Lecture 8

Joint distributions

Discrete case

Definition

Let X and Y be discrete random variables defined on the same probability space Ω. The function:

$$
p_{X, Y}(x, y)=\mathbb{P}(X=x, Y=y)
$$

is called the joint probability mass function of X and Y.

Example

Fair coin is tossed 3 times. Let

- $X=$ number of heads in the first 2 tosses,
- $Y=$ number of heads in all 3 tosses.

We can display the joint pmf in a table:

X / Y	0	1	2	3
0	$1 / 8$	$1 / 8$	0	0
1	0	$1 / 4$	$1 / 4$	0
2	0	0	$1 / 8$	$1 / 8$

A joint probability mass function must satisfy two properties:
(1) $0 \leq p_{X, Y}(x, y) \leq 1$
(2) The total probability is 1 . We can express this as a double sum:

$$
\sum_{x \in S_{X}} \sum_{y \in S_{Y}} p_{X, Y}(x, y)=1
$$

Example

Joint probability mass function:

$$
p(x, y)= \begin{cases}c(x+y), & x=1,2, y=1,2 \\ 0, & \text { otherwise }\end{cases}
$$

Determine the value of c.

Solution

$$
p(1,1)+p(1,2)+p(2,1)+p(2,2)=1,
$$

hence

$$
c(1+1+1+2+2+1+2+2)=12 c=1 \Longrightarrow c=\frac{1}{12} .
$$

Remark

The joint PMF determines the probability of any event that can be specified in terms of the random variables X and Y :

$$
\mathbb{P}((X, Y) \in A)=\sum_{(x, y) \in A} p_{X, Y}(x, y) .
$$

Example

Roll two symmetric dice. Let X be the outcome on the first die and Y on the second die. Let $B=\{(x, y): y-x \geq 2\}$. Find $\mathbb{P}((X, Y) \in B)$.

Solution

Both X and Y take values in $\{1,2,3,4,5,6\}$ and the joint pmf is
$p(i, j)=\frac{1}{36}, i, j=1, \ldots, 6$,
$B=\{(1,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,5),(3,6),(4,6)\}$
$\Longrightarrow \mathbb{P}((X, Y) \in B)=\frac{10}{36}$.

Marginal distributions

From the joint PMF $p_{X, Y}$ we can calculate the marginal pmf's of X and Y :

$$
p_{X}(x)=\sum_{y} p_{X, Y}(x, y) \quad \text { and } \quad p_{Y}(y)=\sum_{x} p_{X, Y}(x, y)
$$

Example

The joint PMF of X and Y :

$\mathrm{X} \backslash \mathrm{Y}$	0	1	2	3
1	$1 / 20$	$2 / 20$	$2 / 20$	
2	$2 / 20$	$4 / 20$	$1 / 20$	$2 / 20$
3		$1 / 20$	$3 / 20$	$1 / 20$
4		$1 / 20$		

- $p_{X}(3)=$?
- Find marginal pmf's of X and Y.

Solution

Marginal PMF of X :

$$
\begin{gathered}
p_{X}(1)=\sum_{y} p(1, y)=p(1,0)+p(1,1)+p(1,2)+p(1,3)=\frac{1}{20}+\frac{2}{20}+\frac{2}{20}=\frac{1}{4} \\
p_{X}(2)=p(2,0)+p(2,1)+p(2,2)+p(2,3)=\frac{2}{20}+\frac{4}{20}+\frac{1}{20}+\frac{2}{20}==\frac{9}{20}, \\
p_{X}(3)=p(3,0)+p(3,1)+p(3,2)+p(3,3)=\frac{1}{20}+\frac{3}{20}+\frac{1}{20}=\frac{1}{4}, \\
p_{X}(4)=\frac{1}{20} .
\end{gathered}
$$

Marginal PMF of Y :

$$
\begin{gathered}
p_{Y}(0)=p(1,0)+p(2,0)=\frac{1}{20}+\frac{2}{20}=\frac{3}{20}, \\
p_{Y}(1)=\frac{2}{20}+\frac{4}{20}+\frac{1}{20}+\frac{1}{20}=\frac{8}{20}, \\
p_{Y}(2)=\frac{2}{20}+\frac{1}{20}+\frac{3}{20}=\frac{6}{20}, \quad p_{Y}(3)=\frac{2}{20}+\frac{1}{20}=\frac{3}{20} .
\end{gathered}
$$

Remark

Marginal probability mass functions don't determine the joint pmf.

Example

$\mathrm{X} \backslash \mathrm{Y}$	0	1
0	0	$1 / 2$
1	$1 / 2$	0

$X \backslash Y$	0	1
0	$1 / 4$	$1 / 4$
1	$1 / 4$	$1 / 4$

Two different joint pmfs have the same marginal distributions of X and Y.

Independence of random variables

Definition

Two random variables X and Y defined on the same probability space (Ω, \mathbb{P}) are independent if

$$
\mathbb{P}(X \in A, Y \in B)=\mathbb{P}(X \in A) \mathbb{P}(Y \in B), \quad \forall A, B \subset \mathbb{R}
$$

Discrete case

Two discrete random variables X and Y (defined on the same space $(\Omega, \mathbb{P}))$ are independent, if

$$
\mathbb{P}(X=x, Y=y)=\mathbb{P}(X=x) \mathbb{P}(Y=y) \forall x, y \in \mathbb{R}
$$

or the same condition in terms of pmf:

$$
p_{X, Y}(x, y)=p_{X}(x) p_{Y}(y), \quad \forall x, y \in \mathbb{R}
$$

Example

Joint PMF of $(X, Y):$| $X \backslash Y$ | 0 | 1 |
| :---: | :---: | :---: |
| 0 | $2 / 6$ | $1 / 6$ |
| 1 | $2 / 6$ | $1 / 6$ | . Are X and Y independent?

Solution

$$
p_{X}(0)=\frac{3}{6}, \quad p_{X}(1)=\frac{3}{6}, p_{Y}(0)=\frac{4}{6}, \quad p_{Y}(1)=\frac{2}{6},
$$

so

$$
\begin{aligned}
& p_{X, Y}(0,0)=p_{X}(0) p_{Y}(0), \\
& p_{X, Y}(0,1)=p_{X}(0) p_{Y}(1), \\
& p_{X, Y}(1,0)=p_{X}(1) p_{Y}(0), \\
& p_{X, Y}(1,1)=p_{X}(1) p_{Y}(1),
\end{aligned}
$$

hence X and Y are independent.

Example

Joint PMF of $(X, Y):$| $X \backslash Y$ | 0 | 1 |
| :---: | :---: | :---: |
| 0 | $1 / 2$ | 0 |
| 1 | $1 / 4$ | $1 / 4$ | Are X and Y independent?

Solution

$$
\begin{gathered}
p_{X}(0)=\frac{1}{2}, \quad p_{X}(1)=\frac{1}{2}, \quad p_{Y}(0)=\frac{3}{4}, \quad p_{Y}(1)=\frac{1}{4}, \\
p_{X, Y}(0,1)=0 \neq p_{X}(0) p_{Y}(1)=\frac{1}{8},
\end{gathered}
$$

hence X and Y are not independent.

