Lecture 6

Outline

Expected value - discrete case

• Properties of expected values

Outline

Expected value - discrete case

• Properties of expected values

Numerical characteristics of random variables

Discrete case

Definition (Expected value)

Let X be a random variable taking the values in a discrete set S_X . The **expected value (expectation)** of the random variable X, denoted by $\mathbb{E}(X)$, is defined as

$$\mathbb{E}(X) = \sum_{x \in S_X} x p_X(x).$$

This is well-defined so long as $\sum_{x \in S_X} |x| p_X(x)$ converges.

Remark (How do we interpret the expected value?)

- the average obtained after many trials (when you interpret the probabilities as the frequencies),
- if we place an object of mass $p_X(x)$ at position x for each $x \in S_X$, then $\mathbb{E}(X)$ is the position of **the center of gravity**.

Random variable X has the following distribution:

1
$$\mathbb{P}(X = -1) = 0.2$$
, $\mathbb{P}(X = 0) = 0.4$, $\mathbb{P}(X = 1) = 0.4$, $\mathbb{E}(X) = ?$

2
$$\mathbb{P}(X = -1) = 0.4$$
, $\mathbb{P}(X = 0) = 0.2$, $\mathbb{P}(X = 1) = 0.4$, $\mathbb{E}(X) = ?$

3
$$\mathbb{P}(X = -1) = 0.2, \ \mathbb{P}(X = 0) = 0.4, \ \mathbb{P}(X = 100) = 0.4, \ \mathbb{E}(X) = ?$$

Assume that
$$S_X = \{0, 1, 2, ..., n\}$$
,
 $\mathbb{P}(X = 0) = \mathbb{P}(X = 1) = ... \mathbb{P}(X = n) = \frac{1}{n+1}$. What is the center of gravity for this structure?

Solution

Remark

- The expected value is a summary statistic, providing a measure of the location of a random variable.
- The expected value is also called the mean or average of X (often denoted by μ).
- The expected value is a weighted average of the possible values (with probabilities as weights).
- If all the values are equally probable then the expected value is just the usual average of the values.

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Algebraic properties of $\mathbb{E}(X)$

Let X and Y be random variables defined on the same probability space Ω , then

▲日 ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ●

$$\mathbb{E}(X+Y) = \mathbb{E}(X) + \mathbb{E}(Y),$$

$$\forall a, b \in \mathbb{R} \quad \mathbb{E}(aX+b) = a\mathbb{E}(X) + b,$$

$$if X \text{ takes on only nonnegative values, then } \mathbb{E}(X) \geq 0.$$

Roll two dice, and let X be the sum of the faces. Find $\mathbb{E}(X)$.

Solution

 $X = X_1 + X_2, \text{ where } X_i \text{ - the result on the "i"th die,}$ $\mathbb{E}(X) = \mathbb{E}(X_1 + X_2) = \mathbb{E}(X_1) + \mathbb{E}(X_2)$ Since X_1 and X_2 have the same distributions, $\mathbb{E}(X_1) = \mathbb{E}(X_2)$ and $\mathbb{E}(X_1) = \frac{1}{6} \cdot 1 + \frac{1}{6} \cdot 2 + \dots + \frac{1}{6} \cdot 6 = 3.5,$

イロト 不得 トイヨト イヨト 三日

so $\mathbb{E}(X) = 7$.

$\mathbb{E}X$ of Bernoulli distribution

$$egin{aligned} X &\sim B(p), \ extsf{PMF} extsf{ of } X \colon p_X(1) = p extsf{ and } p_X(0) = 1-p. \ && \mathbb{E}(X) = 1 \cdot p + 0 \cdot (1-p) = p. \end{aligned}$$

Example

Let A be an event and

$$K = egin{cases} 1, & \textit{if } A \textit{ occurs}, \ 0, & \textit{otherwise}. \end{cases}$$

Compute $\mathbb{E}(X)$.

Solution

PMF of X: $p_X(1) = \mathbb{P}(A)$ and $p_X(0) = \mathbb{P}(A^c) = 1 - \mathbb{P}(A)$, so $\mathbb{E}(X) = 1 \cdot \mathbb{P}(A) + 0 \cdot (1 - \mathbb{P}(A)) = \mathbb{P}(A)$.

EX of Binomial distribution $X \sim b(n, p)$, PMF of X:

$$p_X(k) = \binom{n}{k} p^k (1-p)^{n-k}, \quad k = 0, 1, 2, \dots, n.$$

• $\mathbb{E}(X)$ can be computed directly as

$$\mathbb{E}(X) = \sum_{k} k p_{X}(k) = \sum_{k=0}^{n} k \binom{n}{k} p^{k} (1-p)^{n-k}$$

= $\sum_{k=1}^{n} \frac{n!}{(k-1)!(n-k)!} p^{k} (1-p)^{n-k} = np \sum_{k=1}^{n} \frac{(n-1)!}{(k-1)!(n-k)!} p^{k-1} (1-p)^{n-k}$
= $np \sum_{k=1}^{n} \binom{n-1}{k-1} p^{k-1} (1-p)^{n-k} = np \sum_{j=0}^{n-1} \binom{n-1}{j} p^{j} (1-p)^{n-1-j} = np.$

• Second approach: $X = \sum_{i=1}^{n} X_i$, where $X_i \sim B(p)$,

$$\mathbb{E}(X) = \sum_{i=1}^{n} \mathbb{E}(X_i) = \sum_{i=1}^{n} p = np.$$

$\mathbb{E}(X)$ of geometric distribution $X \sim g(p)$, PMF of X:

$$p_X(k) = (1-p)^{k-1}p, \quad k = 1, 2, 3, \dots$$

$$\mathbb{E}(X) = \sum_{k=1}^{\infty} k p_X(k) = \sum_{k=1}^{\infty} k (1-p)^{k-1} p = \sum_{k=1}^{\infty} \sum_{j=1}^{k} (1-p)^{k-1} p = p \sum_{j=1}^{\infty} \sum_{k=j}^{\infty} (1-p)^{k-1} = p \sum_{j=1}^{\infty} \frac{(1-p)^{j-1}}{1-(1-p)} = \sum_{j=1}^{\infty} (1-p)^{j-1} = \frac{1}{p}.$$

Example

Flip a fair coin until you get heads for the first time. What is the expected number of tosses?

Solution

$$\mathbb{E}(X) = \frac{1}{\frac{1}{2}} = 2.$$

$\mathbb{E}(X)$ of Poisson distribution

 $X \sim \mathcal{P}(\lambda)$, PMF of X:

$$p_X(k) = e^{-\lambda} \frac{\lambda^k}{k!}, \quad k = 0, 1, 2, \dots,$$

$$\mathbb{E}(X) = \sum_{k=0}^{\infty} k e^{-\lambda} \frac{\lambda^k}{k!} = \sum_{k=1}^{\infty} e^{\lambda} \frac{\lambda^k}{(k-1)!} = e^{-\lambda} \lambda \sum_{k=1}^{\infty} \frac{\lambda^{k-1}}{(k-1)!}$$
$$= e^{-\lambda} \lambda \sum_{j=0}^{\infty} \frac{\lambda^j}{j!} = e^{-\lambda} \lambda e^{\lambda} = \lambda.$$

12 / 19

Expected values of functions of random variables

Let X be a discrete random variable with PMF p_X and support S_X .

Theorem (Law of the unconscious statistician - LOTUS)

Let g(X) be a real valued function of X. Then, the expected value of the random variable g(X) is given by

$$\mathbb{E}(g(X)) = \sum_{x \in S_X} g(x) p_X(x).$$

▶ ▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶ — 国

This is well-defined as long as $\sum_{x \in S_X} |g(x)| p_X(x)$ converges.

Roll a four sided die. Let X be the number of spots on the die. Suppose the payoff function is given by $Y = X^2 - 3X + 1$. Is this a good bet?

Solution

Since the expected payoff is positive, the bet looks like worth taking.

$$\mathbb{E}(Y) = \mathbb{E}(X^2 - 3X + 1) = \mathbb{E}(X^2) - 3\mathbb{E}(X) + 1$$

$$\mathbb{E}(X) = rac{1}{4} \left(1+2+3+4
ight) = rac{5}{2},$$

 $\mathbb{E}(X^2) = rac{1}{4} \left(1^2+2^2+3^2+4^2
ight) = rac{15}{2},$

so $\mathbb{E}(Y) = 1$.

Remark (Moments of random variable X)

- second moment of $X: \mathbb{E}(X^2)$,
- **kth moment** of $X: \mathbb{E}(X^k)$ the expected value of the random variable X^k

Variance and standard deviation

Definition

If X is a random variable with mean $\mathbb{E}(X)$, then

• the variance of X is defined by

$$Var(X) = \mathbb{E} \left(X - \mathbb{E}(X) \right)^2$$
,

• the standard deviation of X is defined by

$$\sigma_X = \sqrt{Var(X)}.$$

If X takes values in S_X with probability mass function (PMF) p_X , then

$$Var(X) = \sum_{x \in S_X} (x - \mathbb{E}(X))^2 p_X(x)$$

Remark

- The variance is a weighted average of the squared distance to the mean.
- By definition, we are weighting high probability values more then low probability values

• The variance is always nonnegative.

The variance and the standard deviation provides a measure of dispersion of X around its mean.

- The standard deviation σ_X has the same units as X.
- The variance has the same units as X² (X in meters ⇒ Var(X) in meters squared).

Therefore the standard deviation is a natural measure of spread.

Properties of variance

Theorem

$$\forall a, b \in \mathbb{R}: \quad Var(aX + b) = a^2 Var(X).$$

$$\forall ar(X) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2.$$

Compute variances of the following random variables:

• X,
$$S_X = \{1, 2, 3, 4, 5\}$$
:
 $p_X(1) = p_X(2) = p_X(3) = p_X(4) = p_X(5) = \frac{1}{5}$,
• Y, $S_Y = \{1, 2, 3, 4, 5\}$:
 $p_Y(1) = p_Y(5) = \frac{1}{10}$, $p_Y(2) = p_Y(4) = \frac{2}{10}$, $p_Y(3) = \frac{4}{10}$,
• Z, $S_Z = \{1, 5\}$:
 $p_Z(1) = p_Z(5) = \frac{1}{2}$,
• W, $S_W = \{3\}$:
 $p_W(3) = 1$.

◆□▶ ◆□▶ ◆□▶ ◆□▶

э

Solution

$$\mathbb{E}X = \mathbb{E}Y = \mathbb{E}Z = \mathbb{E}W = 3,$$

$$Var(X) = \frac{1}{5} \sum_{k=1}^{5} (k-3)^{2} = 2,$$

$$Var(Y) = 2 \cdot \frac{1}{10} \cdot 2^{2} + 2 \cdot \frac{1}{5} \cdot 1^{2} = 1.2,$$

$$Var(Z) = 2 \cdot \frac{1}{2}2^{2} = 4,$$

$$Var(W) = 0.$$