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Independence of many events

We can extend the de�nition of independence to multiple events (more

than two events).

De�nition (Independence of n events, n ≥ 2)

Let (Ω,P) be a probability space. Events A1, . . . ,An are independent, if
and only if

P

(⋂
i∈K

Ai

)
=
∏
i∈K

P(Ai ),

for any subset K ⊂ {1, 2, . . . , n}.
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What does it mean for three events A, B and C?

The following four conditions are to be satis�ed:

P(A ∩ B) = P(A)P(B),

P(A ∩ C ) = P(A)P(C ),

P(B ∩ C ) = P(B)P(C ),

P(A ∩ B ∩ C ) = P(A)P(B)P(C ).

The �rst three conditions imply that any two events are independent. This
property is known as pairwise independence.

The fourth condition does not follow from the �rst three.
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Example (Pairwise independence 6 =⇒ independence)

Consider two tosses of a fair coin. Let A be the event that the �rst comes

up heads, B the event that the second comes up tails and C the event that

both �ips have the same result. Are A, B and C independent?

Solution

Let A = {the first comes up heads}, B = {the second comes up tails},
C = {both flips have the same result}.

It is easy to verify that:

P(A) = P(B) = P(C ) = 1
2
and P(A ∩ B) = P(A ∩ C ) = P(B ∩ C ) = 1

4

=⇒ any two events (out of the set {A,B,C}) are independent

On the other hand:

P(A ∩ B ∩ C ) = 0 and P(A)P(B)P(C ) =
1

8
.

=⇒ A, B and C are not independent.
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The following example shows that the fourth condition:

P(A ∩ B ∩ C ) = P(A)P(B)P(C )

is not enough for independence.

Example

Let (Ω,P) be a probability space, Ω = [0, 1]2 and P is a geometric

probability on Ω. Let

A =

{
(x , y) : x ≤ 1

2

}
,

B =

{
(x , y) : y ≤ 1

2

}
,

C = {(x , y) : y ≤ x} .

Are A, B and C independent?
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Solution

Using geometrical probability model one can check that:

P(A) = P(B) = P(C ) =
1

2
and P(A ∩ B ∩ C ) =

1

8
.

On the other hand

A ∩ C =

{
(x , y) : y ≤ x ≤ 1

2

}
=⇒ P(A ∩ C ) = |A ∩ C | =

1

8
,

so

P(A ∩ C ) 6= P(A)P(C ).
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Bernoulli scheme

Consider an experiment that involves a sequence of trials satisfying the

following conditions (Bernoulli trials):

each trial results in one of two possible outcomes: success(S) and

failure (F),

the probability of success (p) is the same at each trial,

the trials are independent.

Such sequence is called the Bernoulli scheme.
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Example

A biased coin (the probability of "heads" is p) is tossed n times (each toss

is independent of the others).

Probability of any particular sequence (a1, . . . , an), ai ∈ {heads, tails},
i = 1, 2, . . . , n, containing k heads and n − k tails is

pk(1− p)n−k .

P(k heads come up in n trials) =
(n
k

)
pk(1− p)n−k .

P(the �rst success (head) comes out in kth trial) = (1− p)k−1p.
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Example

An internet service provider has installed c modems to serve needs of a

population of n customers, It is estimated that at a given time, each

customer will need a connection with probability p, independently of the

others. What is the probability that there are more customers needing a

connection than there are modems?

Solution

Let A = {more than c customers need a connection at the same time} and

Bi = {”i” customers need a connection at the same time}, i = 1, . . . , n. Thus
A =

⋃n
i=c+1

Bi , and using the Bernoulli scheme

P(Bi ) =

(
n

i

)
pi (1− p)n−i .

Therefore

P(A) = P

(
n⋃

i=c+1

Bi

)
=

n∑
i=c+1

(
n

i

)
pi (1− p)n−i .
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Random variables

A function that assignes a numerical value to the outcome of an

experiment is called a random variable.

De�nition (Random variable)

Let (Ω,P) be a probability space. A random variable X is a real-valued

function of the experimental outcome:

X : Ω −→ R.

X assignes a value X (ω) to each outcome ω ∈ Ω.
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Example (Flipping a coin)

Flip a coin twice. The sample space Ω consists of four possible outcomes:

Ω = {HH,HT ,TH,TT}.

Let us de�ne a random variable X on this space as a number of heads:

X ({HH}) = 2,

X ({HT}) = 1,

X ({TH}) = 1,

X ({TT}) = 0.

12 / 22



Example (Rolling a die)

Roll a die once. The sample space Ω consists of six possible outcomes:

Ω = {1, 2, 3, 4, 5, 6}

and let us de�ne a random variable X : Ω→ R in the following way:

X ({1}) = X ({2}) = 0 and X ({3}) = X ({4}) = X ({5}) = X ({6}) = 1.
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Before the experiment is performed, we don't know the exact value of X
but we can ask some natural questions like:

compute the probability that the random variable will take on a given

value,

calculate the probability that the random variable will fall into a given

range.

To answer these questions we need to know the distribution of the random

variable X . It provides us with probabilities of the events like, for example:

X = 5,

X ∈ (0, 3/2),

X > 10, etc.
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We distinguish to types of random variables: discrete and continuous.

In this lecture, we will focus only on the discrete type (the continuous one

will be discussed in the next lecture).
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How can we decribe the distribution of a discrete random variable?

Example (Flipping a coin twice)

X - the number of heads, Ω = {HH,HT ,TH,TT},
SX = {0, 1, 2} - possible values that X can take on,

P(X = 2) := P({ω ∈ Ω : X (ω) = 2}) = P({HH}) = 1
4
,

P(X = 1) := P({ω ∈ Ω : X (ω) = 1}) = P({HT} ∪ {TH})) = 1
2
,

P(X = 0) := P({ω ∈ Ω : X (ω) = 0}) = P({TT}) = 1
4
.
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Example (Rolling a dice once)

Ω = {1, 2, 3, 4, 5, 6},
de�ne X as follows:

X ({1}) = X ({2}) = 0,

X ({3}) = X ({4}) = X ({5}) = X ({6}) = 1,

SX = {0, 1} and
P(X = 0) := P({ω ∈ Ω : X (ω) = 0}) = P({1} ∪ {2}) = 2

6
,

P(X = 1) := P({ω ∈ Ω : X (ω) = 1}) = P({3}∪{4}∪{5}∪{6}) = 4
6
.

In the above examples, we assigned probabilities to each value that the

random variable can take on. In this way we described the distributions of

the random variables.

We will know summerize our considerations in a more formal and general

way.
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Discrete random variables

Discrete random variables take values in a countable set

SX = {x1, x2, . . .} (the support of X ).

De�nition

A random variable X is said to be discrete if there exists a countable set

SX ⊂ R (called support) such that

P(X = x) > 0, ∀x ∈ SX ,∑
x∈SX P(X = x) = 1.
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Probability mass function

To specify distribution of a discrete random variable we use the
probability mass function (PMF):

De�nition

If X is a discrete random variable, the function pX : R→ [0, 1] de�ned by

pX (x) = P(X = x),

for every x ∈ R, is called the probability mass function of X .
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Example

1 Roll a four-sided dice twice. Let X be the sum of the faces (of the

�rst and the second roll). Find the probability mass function of X .
Solution: What are the possible values that X can take on? We need to
determine the support SX .
The sample space for this experiment: Ω = {(i , j) : i , j ∈ {1, 2, 3, 4}}. X is
de�ned as the sum of the faces, so

X (i , j) = i + j .

Therefore, the possible values that X can take on are given by
SX = {2, 3, 4, 5, 6, 7, 8}. Now, we kneed to assign probabilities to each
element of the support SX :

pX (2) = P(X = 2) = P({(i , j) : X (i + j) = 2}) = P((1, 1)) =
1

16
,

pX (3) = P(X = 3) = P({(i , j) : X (i + j) = 3}) = P((1, 2) ∪ {(2, 1)}) =
2

16
,

pX (4) = P({(1, 3)} ∪ {(3, 1)} ∪ {(2, 2)}) =
3

16
,

In the similar we can compute: pX (5) =
4
16

, pX (6) =
3
16

, pX (7) =
2
16

, pX (8) =
1
16

.
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Example

2 Flip a coin until the �st H appears. Let X be the number of tosses needed.
Find the probability mass function of X .
Solution: SX = {1, 2, 3, . . .}, we need to determine probability mass function
of X (PMF):

pX (1) = P(X = 1) =
1

2

pX (k) = P(X = k) =

(
1

2

)k

, k ≥ 1.
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Example

3 The �rst urn contains 2 white and 3 black balls and the second one contains
3 white and 1 black balls. Pick one urn at random and draw two balls out of
it. Let X be the number of black balls drawn. Find the probability mass
function of X .
Solution: SX = {0, 1, 2} - number of possible black balls drawn from a random urn.

I H1 - the �rst urn was chosen, H2 - the second urn was chosen and
P(H1) = P(H2) = 1

2
.

I To �nd the PMF of X , we need to use the Total Probability Rule:

pX (0) = P(X = 0) = P(X = 0|H1)P(H1) + P(X = 0|H2)P(H2),

where P(X = 0|H1) =

(
3

0

)(
2

2

)
(
5

2

) and P(X = 0|H2) =

(
1

0

)(
3

2

)
(
4

2

) ,

pX (1) = P(X = 1) = P(X = 1|H1)P(H1) + P(X = 1|H2)P(H2),

where P(X = 1|H1) =

(
3

1

)(
2

1

)
(
5

2

) and P(X = 1|H2) =

(
1

1

)(
3

1

)
(
4

2

) , and

pX (2) = P(X = 2) = P(X = 2|H1)P(H1) + P(X = 2|H2)P(H2),

where P(X = 2|H1) =

(
3

2

)(
2

0

)
(
5

2

) and P(X = 2|H2) = 0.
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