Lecture 11

Law of the unconscious statistician (LOTUS) - reminder

Let (X, Y) be a bivariate random vector and $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$, then

- discrete case:

$$
\mathbb{E}(g(X, Y))=\sum_{y} \sum_{x} g(x, y) p_{X, Y}(x, y)
$$

- continuous case:

$$
\mathbb{E}(g(X, Y))=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x, y) f_{X, Y}(x, y)
$$

If X and Y are independent, then

$$
\mathbb{E}(X Y)=\mathbb{E} X \mathbb{E} Y
$$

- for any function h_{1} and h_{2} :

$$
\mathbb{E}\left(h_{1}(X) h_{2}(Y)\right)=\mathbb{E}\left(h_{1}(X)\right) \mathbb{E}\left(h_{2}(Y)\right),
$$

$$
\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)
$$

Numerical characteristics of multivariate distributions

Definition (Independence)

Random variables X_{1}, \ldots, X_{n} are said to be independent if and only if

- discrete case:

$$
\mathbb{P}\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right)=\mathbb{P}\left(X=x_{1}\right) \cdot \ldots \cdot \mathbb{P}\left(X_{n}=x_{n}\right)
$$

- continuous case:

$$
f_{X_{\mathbf{1}}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n}\right)=f_{X_{\mathbf{1}}}\left(x_{1}\right) \cdot \ldots \cdot f_{X_{n}}\left(x_{n}\right)
$$

Definition

The expected value of a random vector $X=\left(X_{1}, \ldots, X_{n}\right)$ is a vector

$$
\mathbb{E}(X)=\left(\mathbb{E}\left(X_{1}\right), \ldots \mathbb{E}\left(X_{n}\right)\right)
$$

the coordinates are the expected values of the respective random variables.

Covariance

Definition

Let X, Y be random variables such that $\mathbb{E}\left(X^{2}\right)<\infty$ and $\mathbb{E}\left(Y^{2}\right)<\infty$.
The covariance of X and Y is defined as

$$
\operatorname{Cov}(X, Y)=\mathbb{E}(X-\mathbb{E}(X))(Y-\mathbb{E}(Y))
$$

Properties of covariance:
(1) $\operatorname{Cov}(X, Y)=\mathbb{E}(X Y)-\mathbb{E}(X) \mathbb{E}(Y)$,
(2) $\operatorname{Cov}(X, Y)=\operatorname{Cov}(Y, X)$,
(3) $\operatorname{Cov}(X, X)=\operatorname{Var}(X)$,
(9) $\operatorname{Cov}(a X+b, c Y+d)=a c \operatorname{Cov}(X, Y)$ for constants a, b, c, d,
(6) $\operatorname{Cov}\left(X_{1}+X_{2}, Y_{1}+Y_{2}\right)=$ $\operatorname{Cov}\left(X_{1}, Y_{1}\right)+\operatorname{Cov}\left(X_{1}, Y_{2}\right)+\operatorname{Cov}\left(X_{2}, Y_{1}\right)+\operatorname{Cov}\left(X_{2}, Y_{2}\right)$,
(6) Schwarz inequality:

$$
|\operatorname{Cov}(X, Y)| \leq \sqrt{\operatorname{Var}(X)} \sqrt{\operatorname{Var}(Y)}
$$

Remark

Let X, Y be such that $\mathbb{E}\left(X^{2}\right) \leq \infty$ and $\mathbb{E}\left(Y^{2}\right)<\infty$, then

$$
\begin{aligned}
\operatorname{Var}(X+Y)=\operatorname{Cov}(X+Y, X+Y)= & \operatorname{Cov}(X, X)+2 \operatorname{Cov}(X, Y)+\operatorname{Cov}(Y, Y) \\
& =\operatorname{Var}(X)+2 \operatorname{Cov}(X, Y)+\operatorname{Var}(Y)
\end{aligned}
$$

Thus, for X_{1}, \ldots, X_{n} such that $\mathbb{E}\left(X_{i}^{2}\right)<\infty, i=1,2, \ldots, n$, we have

$$
\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right)=\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)+2 \sum_{1 \leq i<j \leq n} \operatorname{Cov}\left(X_{i}, X_{j}\right)
$$

Definition

Random variables X and Y are uncorrelated, if $\operatorname{Cov}(X, Y)=0$.

Remark

Let X, Y be random variables such that $\mathbb{E}\left(X^{2}\right)<\infty$ and $\mathbb{E}\left(Y^{2}\right)<\infty$.
(1) If X and Y are uncorrelated, then

$$
\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y) .
$$

(2) If X and Y are independent then

$$
\operatorname{Cov}(X, Y)=\mathbb{E}(X Y)-\mathbb{E}(X) \mathbb{E}(Y)=0,
$$

thus they are also uncorrelated.

However, the converse is not true: $\operatorname{Cov}(X, Y)=0$ does not imply independence, see two following examples:

Example

Let X has uniform distribution on the set $\{-2,-1,0,1,2\}$. Let $Y=X^{2}$. Show that $\operatorname{Cov}(X, Y)=0$ but X and Y are not independent.

Solution

$$
\begin{gathered}
p_{X}(-2)=p_{X}(-1)=p_{X}(0)=p_{X}(1)=p_{X}(2)=\frac{1}{5}, \\
\operatorname{Cov}(X, Y)=\mathbb{E}(X Y)-\mathbb{E}(X) \mathbb{E}(Y)=\mathbb{E}\left(X^{3}\right)-\mathbb{E}(X) \mathbb{E}\left(X^{2}\right), \\
\mathbb{E}(X)=(-2) \frac{1}{5}+(-1) \frac{1}{5}+1 \frac{1}{5}+2 \frac{1}{5}=0, \\
\mathbb{E}\left(X^{3}\right)=(-2)^{3} \frac{1}{5}+(-1)^{3} \frac{1}{5}+\frac{1}{5}+2^{3} \frac{1}{5}=0,
\end{gathered}
$$

therefore $\operatorname{Cov}(X, Y)=0$.

Example

Let (X, Y) be uniformly distributed on $D=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2} \leq 1\right\}$. Determine $\operatorname{Cov}(X, Y)$.

Solution

$(X, Y) \sim \mathcal{U}(D)$, to $f_{X, Y}(x, y)=\frac{1}{\pi} \mathbb{I}_{D}(x, y)$,

$$
\operatorname{Cov}(X, Y)=\mathbb{E}(X Y)-\mathbb{E}(X) \mathbb{E}(Y)
$$

The symmetry about the origin of the joint distribution leads to

$$
\mathbb{E}(X)=\mathbb{E}(Y)=\mathbb{E}(X Y)=0
$$

Therefore $\operatorname{Cov}(X, Y)=0$. However X and Y are not independent (check the shape of the suport of the joint distribution of (X, Y)).

Remark

The fact that the random variables are uncorrelated $(\operatorname{Cov}(X, Y)=0)$ does not indicate their independence.

Examples - covariance in calculations

Example

n people throw their hats in a box and then pick a hat at random. Let X be the number of people that pick their own hat. Determine the variance of X.

Solution

$$
X=X_{1}+\ldots+X_{n}, \text { where } \quad X_{i}= \begin{cases}1, & \text { the " } i \text { "th person gets his own hat }, \\ 0, & \text { otherwise } .\end{cases}
$$

$$
\Longrightarrow X_{i} \sim B\left(\frac{1}{n}\right), i=1, \ldots, n .
$$

$$
\mathbb{E}(X)=\mathbb{E}\left(X_{1}\right)+\ldots+\mathbb{E}\left(X_{n}\right)=n \cdot \frac{1}{n}=1 .
$$

$\operatorname{Var}(X)=\operatorname{Var}\left(X_{1}+\ldots+X_{n}\right)=\operatorname{Var}\left(X_{1}\right)+\ldots+\operatorname{Var}\left(X_{n}\right)+2 \sum_{1 \leq i<j \leq n} \operatorname{Cov}\left(X_{i}, X_{j}\right)$.
$\operatorname{Var}\left(X_{i}\right)=\frac{1}{n}\left(1-\frac{1}{n}\right), i=1, \ldots, n$.

Solution (cd)

For $i \neq j$,

$$
\begin{gathered}
\operatorname{Cov}\left(X_{i}, X_{j}\right)=\mathbb{E}\left(X_{i} X_{j}\right)-\mathbb{E}\left(X_{i}\right) \mathbb{E}\left(X_{j}\right)=\mathbb{P}\left(X_{i}=1, X_{j}=1\right)-\mathbb{P}\left(X_{i}=1\right) \mathbb{P}\left(X_{j}=1\right) \\
\quad=\mathbb{P}\left(X_{i}=1\right) \mathbb{P}\left(X_{j}=1 \mid X_{i}=1\right)-\mathbb{P}\left(X_{i}=1\right) \mathbb{P}\left(X_{j}=1\right)=\frac{1}{n} \frac{1}{n-1}-\frac{1}{n^{2}} .
\end{gathered}
$$

Then

$$
\operatorname{Var}(X)=n \frac{1}{n}\left(1-\frac{1}{n}\right)+2\binom{n}{2}\left(\frac{1}{n(n-1)}-\frac{1}{n^{2}}\right)=1 .
$$

Example

Flip a fair coin three times. Let X be the number of heads in the first two flips and let Y be the number of heads in the last two flips (there is overlap on the middle flip). Compute $\operatorname{Cov}(X, Y)$.

Solution

We will present two ways of solving the task: the first method uses the joint probability distribution of (X, Y) and the definition of covariance:

$X \backslash Y$	0	1	2
0	$1 / 8$	$1 / 8$	0
1	$1 / 8$	$2 / 8$	$1 / 8$
2	0	$1 / 8$	$1 / 8$

From the marginal distributions: $\mathbb{E}(X)=\mathbb{E}(Y)=1$, and

$$
\mathbb{E}(X Y)=1 \cdot 1 \cdot \frac{2}{8}+1 \cdot 2 \cdot \frac{1}{8}+2 \cdot 1 \cdot \frac{1}{8}+2 \cdot 2 \cdot \frac{1}{8}=\frac{10}{8}
$$

hence $\operatorname{Cov}(X, Y)=\mathbb{E}(X Y)-\mathbb{E}(X) \mathbb{E}(Y)=\frac{10}{8}-1=\frac{1}{4}$.

Solution (cont'd)

Now we will solve the same task using the properties of covariance. Let

$$
X_{i}=\left\{\begin{array}{l}
1, \text { if } H \text { comes up in the } i-\text { th toss, } \\
0, \text { otherwise },
\end{array} \quad i=1,2,3 .\right.
$$

Thus $X=X_{1}+X_{2}, Y=X_{2}+X_{3}$. Obviously, random variables X_{1}, X_{2}, X_{3} are independent (since the different tosses are independent) and $X_{i} \sim B\left(\frac{1}{2}\right), i=1,2,3$. So, using the property 5 of covariance, we get

$$
\begin{aligned}
& \operatorname{Cov}(X, Y)=\operatorname{Cov}\left(X_{1}+X_{2}, X_{2}+X_{3}\right) \\
& \quad=\operatorname{Cov}\left(X_{1}, X_{2}\right)+\operatorname{Cov}\left(X_{1}, X_{3}\right)+\operatorname{Cov}\left(X_{2}, X_{2}\right)+\operatorname{Cov}\left(X_{2}, X_{3}\right) \\
& \\
& =\operatorname{Cov}\left(X_{2}, X_{2}\right)=\operatorname{Var}\left(X_{2}\right)=\frac{1}{4}
\end{aligned}
$$

Correlation

Definition

The correlation coefficient of two random variables X and Y having nonzero variances is defined as

$$
\rho_{X, Y}=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X)} \sqrt{\operatorname{Var}(Y)}} .
$$

Remark

The correlation coefficient removes the scale from the covariance. This characteristic is also dimensionless.

Properties of $\rho_{X, Y}$:
(1) $\left|\rho_{X, Y}\right| \leq 1$,
(2) $\rho_{X, Y}=0 \Longleftrightarrow X$ and Y are uncorrelated,
(3) $\left|\rho_{X, Y}\right|=1 \Longleftrightarrow \exists a, b \in \mathbb{R}: \mathbb{P}(Y=a X+b)=1$.

Definition

The covariance matrix of a random vector $X=\left(X_{1}, X_{2}\right)$ is defined as

$$
C_{X}=\left[\begin{array}{ll}
\operatorname{Cov}\left(X_{1}, X_{1}\right) & \operatorname{Cov}\left(X_{1}, X_{2}\right) \\
\operatorname{Cov}\left(X_{2}, X_{1}\right) & \operatorname{Cov}\left(X_{2}, X_{2}\right)
\end{array}\right] .
$$

Properties of the covariance matrix:
(1) C_{X} is symmetric and positive definite,
(2) $C_{a x}=a^{2} C_{X} \quad \forall a \in \mathbb{R}$,
(3) $\forall A \in \mathbb{R}^{m \times 2} \quad C_{A X}=A C A^{T}$.

Example

Determine the covariance matrix of (X, Y) and the correlation coefficient $\rho_{X, Y}$, and the covariance matrix of the random vector $(U, V)=(2 X+Y, X-Y)$ if the joint pmf is of the form:

$X \backslash Y$	0	1
-1	$1 / 2$	$1 / 4$
0	$1 / 8$	$1 / 8$

Solution

$$
\begin{gathered}
\mathbb{E}(X)=(-1) \frac{1}{2}+(-1) \frac{1}{4}=-\frac{3}{4}, \mathbb{E}\left(X^{2}\right)=\frac{3}{4}, \mathbb{E}(Y)=\frac{3}{8}, \mathbb{E}\left(Y^{2}\right)=\frac{3}{8}, \\
\mathbb{E}(X Y)=(-1) 1 \frac{1}{4}=-\frac{1}{4} . \\
\left.C_{X, Y}=\begin{array}{|c|c|}
\hline \operatorname{Var}(X) & \operatorname{Cov}(X, Y) \\
\hline \operatorname{Cov}(X, Y) & \operatorname{Var}(Y) \\
C_{U, V}=A C_{X, Y} A^{T}, \text { where } A=\left(\begin{array}{cc}
\hline 3 / 16 & 5 / 32 \\
\hline 5 / 32 & 15 / 64
\end{array}, \quad \rho_{X, Y}=\frac{5 / 32}{\sqrt{3 / 16} \cdot \sqrt{15 / 64}}\right. \\
1 & -1
\end{array}\right)
\end{gathered}
$$

