### Lecture 5

# Outline

#### Discrete distributions

- Degenerate distribution
- Two point distribution
   Bernoulli distribution
- Binomial distribution
- Geometric distribution
- Poisson distribution

#### Continuous distributions

- Uniform distribution
- Exponential distribution
- Normal distribution
  - Standard normal distribution

イロト イヨト イヨト

э

# Outline

#### Discrete distributions

- Degenerate distribution
- Two point distribution
   Bernoulli distribution
- Binomial distribution
- Geometric distribution
- Poisson distribution

#### 2 Continuous distributions

- Uniform distribution
- Exponential distribution
- Normal distribution
  - Standard normal distribution

・ロト ・ 同ト ・ ヨト ・ ヨト

э

# A survey of probability distributions

We specify distribution of a random variable in a different way according to their type:

- probability mass function (PMF) discrete case,
- probability density function (PDF) continuous case,
- cumulative distribution function (CDF) used in both cases.

### Degenerate distribution

One point distribution. There exists  $a \in \mathbb{R}$  such that  $S_X = \{a\}$ , so  $\mathbb{P}(X = a) = 1$ . The corresponding cumulative distribution function:

$$\mathcal{F}_X(t) = egin{cases} 0, & t < a, \ 1, & t \geq a. \end{cases}$$

▲□▶▲圖▶▲圖▶▲圖▶ ■ のへで

### Two point distribution

 $S_X = \{x_1, x_2\}, \mathbb{P}(X = x_1) = p \in (0, 1) \text{ and } \mathbb{P}(X = x_2) = 1 - p.$ If  $x_1 < x_2$ , then

$$F_X(t) = egin{cases} 0, & t < x_1, \ p, & t \in [x_1, x_2), \ 1, & t \ge x_2. \end{cases}$$

$$\begin{array}{l} \textbf{Bernoulli distribution, } X \sim B(p), \ p \in (0,1)\\ S_X = \{0,1\},\\ \mathbb{P}(X=1) = p = 1 - \mathbb{P}(X=0). \end{array}$$

#### Example

Consider the coin tossing experiment, for which H comes up with probability p and T with probability 1 - p. Let  $X(\{H\}) = 1$  and  $X(\{T\}) = 0$ . Its PMF is

$$p_X(1) = p, \ p_X(0) = 1 - p.$$

5 / 20

Binomial distribution,  $X \sim b(n, p)$ 

A r.v. X is said to have a binomial distribution with parameters n and p, if  $S_X = \{0, 1, 2, ..., n\}$  and

$$\mathbb{P}(X = k) = \binom{n}{k} p^k (1-p)^{n-k}, \quad k = 0, 1, 2, ..., n.$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

X can be interpreted the number of successes among n independent Bernoulli trials (each trial can result in one of two possible outcomes: success(S) or failure(F)). One can verify that  $p_X$  is a valid PMF:

$$\sum_{k\in S_x} p_X(k) = \sum_{k=0}^n \binom{n}{k} p^k (1-p)^{n-k} = (p+(1-p))^n = 1.$$

Observe that

- the Bernoulli distribution is the special case of the binomial distribution: B(p) is the same as b(1, p).
- $X \sim b(n, p)$  can be expressed as

$$X=\sum_{i=1}^n X_i,$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

where  $X_i \sim B(p)$ , i = 1, 2, ..., n.

### Geometric distribution

A r.v. X has geometric distribution with parameter p,  $X \sim g(p)$ , if  $S_X = \{1, 2, 3, \ldots\}$  and

$$p_X(k) = (1-p)^{k-1}p, \quad k = 1, 2, \dots$$

X can be interpreted as the waiting time for the first success in independent Bernoulli trials with probability of success equals p.

Verify that 
$$\sum_k p_X(k) = 1$$
.

#### Applications

 reliability theory (lifetime of the device - the time for the first break down)

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

#### Geometric tail distribution

If  $X \sim g(p)$ , then  $\mathbb{P}(X > k) = (1-p)^k$ ,  $k = 0, 1, 2, \dots$ 

#### Proof.

 $\mathbb{P}(X > k) = \mathbb{P}(\{\text{no success in the first k trials}\}) = (1 - p)^k$ . You can compute it directly (in more tedious way):

$$\mathbb{P}(X > k)$$
  
=  $\sum_{j=k+1}^{\infty} (1-p)^{j-1} p = (1-p)^k p \sum_{j=0}^{\infty} (1-p)^j = \frac{(1-p)^k p}{1-(1-p)} = (1-p)^k.$ 

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Theorem (Lack of memory property) If  $X \sim g(p)$ ,  $\forall m, n \in \mathbb{N}$  then

$$\mathbb{P}(X > m + n | X > n) = \mathbb{P}(X > m).$$

Proof.

$$\mathbb{P}(X > m+n|X > n) = \frac{\mathbb{P}(\{X > m+n\} \cap \{X > n\})}{\mathbb{P}(X > n)} = \frac{\mathbb{P}(X > m+n)}{\mathbb{P}(X > n)}$$

<ロト < 回 > < 回 > < 回 > < 回 > < 三 > 三 三

# Poisson distribution

A r.v. X has Poisson distribution with parameter  $\lambda$ ,  $X \sim \mathcal{P}(\lambda)$ , if  $S_X = \mathbb{N} \cup \{0\}$  and

$$p_X(k) = \mathbb{P}(X=k) = e^{-\lambda} \frac{\lambda^k}{k!}, \quad k=0,1,2,\ldots$$

Verfify that  $\sum_{k} p_X(k) = 1$ .

The Poisson random variable describes the situation in which we deal with a **very large** number of independent repetitions of a Bernoulli trial (n) having a **very small** probability of success (p):

#### Remark

If  $X \sim b(n, p)$ , with n large and p small, then

$$p_X(k) pprox e^{-np} rac{(np)^k}{k!},$$

*i.e.* X is distributed approximately the same as a  $\mathcal{P}(\lambda)$ , where  $\lambda = np$ .

#### Example

Only 0.5% of people activate an airport metal detector. Let X be the number of people out of 500 who activate the detector. Using the Poisson approximation compute:

- $\mathbb{P}(X=5)$ ,
- $\mathbb{P}(X \geq 3)$ .

### Solution

$$\mathbb{P}(X=5) = {\binom{500}{5}} \left(\frac{5}{1000}\right)^5 \left(\frac{995}{1000}\right)^{495} \approx e^{-\lambda} \frac{\lambda^5}{5!},$$
  

$$\mathbb{P}(X \ge 3) = 1 - \mathbb{P}(X < 3) = 1 - \mathbb{P}(X = 0) - \mathbb{P}(X = 1) - \mathbb{P}(X = 2)$$
  

$$\approx 1 - e^{-\lambda} - e^{-\lambda} \lambda - e^{-\lambda} \frac{\lambda^2}{2!},$$

where 
$$\lambda = \frac{5}{1000} \cdot 500 = 2.5$$
.

# Uniform distribution (Continuous distributions)

A random variable X is said to be **uniform** on the interval [a, b],  $X \sim \mathcal{U}[a, b]$  if its pdf is of the form:

$$f(x) = egin{cases} rac{1}{b-a}, \ x \in [a,b], \ 0, \ otherwise. \end{cases}$$

The density formula yields  $\int_{\mathbb{R}} f(x) dx = 1$ . The support of X:  $S_X = [a, b]$  and the cumulative distribution function is of the form:

$$F(x) = \begin{cases} 0, & x < a, \\ \frac{x-a}{b-a}, & x \in [a, b), \\ 1, & x \ge b. \end{cases}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

## Exponential distribution

A random variable X is said to have **exponential distribution**, if its pdf is of the form

$$f_X(x) = egin{cases} \lambda e^{-\lambda x}, & x > 0, \ 0, & otherwise, \end{cases}$$

 $\lambda > 0$  is called the rate of the distribution,  $X \sim Exp(\lambda)$ .

Theorem (The Memoryless Property)

 $\mathbb{P}(X > t + s | X > s) = \mathbb{P}(X > t)$ , for any s, t > 0

Proof.

$$\mathbb{P}(X > t + s | X > s) = \frac{\mathbb{P}(X > t + s)}{\mathbb{P}(X > s)} = \frac{\int_{t+s}^{\infty} \lambda e^{-\lambda x} dx}{\int_{s}^{\infty} \lambda e^{-\lambda x} dx} = \frac{e^{-\lambda(s+t)}}{e^{-\lambda s}} = e^{-\lambda t} = \mathbb{P}(X > t).$$

#### Example

A study of the response time of a certain computer system yields that the response time in seconds has an exponentially distributed time with parameter 0.25. What is the probability that the response time exceeds 5 seconds?

#### Solution

X-r.v. denoting the response time,  $X \sim Exp(0.25)$ .

$$\mathbb{P}(X>5) = \int_5^\infty 0.25 e^{-0.25x} dx = -e^{-0.25x} \Big|_5^\infty = e^{-0.25 \cdot 5} = e^{-1.25}.$$

・ロト ・ 同ト ・ ヨト ・ ヨト

# Normal distribution

A random variable X is said to be **normal**,  $X \sim \mathcal{N}(\mu, \sigma^2)$ , if its pdf is of the form

$$f_X(x) = rac{1}{\sqrt{2\pi\sigma}} e^{-rac{(x-\mu)^2}{2\sigma^2}},$$

 $\mu \in \mathbb{R}$ ,  $\sigma > 0$  - two parameters.



The normalization property holds for  $f_X$ :  $\int_{-\infty}^{\infty} f_X(x) dx = 1$ .

### Standard normal distribution

Here  $\mu = 0$  and  $\sigma = 1$ .



The corresponding cumulative distribution function is denoted by  $\Phi$ :

$$\Phi(t) = \mathbb{P}(X \leq t) = \int_{-\infty}^t \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx.$$

From the symmetry of the pdf of  $\mathcal{N}(0,1)$ , we can derive the following formula:



The values of  $\Phi$  are recorded in a special table. It allows us to calculate probabilities involving normal random variables.

Proposition

Let  $X \sim \mathcal{N}(\mu, \sigma^2)$ , then

$$F_X(t) = \Phi\left(\frac{t-\mu}{\sigma}\right)$$

Proof.

$$F_X(t) = \mathbb{P}(X \leq t) = \int_{-\infty}^t \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx$$

Using u-Subsitiution such that  $u = \frac{x-\mu}{\sigma}$ , we get  $dx = \sigma du$  and

$$\int_{-\infty}^{t} \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} = \int_{-\infty}^{(t-\mu)/\sigma} \frac{1}{\sqrt{2\pi}} e^{-\frac{u^2}{2}} du = \Phi\left(\frac{t-\mu}{\sigma}\right)$$

### Example

Let 
$$X \sim \mathcal{N}(2,9)$$
. Compute  $\mathbb{P}(X \leq 5)$  and  $\mathbb{P}(-1 \leq X \leq 3)$ .

### Solution

$$\mathbb{P}(X \le 5) = F_X(5) = \Phi\left(\frac{5-2}{3}\right) = \Phi(1) = 0,84$$

$$\mathbb{P}(-1 \le X \le 3) = F_X(3) - F_X(-1) = \Phi\left(\frac{3-2}{3}\right) - \Phi\left(\frac{-1-2}{3}\right)$$
$$= \Phi\left(\frac{1}{3}\right) - \Phi(-1) = \Phi\left(\frac{1}{3}\right) - (1 - \Phi(1)) \approx 0.63 - 1 + 0.84 = 0.47.$$

・ロト ・ ロト ・ ヨト ・ ヨー ・ つくぐ