Lecture 7

Continuous case

Definition

The expected value or méan of a continuous random variable X is defined by

$$
\mathbb{E}(X)=\int_{x \in S_{X}^{\infty}}^{\int_{-\infty}^{\infty} x f_{X}(x) d x}
$$

Remark (How do we interpret the expected value?)

The expected value of the r.v. X is the center of gravity of the mass distribution described by the function f_{X}.

Example

(1) Let $X \sim \mathcal{U}[a, b]$. Find $\mathbb{E}(X)$.

Solution

$$
\mathbb{E}(X)=\int_{-\infty}^{\infty} x f(x) d x=\int_{a}^{b} x \frac{1}{b-a} d x=\frac{a+b}{2} .
$$

- the mean is at the midpoint of the range.
(2) Let X has a density $f_{X}(x)=\frac{3}{8} x^{2} \mathbb{I}_{(0,2)}(x)$. Find $\mathbb{E}(X)$.

Solution

$$
\mathbb{E}(X)=\int_{0}^{2} x \frac{3}{8} x^{2} d x=\frac{3}{2} .
$$

Example (cont'd)
(3) Let $X \sim \operatorname{Exp}(\lambda)$. Find $\mathbb{E}(X)$.

Solution

$S_{X}=[0, \infty)$ and its density is $f(x)=\lambda e^{-\lambda x} \mathbb{I}_{(0, \infty)}(x)$
$\Longrightarrow \mathbb{E}(X)=\frac{1}{\lambda}$.
(4) Let $Z \sim \mathcal{N}(0,1)$. Find $\mathbb{E}(Z)$.

Solution

$S_{Z}=\mathbb{R}$ and its density function is

$$
f(z)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{z^{2}}{2}}
$$

Note that the pdf is symmetric around 0 , so its mean must be 0 (if it exists) $\Longrightarrow \mathbb{E}(Z)=0$.

Produced with a Trial Version of PDF Annotator - www.PDFAnno

Remark (The expected value may not exist!)

Let X be a continuous random variable with $p d f$

$$
f(x)=\frac{1}{\pi\left(1+x^{2}\right)}, \quad x \in \mathbb{R}
$$

The pdf is symmetrical around 0 but the expected value does not exist:

$$
\int_{-\infty}^{\infty}|x| f_{X}(x) d x=+\infty
$$

$$
1
$$

PrBroeluicedafith (aXT)rial Version of PDF Annotator - www.PDFAnno

Analogous properties as for the discrete case:
(1) If X and Y are random variables on a sample space Ω then
(2) If a and b are constants then

$$
\begin{equation*}
\mathbb{E}(a X+b)=a \mathbb{E}(X)+b \tag{2}
\end{equation*}
$$

EXPrectuccohwithfainctiabNersfox of PDF Annotator - www.PDFAnno Theorem (LOTUS)
Let X be a continuous random variable with probability density function f_{X} and let $g: \mathbb{R} \rightarrow \mathbb{R}$ be a function, then

$$
\mathbb{E}(g(X))=\int_{-\infty}^{\infty} j(x) f(x) d x
$$

if $\int_{-\infty}^{\infty}|g(x)| f_{X}(x) d x<\infty$.

Example
Let $X \sim \operatorname{Exp}(\lambda)$. Find $\mathbb{E}\left(X^{2}\right)$.

Solution

$$
\mathbb{E}\left(X^{2}\right)=\int_{0}^{\infty} x^{2} \lambda e^{-\lambda x} d x=\ldots=\frac{2}{\lambda^{2}}
$$

Example

Let $X \sim U[0,1]$. The value of X and the point $\frac{1}{2}$ split the interval $[0,1]$ into three parts. What are the expected lengths of these three intervals?

Solution

$$
\begin{aligned}
& Y=\min \left(X, \frac{1}{2}\right), U=\left|X-\frac{1}{2}\right|, W=\min \left(\frac{1}{2}, 1-X\right) \\
& \mathbb{E}(Y)=?, \mathbb{E}(U)=?, \mathbb{E}(W)=?
\end{aligned}
$$

$$
\begin{gathered}
\mathbb{E}(Y)=\mathbb{E}\left(\min \left(X, \frac{1}{2}\right)\right)=\int_{0}^{\frac{1}{2}} x d x+\int_{\frac{1}{2}}^{1} \frac{1}{2} d x=\frac{3}{8}, \\
\mathbb{E}(U)=\mathbb{E}\left|X-\frac{1}{2}\right|=\int_{0}^{\frac{1}{2}}\left(\frac{1}{2}-x\right) d x+\int_{\frac{1}{2}}^{1}\left(x-\frac{1}{2}\right) d x=\frac{1}{4}, \\
\mathbb{E}(W)=\mathbb{E} \min \left(\frac{1}{2}, 1-X\right)=\int_{0}^{\frac{1}{2}} \frac{1}{2} d x+\int_{\frac{1}{2}}^{1}(1-x) d x=\frac{3}{8} .
\end{gathered}
$$

Vafiroducellawith à Trial Version of PDF Annotator - www.PDFAnno

Definition

The variance of a random variable X with density f_{X} is defined by

$$
\operatorname{Var}(X)=\mathbb{E}(X-\mathbb{E}(X))^{2}=\int_{-\infty}^{\infty}(x-\mathbb{E}(X))^{2} f(x) d x
$$

and standard deviation $\sigma_{X}=\sqrt{\operatorname{Var}(X)}$.
Properties of variance:

- For constants a and b :

$$
\operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)
$$

$$
\operatorname{Var}(X)=\mathbb{E}\left(X^{2}\right)-(\mathbb{E}(X))^{2}
$$

Example

(1) Let $X \sim \mathcal{U}[a, b]$. Find $\operatorname{Var}(X)$.

Solution

$$
\begin{aligned}
\mathbb{E}(X)=\frac{a+b}{2}, \mathbb{E}\left(X^{2}\right) & =\int_{a}^{b} x^{2} \frac{1}{b-a} d x=\frac{a^{2}+a b+b^{2}}{3} \\
\Longrightarrow & \operatorname{Var}(X)=\mathbb{E}\left(X^{2}\right)-(\mathbb{E}(X))^{2}=\frac{(b-a)^{2}}{12}
\end{aligned}
$$

(2) Let $X \sim \operatorname{Exp}(\lambda)$. Find $\operatorname{Var}(X)$ and σ_{X}.

Solution

$\operatorname{Var}(X)=\mathbb{E}\left(X^{2}\right)-(\mathbb{E}(X))^{2}=\frac{2}{\lambda^{2}}-\frac{1}{\lambda^{2}}=\frac{1}{\lambda^{2}}, \sigma_{X}=\frac{1}{\lambda}$.

Produced with a Trial Version of PDF Annotator - www.PDFAnno

$$
\operatorname{Var}(Z)=\mathbb{E}\left(Z^{2}\right)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} z^{2} e^{-\frac{z^{2}}{2}} d z=1
$$

FuRraduaedwitharalすrial\herssidenof PDF Annotator - www.PDFAnno

Le X be a random variable. We want to start looking at
$Y=g(X)=g \circ X$, where $g: \mathbb{R} \rightarrow \mathbb{R}$.

Remark

If $(Y)=g(X)$ is a function of a random variable (X) then Y is also a random variable, since it provides a numerical value for each possible outcome.

The question is: how can we find the distribution of Y knowing the distribution of X ?

DiBcoeltucedrwithma Tried Mession of PDF Annotator - www.PDFAnno

Theorem

Let X be a discrete random variable. Then $Y=g(X)$ is also a discrete random variable and

- $S_{Y}=g\left(S_{X}\right)$ and

$$
p_{Y}(y)=\sum_{x \in S_{X}: g(x)=y} p_{X}(x) .
$$

Example

Let X be a discrete random variable with the pmf:
$p_{X}(-1)=\frac{1}{5}, p_{X}(0)=\frac{2}{5}$ and $p_{X}(1)=\frac{2}{5}$.
Let $g(x)=x^{2}$. Find the distribution of $Y=g(X)$.
Solution

$$
S_{X}=\{-1,0,1\} \Longrightarrow S_{Y}=\{0,1\}
$$

$$
p_{Y}(1)=\mathbb{P}(Y=1)=\mathbb{P}\left(X^{2}=1\right)=p_{X}(-1)+p_{X}(1)=\frac{3}{5}
$$

$$
p_{Y}(0)=p_{X}(0)=\frac{2}{5}
$$

Example

Let $X \sim g(p)$ and $g(x)=\left\lfloor\frac{x}{2}\right\rfloor$. Find the distribution of Y.

Solution

$$
\begin{gathered}
S_{X}=\mathbb{N} \Longrightarrow S_{Y}=\mathbb{N} \cup\{0\}, \\
p_{Y}(0)=\mathbb{P}(Y=0)=\mathbb{P}(X=1)=p, \\
p_{Y}(k)=\mathbb{P}(X=2 k)+\mathbb{P}(X=2 k+1)=p(2-p)(1-p)^{2 k-1}, \quad k \in \mathbb{N} .
\end{gathered}
$$

Check whether p_{Y} is a well defined probability mass function?

CAriducees withdon intiadaViertsion of PDF Annotator - www.PDFAnno

Some functions of a continuous random variable turn out to be discrete random variables.

Example

$X \sim \mathcal{U}[-10,10] ; g(x)=\operatorname{sign}(x)$. Then

$$
\begin{gathered}
p_{Y}(-1)=\mathbb{P}(X<0)=\frac{1}{2} \\
p_{Y}(0)=\mathbb{P}(X=0)=0 \\
p_{Y}(1)=\mathbb{P}(X>0)=\frac{1}{2} .
\end{gathered}
$$

Hence Y has two point distribution $\left(S_{Y}=\{-1,1\}\right)$.

Remark

If X is a continous random variable, then Y is not necessarily a continuous one!

In each of the following examples we will start from finding a cumulative distribution function of the random variable $Y=g(X)$ (cdf-technique).

Example

Let $X \sim \mathcal{U}[0,1]$ and $Y=X^{2}$. Find F_{Y}.
Solution

$$
S_{X}=[0,1] \Longrightarrow S_{Y}=[0,1]
$$

For $0 \leq y<1$:

$$
\begin{aligned}
F_{Y}(y)=\mathbb{P}(Y \leq y)=\mathbb{P}\left(X^{2} \leq y\right)=\mathbb{P}(X \leq \sqrt{y})= & \int_{0}^{\sqrt{y}} f_{X}(x) d x \\
& =\int_{0}^{\sqrt{y}} 1 d x=\sqrt{y}
\end{aligned}
$$

Therefore

$$
F_{Y}(y)=\left\{\begin{array}{l}
0, y<0 \\
\sqrt{y}, 0 \leq y<1 \\
1, y \geq 1
\end{array}\right.
$$

Example

Let $X \sim \operatorname{Exp}(1)$ and $Y=\sqrt{X}$. Find f_{Y}.
Solution

$$
S_{X}=[0, \infty) \Longrightarrow S_{Y}=[0, \infty) \text {. For } y>0 \text { : }
$$

$$
\begin{aligned}
& F_{Y}(y)=\mathbb{P}(Y \leq y)=\mathbb{P}(\sqrt{X} \leq y)=\mathbb{P}\left(X \leq y^{2}\right)=\int_{0}^{y^{2}} f_{X}(x) d x \\
&=\int_{0}^{y^{2}} e^{-x} d x=1-e^{-y^{2}} .
\end{aligned}
$$

Hence

$$
F_{Y}(y)=\left\{\begin{array}{l}
0, y<0, \\
1-e^{-y^{2}}, y \geq 0 .
\end{array}\right.
$$

By taking a derivative of F, we get

$$
f_{Y}(y)=\left\{\begin{array}{l}
0, y<0, \\
2 y e^{-y^{2}}, y \geq 0 .
\end{array}\right.
$$

Produced with a Trial Version of PDF Annotator - www.PDFAnno

 ExampleLet X be a random variable with probability density function: $f_{X}(x)=\frac{x^{2}}{3} \mathbb{I}_{(-1,2)}(x)$ and let $Y=|X|$. Find f_{Y}.

Solution

$S_{Y}=[0,2]$.

$$
F_{Y}(t)=\left\{\begin{array}{l}
0, \quad t \leq 0 \\
\int_{-t}^{t} t \frac{x^{2}}{3} d x=\frac{2 t^{3}}{9}, \quad 0 \leq t<1, \\
\int_{-1}^{t} \frac{x^{2}}{3} d x=\frac{t^{3}}{9}+1, \quad 1 \leq t<2 \\
1, \quad t \geq 2
\end{array}\right.
$$

$F_{Y}(y)=F_{Y}^{\prime}(y)$:

$$
f_{Y}\left(t^{(}\right)= \begin{cases}\frac{2}{3} t^{2}, & t \in(0,1), \\ \frac{2}{3}, & t \in[1,2), \\ 0, & t \notin(0,2) .\end{cases}
$$

Standardizing a normal random variable

 Let $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$. Find the distributon of $Y=\frac{X-\mu}{\sigma}$.
Solution

$$
\begin{aligned}
& \mathbb{P}(Y \leq t)=\mathbb{P}\left(\frac{X-\mu}{\sigma} \leq t\right)=\mathbb{P}(X \leq \mu+t \sigma)= \\
& \frac{1}{\sqrt{2 \pi} \sigma} \int_{-\infty}^{\mu+t \sigma} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right) d x
\end{aligned}
$$

substituting $y=\frac{x-\mu}{\sigma}$, we get

$$
\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{t} \exp \left(-\frac{y^{2}}{2}\right) d y=\Phi(t)
$$

where Φ denotes the cdf of the standard normal distribution, $\mathcal{N}(0,1)$.

Example

Let $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$. Prove that $\mathbb{E}(X)=\mu$ and $\operatorname{Var}(X)=\sigma^{2}$.

Solution

- From Example(4) we know that if $Z \sim \mathcal{N}(0,1)$, then $\mathbb{E}(Z)=0$.
- For $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$ the random variable $Z=\frac{X-\mu}{\sigma} \sim \mathcal{N}(0,1)$.

Therefore $X=\sigma Z+\mu$ and by linearity we have

$$
\mathbb{E}(X)=\mathbb{E}(\sigma Z+\mu)=\sigma \mathbb{E} Z+\mu=\mu
$$

and

$$
\operatorname{Var}(X)=\operatorname{Var}(\sigma Z+\mu)=\sigma^{2} \operatorname{Var}(Z)=\sigma^{2} .
$$

Produced with a Trial Version of PDF Annotator - www.PDFAnnc

$$
\operatorname{Var} Y=\operatorname{Var}(a X+b)=a^{2} \operatorname{Var} X=a^{22}
$$

Remark
A linear function of a normal random variable is normal.

$$
Y=a X+b
$$

\#Y
$\operatorname{Var}(y)$

$$
\mathbb{E} Y=a \mathbb{E} X+b=a \mu+b
$$

