Lecture 4

Outline

(1) Discrete distribution

- Cumulative distribution function
(2) Continuous distributions
- Cumulative distribution function
(3) Properties of a CDF

Cumulative distribution function

Can we describe the law of a random variable in a different way?

Definition

Let X be a random variable. The function $F_{X}: \mathbb{R} \rightarrow[0,1]$, defined by

$$
F_{X}(t):=\mathbb{P}(X \leq t) \quad \text { for } t \in \mathbb{R}
$$

is called the cumulative distribution function of X.

$$
(-\infty ; t]
$$

Example

Toss a fair coin. Let X be a random variable defined by $X(\{H\})=1$ and $X(\{T\})=0$. Then

$$
F_{X}(t)= \begin{cases}0, & t<0 \\ \frac{1}{2}, & 0 \leq t<1 \\ 1, & t \geq 1\end{cases}
$$

Example

Toss a fair coin twice. Let X be the number of heads.

$$
F_{X}(t)= \begin{cases}0, & t<0 \\ \frac{1}{4}, & 0 \leq t<1 \\ \frac{3}{4}, & 1 \leq t<2 \\ 1, & t \geq 2\end{cases}
$$

Example

Let X be a random variable with the following probability mass function:

x	-1	0	1	2
$p_{X}(x)$	$1 / 6$	$1 / 3$	$1 / 4$	$1 / 4$.

Find the corresponding cumulative distribution function F_{X}.

The above examples show that for discrete random variables we can easily switch from the PMF to the CDF and vice versa.

- CDF of a discrete random variable consists of jumps and flat regions,
- the height of a jump in the CDF at x is equal to the value of the PMF at x,
- the flat regions of the CDF correspond to the values outside the support of $X\left(S_{X}\right)$, so the PMF is equal to 0 (in those regions)

Continuous distribution

Continuous random variables (on a contrary to discrete ones) can take on uncountable number of possible values, for example any real value in a given range like $(0,1),[0, \infty),(-\infty, \infty)$.

How can we decribe probability distribution of a continuous random variable?

Definition (Continuous random variable)

A random variable X is called continuous if for some function $f: \mathbb{R} \rightarrow \mathbb{R}$ and for any $a, b \in \mathbb{R}, a \leq b$:

$$
\mathbb{P}(a \leq X \leq b)=\int_{a}^{b} f(x) d x
$$

The function f need to satisfy:

- $f(x) \geq 0, \forall x$,
- $\int_{-\infty}^{\infty} f(x) d x=1$,
and is called the probability density function of X.
The support of X :

$$
S_{X}=\{x \in \mathbb{R}: f(x)>0\} .
$$

The formula tells you that the probability of the random variable X falling inside the interval $[a, b]$ is the area under the density curve:

For any single value $a \in \mathbb{R}$:

$$
\mathbb{P}(X=a)=\int_{a}^{a} f(x) d x=0
$$

as a consequence, including or excluding endpoints of an interval doesn't alter its probability:

$$
\mathbb{P}(a \leq X \leq b)=\mathbb{P}(a<X \leq b)=\mathbb{P}(a \leq X<b)=\mathbb{P}(a<X<b)
$$

Cumulative distribution function

In particular, for a continuous random variable X with the probability density f_{X}, the cumulative distribution function (CDF) F_{X} is given by

$$
F_{X}(t)=\int_{-\infty}^{t} f_{X}(x) d x, \forall t \in \mathbb{R}
$$

- $F_{X}(t)$ accumulates probability up to the value t, -

$$
\mathbb{P}(a<X \leq b)=F_{X}(b)-F_{X}(a)
$$

- $f_{X}(x)$ is not the probability of any particular event (it is not restricted to be ≤ 1)

Example (f_{X} can be arbitrarily large)

X - random variable with the following density:

$$
f(x)= \begin{cases}\frac{1}{2 \sqrt{x}}, & x \in(0,1) \\ 0, & x \notin(0,1)\end{cases}
$$

Compute $\mathbb{P}\left(X \in\left(10^{-4}, 10^{-2}\right)\right)$.

- Even though $f_{X}(x)$ becomes infinitely large as $x \rightarrow 0$, this is still the valid pdf:

$$
\int_{-\infty}^{\infty} f_{X}(x) d x=\int_{0}^{1} \frac{1}{2 \sqrt{x}} d x=\left.\sqrt{x}\right|_{0} ^{1}=1
$$

and $f_{X}(x) \geq 0, \forall x \in \mathbb{R}$.

$$
\mathbb{P}\left(X \in\left(10^{-4}, 10^{-2}\right)\right)=\int_{10^{-4}}^{10^{-2}} \frac{1}{2 \sqrt{x}} d x=\left.\sqrt{x}\right|_{10^{-4}} ^{10^{-2}}=\frac{9}{100} .
$$

Example

Let X be a random variable taking on its values in the range [1,4] with the following density function:

$$
f_{X}(x)= \begin{cases}c, & 1 \leq x \leq 4 \\ 0, & \text { otherwise }\end{cases}
$$

Compute c. Find CDF of X.

Solution

The density function need to satisfy the normalization property:

$$
1=\int_{-\infty}^{\infty} f_{X}(x) d x=\int_{1}^{4} c d x=c(4-1)=3 c
$$

so $c=\frac{1}{3}$. Having f_{X} fully described, we can determine CDF of X :

$$
F_{X}(t)=\mathbb{P}(X \leq t)=\int_{-\infty}^{t} f_{X}(d x)=\left\{\begin{array}{lc}
0, & t<1 \\
\int_{1}^{t} \frac{1}{3} d x=\frac{t-1}{3}, & 1 \leq t<4 \\
1, & t \geq 4
\end{array}\right.
$$

Example

Let X be a random variable with the following density function:

$$
f_{X}(x)=\left\{\begin{array}{l}
\frac{1}{4}, \quad x \in(-1,0) \\
\frac{1}{2} x, \quad x \in(1,2) \\
0, \text { otherwise }
\end{array}\right.
$$

Determine the cumulative distribution function of the random variable X. Compute $\mathbb{P}\left(X \in\left(-\frac{1}{2}, \frac{3}{2}\right)\right)$.

Solution

$$
F_{X}(t)= \begin{cases}0, & t<-1 \\ \int_{-1}^{t} \frac{1}{4}=\frac{1}{4}(t+1), & -1 \leq t<0 \\ \frac{1}{4}, & 0 \leq t<1, \\ \frac{1}{4}+\int_{1}^{t} \frac{1}{2} x d x=\frac{1}{4}+\frac{1}{4}\left(t^{2}-1\right), \quad 1 \leq t<2 \\ 1, & t \geq 2,\end{cases}
$$

- $\mathbb{P}\left(X \in\left(-\frac{1}{2}, \frac{3}{2}\right)\right)=\int_{-\frac{1}{2}}^{\frac{3}{2}} f_{X}(x) d x=\int_{-\frac{1}{2}}^{0} \frac{1}{4} d x+\int_{1}^{\frac{3}{2}} \frac{1}{2} x d x=\frac{7}{16}$.

We can also determine the pdf from the given cdf:

$$
f_{X}(x)=F_{X}^{\prime}(x)
$$

for all x for which the derivative exists.

Example

Let X be a random variable with the cdf given by

$$
F_{X}(t)=\left\{\begin{array}{l}
0, \quad t<0 \\
2 t^{3}-t^{4}, 0 \leq t<1 \\
1, \quad t \geq 1
\end{array}\right.
$$

Determine the pdf of X.

Solution

F_{X} is continuous, therefore

$$
f_{X}(x)=F_{X}^{\prime}(x)=\left\{\begin{array}{l}
0, \quad x \notin(0,1), \\
6 x^{2}-4 x^{3}, \quad x \in(0,1)
\end{array}\right.
$$

Properties of the cumulative distribution function

- F_{X} is nondecreasing: $x \leq y \Longrightarrow F_{X}(x) \leq F_{X}(y)$,
- $\lim _{t \rightarrow-\infty} F_{X}(t)=0$ and $\lim _{t \rightarrow \infty} F_{X}(t)=1$,
X - discrete r.v.:
- F_{X} is a step function that increases only by jumps,

$$
F_{X}(t)=\sum_{x \in S_{X}: x \leq t} p_{X}(x)
$$

X- continuous r.v.:

- F_{X} is a continuous function,

$$
F_{X}(t)=\int_{-\infty}^{t} f_{X}(x) d x
$$

and

$$
f_{X}(x)=F_{X}^{\prime}(x)
$$

for all x for which $F_{X}^{\prime}(x)$ exists.

