Lecture 10

Functions of bivariate random vectors

Let (X, Y) be a bivariate random vector and $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$. Knowing the distribution of (X, Y) we can determine the distribution of a new random variable $Z=g(X, Y)$.

Discrete case

Let (X, Y) be a discrete random vector with the joint pmf $p_{X, Y}$ and $Z=g(X, Y)$, then

$$
p_{Z}(z)=\sum_{\{(x, y): g(x, y)=z\}} p_{X, Y}(x, y)
$$

Example

The pmf of (X, Y) is given by: | $X \backslash Y$ | 0 | 2 |
| :---: | :---: | :---: |
| -1 | $1 / 6$ | $1 / 3$ |
| 1 | $1 / 6$ | $1 / 3$ | . Find the pmf of $Z=\cos \left(\frac{\pi}{3}(X+Y)\right)$.

Solution

$$
\begin{gathered}
S_{Z}=\left\{\cos \left(-\frac{\pi}{3}\right), \cos \left(\frac{\pi}{3}\right), \cos (\pi)\right\}=\left\{\frac{1}{2},-1\right\} \\
\mathbb{P}\left(Z=\frac{1}{2}\right)=\mathbb{P}(X+Y=-1)+\mathbb{P}(X+Y=1)=\frac{1}{6}+\frac{1}{3}+\frac{1}{6}=\frac{2}{3}, \\
\mathbb{P}(Z=-1)=\mathbb{P}(X+Y=3)=\frac{1}{3} .
\end{gathered}
$$

Convolution - discrete case

Let $Z=X+Y$, where X and Y are independent random variables with pmfs: p_{X} and p_{Y}. Then:

$$
\begin{aligned}
p_{Z}(z)=\mathbb{P}(X+Y & =z)=\sum_{\{(x, y): x+y=z\}} \mathbb{P}(X=x, Y=y) \\
& =\sum_{x} \mathbb{P}(X=x, Y=z-x)=\sum_{x} p_{X}(x) p_{Y}(z-x),
\end{aligned}
$$

the resulting pmf p_{Z} is called the convolution of p_{X} and p_{Y}.

Example

Let X, Y be independent random variables $X \sim \mathcal{P}\left(\lambda_{1}\right)$ and $Y \sim \mathcal{P}\left(\lambda_{2}\right)$. Define $Z=X+Y$. Show that $Z \sim \mathcal{P}\left(\lambda_{1}+\lambda_{2}\right)$.

Solution

$$
\begin{aligned}
& \begin{aligned}
\mathbb{P}(Z=0) & =\mathbb{P}(X+Y=0)=\mathbb{P}(X=0, Y=0)=\mathbb{P}(X=0) \mathbb{P}(Y=0) \\
& =e^{-\lambda_{1}-\lambda_{2}}, \\
\mathbb{P}(Z=k) & =\mathbb{P}(X+Y=k)=\sum_{j=0}^{k} \mathbb{P}(X=j, Y=k-j) \\
& =\sum_{j=0}^{k} \mathbb{P}(X=j) \mathbb{P}(X=k-j)=\sum_{j=0}^{k} e^{-\lambda_{1}} \frac{\lambda_{1}^{j}}{j!} e^{-\lambda_{2}} \frac{\lambda_{2}^{k-j}}{(k-j)!} \\
& =e^{-\lambda_{1}-\lambda_{2}} \frac{1}{k!} \sum_{j=0}^{k}\binom{k}{j} \lambda_{1}^{j} \lambda_{2}^{k-j}=e^{-\lambda_{1}-\lambda_{2}} \frac{\left(\lambda_{1}+\lambda_{2}\right)^{k}}{k!}, \quad k=1,2,3, \ldots
\end{aligned}
\end{aligned}
$$

Mixed case

Example

Let X, Y be independent random variables such that $X \sim \mathcal{U}[0,1]$ and $Y \sim B\left(\frac{1}{2}\right)$. Find the cumulative distribution function of $Z=X+Y$.

Solution

$S_{Z} \subset[0,2]$ and

$$
F_{Z}(t)=\left\{\begin{array}{l}
0, \quad t<0, \\
\frac{1}{2} t, \quad 0 \leq t<2, \\
1, \quad t \geq 2,
\end{array}\right.
$$

$\Longrightarrow Z \sim \mathcal{U}[0,2]$.

Remark

If X and Y are independent random variables such that X is continuous and Y is discrete then $X+Y$ has continuous distribution.

Continuous case

Let (X, Y) be a bivariate random vector with a joint pdf $f_{X, Y}$. Consider a function $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ and a random variable $Z=g(X, Y)$. Then the cdf of Z is of the form:

$$
F_{Z}(z)=\mathbb{P}(g(X, Y) \leq z)=\int_{\{(x, y): g(x, y) \leq z\}} f_{X, Y}(x, y) d x d y .
$$

Example

Let $(X, Y) \sim \mathcal{U}(D)$, where $D=\left\{(x, y) \in \mathbb{R}^{2}: x \in[0,1]\right.$ and $\left.0 \leq y \leq x\right\}$. Find pdf of $Z=Y-X$.

Solution

$$
S_{z}=[-1,0] \text { and }
$$

$$
F_{Z}(z)=\left\{\begin{array}{l}
0, \quad z<-1, \\
(1+z)^{2},-1 \leq z<0, \\
1, \quad z \geq 0,
\end{array} \quad \Longrightarrow \quad f_{Z}(z)=\left\{\begin{array}{l}
2(1+z), z \in[-1,0] \\
0, \text { otherwise }
\end{array}\right.\right.
$$

Example

Let X, Y be intependent identically distributed (i.i.d.) random variables $X, Y \sim \operatorname{Exp}(1)$ and let $Z=\min (X, Y)$. Determine the pdf of Z.

Solution

$$
F_{Z}(z)=\left\{\begin{array}{l}
0, z<0, \\
1-e^{-2 z}, \quad z \geq 0,
\end{array} \quad \Longrightarrow f_{Z}(z)=\left\{\begin{array}{l}
2 e^{-2 z}, \quad z \geq 0, \\
0, \\
\text { otherwise } .
\end{array}\right.\right.
$$

Example

Let X, Y be i.i.d. random variables $X, Y \sim \mathcal{U}[0,1]$. Determine the pdf of $Z=X Y$.

Solution

$$
S_{Z}=[0,1], \quad F_{Z}(z)=1-\mathbb{P}(Z>z)=1-\mathbb{P}(X Y>z)=1-\int_{z}^{1} \int_{\frac{z}{x}}^{1} d y d x
$$

$$
\Longrightarrow \quad f_{z}(z)=-\ln (z) \mathbb{I}_{[0,1]}(z) .
$$

Convolution - continuous case

Let X and Y be independent continuous random variables with pdfs f_{X} and f_{Y}, respectively. We will find the pdf of $W=X+Y$, by first finding its cdf and then differentiating:

$$
\begin{aligned}
& F_{W}(w)=\mathbb{P}(X+Y \leq w)=\int_{-\infty}^{\infty} \int_{-\infty}^{w-x} f_{X}(x) f_{Y}(y) d y d x \\
&=\int_{-\infty}^{\infty} f_{X}(x) F_{Y}(w-x) d x
\end{aligned}
$$

Then pdf of W is obtained by differentiating the cdf:

$$
\begin{aligned}
f_{W}(w)=\frac{d F_{W}}{d w}(w)=\int_{-\infty}^{\infty} f_{X}(x) \frac{d}{d w} F_{Y}(w & -x) d x \\
& =\int_{-\infty}^{\infty} f_{X}(x) f_{Y}(w-x) d x
\end{aligned}
$$

The pdf of $W\left(f_{W}\right)$ is called the convolution of f_{X} and f_{Y}.

Example

Let X, Y be independent, uniformly distributed random variables $X, Y \sim \mathcal{U}[0,1]$. Determine the pdf of $W=X+Y$.

Solution

$$
S_{W}=[0,2],
$$

$$
\left.\left.\begin{array}{rl}
F_{W}(w)=\mathbb{P} & (W
\end{array}\right)=w\right)=\mathbb{P}(X+Y \leq w), \begin{aligned}
& 0, \quad w<0, \\
& \int_{0}^{w} \int_{0}^{w-x} 1 d y d x=\frac{w^{2}}{2}, \quad 0 \leq w<1, \\
& 1-\int_{w-1}^{1} \int_{w-x}^{1} 1 d y d x=-1+2 w-\frac{w^{2}}{2}, \quad 1 \leq w<2, \\
& 1, \quad w \geq 2 .
\end{aligned}
$$

