Lecture 6

Outline

(1) Expected value - discrete case

- Properties of expected values

Outline

(1) Expected value - discrete case - Properties of expected values
(2) Variance and standard deviation

Numerical characteristics of random variables

Discrete case

Definition (Expected value)

Let X be a random variable taking the values in a discrete set S_{X}. The expected value (expectation) of the random variable X, denoted by $\mathbb{E}(X)$, is defined as

$$
\mathbb{E}(X)=\sum_{x \in S_{X}} x p_{X}(x)
$$

This is well-defined so long as $\sum_{x \in S_{X}}|x| p_{X}(x)$ converges.

Remark (How do we interpret the expected value?)

- the average obtained after many trials (when you interpret the probabilities as the frequencies),
- if we place an object of mass $p_{X}(x)$ at position x for each $x \in S_{X}$, then $\mathbb{E}(X)$ is the position of the center of gravity.

Example

Random variable X has the following distribution:
(1) $\mathbb{P}(X=-1)=0.2, \mathbb{P}(X=0)=0.4, \mathbb{P}(X=1)=0.4, \mathbb{E}(X)=$?
(2) $\mathbb{P}(X=-1)=0.4, \mathbb{P}(X=0)=0.2, \mathbb{P}(X=1)=0.4, \mathbb{E}(X)=$?
(3) $\mathbb{P}(X=-1)=0.2, \mathbb{P}(X=0)=0.4, \mathbb{P}(X=100)=0.4, \mathbb{E}(X)=$?
(c) Assume that $S_{X}=\{0,1,2, \ldots, n\}$,
$\mathbb{P}(X=0)=\mathbb{P}(X=1)=\ldots \mathbb{P}(X=n)=\frac{1}{n+1}$. What is the center of gravity for this structure?

Solution

(1) $\mathbb{E}(X)=(-1) \cdot 0.2+0 \cdot 0.4+1 \cdot 0.4=0.2$,
(2) $\mathbb{E}(X)=(-1) \cdot 0.4+0 \cdot 0.2+1 \cdot 0.4=0$,
(3) $\mathbb{E}(X)=(-1) \cdot 0.2+0 \cdot 0.4+100 \cdot 0.4=39.8$,
(3) $\mathbb{E}(X)=\frac{1}{n+1}(0+1+2+\ldots+n)=\frac{1}{n+1} \cdot \frac{n(n+1)}{2}=\frac{n}{2}$.

Remark

- The expected value is a summary statistic, providing a measure of the location of a random variable.
- The expected value is also called the mean or average of X (often denoted by μ).
- The expected value is a weighted average of the possible values (with probabilities as weights).
- If all the values are equally probable then the expected value is just the usual average of the values.

Algebraic properties of $\mathbb{E}(X)$

Let X and Y be random variables defined on the same probability space Ω, then
(1)

$$
\mathbb{E}(X+Y)=\mathbb{E}(X)+\mathbb{E}(Y)
$$

(2)

$$
\forall a, b \in \mathbb{R} \quad \mathbb{E}(a X+b)=a \mathbb{E}(X)+b
$$

(3) if X takes on only nonnegative values, then $\mathbb{E}(X) \geq 0$.

Example

Roll two dice, and let X be the sum of the faces. Find $\mathbb{E}(X)$.

Solution

$X=X_{1}+X_{2}$, where X_{i} - the result on the "i"th die, $\mathbb{E}(X)=\mathbb{E}\left(X_{1}+X_{2}\right)=\mathbb{E}\left(X_{1}\right)+\mathbb{E}\left(X_{2}\right)$ Since X_{1} and X_{2} have the same distributions, $\mathbb{E}\left(X_{1}\right)=\mathbb{E}\left(X_{2}\right)$ and

$$
\mathbb{E}\left(X_{1}\right)=\frac{1}{6} \cdot 1+\frac{1}{6} \cdot 2+\ldots \frac{1}{6} \cdot 6=3.5
$$

so $\mathbb{E}(X)=7$.

$\mathbb{E} X$ of Bernoulli distribution

$X \sim B(p)$,
PMF of $X: p_{X}(1)=p$ and $p_{X}(0)=1-p$.

$$
\mathbb{E}(X)=1 \cdot p+0 \cdot(1-p)=p .
$$

Example

Let A be an event and

$$
X= \begin{cases}1, & \text { if } A \text { occurs, } \\ 0, & \text { otherwise. }\end{cases}
$$

Compute $\mathbb{E}(X)$.

Solution

PMF of X :

$$
\begin{aligned}
& p_{X}(1)=\mathbb{P}(A) \text { and } p_{X}(0)=\mathbb{P}\left(A^{c}\right)=1-\mathbb{P}(A) \text {, so } \\
& \mathbb{E}(X)=1 \cdot \mathbb{P}(A)+0 \cdot(1-\mathbb{P}(A))=\mathbb{P}(A) .
\end{aligned}
$$

$\mathbb{E} X$ of Binomial distribution

$X \sim b(n, p)$,

PMF of X :

$$
p_{X}(k)=\binom{n}{k} p^{k}(1-p)^{n-k}, \quad k=0,1,2, \ldots, n .
$$

- $\mathbb{E}(X)$ can be computed directly as

$$
\begin{aligned}
& \mathbb{E}(X)=\sum_{k} k p_{X}(k)=\sum_{k=0}^{n} k\binom{n}{k} p^{k}(1-p)^{n-k} \\
= & \sum_{k=1}^{n} \frac{n!}{(k-1)!(n-k)!} p^{k}(1-p)^{n-k}=n p \sum_{k=1}^{n} \frac{(n-1)!}{(k-1)!(n-k)!} p^{k-1}(1-p)^{n-k} \\
= & n p \sum_{k=1}^{n}\binom{n-1}{k-1} p^{k-1}(1-p)^{n-k}=n p \sum_{j=0}^{n-1}\binom{n-1}{j} p^{j}(1-p)^{n-1-j}=n p .
\end{aligned}
$$

- Second approach: $X=\sum_{i=1}^{n} X_{i}$, where $X_{i} \sim B(p)$,

$$
\mathbb{E}(X)=\sum_{i=1}^{n} \mathbb{E}\left(X_{i}\right)=\sum_{i=1}^{n} p=n p .
$$

$\mathbb{E}(X)$ of geometric distribution
$X \sim g(p)$,
PMF of X :

$$
\begin{gathered}
p_{X}(k)=(1-p)^{k-1} p, \quad k=1,2,3, \ldots \\
\mathbb{E}(X)=\sum_{k=1}^{\infty} k p_{X}(k)=\sum_{k=1}^{\infty} k(1-p)^{k-1} p=\sum_{k=1}^{\infty} \sum_{j=1}^{k}(1-p)^{k-1} p= \\
p \sum_{j=1}^{\infty} \sum_{k=j}^{\infty}(1-p)^{k-1}=p \sum_{j=1}^{\infty} \frac{(1-p)^{j-1}}{1-(1-p)}=\sum_{j=1}^{\infty}(1-p)^{j-1}=\frac{1}{p} .
\end{gathered}
$$

Example

Flip a fair coin until you get heads for the first time. What is the expected number of tosses?

Solution

$\mathbb{E}(X)=\frac{1}{\frac{1}{2}}=2$.

$\mathbb{E}(X)$ of Poisson distribution

$X \sim \mathcal{P}(\lambda)$,
PMF of X :

$$
p_{X}(k)=e^{-\lambda} \frac{\lambda^{k}}{k!}, \quad k=0,1,2, \ldots
$$

$$
\begin{aligned}
\mathbb{E}(X)=\sum_{k=0}^{\infty} k e^{-\lambda} \frac{\lambda^{k}}{k!}=\sum_{k=1}^{\infty} e^{\lambda} \frac{\lambda^{k}}{(k-1)!} & =e^{-\lambda} \lambda \sum_{k=1}^{\infty} \frac{\lambda^{k-1}}{(k-1)!} \\
& =e^{-\lambda} \lambda \sum_{j=0}^{\infty} \frac{\lambda^{j}}{j!}=e^{-\lambda} \lambda e^{\lambda}=\lambda
\end{aligned}
$$

Expected values of functions of random variables

Let X be a discrete random variable with PMF p_{X} and support S_{X}.
Theorem (Law of the unconscious statistician - LOTUS)
Let $g(X)$ be a real valued function of X. Then, the expected value of the random variable $g(X)$ is given by

$$
\mathbb{E}(g(X))=\sum_{x \in S_{X}} g(x) p_{X}(x)
$$

This is well-defined as long as $\sum_{x \in S_{X}}|g(x)| p_{X}(x)$ converges.

Example

Roll a four sided die. Let X be the number of spots on the die. Suppose the payoff function is given by $Y=X^{2}-3 X+1$. Is this a good bet?

Solution

Since the expected payoff is positive, the bet looks like worth taking.

$$
\begin{gathered}
\mathbb{E}(Y)=\mathbb{E}\left(X^{2}-3 X+1\right)=\mathbb{E}\left(X^{2}\right)-3 \mathbb{E}(X)+1, \\
\mathbb{E}(X)=\frac{1}{4}(1+2+3+4)=\frac{5}{2}, \\
\mathbb{E}\left(X^{2}\right)=\frac{1}{4}\left(1^{2}+2^{2}+3^{2}+4^{2}\right)=\frac{15}{2},
\end{gathered}
$$

so $\mathbb{E}(Y)=1$.
Remark (Moments of random variable X)

- second moment of $X: \mathbb{E}\left(X^{2}\right)$,
- kth moment of $X: \mathbb{E}\left(X^{k}\right)$ - the expected value of the random variable X^{k}.

Variance and standard deviation

Definition

If X is a random variable with mean $\mathbb{E}(X)$, then

- the variance of X is defined by

$$
\operatorname{Var}(X)=\mathbb{E}(X-\mathbb{E}(X))^{2},
$$

- the standard deviation of X is defined by

$$
\sigma_{X}=\sqrt{\operatorname{Var}(X)} .
$$

If X takes values in S_{X} with probability mass function (PMF) p_{X}, then

$$
\operatorname{Var}(X)=\sum_{x \in S_{X}}(x-\mathbb{E}(X))^{2} p_{X}(x)
$$

Remark

- The variance is a weighted average of the squared distance to the mean.
- By definition, we are weighting high probability values more then low probability values
- The variance is always nonnegative.

The variance and the standard deviation provides a measure of dispersion of X around its mean.

- The standard deviation σ_{X} has the same units as X.
- The variance has the same units as $X^{2}(X$ in meters $\Longrightarrow \operatorname{Var}(X)$ in meters squared).
Therefore the standard deviation is a natural measure of spread.
Properties of variance
Theorem
(1)

$$
\forall a, b \in \mathbb{R}: \quad \operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)
$$

(2)

$$
\operatorname{Var}(X)=\mathbb{E}\left(X^{2}\right)-(\mathbb{E}(X))^{2}
$$

Example

Compute variances of the following random variables:

- $X, S_{X}=\{1,2,3,4,5\}:$

$$
p_{X}(1)=p_{X}(2)=p_{X}(3)=p_{X}(4)=p_{X}(5)=\frac{1}{5}
$$

- $Y, S_{Y}=\{1,2,3,4,5\}:$

$$
p_{Y}(1)=p_{Y}(5)=\frac{1}{10}, p_{Y}(2)=p_{Y}(4)=\frac{2}{10}, p_{Y}(3)=\frac{4}{10},
$$

- $Z, S_{Z}=\{1,5\}:$

$$
p_{Z}(1)=p_{Z}(5)=\frac{1}{2}
$$

- $W, S_{W}=\{3\}$:

$$
p_{W}(3)=1
$$

Solution

$$
\begin{gathered}
\mathbb{E} X=\mathbb{E} Y=\mathbb{E} Z=\mathbb{E} W=3 \\
\operatorname{Var}(X)=\frac{1}{5} \sum_{k=1}^{5}(k-3)^{2}=2 \\
\operatorname{Var}(Y)=2 \cdot \frac{1}{10} \cdot 2^{2}+2 \cdot \frac{1}{5} \cdot 1^{2}=1.2 \\
\operatorname{Var}(Z)=2 \cdot \frac{1}{2} 2^{2}=4, \\
\operatorname{Var}(W)=0
\end{gathered}
$$

