-directional Logical Channel Signalling Entity (B-
LCSE), Close Logical Channel Signalling Entity (CLCSE), H.223 Multiplex Table Signalling
Entity (MTSE), Request Multiplex Table Signalling Entity (RMESE), Mode Request Signalling
Entity (MRSE), Round Trip Delay Signalling Entity (RTDSE), Maintenance Loop Signalling En-
tity (MLSE).

1.3. Description of Entities
This section describes the desired scenarios of procedures performed by entities required by

H.323. “Desired” means that they are performed under prosperous circumstances (the remote ter-
minal responds positively to all requests, no timeouts or protocol errors occur, etc.). Diagrams
(based on those in[1]) are drawn to illustrate the scenarios. The diagrams use the notation pre-

16

Chapter 1. H.245 Tutorial

sented inFigure 1-4.

T Start timer and timer reset.

Pass a primitive
(without any
parameters)

T Start timer and timer expiry
(not met in diagrams below)

IDLE– state of being idle

Local signallingentity

TRANSFER.request

ESTABLISH.confirm
(REVERSE_DATA)

RequestModeAck

RequestMode

Send a message

States:

AR – awaiting response

OAR– outgoing awaiting response

IAR– incoming awaiting response

AE– awaiting establishment

ARel – awaiting release

Remote signallingentity

ES– established

Pass a primitive
(with a parameter)

Meesage’s name

Figure 1-4. Diagram Symbols

Every signalling entity is described with a great emphasis on its interface (communication with the
user). All possible primitives are enumerated and the user responsibility is described. Additionally,
the parameters of the primitives are thoroughly analyzed.

The entities are introduced in the order they are used in audio-only H.323 terminal. The sig-
nalling entities that are not present in H.323 terminal (MTSE, RMESE) and the entities that may
be used just for rejecting an every request (MLSE, B-LCSE) are not introduced here.

17

Chapter 1. H.245 Tutorial

1.3.1. Capability Exchange Signalling Entity
This procedure is used to exchange terminal’s capabilities, especially the protocol version and

supported codecs.

To understand the essence of this entity the way of storing terminal capabilities must be in-
troduced. There are three types of capabilities: transmit, receive and “transmit and receive” ca-
pabilities. Transmit and receive capabilities are separated - they do not interfere. If the “transmit
and receive” capabilities are present, that means that the terminal has some dependencies between
transmit and receive logical channels. For instance, it can either transmit or receive video streams
but never do both at the same time.

Transmit or receive capabilities may be absent in primitive parameters (and consequently in
message parameters). Omitting the receive parameters implies that the terminal cannot receive any
multimedia signals. If the transmit capabilities are omitted, the terminal may still be a transmitter
but does not offer any preferred modes (e.g., for the MRSE purposes, described later).

The data structures described below are identical for transmit, receive and “transmit and re-
ceive” capabilities. In this case it is supposed that these are receive capabilities.

All the audio/video/data/encryption capabilities are enumerated in a table called a capability
table. Every item in this table has two fields - a capability number and a capability name: (NUM-
BER, CAPABILITY). This table may be treated as a space of basic capabilities. For example,
{(1, G.711), (2, G.722), (3, H.261)} would be a valid capability table. A subset of this space
called an alternative capability set. Its meaning is that every capability from the subset may be
used alternatively (exactly one from the set may be used at any given time). For instance, for the
previously defined capability table the following alternative capability set may be defined among
others: {1, 2, 3} (any of the codecs from the capability table can be used) and {1, 2} (just G.711
and G.722 can be used). A family of alterative capability sets is called a simultaneous capability
table. Let T={{1,3}, {2,3}}. This simultaneous capability table (T) consists of two sets A={1, 3}
and B={2, 3}. It describes what codec combinations can be used. To find out the combinations,
the Cartesian product of the sets in T must be calculated. In this case AxB={{1,2}, {1,3}, {3,2},
{3,3}}. A set of simultaneous capability tables is called simultaneous descriptors. And this is the
parameter describing capabilities of the terminal.

Notice thatthe CESE procedures must precede all other procedures in the control channel.

18

Chapter 1. H.245 Tutorial

TRANSFER.request
(ID, MUX, CT, CD)

TerminalCapabilitySet
TRANSFER.indication
(ID, MUX, CT, CD)

TerminalCapabilitySetAck

TRANSFER.confirm

TRANSFER.response

T

IDLE

OAR

IDLE

IDLE

IAR

IDLE

Figure 1-5. Capability Exchange (CESE)

Figure 1-5shows an exchange of messages and primitives for the CESE procedure. They are
started when the local user passes the TRANSFER.request primitive to the local entity. This
request includes four parameters: identifier of the used H.245 protocol used (ID), a multiplex
capability table (MC) (not used in H.323 terminals), a capability table (CT) and capability de-
scriptors (CD). They may contain transmit and receive capabilities for any media types. Once
the primitive is passed to the local entity, theTerminalCapabilitySet message is sent to the
remote entity. This message contains all parameters passed in the TRANSFER.request primitive.
The remote entity receives the message and passes the TRANSFER.indication primitive to the
remote user. The primitive contains all the parameters acquired from the message. The remote
user responds using the TRANSFER.response primitive. Next, the remote entity sends theTer-

minalCapabilitySetAck message to the local entity. When the local entity gets this message,
the TRANSFER.confirm primitive is passed to the local user.

Instances: There are two pairs of instances for every call. During a normal session (two ter-
minals are involved) a terminal has only one instance of incoming CESE and one instance of
outgoing CESE.

Other primitives:REJECT.request(CAUSE) primitive can be the answer of the remote user to
the TRANSFER.indication primitive. CAUSE must be filled with the cause of rejection. The local
user gets the REJECT.indication(CAUSE) primitive instead of the TRANSFER.confirm one.

Responsibility of the user: The local user must properly fill the parameters and then pass them
to the entity. The remote user should store the received capabilities.

19

Chapter 1. H.245 Tutorial

1.3.2. Master Slave Determination Signalling Entity
This procedure is used to designate one terminal as master, and the other as slave. The assign-

ment is used by some other entities (e.g., LCSE, B-LCSE).

DETERMINE.request

MasterSlaveDetermination

DETERMINE.indication
(TYPE)

TYPE =
Determine
Status()

MasterSlaveDeterminationAck

DETERMINE.confirm
(TYPE)

MasterSlaveDeterminationAck
DETERMINE.confirm
(TYPE)

T

T

IDLE

OAR

IDLE

IDLE

IAR

IDLE

Figure 1-6. Master Slave Determination (MSDSE)

First, as illustrated inFigure 1-6the local user passes the DETERMINE.request primitive to the
local entity (no parameters). Then the entity sends theMasterSlaveDetermination message
to the remote entity. This message contains two important parameters: the terminal type (TT)
and the status determination number (SDNUM). TT is a number assigned to every terminal. This
value is specified in the recommendations that refer to ITU-T Rec. H.245. Generally speaking, if
an entity supports more features, the TT number is greater (e.g., a terminal with no MC has the
TT number equal 60, a gatekeeper with no MP has TT number equal 120, while an MCU with
data, audio and video has TT number equal 190). SDNUM is a 24-bit unsigned integer random
number generated by the local entity. The remote entity receives the message and runs thede-

termine_status function. The function first compares TT from the message with the local TT.
The terminal with the bigger TT is picked as the master terminal. If both TT’s are equal, two
SDNUMs (received and local) are compared. Thedetermine_startus function returns one of
the following values: “master”, “slave”, and occasionally “undetermined” (when an unusual coin-
cidence happens). The returned value is passed to the remote user in the DETERMINE.indication
primitive and stored in the entity’s local variablestate . This primitive informs the user about the
results of the master slave determination. Then, theMasterSlaveDeterminationAck message
with the invertedstate variable as its parameter is sent to the local terminal. A local variable
state at the local entity is set, and the DETERMINE.confirm primitive is passed to the local

20

Chapter 1. H.245 Tutorial

user. Then theMasterSlaveDeterminationAck message is sent to the remote entity with the
state value inverted again. The peer receives the message, and if thestate local variable equals
the message parameterstate , the primitive DETERMINE.confirm is passed to the remote user.
Now the user is informed that both the local and the peer side have resolved the issue successfully.

Instances: There is just one instance of this entity in every terminal. This instance shares out-
going and incoming features (calls and can be called).

Other primitives:the REJECT.indication primitive may be passed by the entity to the user
if it acquired theMasterSlaveDeterminatonRelease message or theMasterSlaveDeter-

minatonReject message. These are caused by the simultaneous initiation of MSDSE proce-
dures. The users can also get the ERROR.indication caused by undetermined result of thedeter-

mine_startus function or by the timer expiry.

Responsibility of the user: The local user as well as the remote user must store the current status
somewhere (master, slave, undetermined).

1.3.3. Uni-directional Logical Channel Signalling Entity
This procedure is used for opening and closing uni-directional (the commonest) logical chan-

21

Chapter 1. H.245 Tutorial

nels.

ESTABLISH.request
(FP)

OpenLogicalChannel
ESTABLISH.indication
(FP)

OpenLogicalChannelAck
ESTABLISH.confirm

ESTABLISH.response

T

IDLE
AE

ES

IDLE
AE

ES

RELEASE.request
(CAUSE)

T

CloseLogicalChannel

RELEASE.indication
(SOURCE, CAUSE)

RELEASE.confirm

CloseLogicalChannelAck

ARel

IDLE

IDLE

Figure 1-7. Logical Channel Signalling Entity (LCSE)

Figure 1-7illustrates how a logical channel is opened and closed. First, the local user passes the
ESTABLISH.request(FP) primitive to the local entity. The primitive contains forward parame-
ters (FP). FP is a very complex set of logical channel parameters. It contains the number of the
channel to be opened, assigned arbitrarily by the transmitter. It contains a UDP port number for
the media-carrying RTP logical channel that is being opened and a UDP port number for the re-
verse RTCP. Finally, FP contains the data type (e.g., audio), a codec used and, in case of some
codecs, some additional parameters. These parameters correspond directly to parameters of the
OpenLogicalChannel message, which is sent to the peer. The remote entity gets the message
and passes the ESTABLISH.indication primitive based on the parameters from the message to
the remote user. Then it the remote entity waits for an answer. If the remote user agrees to open
such a logical channel, it passes the ESTABLISH.response primitive to the entity and that makes
the entity send theOpenLogicalChannelAck message to the local entity. After receiving this
message, the local entity passes the ESTABLISH.confirm primitive to the local user. The logical
channel is now in ESTABLISHED state, and the transmission may begin.

To close the logical channel, the local user passes the RELEASE.request primitive to the local
entity (no parameters). The transmission of data must be terminated before passing this primi-

22

Chapter 1. H.245 Tutorial

tive. TheCloseLogicalChannel message is sent to the peer. The remote entity gets the mes-
sage and immediately responses with theCloseLogicalChannelAck message, sending the RE-
LEASE.indication primitive to the remote user at the same time. The local entity passes the RE-
LEASE.confirm primitive to the local user. The logical channel is now closed.

Instances: There is the pair of instances for every opening channel procedure. The local entity
uses the outgoing algorithms, and the remote entity - incoming algorithms. The number of in-
stances varies from 0 to N (N is a number of logical channels). New instances are created with the
ESTABLISH.request and should be killed after the associated logical channel is closed.

Other primitives:the RELEASE.request(CAUSE) primitive may be passed by the remote user
to tell that it does not agree to open the logical channel. The CAUSE parameter must be set.
The local user then receives the RELEASE.indication primitive. Another primitive is the ER-
ROR.indication(ERRCODE) primitive meaning that the timer expiry or a protocol error has oc-
curred.

Responsibility of the user: In case of this entity the local user must be aware of many factors;
also it must perform some actions before starting the LCSE procedure. First, the user must select a
proper codec. Second, the user must check in the capability table (received from the remote peer as
a result of the CESE procedure) whether the remote terminal supports the chosen codec. Third, the
user must check if this codec can work simultaneously with the already opened logical channels
(looking up the simultaneous capability tables). Next, the user must check whether bandwidth
(allocated by a gatekeeper and received from RAS) is not exceeding due to using the new logical
channel. Then a UDP socket (if opening a video or audio channel) for further media exchange
(RTP) and a UDP socket (for the RTCP protocol) must be opened. RTCP is not present in all
types of logical channels; sometimes this parameter may be suppressed. Next, proper forward
parameters (FP) must be formed. For some sets of codecs, special parameters must be added (e.g.,
a dynamic payload type for RTP purposes or a silence suppression flag).

Once the ESTABLISH.indication primitive is received by the remote user it checks whether it
can open an additional logical channel with the given parameters. If positive, it opens two UPD
sockets: RTP and RTCP one. Next, the remote user must be ready to receive the media stream
(must activate a media engine new threads or processes). Then theOpenLogicalChannelAc-

knowledge message may be sent to the local entity.

1.3.4. Close Logical Channel Signalling Entity
The following procedure is used to request the closing of logical channels by the receiver.

Normally, the transmitter opens and closes its logical channels. But sometimes the receiver cannot
process a media stream or no longer wants to receive it. In these cases the CLCSE procedure must

23

Chapter 1. H.245 Tutorial

be performed.

CLOSE.request
RequestChannelClose

RequestChannelCloseAck

CLOSE.confirm

T

IDLE
AR

IDLE

IDLE
AR

IDLE

Figure 1-8. Close Logical Channel Signalling Entity (CLCSE)

Figure 1-8shows the CLCSE procedure. In this case the local entity is a receiver, the remote entity
is a transmitter. First, as illustrated in the figure, the local user passes the CLOSE.request primitive
to the local entity. Then, the entity sends theCloseLogicalChannel message to the peer (the
message includes the number of the logical channel). The message is received by the peer (the
remote entity) and the remote entity passes the CLOSE.indication primitive to the remote user. If
the remote user agrees to the suggestion in the primitive, it passes the CLOSE.response primitive
to the remote entity. The remote user is now obliged to start closing this logical channel (passing
the RELEASE.request primitive of the LCSE procedure to the proper LCSE entity). Then the
remote (incoming) entity sends theCloseLogicalChannelAck message to the peer. The local
entity gets the message and passes the CLOSE.confirm primitive to the local user.

Instances: The Recommendation specifies that there is exactly one outgoing instance for every
receiving logical channel and one incoming instance for every transmitting logical channel. Con-
sequently, the number of the instances is equal to the number of all the opened logical channels.
They are created once LCSE procedures are started, and destroyed once the associated logical
channel is closed.

Other primitives:the REJECT.request(CAUSE) primitive may be passed by the remote user to
the remote entity if it does not agree to close the logical channel. CAUSE parameter must be set.
The local terminal receives the REJECT.indication(SOURCE, CAUSE) primitive in this case (the
value of SOURCE is “USER”). The REJECT.indication primitive is passed to the local user after
the timer expiry inside the local entity (SOURCE has the value “PROTOCOL” in this case).

Responsibility of the user: The local user has no special responsibilities. The remote user must

24

Chapter 1. H.245 Tutorial

start the closing part of the LCSE procedure after successful completion of the CLCSE procedure.

1.3.5. Mode Request Signalling Entity
These functions are used to initialize the opening of logical channel by the receiver. The receiver

does not open the logical channel. It just sends a polite request to the transmitter to open a desired
logical channel. Two entities are present in the time of running the procedures: incoming and
outgoing (starts them). After a successful finishing of these procedures, the incoming peer must
start the opening logical channel procedures. Notice that if there were no transmitting capabilities
sent by the remote terminal while CESE procedures it means that the RMSE procedures must not
be used.

TRANSFER.request
(MODE-EL)

RequestMode TRANSFER.indication
(MODE-EL)

RequestModeAckTRANSFER.confirm
(MODE-PREF)

TRANSFER.response
(MODE-PREF)

T

IDLE

AR

IDLE

IDLE

AR

IDLE

Figure 1-9. Mode Request Signalling Entity (MRSE)

First, as showsFigure 1-9, the TRANSFER.request primitive is passed to the local entity. The
primitive carries the parameter called mode element (MODE-EL). This parameter contains the
enumerated modes from the most preferred to the least preferred mode. The modes must conform
to the capability table (received while CESE procedures). Then the entity sendsRequestMode

to the remote terminal. This makes the remote entity pass the TRANSFER.indication primitive
to the remote user. If the remote user responses positively, it passes the TRANSFER.response
primitive containing information whether the most proffered mode was chosen. Then, the remote
entity sendspreferred to the local entity. The local entity acquires the message and passes the
TRANSFER.confirm primitive to the user.

Instances: There is the pair of instances for every call. The local entity uses the outgoing al-
gorithms, and the remote entity - incoming algorithms. During an ordinary, two terminal session

25

Chapter 1. H.245 Tutorial

there is one instance of outgoing and one instance of incoming CESE.

Other primitives:the REJECT.request(CAUSE) primitive may be passed by the remote user to
the remote entity if it does not agrees to open new logical channel. CAUSE parameter must be
filled. The local terminal receives the REJECT.indication(SOURCE, CAUSE) primitive in this
case (the value of SOURCE is “USER”). The REJECT.indication primitive is passed to the local
user after the timer expiry error inside the local entity (SOURCE has the value “PROTOCOL” in
this case).

Responsibility of the user: The local user must refer to the items in the capability table (CT)
and in the capability descriptors (CD) set before starting these procedures. The remote user must
store the chosen mode after its positive response to the entity. It must start LCSE procedures
immediately after completion of the MRSE procedures using the stored mode.

1.3.6. Round Trip Delay Signalling Entity
Round Trip Delay is used to check the delay in the control channel. The delay is measured by

the local entity as the time between sending a message and receiving the response for this message.

TRANSFER.request

RoundTripDelay

RoundTripDelayAck

TRANSFER.confirm
(DELAY)

T

IDLE
ARel

IDLE

IDLE

Figure 1-10. Round Trip Delay Signalling Entity (RTDSE)

The procedures (referFigure 1-10) are started by the TRANSFER.request primitive passed to
the local entity. Then, theRoundTripDelay message is sent to the remote terminal and the
timer is started. After getting this message, the remote entity answers immediately with the
RoundTripDelayAck message. This message, when acquired by the local entity, stops the timer
and makes the entity pass the TRANSFER.confirm primitive with the properly calculated delay
as a parameter (DELAY).

26

Chapter 1. H.245 Tutorial

Instances: Only one instance of RTDSE must be present all the time. It shares the incoming and
outgoing capabilities.

Other primitives:EXPIRY.indication is passed to the local user when no response from the
remote terminal was acquired in the given time.

Responsibility of the user: The local user should store the DELAY value after the positive com-
pletion of the procedures. The remote user is not informed about incoming RTDSE procedures.

27

Chapter 1. H.245 Tutorial

28

Chapter 2. H.245 in H.323.
This paragraph describes all the H.245 features, which are mandatory in an H.323-compatible

terminal. First, H.245 control channel is established immediately after successful procedures of
H.225.0 Call Signalling. The essential information is exchanged during these procedures (e.g. the
TCP port for the control channel). Second, every H.323 terminal must be able to parse all the
H.245 messages (even if it does not support them). It is important to understand and response
properly for such messages, more adequate than justFunction Not Understood indication.
Finally, the control channel (with an identifier 0 assigned to it) must be permanently open and
usable until the entire session is finished.

As mentioned earlier, an H.323 terminal uses just a subset of all H.245 protocol features.ITU-T
Rec. H.323gives lists of signalling entities, which are present in terminals as well as messages,
which must be understood by such endpoints. In this set of signalling entities there are entities,
which have some messages forbidden or optional (i.e. endpoint does not have to support them).
The required entities are: MSDSE, CESE, LCSE (some messages are optional), B-LCSE, CLCSE
(some messages are optional), RMSE (some messages are optional), RTDSE (some messages are
optional) and MLSE (almost all messages are optional). For details, refer[2], p. 19, p. 82 .

Bi-directional LCSE (B-LCSE) is not used in speech-only terminals to establish logical chan-
nels (because bi-directional channels are not present in such terminals). This entity uses the same
set of messages as LCSE (with additional parameters). If a speech-only terminal acquires a request
to open a new bi-directional channel, it should refuse.

Maintanance Loop Signalling Entity (MLSE) is required for every H.323 terminal but most
messages and their parameters are optional or forbidden. System loops and logical channel loops
are forbidden. Just media loops only are permitted though optional (consequently video or audio
streams may be looped and than come back to the transmitter). The mandatory messages are:

MaintenanceLoopOffCommand (turning off all the loops) at the receiving side andMainte-

nanceLoopReject at the transmitting side.

Every terminal must support the set of commands and indications (not assigned to any sig-
nalling entity). The commands that must be implemented at the transmitting and receiving sides
are:SendTerminalCapabilitySet , used to make the peer start CESE procedures, andEnd-

Session used to end the session between two terminals. There are several other commands that
must be implemented at one of the sides are not described here (refer[2] p. 86). The manda-
tory indications areFunctionNotUnderstood andFunctionNotSupported andUserInput

command.UserInput is a command that allows sending to the peer some characters as if they
were typed on a keypad. The minimal set of character is 0-9, * and #.

A logical channel, opened using LCSE procedures, has an audio/video/data codec assigned to

29

Chapter 2. H.245 in H.323.

it. Every corresponding RTP stream has a payload type assigned to it (according to[6] and[7]).
There must be a correlation between this payload type and the H.245 codec type.

Every H.245 protocol revision has a version number.[1] describes the version number 2 of the
protocol. This protocolmustbe compatible with all preceding versions (in this case with version
number 1).

Layer of primitives

TRANSFER.request(lI,lT,lD)

Outgoing
CESETRANSFER.confirm

Incoming
CESE

TRANSFER.indication(rI,rT,rD)

TRANSFER.response

DETERMINE.request

Protocol ID (rI) and remote tables
(rT, rD) are stored locally

MSDSE

Layer of messages

DETERMINE.confirm (S)

Status (S) is stored locally.

Figure 2-1. H.245 Initial Sequence

Figure 2-1shows the beginning of the H.245 session. The first messages sent into control chan-
nel are CESE messages. These give the remote terminal information about the local terminal
capabilities. The H.245 protocol version is transmitted, and then all supported audio/video/ data
capabilities are sent (in capability tables and capability descriptors). At the every moment in the
particular session, terminals may sent the commandSend Terminal Capability Set which
makes remote terminal start CESE procedures and send all the interesting parameters. The figure
shows that outgoing CESE procedures are run once per session. Incoming procedures (initiated
by the remote terminal) are run also just once. Normally, there is no need to perform these pro-
cedures several times (the terminals have constant capabilities). But if the capabilities change in

30

Chapter 2. H.245 in H.323.

time (for example the user turns the video capabilities off to make up) the CESE procedures may
be performed also in the other terminal states. So the terminal must be ready for such a situation.

Next procedures are MSDSE ones. It is a must to assign one terminal as a master terminal and
the other as a slave terminal before the opening of logical channel if performed. Some conflicts
may be met while establishing a logical channel. In such cases the master terminals gains some
profits (the slave terminal must give up). The MSDSE procedures, if successful, should be per-
formed just once, after the CESE procedures. Nevertheless, MSDSE entity is active all the time
during the session. Every terminal must be able to work in master as well as slave modes.

Layer of messagesLayer of primitives

ESTABLISH.confirm

ESTABLISH.request(F)
Outgoing

LCSE

Transmission may be started

Incoming
LCSE

ESTABLISH.indication(F)

ESTABLISH.response

Ready for receiving a signal

Waiting for user acceptance for F

Figure 2-2. Opening logical channels

In the moment the MSDSE results are known for both of the terminals (the DETERMINE.confirm
primitive is received by the users) LCSE procedures may be started. The number of logical chan-
nels depends on the particular situation and is not defined by the Recommendation. Perhaps, it
may be needed to start RMSE to open all desired logical channels. In the considered situation
(illustrated inFigure 2-2two logical channels are opened (supposedly they are audio channels):
first is opened by the local terminal and the other by the remote terminal. No additional functions
are needed in this case.

Once the transmitting logical channel is opened (it is in the ESTABLISHED state) the transmis-
sion may be started. In the figured case no additional primitives are sent, but the H.245 subsystem
is still alive, and the regular procedures may be performed (e.g. CESE, RTDSE, LCSE, CLCSE,
..). The Recommendation requires from the terminal to handle all the messages in all states.

31

Chapter 2. H.245 in H.323.

Layer of messagesLayer of primitives

ESTABLISH.response

Incoming
LCSE

CLOSE.request

Receiving is started but problems are
encountered

ESTABLISH.indication(F)

Outgoing
CLCSECLOSE.confirm

Incoming
LCSE

(the same as above)

RELEASE.indication

RELEASE.response

The logical channel is now released

TRANSFER.request(ME)
Outgoing

MRSETRANSFER.confirm

Mode request confirmed – waiting for
ESTABLISH.indication

ESTABLISH.indication(F)

ESTABLISH.response

Ready for receiving a signal

Incoming
LCSE

Figure 2-3. CLCSE and MRSE procedures

Occasionally, an H.323 terminal can use additional mechanisms to modify logical channels. This
example illustrates the situation where a terminal decides to change the logical parameters, which
are not adequate for the terminal. As shown inFigure 2-3receiving logical channel is opened
on the remote terminal’s own initiative. The local terminal begins receiving the audio signal but
it finds out that in cannot process the signal properly (e.g. too complex decoding rules for the
local CPU). Consequently, the local terminal starts CLCSE procedures to request the closing the
problematic logical channel. The remote terminal agrees to this request (CLOSE.confirm) and then
starts releasing procedures (RELEASE.indication). Then, when the logical channel is eventually
released, the local terminal decides to open a new logical channel (with all the parameters carefully
selected) and start MRSE procedures (sending TRANSFER.request(ME) to the outgoing MRSE).

32

Chapter 2. H.245 in H.323.

The remote terminal agrees again with the local terminal’s suggestion and starts LCSE procedures.
This is the way to “change” logical channel’s parameters.

Layer of messagesLayer of primitives

RELEASE.confirm

RELEASE.request
Outgoing

LCSE

Transmission is stopped

Incoming
LCSE

RELEASE.indication

RELEASE.response

No signal for receiving in this channel

No media-carrying logical channels present

END_SESSION EndSession

No control channel

Figure 2-4. Closing the connection

If the terminal is going to terminate the connection is should stop all the media streams, and
close all the transmitting logical channels. Then it sendsEndSession messages to the terminal
(represented here by END_SESSION primitive). In this moment the connection is closed, and
control channel exists no longer. The Recommendation does not require from the terminal to
close all the logical channels before sendingEndSession , but just suggests it. Consequently, the
“ugly” closing of connection procedure would include just sending ofEndSession message.

33

Chapter 2. H.245 in H.323.

34

Chapter 3. H.245 Subsystem
Implementation

3.1. Architecture
In this H.323 terminal project all signalling entities are controlled by the same user (called

Supervisory Thread). From such a point of view, H.245 Subsystem is treated as a monolith. There
is no need to distinguish separate signalling entities’ instances.

C1

C2

C3

C
4

SU

C1

C2

C3

C
4

S U

Figure 3-1. H.245 Subsystem

As showsFigure 3-1, the Supervisory Thread (S in the figure) passes primitives to theH.245
Subsystem(C3 in the figure) and the Subsystem responses (in case of outgoing procedure) or the
H.245 Subsystem passes primitives to the supervisory thread (incoming procedures). The Super-
visory Thread must be ready for signals from theUser Control Module(U in the figure), which
are ordered by the human user. At the peer side there is a similar functionality.

A primitive passed by the Supervisory Thread is delivered to the proper entity, which is previ-
ously created if needed. Unlike inFigure 1-2, signalling entities are not connected directly to the
TCP and to the user. Creation and choosing the proper entity is performed by two threads called
“Managers”.

Note that, the responsibility of the H.245 user (as described in the previous chapter) is in this
implementation divided among the managers and the supervisory thread. The primitives described
here are slightly modified comparing to H.245 primitives : to distinguish every entity instance,

35

Chapter 3. H.245 Subsystem Implementation

some additional parameters were introduced. Commands and indications have the same form as
the primitives passed to the entities.

Control Channel
User U

M
T
M

SE

SE

SE

User Manager TCP Manager

Figure 3-2. H.245 Managers

The first manager, the “User Manager”, is responsible for communication with the user; the sec-
ond one, “TCP Manager”, communicates with other terminals over a TCP socket (Figure 3-2).
Primitive manager is a looped thread, being blocked on queue of primitives almost all the time.
When the Supervisory Thread passes a primitive, the User Manager gets it and starts analyzing.
It checks whether it is a system control primitive, making manager (and all H.245 subsystem)
terminate. If it is so, all H.245 threads are killed and H.245 is stopped. If not, the User Manager
looks whether the primitive can be cast to simple message (command or indication). In this case,
a message is prepared and sent to remote terminal. Otherwise, a primitive must be passed to a
signalling entity. First, the type of entity is determined. Next, decides whether create new instance
of the entity; if so, new entity instance is created. Then, primitive is sent directly to this entity.
Entity instances are implemented as separate threads, created by managers. If the entity instance
is no longer needed, it destroys itself. Entities sent primitives and messages directly to the user and
to the remote terminal, respectively. The (C-like) pseudocode of the entity is presented inFigure
3-3.

while(!stop_condition())

36

Chapter 3. H.245 Subsystem Implementation

{

p = get_a_primitive_from_the_queue(); /* blocking function */

if (is_a_special_primitive(p)) {

take_appropriate_action(p); /* e.g. Terminate Manager */

} else if (is_command_or_indication(p)) {

m = prepare_an_appropriate_message(p);

send_the_message_to_the_peer(m);

} else if (is_an_h245_primitive(p)) {

e = determine_entity_type(p);

if (new_instance_must_be_created(p)) {

i = create_new_instance(e);

} else { /* The instance exists */

i = get_instance(p);

}

pass_primitive_to_the_instance(i, p);

}

} /* while */

Figure 3-3. User Manager Pseudocode

The second manager, the TCP Manager, is also a looped thread, but it blocks on the Control
Channel’s TCP socket, waiting for messages from the remote terminal. First, it looks whether it
is a command or indication message. If positive, the message is directly cast into a command
primitive or indication primitive. If not, the message is passed to a proper entity instance (the
instance is created if needed). The pseudocode of this manager is presented inFigure 3-4.

while(!stop_condition())

{

m = get_a_message_from_an_assigned_socket(); /* blocking function */

37

Chapter 3. H.245 Subsystem Implementation

if (is_command_or_indication(m)) {

p = prepare_an_appropriate_primitive(m);

pass_primitive_to_the_suprevisory_thread(p);

} else if (is_a_well-known_request_or_response(m)){

e = determine_entity_type(m);

if (new_instance_must_be_created(m)) {

i = create_instance(m);

} else { /* The instance exists */

i = get_instance(m);

}

pass_the_message_to_instance(i, m);

} else if (is_an_unknown_message(m)){

m1 = prepare_message_parameters("FunctionNotUnderstood", m);

send_the_message_to_the_peer(m1);

}

} /* while */

Figure 3-4. TCP Manager Pseudocode

After passing a primitive to the entity, it starts analyzing the primitive and its parameters and,
depending on the internal state of the entity, appropriate action is taken. This first s.pdf of the
action are usually:

• A fill-up of message’s parameters,

• A ASN.1 message’s encoding,

• Starting of a timer,

• Sending a message to the peer.

Next, entity waits for remote terminal’s response. If there is no response, then an error primitive
is sent to the user. In many cases, the response from the remote terminal makes the entity send a

38

Chapter 3. H.245 Subsystem Implementation

primitive to the user, and start waiting for a user’s answer. Some entities’ instances are destroyed
after finishing their job.

The exact internals of designed H.245 subsystem are shown atFigure 3-5.

Primitives

Control Channel: Messages
ANS.1
codec

Signalling Entities

Instances of the entities TCP Manager
User

Manager

User

Queued
primitives

Figure 3-5. H.245 Subsystem Internals

At the left side ofFigure 3-5there is the user, communicating with the subsystem. Primitives are
queued in special queues. The most often, the managers have to parse the message, to create the
entity, and to prepare the proper primitives for the entity. It takes some time and if the primitives
were not queued, some of them would be lost. Functions sending and receiving primitives are
just functions which put and get nodes from the queues. At the bottom of the figure there are
signalling entities starting procedures - if one of the managers wants to create a new instance
of the procedure, it just calls the proper function. Outgoing entities are creating by the “User
Manager”, incoming ones by the “TCP Manager”. Once an entity instance is created, it can send
and receive messages as well as primitives. Some of the entities must be created while creation of
the entire subsystem (MSDSE and RTDSE) .

39

Chapter 3. H.245 Subsystem Implementation

3.2. Implementing Entities
Entities are organized according to[1]. The recommendation introduces the SDL diagrams

to describe the algorithms of how the signalling entities work. These diagrams in this project
are transformed directly into C-code. There is no need to introduce the entire bodies of entities’
procedures. Instead, the rules of how SDL diagrams were converted into the code. All the rules
and the code were prepared by the author. Of course, the transformation could be organized in a
different way. The used structures are presented in The API, used by the entities is presented in .
Four special functions have been prepared to be used by the procedures. These functions are called
from the entities’ functions, so they are internal ones. The user does not need to be conscious of
their capabilities. They are introduced here to show how the conversation is preceeded.

TheSendH245Message function is used to send a message to the peer (over a TCP socket).mn

is a name of the message (e.g.OpenLogicalChannel), andparameters are parameters of the
message. This function prepares the message (ASN.1 tree), then encodes it and sends to the peer.

TheSendPrimitive function passes a primitive to the user.mt is a name of a primitive (e.g.
H245_OPEN_LC_CONF), andmessage_params is a structure of the parameters for the given
message.

TheGetMessageOrPrimitive function gets a message or a primitive. When a message comes
from the peer, it is stored in the entity message queue by the “TCP Manager”. Every entity has a
pointer to this queue as well as it has a pointer to the queue of primitives from the user. Say that
two variablesq1 andq2 are the pointers to queue from the “TCP Manager” and from the “User
Manager” respectively, andm, n, ando are variables of the type struct message.GetMessageOr-

Primitive may be called as follows:

m = GetMessageOrPrimitive(q1, q2);

n = GetMessageOrPrimitive(q1, NULL);

o = GetMessageOrPrimitive(NULL, q2);

The first line shows the typical call of the routine (two non-zero parameters). First, the function
checks whether there are any messages inq1. If positive, function returns with the appropriate
message. Otherwise it checksq2. If positive, it returns the message. Otherwise the function blocks
infinitely until a message appears in any queue. The second and the third call from the example
show the usage of the function with one parameter only. In this case the functions checks just one,
non-zero queue.

The GetMessageOrPrimitiveWithTimeout function is the version of
GetMessageOrPrimitive with a timeout. Unless it can get a primitive from any queue, it
blocks forsecs seconds. After this time it returns a special, “timeout” primitive.

40

Chapter 3. H.245 Subsystem Implementation

Now the transformation of SDL diagrams may be introduced.Figure 3-6shows how every block
is interpreted.

41

Chapter 3. H.245 Subsystem Implementation

Encoding and sending a
message to the peer. The
SendH245Message

routine is called.

Sending a signal to the
user. The
SendPrimitive routine
is called.

Getting a message
from the peer. The
GetMessage function
is called.

Getting a signal from the
system. It is always a timeout
signal. In this case
GetMessageWithTimeout

function is called.

Sending a primitive to the
user. The SendPrimitive

function is called.

Getting a primitive from
the user. The GetMessage

function is called.

Performs a task.
Usually sets a value of
a certain variable.

A state. If met at the
beginning of the
procedure, it is
represented by a label,
otherwise it is cast to
goto statement.

A decision block. It is
transformed into if-
then-else statements.

A macro call.
Transformed into a
function call.

A macro definition.
Transformed into a
definition of a
function.

Figure 3-6. Conversion of SDL blocks into code.

42

Chapter 3. H.245 Subsystem Implementation

3.3. Implementing primitives and messages

3.4. Programming Interface
The module, described here, contains all H.245 capabilities uses in H.323 terminal, i.e.: sig-

nalling entities - their creation, destruction and management; waiting for primitives (from the
user) and messages (from the network); supports timers, error checking, separate commands and
indications. The main idea of this module is to allow the user send all signals to the H.245 sub-
system and forget about its internal structure. In this implementation just one H.245 can be run.
So this module can be used as a part of a terminal (not gatekeeper, MCU, etc).

struct primitive_queue;
struct primitive_queue_node;
typedef struct primitive_queue *primitive_queue_p;
typedef struct primitive_queue_node *primitive_queuen_p;

Figure 3-7. Structures

Figure 3-7shows what structures are used while communication with H.245 Subsystem is on. The
mechanism used here is a set of queued primitives exchanged between the H.245 Subsystem and
the Supervisory Thread. Type primitive_queue_p is a pointer to a queue where these primitives
may be stored. It may be treated as a handler to a queue.

Full H.245 Subsystem API is presented inFigure 3-8.

43

Chapter 3. H.245 Subsystem Implementation

primitive_queue_p create_primitive_queue();
int destroy_primitive_queue(primitive_queue_p queue_p);

int send_h245_primitive(int name, void *params);
int send_h245_primitive_p(struct primitive p);
struct primitive get_h245_primitive();
struct primitive get_h245_primitive_nb();

int get_primitive_name(struct primitive p);
void *get_primitive_parameter(struct primitive p);

Figure 3-8. H.245 Subsystem API

Before H.245 Subsystem can be started, some actions must be taken. First, a return queue must
be created. The return queue is used by H.245 Subsystem to send primitives to its user. To create
this queue the followingcreate_message_queue function is used.

Next, there must be an opened socket. The socket must be passed directly to the H.245 Subsys-
tem to allow it to transmit and receive messages through it. This socket is usually opened by the
user of subsystem. A special type socket_struct has been prepared to make this module portable.
Now, H.245 can be started.

To do that, the user calls thestart_H245 function. This function returns 0 if succeeds or non-
zero if fails. Thestop_h245 function can be used to stop H.245 Subsystem: The function returns
zero if succeeds or non-zero if fails (e.g. no subsystem was previously run).

The send_h245_primitive routine is used by the user to send primitives to H.245
Subsystem.mt is the name of the primitive.message_params is a pointer to parameters
(if any). Primitives can be also sent usingsend_h245_primitive_m . In this casemesg is a
manually propared message containing a primitive in the fieldmt and a parameter inmesg.
Until now the following primitives have been defined :H245_OPEN_LC(open logical channel),
H245_CLOSE_LC (close logical channel),H245_MSD (start master slave determination),
H245_CE (start capability exchange),H245_REQUEST_OPEN_LC(request open logical channel),
H245_REQUEST_CLOSE_LC(request close logical channel),H245_REQUEST_CE(request
capability exchange),H245_RTD(start round trip delay procedures). Some of these primitives do
not require parameters, e.g.:

44

Chapter 3. H.245 Subsystem Implementation

send_h245_primitive(H245_MSD, NULL); /* Start MSD procedures */

The other require from user to fill a special structure (it differs for every primitive) and cast it on
(void*) .

The get_h245_primitive function is used to acquire a primitive from the H.245
Subsystem. This function is a blocking one (if no parameters are in queue, it starts waiting until a
parameter apppers). The functionget_h245_primitive_nb is a non-blocking version of the
get_h245_primitive routine (if no primitives are in the queue this function returns with
EMPTY primitive). To get a primitive nameget_message_type is used, and to get primitive
parameterget_message_parameter is called.

Some more user-friendly API to this mechanism is being developed, e.g.
open_logical_channel(codec_id) , close_logical_channel(channel_num) , ...

45

Chapter 3. H.245 Subsystem Implementation

46

Bibliography

[1] ITU-T Recommendation H.245: Control protocol for multimedia communication, 07/97.

[2] ITU-T Recommendation H.323: Packet-based multimedia communications systems, 02/98.

[3] ITU-T Recommendation X.680: Information Technology - Abstract Syntax Notation One
(ASN.1): Specification of basic notation, 1994.

[4] ITU-T Recommendation X.691: Information Technology - ASN.1 encoding rules - Specification
of Packet Encoding Rules (PER), 1995.

[5] ITU-T Recommendation H.225: Call signalling protocols and media stream packetization for
packet based multimedia communication system, 1998.

[6] RFC 1889: RTP: A Transport Protocol for Real-Time Applications, 1996, H. Schulzrinne, el
al.

[7] RFC 1890: RTP Profile for Audio and Video Conferences with Minimal Control, January 1996,
H. Schulzrinne.

[8] A Primer on the H.323 Series Standard: http://www.databeam.com/h323/h323primer.html,
DataBeam Corp..

[9] H-series Recommendations. Audiovisual and Multimedia Systems:
http://www.itu.int/itudoc/itu-t/rec/h, ITU-T.

47

Bibliography

48

	
	Table of Contents
	List of Figures
	Chapter 1. H.245 Tutorial
	1.1. Rationale
	1.2. Basic Concepts
	1.2.1. Control Channel
	1.2.2. Messages and Procedures
	1.2.3. H.245 Signalling Entities

	1.3. Description of Entities
	1.3.1. Capability Exchange Signalling Entity
	1.3.2. Master Slave Determination Signalling Entity
	1.3.3. Unidirectional Logical Channel Signalling Entity
	1.3.4. Close Logical Channel Signalling Entity
	1.3.5. Mode Request Signalling Entity
	1.3.6. Round Trip Delay Signalling Entity

	Chapter 2. H.245 in H.323.
	Chapter 3. H.245 Subsystem Implementation
	3.1. Architecture
	3.2. Implementing Entities
	3.3. Implementing primitives and messages
	3.4. Programming Interface

	Bibliography

