Pawel Koszut
Institute of Telecommunications
Warsaw University of Technology

Intercepting GSM Communication
Using Open-Source and Open-Hardware
Technologies

Abstract: This paper presents current achievements of open-source community developers in the area of
building GSM-enabled communication hardware and software. Open-source GPL licensed software makes
constant and very significant contribution to IT industry. Together with so called open-hardware, it enables
the cost of some expensive GSM devices, for example bugging devices used by intelligence to be lowered
to the cost of raw electronic components and this can have potentially enormous influence on other
branches of mobile telecommunication industry, similar to the impact open-source exerted on software
development in recent years. Bugging devices can eavesdrop mobile communication based on A5/1
cryptanalysis achievements and a flaw found in GSM protocol stack.

1. Introduction

In 2003, when a team of researchers from Technion published their achievements in AS5/1
cryptanalysis and GSM cryptographic protocol flaw [1], it became clear that mobile communication
can no longer be considered secure. Although GSM bugging devices used by law-enforcement
agencies are still very expensive and only governments and big companies can afford them, very
interesting question arises : for how long ?

Because most of these devices employs proprietary software developed by manufacturers, their cost
remains relatively high. By applying free open standards to software and hardware development,
many contributors worldwide can share their common work and make it free for others who want to
join a project, and also free for those who simply want to use it for their own purposes, both private
and commercial. This is the same approach which resulted in emergence of Linux operating system
and many more free professional software products. Apart from lowering the cost, there is also one
more advantage of building intelligence devices using open standards — along with the fact that the
production can be easily moved to Poland, this can significantly reduce security concern of
trapdoors installed in these devices by foreign intelligence cooperating with big manufacturers
abroad or secretly inserting malicious code — a phenomenon which occasionally happens. For
example in 2006 a scandal broke out when Greek government admitted that mobile operator
Vodafone found spying code installed in their software [2], and this enabled many government
VIPs including Prime Minister to be bugged [3]. The availability of source code and the fact that
random people worldwide can learn it and contribute, in obvious way reduce such risk.

Further from this paper you can learn the approach open-source community has chosen to develop

1/9

GSM-enabled devices, i.e. hardware and software solutions used to build it. This will help you
better understand the process of transforming GSM radio waves into readable data with the use of
free and open standards only. Finally this will demonstrate the importance of these achievements
for our domestic industry and law-enforcement agencies.

2. Hardware platform

The project is based on a hardware platform which consists of usual PC (or laptop) and USRP board
- Universal Software Radio Peripheral, which is a low-cost software defined radio equipment. It
was developed by Ettus Research LLC as an open-hardware solution, and is currently well
supported by open-source community developers, user mailing lists and a producer. USRP consists
of a motherboard and pluggable daughterboards which cover wide range of frequencies from 0 Hz
to almost 3 GHz and are constantly developed.

Receive Channel Transmit Channel
RF Interface Altera FPGA RF Interface

DC Power USE 2.0 Analog Devices
Port Mixed Signal

Processor

Figure 1 : USRP motherboard and four daughterboards plugged in.

Wide range of frequencies are covered with the following daughterboards, which are pluggable into
motherboard's four slots (two RX and two TX slots) :

DC to 30 MHz receiver

DC to 30 MHz transmitter

1 MHz to 250 MHz receiver

1 MHz to 250 MHz transmitter
50 to 860 MHz receiver

2/9

800 MHz to 2.4 GHz receiver

400-500 MHz transceiver

750-1050 MHz transceiver (including cell and ISM bands)
1150-1450 MHz transceiver

1.5-2.1 GHz transceiver (including PCS bands)

2.3-2.9 GHz transceiver (including ISM band)

Figure 2 : DBSRX daughterboard

For receiving GSM signals it is advisable to choose DBSRX daughterboard (see figure 2 above) and
plug it into one of the RX slots. It is a receiver-only board but it covers 800 MHz — 2.4 GHz band
which is enough to receive most GSM signals used worldwide. This daughterboard along with for
example 900 MHz to 2.6 GHz PCB (Printed Circuit Board) antenna can be chosen by developers as
a set of tools for further research and experiments. To learn more about USRP, see Dawei Shen's
tutorial [4].

3. Software environment

Software environment consists of Linux operating system along with GnuRadio package installed.
GnuRadio is a powerful signal processing software fully compatible with USRP boards. It consists
of many high level signal processing blocks which perform certain operations - for example signal
generation, filtering, demodulation etc.

Figure 3 : GnuRadio blocks sample connections

3/9

From the example above, you can learn how the blocks are tied together in order to develop
applications. As you can see, USRP source block can be used to read samples of radio waves from
USRP receiver, then the data stream can be processed by any configuration of gnuradio blocks, and
finally it is thrown into spectrum viewer, audio output (sound card) or any other gnuradio sink
block.

These signal processing blocks are implemented in C++ and are accessible from high level Python
language as objects. In order to create an application, gnuradio blocks have to be tied together and
properly configured if necessary. This simplifies application development process because
programmers don't have to bother with implementation of some commonly used signal processing
operations needed for their applications. However, they are still able to develop their own gnuradio
signal processing blocks in C++. New blocks simply get input stream of data (usually type of
complex, float, unsigned char, etc.) make any appropriate computations and return processed stream
of output data. More on writing your own gnuradio blocks you can learn from Eric Blossom's
documentation : How to Write a Signal Processing Block [5]

GnuRadio comes with many example applications which can be used along with USRP hardware,
for example oscilloscope, spectrum browser, FM radio receiver. For our purposes you can find very
comfortable to use gnuradio/gnuradio-examples/python/usrp/usrp_fft.py program (spectrum viewer)
to explore the spectrum of GSM bands and to find GSM Base Transceiver Stations (BTS)
transmitting in your area (more on that in the next chapter).

4. Preparation to receive GSM signals

After software and hardware is properly configured, developers can test their receiver using
standard gnuradio spectrum browser application. From the following table you can learn the range
of frequencies GSM operates.

System Band Uplink Downlink Channel Number
G5SM 400 450 | 450.4 -457.6 | 460.4 -467.6 259 - 293
G5SM 400 430 | 478.8 -486.0 | 488.8 -496.0 306 - 340
G5M 850 850 | 824.0-2849.0 | 869.0-894.0 128 - 251
GSM 900 (P-GSM)| 900 | 890.0-915.0 | 935.0 - 960.0 1-124
GSM 900 (E-GSM)| 900 | 880.0-915.0 | 925.0 - 960.0 975 -1023, (0, 1-124)
GSM-R (R-GSM) | 900 | 876.0-915.0 | 921.0 -960.0 955-973, (0, 1-124, 975 - 1023}
DCS 1800 1800 (1710.0-1785.0/1805.0 -1880.0 512 - 8385
PCS 1900 1900 (1850.0-1910.0/1930.0 - 1990.0 512 - 810

Figure 4 : GSM frequency bands

4/9

Since, we want to receive signals sent down from BTS to MS (Mobile Station), we focus on
downlink range of frequencies. In most countries trying 935 MHz — 960 MHz and 1805 MHz —
1880 MHz is the most appropriate to start with.

Using the following example command :
gnuradio/gnuradio-examples/python/usrp/usrp_fft.py -R A -d 8 -g 32 -f 949M

we observe 8 MHz wide band of spectrum centered at 949 MHz, in which we find several BTSs,
each one transmitting in a 200 kHz wide channel.

USRP FFT
File
30
40
30 P
o N I
10\,,:{ i \‘r H
oL WV [

W

e

dB

W

-10
-20
-30-

Center freq: ‘

949M

Gain:

32

0

DBES Rx

DDC: -0

Fs@lUsSB: M Analog BB: 949M

Decim: |g

Figure 5 : GSM spectrum view

Not all of the channels are used in every area, some of them are reserved to be used in neighbouring
cells (we see them as lower strength signals), or simply there is no need for more BTSs to operate in
a specific population area.

On every active channel, a BTS transmits GMSK-modulated signal within eight consecutive
timeslots numbered 0..7, each one lasts for 577 microseconds. In GMSK modulation, frequency
changes +/- 67.708 kHz from a specified center frequency and because of differential modulation
employed in GSM, consecutive stream of identical bits (for example 0000000 or 1111111) will
result in constant frequency +67.708 kHz above center frequency, and similarly consecutive stream
of differing bits (for example 01010101010101) will result in constant frequency -67.708 kHz
below center frequency. This is used in Frequency Correction Channel (FCH) packets, which
consist of all zeros (142 consecutive zeros), resulting in constant frequency signal being transmitted
for 577 microseconds and enabling Mobile Stations to use it in order to correct their frequency
offset during this period.

5/9

Using GnuRadio blocks we can build an application which tunes USRP to specified frequency,
filter the signal and demodulate it into a stream of bits, but before we do so, lets look closer to the
signal using fm demodulation block and oscilloscope which enables us to see frequency changes in
time domain.

30 _ch1
-
20

1;! ﬁ 1 h 111] WWM’WWWI I i||||.ll | IIHI b 1l H hlh | lI}H |

£

—_
o_u
=

|
v

‘ 1L f
LA || T . . T T

-15 ni t

Figure 6 : Frequency changes in time domain

In the figure above, we clearly see one FCH packet with constant frequency +67.708 above center
frequency, which lasts for 577 microseconds. This confirms that we receive and process accurate
data from USRP.

USRP FFT =5 %
File
30
40
30 |
R e
20 P Ty Average
Q10 .,I"M"m M\"k = Peak Hold
0 d MW HM WJ\A Incr Ref Level
WN v W Decr Ref Level
-10—
1 dB/div
20 2 dB/div
230 .
-300 -250 -200 -150 -100 -50 0 50 100 150 20 > dBidv
kHz = 10 dB/div
Center freg; ‘ Gain: 32 20 dB/div
947M
¥,
Decim: (112 Fs@USB: 571.428k DES Rx Analog BB: 947M oDc: -0

Figure 7 : Radio spectrum of one single GSM channel

Lets focus on the strongest available signal we receive 2 MHz below the center frequency
(949 MHz), so we tune our USRP to 947 MHz and change decimation rate to 112 in order to
decrease the spectrum width, so it represents only one single GSM channel, see figure 7 above.

The result was obtained with the command :
gnuradio/gnuradio-examples/python/usrp/usrp_fft.py -R A -d 112 -g 32 -f 947M

and clearly shows a single pick located approximately +67 kHz above the center frequency (note:

6/9

“Peak Hold” option is helpful to catch the peak). This represents FCCH packet being sent
periodically once every 10 packets in timeslot 0. For mobile phones, FCCH packets are used to
precisely adjust to a carrier frequency, compensating for unavoidable frequency offset which
depends on a specific piece of hardware. Also for USRP decoding is far better if the frequency
offset, which ranges from several kHz to 32 kHz, is compensated. USRP offset can be estimated
from a spectrum view but only with limited accuracy. Better estimation can be calculated in
dedicated software which gives far more precise results.

5. Processing GSM signals

The easiest way to obtain GSM data is to get source signal from USRP tuned to a frequency on
which a BTS operates, then filter the signal and demodulate it using existing gnuradio blocks.

console

output

Figure 8 : Basic approach in GSM signal processing

This method is very simple and outputs a stream of bits from chosen GSM channel. Despite this
approach doesn't use any correction methods and frequency offset isn't compensated during signal
reception, the results are good enough to decode many interesting packets from the air.

Session Edit View Bookmarks Settings Help

8608106101161111081A0110011111101111611601101116016001160110111610110661660811616101616116416111606101111011061086111100000111011111116116111160160110010111100601601611611116016011 |
@0111111611110116061101110610001106116111010116001000011010161610110101116001011116116010061111600001116111111101160111106010011801611118006016001011611110016001100111111011116110011611
100100011001101110101100010000110101010101101011100010111160110010060111100000111011111111011011110010011601011116000100160110111160010011001111110111101160110111001000110011011101011
000100001101016101011010111000101111011001000111100006011101111111011011110010601100101111000010010110111100100110011111101111011001101110601000110011611101011006010000110101010101101
61110060160111101100100011110000011101111111611011110016011001011110000100101101111001001106011111101111011001101110010001100110111616110001060011010161010110101110001011110110010001
11106000811101111111611111111111111111111111111111111111101101101171111111111111171911311111111311311011311031031011311171111111111113031111111111711711111311131111111111711111116111111011
61111001001100101111000010010110111100160110011111161111011601101116010001100110111010110001000011010101016110101110001011110110016001111060001110111111101101111601001100101111000
61081011611110010811001111116111161166110111060160011001101110161100016000116161016161161011160810111101100100011116060001116111111161181111600160116010111160801601611011116010011661
1111161111011661161116610008110611011101811600100001101016161011010111000161111611601008111160006011101111111611011110010611801611116000100101161111001001100111111811116118611011106
1006116011011101011000100001101010101011016111000161111011600100011110000011101111111101101111001001100101111000010010116111100160011001111110111101100110111001000110011011101011000
1006001101010101011010111000101111011001000111100000111011111110110111100100110010111100001001011011110010011001111110111101106011011100100011001101110101100010000110101010101101011
10010 111001000 10000) 1110 10100110010 100010010110 101001100) 11100110 1010001100110 11011000100001101910101011010 10010 111001000

Figure 9 : GMSK-demodulated data

In the figure 9 you can see raw GMSK-demodulated data from single GSM channel, in which
FCCH packet can be recognised because of its characteristic 142' consecutive 1's. Although FCCH
packet consists of consecutive O's (not 1's), data is seen as consecutive 1's because of differential
encoding which should be dealt with (i.e. properly decoded) further in software.

This approach became a basis for first experiments and resulted in Joshua Lackey's software called
GSSM? in which USRP board is seen in operating system as GSM network interface. The idea

1 There are even more consecutive 1's because of additional 3 trailing bits at the beginning and at the end of a packet.
2 Non-GPL licensed, but source code is available and can be used in educational purposes.

7/9

enabled network analysing tools with appropriate patches (definition of GSM packets) to present
intercepted GSM packets sent from BTS.

File Edit Wiew Go Capture Analyze Statistics Help

BEGed »H00s 00500 BE Al @E9X

E]Ellter: I E] & Expression... ng\earl of gpply|

| No. - ‘Tlme ‘ Source | Destination ‘Promcol ‘ Info ||5:
=

TU . w is] OuUTTTIOrT T3aTa LVLV I I - ¢ Hr=1* M ¢ | [=) 1 T
GSM (FR) System Information Type 3

1. A ATmans AR EF LT LA AneEf b7 A AT mem LY. Pirien 3 e 2 Dl easenendic T semmic 1

~ GSM A-I/F DTAP - System Information Type 3 [=]
b Protocol Discriminator: Radio Resources Management messages e
Message Type System Information Type 3
= Cell Identity
cell CI: oxloc4 (4292)
= Location Area Identification - LAC (0x0064)
Location Area Code (LAC): 0x0084 (100)
< Frequency Channel Sequence
. = MSC Release: MSC 1s Release 1998 or older.
. = Attach-detach allowed: MSs in the cell shall apply IMSI attach and detach precedure.
BS- AG-BLKS-RES: 0O
.... .001 = CCCH configuration: 1 basic physical channel used for CCCH, combined with SDCCHs (0x01)
.00. = Cell Bar Qualify 3: Iu mode not supported. (0x00) =
BS-PA-MFRMS: 2 multiframes period for transmission of PAGING REQUEST messages to the same paging subgroup
T3212 timeout value: infinite (pericdic updating shall not be used within the cell)

The number of different paging subchannels on the CCCH is 6
= Channel Description

B mmiti = DN-IND Dynamic ARFCM mapping indicator: Dynamic ARFCN mapping is not used by the PLMN (0x00)
.0.. = PWRC Power Control indicator: PWRC 1s not set (0x00)
..10 = DTX indicator: The MSs shall not use uplink discontinuous transmission (0x02)
radio-link timeout 20 |:_|
w rhannal Pasrrintinn 2 :I
0oo0 00 ff b7 23 3d d7 00 ff b7 23 3d d7 fe d5 06 1b e
bol0 10 c4 00 64 41 00 00 24 cO 00 3d 00 co ..[HE.dA ..$..=..

pozo 2b 2b 2b 2b At

|[P: 2095 D: 205 M: 0 4

Figure 10 : Network analyser sniffing on virtual GSM interface

The figure above illustrates Wireshark (network analysing tool) with properly decoded System
Information Type #3 packet. This includes Mobile Network Code (MNC) — unique value 04 was
configured for experimental BTS in a laboratory at the Warsaw University of Technology. Among
other fields we can see Mobile Country Code (MCC), Location Area Code (LAC) and Cell Identity
(CI) values.

6. Summary

Current developments are focused on creating GPL-licensed version of software which will not
only be able to apply error correction techniques thus limiting the number of invalid packets
received, but will also interactively follow GSM traffic (frequencies, timeslots) based on
information from received packets. Experiments, research and opinions suggest that the
performance of USRP board is fast enough, so it can tune to different frequencies in short and
adequate time, enabling interception of GSM packets also in communication where FH technique
(frequency hopping) is used.

After this is confirmed, further work can include the areas of A5/1 cryptanalysis implementation [1]
and experiments with active attacks on GSM infrastructure with the use of USRP transmit
daughterboards.

8/9

REFERENCES

1: Elad Barkan, Eli Biham, Nathan Keller, Instant Ciphertext-Only Cryptanalysis of GSM
Encrypted Communication, 2003

2: BBC News, Greek boss at phone-tapping probe, 2006,
http://news.bbc.co.uk/2/hi/europe/4788370.stm

3: BBC News, Greek government's phones tapped, 2006,
http://news.bbc.co.uk/2/hi/europe/4674216.stm

4: Dawei Shen, The USRP Board, 2005, http://www.nd.edu/~jnl/sdr/docs/tutorials/4.pdf
5: Eric Blossom, How to Write a Signal Processing Block, 2006,
http://www.gnu.org/software/gnuradio/doc/howto-write-a-block.html

9/9

	1.Introduction
	2.Hardware platform
	3.Software environment
	4.Preparation to receive GSM signals
	5.Processing GSM signals
	6.Summary

