Lecture 9

Continuous case

Definition

Let X and Y be continuous random variables. Then $f_{X, Y}$ is the joint density function of X and Y, if for any region $A \subset \mathbb{R}^{2}$

$$
\mathbb{P}((X, Y) \in A)=\iint_{A} f_{X, Y}(x, y) d x d y
$$

in particular, if $A=\{(x, y): a \leq x \leq b, c \leq y \leq d\}$, then

$$
\begin{aligned}
\mathbb{P}((X, Y) \in A)=\mathbb{P}(a \leq X \leq b, c \leq Y \leq d) & \\
& =\int_{a}^{b} \int_{c}^{d} f_{X, Y}(x, y) d y d x
\end{aligned}
$$

Remark

- A joint probability denstiy function must satisfy:
(1) $f(x, y) \geq 0$, for all x, y,
(2) $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) d x d y=1$.
- The probability that (X, Y) lies on any interval, any curve, sraight line or point is 0 .

$$
\mathbb{P}(X=a, Y=b)=0
$$

and

$$
\begin{aligned}
& \mathbb{P}(a \leq X \leq b, c \leq Y \leq d)=\mathbb{P}(a<X \leq b, c<Y \leq d) \\
& \quad=\mathbb{P}(a \leq X \leq b, c<X<d)=\mathbb{P}(a<X<b, c<X<d)
\end{aligned}
$$

Definition (uniform distribution on D)

A random vector (X, Y) has the uniform ditribution on $D \subset \mathbb{R}^{2}$ if

$$
f(x, y)=\left\{\begin{array}{l}
\frac{1}{|D|}, \quad(x, y) \in D \\
0, \quad \text { otherwise }
\end{array}\right.
$$

where $|D|$ denotes the area of D.

Example

Let $f_{X, Y}$ be the joint probability density function of X and Y :

$$
f(x, y)= \begin{cases}1, & x, y \in[0,1] \\ 0, & \text { otherwise }\end{cases}
$$

Find $\mathbb{P}(X>Y)$.
Solution

$$
\mathbb{P}(X>Y)=\int_{\{(x, y): x>y\}} \int_{0} f(x, y) d x d y=\int_{0}^{1} \int_{y}^{1} 1 d x d y=\int_{0}^{1}(1-y) d y=\frac{1}{2}
$$

Example

Let $f_{X, Y}$ be the joint probability density function of X and Y :

$$
f(x, y)=\left\{\begin{array}{l}
4 x y, \quad x, y \in[0,1] \\
0, \text { otherwise }
\end{array}\right.
$$

Find $\mathbb{P}(X<0.5, Y>0.5)$.

Solution

$$
\mathbb{P}(X<0.5, Y>0.5)=\int_{0}^{0.5} \int_{0.5}^{1} 4 x y d y d x=\frac{3}{2} \int_{0}^{0.5} x d x=\frac{3}{16} .
$$

Marginal distributions

Definition

The marginal probability density function of continuous random variables X and Y are

$$
f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) d y \text { and } f_{Y}(y)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) d x
$$

Example

Let (X, Y) be drawn uniformly from the triangle:

$$
T=\{(x, y): 0 \leq x+y \leq 3, x \geq 0, y \geq 0\}
$$

- Find the joint pdf of X and Y.
- Find the marginal pdfs.

Solution

-

$$
\begin{gathered}
f(x, y)= \begin{cases}\frac{2}{9}, & (x, y) \in T \\
0, & (x, y) \notin T\end{cases} \\
f_{X}(x)= \begin{cases}\int_{0}^{3-x} \frac{2}{9} d y=\frac{2}{9}(3-x), \quad x \in(0,3), \\
0, & x \notin(0,3) .\end{cases} \\
f_{Y}(y)= \begin{cases}\frac{2}{9}(3-y), & y \in(0,3), \\
0, & y \notin(0,3) .\end{cases}
\end{gathered}
$$

Example

Let $f_{X, Y}$ be the joint probability density function of random variables X and Y :

$$
f(x, y)=\left\{\begin{array}{l}
c x y, \quad 0 \leq x \leq y \leq 1 \\
0, \text { otherwise }
\end{array}\right.
$$

- Find c.
- Determine the marginal densities for X and Y.

Solution

-

$$
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) d x d y=1 \Longrightarrow \int_{0}^{1} \int_{x}^{1} c x y d y d x=1 \Longrightarrow c=8
$$

$$
f_{X}(x)=\left\{\begin{array}{l}
\int_{x}^{1} 8 x y d y=4 x\left(1-x^{2}\right), x \in(0,1), \quad f_{Y}(y)=\left\{\begin{array}{l}
\int_{0}^{y} 8 x y d x=4 y^{3}, y \in(0,1), \\
0, \quad x \notin(0,1),
\end{array}, \quad y \neq(0,1) .\right.
\end{array}\right.
$$

Cumulative distribution function - continuous case

The joint cumulative distribution function of X and Y is defined as

$$
F_{X, Y}(x, y)=\mathbb{P}(X \leq x, Y \leq y)
$$

If X and Y are described by a joint pdf $f_{X, Y}$, then

$$
F_{X, Y}(x, y)=\mathbb{P}(X \leq x, Y \leq y)=\int_{-\infty}^{x} \int_{-\infty}^{y} f_{X, Y}(u, v) d u d v .
$$

Conversely,

$$
f_{X, Y}(x, y)=\frac{\partial^{2} F_{X, Y}}{\partial x \partial y}(x, y)
$$

Example

We are told that the joint pdf of the random variables X and Y is constant c on the square $[0,1]^{2}$ (and 0 outside the square). Find the value of c and the joint cdf of X and Y.

Solution

- $c=1$,

$$
F(s, t)= \begin{cases}0, & s<0 \text { or } t<0 \\ s t, & 0 \leq s<1,0 \leq t<1 \\ s, & 0 \leq s<1, t \geq 1 \\ t, & s \geq 1,0 \leq t<1 \\ 1, & s \geq 1, t \geq 1\end{cases}
$$

The marginal distribution via CDF

Another way to derive the marginal distributions from the joint is to use the cumulative distribution function:

$$
F_{X}(x)=\lim _{y \rightarrow \infty} F_{X, Y}(x, y) \quad \text { i } \quad F_{Y}(y)=\lim _{x \rightarrow \infty} F_{X, Y}(x, y)
$$

Indepedence of random variables

Definition

Random variables X and Y defined on the same probability space (Ω, \mathbb{P}) are independent, if:

$$
\mathbb{P}(X \in A, Y \in B)=\mathbb{P}(X \in A) \mathbb{P}(Y \in B), \quad \forall A, B \subset \mathbb{R}
$$

In the framework of the CDFs:
Theorem
A random vector (X, Y) has independent components, i.e. X and Y are independent, if

$$
F_{X, Y}(x, y)=F_{X}(x) F_{Y}(y), \quad \forall x, y \in \mathbb{R}
$$

Continuous case

Two continuous random variables X and Y are independent if their joint probability density function is the product of the marginal pdfs.

$$
f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y), \quad \forall x, y \in \mathbb{R}
$$

Example

The joint pdf of (X, Y) is given by

$$
f_{X, Y}(x, y)=\left\{\begin{array}{l}
12 x y(1-y), \quad x, y \in[0,1] \\
0, \quad \text { otherwise }
\end{array}\right.
$$

Are X and Y independent?

Solution

$$
\begin{aligned}
& f_{X, Y}(x, y)=12 x y(1-y) \mathbb{I}_{[0,1] \times[0,1]}(x, y) \\
&=2 x \mathbb{I}_{(0,1)}(x) \cdot 6 y \mathbb{I}_{(0,1)}(y)=f_{X}(x) f_{Y}(y)
\end{aligned}
$$

$\Longrightarrow X$ and Y are independent.

Example

The joint pdf of (X, Y) is given by:

$$
f_{X, Y}(x, y)=\left\{\begin{array}{l}
x+\frac{1}{4} y, \quad, x \in[0,1], y \in[0,2] \\
0, \quad \text { otherwise }
\end{array}\right.
$$

Are X and Y independent?

Solution

$$
\begin{aligned}
& f_{X}(x)=\left\{\begin{array}{l}
\int_{0}^{2}\left(x+\frac{1}{4} y\right) d y=2 x+\frac{1}{2}, \quad x \in(0,1), \\
0, \\
x \notin(0,1),
\end{array}\right. \\
& f_{Y}(y)= \begin{cases}\int_{0}^{1}\left(x+\frac{1}{4} y\right) d x=\frac{1}{4} y+\frac{1}{2}, \quad y \in(0,2), \\
0, & y \notin(0,2),\end{cases}
\end{aligned}
$$

hence $f_{X, Y}(x, y) \neq f_{X}(x) f_{Y}(y) \Longrightarrow X$ and Y are not independent.

Example

The joint $p d f$ of (X, Y) is given by

$$
f_{X, Y}(x, y)= \begin{cases}2, & 0 \leq x \leq y \leq 1, \\ 0, & \text { otherwise. }\end{cases}
$$

Are X and Y independent?

Solution

The support of $(X, Y):\{(x, y): 0 \leq x \leq y \leq 1\}$ can not be written as the product of two sets, i.e.

$$
S_{X, Y} \neq S_{X} \times S_{Y}
$$

Hence

$$
f_{X, Y}(x, y) \neq f_{X}(x) f_{Y}(y), \quad \forall x, y \in \mathbb{R}
$$

the LHS and the RHS are nonzero on different regions on the R^{2} plane $\Longrightarrow X$ and Y are not independent.

Example

A random vector (X, Y) is uniformly distributed on the circle (disc): $\left\{(x, y): x^{2}+y^{2} \leq 1\right\}$. Are X and Y independent?

Solution

Note that the support of (X, Y) :

$$
S_{X, Y}=\left\{(x, y): x^{2}+y^{2} \leq 1\right\}
$$

can not be written as a product of the supports of X and Y :

$$
S_{X, Y}=\left\{(x, y): x^{2}+y^{2} \leq 1\right\} \neq S_{X} \times S_{Y}=[-1,1] \times[-1,1]
$$

$\Longrightarrow X i Y$ are not independent.

Example (Competing exponentials)
Let $X \sim \operatorname{Exp}\left(\lambda_{1}\right)$ and $Y \sim \operatorname{Exp}\left(\lambda_{2}\right)$ be independent. Find $\mathbb{P}(X<Y)$.

Solution

$$
\begin{gathered}
\mathbb{P}(X<Y)=\int_{\{(x, y): x>0, y>0 \text { and } x<y\}} \int_{1} e^{-\lambda_{1} x} \lambda_{2} e^{-\lambda_{2} y} d x d y \\
=\int_{0}^{\infty}\left(\int_{0}^{y} \lambda_{1} e^{-\lambda_{1} x}\right) \lambda_{2} e^{-\lambda_{2} y} d y=\int_{0}^{\infty}\left(1-e^{-\lambda_{1} y}\right) \lambda_{2} e^{-\lambda_{2} y} d y \\
=1-\int_{0}^{\infty} \lambda_{2} e^{-\left(\lambda_{1}+\lambda_{2}\right) y} d y=1-\frac{\lambda_{2}}{\lambda_{1}+\lambda_{2}}=\frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}}
\end{gathered}
$$

