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A survey of probability distributions

We specify distribution of a random variable in a different way according
to their type:

probability mass function (PMF) - discrete case,

probability density function (PDF) - continuous case,

cumulative distribution function (CDF) - used in both cases.
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Degenerate distribution

One point distribution. There exists a ∈ R such that SX = {a}, so
P(X = a) = 1. The corresponding cumulative distribution function:

FX (t) =

{
0, t < a,

1, t ≥ a.
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Two point distribution
SX = {x1, x2}, P(X = x1) = p ∈ (0, 1) and P(X = x2) = 1− p.
If x1 < x2, then

FX (t) =


0, t < x1,

p, t ∈ [x1, x2),

1, t ≥ x2.

Bernoulli distribution, X ∼ B(p), p ∈ (0, 1)
SX = {0, 1},

P(X = 1) = p = 1− P(X = 0).

Example

Consider the coin tossing experiment, for which H comes up with probability p
and T with probability 1− p. Let X ({H}) = 1 and X ({T}) = 0. Its PMF is

pX (1) = p, pX (0) = 1− p.

The Bernoulli random variable is used to model probabilistic situations with just
two outcomes.
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Binomial distribution, X ∼ b(n, p)

A r.v. X is said to have a binomial distribution with parameters n and p, if
SX = {0, 1, 2, . . . , n} and

P(X = k) =

(
n

k

)
pk(1− p)n−k , k = 0, 1, 2, . . . , n.

X can be interpreted the number of successes among n independent
Bernoulli trials (each trial can result in one of two possible outcomes:
success(S) or failure(F)).
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One can verify that pX is a valid PMF:

∑
k∈Sx

pX (k) =
n∑

k=0

(
n

k

)
pk(1− p)n−k = (p + (1− p))n = 1.

Observe that

the Bernoulli distribution is the special case of the binomial
distribution: B(p) is the same as b(1, p).

X ∼ b(n, p) can be expressed as

X =
n∑

i=1

Xi ,

where Xi ∼ B(p), i = 1, 2, . . . , n.
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Geometric distribution

A r.v. X has geometric distribution with parameter p, X ∼ g(p), if
SX = {1, 2, 3, . . .} and

pX (k) = (1− p)k−1p, k = 1, 2, . . . .

X can be interpreted as the waiting time for the first success in
independent Bernoulli trials with probability of success equals p.

Verify that
∑

k pX (k) = 1.

Applications

- reliability theory (lifetime of the device - the time for the first break
down)
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Geometric tail distribution
If X ∼ g(p), then P(X > k) = (1− p)k , k = 0, 1, 2, . . ..

Proof.

P(X > k) = P({no success in the first k trials}) = (1− p)k .

You can compute it directly (in more tedious way):

P(X > k)

=
∞∑

j=k+1

(1− p)j−1p = (1− p)kp
∞∑
j=0

(1− p)j =
(1− p)kp

1− (1− p)
= (1− p)k .
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Theorem (Lack of memory property)

If X ∼ g(p), ∀m, n ∈ N then

P(X > m + n|X > n) = P(X > m).

Proof.

P(X > m + n|X > n) =
P({X > m + n} ∩ {X > n})

P(X > n)
=

P(X > m + n)

P(X > n)

10 / 20



Poisson distribution
A r.v. X has Poisson distribution with parameter λ, X ∼ P(λ), if
SX = N ∪ {0} and

pX (k) = P(X = k) = e−λ
λk

k!
, k = 0, 1, 2, . . .

Verfify that
∑

k pX (k) = 1.
The Poisson random variable describes the situation in which we deal with
a very large number of independent repetitions of a Bernoulli trial (n)
having a very small probability of success (p):

Remark

If X ∼ b(n, p), with n large and p small, then

pX (k) ≈ e−np
(np)k

k!
,

i.e. X is distributed approximately the same as a P(λ), where λ = np.
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Example

Only 0.5% of people activate an airport metal detector. Let X be the number of
people out of 500 who activate the detector. Using the Poisson approximation
compute:

P(X = 5),

P(X ≥ 3).

Solution

P(X = 5) =

(
500

5

)(
5

1000

)5(
995

1000

)495

≈ e−λ
λ5

5!
,

P(X ≥ 3) = 1− P(X < 3) = 1− P(X = 0)− P(X = 1)− P(X = 2)

≈ 1− e−λ − e−λλ− e−λ
λ2

2!
,

where λ = 5
1000 · 500 = 2.5.
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Uniform distribution (Continuous distributions)

A random variable X is said to be uniform on the interval [a, b],
X ∼ U [a, b] if its pdf is of the form:

f (x) =

{
1

b−a , x ∈ [a, b],

0, otherwise.

The density formula yields
∫
R f (x)dx = 1. The support of X : SX = [a, b]

and the cumulative distribution function is of the form:

F (x) =


0, x < a,
x−a
b−a , x ∈ [a, b),

1, x ≥ b.
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Exponential distribution
A random variable X is said to have exponential distribution, if its pdf is of the
form

fX (x) =

{
λe−λx , x > 0,

0, otherwise,

λ > 0 is called the rate of the distribution, X ∼ Exp(λ).

Theorem (The Memoryless Property)

P(X > t + s|X > s) = P(X > t), for any s, t > 0

Proof.

P(X > t + s|X > s) =
P(X > t + s)

P(X > s)
=

∫∞
t+s

λe−λxdx∫∞
s
λe−λxdx

=
e−λ(s+t)

e−λs
=

= e−λt = P(X > t).
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Example

A study of the response time of a certain computer system yields that the
response time in seconds has an exponentially distributed time with
parameter 0.25. What is the probability that the response time exceeds 5
seconds?

Solution

X -r.v. denoting the response time, X ∼ Exp(0.25).

P(X > 5) =

∫ ∞
5

0.25e−0.25xdx = −e−0.25x
∣∣∣∣∞
5

= e−0.25·5 = e−1.25.
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Normal distribution

A random variable X is said to be normal, X ∼ N (µ, σ2), if its pdf is of
the form

fX (x) =
1√
2πσ

e−
(x−µ)2

2σ2 ,

µ ∈ R, σ > 0 - two parameters.

The normalization property holds for fX :
∫∞
−∞ fX (x)dx = 1.
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Standard normal distribution

Here µ = 0 and σ = 1.

The corresponding cumulative distribution function is denoted by Φ:

Φ(t) = P(X ≤ t) =

∫ t

−∞

1√
2π

e−
x2

2 dx .
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From the symmetry of the pdf of N (0, 1), we can derive the following
formula:

Φ(−t) = 1− Φ(t).

The values of Φ are recorded in a special table. It allows us to calculate
probabilities involving normal random variables.
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Proposition

Let X ∼ N (µ, σ2), then

FX (t) = Φ

(
t − µ
σ

)

Proof.

FX (t) = P(X ≤ t) =

∫ t

−∞

1√
2πσ

e−
(x−µ)2

2σ2 dx

Using u-Subsitiution such that u = x−µ
σ , we get dx = σdu and∫ t

−∞

1√
2πσ

e−
(x−µ)2

2σ2 =

∫ (t−µ)/σ

−∞

1√
2π

e−
u2

2 du = Φ

(
t − µ
σ

)
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Example

Let X ∼ N (2, 9). Compute P(X ≤ 5) and P(−1 ≤ X ≤ 3).

Solution

P(X ≤ 5) = FX (5) = Φ

(
5− 2

3

)
= Φ(1) = 0, 84

P(−1 ≤ X ≤ 3) = FX (3)− FX (−1) = Φ

(
3− 2

3

)
− Φ

(
−1− 2

3

)
= Φ

(
1

3

)
− Φ(−1) = Φ

(
1

3

)
− (1− Φ(1)) ≈ 0.63− 1 + 0.84 = 0.47.
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