Lecture 5

Outline

(1) Discrete distributions

- Degenerate distribution
- Two point distribution - Bernoulli distribution
- Binomial distribution
- Geometric distribution
- Poisson distribution
(2) Continuous distributions
- Uniform distribution
- Exponential distribution
- Normal distribution
- Standard normal distribution

Outline

(1) Discrete distributions

- Degenerate distribution
- Two point distribution
- Bernoulli distribution
- Binomial distribution
- Geometric distribution
- Poisson distribution
(2) Continuous distributions
- Uniform distribution
- Exponential distribution
- Normal distribution
- Standard normal distribution

A survey of probability distributions

We specify distribution of a random variable in a different way according to their type:

- probability mass function (PMF) - discrete case,
- probability density function (PDF) - continuous case,
- cumulative distribution function (CDF) - used in both cases.

Degenerate distribution

One point distribution. There exists $a \in \mathbb{R}$ such that $S_{X}=\{a\}$, so $\mathbb{P}(X=a)=1$. The corresponding cumulative distribution function:

$$
F_{X}(t)= \begin{cases}0, & t<a \\ 1, & t \geq a\end{cases}
$$

Two point distribution

$S_{X}=\left\{x_{1}, x_{2}\right\}, \mathbb{P}\left(X=x_{1}\right)=p \in(0,1)$ and $\mathbb{P}\left(X=x_{2}\right)=1-p$.
If $x_{1}<x_{2}$, then

$$
F_{X}(t)= \begin{cases}0, & t<x_{1} \\ p, & t \in\left[x_{1}, x_{2}\right) \\ 1, & t \geq x_{2}\end{cases}
$$

Bernoulli distribution, $X \sim B(p), p \in(0,1)$
$S_{X}=\{0,1\}$,

$$
\mathbb{P}(X=1)=p=1-\mathbb{P}(X=0)
$$

Example

Consider the coin tossing experiment, for which H comes up with probability p and T with probability $1-p$. Let $X(\{H\})=1$ and $X(\{T\})=0$. Its PMF is

$$
p_{X}(1)=p, p_{X}(0)=1-p .
$$

The Bernoulli random variable is used to model probabilistic situations with just two outcomes.

Binomial distribution, $X \sim b(n, p)$

A r.v. X is said to have a binomial distribution with parameters n and p, if $S_{X}=\{0,1,2, \ldots, n\}$ and

$$
\mathbb{P}(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}, \quad k=0,1,2, \ldots, n .
$$

X can be interpreted the number of successes among n independent Bernoulli trials (each trial can result in one of two possible outcomes: success(S) or failure(F)).

One can verify that p_{X} is a valid PMF:

$$
\sum_{k \in S_{X}} p_{X}(k)=\sum_{k=0}^{n}\binom{n}{k} p^{k}(1-p)^{n-k}=(p+(1-p))^{n}=1
$$

Observe that

- the Bernoulli distribution is the special case of the binomial distribution: $B(p)$ is the same as $b(1, p)$.
- $X \sim b(n, p)$ can be expressed as

$$
X=\sum_{i=1}^{n} X_{i}
$$

where $X_{i} \sim B(p), i=1,2, \ldots, n$.

Geometric distribution

A r.v. X has geometric distribution with parameter $p, X \sim g(p)$, if $S_{X}=\{1,2,3, \ldots\}$ and

$$
p_{X}(k)=(1-p)^{k-1} p, \quad k=1,2, \ldots
$$

X can be interpreted as the waiting time for the first success in independent Bernoulli trials with probability of success equals p.
Verify that $\sum_{k} p_{X}(k)=1$.

Applications

- reliability theory (lifetime of the device - the time for the first break down)

Geometric tail distribution

If $X \sim g(p)$, then $\mathbb{P}(X>k)=(1-p)^{k}, k=0,1,2, \ldots$.

Proof.

$\mathbb{P}(X>k)=\mathbb{P}(\{$ no success in the first k trials $\})=(1-p)^{k}$.
You can compute it directly (in more tedious way):

$$
\begin{aligned}
& \mathbb{P}(X>k) \\
= & \sum_{j=k+1}^{\infty}(1-p)^{j-1} p=(1-p)^{k} p \sum_{j=0}^{\infty}(1-p)^{j}=\frac{(1-p)^{k} p}{1-(1-p)}=(1-p)^{k} .
\end{aligned}
$$

Theorem (Lack of memory property) If $X \sim g(p), \forall m, n \in \mathbb{N}$ then

$$
\mathbb{P}(X>m+n \mid X>n)=\mathbb{P}(X>m) .
$$

Proof.

$$
\mathbb{P}(X>m+n \mid X>n)=\frac{\mathbb{P}(\{X>m+n\} \cap\{X>n\})}{\mathbb{P}(X>n)}=\frac{\mathbb{P}(X>m+n)}{\mathbb{P}(X>n)}
$$

Poisson distribution

A r.v. X has Poisson distribution with parameter $\lambda, X \sim \mathcal{P}(\lambda)$, if $S_{X}=\mathbb{N} \cup\{0\}$ and

$$
p_{X}(k)=\mathbb{P}(X=k)=e^{-\lambda} \frac{\lambda^{k}}{k!}, \quad k=0,1,2, \ldots
$$

Verfify that $\sum_{k} p_{X}(k)=1$.
The Poisson random variable describes the situation in which we deal with a very large number of independent repetitions of a Bernoulli trial (n) having a very small probability of success (p) :

Remark

If $X \sim b(n, p)$, with n large and p small, then

$$
p_{X}(k) \approx e^{-n p} \frac{(n p)^{k}}{k!}
$$

i.e. X is distributed approximately the same as a $\mathcal{P}(\lambda)$, where $\lambda=n p$.

Example

Only 0.5% of people activate an airport metal detector. Let X be the number of people out of 500 who activate the detector. Using the Poisson approximation compute:

- $\mathbb{P}(X=5)$,
- $\mathbb{P}(X \geq 3)$.

Solution

$$
\mathbb{P}(X=5)=\binom{500}{5}\left(\frac{5}{1000}\right)^{5}\left(\frac{995}{1000}\right)^{495} \approx e^{-\lambda} \frac{\lambda^{5}}{5!}
$$

$$
\begin{aligned}
& \mathbb{P}(X \geq 3)=1-\mathbb{P}(X<3)=1-\mathbb{P}(X=0)-\mathbb{P}(X=1)-\mathbb{P}(X=2) \\
& \approx 1-e^{-\lambda}-e^{-\lambda} \lambda-e^{-\lambda} \frac{\lambda^{2}}{2!}
\end{aligned}
$$

where $\lambda=\frac{5}{1000} \cdot 500=2.5$.

Uniform distribution (Continuous distributions)

A random variable X is said to be uniform on the interval $[a, b]$, $X \sim \mathcal{U}[a, b]$ if its pdf is of the form:

$$
f(x)=\left\{\begin{array}{l}
\frac{1}{b-a}, \quad x \in[a, b] \\
0, \quad \text { otherwise }
\end{array}\right.
$$

The density formula yields $\int_{\mathbb{R}} f(x) d x=1$. The support of $X: S_{X}=[a, b]$ and the cumulative distribution function is of the form:

$$
F(x)=\left\{\begin{array}{l}
0, \quad x<a \\
\frac{x-a}{b-a}, \quad x \in[a, b) \\
1, \quad x \geq b
\end{array}\right.
$$

Exponential distribution

A random variable X is said to have exponential distribution, if its pdf is of the form

$$
f_{X}(x)=\left\{\begin{array}{l}
\lambda e^{-\lambda x}, x>0 \\
0, \text { otherwise }
\end{array}\right.
$$

$\lambda>0$ is called the rate of the distribution, $X \sim \operatorname{Exp}(\lambda)$.
Theorem (The Memoryless Property)

$$
\mathbb{P}(X>t+s \mid X>s)=\mathbb{P}(X>t), \text { for any } s, t>0
$$

Proof.

$$
\begin{aligned}
\mathbb{P}(X>t+s \mid X>s)=\frac{\mathbb{P}(X>t+s)}{\mathbb{P}(X>s)}=\frac{\int_{t+s}^{\infty} \lambda e^{-\lambda x} d x}{\int_{s}^{\infty} \lambda e^{-\lambda x} d x} & =\frac{e^{-\lambda(s+t)}}{e^{-\lambda s}}= \\
& =e^{-\lambda t}=\mathbb{P}(X>t)
\end{aligned}
$$

Example

A study of the response time of a certain computer system yields that the response time in seconds has an exponentially distributed time with parameter 0.25 . What is the probability that the response time exceeds 5 seconds?

Solution

$X-r . v$. denoting the response time, $X \sim \operatorname{Exp}(0.25)$.

$$
\mathbb{P}(X>5)=\int_{5}^{\infty} 0.25 e^{-0.25 x} d x=-\left.e^{-0.25 x}\right|_{5} ^{\infty}=e^{-0.25 \cdot 5}=e^{-1.25}
$$

Normal distribution

A random variable X is said to be normal, $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$, if its pdf is of the form

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

$\mu \in \mathbb{R}, \sigma>0$ - two parameters.

The normalization property holds for f_{X} : $\int_{-\infty}^{\infty} f_{X}(x) d x=1$.

Standard normal distribution

Here $\mu=0$ and $\sigma=1$.

The corresponding cumulative distribution function is denoted by Φ :

$$
\Phi(t)=\mathbb{P}(X \leq t)=\int_{-\infty}^{t} \frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}} d x
$$

From the symmetry of the pdf of $\mathcal{N}(0,1)$, we can derive the following formula:

$$
\Phi(-t)=1-\Phi(t)
$$

The values of Φ are recorded in a special table. It allows us to calculate probabilities involving normal random variables.

Proposition

Let $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$, then

$$
F_{X}(t)=\Phi\left(\frac{t-\mu}{\sigma}\right)
$$

Proof.

$$
F_{X}(t)=\mathbb{P}(X \leq t)=\int_{-\infty}^{t} \frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} d x
$$

Using u-Subsitiution such that $u=\frac{x-\mu}{\sigma}$, we get $d x=\sigma d u$ and

$$
\int_{-\infty}^{t} \frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}=\int_{-\infty}^{(t-\mu) / \sigma} \frac{1}{\sqrt{2 \pi}} e^{-\frac{u^{2}}{2}} d u=\Phi\left(\frac{t-\mu}{\sigma}\right)
$$

Example

Let $X \sim \mathcal{N}(2,9)$. Compute $\mathbb{P}(X \leq 5)$ and $\mathbb{P}(-1 \leq X \leq 3)$.

Solution

$$
\begin{gathered}
\mathbb{P}(X \leq 5)=F_{X}(5)=\Phi\left(\frac{5-2}{3}\right)=\Phi(1)=0,84 \\
\mathbb{P}(-1 \leq X \leq 3)=F_{X}(3)-F_{X}(-1)=\Phi\left(\frac{3-2}{3}\right)-\Phi\left(\frac{-1-2}{3}\right) \\
=\Phi\left(\frac{1}{3}\right)-\Phi(-1)=\Phi\left(\frac{1}{3}\right)-(1-\Phi(1)) \approx 0.63-1+0.84=0.47 .
\end{gathered}
$$

