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Introduction 

The control and simulation of robots requires the development of different 
mathematical models. Several levels of modeling - geometric, kinematic and 
dynamic - are needed depending on the objectives, the constraints of the task and 
the desired performance. 

Obtaining these models is not an easy task. The difficulty varies according to the 
complexity of the kinematics of the mechanical structure and its degrees of freedom. 
The mathematical tools presented in this book are based on a description of 
mechanisms allowing a unified approach whatever the type of structure: serial, tree 
structured, or containing closed loops. 

Using these models in control and simulation requires efficient and easy-to-use 
algorithms to estimate the values of the geometric parameters and the dynamic 
parameters of the robot. Besides, the on-line implementation of a control law on a 
robot controller requires efficient models with a reduced number of operations. The 
techniques proposed in this book have been developed to meet these requirements. 

This book is a revised and augmented edition of the French version 
"Mod61isation, identification et commande des robots" published by Hermes in 
1999, whose first edition "Mod£lisation et commande des robots" was published in 
1988. We consider it to be the third edition as it contains substantial modification 
and updating. The content is the following: 

- Chapter 1 gives an introduction to the terminology and general definitions for 
the concepts used in this book: kinematic chains, types of joints, configuration 
space, task space, redundancy, singular configurations, architectures of robot 
manipulators, robot characteristics; 

- Chapter 2 sets out the basic mathematical tools used in robot modeling: 
homogeneous transformations, differential transformations, screws, twists and 
wrenches; 

- Chapter 3 deals with the direct geometric modeling of simple open chain 
robots (also termed serial robots). The Khalil-Kleinfinger notation is used to 
describe the geometry of the mechanical structure. This notation, which is a 
variation of the Denavit-Hartenberg one, also handles the description of 
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complex chains with tree structures or closed loops (Chapters 7 and 10). The 
various methods of describing the orientation of a solid in space are covered at 
the end of the chapter; 

- Chapter 4 treats the inverse geometric model. Three approaches are described: 
the Paul method, which can be used for most industrial robots, the Pieper 
method, which deals with six degree-of-freedom robots having three prismatic 
joints or a spherical joint, and the Raghavan-Roth method, which is suitable 
for six degree-of-freedom robots with general geometry; 

- Chapter 5 addresses the direct kinematic model. After developing efficient 
methods for calculating the Jacobian matrix, we present several applications: 
analysis of the robot workspace, determination of the degrees of freedom of 
structure, velocity and force ellipsoids, twist-wrench duality; 

- Chapter 6 covers inverse kinematics. The main topics are: inversion at regular 
configurations, inversion close to singularities, inversion for redundant robots, 
and minimal task description; 

- Chapter 7 examines the geometric and kinematic models of complex chain 
robots with tree or closed chain structures. The problem of solving the 
constraint equations of closed loop robots is treated using both geometric 
constraint equations and kinematic constraint equations; 

- Chapter 8 introduces the geometric and kinematic models of parallel robots. 
The main architectures and features of these structures are given; 

- Chapters 9 and 10 deal with dynamic modeling: simple open chains are 
considered in Chapter 9, whereas complex kinematic chains are presented in 
Chapter 10. Lagrangian and Newton-Euler formulations, which are linear in 
the dynamic parameters, are presented. The determination of the minimum 
inertial parameters, also termed base inertial parameters, is carried out using a 
direct symbolic method and by a numerical method, which is based on a QR 
decomposition. The number of operations of the inverse dynamic model are 
minimized thanks to the use of the base parameters and customized symbolic 
programming techniques. The models obtained allow on-line implementation 
with today's personal computers. We also give different methods for the direct 
dynamic model computation, more especially a method avoiding the inversion 
of the inertia matrix; 

- Chapters 11 and 12 are devoted to identification of the geometric and dynamic 
parameters respectively. In Chapter 11, we present various geometric 
calibration methods. Some of them need external sensors, the others being 
autonomous. The construction of the observation matrix and the solution of 
the calibration equation are detailed for all the methods. A short subsection 
introduces the active field of research into parallel robot calibration. In 
Chapter 12, which concerns the dynamic parameters, several identification 
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methods based on the dynamic model or energy model are introduced. All of 
them consist in solving a model that is linear in the dynamic parameters; 

- Chapter 13 introduces the problem of trajectory generation. Beginning with 
point-to-point trajectories both in the joint space and in the task space, the 
chapter then examines the problem of adding intermediate points. At the end, 
the trajectory generation on a continuous path is briefly treated; 

- Chapters 14 and 15 deal with motion control and force control. The motion 
control chapter specifically covers PID control, computed torque control, 
passive control and adaptive control while the force control chapter addresses 
passive control, impedance control, hybrid force-position control and hybrid 
external control. 

At the end of the book the reader will find eleven appendices, which give either 
detailed computations of examples or introductions to relevant mathematical 
methods. An abundant bibliography of more than 400 references related to this fast-
growing field of research is also included. 

This book is intended for researchers, university lecturers, engineers and 
postgraduates in the fields of automatic control, robotics and mechanics. It provides 
the necessary tools to deal with the various problems that can be encountered in the 
design, the control synthesis and the exploitation of robot manipulators. It can also 
be recommended as a textbook for students. It constitutes a complete course of about 
70 lecture hours on modeling, identification and control of robot manipulators for 
engineering schools or Master of Science classes. For an introduction course of 
about 25 hours, the content could be reduced to: geometric and kinematic models of 
serial structures, trajectory generation between two points, and PID control 
(Chapters 1, 2, 3, 4, 5 and 6; partially Chapters 13 and 14). For a course of about 50 
lecture hours, one could treat further dynamic modeling, calibration of geometric 
parameters, identification of dynamic parameters, and trajectory generation as well 
as the methods of motion control (Chapters 9, 11, 12, 13 and 14). 



Chapter 1 

Terminology and general definitions 

1.1. Introduction 

A robot is an automatically controlled, reprogrammable, multipurpose 
mechanical system with several degrees of freedom, which may be either fixed in 
place or mobile. It has been widely used so far in various industrial automation 
applications. Since the last decade, other areas of application have emerged: 
medical, service (spatial, civil security,...), transport, underwater, entertainment,..., 
where the robot either works in an autonomous manner or in cooperation with an 
operator to carry out complex tasks in a more or less structured environment. We 
can distinguish three main classes of robots: robot manipulators, which imitate the 
human arm, walking robots, which imitate the locomotion of humans, animals or 
insects, and mobile robots, which look like cars. 

The terms adaptability and versatility are often used to highlight the intrinsic 
flexibility of a robot. Adaptability means that the robot is capable of adjusting its 
motion to comply with environmental changes during the execution of tasks. 
Versatility means that the robot may carry out a variety of tasks - or the same task in 
different ways - without changing the mechanical structure or the control system. 

A robot is composed of the following subsystems: 

- mechanism: consists of an articulated mechanical structure actuated by 
electric, pneumatic or hydraulic actuators, which transmit their motion to the 
joints using suitable transmission systems; 

- perception capabilities: help the robot to adapt to disturbances and 
unpredictable changes in its environment. They consist of the internal sensors 
that provide information about the state of the robot (joint positions and 
velocities), and the external sensors to obtain the information about the 
environment (contact detection, distance measurement, artificial vision); 
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- controller: realizes the desired task objectives. It generates the input signals 
for the actuators as a function of the user's instructions and the sensor outputs; 

- communication interface: through this the user programs the tasks that the 
robot must carry out; 

- workcell and peripheral devices: constitute the environment in which the 
robot works. 

Robotics is thus a multidisciplinary science, which requires a background in 
mechanics, automatic control, electronics, signal processing, communications, 
computer engineering, etc. 

The objective of this book is to present the techniques of the modeling, 
identification and control of robots. We restrict our study to rigid robot manipulators 
with a fixed base. Thus, neither flexible robots for which the deformation of the links 
cannot be neglected [Cannon 84], [Chedmail 90a], [Boyer 94], nor mobile robots 
will be addressed in this book. 

In this chapter, we will present certain definitions that are necessary to classify 
the mechanical structures and the characteristics of robot manipulators. 

1.2. Mechanical components of a robot 

The mechanism of a robot manipulator consists of two distinct subsystems, one 
(or more) end-effectors and an articulated mechanical structure: 

~ by the term end-effector, we mean any device intended to manipulate objects 
(magnetic, electric or pneumatic grippers) or to transform them (tools, welding 
torches, paint guns, etc.). It constitutes the interface with which the robot 
interacts with its environment. An end-effector may be multipurpose, i.e. 
equipped with several devices each having different functions; 

- the role of the articulated mechanical structure is to place the end-effector at 
a given location (position and orientation) with a desired velocity and 
acceleration. The mechanical structure is composed of a kinematic chain of 
articulated rigid links. One end of the chain is fixed and is called the base. The 
end-effector is fixed to the free extremity of the chain. This chain may be 
serial (simple open chain) (Figure 1.1), tree structured (Figure 1.2) or closed 
(Figures 1,3 and 1.4). The last two structures are termed complex chains since 
they contain at least one link with more than two joints. 
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nmr 
Figure 1.1. Simple open (or serial) chain 

Serial robots with a simple open chain are the most commonly used. There are 
also industrial robots with closed kinematic chains, which have the advantage of 
being more rigid and accurate. 

TTrnTr 

Figure 1.2. Tree structured chain 

Figure 1.3. Closed chain 

Figure 1.4 shows a specific architecture with closed chains* which is known as a 
parallel robot. In this case, the end-effector is connected to the base by several 
parallel chains [Inoue 85], [Fichter 86], [Reboulet 88], [Gosselin 88), [Clavel 89], 



4 Modeling, identification and control of robots 

[Charentus 90], [Pierrot 91a], [Merlet 00). The mass ratio of the payload to the robot 
is much higher compared to serial robots. This structure seems promising in 
manipulating heavy loads with high accelerations and realizing difficult assembly 
tasks. 

77m, 
Figure 1.4, Parallel robot 

1.3. Deflnitions 

1.3.1. Joints 

A joint connects two successive links, thus limiting the number of degrees of 
freedom between them. The resulting number of degrees of freedom, m, is also 
called 7V>i>ir mobility, such that 0 < m < 6. 

When m = 1, which is frequently the case in robotics, the joint is either revolute 
or prismatic, A complex joint with several degrees of freedom can be constructed by 
an equivalent combination of revolute and prismatic joints. For example, a spherical 
joint can be obtained by using three revolute joints whose axes intersect at a point. 

1.3.1.1. Revolute joint 

This limits the motion between two links to a rotation about a common axis. The 
relative location between the two links is given by the angle about this axis. The 
revolute joint, denoted by R, is represented by the symbols shown in Figure 1.5. 

y ^ - - & - ) . ^ ) 
- ) 

Figure 1.5. Symbols of a revolute joint 
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1.3.1.2. Prismatic joint 

This limits the motion between two links to a translation along a common axis. 
The relative location between the two links is determined by the distance along this 
axis. The prismatic joint, denoted by P, is represented by the symbols shown in 
Figure 1.6. 

z_.0^ - ^ - ^ -t±:h 
Figure 1.6. Symbols of a prismatic joint 

1.3.2. Joint space 

The space in which the location of all the links of a robot are represented is called 
joint space, or configuration space. We use the joint variables, q € 9^^, as the 
coordinates of this space. Its dimension N is equal to the number of independent 
joints and corresponds to the number of degrees of freedom of the mechanical 
structure. In an open chain robot (simple or tree structured), the joint variables are 
generally independent, whereas a closed chain structure implies constraint relations 
between the joint variables. 

Unless otherwise stated, we will consider that a robot with N degrees of freedom 
has N actuated joints. 

1.3.3. Task space 

The location, position and orientation, of the end-effector is represented in the 
task space, or operational space. We may consider as many task spaces as there are 
end-effectors. Generally, Cartesian coordinates are used to specify the position in ^ 
and the rotation group S0(3) for the orientation. Thus the task space is equal to 
^ X S0(3). An element of the task space is represented by the vector X 6 9^^, where 
M is equal to the maximum number of independent parameters that are necessary to 
specify the location of the end-effector in space. Consequently, M<6 and M<N. 
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1.3.4. Redundancy 

A robot is classified as redundant when the number of degrees of freedom of its 
task space is less than the number of degrees of freedom of its joint space. This 
property increases the volume of the reachable workspace of the robot and enhances 
its performance. We will see in Chapter 6 that redundant robots can achieve a 
secondary objective besides the primary objective of locating and moving the end-
effector with desired velocity. 

Notice that a simple open chain is redundant if it contains any of the following 
combinations of joints: 

- more than six joints; 

- more than three revolute joints whose axes intersect at a point; 

- more than three revolute joints with parallel axes; 

- more than three prismatic joints; 

- prismatic joints with parallel axes; 

- revolute joints with collinear axes. 

NOTES.-

- for an articulated mechanism with several end-effectors, redundancy is 
evaluated by comparing the number of degrees of freedom of the joint space 
acting on each end-effector and the number of degrees of freedom of the 
corresponding task space; 

~ another type of redundancy may occur when the number of degrees of 
freedom of the task is less than the number of degrees of freedom of the 
robot. We will discuss this case in Chapter 6. 

1.3.5. Singular configurations 

For all robots, redundant or not, it is possible that at some configurations, called 
singular configurationsy the number of degrees of freedom of the end-effector 
becomes less than the dimension of the task space. For example, this may occur 
when: 

- the axes of two prismatic joints become parallel; 

- the axes of two revolute joints become collinear; 

- the origin of the end-effector lies on a line that intersects all the joint axes. 

In Chapter 5, we will present a mathematical condition to determine the number 
of degrees of freedom of the task space of a mechanism as well as its singular 
configurations. 
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1.4. Choosing the number of degrees of freedom of a robot 

A non-redundant robot must have six degrees of freedom in order to place an 
arbitrary object in space. However, if the manipulated object exhibits revolution 
symmetry, five degrees of freedom are sufficient, since it is not necessary to specify 
the rotation about the revolution axis. In the same way, to locate a body in a plane, 
one needs only three degrees of freedom: two for positioning a point in the plane and 
the third to determine the orientation of the body. 

From these observations, we deduce that: 

- the number of degrees of freedom of a mechanism is chosen as a function of 
the shape of the object to be manipulated by the robot and of the class of tasks 
to be realized; 

- a necessary but insufficient condition to have compatibility between the 
robot and the task is that the number of degrees of freedom of the end-
effector of the robot is equal to or more than that of the task. 

1.5. Architectures of robot manipulators 

Without anticipating the results of the next chapters, we can say that the study of 
both tree structured and closed chains can be reduced to some equivalent simple 
open chains. Thus, the classification presented below is relevant for simple open 
chain architectures, but may also be generalized to the complex chains. 

In order to count the possible architectures, we only consider revolute or 
prismatic joints whose consecutive axes are either parallel or perpendicular. 
Generally, with some exceptions (in particular, the last three joints of the GMF Pi50 
and Kuka IR600 robots), the consecutive axes of currently used robots are either 
parallel or perpendicular. The different combinations of these four parameters yield 
the number of possible architectures with respect to the number of joints as shown in 
Table 1.1 [Deligniferes 87], (Chedmail 90a). 

The first three joints of a robot are commonly designed in order to perform gross 
motion of the end-effector, and the remaining joints are used to accomplish 
orientation. Thus, the first three joints and the associated links constitute the 
shoulder or regional positioning structure. The other joints and links form the wrist. 

Taking into account these considerations and the data of Table 1.1, one can 
count 36 possible combinations of the shoulder. Among these architectures, only 12 
are mathematically distinct and non-redundant (we eliminate, a priori^ the structures 
limiting the motion of the terminal point of the shoulder to linear or planar 
displacement, such as those having three prismatic joints with parallel axes, or three 
revolute joints with parallel axes). These structures are shown in Figure 1.7. 
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Table 1.1. Number of possible architectures as a function of the number of degrees of 
freedom of the robot 

Number of degrees of 
1 freedom of the robot 

1 2 
3 

1 "̂  
5 

I 6 

Number of 
architectures | 

8 1 
36 

168 I 
776 

3508 

A survey of industrial robots has shown that only the following five structures 
[Li^geois 79] are manufactured: 

- anthropomorphic shoulder represented by the first RRR structure shown in 
Figure 1.7, like PUMA from Unimation, Acma SR400, ABB IRBx400, 
Comau Smart-3, Fanuc (S-xxx, Arc Mate), Kuka (KR 6 to KR 200), Reis (RV 
family), Stallbli (RX series), etc.; 

- spherical shoulder RRP: "Stanford manipulator" and Unimation robots (Series 
1000,2000,4000); 

- RPR shoulder corresponding to the first RPR structure shown in Figure 1.7: 
Acma-H80, Reis (RH family), etc. The association of a wrist with one revolute 
degree of freedom of rotation to such a shoulder can be found frequently in 
the industry. The resulting structure of such a robot is called SCARA 
(Selective Compliance Assembly Robot Arm) (Figure 1.8). It has several 
applications, particularly in planar assembly. SCARA, designed by Sankyo, 
has been manufactured by many other companies: IBM, Bosch, Adept, etc.; 

- cylindrical shoulder RPP: Acma-TH8, AFMA (ROV, ROH), etc.; 

- Cartesian shoulder PPP: Acma-PSO, IBM-7565, Sormel-Cadratic, Olivetti-
SIGMA. More recent examples: AFMA (RP, ROP series), Comau P-Mast, 
Reis (RL family), SEPRO, etc. 

The second RRR structure of Figure 1.7, which is equivalent to a spherical joint, 
is generally used as a wrist. Other types of wrists are shown in Figure 1.9 
[Delignieres 87]. 

A robot, composed of a shoulder with three degrees of freedom and a spherical 
wrist, constitutes a classical six degrcc-of-freedom structure (Figure 1.10). Note that 
the position of the center of the spherical joint depends only on the configuration of 
joints 1, 2 and 3. We will see in Chapter 4 that, due to this property, the inverse 
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geometric model, providing the joint variables for a given location of the end-
effector, can be obtained analytically for such robots. 

According to the survey carried out by the French Association of Industrial 
Robotics (AFRI) and RobAut Journal [Pages 98], the classification of robots in 
France (17794 robots), with respect to the number of degrees of freedom, is as 
follows: 4.5% of the robots have three degrees of freedom, 27% have four, 9% have 
five and 59.5% have six or more. As far as the architecture of the shoulder is 
concerned, there is a clear dominance of the RRR anthropomorphic shoulder 
(65.5%), followed by the Cartesian shoulder (20.5%), then the cylindrical shoulder 
(7%) and finally the SCARA shoulder (7%). 

RRR RRP 

RPR 

RPP PPP 

Figure !.?• Architectures of the shoulder (from [Milenkovic 83]) 
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6 
rrntm 

Figure 1.8. SCARA robot 

One-axis wrist 

Two ifuersectingHuis wrist 

Two non intersecting-wds wrist 

Three intersecting-axis wrist (spherical wrist) 

Three non interseaing-axis wrist 

Figure 1.9. Architectures of the wrist (from [Delignidres 87]) 
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mm 

Figure 1.10. Classical six degree-of-freedom robot 

L(. Characteristics of a robot 

The standard ISO 9946 specifics the characteristics that manufacturers of robots 
must provide. Here, we describe some of these characteristics that may help the user 
in choosing an appropriate robot with respect to a given application: 

- workspace: defines the space that can be swept by the end-effector. Its range 
depends on the number of degrees of freedom, the joint limits and the length 
of the links; 

- payload: maximum load carried by the robot; 

- maximum velocity and acceleration: determine the cycle time; 

- position accuracy (Figure 1.11): indicates the difference between a 
commanded position and the mean of the attained positions when visiting the 
conunanded position several times from different initial positions; 

- position repeatability (Figure 1.11): specifies the precision with which the 
robot returns to a commanded position. It is given as the distance between the 
mean of the attained positions and the furthermost attained position; 

- resolution: the smallest increment of movement that can be achieved by the 
joint or the end-effector. 

However, other characteristics must also be taken into account: technical (energy, 
control, programming, etc.) and conunercial (price, maintenance, etc.). Thus, the 
selection criteria are sometimes difficult to formulate and are often contradictory. To 
a certain extent, the simulation and modeling tools available in Computer Aided 
Design (CAD) packages may help in making the best choice [Dombre 88b], 
[Zeghloul 91], [Chedmail 92], [Chedmail 98]. 
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Figure 1.11. Position accuracy and repeatability (from [Priel 90}) 

1.7. Conclusion 

In this chapter, we have presented the definitions of some technical terms related 
to the field of modeling, identification and control of robots. We will frequently 
come across these terms in this book and some of them will be reformulated in a 
more analytical or mathematical way. The figures mentioned here justify the choice 
of the robots that are taken as examples in the following chapters. In the next 
chapter, we present the transformation matrix concept, which constitutes an 
important mathematical tool for the modeling of robots. 



Chapter 2 

Transformation matrix between vectors, 
frames and screws 

2.1. Introduction 

In robotics, we assign one or more frames to each link of the robot and each 
object of the workcell. Thus, transformation of frames is a fundamental concept in 
the modeling and programming of a robot. It enables us to: 

- compute the location, position and orientation of robot links relative to each 
other; 

~ describe the position and orientation of objects; 

- specify the trajectory and velocity of the end-effector of a robot for a desired 
task; 

- describe and control the forces when the robot interacts with its environment; 

- implement sensory-based control using information provided by various 
sensors, each having its own reference frame. 

In this chapter, we present a notation that allows us to describe the relationship 
between different frames and objects of a robotic cell. This notation, called 
homogeneous transformation, has been widely used in computer graphics 
[Roberts 65], [Newman 79] to compute the projections and perspective 
transformations of an object on a screen. Currently, this is also being used 
extensively in robotics [Pieper 68], [Paul 81]. We will show how the points, vectors 
and transformations between frames can be represented using this approach. Then, 
we will defme the differential transformations between frames as well as the 
representation of velocities and forces using screws. 
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2.2. Homogeneous coordinates 

2.2.1. Representation of a point 

Let (Tx, Ty, *Pz) be the Cartesian coordinates of an arbitrary point P with respect 
to the frame Rj, which is described by the origin Oj and the axes x\, yj, Zi (Figure 
2.1). The homogeneous coordinates of P with respect to frame Rj are defmed by 
(w'Px, wTy, w*Pz, w), where w is a scaling factor. In robotics, w is taken to be equal 
to 1. Thus, we represent the homogeneous coordinates of P by the (4x1) column 
vector: 

V = 
*Pz 

L 1 . 

[2.1] 

Figure 2.1. Representation of a point vector 

2.2.2. Representation of a direction 

A direction (free vector) is also represented by four components, but the fourth 
component is zero, indicating a vector at infinity. If the Cartesian coordinates of a 
unit vector u with respect to frame R, are (*Ux, *Uy, 'u^), its homogeneous coordinates 
will be: 

•u = 
*Uv 

111 Uz 

L 0 J 

[2.2] 
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2.2.3. Representation of a plane 

The homogeneous coordinates of a plane Q, whose equation with respect to a 
frame R\ is *ax + *Py + *Yz + '8 = 0» ^̂ ^ given by: 

»Q = [ >a »p ^ *8 ] 

If a point P lies in the plane Q, then the matrix product *Q *P is zero: 

[2.3] 

iQ»P = [»a «P >Y *8] 

1 

ip "1 

ip 

P̂z 

1 J 

= 0 [2.4] 

2.3. Homogeneous transformations [Paul 81] 

2.3.1. Transformation of frames 

The transformation, translation and/or rotation, of a frame Rj into frame Rj 
(Figure 2.2) is represented by the (4x4) homogeneous transformation matrix *Tj such 
that: 

iTj = [isj inj iaj iPj] = 

Sx Hx ax Px 

Sy ny Ay Jr y 

Sz n̂  az Pj 

L O G O 1 J 

[2.5al 

where ̂ , n̂j and âj contain the components of the unit vectors along the Xj, yj and Zj 
axes respectively expressed in frame Rj, and where P̂j is the vector representing the 
coordinates of the origin of frame Rj expressed in frame Ri. 

We can also say that the matrix Tj defmes frame Rj relative to frame Rj. 
Thereafter, the transformation mau-ix [2.Sa] will occasionally be written in the form 
of a partitioned matrix: 

'Tj = 
0 0 0 1 

'sj 'nj 'aj 'Pj 

0 0 0 1 
[2.5b) 
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Apparently, this is in violation of the homogeneous notation since the vectors 
have only three components. In any case, the distinction in the representation with 
either three or four components will always be clear in the text. 

In summary: 

- the matrix 'Tj represents the transformation from frame Rj to frame RJ; 

- the matrix 'Tj can be interpreted as representing the frame Rj (three orthogonal 
axes and an origin) with respect to frame Rj. 

Figure 2.2. Transformation of frames 

2.3.2. Transformaiion of vectors 

Let the vector JP defme the homogeneous coordinates of the point P with respect 
to frame Rj (Figure 2.3). Thus, the homogeneous coordinates of P with respect to 
frame Rj can be obtained as: 

tp = i(OiP) = »SjJP^-i-»njJPy-i-»ajJP^+'Pj = «TjJP 

P 

[2.61 

Figure 23. Transformaiion of a vector 
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Thus the matrix *Tj allows us to calculate the coordinates of a vector with respect 
to frame Rj in terms of its coordinates in frame Rj. 

• Example 2.1, Deduce the matrices *Tj and JTi from Figure 2.4. Using equation 
[2.5al, we directly obtain: 

•Tj = 

0 0 1 3 

0 i 0 12 

- 1 0 0 6 

L 0 0 0 1 J 

JTi = 

0 0 - 1 6 

0 1 0 -12 

1 0 0 - 3 

L 0 0 0 1 J 

Figure 2.4. Example 2.1 

233. Transformation of planes 

The relative position of a point with respect to a plane is invariant with respect to 
the transformation applied to the set of (point, plane). Thus: 

JQiP = iQip = iQ*TjiP 

leading to: 

JQ = 'Q*Tj [2.71 

2.3.4. Transformation matrix of a pure translation 

Let Trans(a, b, c) be this transformation, where a, b and c denote the translation 
along the x, y and z axes respectively. Since the orientation is invariant, the 
transformation Trans(a, b, c) is expressed as (Figure 2.5): 
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»Tj = Traiis(a, b, c) = 

1 0 0 a 

0 1 0 b 

0 0 1 c 

L 0 0 0 1 

[2.8] 

From now on, we will also use the notation Trans(u, d) to denote a translation 
along an axis u by a value d. Thus, the matrix Traiis(a, b, c) can be decomposed 
into the product of three matrices Trans(x, a) Traiis(y, b) Traiis(z, c), taking any 
order of the multiplication. 

Figure 2^. Transformation of pure translation 

2.3.5. Transformation matrices of a rotation about the principle axes 

2.3.5.1. Transformation matrix of a rotation about the x axis by an angle 0 

Let Rot(x, 6) be this transformation. From Figure 2.6, we deduce that the 
components of the unit vectors 'Sj, *nj, *aj along the axes Xj, yj and Zj respectively of 
frame Rj expressed in frame Rj are as follows: 

»Sj = [l 0 0 0]T 

»nj = [0 CO SO Of 

»aj = (o ~se ce Of 
[2.9] 

where SO and CO represent sin(6) and cos(O) respectively, and the superscript T 
indicates the transpose of the vector. 
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'Tj = Rot(x. 6) = 

1 0 0 0 

0 Ce -SB 0 
0 se ce 0 

LO 0 0 I J 

rot(x, 6) 0 

0 
LO 0 0 1. 

where rot(x, 6) denotes the (3x3) orientation matrix. 

(2.10] 

Figure 2.6. Transformation of a pure rotation about the x-axi$ 

2.3.5.2. Transformation matrix of a rotation about they axis by an angle 6 

In the same way, we obtain: 

*Tj = RoKy.G) = 

ce 0 se 0 
0 1 0 0 

-se 0 ce 0 
. 0 0 0 i j 

rot(y. 0) 0 
0 

LO 0 0 I J 

[2.11] 

2.3.5.3. Transformation matrix of a rotation 6 about the z axis by an angle 6 

We can also verify that: 
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'Tj = Rot(z.e) 

ce -se 0 0 
se ce 0 0 
0 0 1 0 

L 0 0 0 1. 

0-

rot(z, 9) 0 

0 

LO 0 0 1. 

[2.12] 

2.3.6. Properties of homogeneous transformation matrices 

a) From equations [2.5], a transformation matrix can be written as: 

T = 

Sx • 'x * x ' X 

Oy "\ ^V V 

Sz "z â  P^ 

LO 0 0 1 J 

J * '1 
Lo 0 0 1J 

[2.13] 

The matrix A represents the rotation whereas the column matrix P represents the 
translation. For a transformation of pure translation, A = I3 (I3 represents the identity 
matrix of order 3), whereas P = 0 for a transformation of pure rotation. The matrix A 
represents the direction cosine matrix. It contains three independent parameters (one 
of the vectors s, n or a can be deduced from the vector product of the other two, for 
example s = nxa; moreover, the dot product n.a is zero and the magnitudes of n and 
a are equal to 1). 

b) The matrix A is orthogonal, i.e. its inverse is equal to its transpose: 

A-' = AT [2.14] 

c) The inverse of a matrix *Tj defines the matrix iTj, 

To express the components of a vector *Pi into frame Rj, we write: 

iPi = iTi iP i [2.15] 

If we postmultiply equation [2.6] by *Tj'̂  (inverse of *Tj), we obtain: 

*Tj->>P, = jp, [2.16] 

From equations [2.15] and [2.16], we deduce that: 

>Tj-J = JTi [2.17] 
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d) We can easily verify that: 

RofUu^e) = Rot(u,~e) = Rot(-u,e) 
Trans" H«id) = Trans(-u,d) = Trans(u,-d) 

[2.18] 
[2.19] 

e) The inverse of a transformation matrix represented by equation [2.13] can be 
obtained as: 

T-l = 

r -sTp" 

AT -nTp 

-aTp 

Lo 0 0 1 -

" AT -ATp" 

. 0 0 0 1 . 
[2.20] 

0 Composition of two matrices. The multiplication of two transformation 
matrices gives a transformation matrix: 

r Ai Pi "11* A2 P2I r ^1^2 A,P2 + Pi 

^ * ' ' ' ^ ^ L O O O I J L O O O I J " [ O 0 0 1 
[2.21] 

Note that the matrix multiplication is non-conimutative (T1T2 ̂  T2T1). 

g) If a frame RQ is subjected to k consecutive transformations (Figure 2.7) and if 
each transformation i, (i = 1 k), is defmed with respect to the current frame K\.\, 
then the transformation ^i^ can be deduced by multiplying all the transformation on 
the right as: 

^ k = ^ l 'T2 2T3...>^-»Tk [2.22] 

h) If a frame Rj, defmed by ^Tj, undergoes a transformation T that is defined 
relative to frame Ri, then Rj will be transformed into Rj- with 'Tj' = T *Tj (Figure 
2.8). 

From the properties g and h, we deduce that: 

~ multiplication on the right (postmultiplication) of the transformation *Tj 
indicates that the transformation is defmed with respect to the current frame 
Rj; 

- multiplication on the left (premultiplication) indicates that the 
transformation is defmed with respect to the reference frame Rj. 
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Figure 2.7. Composition of transformations: multiplication on the right 

Figure 2.8. Composition of transformations: multiplication on the left 

* Example 2.2. Consider the composite transformation illustrated in Figure 2.9 and 
defined by: 

K 0 T 2 = Rot(x,6)Traiis(y,d) 

- reading ^ 2 ^^"^ ^̂ ^ ̂  "8*̂ ^ (Figure 2.9a): first, we apply the rotation; the 
new location of frame RQ is denoted by frame R\; then, the translation is 
defined with respect to frame R]; 
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reading ^ 2 from right to left (Figure 2.9b): first we apply the translation, then 
the rotation is defined with respect to frame Ro-

Rot(x,2) 

Figure 2.9. Example 2.2 

i) Consecutive transformations about the same axis. We note the following 
properties: 

Rot(u, e o Rot(u, 62) - Rot[u, (61+Q2)] 
Rot(u, 6) Traiis(u, d) =: Traiis(u, d) Rot(u, 6) 

[2.231 
[2.24) 

j) Decomposition of a transformation matrix. A transformation matrix can be 
decomposed into two transformation matrices, one represents a pure translation and 
the second a pure rotation: 

Lo 0 0 1J Lo 0 0 1 JLo 0 0 i j [2.25] 

2.3.7, Ttansformaiion matrix of a rotation about a general vector located at the 

Let Rot(u, 6) be the transformation representing a rotation of an angle 8 about an 
axis, with unit vector u = [Ux Uy u^]'^, located at the origin of franw Rj (Figure 
2.10). We define the frame R^ such that zy^ is along the vector u and X\^ is along the 
common normal between zĵ  and Zj. The matrix *T|̂  can be obtained as: 

»Tk = Rot(x, a) Rot(x, P) [2.26] 

where a is the angle between Xj and x^ about Zj, and P is the angle between Zj and u 
about X)̂ . 
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From equation [2.26], we obtain: 

u = â̂  = 

[Ux' 
[Uy 
LuzJ 

s 

' Sa Sp ^ 
-CaSp 

L cp J 
[2.27] 

Figure 2.10. Transformation of pure rotation about any axis 

The rotation about u is equivalent to the rotation about z^. From properties g and 
h of § 2.3.6, we deduce that: 

Rot(u, 9) »Tk = »Tk Rot(z, 9) [2.28] 

thus: 

Rot(u, 9) = 'Tk Rot(z, 9) %'^ 

= Rot(z, a) Rot(x, p) Rot(z, 9) Rot(x, -p) Rot(z, - a ) 

From this relation and using equation [2.27], we obtain: 

[2.29] 

Rot(u,9) = 

0 

rot(u, 9) 0 

9 

L 9 9 9 1 J 
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Ux^(i-ce)4-ce uxUy(i-ce)-u2se uxU2(i-<:e)+uySe o 

uxUy(i-ce)+uzSe uy2(i-ce)-Hce uyU2(i-<:e)~uxSe o 

uxUz(i-ce)~uySe uyU2(i-<:e)+uxSe U2^(i-^e)+ce o 

0 0 0 1 -J 

We can easily remember this relation by writing it as: 

rot(u, 9) = u u'r (1 - ce) +13 c e + u se 

(2.30] 

(2.31] 

where u indicates the skew-symmetric matrix defmed by the components of the 
vector u such that: 

[2.32] 
A 

u = 

- 0 

"z 

_ - U y 

-«z 

0 

"x 

Uy 1 
-Ux 

0 J 

Note that the vector product uxV is obtained by u V. 

2.3»8w Equivalent angle and axis of a general rotation 

Let T be any arbitrary rotational transformation matrix such that: 

Sx nx ax 0 

T = 
Sy ny ay 0 

Sz n̂  az 0 

L 0 0 0 1 J 

We solve the following expression for u and 0: 

Rot(u,e) = T w i thO<e<n 

Adding the diagonal terms of equations [2.30] and [2.33], we obtain: 

C8 = 2 (Sx + ny + az - 1) 

[2.33] 

[2.34] 
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From the off-diagonal terms, we obtain: 

2 Ux Se = Hz - ay 

2UySe = ax-Sz [2.35] 

2 û  S8 = Sy - ttx 

yielding: 

Se = jyjin^ ~ ay)2 + (a^ - s^2 ^ (̂ ^ _ n̂ )2 [2.361 

From equations [2.34] and [2.36], we deduce that: 

6 = arctg (Se/Ce) with 0 < 6 < 7i [2.37] 

Ux, Uy and Uz are calculated using equation [2.35] if SO?̂  0. When SO is small, 
the elements Ux* Uy and Uz cannot be determined with good accuracy by this 
equation. However, in the case where C9 < 0, we obtain Ux, Uy and Uz more 
accurately using the diagonal terms of Rot(u, 6) as follows: 

/sx - ce /ny - ce /az-ce 

From equation [2.35], we deduce that: 

r 1^ ce 

< 

-ce 
/nv - ce 

Uy = sign(ax-s^-\y f ^ ^ [2.39] 

/a^-ce 
Uz = sign(Sy-n J\l JZcQ 

where sign(.) indicates the sign function of the expression between brackets, thus 
sign(e) =+1 if e > 0, and sign(e)=-1 if e < 0. 

* Example 2.3. Suppose that the location of a frame RE. which is fixed to the end-
effector of a robot, relative to the reference frame R© is given by the matrix Rot(x, -
n/4). Determine the vector ^ and the angle of rotation e that transforms frame RE to 
the location Rot(y. Ji/4) Rot(z, n/2). We can write: 

Rot(x,-n/4)Rot(u,e) = Rot(y. n/4) Rot(2, Ji/2) 
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Thus: 

Rot(u, 9) = Rot(x. 7C/4) Rot(y, ii/4) Rot(z, n/2) 

0 -1/^2 1/̂ 2 0 

l/^/2 -1/2 -1/2 0 

l/yjl 1/2 1/2 0 

L 0 0 0 1 J 

1 %/3 
Using equations [2.34] and [2.361, wc get: CB = - j * ^9 = 2 ' ^''^'"8 ® " ^^^' 

1 /2 
Equation [2.35] yields: Ux = "7^, Uy = 0, û  = M j . 

2A Kinematic screw 

In this section, we will use the concept of screw to describe the velocity of a 
body in space. 

2.4.1. Definition of a screw 

A vector field H on ^ is a screw if there exist a point Oj and a vector Q such 
that for all points Oj in 9^: 

Hj = Hi^QxOiOj 

where Hj is the vector of H at Oj and the symbol x indicates the vector product; Q is 
called the vector of the screw of H. 

Then, it is easy to prove that for every couple of points Oy^ and O^: 

H^ = Hk -̂QxOkOm 

Thus, the screw at a point O, is well defined by the vectors Hj and Q, which can 
be concatenated in a single (6x1) vector. 
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2.4.2. Representation of velocity (kinematic screw) 

Since the set of velocity vectors at all the points of a body defines a screw field, 
the screw at a point 0\ can be defined by: 

• Vj representing the linear velocity at 0\ with respect to the fixed frame RQ, 
d 

such that Vi=^OoOi); 

• C0| representing the angular velocity of the body with respect to frame RQ. It 
constitutes the vector of the screw of the velocity vector field. 

Thus, the velocity of a point Oj is calculated in terms of the velocity of the point 
Oj by the following equation: 

Vj = Vi + (0ixOiOj [2.40] 

The components of V̂  and (Oi can be concatenated to form the kinematic screw 
vector Vj, i.e.: 

The kinematic screw is also called twist or spatial velocity. 

[2.41] 

2.43. Transformation of screws 

Let 'Vi and '(Oi be the vectors representing the kinematic screw in Oj, origin of 
frame R;, expressed in frame Rj. To calculate JVj and J(Dj representing the kinematic 
screw in Oj expressed in frame Rj, we first note that: 

«5 = Wi 

Vj = Vi + (0|xLij 

Lij being the position vector connecting Oj to Oj. 

Equations [2.42] and [2.43] can be rewritten as: 

[2.42] 
[2.43] 

La)j 
l3 -Lij 

03 I3 J 

Vi 

ffli 
[2.44] 
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where I3 and O3 represent the (3x3) identity matrix and zero matrix respectively. 
Projecting this relation in frame Ri, we obtain: 

'Vi I3 -'Pj Vi 

L'«>iJ LO3 I3 Jl 

Since iVj =iAi 'Vj and J(Dj -iA; '(Dj, equation [2.45] gives: 

where JTj is the (6x6) transformation matrix between screws: 

(2.45) 

12.46] 

JTi = 
iAi JAi'Pj 

O3 JAi J 
{2.47] 

The transformation matrices between screws have the following properties: 

i) product: 

% = »iri"T2...J->Tj [2.48] 

ii) inverse: 

JTf' = 
•Aj 'Pj'Aj 

L O3 *j J 

= 'Ti (2.491 

Note that equation [2.49] gives another possibility, other than equation [2.45], to 
define the transformation matrix between screws. 

2.5. Differential translation and rotation of frames 

The differential transformation of the position and orientation -or location -of a 
frame R\ attached to any body may be expressed by a differential translation vector 
dPj expressing the translation of the origin of frame Rj, and of a differential rotation 
vector Si, equal to U; dO, representing the rotation of an angle d9 about an axis, with 
unit vector û , passing through the origin 0|. 
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Given a transformation *Tj, the transformation *Tj + d*Tj can be calculated, 
taking into account the property h of § 2.3.6, by the premultiplication rule as: 

ijj + d̂ Tj = Traiis(»dxi, 'dyj, d̂zj) Rot(»Ui, dG) 'Tj [2.50] 

Thus, the differential of Tj is equal to: 

dTj = [Trans(»dXi, *dyi, »dzi) Rot(iui, dO) -14] »Tj [2.51] 

In the same way, the transformation *Tj + d*Tj can be calculated, using the 
postmultiplication rule as: 

'Tj + d'Tj = 'Tj Trans(idxj, Jdyj, Jdzj) Rot(iuj, dO) [2.52] 

and the differential of *Tj becomes: 

d>Tj = »Tj [Trans(idxj, idyj, idzj) Rot(iuj, dG) -14] [2.53] 

From equations [2.51] and [2.53], the differential transformation matrix A is 
defmedas[Paul81]: 

A = [Traiis(dx, dy, dz) Rot(u, dG) -14] [2.54] 

such that: 

d*Tj = 'A*Tj [2.55] 

or: 

d̂ Tj = iTjJA [2.56] 

Assuming that dG is sufficiently small so that S(dG) =5: dG and C(dG) ^ 1, the 
transformation matrix of a pure rotation dG about an axis of unit vector u can be 
calculated from equations [2.30] and [2.54] as: 

iA = 
J8j JdPj 

0 0 0 0 J 

jfij dG JdPj 

0 0 0 
[2.57] 

where u and o represent the skew-symmetric matrices defined by the vectors u and 
5 respectively. 
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Note that the transformation matrix between screws can also be used to transform 
the differential translation and rotation vectors between frames: 

idPj 

L^8i J 
= iTi 

«dPi 
[2.58] 

In a similar way as for the kinematic screw, we call the concatenation of dPj and 
8\ the differential screw. 

* Example 2.4. Consider using the differential model of a robot to control its 
displacement. The differential model calculates the joint increments corresponding 
to the desired elementary displacement of frame Rn fixed to the terminal link 
(Figure 2.11). However, the task of the robot is often described in the tool frame Rg, 
which is also fixed to the terminal link. The problem is to calculate '̂ dPn and "5n in 
terms of ^dPe and ^6E. 

Let the transformation describing the tool frame in frame Rn be: 

"TE = 

0 1 0 0 

- 1 0 0 0.1 

0 0 1 -0.3 

L 0 0 0 1 

and that the value of the desired elementary displacement is: 

>^dPE=:[ 0 0 -0.01 ]T E8g^[ 0 -^.05 0 ]T 

Figure 2.11. Example 2.4 
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Using equation [2.58], we obtain: 

°5„ = "AE % , «dP„ = "AE (EfiExEPn + EdPE) 

The numerical application gives: 

ndP„ = [ 0 0.015 -0.005 ]T n8^=[-0.05 0 0 ]T 

In a similar way, we can evaluate the error in the location of the tool frame due to 
errors in the position and orientation of the terminal frame. Suppose that the position 
error is equal to 10 mm in all directions and that the rotation error is estimated as 
0.01 radian about the x axis: 

"dPn = [ 0.01 0.01 0.01 ]T n^ ^ [ 0.01 0 0 ]T 

The error on the tool frame is calculated by: 

% = ^A„ "8„, EdPE = EA„ («SnX"PE + ndP„) 

which results in: 

EdPE=[-0.013 0.01 0.011 ]T E8g^[ 0 0.01 0 ]T 

2.6. Representation of forces (wrench) 

A collection of forces and moments acting on a body can be reduced to a wrench 
t[ at point Oi, which is composed of a force fi at Oi and a moment mi about OJ: 

-[:] [2.59] 

Note that the vector field of the moments constitutes a screw where the vector of 
the screw is t,. Thus, the wrench forms a screw. 

Consider a given wrench 'fi, expressed in frame R|. For calculating the equivalent 
wrench ilTj, we use the transformation matrix between screws such that: 

Jnii 

jfi 
= iTi 

J J 

'•Hi 
[2.60] 
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which gives: 

ifj = iAi*fi (2.61) 
[2.62J 

It is often more practical to permute the order of fi and m\. In this case, equation 
[2.60] becomes: 

'J J 

= ' T / 
•m 1 J 

[2.63] 

• Example 2.5. Let the transformation matrix "Tg describing the location of the tool 
frame with respect to the terminal frame be: 

"TE = 

0 1 0 0 

- 1 0 0 0.1 

0 0 1 0.5 

L 0 0 0 1 J 

Supposing that we want to exert a wrench ÎTE with this tool such that ^ E = 
[0 0 5]'^ and ^ E = [0 0 3]^, determine the corresponding wrench H^ at the origin 
On and referred to frame Rn- Using equations [2.61] and [2.62], it follows that: 

X = " A E ^ E 

"mn= "AE(%xEp„^EmE) 

The numerical application leads to: 

nf„ = [ 0 0 0.5 ]T 

nmn = [ 0.5 0 3 ]T 

2.7. Conclusion 

In the first part of this chapter, we have developed the homogeneous 
transformation matrix. This notation constitutes the basic tool for the modeling of 
robots and their environment. Other techniques have been used in robotics: 
quaternion [Yang 66], [Castelain 86], (3x3) rotation matrices. [Coiffet 81] and the 
Rodrigues formulation [Wang 83]. Readers interested in these techniques can 
consult the given references. 
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We have also recalled some definitions about screws, and transformation 
matrices between screws, as well as differential transformations. These concepts will 
be used extensively in this book. In the following chapter, we deal with the problem 
of robot modeling. 



Chapter 3 

Direct geometric model of serial robots 

3.1. Introduction 

The design and control of a robot requires the computation of son\e mathematical 
models such as: 

- transformation models between the joint space (in which the configuration of 
the robot is defmed) and the task space (in which the location of the end-
effector is specified). These transformation models are very important since 
robots are controlled in the joint space, whereas tasks are defmed in the task 
space. Two classes of models are considered: 

- direct and inverse geometric models, which give the location of the end-
effector as a function of the joint variables of the mechanism and vice 
versa; 

- direct and inverse kinematic models, which give the velocity of the end-
effector as a function of the joint velocities and vice versa; 

- dynamic models giving the relations between the input torques or forces of the 
actuators and the positions, velocities and accelerations of the joints. 

The automatic symbolic computation of these models has largely been addressed 
in the literature [Dillon 73], [Khalil 76], [Zabala 78], [Kreuzer 79], (Aldon 82], 
[Cesareo 84], [Megahed 84], [Murray 84], [Kircinski 85], [Burdick86], 
[Izaguirre 86], [Khalil 89a]. The algorithms presented in this book have been used in 
the development of the software package SYMOROf [Khalil 97], which deals with 
all the above-mentioned models. 

The modeling of robots in a systematic and automatic way requires an adequate 
method for the description of their structure. Several methods and notations have 
been proposed [Denavit 55], [Sheth 71], [Renaud 75], [Khalil 76], [Borrel79], 
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[Craig 86a]. The most popular among these is the Denavit-Hartenberg method 
[Denavit 55]. This method is developed for serial structures and presents ambiguities 
when applied to robots with closed or tree chains. For this reason, we will use the 
notation of Khalil and Kleinfinger [Khalil 86a], which gives a unified description for 
all mechanical articulated systems with a minimum number of parameters. 

In this chapter, we will present the geometric description and the direct 
geometric model of serial robots. Tree and closed loop structures will be covered in 
Chapter?. 

3.2. Description of the geometry of serial robots 

A serial robot is composed of a sequence of n -•-1 links and n joints. The links are 
assumed to be perfectly rigid. The joints are either revolute or prismatic and are 
assumed to be ideal (no backlash, no elasticity). A complex joint can be represented 
by an equivalent combination of revolute and prismatic joints with zero-length 
massless links. The links are numbered such that link 0 constitutes the base of the 
robot and link n is the terminal link (Figure 3.1). Joint j connects link j to link j - 1 
and its variable is denoted qj. In order to define the relationship between the location 
of links, we assign a frame Rj attached to each link j , such that: 

- the Zj axis is along the axis of joint j ; 

- the Xj axis is aligned with the common normal between Zj and Zj+j. If Zj and 
Zĵ .1 are parallel or collinear, the choice of Xj is not unique. The intersection of 
Xj and Zj defines the origin Oj. In the case of intersecting joint axes, the origin 
is at the point of intersection of the joint axes; 

- the yj axis is formed by the right-hand rule to complete the coordinate system 
(Xj^yj.zj). 

Figure 3.1. Robot with simple open structure 
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The transformation matrix from frame Rj.i to frame Rj is expressed as a function 
of the following four geometric parameters (Figure 3.2): 

• OJ: the angle between Zj.i and Zj about Xj.|; 

• dj: the distance between Zj.j and Zj along Xj.i; 

• Qy the angle between Xj.i and Xj about ZJ; 

• rj: the distance between Xj.i and Xj along Zj. 

Figure 3.2. The geometric parameters in the case of a simple open structure 

The variable of joint j , defining the relative orientation or position between links 
j - 1 and j , is either Oj or rj, depending on whether the joint is revolute or prismatic 
respectively. This is defined by the relation: 

q j = Gj Oj + Gj r j [3.ia] 

with: 

• Oj = 0 if joint j is revolute; 

• O) = 1 if joint j is prismatic; 

• ^j=l-<^j-

By analogy, we define the parameter qj by: 

qj = Ojej + Ojrj [3.1bl 
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The transformation matrix defining frame Rj relative to frame Rj.j is given as 
(Figure 3.2): 

J-̂ Tj = Rot(x, Oj) Traiis(x, dj) Rot(z, Bj) Traiis(z, rj) 

CGi -SOi 0 

CctjSej COjCej -SOj -rjSOj 

SOjSOj SOjCOj COj rjCOj 

L 0 0 0 1 J 

[3.2] 

We note that the (3x3) rotation matrix J'̂  Aj can be obtained as: 

J-̂  Aj = rot(x, Oj) rot(z, Oj) [3.3] 

The transformation matrix defming frame Rj.i relative to frame Rj is given as: 

JTj.i = Traiis(z, -rj) Rot(z,-ej) Trans(x,-<ij) Rot(x ,-aj) 

-iljCBj' 

J-'AJ djSGj 

LO 0 0 1 J 

[3.4] 

NOTES.-
- the frame RQ is chosen to be aligned with frame Ri when qi = 0. This means 

that ZQ is aligned with Z], whereas the origin OQ is coincident with the origin 
Oi if joint 1 is revolute, and XQ is parallel to Xj if joint 1 is prismatic. This 
choice makes ai = 0, dj = 0 and qi = 0; 

- in a similar way, the choice of the Xn axis to be aligned with Xno when qn = 0 
makes q,, = 0; 

- if joint j is prismatic, the Zj axis must be taken to be parallel to the joint axis 
but can have any position in space. So, we place it in such a way that dj = 0 or 
dj+i=0; 

- if Zj is parallel to Zj+i, we place Xj in such a way that rj = 0 or rj+i = 0; 

- assuming that each joint is driven by an independent actuator, the vector of 
joint variables q can be obtained from the vector of encoder readings q̂  using 
the relation: 
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q = K qc -»- qo 

where K is an (nxn) constant matrix and qo is an offset vector representing the 
robot configuration when qc = 0; 

- if a chain contains two or more consecutive parallel joints, the transformation 
matrices between them can be reduced to one equivalent transformation 
matrix using the sum of the joint variables. For example, if Oĵ i := 0, i.e. if Zj 
and Zj4{ are parallel, the transformation i'̂ Tĵ .] is written as: 

i-̂ Tj+i s J-̂ Tj JTj+i = Rot(x, Oj) Trans(x, dj) Rot(2, Oj) Traii5(z, rj) 
Traiis(x, dĵ O Rot(z, Oj+O Traiis(z, rj+0 [3.51 

cOj+Gj^i) ~s(ej+ej+i) 0 dj+dj+iCGj 

CajSCej+Gj+i) COjCOj+ej+i) -SOj dj+|CajSej-{rj+rj^,)Saj 

SajS(ej+ej4.i) S(XjC(ej+eĵ .i) COj dj+iS(XjSej+(rj+rj+i)Caj 

0 0 0 1 

and the inverse transformation has the expression: 

-<IjC(9j+Oĵ  I )-dj+1 C6j^ I 

i^»Tj.i = 
i-Uj .̂1 djS(ej+8j^iHdj+,sej+, 

-<rj+rj+l) 

0 0 1 

[3.61 

The above expressions contain terms in (9j + 9j+i) and (rj -f rj+j). This result can 
be generalized for the case of multiple consecutive parallel axes [Kleinfmger 86al. 

• Example 3J. Geometric description of the St̂ ubli RX-90 robot (Figure 3.3a). The 
shoulder is of RRR type and the wrist has three revolute joints whose axes intersect 
at a point (Figure 3.3b). From a methodological point of view, we first place the Zj 
axes on the joint axes, then the Xj axes according to the previously mentioned 
conventions. Then, we determine the geometric parameters defining each frame Rj 
with respect to frame Rj.i. The link coordinate fi-ames are indicated in Figure 3.3b 
and the geometric parameters are given in Table 3.1. 
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Table 3.1. Geometric parameters of the Stdubli RX'90 robot 

j 

1 

2 

3 

4 

5 

6 

^j 

0 

0 

0 

0 

0 

0 

^ 
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7t/2 
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- 7 C / 2 
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-n/l 

dj 

0 

0 

D3 
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0 

0 

«j 

ei 

Qi 

©3 

04 

es 
06 

q 
0 

0 

0 

R U 

0 

0 

Figure 3.3a. General view of the Stdubli RX-90 robot 
(Courtesy of Stdubli company) 
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mrrm 
Figure 3 Jb. Link coordinate frames for the Stduhli RX'90 robot 

• Example 3.2. Geometric description of a SCARA robot (Figure 3.4). The 
geometric parameters of a four degree-of-freedom SCARA robot are given in 
Table 3.2. 

rntTTTJ 

i23»»4 

Figure 3.4. SCARA Robot 
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Table 3.2. Geometric parameters of a SCARA robot 

I J 
1 1 

2 

3 

4 

^j 

0 

0 

0 

1 

«i 
0 

0 

0 

0 

^j 

0 

D2 

1 ^̂  
1 0 

«j 

ei 

02 

e3 

0 

_^j J 
0 

0 

0 

1-4 

3.3. Direct geometric model 

The Direct Geometric Model (DGM) is the set of relations that defines the 
location of the end-effector of the robot as a function of its joint coordinates. For a 
serial structure, it may be represented by the transformation matrix ^ n as: 

°T„ = °T,(qi)'T2(q2) -"-'TnCqn) [3.7] 

This relation can be numerically computed using the general transformation 
matrix J''Tj given by equation [3.2], or symbolically derived after substituting the 
values of the constant geometric parameters in the transformation matrices (Example 
3.3). The symbolic method needs less computational operations. 

The direct geometric model of a robot may also be represented by the relation: 

X = f(q) 

where q is the vector of joint variables such that: 

q = [qi qz-qnl ' ' ' 

The position and orientation of the terminal link are defmed as: 

X = [Xi X2...Xm]T 

[3.8] 

[3.9] 

[3.10] 

There are several possibilities of deflning the vector X aswe will see in § 3.6. 
For example, with the elements of the matrix ^n-

X = [Px Py Pz Sx Sy Sj n̂  ny n̂  a, ay aj""" 

Taking into account that s = D x a, we can also take: 

[3.11] 
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X = [Px Py Pz nx ny nj ax ay a j ^ [3.121 

• Example 3.3, Symbolic direct geometric model of the StMubli RX-90 robot 
(Figure 3.3). From Table 3.1 and using equation [32], we write the elementary 
transformation matrices J**Tj as: 

°Tl = 

CI -SI 0 0 

SI CI 0 0 

0 0 10 

L 0 0 0 I J 

•T2 = 

rC2-S2 0 0-
0 0 - 1 0 

S2 C2 0 0 

L 0 0 0 1-

.2X3 = 

C3 -S3 0 D3 

S3 C3 0 0 

0 0 1 0 

L 0 0 0 1 J 

Since the joint axes 2 and 3 are parallel, we can write the transformation matrix 
'T3 using equation [3.5] as: 

'T3 = 

C23 -S23 0 C2D3 

0 0 - 1 0 

S23 C23 0 S2D3 

L 0 0 0 1 J 

with C23 = cos(e2 + B3) and S23 = sin(e2 + 83). 

3T4 = 

C4 -S4 0 0 
0 0 1 RU 

-S4 -C4 0 0 

0 0 0 1 J 

i, ^Tj = 

•C5-S5 0 on 

0 0 - 1 0 
S5 C5 0 0 

. 0 0 0 I J 

5 T 6 = 

C6 -S6 0 0' 

0 0 1 0 

-S6 -C6 0 0 

L 0 0 0 1. 

In order to compute ^ g , it is better to multiply the matrices J''Tj starting from 
the last transformation maUrix and working back to the base, mainly for two reasons: 

- the intermediate matrices JTg, denoted as Uj, wilt be used to obtain the inverse 
geometric model (Chapter 4); 

- this reduces the number of operations (additions and multiplications) of the 
model. 

We thus compute successively Uj for j = 5 0: 

U5 = 5T6 
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U4 = ^T6 = ^T5U5 = 

C5C6 -C5S6 -S5 0 

S6 C6 0 0 

S5C6 -S5S6 C5 0 

L 0 0 0 1 

U3 = 3T6 = 3T4U4 = 

U2 = 2T6 = 2T3U3 

C4C5C6-S4S6 -C4C5S6-S4C6 -C4S5 0 

S5C6 -S5S6 C5 RL4 

-S4C5C6-C4S6 S4C5S6-C4C6 S4S5 0 

0 0 0 1 

The s, n, a, P vectors of U2 are: 

Sy = 

nx = 
"y = 

ax = 
ay = 

az = 

Px = 
Py = 

Pr = 

C3(C4C5C6 - S4S6) - S3S5C6 
S3(C4C5C6 - S4S6) + C3S5C6 
-S4C5C6-C4S6 
- C3(C4C5S6 + S4C6) + S3S5S6 
- S3(C4C5S6 + S4C6) - C3S5S6 
S4C5S6-C4C6 
-C3C4S5-S3C5 
- S3C4S5 + C3C5 
S4S5 
-.S3RU + D3 
C3RL4 
0 

U, = »T6=>T2U2=%U3 

The corresponding s» n, a, P vectors arc: 

Sx = C23(C4C5C6 - S4S6) - S23S5C6 
Sy = S4C5C6 + C4S6 
Sj = S23(C4C5C6 - S4S6) -f C23S5C6 
nx = - C23(C4C5S6 + S4C6) + S23S5S6 
ny = -.S4C5S6 + C4C6 
nz = - S23(C4C5S6 -•• S4C6) - C23S5S6 
ax = -C23C4S5-S23C5 
ay = -S4S5 
az=:-S23C4S5 + C23C5 
Px = -S23RU-i-C2D3 
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Py = 0 

Pz = C23RU + S2D3 

Finally: 

The corresponding s, n, a, P vectors arc: 

Sx = C1{C23(C4C5C6 ~ S4S6) - S23S5C6) - S1(S4C5C6 + C4S6) 
Sy = S1(C23(C4C5C6 - S4S6) - S23S5C6) + C1(S4C5C6 + C4S6) 
Sz = S23{C4C5C6 - S4S6) -»- C23S5C6 
nx = Cl(- C23 (C4C5S6 + S4C6) + S23S5S6) + S 1(S4C5S6 - C4C6) 
ny := Sl(-C23 (C4C5S6 + S4C6) + S23S5S6) -C1(S4C5S6 -C4C6) 
n̂  = - S23(C4C5S6 + S4C6) - C23S5S6 
ax = -Cl(C23C4S5 + S23C5) + S1S4S5 
ay = - S1 (C23C4S5 + S23C5) - CIS4S5 
a2=:-S23C4S5 4.C23C5 
Px = -C1(S23RU-C2D3) 
Py = -S1(S23RU-C2D3) 
Pz = C23RU + S2D3 

3.4. Optimization of tiie computation of tlie direct geometric model 

The control of a robot manipulator requires fast computation of its different 
models. An efficient method to reduce the computation time is to generate a 
symbolic customized model for each specific robot. To obtain this model, we 
expand the matrix multiplications to transform them into scalar equations. Each 
element of a matrix containing at least one mathematical operation is replaced by an 
intermediate variable. This variable is written in the output file that contains the 
customized model. The elements that do not contain any operation are kept without 
modification. We propagate the matrix obtained in the subsequent equations. 
Consequently, customizing eliminates multiplications by one and zero, and additions 
with zero. Moreover, if the robot has two or more successive revolute joints with 
parallel axes, it is more interesting to replace the corresponding product of matrices 
by a single matrix, which is calculated using equation [3.5]. We can also compute 
Ŝfl using the vector product (̂ nn x ^an). In this case, the multiplication of the 

transformation matrices from the end-effector to the base saves the computation of 
the vectors JSn of the intermediate matrices JTn, (j = n,... , 1). 

* Example 3.4. Direct geometric model of the St^ubli RX-90 robot using the 
customized symbolic method. 
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a) computation of all the elements (s, n, a, P) 

We denote Tijrs as the element (r, s) of the matrix *Tj. As in Example 3.3, the 
product of the matrices is carried out starting from the last transformation matrix. 
We obtain the following intermediate variables for the matrix "̂ T̂ : 

T4611=C5C6 
74612 =-C5S6 
74631= S5C6 
74632 = -S5S6 

Proceeding in the same way, the other intermediate variables are written as: 

73611=C4 74611-S4S6 
73612 = C4 74612-S4C6 
73613 =-C4S5 
73631 =-84 74611-C4S6 
73632 = -S4 74612-C4C6 
73633 = S4 S5 
71314 = D3C2 
71334 = D3S2 
71611 = C23 73611 - S23 74631 
71612 = C23 73612 - S23 74632 
71613 = C23 73613-S23C5 
71614 = -S23RL4+71314 
71631 = S23 73611 + C23 74631 
71632 = S23 73612 + C23 74632 
71633 = S23 73613 + C23 C5 
71634 = C23RL4-i-71334 
70611 =€171611+SI 73631 
70612 = CI 71612 + SI 73632 
70613 = €171613+SI 73633 
70614 = €171614 
70621 =S1 71611-€173631 
70622 = SI 71612 -€1 73632 
70623 = SI 71613 -€1 73633 
70624 = 8171614 
70631=71631 
70632 = 71632 
70633 = 71633 
70634 = 71634 

7otal number of operations: 44 multiplications and 18 additions 
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b) computing only the columns (n, a, P) 

T4612«-C5S6 
T4632 = --S5S6 
13612=5 C4T4612-S4C6 
T3613 = -C4S5 
13632:=-S4T4612-C4C6 
T3633 = S4 S5 
T1314 = D3C2 
T1334=:D3S2 
T1612 « C23 T3612 - S23 T4632 
T1613 = C23T3613-S23C5 
T1614 = -S23RU-»-T1314 
T1632 = S23 T3612 + C23 T4632 
T1633 = S23T3613 + C23C5 
T1634s:C23RU^-T1334 
T0612 = C1T1612^SIT3632 
T0613 = C1T1613 + S1T3633 
T0614 = C1T1614 
T0622 = SI T1612 - CI T3632 
T0623 = S1T1613-C1T3633 
T0624 = S1T1614 
T0632 = 71632 
T0633=T1633 
T0634 = 11634 

Total number of operations: 30 multiplications and 12 additions 

These equations constitute a complete direct geometric model. However, the 
computation of ^s^ requires six multiplications and three additions corresponding to 
the vector product (̂ 115 x^a^). 

3.5. Transformatioti matrix of the end-effector in the world frame 

The robot is a component among others in a robotic workcell. It is generally 
associated with fastening devices, sensors..., and eventually with other robots. 
Consequently, we have to defme a reference world frame Rf, which may be different 
than the base reference frame Ro of the robot (Figure 3.5). The transformation 
matrix defining RQ with reference to Rf will be denoted as Z s ^TQ. 

Moreover, very often, a robot is not intended to perform a single operation at the 
workcell: it has interchangeable different tools. In order to facilitate the 
programming of the task, it is more practical to define one or more functional 
frames, called tool frames for each tool. We denote E = "TE as the transformation 
matrix defining the tool frame with respect to the terminal link frame. 



48 Modeling, identification and control of robots 

Figure 3.5, Transformations between the end-effector and the world frame 

Thus, the transformation matrix ^ E ̂ ^^ be written as: 

^TE = ZOT„(q)E 

In most programming languages, the user can specify Z and E. 

[3.13] 

3.6. Specification of the orientation 

Previously, we have used the elements of the matrix ^Tn to represent the position 
and orientation of the end-effector in frame RQ. This means the use of the Cartesian 
coordinates to describe the position: 

Op„ = [Px Py P z F 

and the use of the direction cosine matrix for the orientation: 

Â„ = [ \ n̂„ X ] 

[3.14] 

[3.15] 

Practically, all the robot manufacturers make use of the Cartesian coordinates for 
the position even though the cylindrical or spherical representations could appear to 
be more judicious for some structures of robots. 

Other representations may be used for the orientation, for example: Euler angles 
for CINCINNATI-T3 robots and PUMA robots, Roll-Pitch-Yaw (RPY) angles for 
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ACMA robots, Euler parameters for ABB robots. In this section, we will show how 
to obtain the direction cosines s, n, a from the other representations and vice versa. 
Note that the orientation requires three independent parameters, thus the 
representation is redundant when it uses more than that. 

3.6.I. Euler angles 

The orientation of frame Rn expressed in frame RQ is determined by specifying 
three angles, <!>, 9 and v , corresponding to a sequence of three rotations (Figure 3.6). 
The plane (Xn, yn) intersects the plane (XQ, yo) following the straight line ON, which 
is perpendicular to ZQ ^^^ ^ - The positive direction is given by the vector product 
BQX dn- The Euler angles are defmed as: 

• 0: angle between xo and ON about ZQ, with 0<^<2n\ 

• 0 : angle between ZQ and tn about ON, with 0 < 0 < n; 

• \|(: angle between ON and XQ about ZQ, with 0 < \|f < 2n. 

Figure 3.6. Euler angles (z, x, z representation) 

The orientation matrix is given by: 

^An = rot(z, 0) rot(x, 0) rot(z, y) 

C<|)C\|/-S4)C0S\|; -C(|)Sv-S(t)C0C\|; S0S0 

S<|)C\|f+C<tK:0S\|; ~S<t>S\|r+C<^C0Cv --C^SO 

S0S\|/ S0C\|r C0 

[3.16] 
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Inverse problem: expression of the Euler angles as functions of the direction 
cosines. Premultiplying equation [3.16] by rot(z, Ht>), we obtain [Paul 81]: 

rot(z, -<•) ^An = rot(x, 6) rot(z, v) [3.17] 

Using relations [3.15] and [3.17] yields: 

C<|>Sx+S<|>Sy C<|>nx+S<t>ny C<|)ax-f S<|)ay 

-S<|>Sx+C<|)Sy -S<t>nx+C<|>ny -S<t>ax+C(|>ay 

C\|/ -S\|r 0 

cesv cec\|f -se 
L sesv secv ce J 

[3.18] 

Equating the (1, 3) elements of both sides, we obtain: 

C(|) ax + S<t> ay = 0 

which gives: 

(<• = atan2(~ax, av) 
[3 191 

(>• = atan2(ax,-ay) = <1> + n 

NOTE.- atan2 is a matheniatical function (Matlab, Fortran, ...), which provides the 
arc tangent function from its two arguments. This function has the following 
characteristics: 

- examining the sign of both ax and ay allows us to uniquely determine the angle 
(|> such that - n < <|>< 71; 

- the accuracy of this function is uniform over its fiill range of definition; 

- when ax = 0, ay = 0, â  = ± 1 the angle ^ is undefined (singularity). 

Using the (2, 3) and (3, 3) elements of equation [3.18], we obtain: 

e = atan2(S(|) ax - C<|> ay, a )̂ [3.20] 

We proceed in a similar way to calculate \|r using the (1,1) and (1,2) elements: 

V = atan2(- C<t> nx - S<t> ny, C<t> Sx + S<t) Sy) [3.21] 

When ax and ay are zero, the axes ZQ and ZQ are aligned, thus 6 is zero or n. This 
situation corresponds to the singular case: the rotations ^ and \|f are about the same 
axis and we can only determine their sum or difference. For example, when az= 1, 
we obtain: 
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^A„ = rot(z, v + <•) 

and from this, we deduce: 

V -f <1> = atan2(- tix, ny) [3.221 

NOTE.- The Euler angles adopted here correspond to a (z, x, z) representation 
where the first rotation is about ZQ, followed by a rotation about the new x axis, 
followed by a last rotation about the new z axis. Some authors prefer the (z, y, z) 
representation [Paul 81]. A specific but interesting case can be encountered in the 
PUMA robot controller [Lee 83], [Dombre 88a) where an initial shift is introduced 
so that the orientation matrix is written as: 

^An = rot(z, <•) rot(x, 9 + p rot(z, v - p [3.23] 

3.6.2. RoU'Piich-Yaw angles 

Following the convention shown in Figure 3.7, the angles <|̂ , 6 and \|( indicate 
roll, pitch and yaw respectively. If we suppose that the direction of motion (by 
analogy to the direction along which a ship is sailing) is along the z axis, the 
orientation matrix can be written as: 

<̂An = rot(z, <t)) rot(y, 9) rol(x, \\f) 

C<|>C9 C<t>S9S\K-S<t)Cv C<t>S9C\|f-i-S<|>Sv 

S<t>C9 S<|)S9S\|f+C<t>Cv S<t)S9C\|f-C<|)S\|f 

-S9 C9Sv C9C\jf 

[3.24] 

Inverse problem: expression of the Roll-Pitch-Yaw angles as functions of the 
direction cosines. We use the same method discussed in the previous section. 
Premultiplying equation [3.24] by rot(z, - <̂ ), we obtain: 

rot(z, - ^) OA„ = rotCy, 9) rot(x, v) [3.25] 

which results in: 
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C<|)Sx+S<t)Sy C(|>nx+S4>ny C(|)ax+S(t)ay 

~S(t)Sx+C(|>Sy -S<|)nx-»-C(t)ny -S(t)ax+C(t)ay 

Sz ^z ^z 

ce ses\if sec\if 

-se ces\|/ cecv 

[3.26] 

V 

V 

^^•v yn 

^^ V | / l 

'̂ o* V 
Figure 3.7, Roll-Pitch-Yaw angles 

From the (2, 1) elements of equation [3.26], we obtain: 

- S(|) Sx + C<|> Sy = 0 

thus: 

<|> = atan2(Sy, Sx) 

(|)' = atan2(- Sy, ~ Sx) = 0 -»- TC 
[3.27] 

There is a singularity if Sx and Sy are zero (6 = ± 7 ) . 

In the same way, from the (1, 1) and ( 1 , 3 ) elements, then from the (2 ,2 ) and 
(2, 3) elements, we deduce that: 

9 = atan2(- s ,̂ C^ Sx + S(t> Sy) 
\|f = atan2(S<|>ax - C<t> ay, - S<|> nx + C4> ny) 

[3.28] 
[3.29] 
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3.6.3. Quaternions 

The quaternions are also called Euler parameters or Olinde-Rodrigues 
parameters. In this representation, the orientation is expressed by four parameters 
that describe the orientation by a rotation of an angle 9 (0 < 9 < n) about an axis of 
unit vector u (Figure 3.8). We define the quaternions as: 

^Q,=C(9/2) 

Q2 = UxS(9/2) 

Q3 = UyS(9/2) 

,Q4 = UzS(9/2) 

I" G' 

Figure 3.8. The quaternions 

From these relations, we obtain: 

(3.30] 

[3.31] 

The orientation matrix ^An is deduced from equation [2.30], defming rot(u, 6), 
after rewriting its elements as a function of Qi. We note that: 

ce = c2(e/2)-s2(e/2) = 2Qf-1 

and that: 

[3.32] 
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''Q2 = û  S2(e/2) = I uj (1 - C0) 

Q3=^u5(l-Ce) 

Qj=5u^(i-ce) 

) Q2Q3=2"xUy(i-ce) 

Q2Q4=2"xU2(i-ce) 

Q3Q4 = 2"y"z(l-Ce) 

Ux Se = 2 Ux 8(6/2) C(e/2) = 2 Q, Q2 

Uy Se = 2 Qi Q3 

l^UjS0 = 2QiQ4 

[3.331 

Thus, the orientation matrix is given as: 

«A„ = 

.2 ^2, 
2(Q,+Q2)-1 2(Q2Q3-^iQ4) 2(Q2Q4+QiQ3) 

.2 _2, 
2(Q2Q3-̂ QiQ4) 2(Q,+Q3) - 1 2(Q3Q4-Q,Q2) 

2 _ 2 . 
L 2(Q2Q4-<5iQ3) 2(Q3Q4+QiQ2) 2(Qi+Q4)-l J 

[3.34] 

For more information on the algebra of quaternions, the reader can refer to 
(de Casteljau 87]. 

Inverse problem: expression of the quaternions as functions of the direction 
cosines. Equating the elements of the diagonals of the right sides of equations [3.34] 
and [3.15] leads to: 

Ql = 2-s/sx + ny + az+l [3.35] 

which is always positive. If we then subtract the (2, 2) and (3, 3) elements from the 
(1,1) element, we can write after simplifying: 

4Q2 = Sx~ny-az+ 1 [3.36] 

This expression gives the magnitude of Q2. For determining the sign, we 
consider the difference of the (3,2) and (2, 3) elements, which leads to: 
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4QiQ2= n^-ay [3.37] 

The parameter Qi being always positive, the sign of Q2 is that of (n^ - ay), which 
allows us to write: 

1 . 
Q2 = 2 ^^^^ "̂2 " V V^x-ny-a^-f 1 [3.38] 

Similar reasoning for Q3 and Q4 gives: 

Q3 = 2sign (ax-s^)-s/-Sx + ny-aj+ 1 [3.39] 

Q4 = 2 s'8" (Sy - "x) >/-Sx-ny + a2.+ 1 [3.40] 

These expressions exhibit no singularity. 

3J. Conclusion 

In this chapter, we have shown how to calculate the direct geometric model of a 
serial robot. This model is unique and is given in the form of explicit equations. The 
description of the geometry is based on rules that have an intrinsic logic facilitating 
its application. This method can be generalized to tree and closed loop structures 
(Chapter 7). It can also be extended to systems with lumped elasticity [Khalil 00a]. 

We have also presented the methods that are frequently used in robotics to 
specify the orientation of a body in space. We have shown how to calculate the 
orientation maUrix from these representations and inversely, how to find the 
parameters of these descriptions from the orientation matrix. 

Having calculated the direct geometric model, in the next chapter we study the 
inverse geometric problem, which consists of computing the joint variables as 
functions of a given location of the end-effector. 
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Inverse geometric model of serial robots 

4.1, Introduction 

The direct geometric model of a robot provides the location of the end-effector 
in terms of the joint coordinates. The problem of computing the joint variables 
corresponding to a specified location of the end-effector is called the inverse 
geometric problem. This problem is at the center of computer control algorithms for 
robots. It has in general a multiple solution and its complexity is highly dependent 
on the geometry of the robot. The model that gives all the possible solutions for this 
problem is called the Inverse Geometric Model (IGM). In this chapter, we will 
present three methods to obtain the IGM of serial robots. First, we present the Paul 
method [Paul 81], which can be used to obtain an explicit solution for robots with 
relatively simple geometry that have many zero distances and parallel or 
perpendicular joint axes. Then, we develop a variation on the Pieper method 
[Pieper 68], which provides the analytical solution for the IGM of six degree-of-
freedom robots with three prismatic joints or three revolute joints whose axes 
intersect at a point. Finally, we expose the Raghavan-Roth method [Raghavan 90], 
which gives the IGM for six degree-of-freedom robots with general (arbitrary) 
geometry using, at most, a sixteen degree polynomial. 

When the inverse geometric model cannot be obtained or if it is difficult to 
implement in real time applications, iterative numerical techniques can be used. For 
this purpose, several algorithms can be found in the literature [Grudii 93]. Most of 
these algorithms use either the Newton-Raphson-based method [Pieper 68], 
[Goldenberg 85] or inverse Jacobian-based methods [Pieper 68], [Whitney 69], 
[Fournier 80), [Featherstone 83a]. In Chapter 6, we will present the second 
technique. 
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4.2. Mathematical statement of the problem 

Let T̂g be the homogeneous transformation matrix representing the desired 
location of the tool frame Rg relative to the world frame. In general, we can express 
^TE in the following form (§ 3.5): 

^TJ= ZOTn(q)E [4.1] 

where (Figure 3.5): 

• Z is the transformation matrix defming the location of the robot (frame RQ) 
relative to the world frame; 

• ^ n >s the transformation matrix of the terminal frame Rn relative to frame RQ. 
It is a function of the joint variable vector q; 

• E is the transformation matrix defining the tool frame Rg relative to RQ. 

Putting all the known matrices of relation [4.1] on the left side leads to: 

Uo = ^n(q) [4.2] 

withUo = Z-^^TjE-^ 

The problem is composed of a set of twelve nonlinear equations of n unknowns. 
The regular case has a fmite number of solutions, whereas for redundant robots or in 
some singular configurations we obtain an infinite number of solutions. When the 
desired location is outside the reachable workspace there is no solution. 

We say that a robot manipulator is solvable [Pieper 68], [Roth 76] when it is 
possible to compute all the joint configurations corresponding to a given location of 
the end-effector. Now, all non-redundant manipulators can be considered to be 
solvable [Lee 88], [Raghavan 90]. The number of solutions depends on the 
architecture of the robot manipulator and the amplitude of the joint limits. For six 
degree-of-freedom robots with only revolute joints (6R), or having five revolute 
joints and one prismatic joint (5R1P), the maximum number of solutions is sixteen. 
When the robot has three revolute joints whose axes intersect at a point, the 
maximum number of solutions is eight. For the 3P3R robots, this number reduces to 
two. In all cases, it decreases when the geometric parameters take certain particular 
values. 

Robots with less than six degrees of freedom are not able to place the end-
effector frame in an arbitrary location. Thus, we only specify the task in terms of 
placing some elements of the tool frame (points, axes) in the world frame. Under 
these conditions, the matrix E is not completely defined, and the equation to solve is 
given by: 
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Z - > < = OT^(q)E [4.31 

4.3. Inverse geometric model of robots with simple geometry 

For robots with simple geometry, where most of the distances (rj and dj) are zero 
and most of the angles (6j and otj) are zero or ± 7i/2, the inverse geometric model can 
be analytically obtained using the Paul method [Paul 81]. Most commercially 
available robots can be solved using this method. 

4J.1. Principle 

Let us consider a robot manipulator whose transformation matrix has the 
expression: 

0T„ = 0T,(q,)'T2(q2)...''-'T„(q„) 

Let UQ be the desired location such that: 

[4.4] 

Uo = 

^X ^ X ^ X * X 

Sy Hy ay Py 

H ^i az Pz 

L O G O 1 J 

[4.5] 

The IGM is obtained by solving the following equation: 

Uo = ^T,(q,)lT2(q2)..."-^T„(q„) [4.6] 

To find the solutions of this equation, Paul [Paul 81] proposed to move each 
joint variable to the left side one after the other by successively premultiplying 
equation [4.6] by JTj.j, for j varying from 1 to n - 1. Then, the joint variables arc 
determined by equating the elements of the two sides of each equation. For example, 
for a six degree-of-freedom robot, we proceed as follows: 

- premultiply equation [4.6] by ^TQ: 

>ToUo= 1X2213^X4^X5^X6 [4.7] 

The elements of the left side are constants or functions of qj. The elements of 
the right side are constants or functions of q2»..., qe; 
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- try to solve qi by equating the elements of the two sides of equation [4.7]; 

- premultiply equation [4.7] by ^Ti and try to determine qa; 

- continue the process until all the variables are solved. 

In summary, the equations used to obtain all the joint variables are written as: 

Uo= %^T2 2X3 3X4^X55X6 

*ToUo = X̂2 2X3 3X4^X5 5X6 
2X1 Ui = 2X3314^X55X6 [4.8] 
3X2 U2 = 3T^ 4x557^ 

^X3U3 = X̂5 5X6 

5X4 U4= 5X6 

withUj = iX6 = iXj.,Uj.i 

The resolution of equations [4.8] needs intuition, but the use of this method on a 
large number of industrial robots has shown that only few fundamental types of 
equations are encountered [Khalil 86b] (Table 4.1). The solutions of these equations 
are given in Appendix 1. 

NOTES.-

- the matrices of the right side of equations [4.8] are already available when 
computing the direct geometric model (DGM) if the multiplication of the 
transformation matrices is started from the end of the robot; 

- in certain cases, it may be more convenient to solve the robot by first 
determining q„ and ending with qi. In this case, we postmultiply equation 
[4.6] by JXj.i for j varying from n to 2. 
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Table 4.1. Types of equations encountered in the Paul method 

1 Typel 

1 Type 2 

1 Type 3 

1 Type 4 

Type 5 

Type 6 

Type? 

Types 

Xri=:Y " ' ' ~ ] 

XSei"i-YCGi=:Z 1 

xisei + Yicei = zi 1 
X2 SGi + Y2 CGj = Z2 

X l r j S e j s Y l 1 

X2 rj CBi = Y2 

X l S G j s Y U Z l r j 1 

X2Cei = Y2 + Z2rj | 

WS0j=:XC0i + YSGi + Zl 1 

WCGj=rXSGi-YCGi^-Z2 | 

Wl CGj •»- W2 SGj = X CGi -i-Y SGj + Zl 1 

Wl SGj - W2 CGj « X SGj -Y CGj + Z2 

XCGi-f YC(Gi + Gj) = Zl 1 

XSGi + YS(Gi4Gj)=:Z2 

r/; prismatic joint variable, 
; sine and cosine of a revolute joint variable Oi. 

4.3.2. Special case: robots with a spherical wrist 

Most six degrec-of-freedom industrial robots have a spherical wrist composed of 
three revolute joints whose axes intersect at a point (Figure 4.1). This structure is 
characterized by the following set of geometric parameters: 

d5 = r5 = d6 = 0 

04=05 = 06 = 0 

[Sa5 ^ 0» Soe ^ 0 (non-redundant robot) 

The position of the center of the spherical joint is obtained as a function of the 
joint variables qi, qa and q3. This type of structure allows the decomposition of the 
six degree-of-freedom problem into two three degree-of-freedom problems 
representing a position equation and an orientation equation. The position problem, 
which is a function of qi, q2 and q3, is first solved, then the orientation problem 
allows us to determine 64, 65,65. 
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Figure 4.1, Six degree-of-freedom robot with a spherical wrist 

4.3.2.1. Position equation 

Since ^P^ = ^P4, the fourth column of the transformation matrix ^ 4 is equal to 
the fourth column of UQ: 

Px" 
Py 
Pz 
. 1 . 

= ojj 1x2 2x33x4 [4.9] 

We obtain the variables qi, q2* q3 by successively premultiplying this equation 
by ^TQ, j = 1, 2, to isolate and determine sequentially the joint variables. The 
elements of the right side have already been calculated for the DGM. 

4.3.2.2. Orientation equation 

The orientation part of equation [4.2] is written as: 

[ s n a ] = OA^(q) 

yielding: 

^Ao(qi,q2,q3)[ s n ^ ] ^ ^K^{%.Qs^%) 

which can be written as: 

[ F G H ] = 3^^(64,65,66) [4.10] 

Since qi, q2, q3 have been determined, the left side elements are considered to be 
known. To obtain 64, 65, %, we successively premultiply equation [4.10] by 4A3 
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then by ^A4 and proceed by equating the elements of the two sides. Again, the 
elements of the right side have already been calculated for the DGM. 

• Example 4.1. IGM of the St̂ ubli RX-90 robot. The geometric parameters are 
given in Table 3.L The robot has a spherical wrist. The DGM is developed in 
Chapter 3. 

a) Computation of Sj, 82, 63 

i) by developing equation [4,9J, we obtain: 

•Px" 

Pz 
Ll J 

•Cl(-S23RL4 + C2D3y 
S1(-S23RL4 + C2D3) 

C23 RL4 + S2 D3 
1 

Note that the elements of the right side constitute the fourth column of ^ g , 
which have already been calculated for the EKJM. NO variable can be determined 
from this equation; 

ii) premultiplying the previous equation by 'To, we obtain the left side elements as: 

U(l) = ClPx + SlPy 
U(2) = -S lPx + ClPy 
U(3) = ?z 

The elements of the right side are obtained from the fourth column of'T^: 

T(l) = -S23RL4 + C2D3 
T(2) = 0 
T(3) = C23 RL4 + S2 D3 

By equating U(2) and T(2), we obtain the following two solutions for Q\: 

Q\ = atan2(Py. Px) 
0'i = Bi + n 
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Hi) premultiplying by ^Tj, we obtain the elements of the left side as: 

U(l) = C2 (CI Px + SI Py) + S2 Pz 
U(2) = - S2 (CI Px + SI Py) + C2 Pj 
U(3) = S l P x - C l P y 

The elements of the right side represent the fourth column of ̂ Tg: 

T(l) = -S3RL4 + D3 
T(2) = C3 RL4 
T(3) = 0 

We determine 62 and 63 by considering the first two elements, which constitute a 
type-6 system of equations (Table 4.1). First, an equation in 62 is obtained: 

X S2 + Y C2 = Z 

with: 
X = -2P2D3 
Y = - 2 B 1 D 3 
Z = (RL4)2 - (D3)2 - (P )̂2 - (B 1)2 
Bl = PxCl+PySl 

from which we deduce that: 

YZ-cX-v/X^ + Y^-Z^ 
^ ^ - X2 + Y2 

XZ + eY-s/x2 + Y2-Z2 
,^^- X2 + Y2 

with £ = ± 1 

This gives two solutions of the following form: 

62 = atan2(S2, C2) 

02 being known, we obtain: 

03 = atan2(S3, C3) 

with: 
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- P z S 2 - B l C 2 + D3 
RL4 

- B l S 2 + PzC2 
C3 = RL4 

b) Computation of 64,65,65 

Once the variables 9j, 82, 63 are determined, we define the (3x3) orientation 
matrix ^Ag as follows: 

[ F G H ] = 3AO [ s n a ] 

The elements of F are written as: 

U(l,l) = C23 (CI Sx + SI Sy) + S23 ŝ  
U(2,l) = - S23 (CI Sx + SI Sy) + C23 ŝ  
U(3.1) = S lSx-ClSy 

The elements of G and H are obtained irom F by replacing (Sx, Sy, Sj) by (nx, ny, 
nj) and (a,, ay, az) respectively. 

i) equating the elements of [ F G H Js^Ag 

The elements of ^Ag are obtained from ^15, which is calculated for the DGM; 

3A.= 
C6C5C4-S6S4 -S6C5C4-C6S4 -S5C4 

C6S5 -S6S5 C5 
L -C6C5S4-S6C4 S6C5S4-C6C4 S5S4 

We can determine 65 from the (2, 3) elements using an arccosine function. But 
this solution is not retained, considering that another one using an atan2 function 
may appear in the next equations; 

ii) equating the elements of^\i [ F G H ] = ^Ag 

The elements of the first column of the left side are written as: 

U( l , l ) = C4Fx-S4F , 
U(2.1) = -C4Fz-S4Fx 
U(3, 1) = Fy 
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The elements of the second and third columns are obtained by replacing (Fx, Fy, 
F;t) with (Gx, Gy, Gj) and (Hx, Hy, Hj) respectively. The elements of "̂ Â  are 
obtained from ^T ,̂ which has already been calculated for the DGM: 

C6C5 
S6 

C6S5 

-S6C5 
C6 

-S6S5 

-S5 1 
0 

C5 J 
^ 6 = 

From the (2, 3) elements, we obtain a type-2 equation in 94: 

- C 4 H z - S 4 H x = 0 

which gives two solutions: 

64 = atan2(Hz,-Hx) 

9 4 = 94 + 11 

From the (1, 3) and (3, 3) elements, we obtain a type-3 system of equations in 95: 

- S 5 = C4Hx-S4H2 
C5 = Hy 

whose solution is: 

95 = atan2(S5, C5) 

Finally, by considering the (2, 1) and (2, 2) elements, we obtain a type-3 system 
of equations in 95. 

X S6 = - C 4 F 2 ~ S 4 F 
C6 = -C4G2-S4Gx 

whose solution is: 

96 = atan2(S6,C6) 

NOTES.- By examining the IGM solution of the StSubli RX-90 robot, it can be 
observed that: 

a) The robot has the following singular positions: 

i) shoulder singularity: takes place when the point O^ lies on the ZQ axis (Figure 
4.2a). Thus Px=Py = 0, which corresponds to S23RL4-C2D3 = 9. In this case, 
both the two arguments of the atan2 function used to determine 9 | are zero. 
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thus leaving 6] undetermined. We are free to choose any value for 61, but 
frequently the current value is assigned. This means that one can always fmd a 
solution, but when leaving this configuration, a small change in the desired 
location may require a significant variation in 61, impossible to realize due to 
the speed and acceleration limits of the actuator; 

ii) wrist singularity: takes place when C23(Clax -*- Slay) 4- S23az = Hx - 0 and 
(Slax ~ Clay) ss H2 = 0. The two arguments of the atan2 function used to 
determine 64 arc zero. From the (2, 3) element of ^A ,̂ we notice that in this 
case C65 = ±1. Thus, the axes of joints 4 and 6 are collinear and it is the sum 
64 ± 85 that can be determined (Figure 4.2b). For example, when 65 = 0, the 
orientation equation becomes: 

[ F G H 1 = 3 A , = 
C46 -S46 0 
0 0 1 

- 8 4 6 -C46 0 

Thus, 04 + 96 = atan2(-Gx, -Gz). We can arbitrarily assign 64 to its current 
value and calculate the corresponding 65. We can also calculate the values of 
64 and 65 for which the joints 4 and 6 move away from their limits; 

Hi) elbow singularity: occurs when C3 s 0. This singularity will be discussed in 
Chapter 6. It does not affect the inverse geometric model computation 
(Figure 4.2c). 

b) The above-mentioned singularities are classified as first order 
singularities. Singularities of higher order may occur when several singularities of 
first order take place simultaneously. 

c) Numl)er of solutions: in the regular case, the St îibli RX-90 robot has 
eight solutions for the IGM (product of the number of possible solutions for each 
joint). Some of these configurations may not be accessible because of the joint 
limits. 

4.3 J . Inverse geometric model of robots with more than six degrees of freedom 

A robot with more than six degrees of freedom is redundant and its inverse 
geometric problem has an infinite number of solutions. To obtain a closed form 
solution, (n-6) additional relations are needed. Two strategies are possible: 

- arbitrarily fixing (n - 6) joint values to reduce the problem to six unknowns. 
The selection of the fixed joints is determined by the task specifications and 
the robot structure; 
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- introducing (n - 6) additional relations describing the redundancy, as is done 
in certain seven degrcc-of-freedom robots [Hollerbach 84b]. 

O4HO6 

a) Shoulder singularity 
(P^ = Py^Oor S23RL4'-C2D3 = 0) 

b) Wrist singularity (S5 = 0) 

c) Elbow singularity (C3 = 0) 

Figure 4.2. Singular positions of the Stdubli RX-90 robot 

4.3.4. Inverse geometric model of robots with less than six degrees of freedom 

When the robot has less than six degrees of freedom, the end-effector frame RE 
cannot be placed at an arbitrary location except if certain elements of ^ E ^ have 
specific values to compensate for the missing degrees of freedom. Otherwise, instead 
of realizing frame-to-frame contact, we consider tasks with less degrees of freedom 
such as point-to-point contact, or (point-axis) to (point-axis) contact [Manaoui 85). 
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In the next example, we will study this problem for the four degree-cf-ifreedom 
SCARA robot whose geometric parameters are given in Table 3.2. 

• Example 4.2. IGM of the SCARA robot (Figure 3.4). 

i) frame'to-frame contact 

In this case, the system of equations to be solved is given by equation [4.2] and 
Uo is defined by equation [4,5]: 

Uo = ^T4 -

C123 ~S123 0 C12D3+C1D2 
S123 C123 0 S12D3+S1D2 

0 0 1 r4 
L 0 0 0 1 

Examining the elements of this matrix reveals that frame-to-frame contact is 
possible if the third column of UQ is equal to [0 0 1 0]^. This implies two 
independent conditions, which compensate for the missing degrees of freedom. By 
equating the (3,4) elements, we obtain: 

H = Pz 

The (1, 4) and (2, 4) elements give a type-8 system of equations in 9i and 02 
with the following solution: 

82 = atan2(±\/l~(C2)2,C2) 
Gi * atan2(Sl,Cl) 

with; 

2D2D3 *^~^x 
D2-(D2)2^(D3)2 i ^ ^ p 2 ^ p 2 

B l P v - B 2 P x B l P , + B2Pv 

Bl = D2 + D3C2, B2 = D3 S2 

After determming 0i and 02, we obtain 83 as: 

83 = atan2(Sy, Sx) - 82 - 81 
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ii) (point-axis) to (point-axis) contact 

Let us suppose that the tool is defined by an axis of unit vector SE, passing by Og 
such that: 

^PE = [Qx Qy Qz]"̂  
"aE = [Wx Wy WJT 

The task consists of placing the point OE at a point of the environment while 
aligning the axis a^ with an axis of the environment, which are defined by: 

^ E = IPx Py Pzf 

"«£ = [ax ay ajT 

The system to be solved is written as: 

r -
_ 

1 -

• a, Px -

• ay Py 
- â  Pz 
- 0 1 _ 

= % 

"- - Wx Qx-j 
- - Wy Qy 
- - W, Q^ 

_ - - 0 I J 

After simplifying, we obtain: 

LPZ. 

QxC123-QyS 123+C12D3+C1D2" 
QxS123+QyC123+S12D3+SlD2 

Qz+r4 

WxC123-WyS123' 
WxS123+WyC123 

W, 

Thus, we deduce that the condition ax = Wj must be satisfied to realize the task. 
The IGM solutions are obtained in the following way: 

- from the a, and ay equations, we obtain (B\ + 62 + O3) by solving a type-3 
system (Appendix 1): 

e, +62 + 63 = atan2(Sl23,C123) 

wiAS123 = 
ayWx - axWy 

f-andC123 = -
a^W, + ayWy 

Wx2 + Wy2 * ""^ '^^ - Wx2 + Wy •f if(Wx2 + Wy2)^0; 
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- when Wx j= Wy = 0, the axis of the end-cffcctor is vertical and its orientation 
cannot be changed. Any value for 63 may be taken; 

- from Px and Py equations, we obtain Q\ and 62 by solving a typc-8 system of 
equations; 

- finally, from the third element of the position equation, we obtain r4 = P̂  - Q̂ . 

the tool frame onto a specified frame provided that the third column of 
rix ^ 4 = ^ B E'̂  = [0 0 1 0]'^, in order to satisfy that Z4 is vertical; 

In summary, the task of a SCARA robot can be described in one of the following 
ways: 

- placing the t 
the matrix ^ 

- placing an axis and a point of the tool frame respectively onto an axis and a 
point of the environment provided that â  = Wj. The obvious particular case is 
to locate a horizontal axis of the end-effector frame in a horizontal plane 
(az=W^ = 0). 

4.4. Inverse geometric model of decoupled six degree-of-freedom robots 

4.4.1. Introduction 

The IGM of a six degree-of-freedom decoupled robot can be computed by 
solving two sub-problems, each having three unknowns [Pieper 68]. Two classes of 
structures are considered: 

a) robots having a spherical joint given by one of the following four 
combinations: XXX(RRR), (RRR)XXX, XX(RRR)X, X(RRR)XX, where 
(RRR) denotes a spherical joint and X denotes either a revolute (R) or a 
prismatic (P) joint. Consequently, each combination results in eight structures; 

b) robots having three revolute and three prismatic joints as given by one of the 
following 20 combinations: PPPRRR, PPRPRR, PPRRPR,... 

In this section, we present the inverse geometric model of these structures using 
two general equations [Khalil 90c], [Bennis 91a]. These equations make use of the 
six types of equations shown in Table 4.2. The first three types have already been 
used in the Paul method (Table 4.1). The explicit solution of a type-10 equation can 
be obtained symbolically using software packages like Maple or Mathematica. In 
general, however, the numerical solution is more accurate. We note that a type-11 
equation can be transformed into type-10 using the half-angle transformation by 
writing COj and S9i as: 

1 -1^ 2t 9i 
C e i = y ^ andSei = Y 7 ^ witht = tany 



72 Modeling, identification and control of robots 

Table 4.2. Types of equations encountered in the Pieper method 

Typel 

1 Type 2 

Type 3 

[Type 9 

1 Type 10 

1 Type 11 

X n = Y 1 

xc0 i + Ysei = z 1 

XlSGi-fYlC0i = Zl 1 

X2Sei-i-Y2C0i = Z2 1 

32 Tĵ  + ai rj -»- ao = 0 | 

34 rj"* + 33 rj^ + 32 n^ + 3i rf -»- ao = 0 

34 S0i^ + 33 C0i S0i + 32 C0i + 31 S0i + 30 = = 0 J 

4.4.2. Inverse geometric model of six degree-of-freedom robots having a 
spherical Joint 

In tbis case, equation [4.6] is decoupled into two equations, eacb containing tbree 
variables: 

- a position equation, which is a function of the joint variables that do not 
belong to the spherical joint; 

- an orientation equation, which is a function of the joint variables of the 
spherical joint. 

4.4.2.1. General solution of the position equation 

The revolute joint axes m - 1 , m and m + 1 (2 < m < 5) form a spherical joint if: 

SOn, ^0 

The position of the center of the spherical joint, 0 ^ or 0^.1, is independent of 
the joint variables Q^A^ ^m ^"^ ^m^\- Thus, we can show (Figure 4.3) that the 
position of 0,̂ , relative to frame Rni-2 »s given by: 

'n-2T^^iTrans(z,-rm+i)Po =n"']= 
dm-l 

-rm-lSOm-i 

rm-lCOm-i 
1 

[4.11] 
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where p o = [ 0 0 0 1 ]T and '""^Pm î is obtained using equation [3.2]. 

m+l 

Om+l 

Figure 4.3. Axes of a spherical joint 

To obtain the position equation, we write equation [4.6] in the following form: 

X.2'"-^T^^i"^^% = Uo [4.12] 

Postmultiplying this relation by T̂m+i Traiis(2, -rm+i) Po and using equation 
[4.11], we obtain: 

rm.2p 1 
^m.2[ j " " J = Uo^T„+,TraDs(z,-r„^,)Po [4.13] 

Equation [4.13] can be written in the general form: 

Rot(z, Si) Trans(z, rj) Rot(x, Oj) Trans(x, dj) 

Rot(z, Gj) Trans (z, rj) [ ^^^^J = [ j ] [4.14] 

where: 

- the subscripts i, j and k represent the joints that do not belong to the spherical 
joint; i and j represent two successive joints; 

- the vector f is a function of the joint variable qî ; 

- the vector g is a constant. 

By combining the parameters qj and qj with g and f respectively, equation [4.14] 
becomes: 

Rot/Traiis(z. qi) Rot(x, Oj) Trans(x, dj) Rot/Traiis(z, qj) " 1 M '̂*^^ 
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with: 

• Rot/Traiis(z, qi) = Rot(z,ei)ifqi=: Qi 

= Trans(z, ri)ifqi = ri 
r p n 

• [r]= 

•ra= 

* X 

_ I J 

rf(qk)l 
= Rot/Trans(z, qj) 

= Rot/Trans(z, -qj) .1. 

• Rot/Trans(z, qj) = Trans(z, rO if joint i is re volute 

= Rot(z, Oi) if joint i is prismatic 

The components of G are constants and those of F are functions of the joint 
variable qî . We note that if joint k is revolute, then: 

||F|P= aCOk + bSeK + c [4.16] 

where a, b and c are constants. 

Table 4.3 shows the equations that are used to obtain the joint variable qî  
according to the types of joints i and j (columns 1 and 2). The variables qj and qj are 
then computed using equation [4.IS]. Table 4.4 indicates the type of the obtained 
equations and the maximum number of solutions for each structure; the last column 
of the table indicates the order in which we calculate them. In Example 4.3, we will 
develop the solution for the case where joints i and j are revolute. We note that the 
maximum number of solutions for q̂ , qj and qî  is four. 

NOTE.- The assignment of i, j and k for the joints that do not belong to the spherical 
joint is not unique. In order to get a simple solution for qî , this assignment can be 
changed using the concept of the inverse robot (presented in Appendix 2). For 
instance, if the spherical joint is composed of the joints 4, 5 and 6, we can take i = 1, 
j = 2, k = 3. But we can also take i = 3, j = 2, k = 1 by using the concept of the inverse 
robot. We can easily verify that the second choice is more interesting if these joints 
are revolute and Sa2 ̂ ^ 0, d2 ̂  0 but da = 0 or 803=0. 
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Table 4.3. Solutions ofq/^ and types of equations 

i 

MR"" 

riT" 

p" 

p 

j 

R 

P 

R 

P 

Conditions 

Saj = 0 

dj = 0 

dj;tO 

and So) ^ 0 

Caj = 0 

Coj^fcO 

COjssO 

COj^tO 

Equations for qî  

COj F2(qk) = Gj 

IIFIF = ||G|2 

Fy(qk) = SOj Gj 

Gy »-SajFj(qk) 

, rGv + SaiFzli , , 

Fx + dj = Gx 

rfypc 1 
Ok 

2 

2 

11 

2 

11 

2 

11 

2 

Ic 

1 

9 

10 

1 

9 

1 

9 

1 

Table 4.4« Type of equations and maximum number of solutions for qi, qj and qk 

i 

R 

R 

P 

P 

J 
R 

P 

R 

P 

1 Conditions 

Saj = 0 

dj = 0 

dj ;fc 0 and SOj ;fc 0 

Cttj^O 

COj^O 

COjssO 

Coj^feO 

Type / Number of solutions 

Ok 

2/2 

2 /2 

11/4 

2/2 

11/4 

2 /2 

11/4 

2 /2 

Tk 

1/1 

9/2 

10/4 

1/1 

9/2 

1/1 

9/2 

1/1 

Qi 

3/1 

3/1 

3/1 

2/2 

3/1 

1/1 

1/1 

1/1 

qj 

2 /2 

3 /2 

3/1 

1/1 

1/1 

2/2 

3/1 

1/1 

Order | 

Oj then Gj 

ej then Oj 

9| then Oj 

9i then rj 

6i then rj 

Oj then rj 

Oj then rj 

rj then rj 
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* Example 4.3. Solving qî  when joints i and j are revolute. In this case, equation 
[4.15] is written as: 

rF(qk)l TGI 
Rot(z, eo Rot(x, Oj) Trans(x, dj) Rot(z, ĵ) i = I i J t"̂ -17] 

Postmultiplying equation [4.17] by Rot(z, -Gj), we obtain: 

CG; -SG; 0 
COjSGj COjCGj -Sotj 0 

SOjSGj SOjCGj COj 0 
L 0 0 0 1 J 

Fx~ 

Py 
Fz 
1 . 

" COj SQ, 0 0 "I 

-SOi CBj 0 0 
0 0 1 0 

_ 0 0 0 1 J 

rox-] 
Gy 
G, 

L 1 J 

[4.18] 

Expanding equation [4.18] gives: 

CGj Fx - SGj Fy + dj = CGj Ĝ  + SGj Gy 
CoCj SGj Fx + COj CGj Fy- Sotj Fz = - SGj Gx + CGj Gy 
SOjSGjFx + SOjCGjFy + CajFz = Gz 

[4.18a] 
[4.18b] 
[4.18c] 

Three cases are considered depending on the values of the geometric parameters 
GCj and dj: 

a) Sotj = 0 (thus CoCj = ± 1), dj ;̂  0. Equation [4.18c] can be written as: 

CctjFz(qk) = Gz [4.19] 

We thus deduce that: 

- if qk = Gk, equation [4.19] is of type 2 in Gk; 

- if qk = Tk, equation [4.19] is of type 1 in rk-

Having determined qk, the components of F are considered to be known. Adding 
the squares of equations [4.18a] and [4.18b] eliminates Q\ and gives a type-2 
equation in GJ: 

FxUFy2 + dj2 + 2dj(CGjFx-SGjFy) = Gx^Gy^ [4.20] 

After obtaining Gj, equations [4.18a] and [4.18b] give a system of type-3 
equations in Gj. 

b) dj = 0 and Sotj ^ 0. Adding the squares of equations [4.18] gives: 
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||F|p = IIGIP [4.21) 

Note that ||F|p is a function of q^ whereas ||G|p is a constant: 

- if qjc = 6k» equation [4.21] is of type 2 in Q^\ 

- if qic = r|t» equation [4.21] is of type 9 in rĵ . 

Having obtained q^ and F, equation [4.18c] gives 6j using the type-2 equation. 
Finally, equations [4.18a] and [4.18b) give a system of type-3 equations in Bj. 

c) dj 9t 0 and SOj ^ 0. Writing equation [4.17] in the form: 

h= Rot(2. -Oj) Traiis(x, -dj) Rot(x, -ttj) Rot(z. -Qi) I J [4.22] 

after expanding, we obtain the third component as: 

Fj = SOj Sej Gx - SOj CGi Gy + COj G^ [4.23al 

Adding the squares of the components of equation [4.22] eliminates 6J: 

||G|p + dj2 - 2 dj (CBi G, - S9i Gy) = ||F|p [4.23b] 

By eliminating 6i from equations [4.23], we obtain: 

Here, we distinguish two cases: 

- if qic = 9 ;̂, equation [4.24] is of type 11 in 0^; 

- if qic = Tie, equation [4.24] is of type 10 in rî . 

Knowing Q^, equations [4.23a] and [4.23b] give a system of type-3 equations in 
Oj. Finally, equations [4.18a] and [4.18b] are of type 3 in 9j. 

• Example 4,4. The variables 9|, 92, 93 for the Staubli RX-90 robot can be 

determined with the following equations using the Pieper method: 

- equation for 93: - 2D3 RL4 S3 = (Px)^ -f (Py)^ -H (PZ)^ - (03)^ - (RL4)2 

" equation for Q2' (- RL^ S3 + D3) S2 + (RL4 C3) C2 = P^ 

- equations for 9,:[(-RL4 S3+ D3)C2-RL4C3S2] CI = Px 
[(-RL4S3-f D3)C2-RL4C3S2]S1 = Py 
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4.4.2.2. General solution of the orientation equation 

The spherical joint variables Sm-i, 9m and 9ni+i are determined from the 
orientation equation, which is deduced from equation [4.2] as: 

0Am.2"̂ -̂ Am l̂"̂ ^̂ A6 = [ s n a ] [4.25] 

The matrices ^Ani.2 and '"'•'̂  A5 are functions of the variables that have already 
been obtained. Using equation [3.3] and after rearranging, equation [4.2S] becomes: 

rot(z, 8m.i) rot(x, a^) rot(z, 6^) rot(x, ann.i) rot(z, 8^+1) = [ S N A ] 
[4.26] 

with[S N A l = rot(x,-<x„,.,)'«-2Ajs n a J^A^^ , 

The left side of equation [4.26] is a function of the joint variables Om-i, Qm and 
9m+] whereas the right side is known. Since rot(z, 9) defines a rotation about the 
axis ZQ = [ 0 0 1 ] 'T, then ZQ is invariant with this rotation, which results in: 

rot(z, 9) zo = zo and ZQ'^ rot(z, 9) = ZQ*̂  [4.27] 

i) determination ofd^ 

To eliminate 9m. 1, we premultiply equation [4.26] by 1^ and postmultiply it by 

zo'̂  rot(x, Om) rot(z, 9^) rot(x, 0^+1) ZQ = ZQ'̂  [ S N A ] ZQ [4.28] 

thus, we obtain: 

SamSam+iC9m + CamCam+i = A^ 

Equation [4.28] is of type 2 in 9ni and gives two solutions (Appendix 1); 

ii) determination ofOf^.j 

Having obtained 9n,, let us write: 

[ S I Nl Al ] = rot(x,am)rot(z,9m)rot(x,ann.i) [4.29] 

Postmultiplying equation [4.26] by ZQ and using equation [4.29] gives: 

rot(z, 9n,.i) Al = A [4.30] 
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The first two elements of [4.30] give a type-3 system of equations in 6^.1; 

in) determination ofOm^i 

By premultiplying equation [4.26] by zo^ and using equation [4.29], we obtain: 

[ Slz Nlz AI2 ]rot(2,9^4.1) = [ Sz Nz A^ ] [4.31] 

This gives a type-3 system of equations in Om̂ .!. 

These equations yield two solutions for the spherical joint variables. Thus, the 
maximum number of solutions of the IGM for a six degree-of-freedom robot with a 
spherical joint is eight. 

4.4.3. Inverse geometric model of robots with three prismatic joints 

The IGM of this class of robots is obtained by solving firstly the three revolute 
joint variables using the orientation equation. After this, the prismatic joint variables 
are obtaitied using the position equation. The number of solutions for the IGM of 
such robots is two. 

4.4.3.1. Solution of the orientation equation 

Let the revolute joints be denoted by i, j and k. The orientation equation can be 
deduced from equations [4.2] and [3.3] as: 

rot(z,ei)[Sl Nl Al ] rot(z,ej) [ S2 N2 A2 ] rot(z,ek) = [S3 N3 A 3 ] 
[4.32] 

where the orientation matrices [ SI Nl Al ], for I = 1,2,3, are known. The solution 
of equation [4.32] is similar to that of § 4.4.2.2 and gives two solutions. 

4.4.3.2. Solution of the position equation 

Let the prismatic joints be denoted by i', j ' and k'. The revolute joint variables 
being determined, the position equation is written as: 

TransCz, rj.) Tl Traiis(z, rjO T2 Trans(z, r̂ O = T3 [4.33] 
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r Si' Ni' Ar pr i 
withTI= ^ ^ ^ , 

L 0 0 0 1 J 

The matrices Ti, for i = 1, 2, 3, arc known. The previous equation gives a system 
of three linear equations in rj-, rj- and r̂ '. 

4.5. Inverse geometric model of general robots 

The Raghavan-Roth method [Raghavan 90] gives the solution to the inverse 
geometric problem for six dcgrcc-of-frccdom robots with general geometry (the 
geometric parameters may have arbitrary real values). In this method, we first 
compute all possible solutions of one variable qj using a polynomial equation, which 
is called the characteristic polynomial. Then, the other variables are uniquely 
derived for each qj. This method is based on the dyalitic elimination technique 
presented in Appendix 3. 

In order to illustrate this method, we consider the 6R robot and rewrite equation 
[4.2] as follows: 

Oj, IT2 2X3 3X4 = Uo^5 ^T4 [4.34] 

The left and right sides of equation [4.34] represent the transformation of frame 
R4 relative to frame RQ using two distinct paths. The joint variables appearing in the 
elements of the previous equation are: 

61,82,63,64 61,62,63,64 61,62,63 61,62,63 

61,62,63,64 61,62,63,64 61,62,63 61,62,63 

61,62,63,64 61,62,63,64 61,62,63 61,62,63 
0 0 0 1 

65,66 65.65 65,65 65,65 

65*65 65,65 65,65 65,65 

65*65 65,65 65,65 65,65 

L 0 0 0 1 

From this equation, we observe that the third and fourth columns of the left side 
are independent of 64. This is due to the fact that the elements of the third and fourth 
columns of the transformation matrix '̂̂ Tj are independent of dj (see equation [3.2]). 
From equation [4.34], we can thus establish the following equations devoid of 64: 

ai = â  [4.35a] 
Pi = Pr [4.35b] 

where the vectors a and P contain the first three elements of the third and fourth 
columns of equation [4.34] respectively, and the subscripts "1" and "r" indicate the 
left and right sides respectively. Equations [4.35] give six scalar equations. 
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It is now necessary to eliminate four of the five remaining variables to obtain a 
polynomial equation in one variable. This requires the use of the following 
additional equations: 

(aTp), = (aTp), I4.36a] 
(PTp)i = (PTP), [4.36bl 
(axP)i = (axP)r [4.36c] 
[a(pT P) - 2P(aT P)], = [a(pT P) ~ 2P(aT P)], I4.36d) 

Equations [4.36a] and [4.36b) are scalar, whereas equations [4.36c] and [4.36d] 
are vectors. They do not contain sin^(.), cos^(.) or sin(.)cos(.). We thus have 
fourteen scalar equations that may be written in the following matrix form: 

A XI = B Y [4.37] 

where: 
• XI = [ S2S3 S2C3 C2S3 C2C3 S2 C2 S3 C3 1 ]T [4.38] 

. Y = [ S5S6 S5C6 C5S6 C5C6 S5 C5 S6 C6 ]T [4.39] 

• A: (14x9) matrix whose elements are linear combinations of SI and CI; 

• B: (14x8) matrix whose elements are constants. 

To eliminate 95 and 96, we select eight scalar equations out of equation [4.37]. 
The system [4.37] will be partitioned as: 

where Al XI s Bl Y gives six equations, and A2 XI = B2 Y represents the remaining 
eight equations. By eliminating Y, we obtain the following system of equations: 

D X l = Oexl [4.41] 

where D = [Al - Bl B2*̂  A2] is a (6x9) matrix whose elements are functions of SI 
and CI. 

Using the half-angle transformation for the sine and cosine functions in equation 
l - X j ^ 2xi 9i 

[4.41] (Ci = 1 '^ and Si =": ^ with xj = tan y for i = 1, 2, 3) yields the new 
1 T" Xj 1 T Xj ^ 

homogeneous system of equations: 



82 Modeling, identification and control of robots 

EX2 = 06x1 [4.42] 

where E is a (6x9) matrix whose elements are quadratic functions of X], and: 

X2 = [ X2̂ X32 X2̂ X3 X-^ X2X32 X2X3 X2 X-p- X3 1 ]T [4.43] 

Thus, we have a system of six equations with nine unknowns. We now eliminate 
X2 and X3 dyalitically (see Appendix 3). Multiplying equation [4.42] by X2, we 
obtain six additional equations with only three new unknowns: 

EX3 = ©6x1 [4.44] 

with X3 = [ X2̂ X32 X2̂ X3 X2̂  y^-^r^-^ X'^if^s ^2^ X2X32 X2X3 X2 ]T. 

Combining equations [4.42] and [4.44], we obtain a system of twelve 
homogeneous equations: 

SX = 0,2x1 [4.45] 

where: 

X = [ X2^X32 X2^X3 X2^ X2^X32 X2^X3 X2^ X2X32 X2X3 X2 X32 X3 1 ]T 

[4.46] 

and S is a (12x12) matrix whose elements are quadratic functions of x, and has the 
following form: 

r E 06x3 1 

In order that equation [4.45] has a non-trivial solution, the determinant of the 
matrix S must be zero. The characteristic polynomial of equation [4.47], which gives 
the solution for x,, can be obtained from: 

det (S) = 0 [4.48] 

It can be shown that this determinant, which is a polynomial of degree 24, has 
(l+xi^)"* as a common factor [Raghavan 90]. Thus, equation [4.48] is written as: 

det(S) = f(xi)(l+x,2)4 = 0 [4.49] 

The polynomial f(xi) is of degree sixteen and represents the characteristic 
polynomial of the robot. The real roots of this polynomial give all the solutions for 



Inverse geometric mode! of serial robots 83 

9i. For each value of 9i, we can calculate the matrix S. The variables 62 and 83 are 
uniquely determined by solving the linear system of equation [4.45]. By substituting 
Qu ©2 «id O3 in equation [4.37] and using eight equations, we can calculate 85 and 
e .̂ Finally, we consider the following equation to calculate 84: 

^T3 =^T6Uo^3 [4.50] 

By using the (1,1) and (2,1) elements, we obtain 84 using an atan2 function. 
The same method can also be applied to six degree-of-freedom robots having 

prismatic joints. It this case, Si and Ci have to be replaced by rĵ  and r̂  m XI and Y 
respectively, i being the prismatic joint 

NOTE.- Equation [4.34] is a particular form of equation [4.2] that can be written in 
several other forms [Mavroidis 93], for example: 

^Ts^Te^^Ti = ^13 3X2 ^Ti [4.51a] 
5x^ 6X7 Oxi 1x2 = 5x4 4X3 3X2 [4.51b] 

6X7 Oxj 1x2 2X3 = 6X5 5X4 ̂ X3 [4.5 Ic] 
OXi X̂2 2X3 3X4 = 7xg 6X3 5x4 [4.5Id] 

1X2̂ X3 3X4^X5 = X̂o 7X6^X5 [4.51e] 
2x3 3X44X5^X5 = 2x, iXo^Xg [4.51f| 

with 7X6 = U o a n d % = UQ'̂  

The selection of the starting equation not only defines the variable of the 
characteristic equation but also the degree of the correspondmg polynomial. For 
specific values of the geometric parameters, certain columns of the matrix S become 
dependent and it is necessary to either change the selected variables and coliunns 
[Kiialil 94b], [Murareci 97] or choose another starting equation [Mavroidis 93]. 

When the robot is in a singular configuration, the rows of the matrix S are 
linearly dependent. In this case, it is not possible to fmd a solution. In fact, this 
method has proved the maximum number of solutions that can be obtained for the 
inverse geometric problem of serial robots, but it is hardly usable to develop a 
general numerical method to treat any robot architecture. 

4.6. Conclusion 

In this chapter, we have presented three methods for calculating the inverse 
geometric model. The Paul method is applicable to a large number of structures with 
particular geometrical parameters where most of the distances are zero and most of 
the angles are zero or ± nil. The Pieper method gives the solution for the six degree-
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of-freedom robots having three prismatic joints or three revolute joints whose axes 
intersect at a point. Finally, the general method provides the solution for the IGM of 
six degree-of-freedom robots with general geometry. 

The analytical solution, as conpared to the differential methods discussed in the 
next chapter, is useful for obtaining all the solutions of the inverse geometric model. 
Some of them may be eliminated because they do not satisfy the joint limits. 
Generally, the selected solution is left to the robofs user and depends on the task 
specifications: to avoid colUsions between the robot and its environment; to ensure 
the continuity of the trajectory as required in certain tasks prohibiting configuration 
changes (machining, welding,...); to avoid as much as possible the singular 
configurations that may induce control problems (namely discontinuity of velocity), 
etc. 



Chapter 5 

Direct kinematic model of serial robots 

5.1. Introduction 

The direct kinematic model of a robot manipulator gives the velocity of the end-
effector X in terms of the joint velocities q. It is written as: 

X = J(q)q [5.1] 

where J(q) denotes the (mxn) Jacobian matrix. 

The same Jacobian matrix also appears in the direct differential model, which 
provides the differential displacement of the end-effector dX in terms of the 
differential variation of the joint variables dq: 

dX = J(q)dq [5.2] 

The Jacobian matrix has multiple applications in robotics [Whitney 69], [Paul 
81]. The most obvious is the use of its inverse to numerically compute a solution for 
the inverse geometric model, i.e. to compute the joint variables q corresponding to a 
given location of the end-effector X (Chapter 6). The transpose of the Jacobian 
matrix is used in the static model to compute the necessary joint forces and torques 
to exert specified forces and moments on the environment. The Jacobian matrix is 
also used to determine the singularities and to analyze the reachable workspace of 
robots [Borrel 86], [Wenger 89]. 

In this chapter, we will present the computation of the Jacobian matrix and 
expose its different applications for serial robots. The kinematic model of complex 
chain robots will be studied in Chapter 7. 
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5.2. Computation of the Jacobian matrix from the direct geometric model 

The Jacobian matrix can be obtained by differentiating the DGM, X = f(q), using 
or 

the partial derivative 'T^ such that: 

Jii = 
afi(q) 

aqj fori= 1,..., mandj = 1,.... n [5.3] 

where Jjj is the (i, j) element of the Jacobian matrix J. 

This method is convenient for simple robots having a reduced number of degrees 
of freedom as shown in the following exan^le. The computation of the basic 
Jacobian matrix, also known as kinematic Jacobian matrix, is more practical for a 
general n degree-of-freedom robot. It is presented in § 5.3. 

• Example 5.1. Let us consider the three degrec-of-freedom planar robot presented 
in Figure 5.1. Let us denote the link lengths by LI, L2 and L3. 

Figure 5.1. Example of a three degree-of-freedom planar robot 

The task coordinates, defmed as the position coordinates (Px, Py) of the terminal 
point E and the angle a giving the orientation of the third link relative to frame Ro, 
are such that: 

Px = ClLl+C12L2-HC123L3 
Py= S1L1+S12L2 + S123L3 
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a = 91+92 + 03 

where CI = cos(0i), SI = sm(9i), C12 = cos(9i+92), S12 = sm(9i+92), 
C123 = cos(9i +92+93) and S123 = sin(9i +92+93). 

The Jacobian matrix is obtained by differentiating these expressions with respect 
to 9i, 92 and 93: 

-S1LI-S12L2-S123L3 -S12L2-S123L3 -S123L3 

ClLl +C12L2+C123L3 C12L2+C123L3 C123L3 

1 1 1 

53. Basic Jacobian matrix 

In this section, we present a direct method to confute the Jacobian matrix of a 
serial mechanism without differentiating the DGM. The Jacobian matrix obtained is 
called the basic Jacobian matrix, or kinematic Jacobian matrix. It relates the 
kinematic screw of frame Rn to the joint velocities q: 

Vn = 
Vn 

Jnq [5.4a] 

where V^ and a>n are the Imear and angular velocities of frame R̂  respectively. We 
note that Vn is the derivative of the position vector Pj, with respect to time, while ©n 
is not the derivative of any orientation vector. 

The basic Jacobian matrix also gives the relationship between the differential 
translation and rotation vectors (dP^, 5n) of frame Rn in terms of the differential 
joint variables dq: 

[5.4b] 

We will show in § 5.11 that the Jacobian giving the end-effector velocity X, for 
any task coordinate representation, can be deduced from the basic Jacobian Jn. 
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5.3.I. Computation of the basic Jacobian matrix 

The velocity q̂  of joint k produces the linear and angular velocities (Vk,n and 
(Ok,n respectively) at the terminal frame RR. TWO cases are considered: 

- if joint k is prismatic (Oĵ  = 1, Figure 5.2): 

J V|c,n = ak qk 
Wn=0 

where aĵ  is the unit vector along the z^ axis; 

- if joint k is revolute (0\^ = 0, Figure 5.3): 

I Vk,n = ftkqk ̂  Wn = (̂ k X Lk,n)qk 

lG)k,n = akqk 

where L^ „ denotes the position vector connecting Oĵ  to 0„. 

Thus, Vk,n and (Ô  „ can be written in the following general form: 

Vk.n = [crkak+aic(ak x Lk,n)]qk 

l®k.n = CFkakqk 

The linear and angular velocities of the terminal frame can be written as: 

n n _ 
Vn= IVk.n= S[Okak+Ok(akxLk.n)]qk 

k=l k=l 
n n _ 

C0h= Ia)k,n= I<Jkakqk 
k=l k=l 

[5.5] 

[5.6] 

[5.7] 

[5.8] 

Writing equation [5.8] in matrix form and using equation [5.4], we deduce that: 

Jn = 
a,ai+Oi(aixLi.„) ... o„an+an(a„xL„,„) 

Ojaj ... a„an 
[5.91 

Referring the vectors of Jn with respect to frame Rj, we obtain the (6xn) Jacobian 
matrix 'J„ such that: 
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1 
O. 

Figure 5.2. Case of a prismatic joint 

Figure S3. Case of a revolute joint 

*Vn = «Jnq [5.10] 

In general, we calculate Vn and o\| in frame Rn or frame RQ. The corresponding 
Jacobian matrix is denoted by '̂ Jn or Ĵn respectively. These matrices can also be 
computed using any matrix Ĵ„, for i ^ 0,..., n, thanks to the following expression: 

yn = 
O3 SAi 

'Jn [5.11] 
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where Âj is the (3x3) orientation matrix of frame Rj relative to frame Rj. 

In general, we obtain the simplest matrix *Jn when i = integer (n/2). We note that 
the matrices ^Jn, for i =: 0,..., n, have the same singular positions. 

5.3,2. Computation of the matrix^Jn 

Since the vector product aĵ  x L|t,n can be computed by aĵ  Lî  „• the k̂** column of 
*Jn, denoted as *jn;k» becomes: 

»jn;k = 
CFk*ak + 5,c*Aic'^aic^Lk,n 

cfk^aic 

Since ^IBL^ = [0 0 1 ]'^ and L̂ic,n = *̂ Pn» we obtain 

Ok >ak + Ok (- "̂ Pny 'Sk + "̂ Pnx *nk) 

5k»ak 

where '̂ Pnx and *̂ Pny denote the x and y components of the vector P̂n respectively. 

*jn;k = [5.12] 

From this expression, we obtain the k'*' column o f J„ as: 

Ok "ak + Ok (- »=p„y "sk + kp„̂  »nk) 

Ok"ak 
"Jn;k = [5.13] 

The column "jn;k 's computed from the elements of the matrix •'Tn resulting from 
theDGM. 

In a similar way, the k''' column of 'Jn is also written as: 

'Jn;k = 
Ok'ak + ak'ak('P„-'Pk) 

Ok'ak 

which gives for i = 0: 

[5.14] 
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% k = 
a k % + 5kOSk("Pn-«Pk) 

OkV 
[5.151 

In this case, we need to compute the matrices ̂ ^ for k = 1,..., n. 

NOTE. - To find the Jacobian ^JE defining the velocity of the tool frame Ro, we can 
either make use of equation [5.9] after replacing Lĵ n̂ by LÎ .E* or compute ̂ E as a 
function of "Vn, and deduce ^JE- From § 2.4.3, we can see that: 

^E=^T„X = ̂ Tn«J„q 

where ^Tn is the (6x6) screw transformation matrix defined in equation [2.47]. 
Consequently, we deduce that: 

^JE = 
O3 ^Pn 

n i - ETT n t [5.16] 

• Example 5.2, Compute the Jacobian matrix ^J^ of the StSlubli RX-90 robot. Using 
equation [5.13] and the matrices ^T^ resulting from the DGM, we obtain: 

J (1,1) = (- C6C5S4 - S6C4KS23RU - C2D3) 
J (2.1) = (S6C5S4 - C6C4)(S23RU - C2D3) 
J (3.1) = S5S4(S23RU - C2D3) 
J (4.1) = (C6C5C4 - S6S4)S23 + C6S5C23 
J (5.1) = (- S6C5C4 - C6S4)S23 - S6S5C23 
J ( 6 , l ) a - S 5 C 4 S 2 3 + C5C23 
J (1.2) = (- C6C5C4 + S6S4)(RU - S3D3) + C6S5C3D3 
J (2.2) = (S6C5C4 + C6S4)(RU ~ S3D3) - S6S5C3D3 
J (3.2) = S5C4(RU - S3D3) + C5C3D3 
J(4.2) = -C6C5S4-S6C4 
J(5,2) = S6C5S4-C6C4 
J (6.2) = S5S4 
J (1.3) = (- C6C5C4 + S6S4)RU 
J (2.3) = (S6C5C4 + C6S4)RU 
J(3,3) = S5C4RU 
J(4.3) = -C6C5S4-S6C4 
J(5.3)aS6C5S4-C6C4 
J(6.3) = S5S4 
J(l,4) = 0 
J(2.4) = 0 
J(3.4) = 0 
J (4,4) = C6S5 
J(5.4) = -S6S5 
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J(6,4) = C5 
J(l,5) = 0 
J(2,5) = 0 
J(3,5) = 0 
J (4,5) = -86 
J(5,5)=:-C6 
J(6,5) = 0 
J(l,6) = 0 
J(2,6) = 0 
J(3,6) = 0 
J(4,6) = 0 
J(5,6) = 0 
J (6,6) = 1 

• Example 5.3. Determine the Jacobian matrix ^J^ of the St̂ ubli RX-90 robot. The 
column k of the matrix ^Jg for a re volute joint is obtained from equation [5.12] as: 

Ĵ6;k = 
-^V^yh^-^^PexW 

The elements P̂̂ y and ^P^^ arc obtained from the DGM. The vectors ^s^, îiî  
and â|̂ , for k = 2, 3,4 and 6, arc deduced from the matrices ^A2, ̂ As, ̂ A4 and ^A5, 
which are also computed for the EKJM. The additional matrices to be computed are 
^Ai and ^As. Finally, we obtain: 

'J6 = 

0 
0 

S23 RL4-C2D3 

S23 

C23 

0 

-RL4+S3D3 
C3D3 

0 

0 

0 

1 

-RL4 
0 

0 

0 

0 

1 

0 
0 

0 

0 

1 

0 

0 
0 

0 

S4 

0 

C4 

0 
0 

0 

-S5C4 

C5 

S5S4 

5.4. Decomposition of tlie Jacobian matrix into tiiree matrices 

We have shown in equation [S.l 1] that the matrix Ĵ̂  could be decomposed into 
two matrices; the first is always of full-rank and the second contains simple 
elements. Renaud [Renaud 80b] has shown that the Jacobian matrix could also be 
decomposed into three matrices: the first two are always of fiill-rank and their 
inverse is straightforward; the third is of the same rank as Ĵn, but contains simpler 
elements. 
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Figure 5.4 illustrates the principle of the proposed method: the influence of the 
joint velocities is not calculated at the level of the terminal frame R|, but at the level 
of an intermediate frame Rj. Therefore, we define the Jacobian matrix Jn j as: 

Jnj = 
aiai^Oi(aixLij) ... a„an-fan(anxLn,j) 

Giai ... Gnan 
[5.17] 

The matrix Jnj is equivalent to the Jacobian matrix defining the velocity of a 
frame fixed to link n and aligned instantaneously with frame Rj. We can compute Jn 
from Jnj using the expression: 

Jn ">J 

h -Lj.„ 

O3 I3 J 

By projecting the elements of this equation into frame Rj. we obtain: 

(5.181 

'Jn = 
L 03 13 J 

'no 

with: 
'Lj,n = "AjiPn 

[5.19] 

[5.20] 

The y* column of *Jnj, deduced from equation [5.17], is expressed in frame Rj 

as: 

Jnj;k = 
5k*aic 

[5.21] 

We note that Ĵn = *Jn,n- Thus, the matrix Ĵn can be expressed by the 
multiplication of the following three matrices where the first two are of full-rank: 

SI -. 
sAi O3 

LO3 Âi O3 I3 J 
'n j [5.22] 

In general, the shift frame Rj and the projection frame R{ leading to a simple 
matrix *Jn,j are chosen such that i = integer (n/2) and j == i -f. 1. 
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Thus, for a six degree-of-freedom robot, the simplest Jacobian matrix is ^i^^4. If 
the robot has a spherical wrist, the vector L4̂ ^ is zero and consequently Ĵ̂  4 = Ĵ̂ . 

b) Renaud method 

Figure 5.4, Principle of Renaud method 

S.S. Efficient computation of tlie end-effector velocity 

Having calculated Jn, the linear and angular velocities Vn and cô  of frame RQ 
can be obtained from equation [5.4a]. However, in order to reduce the computational 
cost, it is more efficient, as we will see in Chapter 9, to use the following recursive 
equations for j = 1,..., n: 

bv j =iAj.i (J-lVj., ^ i - y , xHPj) + Oj qjiaj 

[5.23] 

where Jaj is the unit vector [0 0 1]'̂ . We initialize the algorithm by the linear and 
angular velocities of the robot base (VQ and (OQ respectively), which are zero if the 
base is fixed. 
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5.6. Dimensionof the task space of a robot 

At a given joint configuration q, the rank r of the Jacobian matrix 'Jn - hereafter 
written as J to simplify the notation - corresponds to the number of degrees of 
freedom of the end-effector. It defmes the dimension of the accessible task space at 
this configuration. The number of degrees of freedom of the task space of a robot, 
M, is equal to the maximum rank, r^ax* which the Jacobian matrix can have at all 
possible configurations. Noting the number of degrees of freedom of the robot as N 
(equal to n for serial robots), the following cases are considered [Oorla 84]: 

- if N = M, the robot is non-redundant and has just the number of joints required 
to provide M degrees of freedom to the end-effector; 

- if N > M, the robot is redundant of order (N - M). It has more joints than 
required to provide M degrees of freedom to the end-effector; 

- if r < M, the Jacobian matrix is rank deficient. The robot is at a singular 
configuration of order (M-r) . At this configuration, the robot cannot generate 
an end-effector velocity along some directions of the task space, which are 
known as degenerate directions. When the matrix J is square, the singularities 
are obtained by the zeros of det(J) = 0, where det(J) indicates the determinant 
of the Jacobian matrix of the robot. They correspond to the zeros of 
dct(J J*^)=0 for redundant robots. 

• Example 5.4. Computation of the singularities of the Stiiubli RX-90 robot. Noting 
that the Jacobian matrix ^J^ (obtained in Example 5.3) has the following particular 
form: 

'-[:^] 
we obtain det (^J6) = det (A) det (C) = - C3 D3 RL4 S5 (S23 RL4 - C2 D3). 

The maximum rank is r^ax = 6* ^̂ he robot is not redundant because it has six 
degrees of freedom. However, this rank drops to five in the following three singular 
configurations: 

fC3 = 0 
<S23RL4-C2D3 = 0 
IS5 = 0 

- when C3 = 0, the robot is fiilly extended (Figure 4.2c) or fully folded. In this 
case, the origin Oe is located on the boundary of its workspace: this elbow 
singularity has not been deduced from the inverse geometric model (§ 4.3.2, 
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Example 4.1). In this configuration, where the second row of Ĵ̂  is zero, the 
robot cannot generate linear velocity for O5 along the direction O5O2; 

- the singularity S23 RL4 ~ C2 D3 = 0 (Figure 4.2a), already deduced from the 
inverse geometric model, corresponds to a configuration in which O^ is 
located on the ZQ axis (shoulder singularity). In this configuration, where 
Pĵ  = Py = 0, tfie third row of Ĵ̂  is zero. The robot cannot generate velocity 
for Oa along the normal to the plane containing the points O2,03 and O ;̂ 

- for S5 = 0 (Figure 4.2b), the axes of the joints 84 and Bg are aligned, resulting 
in the loss of one degree of freedom of the robot. We notice that the columns 
4 and 6 of Ĵ̂  are identical. In this configuration, the robot cannot generate 
rotational velocity for frame R5 about the normal to the plane containing the 
axes Z4, Z5 and z .̂ This wrist singularity has already been deduced from the 
inverse geometric model. 

5.7. Analysis of the robot workspace 

The analysis of the workspace is very important for the design, selection and 
programming of robots. 

5.7.1. Workspace 

Let q = [qi, ..., qn) be an element of the joint space and let X = [xi, ..., x^] be 
the corresponding element in the task space, such that: 

X = f(q) [5.24] 

The joint domain Q is defined as the set of all reachable configurations taking 
into account the joint limits: 

Q = {q|qiiniii^qi^qiiiiax»Vi=l n} [5.25] 

The image of Q by the direct geometric model DGM defines the workspace W of 
the robot: 

W = f(Q) [5.26] 

Thus, the workspace W is the set of positions and orientations reachable by the 
robot end-effector. Its geometry depends on the robot architecture. Its boundaries are 
defined by the singularities and the joint limits. However, when there is an obstacle 
in the robot workspace, additional boundaries limiting the reachable zones will 
appear [Wenger 89]. 
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For robots with two joints, the workspace is easy to obtain and can be visualized 
in a plane. For a three degree-of-fireedom positioning shoulder, the workspace can be 
represented by a generic planar cross section of W. This cross section contains the 
axis of the first joint if it is revolute, whereas it is perpendicular to the axis of the 
first joint if it is prismatic. The whole workspace is obtained from the generic cross 
section by rotating it about (or translating it along) the first joint axis. However, if 
there are obstacles or joint limits, the generic planar section is not sufficient for a 
complete analysis of the workspace. 

In general, the workspace is a 6-dimensional space, which is difficult to handle. 
However, we can study its projection in the 3-dimensional position space. 

5.7.2. Singularity branches 

The singularity branches are the connected components of the set of singular 
configurations of Q. Since the singularities are always independent of the first joint, 
we can represent them in the joint space excluding the first joint. They are 
represented by surfaces of Q. However, for some particular cases, they can be 
reduced to subspaces of fewer dimensions (curves or points for example), which do 
not have a boundary in Q. 

For the two degree-of-freedom planar robot with revolute joints shown in 
Figure S.S, the determinant of the Jacobian matrix is equal to LI L2 S2. The 
singularity branches, assuming unlimited joint ranges, are defined by the lines 62 = 0 
and e2 = ± n (Figure 5.6), The corresponding workspace is presented in Figure 5.7. 

Figure 5.5. Two degree-of-freedom planar robot 

For the StMubli RX-90 robot, the joint space is partitioned by three singularity 
surfaces C3 = 0, S23 RL4-C2 D3 = 0 and S5 = 0. Figure 5.8 shows these surfaces 
in the (02» Q3,65) space and in the (82,63) plane. 
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Figure 5.6. Singularity branches of the planar robot with unlimited joints 

S2 = 0 

LUL2 

Figure 5.7. Workspace of the planar robot with unlimited Joints (LJ>L2) 

5.7.3. Jacobian surfaces 

Mapping the singularities into the workspace generally leads to surfaces (or 
subspaces with fewer dimensions) called Jacobian surfaces. These surfaces divide 
W into regions where the number of solutions of the IGM is constant and even [Roth 
76], [Kholi 85], [Burdick 88], In the presence of joint limits, additional boundaries 
appear in W, which define new regions in which the number of solutions of the IGM 
is always constant but not necessarily even [Spanos 85]. The Jacobian surfaces can 
be defined as the set of points in W where the IGM has at least two identical 
solutions [Kholi 87], [Spanos 85]. When the robot has three identical solutions for a 
point of the Jacobian surface, the robot is said to be cuspidal [El Omri 96]. 
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Figure 5.8. Singularity branches of the Stdubli RX'90 robot 

In the case of a three degree-of-freedom robot, if the Jacobian surfaces are 
subspaces of fewer dimensions (for example a curve or a set of isolated points), the 
IGM for these points has an infmite number of solutions. 

For the two degree-of-freedom planar robot shown in Figure 5.5, the Jacobian 
surfaces correspond to the singular configurations "extended arm" and "folded arm". 
They are represented by the circles with radii LI + L2 and LI •« L2 respectively 
(Figure 5.7). 

For the anthropomorphic shoulder of the Staubli RX-90 robot, the Jacobian 
surfaces in the position workspace are of two types (Figure 5.9). The first is 
associated with the singular configurations where the point O5 lies on the axis of the 
first joint. Their reciprocal mapping in Q give the singularity surfaces defined by 
S23RL4 - C2D3 = 0. For any point of these configurations, the IGM has an infinite 
number of solutions since 6] can be chosen arbitrarily. The other type of Jacobian 
surface corresponds to the singular configuration C3 = 0, and is represented by the 
surfaces of the spheres whose center is OQ, with radii D3 + RL4 ("extended arm" 
configuration) and D3 - RL4 ("folded arm" configuration) defining the external and 
internal boundaries of the workspace respectively. For the Staubli RX-90 robot, the 
internal sphere is reduced to a point because D3 = RL4. 

5.7.4. Concept of aspect 

The concept of aspect has been introduced by Borrel [Borrel 86]. The aspects are 
the connected regions of the joint space inside which no minor of order M extracted 
from the Jacobian matrix J is zero, except if this minor is zero everywhere in the 
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joint domain. For a non-redundant robot manipulator, the only minor of order M is 
the Jacobian matrix itself Therefore, the aspects are limited by the singularity 
branches and the joint limits (Figures 5.6 and 5.8). Consequently, they represent the 
maximum singularity-free regions. 

D3+RU 

D3 RL4 
M • 

/ M r 
o. 

D3+RU 

D3-RU 

Figure 5.9. Generic section of the workspace of an anthropomorphic shoulder 
with unlimited joints 

For a long time, it has been thought that the aspects also represent the uniqueness 
domains of the IGM solutions. Although this is indeed the case for most industrial 
robots with simple architectures, which are classified as non-cuspidal robots 
[El Omri 96], the IGM of cuspidal robots can have several solutions in the same 
aspect. Thus, a cuspidal robot can move from one IGM solution to another without 
encountering a singularity. Figure 5.10 shows a cuspidal robot with three revolute 
joints whose successive axes are perpendicular. The inverse geometric solution of 
the point X (Figure 5.11a) whose coordinates are Px = 2.5, Py = 0, Pz = 0 is given by 
the following four configurations (in degrees): 

qO)= [-101.52-158.19 104.88 ]Tq(2) = [-50.92 -46.17 141.16 ]T 

q(3) = [ -164.56 -170.02 -12.89 ]T q(4) = [ 10.13 -22.33 -106.28 ]T 

The joint space of this robot is divided into two aspects (Figure 5.11a). We 
notice that the configurations q̂ ^̂  and q̂ ^̂  are located in the same aspect whereas 
q̂ )̂ and q̂ ^̂  fall in the other aspect. 

For cuspidal robots, the uniqueness domains of the IGM in the joint space are 
separated by the characteristic surfaces [Wenger 92], which are defined as the 
mapping of the Jacobian surfaces in the joint space using the IGM. Figure 5.11b 
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shows the singularities and the characteristic surfaces of the shoulder structure of 
Figure 5.10. 

There is no general simple rule to identify the architectures of non-cuspidal 
robots. However^ Table 5.1 gives a list of non-cuspidal shoulders as presented in 
tWenger93].[Wenger98]. 

.^ ^2=^ _ x ^3=2 M £ _ , , 

Figure 5.10. Example of a cuspidal shoulder (Wenger 92] 

Table 5.L Non<uspidal shoulders 

H P P F 

all 

RPP 

all 

PRP 

ail 

PPR 

all 

RRR 
sa2sO 

sa3=0 
d2=0 
d3=0 

{ca2=H), r2=0 
and r3sO) 

PRR 
ca2=0 

sa3=0 
d3=:0 

(sa2=0 and 
r3=0) 

(sa2M) 

and ca3=0) 

RPR 
ca2=0 

ca3=0 

s2rK) 
d3+d2c2s50 

RRP 1 
sa2=K) 1 
ca3ssO 
d2=0 

(ca2=0, sa3=0 
and r2=0) 

d3-i-d4c3=K) 

5.7.5. ^connected subspaces 

The t-connected subspaces are the regions in the workspace where any 
continuous trajectory can be followed by the robot end-effector. These subspaces are 
the mapping of the uniqueness domains in W using the DGM. For the non-cuspidal 
robots, the largest t-connected subspaces are the mapping of the aspects (and more 
generally of the free connected regions of the aspects when the environment is 
cluttered with obstacles [Wenger 89]). We do not present here the definition of the t-
connected subspaces for the cuspidal robots. The interested reader can refer to 
[El Omri 96]. 
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For the two dcgrce-of-frecdom planar robot shown in Figure 5.5, the straight line 
S2 = 0 separates the joint space domain into two aspects (Figure 5.12a) 
corresponding to the two solutions of the IGM, 62 > 0 and 62 < 0, 

The mapping of these aspects in the workspace is identical if the joint ranges are 
equal to 2n. Figure 5.12b shows, for certain joint limits Oĵ ax ^^^ 6imin» A^ t* 
connected regions: the hatched and non-hatched zones represent the mapping of the 
aspects 62 > 0 and 82 < 0 respectively. The trajectory PP' is located in the region 
mapped by the aspect 62 < 0: thus it can only be realized if the initial configuration 
of the robot is 62 < 0. Otherwise, one of the joints reaches its limit before arriving at 
the final position. 

.'i'^ 

>% 

:\ 

> ^ ^ ^ ^ Aspect 1 ?8Ssg% 

<. 

Joint space Operational space (z, p = "V x^ + y^) 

Figure 5.11a. Aspects and workspace of the cuspidal shoulder of Figure 5.10 

singularities 

characteristic 
surfaces 

Figure 5.11b. Singularity branches and characteristic surfaces of the cuspidal shoulder 
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S2 = 0 

j®lmax 

Figure S.12a. Aspects in the presence of joint limits 

£\ lit n ^Ns. ^*N *̂  ^ î"V 

Figure 5,12b. t-connected regions in the workspace 

5.8. Velocity transmission between Joint space and task space 

5.8.1. Singular value decomposition 

At a given configuration, the (nun) matrix J represents a linear mapping of the 
joint space velocities into the tasic space velocities. For simplicity, we write the basic 
Jacobian matrix J^ as J. When the end-effector coordinates are independent, we 
have n = N and m = M. 

The singular value decomposition (SVD) theory states that for any (mxn) matrix 
J of rank r [Lawson 74], [Dongarra 79], [Klema 80], there exist orthogonal matrices 
U and V of dimensions (mxm) and (nxn) respectively such that: 
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J = UZVT' [5.27] 

The (mxn) matrix Z has the following form: 

^rxr "rx(n-r) 

z = 0(m-r)xr 0(m-r)x(n-r) J 
[5.28] 

S is an (rxr) diagonal matrix, formed by the non-zero singular values of J, which 
are arranged in decreasing order such that Gi > 02 ̂  ... ^ Of. The singular values of J 
are the square roots of the eigenvalues of the matrix J^ J if n > m (or J J^ if n < m). 
The columns of V are the eigenvectors of and are called right singular vectors or 
input vectors of J. The columns of U are the eigenvectors of J J'̂  and are called left 
singular vectors or output vectors. 

Using equation [5.27], the kinematic model becomes: 

X = UZV^q [5.29] 

Since GJ = 0 for i > r, we can write: 

X = ioiUiVi^q [5.30] 
i==l 

From equation [5.30], we deduce that (Figure 5.13): 
~ the vectors Vj, ..., V̂  form an orthonormal basis for the subspace of q 

generating an end-effector velocity; 
- the vectors \r+\, •., Vn form an orthonormal basis for the subspace of q 

giving X = 0. In other words, they define the null space of J, denoted by fÂ J); 
- the vectors Ui, ..., Û  form an orthonormal basis for the set of the achievable 

end-effector velocities X . Hence, they define the range space of J, denoted by 

my. 
- the vectors Uf̂ -i, ..., Um form an orthonormal basis for the subspace 

composed of the set of X that cannot be generated by the robot. In other 
words, they define the complement of the range space, denoted by !KiJ)^\ 

- the singular values represent the velocity transmission ratio fi-om the joint 
space to the task space. In fact, multiplying equation [5.30] by Uĵ  yields: 

Uî X̂ = aiVi^q fori=l,...,r [5.31] 
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Figure 5.13. Null space and range space of J (from [Asada 86 J) 

- since J*̂  = V 2 U'̂ , wc deduce that: 

5.8.2. Velocity elUpsoid: velocity transmission performance 

The velocity transmission performance of a mechanism can be evaluated through 
the kinematic model [5.1]. Let us suppose that the joint velocities are limited such 
that: 

- <lmax ^ q ^ <lmax [5.32] 

At a given configuration q, the task space velocity satisfying these conditions 
belongs to: 

'•̂ min S A S An [5.33] 

with: 

Xmax = max(J(q) q) 

Xmin = min(J(q) q) 

[5.34] 

[5.35] 

Thus, the set of possible joint velocities (equation [5.32]) can be represented 
geometrically by a hyper-parallelepiped in the joint space. Equation [5.33] can also 
be represented by a hyper-parallelepiped in the task space. In this section, we 
develop another common approach to studying the velocity transmission between the 
joint space and the task space using an analytical ellipsoidal representation. 
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Let us consider the joint velocities contained in the unit sphere of the joint 
velocity space, such that [Yoshikawa 84b]: 

q T q < 1 [5.36] 

We can show that the corresponding velocities in the task space are defined by 
the ellipsoid: 

X T ^ j T y i x < 1 [5.37] 

The velocity ellipsoid is a useful tool for analyzing the velocity transmission 
performance of a robot at a given configuration. It is called the manipulability 
ellipsoid. The principal axes of the ellipsoid are given by the vectors Uj, ..., Um, 
which are the eigenvectors of J J^. The lengths of the principal axes are determined 
by the singular values Oj ..., Om of J. The optimum direction to generate velocity is 
along the major axis where the transmission ratio is maximum. Conversely, the 
velocity is most accurately controlled along the minor axis. Figure 5.14 shows the 
velocity ellipsoid for a 2R planar mechanism. 

The volume of the velocity ellipsoid of a robot gives a measurement of its 
capacity to generate velocity. Consequently, we define the velocity manipulability of 
a robot as: 

w(q) = Vdet[J(q)jT(q)] 

For a non-redundant robot, this expression becomes: 

w(q) = |det[J(q)]| 

[5.38] 

[5.39] 

r 
^2 

^ 

J 
Joint space Task space 

Figure 5.14. Velocity ellipsoid for a two degree-of-freedom planar robot 
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5.9. Static model 

In this section, we establish the static model» which provides the joint torques 
(for revolute joints) or forces (for prismatic joints) corresponding to the wrench 
(forces and moments) exerted by the end-effector on the environment. We also 
discuss the duality between the kinematic model and the static model. 

5.9.1. Representation of a wrench 

Let us recall (§ 2.6) that a wrench ITj is represented by the screw, which is 
composed of a force f| and a moment nii: 

••[;i (5.40] 

We assume, unless otherwise stated, that the moment is defined about the point 
Oj, origin of frame Rj. Let the static wrench Ĵ n to be exerted on the environment be 
defined as: 

![;„ = ^" U [ fx fy fz mx my m^ ]T [5,41j 
Lrocn J 

The subscript n indicates that the wrench is expressed at the origin On of frame 
Rn. 

5.9.2. Mapping of an external wrench into joint torques 

To compute the joint torques and forces Fe of a serial robot such that its end-
effector can exert a static wrench Ŝ n, we make use of the principle of virtual work, 
which states that: 

rLdq*=lf„ 
dPn 

[5.42] 

where the superscript (*) indicates virtual displacements. 

* * 
Substituting dP„ and 8„ from equation [S.4b] gives: 
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T.^il^n [5.43] 

We can use either the Jacobian matrix "Jn or ^J„ depending on whether the 
wrench l̂ n ŝ referred to frame Rn or frame RQ respectively. 

5.9.3. Velocity'force duality 

The Jacobian matrix appearing in the static model (equation [S.43]) is the same 
as that used in the differential or kinematic model. By analogy with the velocity 
transmission analysis (§ 5.8.1), we deduce the following results (Figure 5.15) 
[Asada 86]: 

- the torques of the actuators are uniquely determined for an arbitrary wrench IT; 
the range space of J^, denoted as J^J^), is the set of T balancing the static 
wrench IT according to equation [5.43]; 

- for a zero T, the corresponding static wrench can be non-zero; we thus define 
the null space of J^, fA^J )̂, as the set of static wrenches that do not require 
actuator torques in order to be balanced. In this case, the endpoint wrench is 
borne by the structure of the robot. Note that the null space of J'̂ , fA^J )̂, 
which is the orthogonal complement of !^J), also represents the set of 
directions along which the robot cannot generate velocity; 

- some joint torques T cannot be compensated by t These torques correspond 
to the vectors of the null space fA^J), orthogonal complement of the space 

The basis of these spaces can be defined using the columns of the matrices U and 
V of the singular value decomposition of J as indicated for the velocity case 
(§5.8.1). 

Analogously, we can study the force transmission performance using a force 
manipulability ellipsoid, which corresponds to the set of achievable wrench in the 
task space 9P" corresponding to the constraint T^ T < 1. Thus, the force ellipsoid is 
defined by if J J^ IT < 1. Consequently, we can deduce that the velocity ellipsoid 
(equation [5.37]) and the force ellipsoid have the same principal axes but the axis 
lengths are reciprocal (Figure 5.16). This means that the optimum direction for 
generating velocity is the optimum direction for controlling force. Similarly, the 
optimal direction for exerting force is also the optimum direction for controlling 
velocity. 

From the control point of view, this behavior makes sense: the velocity is 
controlled most accurately in the direction where the robot can resist large force 



Direct kinematic model of serial robots 109 

disturbances, and force is most accurately controlled in the direction where the robot 
can rapidly adapt its motion. 

X 6 9 P 

m^) 
Non-accessible 
domain 

Non-accessible 
domain 

Figure 5.15. Velocity-force duality (from [Asada 86]) 

Figure 5.16. Velocity and force ellipsoids 
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5.10. Second order kinematic model ̂  

The second order kinematic model allows us to compute the acceleration of the 
end-effector in terms of positions, velocities and accelerations of the joints. By 
differentiating equation [5.1] with respect to time, we obtain the following 
expression: 

X = Jii + j q [5.44] 

where: 

J(q.q) = ^ J ( q ) [5.45] 

Using the basic Jacobian matrix, the second order kinematic model can be 
written as: 

Vn 

«OhJ 
= Jnii + Jnq [5.46] 

However, it is most efficient from the computational cost point of view to obtain 
Vn and &n ^om the following recursive equations, for j = 1, ..., n, which will be 
developed in Chapter 9: 

Jd)j =iAj.i J->d)j.i + Oj (qj Jaj + JcDj.i x qjiaj) 

iUj=J©j + i©ji©j [5.47] 

UVj =iAj.i (J-̂ Vj.i + J-̂ Uj.iMPj) + Oi (qj Jaj + 2ia)i., x qjJaj) 

The angular velocities JcOj.i andicOj are calculated using equation [5.23]. 
In certain applications, such as the control in the task space (§ 14.4.3), we need 

to compute the vector J q. Instead of taking the derivative of J with respect to time 
and multiplying by q, it is more efficient to make use of the recursive equations 
[5.47] with q equal to zero in order to leave out the terms involving q [Khalil 87a]. 
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5.11. Kinematic model associated with the tasic coordinate representation 

Let X = -̂  be any representation of the location of frame Rn relative to frame 

Ro, where Xp and Xr denote the position and orientation vectors respectively. The 

relationships between the velocities Xp and Xr and the velocities V̂n and (̂Oh of 
frame Rn are given as: 

Xp = Qp^V„ 
[5.48] 

Similar relations can be derived to express the differential vectors dXp anddXr 
as functions of the vectors ̂ dPn and Ŝn* 

|dXp = QpOdP„ 

In matrix form, equation [5.48] becomes: 

Xp 

Lx,. 
" Q p O s l 

. 0 3 Or J 

\ \ ' 

[\. 
= a 

"•v.i 
. \ \ 

Using equation [5.4a], we deduce that: 

(Vp 

LX, 

with: 

Jx = Q°Jn 

= QOj„q = J ,q 

[5.49J 

{5.50] 

[5.51] 

t5.52] 

The matrix Op is equal to I3 when the position of frame RQ is described by the 
Cartesian coordinates. 

In this section, we show how to calculate Q, and 0, ' ' for different orientation 
representations. These expressions are necessary for establishing the kinematic 
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model corresponding to the representation at hand. When the orientation description 
is not redundant, the inverse of Q can be written as: 

a^ = 
h 03 

LO3 fir* 
[5.53] 

If the description of the orientation is redundant, which is the case with the 
direction cosines and the quaternions (Euler parameters), the matrices Qr* ̂ ^^ 
consequently Q, are rectangular. We then use the so-called left inverse, which is a 
particular case of the pseudoinverse (Appendix 4). The left inverse is defined by: 

[5.54] 

[5.55] 

with: 

h O3 1 

.O3 Or^J 

JQ* = (QT0) ->QT 

jo+Q = l6 

Such a matrix exists if Q is of rank 6, which means that Of is of rank 3. 

5.11.1. Direction cosines 

The velocity of the vectors s, n, a are given by: 

[5.56] 

Using the vector product operator defined in [2.32], equations [5.56] can be 
written in the following matrix form [Khatib 80]: 

Xr = 

[%' 
°An 

L»i„. 
rr -On '(Oh = QcD^'Wh [5.57] 

where QcD '̂  > (^^^) matrix. To calculate Q^D' ^® " ^ ^^ ^̂ *̂ ^̂ '̂-
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QcD ^ D = 2 I3 [5.58] 

Using equation [5.55] and taking into account that the matrices s, n, a are skew-
symmetric, we obtain: 

QCD == 2 ^ D = 2 t ^̂ n ^^n^an] [5.59] 

5.11.2. Euler angles 

We deduce from § 3.6.1 that ^ is the rotation angle about zo = t ^ ^ 1 ]'^, 9 is 
the rotation angle about the current x axis (after applying rol(z, 0)) whose unit 
vector with respect to RQ is [ C<t> S<t> 0 J'T, and \|r is the rotation angle about the 
current z axis (after applying rot(z, <t>) rot(x, 6)) whose unit vector components with 
respect to RQ are [ S^Se - C(t)Se CO ]T. Thus, the velocity of frame Rn relative to 
frame RQ is given by: 

Or,> = 
ro" 

0 
L 1 . 

• + 
' C d . ' 

S(|> 
. 0 . 

e + 
s<t>se 1 

-C(|>se 
. ce J 

V (5.601 

thus: 

0/.V = 

0 c^ S(|»se 1 

0 S<|» -C(tiS9 

1 0 ce J 

r M 
1 • 

e 
L V J 

[5.61] 

which we identify with: 

V = aEulXr = QE. Eul 

LV J 

(5.621 

By taking the inverse of Qg^,, we obtain: 
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-S<|)cotge C<|>cotge 1 

QEUI = 1 C<t> S<|) 0 1 [5.63] 

L S(t>/se -<:(t>/se o 

QEUI is singular when S6 = 0, as already obtained in § 3.6.1. 

5.11.3. RoU'PUch-Yaw angles 

Similarly, we can write: 

»(0h = 

"0 -S(t> CiK^e] 

0 c<i> s<t»ce 
u 1 0 -se J 

\ k 
1 • 

e 
L V -

- ^RTL 

k\ 
e 

_ V J 

[5.64] 

from which we obtain: 

r Q tge s<t> tge 1 1 
ORTL = -S( | ) C^ 0 [5.65] 

L c<i>/ce S(t>/ce o J 

This matrix is singular when CO = 0, as already obtained in § 3.6.2. 

5.11.4. Quaternions 

Differentiating equation [3.34] with respect to time and equating the diagonal 
elements with those of equation [5.56] leads to the following equation: 

2(QiQi + Q2Q2) = (Q2Q4 - Q1Q3H ~ (Q2Q3 + QiQ4)Ci>z 

2(QiQi + Q3Q3) = (Q2Q3 - QiQ4)co, - (Q3Q4 + QiQ2)cox 

2(QiQi + Q4Q4) = (Q3Q4 - QiQ2)(0x - (Q2Q4 + QiQ3)<0y 

By differentiating equation [3.31] with respect to time, we obtain: 

t [5.66] 

Q1Q1+Q2Q2 + Q3Q3 + Q4Q4 = 0 [5.67] 
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From equations [S.66] and [S.67], we deduce that: 

Xr = Q = IQi Q2 Q3 Q4f = QQ V 

with: 

[5.68] 

O Q ^ 

-Q2 -Q3 -<J4 

Qi Q4 -Q3 

-<54 Qi Q2 

L Q3 -Q2 Qi J 

[5.69] 

To obtain the inverse relationship, we use the left inverse. While taking into 
T 1 

account that QgnQ'^x we obtain: 
+ T 

[5.70] 

We note that, since the integration of the angular velocity ©̂n does not yield an 
orientation representation, equation [S.69] can be used to obtain Q whose 
integration gives the orientation by the Quaternion representation. 

5.12. Conclusion 

In this chapter, we have shown how to obtain the kinematic model of a robot 
manipulator using the basic Jacobian matrix. This model allows us to compute the 
linear and angular velocities of the end-effector in terms of the joint velocities. The 
Jacobian matrix can be decomposed into two or three matrices containing simpler 
terms. 

Then, we have shown how to use the Jacobian matrix to analyze the workspace 
and the velocity space of a robot. We have also demonstrated how to use the 
Jacobian matrix to obtain the static model and we have highlighted the duality of 
this model with the kinematic model Finally, the kinematic models associated with 
the various representations of the task coordinates have been established. 

The kinematic model can also be used to find a numerical solution to the inverse 
geometric problem for a general robot. The necessary tool to obtain this solution is 
the inverse kinematic model, which is the topic of the next chapter. 



Chapter 6 

Inverse kinematic model of serial robots 

6.1. Introduction 

The inverse kinematic model gives the joint velocities q for a desired end-
effector velocity X. This model is equivalent to the inverse differential model, which 
determines the differential variation of the joint variables dq corresponding to a 
given differential displacement of the end-effector coordinates dX. We obtain the 
inverse kinematic model by solving a system of linear equations analytically or 
numerically. The analytical solutions, whenever they exist, offer much lower 
computational complexity than the numerical solutions, but all the singular cases 
must be considered separately on a case by case basis [Chevallereau 87]. Thus, the 
computational complexity of numerical methods is compensated by its generality in 
handling the regular, singular and redundant cases in a unified way. 

In this chapter, we present the techniques used to develop an inverse kinematic 
model for the regular, singular and redundant cases. The analytical solution is 
developed for the regular case. The numerical methods presented for the other cases 
are based essentially on the pseudoinversc of the Jacobian matrix. Finally, we show 
how to take advantage of redundancy in the inverse kinematic problem using a 
minimum description of tasks. We assume that the reader is familiar with the 
techniques of solving linear equations, which are exposed in Appendix 4. 

6.2. General form of the kinematic model 

From equations [S.22] and [S.SO], whatever the method used to describe the end-
effector coordinates, the direct kinematic model can be expressed as: 
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• 
X = 

"Op 03 "1 

- O 3 O r J L03 °AiJ 
[13 
L03 

or in compact form as: 

X = Oj,q 

Equat ion [6.1] can be written as: 

. A "1 

-'Lj.n 1 
I3 J 

•Jnjq [6.1] 

[6.2] 

^nj — Jnj ^. 

with: 

I3 'Lj,„ 

LO3 I3 

'Ao O3 

O3 'AoJ 

Op' O3 

O3 Q,^J 

[6.3] 

[6.4] 

We find in § S.ll the expression of the pseudoinverse 0̂ '*' for different 
representations of the orientation, while Qp'* = I3 if the Cartesian coordinates are 
used to describe the position. 

Since the elements of 'Jgj are simpler than those of ^J^, equation [6.3] is more 
appropriate for developing an analytical solution to the inverse kinematic problem. 
To simplify the notation, we will use the following form for both equations [6.2] and 
[6.3]: 

X = J q [6.5] 

NOTE.- If n < 6, we cannot use the Jacobian matrix 'J^j systematically. The 
singularities of this matrix do not take into account the corresponding particular 
choice of the task coordinates [Borrel 86]. 

6*3. Inverse tdnematic model for a regular case 

In this case, the Jacobian matrix J is square and of full rank. Thus, it is possible 
to move the end-effector with finite velocity in any desired direction of the task 
space. The joint velocities can be evaluated using one of the following methods. 
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6.3.L First method 

We compute J'^ the inverse of J« either numerically or analytically. Then, the 
joint velocity vector q is obtained as: 

q = J ' X 

If the matrix J has the following form: 

the matrices A and C being square and invertible, it is easy to show that: 

[6.61 

[6.7] 

L -C->BA-> C-> J 
[6.8] 

Consequently, the inverse of J reduces to the inverse of two matrices of smaller 
dimension. For a six degree-of-freedom robot with a spherical wrist, the general 
form of J is given by equation [6.7] where A and C are (3x3) matrices [Gorla 84]. 

6J.2. Second method 

In this method, instead of solving a linear system of n equations in n unknowns, 
the problem is reduced to solving two linear systems of equations of lower 
dimensions. In general, this technique requires less computational complexity. Let us 
take for example a six degree-of-freedom robot with a spherical wrist whose 
Jacobian matrix (see Example 3.3) can be written as: 

X, 

XbJ 

_ r A ©3 

' ' L B C 
4a 

Lqb 
[6.9] 

A and C being (3x3) regular square matrices. 

The solution q is given by: 

qa = A ' X, 

qb = C-'[Xb-Bq,] 
[6.10] 
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which, a priori, is simpler than that obtained by the first method. 

* Example 6.1. Calculate the inverse kinematic model of the SUiubli RX-90 robot. 
The Jacobian ^Je has been computed in Example 5.3. We develop the solutions 
according to equations [6.8] and [6.10]. 

i) first method. The inverses of A and C are respectively: 

A ' = 

0 0 VI 

0 V3 0 

L-1/RL4 V2V3/RL4 0 J 

C-' = 

with: 

VI = 

V4 1 -V5 

S4 0 C4 

-C4/S5 0 S4/S5 

1 
S23RL4-C2D3 

V2 = -RL4 + S3D3 

^^ - C3D3 
V4 = C4cotg5 
V5 = S4cotg5 

Using equation [6.8], we obtain: 

-1 _ 

with: 

V6 = 

r 0 
0 

-1/RL4 

-S4C5V7 

C4/RL4 

L S4V7 

S3 

0 

V3 

V2V3/RL4 

V5V6 

-C4V6 

VI 

0 

0 

V8 

-S23S4V1 

0 

0 

0 

V4 

S4 

0 

0 

0 

1 

0 

0 

0 

0 

-V5 

C4 

-S4V6/S5 S23C4V1/S5 -C4/S5 0 S4/S5 -J 

C3RL4 
1 

•̂̂  - S5RL4 
V8 = (-S23V4-C23)V1 
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The computation of q by equation [6.8] needs 18 additions, 47 
multiplications/divisions and 8 sine/cosine functions; 

I'l) second method. We calculate successively qa and %: 

qa = 

qi 

q2 

Lqs. 

VIX3 

V3X2 

L(-X| + V2V3X2)/RL4. 

Xb-Bqa = 

X4. 

X5' 

.XfiJ 

X4-S23qi 

X5-C23q, 

LXfi-qa-qs. 

qb = 

q4 

qs 

Lqe-

= c-> 

X4 

X5. 

.X6-_ 

s 

C4 cotgS X4' -I- X5' - S4 cotgS X '̂ 

S4X4.-fC4X6' 

This solution requires 12 additions, 22 multiplications/divisions and 8 
sine/cosine functions. 

6.4. Solution in tlie neighborliood of singularities 

When the robot is non-redundant, the singular configurations are the roots of 
det(J) = 0. In the redundant case, they are given by the roots of det(Jj''') = 0. Thus, 
singularities are identified by the rank deficiency of the matrix J, which physically 
represents the inability of the robot to generate an arbitrary velocity in the task 
space. The neighborhood of a singular position is more precisely detected by using 
the singular values. In fact, the decrease of one or several singular values is 
generally more significant to indicate the vicinity of a singular configuration than 
that of examining the value of the determinant. In the neighborhood of these 
configurations, the use of the classical inverse of the Jacobian matrix will give 
excessive joint velocities. Since such high velocities are physically unrealizable, we 
cannot obtain an accurate motion. 
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The redundancy can be exploited to design robots that avoid singularities 
[Hollerbach 84b], [Luh 85a]. However, robots with revolute joints will have 
unavoidable singularities [Baillieul 84]. In § 6.S, we will see that redundancy may be 
exploited to go away from avoidable singularities [Baillieul 84]. An avoidable 
singularity is a singular configuration where the corresponding tool location can be 
reached with a different non-singular configuration. 

6.4.1. Use of the pseudoinverse 

The most widely proposed methods for solving the inverse kinematic problem 
near singularities involve the use of the pseudoinverse J**" of the matrix J (Appendix 
4): 

q = r x [6.11] 

This solution, proposed by Whitney [Whitney 69], minimizes ||q|p and ||X-Jq|p. 
Depending on X, the following cases are distinguished: 

• X belongs to ^ J ) , representing the range space of J: equation [6.11] gives an 
exact solution with zero error even though the inverse Jacobian J"' is not 
defined; 

• X belongs to the subspace of the degenerated directions l^J)-^: there are no 
joint velocities that can generate this velocity. In this case, the solution [6.11] 
gives q = 0. If the next desired velocity is also defined along this direction, the 
robot is blocked and it is necessary to define strategies to release it 
[Chevallereau 88]; 

• X belongs to both !Hii) and !%J)^: the solution [6.11] gives q, which only 
realizes the components belonging to f^J). 

A major shortcoming of this method is that it produces discontinuous joint 
velocities near singularities [Wampler 86]. This can be seen by expressing the joint 
velocity solution in terms of singular value decomposition (§ 5.8.1). In fact, far from 
singularities, the joint velocities are given by: 

ml 
q = I - V i U i T X [6.12] 

i=l"» 

While approaching a singularity, Cmin becomes small, leading to high joint 
velocities. At singularity, the smallest singular value Gmin becomes zero, 
consequently, it is not taken into account any more. The summation in equation 
[6.12] is carried out up to m-1 , and the joint velocity q decreases significantly. 
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NOTE,- Both ||q|p and | |X-Jq|p may contain elements with different units. 
However, using radians for the angles and meters for the distances gives good results 
for industrial robots of common size (1 to 2 meters reach). 

6.4.2. Use of the damped pseudoinverse 

A general approach to solving the problem of discontinuity of the pseudoinverse 
solution at a singular configuration is to use the damped least-squares method, which 
is known as the Levenberg-Marquardt stabilization method [Wampler 86], 
[Nakamura 87]. This solution minimizes the following expression: 

| | X - J q | p + a2||q||2 [6.13] 

where a is a constant. 

This new criterion means that the end-effector tracking error is weighted against 
the norm of joint velocity by using the factor a , also known as the damping factor. 
This solution is typically obtained as the least-squares solution of the following 
system: 

[i]'-.! X 

Onxl 
16.141 

which is given as: 

qa = [jT'J + a ^ y - i j T x [6.15] 

When n > m, the following equivalent relation is easier to compute 
[Maciejewski 88]: 

qa = J^WJ^ + a^ImHX [6.16] 

Using the singular value decomposition, the solution is written as: 

q a ^ . I ^ ^ V i U i ^ X [6.17] 
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Gj 1 Gj Gj 

If G j » a, then ZTTZi ~ •::r- If ^ ' i « ct, then -75—5 = -7 . The error due to the 

damping factor a in the joint coordinates is expressed as: 

The error in X is obtained as: 

^ Or «, • 

ex = J e q = I ^ i ; ^ U i U i T x [6.19] 

The damping factor a limits the norm of the solution. However, at positions far 
away from singularities, no damping is needed. Thus, a trade-off must be found 
between the precision of the solution and the possibility of its realization. 

Wamplcr [Wampler 86] proposes to use a fixed damping factor a = 0.003, while 
Nakamura [Nakamura 86] suggests the computation of the damping factor as a 
function of the manipulability w (equation [S.38]) as follows: 

a^a,il-^)2 ifw<wo ^̂ ^̂ ^ 

a = 0 ifw^wo 

where OQ is a positive constant and WQ is a threshold, which defines the boundary of 
the neighborhood of singular points. 

A more appropriate solution can be obtained by adjusting the value of a as a 
function of the smallest singular value G(iun> which is the exact measure of the 
neighborhood of a singular position. Maciejewski and Klein [Maciejewski 88] 
propose to compute the damping factor as follows: 

fa = e2-Gmin2 ifG^in^e , , ^ „ 
1 fx r [6.21] 
[a = 0 ifamin>e 

where E is a constant. 

In [Maciejewski 88], we find an efficient method to estimate Gmin- In the 
damping least-squares method, the robot can stay blocked in a singular configuration 
if the desired velocity is along the degenerated directions, i.e. when (equations 
[5.30] and [5.31]): 
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X = lUi(UiTX) [6.22] 

where r < m gives the rank of J. 

6.4.3. Other approaches for controlling motion near singularities 

The kinematic model, which is a first order linearization, does not give an exact 
solution respecting the actuator constraints in the neighborhood of singularities. 
Some authors [Nielsen 91], [Chevaltereau 98] have used the IGM or a kinematic 
model of higher order to determine the joint variables corresponding to a Cartesian 
motion passing through a singularity. Recently, it has been shown [Lloyd 96] that the 
end-effector could move along any specified path using a suitable time law. 

To show the efficiency of such techniques, let us consider the case of a two 
degree-of-freedom planar robot in the singular configuration "extended arm". Let us 
suppose that we want to move the terminal point towards the origin along the x-axis 
(Figure 6.1a) (which is a degenerated direction for the kinematic model). It is easy to 
deduce from the kinematic model that a constant velocity motion along this direction 
is not feasible. However, a motion with a constant end-effector acceleration and a 
zero initial velocity can be proved realizable (Figure 6.1b) by developing the IGM 
up to the second order [Nielsen 91] or by using the second-order kinematic model 
[Chevallereau 98]. 

path to travel 
x(t) = 2 - t 
y(t) = o 

boundary of the 
workspace 

degenerated 
direction 

pathtoU'avel: 
x(t) = 2 -1^ 
y(0 = o 
b) feasible trajectory 

degenerated 
direction 

a) non feasible trajectory 

Figure 6.1. Displacement along a degenerated direction 

In addition, Egeland and Spangelo [Egeland 91] showed that, in certain cases, a 
non-feasible path could become realizable after carrying out a specific motion in the 
null space of J. This motion does not modify the end-effector coordinates but it 
modifies the degenerated direction. Let us illustrate this method for the two degree-
of-freedom planar robot with identical link lengths. From the initial configuration 
"folded arm" of Figure 6.2a, it is not possible to track a trajectory along the x 
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direction. However, after a 7i/2 rotation of the first joint, which does not modify the 
terminal point coordinates but modifies the degenerated direction (Figure 6.2b), we 
can produce a velocity along the x-axis by using the kinematic model. 

Before rotation 

degenerated 
direction 

4 

A y After 7t/2 rotation 

Idegenerated 
direction 

X 

a) non feasible trajectory b) feasible trajectory 

Figure 6.2. Motion in the null space of J 

6.5. Inverse kinematic mode! of redundant robots 

A robot manipulator is redundant when its number of degrees of freedom N is 
greater than the dimension of the workspace M. The difference (N - M) represents 
the degree of redundancy. In this case, the inverse kinematic model gives an infinite 
number of solutions. Consequently, secondary performance criteria can be 
optimized, such as: 

- minimizing the norm of the joint velocities [Whitney 69]; 

~ avoiding obstacles [Maciejewski 85], [Baillieul 86]; 

- avoiding singular configurations [Yoshikawa 84a]; 

- avoiding joint limits [Foiunier 80], [Klein 84]; 

~ minimizing driving joint torques [Baillieul 84], [Hollerbach 85]. 

When the end-effector coordinates are independent, we have n = N and m = M. 
For a redundant mechanism, the Jacobian J is represented by an (mxn) matrix, with 
n>m. In the following sections, we present several approaches to solving the inverse 
kinematic problem of redundant robots. 

6.5.1. Extended Jacobian 

In this approach, we add n - m secondary linearly independent equations to the 
end-effector coordinates X [Baillieul 85], [Chang 86], [Nenchev 92]. These 
equations can represent either physical constraints on the robot or constraints related 
to the environment. They are written in the following general form: 
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Xc = h(q) [6.23] 

In this expression, X^ is an ((n ~m) xl) vector whose elements are functions of q. 
Differentiating equation [6.23] with respect to time gives: 

Xc = Jhq [6.24] 

where Jh == dh(q)/dq is the ((n - m)xn) Jacobian matrix of h(q). Combining this 
equation with the kinematic model, we obtain an (nxn) extended Jacobian matrix Ja 
and a new velocity vector Xa such that: 

Xa = Jaq [6.25] 

with Xa = 
X 

XcJ 
andj, = [ j j . 

If the extended Jacobian Ja is not singular, a unique solution for the joint velocity 
q is obtained by inverting Ĵ . We can use this technique to optimize the desired 
objective function <|>(q) by taking h(q) such that: 

hi(q) = 0 = (Tii)'̂  V« for i :r 1 n-m [6.26] 

where the (nxl) vectors TJJ, for i = 1,..., n - m, form a basis for the null space of J, 
and V(t> is the gradient of (>. 

Since the calculation of the basis of the null space of the Jacobian matrix must be 
carried out analytically, this method can be used only for systems with a small 
degree of redundancy. A solution to this problem can be found in [Klein 95]. 

The extended Jacobian method presents the following disadvantages: 

- the choice of the (n - m) additional relationships is not a U-ivial matter; 

- the extended Jacobian Ja may be singular even though the end-effector 
Jacobian is of full rank. These configurations are called artificial singularities 
or algorithmic singularities. 

A desirable property of this method is that it yields cyclic behavior, meaning that 
a closed path in the task space is always tracked by a closed path in the joint space. 
This is important because it allows one to judge the suitability of a trajectory after 
executing one cycle. 
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6.5.2. Jacobian pseudoinverse 

The vast majority of research in the control of redundant robots has involved the 
resolution through the use of the pseudoinverse J^ of the Jacobian matrix: 

q = r x [6.27] 

This solution minimizes ||q|p. Because of this minimization property, the early 
hope of researchers [Whitney 69] was that singularities would automatically be 
avoided. It has been proved that, without modification, this approach does not avoid 
singularity [Baillieul 85]. Moreover, Klein and Huang [Klein 83] have pointed out 
that it does not produce cyclic behavior, which is a serious practical problem. 

For these reasons, we generally add to the pseudoinverse solution another 
component belonging to the null space of the Jacobian, in order to realize the 
secondary objective function. 

6.5.3. Weighted pseudoinverse 

Since each joint has different limits and even different units, it may be interesting 
to weight the contribution of each joint in the objective function differently. This can 
be achieved by the use of the weighted pseudoinverse, which minimizes a criteria C 
such that: 

C= qT'Eq [6.28] 

When J is of full rank, the solution is given by: 

q = J E ^ X [6.29] 

with: 
JE^ = E-ir(JE->jT)-l [6.30] 

Benoit et al. [Benoit 75] propose to take for E the inertia matrix of the robot 
(Chapter 9) in order to minimize the kinetic energy. Konstantinov et al. 
[Konstantinov 81] have used the weighted pseudoinverse to avoid the joint limits. 
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6.5.4. Jacobian pseudoinverse wUh an opHmization term 

One of the advantages of the pseudoinverse solution is the possibility to utilize 
the null space to optimize another objective function (beside that of ||q|p). In fact, 
the general solution of the linear system [6.5] is written as (Appendix 4): 

q = r X - h ( I n - r j ) Z [6.31] 

where Z is an arbitrary (nxl) vector in the q space. 

The second term on the right belongs to the null space of J. It corresponds to a 
self-motion of the joints that does not move the end-effector. This term, which is 
called homogeneous solution or optimization term, can be used to optimize a desired 
function <t)(q). In fact, taking Z = aV<t) where V<t> is the gradient of this function with 
respect to q, minimizes the function <|)(q) when a < 0 and maximizes it when a > 0. 
Equation [6.31] is rewritten as: 

q = r X + a(In-rj)V(t) [6.32] 

with: 

^^ = f - ^ - ^ ' ^'-''^ 

The value of a allows us to realize a trade-off between the minimization of ||q|p 
and the optimization of <t>(q). In the following sections, we present two examples of 
desired objective functions. 

6.5.4.1. Avoiding joint limits 

A practical solution to control a redundant robot is to keep the joint variables 
away from their limits q^ax ^nd qnun- Let: 

where qmoy is the mean value of the joint positions, and: 

Aq = qmax-qmin [6.35] 
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A possible scalar function, whose minimization generates a motion away from 
the joint limits, can be expressed in the following quadratic form [Foumicr 80]: 

m-h^^f [6.36] 
i=1 ^^1 

The division by Aq̂  allows us to weight the contribution of each joint in <|)(q) 
such that it varies between 0 and 1. The i* element of the vector Z is written as (with 
a<0): 

^ aa<l>(q) _ 2a(qi-qin,Qv) 

NOTE.- If the mean position of a joint corresponds to a singular configuration, it is 
rcconunended to replace the corresponding value of qî oy '̂ y another value. 

About the criterion [6.36], Klein [Klein 84] pointed out that the quadratic form, 
used generally to solve optimization problems, does not always give the best 
solution to the desired objectives. To avoid joint limits in particular, the following 
form is more suitable: 

. h - qimoyl . 
6 - max—,. ., f or i= l n [6.38] 

|Aqi| 

Introducing this criterion in equation [6.32] is however not as easy as the 
quadratic criterion. A solution consists of approximating the criterion [6.38] by a p-
norm function defined as [Klein 83]: 

llq-qmoyllp^lilqi-qimoyP]''" [6.39] 
i=l 

When p tends towards infinity, the corresponding p-norm meets the criterion 
[6.38]. However, sufficient approximation can be achieved by taking p = 6. 

6.5.4.2. Increasing the manipulability 

In § S.8.2, we showed that the manipulability w(q) of a robot manipulator 
(equation [5.38]) could be used as a measure of the ability of the mechanism to 
move its end-effector. At a singular point, w is minimum and is zero. In order to 
improve the manipulability of a structure, we can choose to maximize a scalar 
function 0 such that: 



0(q) = det[J(q)jT(q)] 
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[6.40] 

We calculate Z as indicated previously with a > 0. Maximizing 0 moves the 
robot away from the singular configurations. 

NOTE.- Certain singular configurations are unavoidable [Baillieul 84]. This is the 
case if there is no other configuration that can yield the same end-effector location. 
For the three degree-of-freedom planar robot of Example 6.1, the unavoidable 
singularities correspond to the configurations where it is fully stretched out or folded 
up (Figure 6.3). The other singularities are avoidable and the robot can find other 
configurations to achieve them (Figure 6.4), 

Figure 63. Unavoidable singularities of a three degree-of-freedom planar robot 

r?i 
Figure 6.4, Avoidable singularities of a three degree-of-freedom planar robot 

6.5.5. Task'priority concept 

To solve the inverse kinematic model of redundant robots, Nakamura [Nakamura 
87] introduced the concept of task priority, where a required task is divided into a 
primary task X\ of higher priority and a secondary task X2 of lower priority. These 
tasks are described by the following relationships: 

Xi = fi(q) [6.41] 
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X2 = f2(q) [6.42] 

Let mi and m2 be the dimensions of Xi and X2 respectively. Differentiating 
equations [6.41] and [6.42] with respect to time gives: 

X, = J, q [6.43] 

X2 = J2q [6.44] 

where Jj = 9fi(q)/9q is the (mjxn) Jacobian matrix of the task Xj. Using the 
pseudoinverse, the general solution of equation [6.43] is given by: 

q = j | X , + ( I n ~ j | j , ) Z , [6.45] 

Substituting equation [6.45] into equation [6.44] yields: 

J2 ( In -J tJ l )Z l = X2-J2J1 Xi [6.46] 

From this equation, the vector Z\ can be determined by using the pseudoinverse: 

Zi = J^ [X2 - J2 Ji X,] + (I„ - J^ J3) Z2 [6.47] 

where J3 = J2 (In ~ Jt Jl) is an (m2xn) matrix and Z2 is an arbitrary (nxl) vector 
chosen to satisfy the optimization criterion. 

The joint velocity q of the robot is obtained from equations [6.45] and [6.47]: 

q = JTXi+(I„ -J tJ i ) {J3 [X2~J2J iX , ] + (In-J3J3)Z2} [6.48] 

The interpretation of this method is illustrated in Figure 6.5. 
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X2«0 

Figure 6.5. Null space and range space of tasks Xj and X^ (from [Nakamura 87]) 

6.6. Numerical calculation of the inverse geometric problem 

When it is not possible to find a closed-form solution to the inverse geometric 
problem, we can use the differential model to compute an iterative numerical 
solution. To obtain the joint positions q^ corresponding to a desired location ^T„ of 
the terminal link, we proceed as follows: 

- initialize q^ by the current joint configuration or by any random value within 
the joint domain of the robot; 

- calculate the location of the terminal firame ^ ^ corresponding to q*̂  using the 
direct geometric model; 

- calculate the vectors of position error dXp and rotation error dXf, representing 

the difference between the desired location ^T„ and the current location T̂̂ .̂ 
d c 

Note that dXp = dPn - P„ - P^ and dXf = u a, where the angle a and the unit 

vector u are obtained by solving the equation (§ 2.3.8): ^A^ = rot(u, a) ^A ,̂ 

which can be written as ^A^ (P\y = rot(u, a); 

~ if dXp and dXr are sufficiently small, then q^ - q̂  and stop the calculation; 
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- to remain in the validity domain of the differential model, which is a first 
order expansion, we must introduce thresholds Sp and Sr on dXp and dX^ 
respectively such that: 

.if||dXp||>Sp,thendXp = jjjx^Sp 

dXr 
-if||dX,||>S,,thendX, = j j ^ S , 

The values 0.2 meter and 0.2 radian for these thresholds are acceptable for 
most of the industrial robots in view of their dimensions; 

- calculate the Jacobian matrix ̂ Jn(q )̂ denoted as J; 

- calculate the joint variation dq = J"*" dX. An optimization term in the null 
space of J can also be taken into account; 

- update the current joint configuration: q̂  = q̂  + dq; 

~ return to the second step. 

This algorithm converges rapidly and can be executed in real time. If it does not 
converge within a relatively large number of iterations, we have to restart the 
calculation using a new random value q̂ ; if no convergence occurs for many 
different values of q̂ , it can be stated that there is no solution. 

6.7. Minimum description of tasks {Fournier 80], (Dombre 81] 

In current robot controllers, the desired trajectory of the end-effector is described 
by a sequence of fi'ames. However, in many industrial applications, it is not 
necessary to con^letely specify the location of the end-effector fi'ame and the task 
could be described by a reduced number of coordinates. For exanple: 

- when the manipulated object is symmetric: for a spherical object, it is not 
necessary to specify the orientation; likewise, the rotation of a cylindrical 
object about its axis can be left firee; 

- releasing an object into a container: if the end-effector is aheady above the 
container, only an approach distance has to be specified; the task is thus 
described by a translational component; 

- transferring objects fl-om one point to another with arbitrary orientation; the 
task can be described by three translational con^nents; 

- placing a cylindrical object on a conveyor: the only orientation constraint is 
that the principal axis of the cylinder is horizontal; if the end-effector is 
already above the conveyor, the task could be described by two conqjonents 
(one vertical translation and one rotation). 
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When the number of components of a task is less than the number of degrees of 
freedom of the robot, the robot is redundant with respect to the task. Consequently, 
an infinite number of solutions can be obtained to realize such tasks. This 
redundancy can be exploited to satisfy secondary optimization criteria (§ 6.5). 

6J.L Principle of the description 

The proposed description of task is minimal in the sense that it only constrains 
the degrees of freedom of the task that have a functional role. The formulation is 
based on the use of the contact conditions between usual surfaces (plane, cylinder, 
sphere) that describe usual mechanical joints (or pairing) (Table 6.1 and Figure 6.6). 
To these six joints, we add the con5)osite revolute and prismatic joints, which have 
one degree of mobility (Figure 6.7), and the fixed rigid pairing, which has no degree 
of freedom. 

The description of a task is realized by a sequence of virtual mechanical joints. 
The choice of a type of joint is dictated by the local constraints associated with the 
task. 

Table 6.1. Simple mechanical joints 

Plane 

Cylinder 

Sphere 

Plane 

Plane contact 

Cylinder 

Line contact 

Cylindrical joint 

Sphere 

Point contact 

Cylindrical groove 
joint 1 

Spherical joint 

A practical description of the mechanical joint formulation consists of specifying 
the task in terms of contact between two simple geometric entities (point, line, 
plane), one belonging to the robot, the other to the environment [Dombre 85]. A 
spherical joint, for example, is specified by matching two points. In the same way, 
the revolute and prismatic joints will be specified with two simultaneous 
combinations of geometric elements. The choice is not unique: a revolute joint for 
example can be achieved either by a line-to-line contact and a point-to-plane contact 
simultaneously or by a line-to-line contact and a point-to-point contact. 

This geometric description is particularly convenient for graphic programming 
of tasks. Figure 6.8 shows the example of a peg-in-hole assembly, realized with the 
CAD/CAM software package CATIA [Catia] in which this formulation was 
implemented for robotic application. The different steps are as follows: 
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w 
1 -̂-- ^̂- -/ 

1 Spherical joint 

^—n 

M 
Figure 6.6. Simple mechanical joints 
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Revolute joint 

u ^ 

Figure 6.7. Revolute and prismatic Joints 

1) definition of a point-to-point contact (spherical joint) by selecting a point of 
the robot and a point of the environment (Figure 6.8a); after execution, the 
cylinder is positioned with an arbitrary orientation above the assembly site 
(Figure 6.8b); 

2) definition of a line-to-line contact (cylindrical contact) by selecting a line of 
the robot and a line of the environment (Figure 6.8b); after execution, the axes 
of the hole and the peg are aligned (Figure 6.8c); 

3) definition of a revolute joint by selecting a point and a line of the robot, and a 
point and a line of the enviromnent (Figure 6.8c); after execution, the 
assembly task is completed (Figure 6.8d). 

6.7.2. Differential models associated with the minimum description of tasks 

To implement these types of tasks, we write the differential model of the location 
of frame Rg in the following form: 

•OdPe' 

[%\ 
= 

r°A„ 0 3 1 
L03 OA„J 

• O A „ - O A „ » I 

. O3 0A„ 

(""dPE* 

L " 5 E . 

•E 
Of dq 

•«A„ O3 1 

L 03 « A J 
[IS-^PE] 
LO3 I3 J 

r"dp„i 

rsnj 

(6.49] 

where "PE defines the origin of frame Rg referred to frame Rn-
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The differentiai model of a virtual joint can be written as: 

dX = H"J„dq [6.50] 

where "Jn and H are (6xn) and (cx6) matrices respectively, and c indicates the 
number of constraint equations of the task. 

We will show in the following section how to determine H for the virtual joints 
[Dombre 81]. 

c) d) 

Figure 6.8, Graphic programming of an assembly task with a minimum description 

6.7.2.1. Point contact (point on plane) 

This joint drives a point Og of the tool on any position on a plane Q (Figure 6.9). 
Let N be the unit vector normal to the plane Q and let Op be an arbitrary point of Q. 
The necessary global displacement to realize the point contact is expressed in frame 
Roby: 



Inverse kinematic nxxiel of serial robots 139 

r = ONTfOpĵ ^Opg] (6.51) 

where ^Pp and ^PE define the coordinates of the points OQ and OE in frame RQ. 

Figure 6.9. Realization of point contact 

The displacement r is realized by a sequence of elementary displacements along 
a single direction such that (equation [6.49]): 

dX = dr = ONTOdPE = [ ONTOA^ -ONTOA n̂PE ] -̂ JnClq 

= 0NT0A4l3 -nPEl^Jndq [6.521 

Expression [6.52] constitutes the differential mod l̂ of the point contact. The 
matrix H is given by the row vector ^N^^An [ I3 -"PB ] • 

6.7.2.2. Line contact (tine on plane) 

The equations of a line contact are derived from Figure 6.10. The line UE is 
driven on plane Q without constraining its orientation in the plane. We can realize 
this joint by simultaneously carrying out a rotation and a translation [Dombre 88a]. 
However, it is more judicious to avoid the calculation of an angle by defming the 
task as driving two points OEI and OE2 of UE on plane Q. The joint is thus 
equivalent to two point contact. The corresponding differential model is written as: 

"" LdraJ ' [ ONTOA„ -0NT0A„n^E2 J 
"Jndq (6.53) 
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where H is a (2xn) matrix. 

We can generalize this approach for the other joints where the j * row of H takes 
the following general form: 

Hj = 0NjT0A„[l3 -n^Ej) 16.54] 

where ̂ Nj denotes the unit vector of the normal to the plane of the j * point contact, 
and "PE- is the vector of the coordinates of the tool point OEJ with respect to frame 
Rn- •• 

Figure 6.10. Realization of line contact 

6.7.2.3. Planar contact (plane on plane) 

This joint drives a plane QE attached to the tool on a plane Qp of the 
environment, without orientation or position constraints (Figure 6.11). We select 
three non-aligned points OEI, OE2 and OE3 in QE, then we carry out three 
simultaneous point contacts. 

6.7.2.4. Cylindrical groove joint (point on line) 

The cylindrical groove joint drives a point OE of the tool on a line UD of the 
environment. This is done by simultaneously realizing two point contacts of OE on 
two arbitrary orthogonal planes Qpi and QD2 whose intersection is the line UD 
(Figure 6.12). 
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Figure 6.11. Realimtion of a plane contact 

6.7.2.5. Cylindrical joint (line on line) 

The task consists of aligning two lines Ue and Up without position or orientation 
constraints along and about these lines (Figure 6.12). We define two arbitrary 
orthogonal planes QDI and Qp2 whose intersection is the line Up and whose 
normals are Npi and N02 respectively. To realize a cylindrical joint, any two 
distinct points OBI and OE2 of the line Ue are driven simultaneously on the planes 
QDI and Q02* In other words, the cylindrical joint corresponds to four point 
contacts. 

Figure 6.12. Realization of cylindrical groove Joints cylindrical joint and revolute joint 
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6.7.2.6. Spherical joint (point on point) 

A spherical joint drives a point OE of the tool on a point OQ of the environment 
without constraining the orientation of the tool. The task can be realized by three 
point contacts that drive Og simultaneously on the planes Qob QD2 and QD3, which 
are parallel to the planes (yo, ZQ), (XQ, ZQ), (XQ, yo) and pass through the point Op. 
The required displacements ri, r2 and r^ are the components of the vector OEOD 
along the axes of frame RQ. The task is defmed as: 

dX = 

•dri 

dr2 

.drsJ 

= [ OA„ -OA„npg]nj^dq [6.55] 

6.7.2.7. Revolute joint (line-point on line-point) 

A revolute joint (Figure 6.12) consists of aligning a line UE of the tool with a line 
UD of the environment while simultaneously driving a point OE of UE on a plane Qp 
normal to Uo (not represented in the figure). Let OEI and OE2 be any two distinct 
points on UE- Similar to the cylindrical groove joint, let us consider that Qpi and 
QD2 are two arbitrary orthogonal planes whose intersection is the line Up. The joint 
is thus equivalent to the simultaneous realization of five point contacts: 

- driving the point OEI on the planes Qot and QD2; 

- driving the point OE2 on the planes QDI and QD2J 
- driving the point OE on the plane QQ. 

In practice, it is more convenient to describe the revolute joint by a line-to-line 
contact and a point-to-point contact. This choice leads to seven equations, and the 
rank of the matrix H J is five. 

6.7.2.8. Prismatic joint (plane-plane on plane-plane) 

A prismatic joint consists of aligning two lines of the tool with two geometrically 
compatible lines of the environment, and making a translation along an arbitrary 
axis. To simplify, we consider that the two lines are perpendicular and the 
displacement is carried out along one of these lines. 

Let UEI and UE2 be the two lines of the tool and let UDI and Up2 be two 
compatible lines of the environment (Figure 6.13). Let us suppose that the free 
translation is along the line Upi. Let Qpia and Qpib be two arbitrary orthogonal 
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planes whose intersection is Upit and O E U and Oeib be any two distinct points on 
the line \J^\, We realize the prismatic joint by five point contacts: 

- driving the point Oeia on the planes Qpia and Qoabi 

- driving the point Oeib on the planes Q D U and Qoabi 

- driving any point of UE2» that is not the intersection of UEI and UE2» on the 
plane formed by the lines UDJ and UD2-

Similar to the revolute joint case, it may be more convenient for the user to 
specify a prismatic joint using two plane-to-plane contacts. In this case, the number 
ofequationsissix. 

U, 

I ^X * > • 
-'Elb 

^ 

i/tmii 
Figure 6.13. Realization of a prismatic Joint 

NOTES.-

- for the fixed rigid pairing, we use the complete description of dX s J dq; 

- Table 6.2 summarizes the specification of each virtual mechanical joint as 
well as the number of necessary equations. 
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Table 6.2, Equivalence between virtual mechanical joints and geometric specification 

Type of joint 

Point contact 
Line contact 
Plane contact 
Cylindrical groove 
Spherical 
Cylindrical 

Revolute 
I Prismatic 

Elements of 
the tool 

Point 

Line 

Plane 

Point 

Point 

Line 

Line-Point 

Plane-Plane 

Elements 
of the 

environment 

Plane 

Plane 

Plane 
Line 

Point 

Line 

Line-Point 

Plane-Plane 

Number of 
independent 

equations 

1 
2 

3 
2 
3 
4 

1 ^ 
5 

Total number 
of equations 

1 
2 
3 
2 

3 
4 

7 
6 

6.8. Conclusion 

In this chapter, we have studied the inverse kinematic mcxlel by considering the 
regular, singular and redundant cases. The solution may be obtained either 
analytically or numerically. The analytical solution can be used for simple robots in 
regular configurations, whereas the numerical methods are more general. 

We have also shown how to reduce the functional degrees of freedom of the task 
using a description method based on the virtual mechanical joints formulation. 

The redundancy, whether it is a built-in feature of the robot or the consequence 
of a minimum description of the task, can be used to optimize the trajectory 
generation of the mechanism. In this respect, the solution based on the 
pseudoinverse method proves to be very powerful. It allows us to realize secondary 
optimization functions such as keeping the joints away from their limits or 
improving the manipuiability. 



Chapter 7 

Geometric and kinematic models of 
complex chain robots 

7.1. Introduction 

In this chapter, we develop a method to describe the geometry of complex robots 
with tree or closed chain structures. This method constitutes the extension of the 
notation presented in Chapter 3 for serial robots [Khalil 86a]. We also present the 
computation of the direct and inverse geometric models of such mechanisms. 
Finally, we establish their direct and inverse kinematic models. The results are 
illustrated using the AKR-3000 robot, which contains two closed loops, and the 
Acma SR400 robot, which contains a parallelogram closed loop. 

7.2. Description of tree structured rol>ots 

A tree structured robot is composed of n mobile links and n joints. The links arc 
assumed to be perfectly rigid. The joints are either revolute or prismatic and 
assumed to be ideal (no backlash, no elasticity). A complex joint can be represented 
by an equivalent combination of revolute and prismatic joints with zero*length 
massless links. 

The links are numbered consecutively from the base to the terminal links. Thus, 
link 0 is the fixed base and link n is one of the terminal links (Figure 7.1). Joint j 
connects link j to link a(j), where a(j) denotes the link antecedent to link j , and 
consequently a(j) < j . We define a main branch as the set of links on the path 
between the base and a terminal link. Thus, a tree structure has as many main 
branches as the number of terminal links. 
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The topology of the system is defined by a(j) for j = 1,..., n. In order to confute 
the relationship between the locations of the links, we attach a frame R\ to each link 
i such that: 

• Zi is along the axis of joint i; 

• X{ is taken along the common normal between z\ and one of the succeeding 
joint axes, which are fixed on link i. Figure 7.2 shows the case where links j 
and k are articulated on link i. 

Two cases are considered for confuting the transformation matrix 'Tj, which 
defines the location of frame Rj relative to frame Rj with i = a(j): 

1) if Xi is along the common normal between z\ and Zj, then T̂j is the same as the 
transformation matrix between two consecutive frames of serial structure. It is 
obtained as a function of the four geometric parameters (Oj, dj, 9j, rj) as 
defined in § 3.2 (equation [3.2]): 

T̂j = Rot(x, Oj) Trans(x, dj) Rot(z, Oj) Trans(2, rj) 

[7.1] 

2) if Xi is not along the common normal between Zi and Zj, then the matrix 'Tj 
must be defined using six geometric parameters. This case is illustrated in 
Figure 7.2, where Xj is along the common normal between z\ and z .̂ To obtain 
the six parameters defining frame Rj relative to frame Rj, we define Uj as the 
common normal between Zj and Zj. The transformation from frame Rj to 
frame Rj can be obtained as a function of the six geometric parameters (yj, bj, 
Oj, dj, Oj, rj) where: 

• Yj is the angle between x\ and Uj about ẑ ; 
• bj is the distance between Xj and Uj along Zj. 

The parameters YJ and bj permit to define Uj with respect to xj, whereas the 
classical parameters Oj, dj, Gj, rj permit to define frame Rj with respect to the 
intermediate frame whose x axis is along Uj and z axis is along Zj. 

The transformation matrix 'Tj is obtained as: 

T̂j = Rot(z, Yj) Trans(z, bj) Rot(x, Oj) Trans(x, dj) Rot(z, Gj) Trans(z, rj) 
[7.2] 

C9j 

cojSej 

sojSej 

0 

-sej 

cojcej 

SojCBj 

0 

0 

-Soj 

COj 

0 

dj 1 
-rjSoj 

rjCoj 

1 J 
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Figure 7.1. Notations for a tree structured robot 

Figure 7.2. Geometric parameters for a link with more than two joints 
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After development, we obtain: 

Tj = 

CYjCGj-SYjCajSej -CYjSej-SYjCajCej SYjSOj djCYj+rjSYjSOj 

SYjCej+CYjCajSOj -SYjSej+CYjCajCej -CYjSOj djSYj-rjCYjSOj 

SajSOj 

0 

SOjCBj 

0 

COj 

0 

rjCOj+bj 

1 

The inverse transformation iT\ is expressed by: 

-bjSOjSej-HijCej 

[7.3] 

iTi = 
»Aj'̂  -bjSOjCej+djSej 

Lo 0 0 

-bjCttj-rj 

1 

[7.4] 

NOTES.-

- equation [7.3] represents the general form of the transformation matrix. The 
special case of serial robots (equation [7.1]) can be obtained from it by setting 
bj = 0 and YJ = 0; 

- as for the serial structure, the joint variable qj is given by: 

qj = ajGj + Ojrj [7.5] 

where Oj = 0 if joint j is revolute, Oj = I if joint j is prismatic and Oj = 1 -Oj; 

we set Oj = 2 to define a frame Rj with constant position and orientation with 
respect to frame a(j). In this case, qj and Oj are not defined; 

the definition of frame RQ and the frames fixed to the terminal links can be 
made as in the case of serial robots. 

7.3. Description of robots with closed chains 

A closed chain structure consists of a set of rigid links connected to each other 
with joints where at least one closed loop exists. This structure enhances both the 
accuracy and the load-carrying capacity of the robot. The system is composed of L 
joints and n+ 1 links, where link 0 is the fixed base and L> n. It may contain several 
terminal links. The number of independent closed loops is equal to: 

B = L - n [7.6] 
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The joints arc either active or passive. The N active joints are provided with 
actuators. We assume that the number of actuated joints is equal to the number of 
degrees of freedom of the robot. Thus, the position and orientation of all the links 
can be determined as a function of the active joint variables. 

We introduce the parameter Pj such that: 

• Mj = 1 if joint j is actuated (active joint); 

• Mj = 0 if joint j is non-actuated (passive joint). 

To determine the geometric parameters of a mechanism with closed chains, we 
proceed as follows: 

a) construct an equivalent tree structure having n joints by virtually cutting each 
closed chain at one of its passive joints. Since a closed loop contains several 
passive joints, select the joint to be cut in such a way that the difference 
between the number of links of the two branches from the root of the loop^ to 
the links connected to the cut joint is as small as possible. This choice reduces 
the computational complexity of the dynamic model [Kleinfinger 86a]. The 
geometric parameters of the equivalent tree structure are determined as 
described in the previous section; 

b) number the cut joints from n + 1 to L. For each cut joint k, assign a frame R̂  
fixed on one of the links connected to this joint, for instance link j . The ẑ  axis 
is taken along the axis of joint k, and the X)( axis is aligned with the common 
normal between zî  and Zj (Figure 7.3). Let i = a(k) where link i denotes the 
other link of joint k. The transformation matrix from frame Rj to frame R|c can 
be obtained as a function of the usual six (or four) geometric parameters Yk« 
bk' otk» dk» 6k» rk» where qk is equal to 8k or rk; 

c) since frame R̂  is fixed on link j , the transformation matrix between frames Rj 
and R|( is constant. To avoid any confusion, this transformation will be 
denoted by JTĴ +B* with j = a(k+B). The geometric parameters defining this 
transformation will have as a subscript k+B. Note that frame RÎ ^B is aligned 
with frame R)̂ , and that both t^^^ and O^^B are zero. 

In sununary, the geometric description of a structure with closed loops is defined 
by an equivalent tree structure that is obtained by cutting each closed loop at one of 
its joints and by adding two frames at each cut joint. The total number of frames is 
equal to n+2B and the geometric parameters of the last B frames are constants. 

* The root of a loop is the first common link when going from the links of the cut joint to the base of 
the robot. 
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mm 
Figure 73. Frames of a cut joint 

The (LxI) joint variable vector q is written as: 

q = 

qa 

qp 
Lqc. 

with: 

[7.7] 

• qa: vector containing the N active joint variables; 

• qp*. vector containing the p=n-N passive joint variables of the equivalent tree 
structure; 

• qc: vector containing the B variables of the cut joints. When a cut joint has 
several degrees of freedom (spherical, universal,..,), we can consider all of its 
joint variables to be belonging to qc. 

Only the N active variables qa are independent. Thus, there are c=:L-N 
independent constraint equations between the joint variables q. These relations form 
the geometric constraint equations satisfying the closure of the loops. Since R\^ and 
Rk+B ̂ ^^ aligned, the geometric constraint equations for each loop can be written as: 

where I4 is the (4x4) identity matrix. 

[7.8] 
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For a spatial loop, the maximum number of independent geometric constraint 
equations is six, while for a planar loop this number reduces to three. The geometric 
constraint equations can be obtained from relation [7.8]. They are represented by the 
nonlinear equation: 

•(q) = 

" •l(q) • 

•2(q) 

•(L.N)(q) 

= 0̂  '(L-N)xl [7.9] 

To determine the locations of all the links of the closed chain structure, we have 
to compute the passive joint variables in terms of the active joint variables. For 
simple mechanisms, equation [7.9] may be solved in an analytical closed-form such 
that: 

qp = gp(qa) 
qc = gc(qa.qp) 

[7.10a] 
[7.10b] 

Otherwise, numerical methods based on the inverse differential model can be 
used (§ 7.9) [Uicker 69], [Wang 91]. 

* Example 7.1. Description of the geometry of the Acma SR400 robot. This 
mechanism has six degrees of freedom, eight moving links and nine revolute joints. 
It contains a parallelogram closed loop. Joints 3, 8 and 9 are passive. The equivalent 
tree structure is obtained by cutting the loop at joint 9, which connects link 3 and 
link 8. The link coordinate frames are shown in Figure 7.4. The geometric 
parameters are given in Table 7.1. 

• Example 7.2. Description of the AKR-3000 painting robot. This six degree-of 
freedom robot has 12 joints and 10 links. It contains two independent closed loops. 
Figure 7.5 shows the link coordinate frames. The first loop is cut at the joint 
connecting links S and 7, and the second loop is cut at the joint connecting links 2 
and 6. Joints 1, 5, 6, 8, 9 and 10 are active, while joints 2, 3, 4, 7, 11 and 12 are 
passive. The geometric parameters are given in Table 7.2. 
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X4, X5, X^ 

Link 

% * l ' ^ ' 
Figure 7.4. Acma SR400 robot 

Table 7.1. Geometric parameters of the Acma SR400 robot 

59,210 

[~j 
1 

1 ^ 
1 ^ 

4 

5 

1 ^ 
7 

I 8 
1 ^ 
1 ^̂  

a(i) 

0 ' 

1 \ 

2 

3 

I ^ 

1 ^ 
I 

1 '^ 
8 

1 3 

Mj 1 

0 

1 ^ 
0 

0 

7^ 
0 
0 1 
0 

0 

0 

0 

1 ^ 
0 

0 

I ^ 

ri 1 
0 
0 

0 

0 

0 

0 

i ^ 
"0 

0 

7t/2 

hH 
0 
0 1 

0 

0 

0 

0 

L ^ 
0 

0 

L ^ 

«jj 
0 

-n/2 

0 

-n/2 

%I2 

-^1 

-nil 

0 

1 0 

L ^ 

ĵ 
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X8,X9,Xio 

Xl2,Xl4 

Figure 7.5. AKR-SOOO robot 

lA. Direct geometric model of tree structured robots 

We have shown in Chapter 3 that the DGM of a serial robot is obtained from the 
transformation matrix ^Tn giving the location of the terminal link n relative to frame 
Ro. The extension to tree structured robots is straightforward. The transformation 
matrix ^ ^ specifying the location of the terminal link k relative to frame RQ is 
obtained by multiplying the transformation matrices along the main branch 
connecting this terminal link to the base: 

% = OTr-'^(^W)T^(k)^(^^k [7.11] 
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Table 7.2. Geometric parameters of the AKR-SOOO robot 
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7.5. Direct geometric model of robots witii dosed chains 

For a robot with closed chains, the DGM gives the location of the terminal(s) 
link(s) as a function of the active joint variables. The location of a terminal link k 
relative to the base ^Tî  is obtained, as usual, by multiplying the transformation 
matrices along the direct shortest path between the base and the terminal link as 
given by equation [7.11]. 

If the matrix 0T|̂  contains passive joint variables, we have to compute these 
variables in terms of the active joint variables. This implies solution of the geometric 
constraint equations [7.8] as developed in § 7.7. 

• Example 7.3. Direct geometric model of the Acma SR400 robot (Figure 7.4). The 
location of the terminal link relative to frame RQ is obtained as: 

0T6 = % ^ T 2 2T3 3 T 4 ^ T 5 5T6 

Since joint 3 is passive, we have to express q3 in terms of the active variable q7. 
This equation will be developed in Example 7.6. 
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• Example 7.4. Direct geometric model of the AKR-3000 robot (Figure 7.5). The 
transformation matrix through the direct path between the terminal link 10 and the 
base is written as: 

OTIO = ^ i^Ta^TT^Tg^TQ^ 10 

The computation of the passive joint variables 02 and 87 in terms of the active 
joint variables rs and rg is developed in Example 7.S. 

7.6. Inverse geometric model of closed chain robots 

The IGM of a robot with a closed chain structure gives the active joint variables 
as a function of the location of the end-effector. 

We first determine the joint variables of the direct path between the base and the 
end-effector. This problem can be solved using the approaches developed for serial 
robots in Chapter 4. Then, we solve the geometric constraint equations of the loop to 
compute the passive joint variables belonging to this path in terms of the active joint 
variables (§ 7.7). To use the methods of Chapter 4, we have to define the link frames 
such that the geometric parameters bj and YJ of the frames of the direct path of the 
terminal link are zero. Otherwise, they can be eliminated by grouping them with the 
parameters r| and Bj, for i = a(j), respectively. This can be proved by developing the 
elements of two consecutive transformation matrices *̂ *̂ Ti and *TJ: 

a(i)Ti 'Tj = Rot(x. Oi) Trans(x, dj) Rot(i, Bj) Trans(z, n) Rot(2, Yj) 

Trans(z, bj) Rol(x, Oj) Trans(x, dj) Rot(z, Bj) Trans(z, rj) 

This equation can be rewritten as: 

a(i)Ti i j j = Rot(x, Oi) Trans(x, dj) Rot(z. Bj*) Trans(z, vO Rot(x, otj) 
Trans(x, dj) Rot(z, Bj) Trans(z, rj) [7.12] 

with ri*=rj + bj and Bj' = Bj+Yj* 

7.7. Resolution of the geometric constraint equations of a simple loop 

7.7.1. Introduction 

The computation of the geometric and dynamic models of robots with closed 
loop structure requires the resolution of the geometric constraint equations of the 
loops [7.8]. The objective is to compute the passive joint variables in terms of the 
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active joint variables. Equation [7.8] constitutes a system of twelve nonlinear 
equations with up to six independent unknowns. Thus, a closed loop can have at 
most six passive joints, and a planar loop can have at most three passive joints. The 
problem of solving the geometric constraint equations is similar to that of the inverse 
geometric model of serial robots (Chapter 4). In this section, we develop an 
analytical method to obtain the solution for simple loops having three passive joints 
[Bennis 93], which is the case for most industrial robots with closed chains. This 
method can be extended to loops with four passive joints. We assume that the 
structure is compatible with the closure constraints of the loops, otherwise there 
would be no solution. This hypothesis will be developed in § 7.10 and will be 
verified when solving the constraint equations. 

7.7,2. General principle 

Let the three passive joints of the loop be denoted by i, j and k. We can obtain 
two systems of equations, one by using the position elements and the other by using 
the orientation elements of equation [7.8]. 

The general case is when a passive joint is situated between two active joints. 
Thus, equation [7.8] can be written as: 

''Ta(i)»<'^i(qi)'TaO)»(J)Tj(qj)JT,(k)»<''>Tk(qk) = I4 (7.13al 

The transformation matrices *'Ta(i), *Ta(j) and JTa(k) are functions of the supposed 
known active joint variables. The matrices ^ '̂̂ Tj, *^^j and *̂ )̂T|c are functions of the 
unknown variables qj, qj and qî  respectively. 

Equation [7.13a] can also be written in the following forms: 

JTa(R)*(^)Tk%i)^<i)TiiTaO)^«>Tj = I4 [7.13b] 

*<*^>Tk%i)*^»>Ti'Ta(j)*«>TjiTa(K) = I4 [7.13c] 
iTa(j)*«>TjJTa(k)»<^>Tk%i)»WTi = I4 [7.13d] 

We can rewrite equation [7.13a] such that the first transformation matrix 
contains the variable of joint i, namely Q[ or r,. 

i) position equation 

We can obtain the position equation of the loop by postmultiplying equation 
[7.13a] by the vector Po= [ 0 0 0 1 ]T, and premultiplying it by Rot(x, HXJ) 
Traiis(x, -dj) Rot(z, -Yi) Tniiis(z, -bj) *̂ '>Tk. This equation depends on r^ and not 
on 6|(, and can be rewritten as: 
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Rot(z, Gj) Trans(z, n) %Q) Rot(x, Oj) Trans(x, dj) 

Rot(z,ej)Trans(z,rj)| ^ J = [ J [7.14] 

where g is known. 

ii) orientation equation 

The orientation equation can be obtained by premultiplying relation [7.13a] by 
Rot(x, -Oj) Rot(z, -Yi) *̂ *̂ Tk while only keeping the orientation terms: 

rotCzA) [ S| Ni Ai ] rot(z, Oj) [ §2 N2 A2 ] rot(z, 90 = [ S3 N3 A3 ] 
[7.15] 

where the (3x1) vectors S|, Nj and Aj, for i = 1, 2, 3, are functions of the active joint 
variables. 

Equations [7.14] and [7.IS] have the same form as the position and orientation 
equations of serial robots (§ 4.4). However, as they are functions of the same 
variables, they must be resolved simultaneously [Bennis 91a]. An application of this 
method is given in Example 7.5 for the AKR-3000 robot. 

* Example 7.5. Resolution of the loop constraint equations of the AKR-3000 robot. 
From Table 7.2, we deduce that: 

qa = [ ®i ""5 re Og 09 9io ] '^ 

qp = [ 02 63 84 87 ] T 

qc = [ O n 6,2 ]T 

a) Equation of the loop composed of links L 2> 4 and 6 

Frames R12 and R14 are placed on the cut joint between links 2 and 6. The loop 
contains three revolute passive joints with parallel axes and one prismatic active 
joint. We need to calculate the passive variables 82,64 and 812 in terms of the active 
variable r5. For convenience, let us group Y14 with 82 such that: 

92=02-^714 [7.16] 

The geometric constraint equation of the loop can be written as: 

>T4%^Tl2 = *T2 2T ,4 [7.17] 



158 Modeling, identification and control of robots 

i) orientation equation 

>A4^A6^Ai2 = ^AZ^AH [7.18] 

Since the axes of the passive joints are parallel, equation [7.18] gives: 

rot(z,e4)rot(z,ei2) = rol(z,02) [7.19] 

We deduce that: 

64 + 6,2 = 62 + Y14 [7.20] 

ii) position equation 

We choose to eliminate the passive joint variable 612. Premultiplying equation 
[7.17] by "^1 and postmultiplying it by the vector Po = [ 0 0 0 1 F leads to: 

%^T,2Po = ^T,^T2 2T,4Po 

which gives: 

Rot(z, -64) 

with: 

"F(62')1 

rrcef)! ^ rG(r6)-| 

[7.21] 

[7.22] 

[' 1 J 
= Trans(x, -d4) Rot(z, 82) 27,4 po = 

Ce2'di4-<l4 

se2*di4 
0 
1 

[7] = %T.p.= 
0 

re 
0 

L 1 J 

[7.23] 

[7.24] 

82' can be obtained in terms of r̂  by developing the expression: 

||F||2 = ||G|p 

which leads to: 

[7.25] 

d?4 + d5-2d4d,4C(e2') = rl [7.26] 
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Having determined 62' from equation [7.26], the components of F are known. 
The variable 64 can be obtained from equation [7.22] as: 

[7.27] 
f-Se4r6 = Fx 

Ice4r6 = Fy 

where F = [Fx Fy Fji^. 

The variable 812 can be determined from equation [7.20]. 

b) Squft̂ jon of the loop ^omppsed of lifiks 1,2,7, and 3 

Frames Rn and R13 are placed on the cut joint between links 5 and 7. The loop 
contains four revolute passive joints with parallel axes and one prismatic active 
joint, but the passive variable 62 has already been obtained from the first loop. Thus, 
the three unknowns Q\\, 83 and 87 have to be computed in terms of the active 
variable r5 and the variable 82- To simplify the development, let us group Y13 with 87 
such that: 

ey = e7+Yi3 [728] 

The loop equation is written as: 

^T3 3T5 5 T , , = 1X22X77X13 [7.29] 

i) orientation equation 

By proceeding as for the first loop, we obtain the equation: 

82-fey = 83 + 811 [7.30] 

ii) position equation 

We choose to eliminate the passive variable 83 from equation [7.29], which can 
be rewritten as: 

2X7^X13^3X1, ^^X55X3Po « 2T, IT3P0 [7.31] 

where the vector X̂3 po is devoid of 83. Equation [7.31] becomes: 

rF(8u,r5)l [0(82)1 
Rot(2,87')[ 1 J = [ 1 J t7-32J 
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with: 

[ J = Trans(x, d,3) Rot(z, -6 , , ) Rot(x, - a , 0 ^Tj po = 

-Seiirs+dia" 

-SOiirs 

0 

1 

[ J = Traiis(x, -dj) 2T , IT3 po = 

C62d3—d7 

—S62d3 

0 

1 

The variable Gn can be obtained in terms of the variables r5 and 
developing the equality || F |p = || G f: 

r5 + d|3 - 2di3 5̂ S611 = d7 -»- d3 - 2d3 dj €82 

Having determined Bn, we calculate O7' thanks to equation [7.32): 

ce7F,-seyFy = G, 
se7'Fx+ce7'Fy = Gy 

The variable 63 can be determined from equation [7.30]. 

[7.33] 

[7.34] 

82 by 

[7.35] 

[7.36] 

7.7.3. Particular case of a parallelogram loop 

A parallelogram loop has three revolute passive joints and one revolute active 
joint. In this section, we propose a specific method, which is simpler than the 
general approach exposed previously. We use the fact that the orientation matrix 
between the frames of two parallel links is constant. Thus, if links ki, k2, k3 and k4 
constitute a parallelogram, where links ki and k2 are parallel to links k3 and k4 
respectively (Figure 7.6), then [Bennis 91a]: 

*̂ Âjc3 = rot(u, 8ci) = constant 

*̂ 2̂ ĵ 4 = rot(u, 8c2) = constant 

^Ak+B = *̂ A|c3 *̂ 3AIC2 ^^Ak4 ^̂ Ajc+B = 3̂ 

[7.37a] 

[7.37b] 

[7.37c] 
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The constants 9c i and 6c2 can be obtained from a particular configuration of the 
robot. Equation [7.37c] allows us to compute the cut joint variable in terms of the 
other joint variables. 

Figure 7.6. Parallelogram closed loop 

^ Example 7.6. Resolution of the geometric constraint equations of the Acma SR400 
robot. From Table 7.1, we deduce that: 

qa = [ 8i 62 64 65 65 67 ] T 

qp == [ 63 eg ] T 

qc = [ 99 ] 

The loop composed of links 7, 2, 3 and 8 forms a parallelogram (Figure 7.4). 
Joints 3, 8 and 9 are passive, whereas joint 7 is active. In this loop, links 2 and 3 are 
parallel to links 8 and 7 respectively. Using equations [7.37] we obtain: 

''Aj = •'Ai 'Aa^Aa = rot(z,-67+62+63) = rot(z,Jt/2) [7,38] 
2Ag = 2A, 'Ay ^Ag = rot(z, -62) rot(2,67) rot(z, eg) = rot(z, 0) f7.39] 
'Ag 8A7 'A,'A2 2A3 3A,O = I3 [7.40] 

From these equations we deduce that: 

63 = 11/2-62+67 (7.41] 
eg = 62-67 (7.42] 
69 = n/2 + e3 = Jt-'62 + 67 [7.43] 
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7.8. Kinematic model of complex chain robots 

The kinematic model provides the velocity of the terminal link corresponding to 
the specified velocities of the active joints. Since the joints of a tree structured robot 
are actuated and independent, the kinematic model for these robots can be obtained 
by applying the techniques developed for serial robots to each main branch. For 
robots with closed chains, we first compute the kinematic model of the direct chain 
between the end-effector and the base by proceeding as for a serial robot. Then, we 
compute the passive joint velocities in terms of the active joint velocities. The 
solution can be obtained either by differentiating the geometric constraint equations, 
or by resolving the kinematic constraint equations of the loops. 

The kinematic constraint equations can be obtained by equating the velocities of 
frames R^ and R|ê .B associated with each cut joint. They can be computed using the 
Jacobian matrix of the two branches of each loop as follows: 

G)kJ 
= Jk %1 = Jk+B qb2 [7.44] 

where qbi and q^i are the joint velocities along each branch of the loop. 

Equation [7.44] can be rewritten as: 

Using equation [5.9] and taking into account Figure 7.7 leads to: 

aeac + Oe(aexLe,k) •.• ĉ k̂ k̂  5k(a|exLk,k) 

5c He ... CkSk 

[7.45] 

Jk = [7.46] 

where e indicates the first link, after the root of the loop, of the branch leading to 
frame Rk, and: 

Jk+B = 

adad + ad(adxLd.k+B) ••• CTjaj-i-aj(ajxLj,k+B) 

^̂ d̂ d Cjaj 

[7.47] 

where d indicates the first link, after the root of the loop, of the branch leading to 
ft'ame Rk+B-
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*kL*k+B 

Root of the loop 

Figure 7,7. General notations for a closed loop 

The elements of the Jacobian matrices J^ and J^+B ^^^ generally computed with 
respect to frames Rî  and K\^^^ respectively, or with respect to the frame of the root 
of the loop. By combining the constraint equations of all the loops, and after 
eliminating the possible zero rows, the kinematic constraint equation can be written 
as [Zghaib 92]: 

J q = 0 

which can be developed as: 

[7.48] 

r Wa Wp 0 1 

LWac Wpc WcJ 

qa 

.Qc-

= 0 [7.49] 

with: 

• q̂ : (Nx 1) vector of the active joint velocities; 

• qp: (pxl) vector of the passive joint velocities of the equivalent tree structure, 
where p=n-N; 

• q̂ : (Bx 1) vector of the cut joint velocities; 

• the dimensions of the matrices are the following: Wa (pxN), Wp (pxp), 
Wac (BxN), Wpc (Bxp), Wc (BxB). 
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When the cut joint is complex with several degrees of freedom (spherical, 
universal, ...)• we can consider the corresponding joint velocities to be belonging to 
q .̂ From the first row of equation [7.49], we obtain: 

WpQp = -WaQa [7.50] 

If the system is compatible with the loop constraints, the rank of Wp will be 
equal to p (outside the possible singular positions). We deduce that: 

qp = -Wp Waqa= Wqa [7.51] 

By differentiating equation [7.49] with respect to time, we obtain the acceleration 
constraint equation: 

r Wa Wp 0 -] 

L '^ac '^pc '^c J 

** 1 
4a 

1 ** 1 
<»P 

LqcJ 
ilh [7.52] 

where V and O represent the vector J q. 

The components of the vectors H? and * of the loop of the cut joint k can be 
determined with the recursive equations giving the terminal accelerations ^V^ and 
d̂)k relative to the root of the loop when setting iibi = 0 and qb2 = 0 (§ 5.10). We 

obtain: 

^Vk(qbi=0) 

.^6k(qbi=0). 

^^^Vk^B(qb2=0) 

.̂ ^ f̂i)k^B(qb2=0). 
= ''Jkqbi-*'''®Jk+Bqb2 [7.53] 

The vectors ̂  and O are determined by applying equation [7.53] to all the loops, 
k = 1, ..., L, and by grouping them in the same order as those of the velocity 
constraint equation [7.49]. The computation of equation [7.53] can be carried out 
using the efficient recursive equations [5.47] after replacing j - 1 by a(j). 

^ Example 7.7, Calculation of the kinematic constraint equations of the Acma 
SR400 robot described in Example 7.1. By differentiating with respect to time the 
geometric constraint equations developed in Example 7.6, we obtain: 
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C 
• • • • 

• • • 
9g =s 02 "" 67 

1̂ 69 =5 "" 62 •+• 67 

The acceleration constraint equations can be obtained by differentiating the 
kinematic constraint equations. 

* Example 7,8. Computation of the kinematic constraint equations of the AKR-3000 
robot described in Example 7.2. We recall that: 

qa = [ Ql rs r6 Qg ^9 Oiol^ 

qp = [62 83 64 67^ 

qc = [611 612] 

The kinematic constraint equations can be obtained either by projecting the 
Jacobian matrices in the terminal frame R^ of each loop or in the frame fixed to the 
root of each loop. We present these two cases in the following. 

x) projection of the Jacobian matrices in the base frame of the loop. 

The kinematic constraint equation of the first loop is written as: 

^Jn qbi.i~^Ji3qb2,i = 0 

w>* qbU ~ I83 5̂ ^i\]^ and qb2,i = [62 87]'^, giving the following non-trivial 
equations: 

-1-5 C3 83 - S3 fs + (d7 S2 - di3 Sa) 82 -f di3 Sa 87 = 0 

-rs S3 83 -f C3 f5 - (d7C2 + di3Ca) 8 2 - d ^ C a 8 7 = 0 

-83-811 + 82 + 67 = 0 

witha = Yi3 + 82 + 87. 

The kinematic constraint equation of the second loop is written as: 

^Jl2qbl,2-^Jl4qb2,2 = 0 
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with qbi,2 = [ 64 h OnF and qb2,2 = ^2, giving the following non-trivial 
equations: 

-r6C4 9 4 - 8 4 f6+di4S(Yi4+e2) 82 = 0 

-r6S4 64 + 04 f6-di4C(Yi4 + e2) 62 = 0 

-94-812+62= 0 

These six equations can easily be put in the form [7.49]. 

«*) projection of the Jacobian matrices in the terminal frame of the loop. 

The kinematic constraint equation of the first loop is written as: 

^^Jnqbi,i-^^Ji3qb2.i = 0 

After developing, we obtain the following non-trivial equations: 

- rs C6n 63+ S6nf5-d7 8(713 + 87)62 = 6 

rs S8,1 83 + C811 f5 - [di3 + d7 C(Yi3+87)] 62 - di3 67 = 0 

-63 -611 + 62 + 87 = 0 

The kinematic constraint equation of the second loop is written as: 

^^Jl2qbl,2-''^Jl4qb2,2 = 8 

After developing, we obtain the following non-trivial equations: 

-r6C6,2e4+86i2f6 + di4e2 = 0 

r6 8612 64 + 061216 = 0 

- 6 4 - 8 1 2 + 62 = 6 

We note that the equations of the second solution are less complicated, but they 
have the disadvantage of being functions of the cut joint variables. 
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7.9. Numerical calculation of qp and qc in terms of qa 

Based on equation [7.45], we derive the following differential model, which can 
be used to numerically compute the variables qp and qc for a given q :̂ 

•"J, 'ti-fl+B -"•J, n+l 

"BJl L+B -''BJ, 

fdqp" 

Mqc. 

- b| jxn+1 "I 

_ "BdXL J 

[7.54] 

where dX^ corresponds to the vector of position and orientation errors between 
frame Rjc and frame ̂ + B I and bj denotes the fran« of the root of loop j . 

The left side terms of equation [7.45] are deduced from equation [7.54] by 
combining the equations of all the loops, eliminating the trivial rows, and by 
eliminating the columns corresponding to dq^ siiK̂ e qg is given. 

To calculate qp and qc we use tilie foUowmg algorithm: 

1) from the current configuration of qp and qc (which can be initialized by 
random values within the joint domain), confute ĴT|c(q) and ĴTIC+BCQ) for ̂  
= n+l,...,L; 

2) confute the vector of position and orientation errors of all the loops: 

dX = 

dX"-̂ ^ 

dX̂ ^ J 
where dX^ corresponds to the difference between the transformation matrices 
'̂ iTicCq) and ̂ jT|ĉ .B(q) as detailed in § 6.6; 

3) - if dX is sufficiently small, then the desired qp and qc are equal to their 
current values. Stop the calculation; 

- if ||dX|| > S, then set dX = T y ^ S, where S is a fixed threshold value; 

4) calculate dqp and dqc corresponding to dX by solving equation [7.54]. Update 
the variables qp and qc using the equation: 

fqp = qp+dqp 
Iqc = qc+dqc 

5) return to die first step. 

[7.55] 
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7.10. Numberofdegreesof freedom of robots with closed chains 

The number of degrees of freedom N of a mechanism is equal to the number of 
independent joint variables required to specify the location of all the links with 
respect to the fixed base. Thus N is equal to the difference between the number of 
joints L and the number of independent geometric constraint equations c : 

N = L - c [7.56] 

The problem consists in determining c. As mentioned in § 7.7.1, this number is, 
at most, six for a spatial loop and three for a planar loop. 

The following simple formula is true for most robot structures: 

B 

N = L - XCj [7.57] 
j=l 

where Cj is the number of independent geometric constraint equations of the loop j , 
in general six for a spatial loop and three for a planar loop. The application of 
equation [7.57] for the SR400 robot and AKR robot gives N=6. 

Several formulas like [7.57] have been proposed to systematically determine the 
number of degrees of freedom of a mechanism. These formulas are based on the 
number of links and joints and their degrees of freedom but do not take into account 
the geometric constraints that some mechanisms possess. Consequently, they may 
provide an erroneous result [Sheth 71]. For example, these formulas do not work 
with the Bennett mechanism [Bennett 03]. For this reason, an exact solution is 
obtained by analyzing the geometric and kinematic constraints using the mechanism 
theory techniques [LeBorzec 75], [Herv6 78], or by studying the rank of the 
Jacobian matrix as given in the following. 

From equation [7.49] we deduce that q belongs to the null space of J. Therefore, 
at a given configuration, the number of degrees of freedom is equal to the dimension 
of the null space of J. Consequently: 

N = min(dim(!A^J)) [7.58] 
q 

where 9^J) is the null space of the matrix J. 

Thus, the number of independent constraints c is given by the maximum value of 
the rank of the matrix J (equation 7.49) [Angeles 88], [Gosselin 90]: 

c = max (rank J(q)) [7.59] 
q 
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7.11. Classification of singular positions 

The general kinematic equation of a closed chain robot is given by [Gosselin 90]: 

Ji(q)qa = J2(q)x [7.6O] 

where X is the velocity of the end-effector. 

Input/output singularities occur in the configurations where J | and/or J2 are 
singular. Three kinds of singularities are encountered: 

i) Ji is singular: in this configuration, we can find the non-zero vector qa i"̂  0 for 
which X = 0. The terminal link loses one or more degrees of freedom and it 
cannot generate motion in some directions. This kind of singularity is the only 
one that occurs in serial robots. It is called serial singularity, 

ii) J2 is singular: in this case, the structure is not in static equilibrium. Thus, X 
# 0 even though the actuated joints are locked (qa = 0). This kind of 
singularity takes place in parallel robots (Chapter 8) and is known as parallel 
singularity. To avoid such singularity, redundant actuators may be used; 

Hi) JI and J2 are singular: in this case, the structure has both serial and parallel 
singularities simultaneously. Thus, some links may move even though qa = 0 
and motions in some directions of the terminal link are unrealizable. 

From equation [7.49], we can deduce another type of singularity that occurs 
when Wp is singular, giving qp ^ 0 while qa - 0. This singularity is termed internal 
singularity, 

7.12. Conclusion 

The method of description presented in this chapter allows extension of the 
results obtained for serial robots to complex chain robots. In fact, a serial robot can 
be considered as a special case of a tree structured robot. We showed that the 
computation of the direct and inverse geometric models of a closed chain robot 
could be formulated as the calculation of these models for a serial structure together 
with the resolution of the geometric constraint equations of the closure of the loops. 

The geometric constraint equations of the loops can be solved using the methods 
for computing the IGM exposed in Chapter 4. We also presented a general analytical 
method for loops with less than four passive joints. 

We also showed how to establish the kinematic model of such structures and how 
to obtain the kinematic constraint equations using the Jacobian matrix. The problem 
of the determination of the number of degrees of freedom of a closed chain robot has 
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finally been addressed. For a survey of the manipulability, which we did not cover 
here, the reader is referred to [Bicchi 98]. 

The following chapter deals with the geometric and kinematic modeling of 
parallel robots, which require a specific approach for the description and the 
modeling. 



Chapter 8 

Introduction to geometric and kinematic 
modeling of parallel robots 

8.1. Introduction 

Parallel architectures were originally proposed in the context of tire-testing 
machines and flight sin\ulators [Gough 56], [Stewart 65]. Since then, they have been 
used in other applications requiring manipulation of heavy loads with high 
accelerations such as vehicle driving simulators or the riding simulator developed 
for the French National Riding School. 

Recently, these kind of structures have attracted considerable interest in various 
manufacturing applications due to their inherent characteristics, as compared with 
those of serial robots, which include high structural rigidity and better dynamic 
performances. This concept is currently used in designing new generations of high 
speed machine tools. 

This chapter deals with the geometric and kinematic modeling of such robots. It 
is shown that the closed-form solution of the inverse geometric model is 
straightforward for a six degree-of-freedom parallel robot. The explicit formulation 
of the direct geometric model is usually more complicated since it can have up to 40 
solutions [Husty 96]. Similarly, the computation of the inverse kinematic model is 
easier than the computation of the direct kinematic model. 

8.2. Parallel robot definition 

A parallel robot is composed of a mobile platform connected to ei fixed base by a 
set of identical parallel kinematic chains, which are called legs. The end-effector is 
fixed to the mobile platform. A parallel robot is said to be fiilly parallel when the 
number of legs is greater or equal to the number of degrees of freedom of the mobile 
platform, each parallel chain having a single actuator [Gosselin 88]. For example, 
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Figures 8.1 and 8.2 show a six degree-of freedom fully parallel robot where the 
mobile platform and the base are linked together by six legs. The desired mobile 
platform location can be obtained by changing the leg lengths using actuated 
prismatic joints. This architecture has been used by Gough in 1947 to design tire-
testing machines and has inspired Stewart [Stewart 65) to design a flight simulator. 
It is known as the Gough-Stewart parallel robot. 

Note that a hybrid parallel robot is formed by a series of several parallel robots. 
The advantage of such a structure is to increase the workspace of the terminal 
platform. Figure 8.3 shows the Logabex hybrid robot [Charentus 90], which is 
composed of four units of parallel structures. 

Platform 
Spherical joint 

Variable leg length 
actuated by a 
prismatic joint 

Universal joint 
(U-joint) 

Figure SA.Asix degree-of-freedom parallel robot 

S3» Comparing perforniance of serial and parallel robots 

The main criteria for comparing performance of serial and parallel robots are the 
workspace, the ratio between the payload and the robot mass, the accuracy, and the 
dynamic behavior: 

i) workspace. The main drawback of a parallel robot is its comparatively small 
workspace. It is determined by the intersection of the workspaces of all the 
parallel kinematic chains; 

//) payload - robot mass ratio. In a serial architecture, the end-effector and the 
manipulated object are located at the extremity of the mechanical chain. 
Consequently, each actuator must have the necessary power to move not only 
the object, but also the links and actuators in between. This leads to a poor 
payload - robot mass ratio. 
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Figure 8A TJte SPACE-l parallel robot from CERT 
(courtesy of CERT) 

Figure 8 J . Logabex robot, 1X4 model 
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In parallel structures, the load is directly supported by all the actuators. 
Besides, the actuators can be located either on or close to the base. Therefore, 
the links between the mobile platform and the base can be lightened 
considerably, and the payload - robot mass ratio is much higher, generally 
with a factor of at least 10; 

Hi) accuracy and repeatability. Serial robots accumulate errors from one joint to 
the next, since defaults like clearance, friction, flexibility, etc. also act in a 
serial manner. Moreover, the influence of a joint default on the end-effector 
location is larger when the joint is close to the robot base. 
Parallel robots do not present this drawback and their architecture provides a 
remarkable rigidity even with light connecting links; 

iv) dynamic behavior Considering their high payload - robot mass ratio and their 
reduced coupling effect between joints, parallel robots have better dynamic 
performance. 

8.4. Number of degrees of freedom 

A parallel manipulator is a complex closed loop structure. We recall that 
computing the number of degrees of freedom of a closed structure using classical 
formulas (§ 7.10) that do not take into account the geometric constraints may give 
wrong results. Nevertheless, the number of degrees of freedom of a parallel robot N 
can be determined using the following simple relationship, which is derived from 
equation [7.57] and proved to be true for a large number of architectures: 

N = ZiHi-ICj [8.1] 
i=l j=l 

with: 
• B: number of independent closed loops, equal to (n^ - 1), where n̂  is the 

number of parallel chains; 
• mj: mobility of joint i; 

• L: total number of joints; 

• Cj: number of constraints of the j * loop. In general, Cj = 3 for a planar loop, 
Cj = 6 for a spatial loop. 

If the kinematic chains between the base and the mobile platform are identical 
and if the loops have the same number of constraints, equation [8.1] becomes: 

N = ncd-CjB [8.2] 
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where d is the sum of the degrees of freedom of the joints in a chain and Cj indicates 
the number of constraints per loop. 

For non-redundant robots, N gives the number of degrees of freedom of the 
mobile platform with respect to the base. 

8.5. Parallel robot architectures 

Practically, two classes of parallel robots may be distinguished: planar robots and 
spatial robots. In this section, we present both classes as well as a specific family of 
spatial robots: the Delta robots. 

8.5.1. Planar parallel robots 

A planar robot is composed of a mobile platform with three degrees of freedom 
with respect to the base: two translations and one rotation about the normal to the 
plane of the mobile platform (Figure 8.4). In accordance with the defmition of the 
fully parallel robot, the mobile platform is connected to the base by three legs, each 
including an actuated joint. 

The number of independent loops B of the planar robots of Figure 8.4 is two. If 
we assume that the three legs are identical, the application of equation [8.2] leads to: 

N = 3 d - 6 [8.3] 

From equation [8.3], we deduce that, for N = 3, the number of degrees of 
freedom d of a leg must be three (two passive and one active). 

Let A], A2 and A3 be the connection points of the base with the legs and Bi, B2 
and B3 be the connection points of the legs with the mobile platform. To control the 
position and the orientation of the mobile platform, we have to change the length of 
the AiBj legs. The following three architectures are possible for the legs: 

- R-P-R architecture (Figure 8.4a), which is actuated by the prismatic joint; 

- P-R-R architecture (Figure 8.4b), which is actuated by the prismatic joint; 

- R-R-R architecture (Figure 8.4c), which is actuated by the revolute joint close 
to the base. 
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Prismatic 
actuator 

Rcvolutc 

/
joint 

B \ 
3 \latform 

a) 

%_, ^ A , 

< ^ B2 

b) 

Revolute ^̂ ĴĴ  A, ^ ^ 
actuator ^"^^TO • 0». CT^^ 

Figure 8.4. Examples of planar robot architectures 

8.5.2. Spatial parallel robots 

In general, the mobile platform of spatial robots can have either three degrees of 
freedom to place a point in the space or six degrees of freedom to place the end-
effector at any arbitrary location. To determine the type of joints of each leg, we 
proceed as for planar robots while assuming that the legs are identical. 
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8.5.2.1. Three degree-of-freedom spatial robots 

The mobile platform is connected to the base by three legs. There are two 
independent loops, and equation [8.2] yields: 

N = 3 d - 1 2 [8.4] 

Since N = 3, the number of degrees of freedom d of each leg must be five (four 
passive and one active). The passive degrees of freedom can be distributed 
according to the combinations (0,4), (1,3) or (2,2). 

The (1,3) combination is the most commonly used. It is composed of a revolute 
joint at one end and a spherical joint (RRR) at the other. Figure 8.Sa depicts such an 
example, where the leg length is actuated by a prismatic joint, giving for each leg an 
R-P-(RRR) architecture. Figure 8.5b gives an example of the (0,4) combination, 
where the four degree-of-freedom joint is constructed with two universal joints 
(RR). Each leg is actuated by a revolute joint fixed on the base and presents an R-
(RR)-(RR) architecture. 

Spherical 
joint 

U-joint 

Prismatic 
joint 

Revolute 
y joints 

a) b) 
Figure 8.5. Three degree-of-freedom spatial robots 

8.5.2.2. Six degree-of-freedom spatial robots 

We consider the Gough-Stewart structure as representative of the six-degree-of-
freedom spatial robots. Merlet [Merlet 00] describes three concepts of six degree-of-
freedom architectures where the base and the mobile platform are connected by six 
legs driven by prismatic actuated joints (Figure 8.6): 

- SSM robot (Simplified Symmetric Manipulator) in which the base and the 
mobile platform are hexagons. The legs are connected to the vertices of the 
hexagons; 
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- TSSM robot (Triangular Simplified Symmetric Manipulator) in which the 
mobile platform is triangular whereas the base is hexagonal. Two legs are 
connected on the same vertex of the triangle; 

- MSSM robot (Minimal Simplified Symmetric Manipulator) in which the base 
and the mobile platform are triangular. Legs are mounted by pairs at both 
ends. The architecture forms an octahedron. 

With six legs in parallel, there are five loops, and the application of equation 
[8.2] (N = 6d - 6x5) results in six degrees of freedom per leg (five passive and one 
active). The passive degrees of freedom can be distributed according to the 
combinations (0,5), (1,4) or (2,3). The (2,3) combination is the most popular one. It 
is composed of a universal joint (RR) and a spherical joint (RRR). The six degrees 
of freedom of the mobile platform are obtained by actuating each leg by either a 
prismatic joint (Figure 8.7) or a revolute joint (Figure 8.8). In the first case, the leg 
architecture is composed of (RR)-P-(RRR) joints, and in the second case, of R-(RR)-
(RRR) joints. 

b)TSSM 

ll I 11 I H I I 11 
Platform 

Base 

c)MSSM 
Figure 8.6. SSM, TSSM and MSSM parallel robots 

Figure 8.9 presents a robot with a (0,5) combination for the passive joints. In this 
case, the leg orientation is fixed with respect to the base, whereas the mobile 
platform is connected to each leg through a five degree-of-freedom passive joint, a 
so-called C5 joint [Dafaoui 94]. The C5 joint is realized by a spherical joint fixed to 
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two perpendicular prismatic joints. The leg lengths are actuated by prismatic joints, 
giving for each leg a P-(RRRPP) architecture. 

Note that we can find a six degrce-of-freedom spatial robot with only three legs 
with R-R-P-(RRR) architecture as shown in Figure 8.7a. In this case, each leg has 
two active joints, namely the revolute joint, which is close to the base, and the 
prismatic joint. Such structure has been achieved on the so-called Space robot 
[Beji 97]. The application of equation [8.2] gives N = 6 for this structure. 

Universal joint 
(U-joint) 

Actuated 
prismatic joint 

a) 

Spherical joint 
(S-joint) 

^ Platform 

S-joint 

Actuated 
prismatic joint 

ll-joint 

Figure 8.7. (RR)'P'(RRR) architecture 

Platform 

Actuated 
revolute joint 

Figure 8.8. R'(RRHRRR) architectures 

8.5.3. The Delta robot and UsfamUy 

An interesting realization actually being implemented in several industrial 
applications is the Delta robot designed by Clavel [Clavel 89] (Figure 8.10a). This 
robot has four degrees of freedom, the fourth being fixed on the mobile platform and 
allowing the end-effector to rotate around the vertical axis. The moving platform 
always remains parallel to the base. It is connected to the base by three identical 
kinematic chains having a R-(RR)-(RR) architecture. The parallel chains are 
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actuated by the revolute joints, which are close to the base, using DC motors fixed to 
the base. With this architecture, the Delta has a very low inertia and can manipulate 
light pieces within a very short cycle time (typically, two pieces of lOg per second). 
This robot also presents the advantage of having a relatively large workspace. One 
can find in [Herv6 91], [Goudali 96] examples of robots derived from this 
architecture. 

Pierrot [Pierrot 91b] has extended the Delta robot concept into a six degree-of-
freedom robot, the Hexa robot (Figure 8.10b). The six actuators are fixed to the base 
and provide a speed of 8 m/s and an acceleration of 22 g to the mobile platform. 

Figure 8.9. Parallel robot with C5 joints [Dafaoui 94] 

a) b) 
Figure 8.10. The Delta (a) and Hexa (b) robots 

(from [Clavel 89] and [Pierrot 9Ib] in [Merlet 00]) 
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8.6. Modeling the six degree-of-freedom parallel robots 

In this section, we present the geometric and kinematic models of the Gough-
Stewart parallel robots. The techniques developed in Chapter 7 for closed loop 
structures, namely the geometric description notations and the geometric and 
kinematic modeling methods can also be used for parallel robots. However, specific 
methods are usually more efficient. The proposed approach has direct relevance to 
the entire class of parallel robots such as the Delta robot [Clavel 89] and Hexa robot 
[Pierrot 91b]. 

8.6.1. Geometric description 

We assume that the universal joints (U-joint) and the spherical joints (S-joint) 
are perfect, and that the prismatic joints are perfectly assembled. The centers of the 
U-joints and S-joints are denoted by Aj and Bj, for i = 1, ..., 6, respectively 
(Figure 8.11). Two coordinate systems need to be set up for the geometric 
description of a parallel structure: frame Ro is attached to the base and frame Rm is 
attached to the mobile platform. They are defined as follows: 

~ A] is the origin of frame Ro, the XQ axis is along At A2, and the xoyo plane is 
determined by A\, A2 and A^; 

~ similarly, B] is the origin of frame Rm* the x,„ axis is along B1B2, and B|, 62, 
Bfi are in the Xmym plane. 

The geometry of such a robot is described by: 

~ the (6x1) joint variable vector q representing the leg lengths AiBj for i = 1, ..., 
6; 

- the coordinates of the connection points A[ and Bj in frames Ro and R^ 
respectively (^PAJ and "^PBJ for i = 1, . . , ,6). Note that the points Aj may not 
be necessarily in the same plane, nor the points Bj. 

According to the definition of frames Ro and R^, we obtain: 

^XAl = % A 1 = °PZA| = °PyA2 = ^ZA2 = <̂ ZA6 = 0 

•"PxBi = "PyBi = ""PzHi = '"PyB2 = ""Pzaa = ""PzBe = 0 

where JPpj denotes the position of a point Pj with respect to frame RJ: 

JPpi = [ ^PxPi JPyPi JPzPi ]T 
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Figure 8.11. Geometric notations 

Thus, the robot is described by 24 constant parameters that may be not zero. 
In order to describe the location of the robot base frame RQ with respect to the 

environment world reference frame Rf, we use the matrix Z = ^Q- Similarly, to 
defme a general end-effector frame RE with respect to frame Rm, we use the matrix 
E = ""TE- Consequently, the location of the end-effector frame relative to the world 
reference frame is: 

^ T E = ZOTm(q)E [8.5] 

The coordinates of a connection point Aj relative to frame Rf are given by: 

[";-]=%["';']=4";-] 
The coordinates of the connection point Bj relative to frame RE are: 

The matrices Z and E can be defined arbitrarily; therefore, six independent 
parameters are needed to define each of them. 
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To conclude, we can define the end-effector frame with respect to the reference 
frame using 42 geometric parameters (36 constant geometric parameters and 6 joint 
variables representing the leg lengths). The 36 constant parameters can be defined 
either by ^̂ PAJ and ^PBI^ or by tije 24 coordinates of ^P ĵ and "*PBi» which may be 
not zero, and the matrices E and Z. These parameters allow us to calculate the 
kinematic and geometric models. The second set of parameters is interesting when 
calibrating the geometric parameters using autonomous methods and when 
developing symbolic geometric or kinematic models. 

8.6.2. Inverse geomeiric model 

The inverse geometric model (IGM) provides the joint variables q corresponding 
to a given location ^ g of the end-effector. It is represented by: 

q = IGM(fTE) [8.8] 

with: 

q = [q, ... q^f [8.9] 

Since ^PBJ and '̂ TE are known, we can compute the coordinates of the connection 
points Bj with respect to the reference frame by the following relation: 

The prismatic variable q\ is equal to the distance between the connection points 
Ai and BJ: 

qî  = (^PBi-^PAi)'^(^PBi-^PAi) = (̂ AiBi)TfAiBi [8.11] 

This equation shows that the IGM of the Gough-Stewart parallel robot is unique 
and can be easily determined. The equations giving the leg lengths are independent 
and can be computed in parallel [Merlet 00]. This result is not general for all parallel 
robots. For example, the IGM of a three degrce-of-freedom spatial robot (Figure 
8.5) is not unique: for a given position of the endpoint, there are four possible 
solutions for the leg lengths [Gosselin 88]. 
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8.6.3. Inverse kinematic model 

The inverse kinematic model (IKM) provides the actuated joint velocity q 
corresponding to a given kinematic screw of the end-effector. It is denoted by: 

-'411 [8.12] 

where ^Vg is the linear velocity of OE, origin of frame RE, and ^(Og^ is the angular 
velocity of the end-effector. 

The inverse differentia] model can be defined by: 

[8.13] dq = ^JE 
*̂ dPE 

f5E J 

The computation of ĵ£ is obtained by projecting the velocity of the connection 
points of the mobile platform onto the leg directions. Let ^VBJ be the velocity of the 
point Bj with respect to frame Rg; hence we can write: 

V̂Bi = ^VE+^BiOExf(0E [8.14] 

Thus, the joint velocity qj, for i = 1,..., 6, can be computed by: 

qi = ^ui^%i [8-15] 

where u\ is the unit vector along the i* leg: 

AjEj AjBi 

Combining equations [8.14] and [8.15] leads to: 

qi = fu^^VE+^u/'(fBiOExfa)E) [8.17] 

which can be rewritten as: 

qi = fu/'fVE + (̂ UixfBiOE)T^a)E [8.18] 
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Consequently, the î** row of the inverse Jacobian matrix is given by: 

L i = [ û-̂  (^x^BiOE)'^] f8.19] 

and finally: 

Ĵ-J = 

r fu,T (fuixfBiOE)'^ 

V (fu2xfB20Er (8.20] 

The direct kinematic model is obtained by inverting equation [8.20]. 

8.6.4. Direct geometric model 

The direct geometric model (DGM) provides the location of the end-effector 
corresponding to a given joint configuration q. It is written as: 

^TE = DGM(q) [8.21] 

8.6.4.1. Closed-form solution 

The solution of the DGM is relatively complicated to derive. In general, for a 
given set of joint variables, the mobile platform can take several different locations. 

In order to find an analytical solution to the general six degree-of-freedom 
Gough-Stewart parallel robot, some authors propose to incorporate additional 
position sensors on some selected passive joints [Cheok 93), [Merlet 93], 
[Baron 94], [Han 95], [Tancredi 95]. 

Recently, Husty [Husty 96] presented a method giving all the DGM solutions of 
a general Gough-Stewart parallel robot. It is based on the resolution of a 40^^ degree 
polynomial in a single variable. The other variables are then uniquely determined. 
Some of these solutions may be complex numbers. However, this method does not 
give the maximum number of real solutions. It does not indicate if the solutions can 
be reached from a given configuration without crossing a singularity or after having 
crossed a singularity. The Husty algorithm confirms Raghavan's work [Raghavan 91] 
and Lazard's work [Lazard92] that found the same number of solutions by 
numerical methods. In [Dietmaier 98], we find an example of a robot with 40 real 
solutions. 

Closed-form solutions of the DGM have been proposed for the special (non-
exhaustive) following architectures: 
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I) TSSM architectures (Figure 8.6b): the notion of equivalent mechanism allows 
us to derive the direct geometric model of spatial robots with a triangular platform. 
This approach has been used by Hunt [Hunt 83] and [Charentus 90] to compute the 
DGM of TSSM architectures. The problem is reduced to solving three equations in 
three unknowns, which are the rotation angles of these triangles about the base. 

Indeed, in the TSSM architecture, each of the triangular faces A1A2B1, A3A4B2 
and A5A^B3 can only rotate around the axes A1A2, A3A4 and A5A5 respectively. 
This results in the equivalent mechanism shown in Figure 8.12. 

The three equivalent segments ri, r2 and r3 sweep three circles in the space and it 
can be shown that the solution of the DGM is given by an 8̂** degree polynomial. 
Thus, the number of possible configurations for a given vector q is 16 while taking 
into account the symmetry of solutions with respect to the base. 

Platform >.. jg^3 

Equivalent g y!|!i|ji^^ Spherical 
link ""^^ \ r j \ r r i \ / \ \ Joint 

^^.^ I ; '̂̂ ^^^ Revolute 

Figure 8.12. Equivalent TSSM architecture with three rigid triangular faces 

2) Gough'Stewart robots with five collinear connection points: Zhang and Song 
[Zhang 92] showed that the DGM of such a parallel robot has an analytical solution 
(4* degree polynomial at most) if the connection points of five legs on either the 
base or the platform are collinear. Such structure decouples a rotational degree of 
freedom of the platform from the other five (Figure 8.13). The number of solutions 
is eight, four with Pjr̂  positive, the other four with Pz^ negative. A study of the 
duality of this architecture with a six degrec-of-freedom serial robot having a 
spherical wrist can be found in [Khalil 96c]. 

3) 4-4 Gough'Stewart robots: [Lin 92] gives the polynomial solution of the 
DGM of a Gough-Stewart robot in which two pairs of connection points of the 
mobile platform are coincident, as well as two pairs of connection points of the base 
plate. The connection points of the base lie on one plane and those of the mobile 
platform lie on another one. The solution is given by a 12 degree polynomial at 
most. 
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4) 5-4 Parallel robots: Innocenti and Parenti-Castetii [Innocenti 93] give the 
solution of a Gough-Stewart robot in which two connection points of the base are 
coincident as well as two pairs of connection points of the mobile platform (Figure 
8.14). The solution is given by a 24^ degree polynomial in one variable, the other 
variables being uniquely determined. A similar result has been obtained for the S-S 
robot [Innocenti 95]. 

Figure 8.13. Architectures with five coUinear connection points 

5) Gough'Stewart robot with similar base and platform: it has been shown that 
all the joint variables can be obtained from linear or quadratic equations when the 
connection points of the base lie on one plane and those of the mobile platform lie 
on another one, and the form of the base and the mobile platform are similar (same 
form but different sizes). The number of solutions is 16 [Lee 93]. 

6) Gough-Stewart robot with three coincident connection points on the base as 
well as on the mobile platform: this so-called (3-1-1-1)^ robot has eight solutions 
that can be analytically computed [Bruyninckx 98]. 
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7) Six degree-of-freedom parallel robot with a C5 joint: it can be shown that 
such an architecture (Figure 8.9), which has a very small workspace, has a unique 
solution for both the DGM and the IGM [Dafaoui 94]. 

8) Delta family: the DGM may be obtained by solving a 2"^ degree polynomial 
[Pierrot 91a]. 

Figure 8.14. Six degree-of-freedom (5-4) parallel robot 

8.6.4.2. Numerical solution 

Practically, we can use the inverse differential model to compute a numerical 
solution of the DGM in an iterative manner. For a given q ,̂ the algorithm is as 
follows: 

- from an initial location ^Tg (random or current location) of the mobile 
platform, compute the corresponding joint variables q̂  using the IGM; 

- compute the difference between q^ and the current q :̂ dq = q̂  - q .̂ If dq is 
small enough, ̂ Tg = ̂ Tg, then stop the computation; 

- using equation [8.20], compute the inverse Jacobian matrix ^Jg; 

- compute numerically the direct Jacobian matrix ^JE = (^JE )"*"; 

- compute the position error d̂PE and the orientation error ^5E = 6 u (where u is 
a unit vector) corresponding to dq by using the relation: 

[8.22] ['C]-''̂ -'' 
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- update the current position and orientation of the mobile platform: 

fTU 
LO 0 0 1 J 

[8.23] 

with: 

% = rot(ii, 6) % 

- return to the first step. 

This algorithm is efficient aiKl can be computed in real time. 

[8.24] 

[8.25] 

8J. Singular configurations 

Singular configurations of parallel robots are particular configurations at which 
the robot loses its natural rigidity. At these configurations, one or more degrees of 
freedom of the platform become uiKontrollable. From such an initial configuration, 
the mobile platform moves toward an equilibrium location under the effect of the 
wrench applied to the mobile platform, for example, under the effect of the gravity 
loading of the platform and the manipulated toad. Such a motion is due to the 
passive joints, while the actuated joints are fixed (§ 7.11). 

Mathematically, the singular configurations can be determined by analyzing the 
static equilibrium of the robot. Let r l>e the vector of the joint torques and let If be 
the static wrench applied to the mobile platform. The static equilibrium of the robot 
is defined as (§ 5.9.2): 

i^ Q'^fr [8.26] 

In order to maintain the equilibrium of the robot, the inverse Jacobian matrix has 
to be regular, such that for a given wrench IT, there is a corresponding finite joint 
torque va:tor F. 

The singular configurations can be determined by analyzing the rank of the 
matrix J*^ From equation [8.12], we can deduce that at a singular configuration, a 
motion in the null space of J'^ is possible even though q = 0 (§ 7.11). From equation 
[8.26], we see that at a singular configuration the motor torques T can be infinity, 
which may damage the robot. Thus, parallel robots should be designed without 
singularities in the reachable space. This can be attained by good selection of joint 
geometric parameters and joint limits, and even by providing the robot with 
r^undant actuators on some passive joints [Medet 00]. 
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Merlet [Merlet 89] proposed to study the singularity using another interesting 
geometric method based on Grassmann manifolds. 

The analysis of singularities has led some authors to propose design-related rules 
in order to avoid singular structures. Ma and Angeles [Ma 91] demonstrated that the 
inverse Jacobian matrix is singular throughout the whole workspace of the robot if 
the mobile platform and the base are made of regular and similar polygons with six 
connecting points. Such singularity is called architecture singularity and the 
corresponding architecture is called singular architecture. Figure 8.15 depicts this 
architecture, the mobile platform and the base being homothctical. 

Platform 

Base 

Figure 8.15. Singular architectures 

8.8. Conclusion 

In this chapter, we have presented the geometric and kinematic models of 
Gough-Stcwart structures, which are considered to be representative of parallel 
robots. We have shown that the techniques developed for serial robots are often not 
appropriate and special approaches have to be used. The IGM and IKM are simple 
and straightforward to derive. On the contrary, the analytical DGM is not easy to 
compute in the general case since 40 solutions are possible. It was observed that 
merging some of the connection points on the platform or the base or both, by 
groups of two or three, simplifies the closed-form solution of the problem and also 
reduces the maximum number of possible solutions. 

In addition, the numerical solution of the DGM can be used in most practical 
applications where only one real solution is required provided that a good initial 
location is available. 
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Dynamic modeling of serial robots 

9.1. Introduction 

The inverse dynamic model provides the joint torques and forces in terms of the 
joint positions, velocities and accelerations. It is described by: 

r = f(q,q,q,Q [9.1] 

with: 

• T: vector of joint torques or forces, depending on whether the joint is revolute 
or prismatic respectively. In the sequel, we will only write yV̂mr torques, 

• q: vector of joint positions; 
• q: vector of joint velocities; 
• q: vector of joint accelerations; 
• 4: vector of forces and moments exerted by the robot on the environment. 

Equation [9.1] is an inverse dynamic model because it defines the system input 
as a function of the output variables. It is often called the dynamic model. 

The direct dynamic model describes the joint accelerations in terms of the joint 
positions, velocities and torques. It is represented by the relation: 

q = g(q.q,r,lle) [9.2] 

The dynamic model of robots plays an important role in their design and 
operation. For robot design, the inverse dynamic model can be used to select the 
actuators [Chedmail 90b], [Potkonjak 86], while the direct dynamic model is 
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employed to carry out simulations (§ 9.7) for the purpose of testing the performance 
of the robot and to study the relative merits of possible control schemes. Regarding 
robot operations, the inverse dynamic model is used to compute the actuator torques, 
which are needed to achieve a desired motion (Chapter 14). It is also used to identify 
the dynamic parameters that are necessary for both control and simulation 
applications (Chapter 12). 

Several approaches have been proposed to model the dynamics of robots 
[Renaud 75], [Coiffet 81], [Vukobratovic 82]. The most frequently employed in 
robotics arc the Lagrange formulation [Uicker 69], [Khalil 76], [Renaud 80a], 
[Hollerbach 80], [Paul 81], [Megahed 84], [Renaud 85] and the Newton-Euler 
formulation [Hooker 65], [Armstrong 79], [Luh 80b], [Orin 79], [Khalil 85a], 
[Khosia 86], [Khalil 87b], [Renaud 87]. 

In this chapter, we present the dynamic modeling of serial robots using these two 
formulations. The problem of calculating a minimum set of inertial parameters will 
be covered in detail. We will focus our study on the minimization of the number of 
operations of the dynamic model in view of its real time computation for control 
purposes. Lastly, the computation of the direct dynamic model will be addressed. In 
Chapter 10, these results will be generalized for tree structured and closed chain 
robots. 

9.2. Notations 

The main notations used in this chapter are compiled l)elow: 

aj unit vector along axis ZJ; 
Fj external forces on link j ; 
(j force exerted on link j by link j - 1 ; 
fcj force exerted by link j on the environment; 
Fcj parameter of Coulomb friction acting at joint j ; 
Fvj parameter of viscous friction acting at joint j ; 
g gravitational acceleration; 
Gj center-of-mass of link j ; 
IQJ inertia tensor of link j about Gj and with respect to a frame parallel to 

frame RJ; 
laj moment of inertia of the rotor and the transmission system of actuator j 

referred to the joint side; 
JJj inertia tensor of link j with respect to frame Rj. It is described by: 
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jji = 

MSj 

MGJ 
Mj 

"j 
IBej 
Sj 
Vj 

J(y2+z2)dm -Ixydm -Jxzdm 

-Jxydm J(x2-fẑ )dm -Jyzdm 

-fxzdm -lyzdm /(x^+y^)dm 

XXj XYj XZj 

XYj YYj YZj 

L XZj YZj ZZj J 

[9.3] 

(6x6) spatial inertia matrix of link j (relation [9.21]); 
position vector between Oj.| and OJ; 
mass of link j ; 
first moments of link j with respect to frame Rj, equal to Mj Sj. The 
components of JMSj are denoted by [ MXj MYj MZj ]'^; 
moment of external forces on link j about GJ; 
moment of external forces on link j about OJ; 
moment about Oj exerted on link j by link j - 1 ; 
moment about Oj exerted by link j on the environment; 
vector of the center-of-mass coordinates of link j . It is equal to OJGJ; 

linear velocity of OJ; 
(6x1) kinematic screw vector of link j , formed by the components of Vj 
andCDj; 
linear acceleration of OJ; 
linear velocity of the center-of-mass of link j ; 
linear acceleration of the center-of-mass of link j ; 
angular velocity of link j ; 
angular acceleration of link j . 

9.3* Lagrange formulation 

9.3.1« Introduction 

The dynamic model of a robot with several degrees of freedom represents a 
complicated system. The Newton-Euler method developed in § 9.5 presents an 
efficient and systematic approach to solving this problem. In this section, we 
develop a simple Lagrange method to present the general form of the dynamic model 
of robots and to get an insight into its properties. Firstly, we consider an ideal system 
without friction or elasticity, exerting neither forces nor moments on the 
environment. These phenomena will be covered in § 9.3.4 through 9.3.8. 

The Lagrange formulation describes the behavior of a dynamic system in terms 
of work and energy stored in the system. The Lagrange equations are commonly 
written in the form: 
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d dL dL 
Ti = dtTT-ai f̂ ^̂  = ̂  " f̂ -̂ ^̂ l 

where L is the Lagrangian of the robot defined as the difference between the kinetic 
energy E and the potential energy U of the system: 

L = E - U [9.4b] 

9.3.2. General form of the dynamic equations 

The kinetic energy of the system is a quadratic function in the joint velocities 
such that: 

E = ^ q T A q [9.5] 

where A is the (nxn) symmetric and positive definite inertia matrix of the robot. Its 
elements are functions of the joint positions. The (i, j) element of A is denoted by 
Aij. 

Since the potential energy is a function of the joint positions, equations [9.4] and 
[9.5] lead to: 

r = A(q)q + C(q,q)q-HQ(q) [9.6] 

where: 

• C(q, q) q is the (nxl) vector of Coriolis and centrifugal torques, such that: 
1 . 8E 

• Q = [Q J ... Q„]T is the vector of gravity torques. 

Consequently, the dynamic model of a robot is described by n coupled and 
nonlinear second order differential equations. 

There exist several forms for the vector C(q, q) q. Using the Christoffell symbols 
Ci jk» *6 (i» J) element of the matrix C can be written as: 
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n 
Qj = Z^ijkqk 

k=l 
1 r^Aji gAjit aAjk-i 
=̂" [9.7] 

The Qi element of the vector Q is calculated according to: 

The elements of A, C and Q are functions of the geometric and inertial 
parameters of the robot. 

933. Compulation of the elements of A, Cand Q 

To compute the elements of A, C and Q, we begin by symbolically computing 
the expressions of the kinetic and potential energies of all the links of the robot. 
Then, we proceed as follows: 

- the element Ajj is equal to the coefficient of (qi^/2) in the expression of the 
kinetic energy, while Ay, for i T̂  j , is equal to the coefficient of qj qj; 

- the elements of C are obtained from equation [9.7]; 

- the elements of Q are obtained from equation [9.8]. 

9.3.3.1. Computation of the kinetic energy 

The kinetic energy of the robot is given as: 

E = l E j [9.9] 
j==i 

where Ej denotes the kinetic energy of link j , which can be computed by: 

Ej = 5 ((DjT loj CDj + Mj V G / Voj) [9.10] 

Since the velocity of the center-of-mass can be expressed as (Figure 9.1): 

V G J = Vj + cOjxSj [9.11] 
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and since: 

A A 

Jj = loj-MjSjSj 

equation [9.10] becomes: 

[9.12] 

[9.13] 

'̂ o 

Figure 9.1. Composition of velocities 

Equation [9.10] is not linear in the coordinates of the vector Sj. On the contrary, 
equation [9.13] is linear in the elements of Mj, MSj and Jj, which we call the 
standard inertial parameters. The linear and angular velocities Vj and a)| are 
computed using the following recursive equations (Figure 9.1): 

CBJ = (Oj.! 4- Gj qj aj 

Vj = Vj.i+fi5.ixLj + 0jqjaj 

[9.14] 

[9.15] 

If the base of the robot is fixed, the previous equations are initialized by VQ = 0 
and G)o = 0-

All the elements appearing in equation [9.13] must be expressed in the same 
frame. The most efficient way is to express them relative to frame Rj. Therefore, 
equations [9.13], [9.14] and [9.15] are rewritten as: 
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Ej = 5 [Jô T jj. j(o. + Mj JV/ iVj + 2 JMSjT (JVj X JWj)] 

JtOj = JAj.i J"*(Oj.i + Oj qj Jaj = J(Oj.i + Oj qj Jaj 

JVj = JAj.i (i-'Vj., +y^Wi.i xi-»Pj) + Ojqjiaj 

[9.16] 

[9.17] 

[9.18] 

The parameters ijj and JMSj are constants. 
Using the spatial notation, the kinetic energy can be written in the following 

compact form: 

Ej = jiv/jjIjJVj 

where: 

JVj = 

jjfi = 

JVi 

J(l)j 

Mjla -JMSj 

iMSi JJj 

[9.19] 

[9.20] 

[9.21] 

The recursive velocity relations [9.17] and [9.18] can be combined as follows: 

JVj=JTrj.,i-'Vj., + qjJaj 

where JTj.i is the (6x6) screw transformation matrix defmed in [2.46] as: 

[9.22] 

JITj-i = 
JAj., JAj.,J->Pj 

O3 JAi j-l 

JAj., JPj.,JAj., 

O3 JA j-l 
(9.23a] 

and where Jaij is the (6x1) column matrix: 

J«j = 

OjJaj 

OjJaj 
[9.23b] 
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9.3.3.2. Computation of the potential energy 

The potential energy is given by: 

U = i Uj = 2 -Mj gT' (Lo. j + Sj) [9.24] 
j=l j=:l 

where LQJ is the position vector from the origin OQ to Oj. Projecting the vectors 
appearing in [9.24] into frame RQ, we obtain: 

Uj = -Mj OgT (Op. + OAj JSj) [9.25a] 

an expression that can be rewritten linearly in Mj and the elements of JMSj as: 

Uj = -OgT (MJ OPj + % JMSj) = - [ OgT 0 ] OT3 [ '^^ ] [9.25b] 

Since the kinetic and potential energies are linear in the elements of JJj, JMSj, 
Mj, we deduce that the dynamic model is also linear in these parameters. 

9.3.3.3. Dynamic model properties 

In this section, we summarize some important properties of the dynamic model 
of robots: 

a) the inertia matrix A is symmetric and positive definite; 

b) the energy of link j is a function of (qi,...»qj) and (q^,.... qj); 
c) the element Ay is a function of q^+i, ..., qn, with k = min(i, j), and of the 

inertial parameters of links r,..., n, with r = max(i, j); 

d) from property b and equation [9.4], we deduce that Tj is a function of the 
inertial parameters of links i,..., n; 

e) the matrix [^pA-2C(q, q)] is skew-symmetric for the choice of the matrix C 

given by equation [9.7] [Koditschek 84], [Arimoto 84]. This property is used 
in Chapter 14 for the stability analysis of certain control schemes; 

f) the inverse dynamic model is linear in the elements of the standard inertial 
parameters Mĵ JMSj and ijj. This property is exploited to identify the dynamic 
parameters (inertial and friction parameters), to reduce the computation 
burden of the dynamic model, and to develop adaptive control schemes; 



Dynamic modeling of serial robots 199 

g) there exist some positive real numbers ai,.... a? such that for any values of q 
and q we have [Samson 87]: 

| |A(q) | |<a , + a2||q|| + a3||q||2 

l |C(q.q)| |<| |q| |(a4 + a5||q||) 

l |Q | |<a6 + a7||q|| 

where ||*|| indicates a matrix or vector norm. If the robot has only revolute 
joints, these relations become: 

l |A(q)| |<a, 

l |C(q.q) | |<a4| |q | | 

h) a robot is a passive system which dissipates energy. This property is related to 
property e). 

93.4. Considering friction 

Friction plays a doniinant role in limiting the quality of robot performance. Non­
compensated friction produces static error, delay, and limit cycle behavior [Canudas 
de Wit 90]. Many works have been devoted to studying friction torque in the joint 
and transmission systems. Various friction models have been proposed in the 
literature [Dahl 77], [Canudas de Wit 89], [Armstrong 88], [Armstrong 91], 
[Armstrong 94]. In general, three kinds of frictions are noted: Coulomb friction, 
static friction, and viscous friction. 

The model based on Coulomb friction assumes a constant friction component 
that is independent of the magnitude of the velocity. The static friction is the torque 
necessary to initiate motion from rest. It is often greater than the Coulomb friction 
(Figure 9.2a). The viscous friction is generally represented as being proportional to 
the velocity, but experimental studies [Armstrong 88] have pointed out the Stribeck 
phenomenon that arises from the use of fluid lubrication. It results in decreasing 
friction with increasing velocity at low velocity, then the friction becomes 
proportional to velocity (Figure 9.2b). A general friction model describing these 
components is given by: 

Ffi = Fci sign(qi) + Fyi qi + (V,^ - F^) sign(qi) e-l4ilBi [9.26] 

In this expression, Fn denotes the friction torque of joint i, Fcj and Fyj indicate 
die Coulomb and viscous friction parameters respectively. The static torque is equal 
toFstiSign(qi). 
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The most often employed model is composed of Coulomb friction together with 
viscous friction (Figure 9.2c). Therefore, the friction torque at joint i is written as: 

Tf, = Fci sign(qi) + Fyj qi [9.27] 

To take into account the friction in the dynamic model of a robot, we add the 
vector Tf on the right side of equation [9.6] such that: 

Ff = diag(q)Fv + diag(sign(q)]Fc [9.28] 

where: 

. Fv=[Fvl - FvnF; 
• Fc = [Fcl ••• Fc„]T; 

• diag(q) is the diagonal matrix whose elements are the components of q. 

This friction model can be approximated by a piecewise linear model as shown 
in Figure 9.2d. 

Ffi 

Tfli 

a) 

c) 

^ q i 

^ q i 

Psti 

3 

Figure 9.2. Friction models 
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9.3.5. Considering the roior inertia of actuators 

The kinetic energy of the rotor (and transmission system) of actuator j , is given 

by the expression 2 laj qĵ - The inertial parameter laj denotes the equivalent inertia 

referred to the joint velocity. It is given by; 

Iaj = Nj2j„j [9.29] 

where J^j is the moment of inertia of the rotor and transmissions of actuator j , Nj is 
the transmission ratio of joint j axis, equal to qn,j / qj where q„|j denotes the rotor 
velocity of actuator j . In the case of a prismatic joint, laj is an equivalent mass. 

In order to consider the rotor inertia in die dynamic model of the robot, we add 
the inertia (or mass) laj to the Ay element of the matrix A. 

Note that such modeling neglects the gyroscopic effects of the rotors, which take 
place when the actuator is fixed on a moving link. However, this approximation is 
justified for high gear transmission ratios. For more accurate modeling of the rotors 
the reader is referred to [Llibre 83], [Chedmail 86), [Murphy 93], [Sciavicco 94]. 

93.6. Considering the forces and moments exerted by the end-effector on the 
environment 

We have seen in § 5.9 that the joint torque vector Fe necessary to exert a given 
wrench ll̂ n on the environment is obtained using the basic static equation: 

r e = Jlll^n [9.30] 

Thus, we have to add the vector Te on the right side of equation [9.6]. 

9.3.7. Relation between joint torques and actuator torques 

In general, the joint variables are not equal to the motor variables because of the 
existence of transmission systems or because of couplings between the actuator 
variables. The relation between joint torques and actuator torques can be obtained 
using the principle of virtual work. Let the relationship between the infinitesimal 
joint displacement dq and the infinitesimal actuator variable dq^ be given by: 

dq = Jqmdqm [9.31] 
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da 

where Jq ,̂ is the Jacobian of q with respect to q^, equal to g~". 

The virtual work can be written as: 
rTdq* = xi^dq;;, [9.32] 

where tmis the actuator torque vector and the superscript (*) indicates virtual 
displacements. 

Combining equations [9.31] and [9.32] yields: 

Xm = j j ^ r [9.33] 

9«3«8. Modeling of robots with elastic joints 

The presence of joint flexibility is a common feature of many current industrial 
robots. The joint elasticity may arise from several sources, such as elasticity in the 
gears, transmission belts, harmonic drives, etc. It follows that a time-varying 
displacement is introduced between the position of the driving actuator and the joint 
position. The joint elasticity is modeled as a linear torsional spring for revolute 
joints and a linear spring for prismatic joints [Khalil 78], [Spong 87]. Thus, the 
dynamic model requires twice the number of generalized coordinates to completely 
characterize the configuration of the links and the rotors of the actuators. Let q|^ 
denote the (nxl) vector of rotor positions as reflected through the gear ratios (Figure 
9.3). Consequently, the vector of joint deformations is given by (q - qj^). Note that 
the direct geometric model is only a function of the joint variables q. 

The potential energy of the springs is given by: 

Uk = | ( q - q M ) ^ k ( q - q M ) 19.34] 

where k is the (nxn) definite positive joint stiffness matrix. 

The dynamic equations are obtained using the Lagrange equation, i.e.: 

A q + C q + Q + k(q-qM) = 0 [9.35a] 

la qM + dlag(qM) Fvm + diag(sign(qM)) Fc„ - k (q - q^) = F [9.35b] 
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where la is the (nxn) diagonal matrix containing the inertia of the rotors, Fvm ̂ nd 
Fcm are the (nxl) vectors containing the viscous and Coulomb parameters of the 
actuators and transmissions referred to the joint side. The joint friction terms can 
easily be included in equation [9.3Sa]. 

A general and systematic method to model systems with lumped elasticity is 
presented in [Khalil 00a]. 

^Mj qj 

^3^T^ 
rotor/gear j joint j 

Figure 9.3. Modeling of joint flexibility 

* Example 9.1. Computation of the elements of the matrices A and Q for the first 
three links of the Staubli RX-90 robot whose geometric parameters are given in 
Example 3.1. 

i) computation of the angular velocities (equation [9.17]) 

% = 0 

'O), = (0 0 q,f 

2(02 = ^Ai '©I +q2^"2 

C2 0 S2 

-S2 0 C2 

0 - 1 0 

• 0 

0 

.qiJ 

ro' 
0 

Lq2J 

= [S2q, C2q, inV 

"S2q, 

C2q, 

L qa J 

ii) computation of the linear velocities (equation 19.18]) 

C3 S3 0 

-S3 C3 0 

0 0 I j 

0 

0 

LqsJ 

= [S23q, C23q, ^^^k^^ 
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•V, = 0 

'V2 = 'Vi + % X 'P2 = 0 

2V2 = 0 

2V3 = 2^^ X 2P3 = [0 D3 qa -C2D3 <nf 

3V3 = ^Aa^Va = (S3D3q2 C3D3q2 -C2D3qi f 

Hi) computation of the inertia matrix A. With the following general inertial 
parameters: 

JMSj = [MXj MYj MZj]* 

r xXj XYj xZj 1 r 1,1 0 0 

j j j = XYj YYj YZj . 1 , = 0 1,2 0 

L x Z j Y Z j Z Z j J L o O l a s J 

we obtain the elements of the robot inertia matrix as: 

All = lai + ZZi + SS2 XX2 + 2CS2 XY2 + CC2 YY2 + SS23 XX3 + 2CS23 
XY3 + CC23 YY3 + 2C2 C23 D3 MX3 - 2C2 S23 D3 MY3 + CC2 03^ 
M3 

A,2 = S2 XZ2 + C2 YZ2 + S23 XZ3 + C23 YZ3 - S2 D3 MZ3 
A,3 = S23 XZ3 + C23 YZ3 
A22 = Ia2 + ZZ2 + ZZ3 + 2C3 D3 MX3 - 2S3 D3 MY3 + 03^ M3 
A23 = ZZ3 + C3 D3 MX3 - S3 D3 MY3 
A33 = Ia3 + ZZ3 

where SSj = (sin ej)^, CCj = (cos 6j)2 and CSj = cos 0j sin 6j. The elements of the 
matrix C can be computed by equation [9.7]; 

iv) computation of the gravity forces. Assuming that gravitational acceleration is 
given as ®g = [0 0 G3] , and using equation [9.2S], the potential energy is 
obtained as: 

U = -G3 (MZi + S2MX2 + C2MY2 + S23MX3 + C23MY3 + D3S2M3) 

Using equation [9.8] gives: 

Qi =0 
Q2 = -G3 (C2 MX2 - S2 MY2 + C23 MX3 - S23 MY3 + D3 C2 M3) 
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Q3 = -G3 (C23 MX3 - S23 MY3) 

9.4. Determination of the base inertial parameters 

In this section, wc study the concept of base inertial parameters or identifiable 
parameters. We develop a straightforward closed-form method to determine them. 
These parameters constitute the minimum set of inertial parameters that are needed 
to compute the dynamic model of a robot [Mayeda 90]. The use of the base inertial 
parameters in a customized Newton-Euler algorithm reduces its computational cost 
[Khali! 86c], [Khalil 87b]. The determination of the base parameters is also essential 
for the identification of the dynamic parameters (Chapter 12), since they constitute 
the only identifiable parameters. The base inertial parameters can be deduced from 
the standard parameters by eliminating those that have no effect on the dynamic 
model and by grouping some others. 

9.4.1. Computation of the base parameters using the dynamic model 

Since the kinetic energy and the potential energy are linear in the standard 
inertial parameters, we deduce that the dynamic model is also linear in these 
parameters. It can be written as: 

r = f D i K i = D K [9.36] 
j=l 

where: 

• D: (nxNp) matrix, which is a function of q, q, q and the geometric parameters; 

• K: (NpXl) vector of the standard inertial parameters of the links representing 
for each link a mass, three elements for the first moments, six elements for the 
inertia tensor, and one element for the rotor inertia (Np = 1 In); 

• I>i:j^^ column of D. 

From equation [9.36], we deduce that: 

a) a parameter Kj has no effect on the dynamic model if: 

Di = 0 [9.37] 

Consequently, we can set Kj = 0 in equation [9.36] without changing the value of 
r , which means that Kj can be eliminated; 
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b) a parameter Kj can be grouped with some other parameters Kjj, ..., Kjr, if the 
Di column is linearly dependent of Di^ ..., Di*̂  such that: 

Di = t j i D i U . . . + tjrDir [9.38] 

where all tjî  are constants. 

In that case, the column Di and the parameter Kj can be eliminated while the 
parameters Kji, ..., Kjp will be replaced by KRji, ..., KRjp where KRjp = Kjp + tjp 
Kj, for p = 1, ..., r. This operation will be repeated until the elimination of all the 
parameters with dependent columns. At the end, we obtain the minimum inertial 
parameter vector Kg. 

The selection of the parameters to be eliminated is not unique. We choose to 
eliminate those with the highest subscript in K. The search for dependent columns of 
D starts with the last column and moves backwards toward the first one. The link 
parameters are arranged in K such that we first place the parameters of link 1, and 
lastly, those of link n. The parameters of link j , defined by the vector Kj, are given in 
the following order: XXj, XYj, XZj, YYj, YZj, ZZj, MXj, MYj, MZj, Mj, laj. 

In summary, the calculation of KB is based on the study of the linear dependence 
of the columns of the matrix D. Assuming b to be the rank of the matrix D, the 
determination of the base parameters can be illustrated in a compact and global form 
by writing equation [9.36] as: 

r = [ D I I > 2 l [ | ^ ] [9.39] 

where: 

• DI represents the first b independent columns of D; 

• D2 represents the dependent columns of D such that D2 = Dip, where ^ is a 
constant matrix. 

We deduce that the parameters K2 can be grouped with Kl as follows: 

r = DI [Kl + P K2) = DI KB [9.40] 

In Appendix 5, we present a general numerical method for determining the base 
inertial parameters [Gautier 91]. This numerical approach is based on the use of the 
QR decomposition. It can be used to determine the base parameters of closed chain 
robots and the identifiable geometric parameters of robots (Chapter 11). 
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9.4.2. Determination of the base parameters using the energy model 

The use of the dynamic model to compute the base inertial parameters is tedious 
and error prone, owing to the complicated expressions of DJ. In this section, we 
present a straightforward closed-form method for determining the base parameters. 
The demonstration of this method is based on the energy formulation, but the 
algorithm itself consists of simple rules, which do not need to calculate the energy 
expressions [Oautier 90b], [Khalil 94a]. 

Since the total energy of link j is linear in the inertial parameters, it can be 
written as: 

Hj = Ej + Uj = hj Kj = (Cj -f Uj) JKj [9.41] 
JKj = [ XXj XYj XZj YYj YZj ZZj MXj MYj MZj Mj ]T ^9.42] 

hj = [ hxxj hxYj hxzj hvYj hyzj hzzj HMXJ M̂Yj hMzj hMj ] [9.43] 

with: 
• Kj: (10x1) vector of the standard inertial parameters of link j (the parameter 

laj will be considered in § 9.4.2.5); 

• hj: (1x10) row vector of the total energy functions of link j ; 

• ej: (1x10) row vector of the kinetic energy functions of link j ; 

• Uj: (1x10) row vector of the potential energy functions of link j 

The elements of hj are obtained from equations [9.13] and [9.25] as: 

1 
hxxj = 2^ i J^U 
hxYj = <Olot02j 

hxzj = tDijO)3j 

. 1 

hYYj = 2 ^ 0 ^ J 

Xy^-y^, 19.44, 

h2Zj = 2*^J '^0 

hMXj = 0>j j V2 j - (02 j V3 j - OgT Osj 

hMYj = Wl J V30 - a>}j V, J - OgT Oflj 

hMZi = « 2 j V , j - ( 0 , j V 2 j - V % 
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whereJcoj = [(oij (02,j ca3jf andJVj = [Vij V2,j Vsj]'^. 

From equations [9.13] and [9.25], we deduce the following recursive relationship 
between the energy functions of link j and link j - 1 (Appendix 6): 

hj = hj.,J-^Xj + qjTlj [9.45] 

where J'̂ Xj is a (10x10) matrix whose elements are given in Table 9.1. It is a 
function of the geometric parameters of frame Rj [Gautier 90a]. The matrix i'^kj 
represents the transformation matrix of the inertia! parameters of a link from frame 
Rj into frame Rj.i such that: 

i-»Kj = i->XjJKj [9.46] 

The row vector T̂J is written as: 

Tij = aj[0 0 0)1 j 0 a>2,j (0)3.3-2^j> ^2j -V, j 0 0] 

+ aj[0 0 0 0 0 0 -<02j 0)1 j 0 (Vsj-^qj)] [9.47] 

9.4.2.1. Determination of the parameters having no effect on the dynamic model 

From equation [9.37], we deduce that an inertial parameter Kj has no effect on 
the dynamic model if the corresponding energy function hj is constant; 

hj constant -> Kj has no effect on the dynamic model [9.48] 

Referring to the velocity equations [9.17] and [9.18] and to the hj functions 
[9.44], we can obtain general rules to determine the parameters that have no effect 
on the dynamic model [Khalil 94a]. Let us assume that ri is the first revolute joint 
and T2 is the subsequent revolute joint whose axis is not parallel to the axis of joint r] 
(Figure 9.4). The parameters that have no effect on the dynamic model belong to the 
links 1,..., r2, owing to the restricted motion of these links. The rules allowing us to 
determine them are given in the general algorithm presented in § 9.4.2.4. 



•I 

t g
 

a *̂
 

o
 

o
 

o
 

o
 

o
 

s u
 r5 1 

k 

C
O

 

•3 

1 
C

/5 

1 
53 

7 

V
5 

V
 

o
 a 

CO
 

a 

CO
 

V
 

5 V
 8 

^ 
1 

C
O

 

U
 

a 

^ « 

1 S2 
y 

o
 

CO
 

a 

0
0 

V
 a 

u
 

1 8 C
O

 

U
 

8 
1 

C
O

 

C
O

 

I
 

! 1 ^ a 
C

O
 

CO
 

^ 

H ,b
 

^ 8 a 

a i 

ii 3 <s 1 

ij C
O

 
C

O
 

0 a 

C
J" 

C
O

 
C

O
 

1 ! C
O

 
C

O
 

•{i 

0 

^ a 
C

O
 

7̂ 
0 ar 
u

 a 
^ b

 
I i b « C

iT) 

a 

C
O

 

5=̂ 

C
O

 
C

O
 

' 
C

O
 

1 "̂
 

CO
 

1 
a 

C
O

 

I CO
 

w
 

5
 

U
 

r
. 

a 
CO

 

8 a 

C
O

 

i § 8 j 

•o
 

o
 

C
O

 
1 

8 O
 

o
 

o
 

o
 

o
 

o
 1 "? a 1 

a 

CO
 

o
 

o
 

o
 

o
 

o
 

o
 

^ 
^ 

a a 

8 a 
CO

 

o
 

o
 

o
 

o
 

o
 

o
 

-o
 

o
 

o
 

o
 o
 

o
 

o
 

o
 

o
 

1
"
 

I-: 

I I •5 

t? 
^

 

I I J?
 

St 

i 



210 Modeling, identification and control of robots 

Figure 9.4. Definition of joints rj and r2 

9.4.2.2. General grouping relations 

From condition [9.38], a parameter Kj is grouped with the parameters Kjp for 
p = 1,... , r if the corresponding energy function hj can be written as: 

hj = ] ^ tjp hjp + constant [9.49] 

The grouping relations are the same as in § 9.4.1, that is to say if equation [9.49] 
holds, then the parameter Kj can be grouped with the parameters Kjp for p = 1, ..., r 
using the relation KRjp = Kjp + tjp Kj. 

Using the recursive relation [9.45] between the energy functions hj and hj.i, we 
can fmd general energy functions that satisfy equation [9.49]. These functions 
depend on the type of joint. 

Let us first consider the case where joint j is revolute. The following three 
relations always hold: 

hxxj + hYYj=hj.,(J-iX?+J-ixJ) 
o 

hMZj = l̂ j-l̂ '̂ ĵ 

hMj = hj.i i"̂ Xj 

k 
where J"'Aj denotes the k* column of the matrix J"'Xj. 

[9.50a] 

I9.50b] 

[9.50c] 

Consequently, three inertial parameters can be grouped with the others. The 
choice of these parameters is not unique. By choosing to group the parameters YYj, 
MZj and Mj we obtain: 

XXRj = XXj-YYj [9.51] 
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KRj.i = Kj., + YYj (J-'X] + J>X/) + MZj i->A,? + Mj J-ix]° [9.52] 

Substituting for J-'Xj', J-'A,̂ , 'xJ.J'Xj from Table 9.1 into equations [9.511 and 
[9.52] gives the following theorem: 

Theorem 9.1. If joint j is revolute, the parameters YYj, MZj and Mj can be grouped 
with the parameters of link j and link j - 1 . The resulting grouped parameters are: 

XXRj = XXj-YYj 
XXRj.i = XXj.| + YYj + 2 rj MZj + rĵ  Mj 
XYRj.i = XYj.i + dj SOj MZj + dj rj SOj Mj 
XZRj.i = XZj.j - dj COj MZj - dj rj COj Mj 
YYRj.i = YYj.i + CCOj YYj + 2 rj CCOj MZj + (dj2 + rj2 CCOj) Mj 

YZRj., = YZj.i + CSOj YYj + 2 rj CSOj MZj + rj2 CSOj Mj [9.53] 
ZZRj.i = ZZj.i + SSOj YYj + 2 TJSSOJ MZJ + (dj2 + rj2 SSOj) Mj 
MXRj.i = MXj.i + dj Mj 
MYRj.i = MYj.i - SOj MZj - rj SOj Mj 
MZRj.i = MZj.i + Cctj MZj + rj COj Mj 
MRj.i = Mj., + Mj 

where SS(*) = S(*) S(*), CC(*) = C(*) C(*) and CS(*) = C(*) S(*). 

On the other hand, if joint j is prismatic, the following six relations always hold: 

hxxj = hj., J-'X], hxYj = hj., i-'x/ hzzj = hj., J-'xf [9.541 

Therefore, six parameters can be grouped. Choosing to group the parameters of 
link j with those of link j - 1 yields: 

KRj., = Kj., +i-'Xj XXj + J-'x/xYj+ ... +J->xf ZZj [9.55] 

Expanding equation [9.55] gives the following theorem: 

Theorem 9.2. If joint j is prismatic, the parameters of the inertia tensor of link j can 
be grouped with those of link j - 1 . The grouping relations are: 

XXRj., = XXj., + CC0j XXj - 2 CSOj XYj + SSOj YYj 
XYRj., = XYj.1 + CSOj COj XXj + (CCej-SSOj) COj XYj - COj SOj XZj 

-CSejCOjYYj + SOjSajYZj 
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XZRj.i = XZj.i + CSGj SOj XXj + (CCej-SSGj) SOj XYj + CGj COj XZj 
-CSejSOjYYj-SejCOjYZj 

YYRj., = YYj., + SSGj CCOj XXj + 2CSej CCOj XYj ~ 2Sej CSOj XZj 
-f CCGj CCOj YYj - 2CGj CSOj YZj + SSOj ZZ- [9.56] 

YZRj.i = YZj.i + SSGj CSOj XXj + 2CSGj CSOj XYj 4- SGj (CCOj-SSOj) XZj 
+ CCGj CSOj YYj + CGj (CCOj-SSOj) YZj - CSOj ZZj 

ZZRj.i = ZZj.i + SSGj SSOj XXj + 2CSGj SSttj XYj + 2SGj CSOj XZj 
+ CCGj SSOj YYj + 2CGj CSOj YZj -»- CCOj ZZj 

Equation [9.56] can be rewritten under the following matrix form: 

j-ljRj., = Mjj.j + J-iAjJJjJAj.i [9.57] 

where ijj is the inertia tensor of link j , and J'̂ Aj is the (3x3) orientation matrix of 
frame Rj relative to frame Rj.i-

Relation [9.57] can be also obtained by calculating the sum of the rotational 
kinetic energy of link j ~ 1 and link j in terms of the angular velocity of link j - 1 , and 
by noting that when joint j is prismatic the angular velocity of link j is equal to the 
angular velocity of link j - 1 . 

9.4.2.3. Particular grouped parameters 

Equations [9.53] and [9.56] allow us to compute most of the grouped inertial 
parameters of any serial robot. Additional grouping of inertial parameters concerns 
the parameters of the prismatic links between link ri and link ri (joints ri and T2 are 
defined in § 9.4.2.1). The following two cases are considered [Khalil 94a]: 

/) if the axis of the prismatic joint j , rj <j< ri, is not parallel to the rj axis, then the 
functions hMXj* ^MYJ ^̂ d hMZj satisfy the relation: 

Jaxri HMXJ + Jayri hMYj -»- Jâ ri hMZj = constant [9,58] 

where ia,.] = [Jâ ri •'ayri ^^2i\]^ ŝ the unit vector along the Zri axis referred to 
frame Rj. 

Therefore, depending on the particular values of the components of Jari, one 
parameter can be eliminated or grouped as shown in Table 9.2. 
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Table 9.2. Grouped parameters ifrj <J <r2, cj-l andj is not parallel to the rj axis 

\ Condition 

Jaz,i?tO 

Jâ r, =0,JaxriJayri9tO 

1 Jazri=0,Jaxri=0 

Jaa-i =0,iayri = 0 

Grouping or elimination 

MXRj = MXj-j^MZj 

MYRj-MYj-l^MZj 

MXRj = MXj-j^MYj 

MYj = 0 (has no effect) 1 

MXj = 0 (has no effect) 1 

ii) if the axis of the prismatic joint j , rj <j<r2> is parallel to the rj axis, then the 
following relation is obtained: 

Cj=^-l»»MSj.l + [2djCejhzZi -2djSejhzzi o f [9.59] 

where i denotes the nearest revolute joint from j back to the base, i > ri, and: 

M̂Sj = [ M̂Xj hMYj hMZj ] 

Therefore, we deduce that the parameter MZj has no effect on the dynamic 
model and that the parameters MXj and MYj can be grouped using the relations: 

MXRj.i - MXj.i H- CGj MXj - SGj MYj 
MYRj.i = MYj.i •+- S9j Coj MXj + CGj Coj MYj 
MZRj.i = MZj.i -f SGj Saj MXj + CGj Soj MYj 
ZZRi = ZZi-f2djCGjMXj-2djSGjMYj 

[9.60] 

9.4.2.4. Practical determination of the base parameters 

The following algorithm can be used to determine all the parameters that can be 
eliminated or grouped. The remaining parameters constitute the set of base inertial 
parameters of the links. The grouped relations make use of closed-form symbolic 
expressions. 
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Forj = n,..., 1: 

1) use the general grouping relations [9.53] or [9.56] to group: 
a) YYj, MZj and Mj if joint j is rcvolute (Oj = 0); 
b) XXj, XYj, XZj, YYj, YZj and ZZj if joint j is prismatic (GJ = 1); 

2) if joint j is prismatic and aj is parallel to Bfi, for ri <j <r2, then eliminate MZj 
and group MXj and MYj using relation [9.60]; 

3) if joint j is prismatic and aj is not parallel to a^], for r] < j < r2, then group or 
eliminate one of the parameters MXj, MYj, MZj using Table 9.2; 

4) if joint j is revolute, for ri <j <r2, then eliminate XXj, XYj, XZj and YZj. Note 
that the axis of this joint is parallel to the axis of joint ri, and that the 
parameter YYj has been eliminated by rule 1; 

5) if joint j is revolute, for ri < j < r2, and the aj axis is along arj, and if â i is 
parallel to aj and to gravity g, for all i < j , then eliminate the parameters MXj, 
MYj. Note that MZj is eliminated by rule 1; 

6) if joint j is prismatic and j <ri, then eliminate the parameters MXj, MYj, MZj. 

From this algorithm, we deduce that the number of minimum inertial parameters 
of the links for a general serial robot (without considering the inertia of the rotors) is 
given by: 

bm< 7nr + 4 n p ~ 3 - a i - 2 n g o [9.61] 

with: 

• nr: number of revolute joints = Z ^j* 

• np: number of prismatic joints = J CJ; 

• ttgo = 1 if the first joint is revolute and parallel to gravity, ngo = 0 otherwise. 

This equation gives in most cases the exact number of base inertial parameters. 

9.4.2.5. Considering the inertia of rotors 

Considering the rotor inertial parameter laj, the number of standard inertial 
parameters per link becomes equal to 11. The corresponding components in the 
matrices hj and Kj are given as: 

h „ j = |qj2 (9.62] 

K, , j = laj [9.63] 
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To verify if a parameter laj can be grouped with other parameters, let us look for 
the existence of a linear relationship between h n j and the other energy functions 
{h|c). Such a relationship always holds for j = r], and exists under some conditions 
for j = r2, and for the first prismatic joint denoted as pi: 

i) for joint r/, we deduce that: 

h6.rl = ^qfi [9.64] 

Consequently, the parameter lari ^^^ ^ grouped with ZZf\ using the relation: 

ZZRri = ZZfi + kri [9.65] 

ii) if the axis of joint ri is orthogonal to that ofrj, we obtain: 

KT2 = 2^r2 19.66] 

Thus, the parameter Iar2 can be grouped with Z2^2 using the relation: 

ZZRr2 = ZZr2 + IBLTI (9.67] 

Hi) if the axis of the first prismatic joint pj is orthogonal to gravity, and ifpj ^ 1 or 
its axis is aligned with the revolute axes preceding it (such that Mi has no effect on 
the gravity force of joints 1,..., pi), then we can group lapi with Mp|: 

MRpi = Mp, + lap, [9.68] 

• Example 9.2. Find the base inertial parameters of the St^ubli RX-90 robot. For 
this robot, r, - 1 and r2 - 2. Since all the joints are revolute, the use of equation 
[9.53] for j =s n,. . . , 1 gives all the grouped parameters: 

link 6: 

XXR6 = XX6-YY6 
XXRs = XX5 + YY6 
ZZR5 = ZZ5 + YY6 
MYR5 = MY5 + MZ6 
MR5 = Ms^Me 

The minimum inertial parameters of link 6 are: XXR^, XY5, XZ^, YZ^, ZẐ ,̂ 
MX6 and MYg. 
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link 5: 

XXR5 = XX5^-YY6-YY5 
XXR4 = XX4 + YY5 
ZZR4 = ZZ4 + YY5 
MYR4 = MY4 - MZ5 
MR4 = M4 -I- MR5 = M4 + M5 + M6 

The minimum parameters of link 5 are: XXR5, XY5, XZ5, YZ5, ZZR5, MX5 and 
MYR5. 

Iink4: 

XXR4 = XX4 + YY5 - YY4 

XXR3 = XX3 +YY4 -h 2 RL4 MZ4 + RU^ (M4 + 1̂ 15 + M6) 

ZZR3 = ZZ3 + YY4 + 2 RIA MZ4 + RU^ (M4 + M5 + M6) 
MYR3 = MY3 + MZ4 + KIA (M4 + M5 + M6) 
MR3 = M3 + M4 + M5 + M6 

The minimum parameters of link 4 are; XXR4, XY4, XZ4, YZ4, ZZR4, MX4 and 

MYR4. 

link 3: 

XXR3 = XX3 +YY4 + 2 RL4 MZ4 + RL42 (M4 + M5 + M )̂ - YY3 
XXR2 = XX2 + YY3 
XZR2 = XZ2-D3MZ3 

YYR2 = YY2 + D32 (M3 + M4 + M5 + M6) + YY3 

ZZR2 = ZZ2 + D32 (M3 + M4 + M5 + M6) 
MXR2 = MX2 + D3 (M3 + M4 + M5 + M6) 
MZR2 = MZ2 + MZ3 
MR2 = M2 + M3 + M4 + M5 + M^ 

The minimum parameters of link 3 are: XXR3, XY3, XZ3, YZ3, ZZR3, MX3 and 
MYR3. 

link 2: 

XXR2 = XX2 - YY2 - 03^ (M3 + M4 -»- M5 + M5) 

ZZRi = ZZi + YY2 + D32 (M3 + M4 + M5 + M )̂ + YY3 

The minimum parameters of link 2 are: XXR2, XY2, XZR2, YZ2, ZZR2, MXR2 
and MY2. 
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link 1: from § 9.4.2.4 (rules 4 and 5), wc deduce that the parameters XXi, XYi, 
XZi, YY|, YZi, MXi, MYi, MZj and Mj have no effect on the dynamic model. 
Note that MZ2 and M2 have no effect because they are grouped with parameters 
having no effect. The only parameter of link 1 is ZZR\. 

Rotor inertia. From § 9.4.2.5, we can group the parameter lai with ZZ\ and the 
parameter Ia2 with ZZ2: 

ZZRi = ZZi + lai + YY2 -f 03^ (M3 -f M4 + M5 -f M^) + YY3 

ZZR2 = ZZ2 + Ia2 + D32 (M3 -I- M4 + M5 + Me) 

The final result can be summarized as follows: 

- the parameters that have no effect on the dynamic model are: XK\, XY\, XZ|, 
YYi, YZi, MXi, MYi, MZi, M^ MZ2 and M2; 

- the parameters that are grouped are: laj, YY2, Ia2, YY3, MZ3, M3, YY4, MZ4, 
M4,YY5, MZ5, M5, YY6. MZ6 and M^; 

- the grouping equations are: 

ZZRi = ZZi + lai + YY2 + 03^ (M3 + M4 + M5 -f Me) + YY3 

XXR2 = XX2 - YY2 - 03^ (M3 + M4 + M5 + Me) 
XZR2 = XZ2-D3MZ3 

ZZR2 = ZZ2 + Ia2 ••- D32 (M3 -»• M4 + M5 + Me) 
MXR2 = MX2 + D3 (M3 + M4 + M5 + Me) 

XXR3 = XX3 - YY3 -»- YY4 -f 2 RU MZ4 + RU2 (M4 + M5 -̂ Me) 

ZZR3 = ZZ3 + YY4 + 2RU MZ4 + RU^ (M4 + M5 + Me) 
MYR3 = M Y3 + MZ4 + RL4 (M4 + M5 + Me) 
XXR4 = XX4 + YY5-YY4 
ZZR4 = ZZ4 + YY5 
MYR4 = MY4-MZ5 
XXR5 = XX5^YYe-YY5 
ZZR5 s ZZ5 + YYe 
MYR5 = MY5 + MZe 
xxRe « xXe - YYe 

Table 9.3 gives the 40 base inertial parameters of the St^ubli RX-90 robot. 

* Example 9.3« Let us assume that the inertia tensors ijj, for j = 1, ..., 6, are 
diagonal and that the first moments of the links are given by: 

^MSi = [ 0 0 MZl ]T 

2MS2 = t MX2 MY2 01'T 
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3MS3 = [ 0 MY3 0 ]^ 
^MS4 = [ 0 0 MZ4 ]T 
^MSs = [0 MY5 O f 
6MS6 = [ 0 0 MZ6 F 

The corresponding 19 base incrtial parameters are given in Table 9.4. They are 
derived using the general grouping relations after eliminating the parameters whose 
values are zero. 

Table 9.3. Base inertial parameters of the Stdubli RX-90 robot 
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Table 9.4. Simplified base inertial parameters for the StUubli RX-90 robot 
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9.5. Newton-Euler formulation 

9.5.1. Introduction 

The Newton-Euler equations describing the forces and moments (wrench) acting 
on the center-of-mass of link j are given as: 

Fj = Mj Voj [9.69] 

M G J = lGjibj + C0jx(lGj(i]5) [9.70] 

The Newton-Euler algorithm of Luh, Walker and Paul [Luh 80b], which is 
considered as one of the most efficient algorithms for real time computation of the 
inverse dynamic model, consists of two recursive computations: forward recursion 
and backward recursion. The forward recursion, from the base to the terminal link, 
computes the link velocities and accelerations and consequently the dynamic wrench 
on each link. The backward recursion, from the terminal link to the base, provides 
the reaction wrenches on the links and consequently the joint torques. 

This method gives the joint torques as defmed by equation [9.1] without 
explicitly computing the matrices A, C and Q. The model obtained is not linear in 
the inertial parameters because it makes use of Mj, Sj and IQJ. 

9.5.2. Newton-Euler inverse dynamics linear in the inertial parameters 

In this section, we develop a Newton-Euler algorithm based on the double 
recursive computations of Luh et al. [Luh 80b], but which uses as inertial parameters 
the elements of Jj, MSj and Mj (Khalil 87b], [Khosla 86]. The dynamic wrench on 
link j is calculated on Oj and not on the center of gravity Gj. Therefore, the resulting 
model is linear in the dynamic parameters. This reformulation allows us to compute 
the dynamic model in terms of the base inertial parameters and to use it for the 
identification of the dynamic parameters. 

The Newton-Euler equations giving the forces and moments of link j at the origin 
of frame Rj are given as: 

Fj = Mj Vj + <bj X MSj + (Oj X ((flj X MSj) [9.71] 

Mj = Jj G)j + coj X (Jj (Oj) + MSj X Vj [9.72] 

Using the spatial notation, we can write these equations as: 
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Fj = JfjVj + 
(Dj X (COj X M S j ) 

COj X (Jj (Oj) 
[9.73] 

where ffj = 
f p j " 

1 Mj L. J J 

,V = 
V 

^ 
- C O J 

|, J[j is the spatial inertia matrix (equation [9.21]). 

i) forward recursive computation: to compute Fj and Mj, for j = 1, ..., n, using 
equations [9.71] and [9.72], we need cOj, d)j and Vj. The velocities are given by the 
recursive equations [9.14] and [9.15] rewritten hereafter as: 

Q)j = (î .i + ajqjaj [9.74] 

Vj = Vj.i + (Oj., X Lj + Oj qj aj [9.75] 

Differentiating equations [9.74] and [9.75] with respect to time gives: 

G)j = d)j.i + Gj (qj aj + CQjj., X qj aj) [9.76] 

Vj = Vj.1 + ©j.i X Lj + (Oj.i X ((Dj.i X Lj) + Gj (qj aj + 2 (Oj.i x qj aj) [9.77] 

The initial conditions for a robot with a fixed base are coo = 0, obo = 0 and VQ = 0; 

ii) backward recursive computation: this is based on writing for each link j , for j = 
n,.. .,1, the Newton-Euler equations at the origin Oj, as follows (Figure 9.5): 

Fj = fj-.fj^i+Mjg-fej 
Mj = mj-mj+i-Lj^.ixfj+,+SjxMjg-iiiej 

[9.78] 
[9.79] 

Figure 9.5. Forces and moments on link] 
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We note that fej and nicj, which represent the force and moment exerted by link j 
on the environment, may include contributions from springs, dampers, contact with 
the environment, etc. Their values are assumed to be known, or at least to be 
calculated from known quantities. 

We can cancel the gravity terms from equations [9.78] and [9.79] and take into 
account their effects by setting up the initial linear acceleration such that: 

Vo = - g [9.80] 

Thus, using equations [9.78] and [9,79], we obtain: 

fj=: Fj + fj^, + fej [9.81] 
nij = Mj + nij+i + Lj+i x fj+| + niej [9.82] 

This backward recursive algorithm is initialized by fn+i = 0 and nin+i = 0. 
Finally, the joint torque Pj can be obtained by projecting fj or nij on the joint 

axis, depending whether the joint is prismatic or revolute respectively. We can also 
consider the friction forces and the rotor inertia as shown in the Lagrange method: 

Fj = (Cj fj + Gj inj)'̂  Ej + Fcj sign(qj) + Fvj qj + laj qj [9.83] 

From equations [9.81], [9.82] and [9.83], we deduce that Tj is a function of the 
inertial parameters of links j , j+1 , ..., n. This property has been outlined in 
§ 9.3.3.3. 

9.5.3. Practical form of the Newion'Euler algorithm 

Since Jj and MSj are constants when referred to their own link coordinates, the 
Newton-Euler algorithm can be efficiently computed by referring the velocities, 
accelerations, forces and moments to the local link coordinate system [Luh 80b]. 
The forward recursive equations become, for j = 1,..., n: 

V l = % i i X l f9.84] 

icoj = icoj.i +ajqjiaj [9.85] 

idij = iAj.i J-»d]̂ .i + Oj (qjiaj +i(Oj.i xqjiap [9.86] 

iVj « JAj., (J-̂ Vj., + J-^Uj., i-̂ Pj) + Oj (qjisj + 2 J(Oj., x qj Jaj) [9.87] 

iFj = MjJVj-fJUjiMSj [9.88] 

iMj =: ijj id)j •»- ioij X (ijj icoj) + iMSj x iVj [9.89] 
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iUj =iij+i(DjJ(Dj ^ [9.90] 
For a stationary base, the initial conditions are ©o = 0, AQ = 0 and VQ = - g. 

The use of JUj saves 2In multiplications and 6n additions in the computation of 
the inverse dynamic naodel of a general robot [Kleinfmger 86a]. 
It is to be noted that JVj means JAQ^J , and not the time derivative of JVj, since 

JVj = j iVj + JcDj X JVj. On the contrary, JOj is equal to the time derivative of JcOj. 

The backward recursive equations, for j = n,..., 1, are: 
Jfj = JFj-HJf,>i+Jf,̂  [9.91] 
i-ifj =HAjifj [9.92] 
imj = iMj + iAj+i i+̂ mj+i + JPj+i x Jfj+i + iniej [9.93] 

Fj = (Gjifj + 5jim/Jaj + Fsj sign(qj) + Fyj qj + laj qj [9.94] 
The previous algorithm can be numerically programmed for a general serial 

robot. Its computational complexity is 0(n), which means that the number of 
operations is linear in the number of degrees of freedom. However, as we will see in 
the next section, the use of the base inertial parameters in a customized symbolic 
algorithm considerably reduces the number of operations of the dynamic model. 

9.6. Real time computation of the inverse dynamic model 

9.6.1. Introduction 

Much work has been focused on the problem of computational efficiency of the 
inverse dynamic model of robots in order to realize real time dynamic control. This 
objective is now recognized as being attained (Table 9.5). 

Before describing our method, which is based on a customized symbolic 
Newton-Euler formulation linear in the inertial parameters [Khalil 87b], 
[Kleinfinger 86a], we review the main approaches presented in the literature. 

The Lagrangian formulation of Uicker and Kahn [Uicker 69], [Kahn 69] served 
as a standard robot dynamics formulation for over a decade. In this form, the 
complexity of the equations precluded the real time computation of the inverse 
dynamic model. For example, for a six degree-of-freedom robot, this formulation 
requires 66271 multiplications and 51548 additions [HoUeibach 80]. This led 
researchers to investigate either simplification or tabulation approaches to achieve 
real time implementation. 

The first approach towards simplification is to neglect the Coriohs and 
centrifugal terms with the assumption that they are not significant except at high 
speeds [Paul 72], [Bejczy 74]. Unfortunately, this belief is not valid: fiurstly, Luh et 
al. [Luh 80b] have shown that such sin^jlifications leads to large errors not only in 



Dynamic modeling of serial robots 223 

the value of the computed joint torques but also in its sign; later, Hollerbach 
[HoUerbach 84a] has shown that the velocity terms have the same significance 
relative to the acceleration terms whatever the velocity. 

An alternative simplification approach has been proposed by Bejczy [Bejczy 79]. 
This approach is based on an exhaustive term-by>term analysis of the elements Ay, 
Cjjic and Qi so that the most significant terms are only retained. A similar procedure 
has been utilized by Armstrong et al. [Armstrong 86] who also proposed computing 
the elements Ay, C[j^ and Qj with a low frequency rate with respect to that of the 
servo rate. Using such an analysis for a six degree-of-freedom robot becomes very 
laborious and tedious. 

In the tabulation approach, some terms of the dynamic equations are 
precomputed and tabulated. The combination of a look-up table with reduced 
analytical computations renders them feasible in real time. Two methods based on a 
trade-off between memory space and computation time have been investigated by 
Raibert [Raibert 77]. In the first method SSM (State Space Model), the table was 
carried out as a function of the joint positions and velocities (q and q), but the 
required memory was too big to consider in real applications at that time. In the 
Configuration Space Method (CSM), the table is computed as a function of the joint 
positions. Another technique, proposed by Aldon [Aldon 82] consists of tabulating 
the elements Ay and Q[ and of calculating the elements Ci jk on-line in terms of the 
Ay elements. This method considerably reduces the required memory but increases 
the number of on-line operations, which becomes proportional to n̂ . We note that 
the tabulated elements are functions of the load incrtial parameters, which means 
making a table for each load. 

Luh et al. [Luh 80a] proposed to determine the inverse dynamic model using a 
Newton-Euler formulation (§ 9.5). The complexity of this method is 0(n). This 
method has proved the importance of the recursive computations and the 
organization of the different steps of the dynamic algorithm. Therefore, other 
researchers tried to improve the existing Lagrange formulations by introducing 
recursive computations. For example, Hollerbach [Hollerbach 80] proposed a new 
recursive Lagrange formulation with complexity 0(n), whereas Megahed [Megahed 
84] developed a new recursive computational procedure for the Lagrange method of 
Uicker and Kahn. However, these methods are less efficient than the Newton-Euler 
formulation of Luh et al. [Luh 80a]. 

More recently, researchers investigated alternative formulations [Kane 83], 
[Vukobratovic 85], [Renaud 85], [Kazerounian 86], but the recursive Newton-Euler 
proved to be computationally more efficient. 

The most efficient models proposed until now are based on a customized 
symbolic Newton-Euler formulation that takes into account the particularity of the 
geometric and inertial parameters of each robot [Kanade 84], [Khalil 85a], 
[Khalil 87b], [Renaud 87]. Moreover, the use of the base inertial parameters in this 
algorithm reduces the computational cost by about 25%. We note that the number of 
operations for this method is even less than that of the tabulated CSM method. 
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Before closing this section, it is worth noting the formidable technological 
progress in the field of computer processors, to the point that the dynamic model can 
be calculated at control rate with standard personal computers (Chapter 14). 

9.6.2. Customization of the Newton-Euler formulation 

The recursive Newton-Eulcr formulation of robot dynamics has become a 
standard algorithm for real time control and simulation (§ 9.S.3). To increase the 
efficiency of the Newton-Euler algorithm, we generate a customized symbolic model 
for each specific robot and utilize the base dynamic parameters. To obtain this 
model, we expand the recursive equations to transform them into scalar equations 
without incorporating loop computations. The elements of a vector or a matrix 
containing at least one mathematical operation are replaced by an intermediate 
variable. This variable is written in the output file, which contains the customized 
model [Kanade 84], [Khalil 85a]. The elements that do not contain any operation are 
not modified. We propagate the obtained vectors and matrices in the subsequent 
equations. Consequently, customizing eliminates multiplications by one (and minus 
one) and zero, and additions with zero. A good choice of the intermediate variables 
allows us to avoid redundant computations. In the end, the dynamic model is 
obtained as a set of intermediate variables. Those that have no effect on the desired 
output, the joint torques in the case of inverse dynamics, can be eliminated by 
scanning the intermediate variables from the end to the beginning. 

The customization technique allows us to reduce the computational load for a 
general robot, but this reduction is larger when carried out for a specific robot 
[Kleinfinger 86a]. The computational efficiency in customization is obtained at the 
cost of a software symbolic iterative structure [Khalil 97] and a relatively increased 
program memory requirement. 

• Example 9.4. To illustrate how to generate a customized symbolic model, we 
develop in this example the computation of the link angular velocities iot)) for the 
StMubli RX-90 robot. The computation of the orientation matrices J*̂ Aj (Example 
3.3) generates the 12 sinus and cosinus intermediate variables; 

Sj = sin(qj) 
Cj = cos(qj) forj= 1 6 

The computation of the angular velocities for j = 1,..., 6 is given as: 

^(Di = 

' 0 
0 

.QPlJ 
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Computation of ^(0\ does not generate any intermediate variable. 

^COi = 
rs2*Qpr 
C2*QP1 

L 0 . 
ss 

"WI121 
WI22 

- 0 J 

Computation of (̂Dz generates the following intermediate variables: 

WI12 = S2*QP1 
WI22 = C2*QP1 

In the following, the vector 0̂)2 is set as: 

2(02 = 

WI12' 
WI22 
.QP2. 

Continuing the recursive computation leads to: 

5(02 = 

C3*WI12 + S3*WI22' 
-S3*WI12 + C3*WI22 

QP2 

•W113' 
WI23 
.QP2. 

3(03 = 

WI13 • 
W123 

.QP2 + QP3. 

WI13 
WI23 
.W33J 

*(ai = 
•C4*WI13-S4*W33' 
-S4*WI12-C4*W33 

WI23 

WI14 
WI24 

LWI23J 

'»ca» = 
WI14 
WI24 

LWI23 + QP4J 

WI14' 
WI24 
.W34. 

5(fll4 = 

• C5*WI14 + S5*W34 ' 
-S5*WI14 + C5*W34 

-WI24 

W1I5' 
WI25 

-WI24. 

'(BS = 

WI15 
WI25 

L-WI24 + QP5 J 

WI15 
WI25 

LW35J 
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*a>5 = 

"(06 = 

C6*WI15-S6*W35' 
-S6*WI15-C6*W35 

WI25 

WI16' 
WI26 

LWI25. 

• WI16 
WI26 

.WI25 + QP6. ]•[ 
WI16' 
WI26 
W36. 

Finally, the computation of icflj, for j = 1, .... 6, requires the following 
intermediate variables: WI12. WI22, WI13. WI23. W33. WI14, WI24, W34. WI15, 
WI25, W35. WI16, WI26 and W36, in addition to the variables Sj and Cj for j = 2, 
..., 6. The variables Si and CI can be eliminated because they have no effect on the 
angular velocities. 

9.6.3. UtiUzaiion of the base inertial parameters 

It is obvious that the use of the base inertial parameters in a customized Newton-
Euler formulation that is linear in the inertial parameters will reduce the number of 
operations because the parameters that have no effect on the model or have been 
grouped are set equal to zero. Practically, the number of operations of the inverse 
dynamic model when using the base inertial parameters for a general n revolute 
degree-of-freedom robot is 92n-127 multiplications and 8In-117 additions (n >2), 
which gives 425 multiplications and 369 additions for n = 6. By general robot, we 
mean: 

~ the geometric parameters ri, di, a i and rn are zero (this assumption holds for 
any robot); 

- the other geometric parameters, all the inertial parameters, and the forces and 
moments exerted by the terminal link on the environment can have an 
arbitrary real value; 

- the friction forces are assumed to be negligible, otherwise, with a Coulomb 
and viscous friction model, we add n multiplications, 2n additions, and n sign 
functions. 

Table 9.6. shows the computational complexity of the inverse dynamic nKxlel for 
the St^ubli RX-90 robot using the customized Newton-Euler formulation. In 
Appendix 7, we give the dynamic model of the Staubli RX-90 robot when using the 
base inertial parameters of Table 9.4, which takes into account the symmetry of the 
links. The corresponding computational cost is 160 multiplications and 113 
additions. 
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Table 9.6. Computational complexity of the inverse dynamic model 
for the Staubli RX-90 robot 

General inertial 
parameters 

1 Simplified inertial 
parameters 

Inertial parameters 

Standard parameters 

Base parameters 

Standard parameters 

Base parameters 

Multiplications 

294 

253 

202 

160 

Additions 

283 1 
238 1 
153 

113 

9.7. Direct dynamic model 

The computation of the direct dynamic model is employed to carry out 
simulations for the purpose of testing the robot performances and studying the 
synthesis of the control laws. During simulation, the dynamic equations are solved 
for the joint accelerations given the input torques and the current state of the robot 
(joint positions and velocities). Through integration of the joint accelerations, the 
robot trajectory is then determined. Although the simulation may be carried out off­
line, it is interesting to have an efficient direct dynamic model to reduce the 
simulation time. In this section, we consider two methods: the first is based on using 
a specialized Newton-Euler inverse dynamic model and needs to compute the 
inverse of the inertia matrix A of the robot; the second method is based on a 
recursive Newton-Euler algorithm that does not explicitly use the matrix A and has a 
computational cost that varies linearly with the number of degrees of freedom of the 
robot. 

9.7.L Using the inverse dynamic model to solve the direct dynamic problem 

From equation [9.6], we can express the direct dynamic problem as the solution 
of the joint accelerations from the following equation: 

A q = [r -H(q,q)) [9.95] 

where H contains the Coriolis, centrifugal, gravity, friction and external torques: 

H(q, q) = C(q, q) q + Q ^ diag(q)Fv + diag[sign(q)]Fc + J^ ITcn 

Although in practice we do not explicitly calculate the inverse of the matrix A, 
the solution of equation [9.95] is generally denoted by: 
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q = A->[r- H(q,q)] [9.96] 

The computation of the direct dynamics can be broken down into three steps: the 
calculation of H(q, q), the calculation of A, and the solution of the linear equation 
[9.95] for q. 

The computational complexity of the first step is minimized by the use of a 
specialized version of the inverse dynamics algorithm in which the desired joint 
accelerations are zero [Walker 82]. By comparing equations [9.1] and t9.95]» we 
deduce that H(q, q) is equal to F if q - 0. 

The inertia matrix can also be calculated one column at a time» using Newion-
Euler inverse dynamic model [Walker 82]. From relation [9.95], we deduce that the 
i'̂  column of A is equal to F if: 

q = Ui, q = 0, g = 0, Fc= 0 (fej = 0, niej = 0 for j = 1 n) [9.97] 

where û  is an (nxl) unit vector with 1 in the i^ row and zeros elsewhere. Iterating 
the procedure for i = 1,.. »n leads to the construction of the entire inertia matrix. 

To reduce the computational complexity of this algorithm, we can make use of 
the base inertial parameters and the customized symbolic techniques. Moreover, we 
can take advantage of the fact that the inertia matrix A is symmetric. A more 
efficient procedure for computing the inertia matrix using the concept of composite 
links is given in Appendix 8. Alternative efficient approaches for computing the 
inertia matrix based on the Lagrange formulation are proposed in [Megahed 82], 
[Renaud85]. 

NOTE.- The nonlinear state equation of a robot follows from relation [9.95] as: 

[9.98] q 
.A-MF-.H(q,q)]J 

q 
•• 

Lq J 

and the output equation is written as: 

y = q or y=:X(q) [9.99] 

In this formulation, the state variables are given by [q'̂  q'̂ ]'̂ , the equation y = q 
gives the output vector in the joint space, and y = X(q) denotes the coordinates of 
the end-effector frame in the task space. 
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9.7.2. Recursive computation of the direct dynamic model 

This method is based on the recursive Newton-Euler equations and does not use 
explicitly the inertia matrix of the robot [Armstrong 79], [Featherstone 83b], 
[Brandl 86]. In this section, we utilize the compact spatial notation, which is also 
called screw^ notation. Consequently, by combining equations [9.87] and [9.86], 
which give JVj and Jd)j, we obtain: 

where J»j is defined by equation [9.23b], and: 

iAj.i[i-ici)j., X ( i -^ . , X J-̂ Pj)] + 2aj (i(Oj., x qjiaj) 

5jia)j.ixqjiaj 

[9.100] 

JY; = [9.101] 

Equations [9.88], [9.89], [9.91] and [9.93], which represent the equilibrium 
equations of link j , can be combined as: 

where: 
JCflJxCJOQjjXJMSj) 

i(0jx(ijjj(0j) 

[9.102] 

[9.103] 

In equation [9.102], we use equation [2.63] to transform the dynamic wrench 
from frame Rj+i to frame Rj. 

The joint accelerations are obtained as a result of three recursive computations: 

i) first forward recursive computations for j = 1, ..., n: in this step, we compute the 
screw transformation matrices JTj.i, the link angular velocities JcDj as well as JYj and 
JPj vectors, which represent the link accelerations and the link wrenches respectively 
when q = 0; 

ii) backward recursive computations for j = n, ..., /; we compute the vectors and 
matrices needed to express the joint acceleration cjj and the wrench Jffj in terms of 
J"^Vj.i. To illustrate the equations required, we detail the case when j = n and 
j = n - l . By combining equations [9.100] and [9.102] for j = n, and since 
'*+*irn+i=0» we obtain: 
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"Jn ("Tr„., »-'V„., + q„ X + »Y„) = X + »P„ 

Since: 

kJ'iSj = Tj-Iajiij 

•̂ j = ri-Psjsign(qj)-Pvjqj 

[9.104] 

[9.105] 

[9.106] 

multiplying equation [9.104] by "a,, and using equation [9.105], we deduce the joint 
acceleration of joint n: 

where Hn is a scalar given as: 

H„ = ( X ' ^ V „ % + Ia„) 

[9.107] 

[9.108] 

Substituting for % from equation [9.107] into equation [9.104], we obtain the 
dynamic wrench ''Ifn as: 

"n -
nf 

= "IKn"T„.i«-»V„.i + °an 

where: 

»IK„ = "JI„-"J„XH„'»«>JJ„ 

»a„ = "Kn »Y„ + »jr„ X H„' (t„ + "ij "ft,) - "ft, 

[9.109] 

[9.110] 

[9.111] 

We now have q„ and "iTn in terms of "'' VR. i. Iterating the procedure for j = n - 1, 
we obtain, from equation [9.102]: 

which can be rewritten using equation [9.100] as: 

[9.112] 

"•'J*n.l C-'Tn.i -2V„.2 + q„., "-'»„., + "-'Yn-l) = "^-l + ""'PVl (9.113] 

where: 
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[9.114] 

[9.115] 

Equation [9.113] has the same form as equation [9.104]. Consequently, we can 
express q„.i and "''ffn-i in terms of"'2Vn.2. Iterating this procedure for j = n-2 , ..., 
1, we obtain qj and J|̂  in terms of i''Vj.i for j = n - 1,..., 1. Since *Vo 's composed of 
the linear and angular accelerations of the base that are assumed to be known (VQ = 
-g, Wo = 0), the third recursive computation allows us to compute qj and Jffj for j = 1, 
..., n. These backward recursive equations are summarized as follows: 

For j = n,.... 1, compute: 

Hj = (JaJirjJij + laj) 

JKj = Jrj-JJ*jJ»jHj'jj)Jj4I*j 

JOj = iKj JYj + JjTjijij Hj' (Tj +ijij"jp*j) -ip*j 

i-'PVi =J-'Pj-i-'Tj,Jaj 

J-'jJ*j., = J-»JJj.i+JTj,JIKjJTj., 

[9.116] 

[9.117] 

[9.118] 

[9.119] 

[9.120] 

Note that these equations are initialized by JjTj = Ĵj and that equations [9.119] 
and [9.120] are not calculated for j = 1; 

Hi) second forward recursive computations for j = i, ..., n. The joint acceleration qj 
and the dynamic wrench JlTj (if needed) are then obtained from the following 
equations (see equations [9.107] and [9.109]): 

JVj., =JTj.,J-'Vj., 

qj = Hj' [-JilJjrj(JVj.,+JYj) + Xj+i«[jp*j] 

Jfi 

L^nij J 
= JIKjJVj.i+iaj 

iVj=iVj.,+J«jqj + iYj 

[9.121] 

[9.122] 

[9.123] 

[9.124] 
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NOTES.-

- to reduce the number of operations of this algorithm, we can make use of the 
base inertia] parameters and the customized symbohc technique. Thereby, the 
number of operations of the direct dynamic model for the Staubli RX-90 robot 
is 889 multiplications and 653 additions [Khali! 97]. In the case of the use of 
simplified inertial parameters (Table 9.4), the computational cost becomes 
637 multiplications and 423 additions; 

- the computational complexity of this method is CXn), while the method 
requiring the inverse of the robot inertia matrix is of complexity cXn̂ ); 

- from the numerical point of view, this method is more stable than the method 
requiring the inverse of the robot inertia matrix [Cloutier 95]. 

9.8. Conclusion 

In this chapter, we have presented the dynamics of serial robots using Lagrange 
and Newton-Euler formulations that are linear in the inertial parameters. The 
Lagrange formulation allowed us to study the characteristics and properties of the 
dynamic model of robots, while the Newton-Euler was shown to be the most 
efficient for real time implementation. We have illustrated that the base inertial 
parameters can be determined using simple closed-form rules without calculating 
neither the dynamic model nor the energy functions. In order to increase the 
efficiency of the Newton-Euler algorithms, we have proposed the use of the base 
inertial parameters in a customized symbolic programming algorithm. The problem 
of computing the direct dynamic model for simulating the dynamics of robots has 
been treated using two methods; the first is based on the Newton-Euler inverse 
dynamic algorithm, while the second is based on another Newton-Euler algorithm 
that does not require the computation of the robot inertia matrix. 

In the next chapter, we extend these results to tree structured and closed loop 
robots. Note that the inverse and direct dynamic algorithms using recursive Newton-
Euler equations have been generalized to flexible robots [Boyer 98] and to systems 
with lumped elasticities [Khalil 00a]. 



Chapter 10 

Dynamics of robots with complex structure 

lO.L Introduction 

In this chapter, we present the dynamic modeling of tree structured robots and of 
closed chain mechanisms. We also derive the base inertial parameters for these 
structures. The algorithms given constitute a generalization of the results developed 
for serial robots in Chapter 9. We make use of the notations of § 9.2 and we assume 
that the reader is familiar with the geometric description of complex structures 
exposed in Chapter 7. 

10.2. Dynamic modeling of tree structured robots 

10.2.1. Lagrange equations 

Since the joint variables are independent in a tree structure, we can make use of 
the Lagrange formulation in a similar way as for a serial structure. Thus, the kinetic 
energy and the potential energy will be computed by equations [9.16] and [9.25]. 
The recursive equations for computing the angular and linear velocities of link j 
must take into consideration that the antecedent of link j is link i, denoted as i = a(j). 
and not j ~ 1 as in the case of simple open chain structures. The vector Lj denotes the 
position of frame Rj with respect to its antecedent frame Rj. Consequently, the linear 
and angular velocities of link j can be obtained from equations [9.17] and [9.18] by 
replacing j - 1 by i: 

Jcfljj = iAj'% + Oj qj Jaj [ 10.1] 

iVj = iAi (iVi -H »a)| X Tj) + Oj qj iaj [ 10.2] 
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10.2,2. Newtoti'Eulerformulation 

The forward recursive equations of the Newton-Euler inverse dynamic model 
(§ 9.5) can be generalized for tree structured robots by replacing j - 1 by i, with 
i = aa): 

J(Oi = JAi'cOi [10.3] 

Joij = icOi+GjCijiaj [10,4] 

•id)j = JAj *G)i + Oj (cjj iaj + i(Oi x qj Jaj) [ 10.5] 

JVj = JAi (»Vi + »Ui iPj) + Gj (cjj iaj + 2 J(Oi X qj iaj) [ 10.6] 

JFj = MjiVj + JUjJMSj [10.7] 

JMj = JJj J©j + icoj X (JJj icoj) -f iMSj x iVj [10.8] 

. ^ A A 

with Cflo = 0, (flo = 0, VQ = - g and JUj = JWj + Joij J(Oj. 

These equations will be computed recursively for j = 1,..., n. 
Let us suppose that k denotes all the links such that a(k) = j (Figure 10.1). The 

backward recursive equations for j = n,..., 1 are written as follows: 

jfj = JFj-f-ifcj+ S^^k [10.9] 
k/a(k)=j 

>fj = iAjifj [10.10] 

Jnij = JMj + Jnicj + X (̂ k̂ ^^\i + ̂ Pk x Jfk) [ 10.11] 
k/a(k)=:j 

Tj = (ajjfj +CjimpTJaj + Fsj sign (qj) + Fvjqj +Iaj qj [10.12] 

For a terminal link, inik and Jfî  are zero. 

10.2.3. Direct dynamic model of tree structured robots 

Similarly, the computation of the direct dynamic model of tree structured robots 
can be obtained using the two methods presented in § 9.7 without any particular 
difficulty. 



Dynamics of robots with complex structure 237 

10.2.4. Determination of the base inertial parameters 

All the results concerning the base inertial parameters of serial robots can be 
generalized for tree structured robots [Khalil 89b], [Khalil 9Sa]. Thereby, equations 
[9.37] and [9.38], or [9.48] and [9.49], giving the conditions of elimination or 
grouping of the inertial parameters, are valid. To expose the computation of the base 
parameters of tree structured robots, we recall that a main branch is composed of the 
set of links of a path connecting the base to a terminal link. Thus, there are as many 
main branches as the number of terminal links. 

The parameters having no effect on the dynamic model for a tree structure can be 
obtained by applying the rules derived for serial robots to each main branch. 

As in the case of serial robots (§ 9.4.2.2), the general grouped parameters for tree 
structures will concern the parameters YYj, MZj and Mj if joint j is revolute, and the 
elements of the inertia tensor Jj if joint j is prismatic. The general grouping 
equations are different than those of Chapter 9, because certain frames may be 
defmed by six geometric parameters. 

Figure 10.1. Forces and moments acting on a link of a tree structure 
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10.2.4.1. General grouping equations 

The recursive equation between the energy functions of two successive links is 
given by: 

hj = hiiXj + qjlij [10.13] 

where hj is the (1x10) row matrix containing the energy functions of link j denoted 
by [ hxxj hxYj •• hMj ] , while »Aj is the (10x10) matrix expressing the 
transformation of the inertial parameters of a link from frame Rj to frame Rj. The 
general form of Tij and *Xj, with i = a(j), is developed in Appendix 6. We deduce that 
equations [9.50] and [9.54] are valid for tree structures after replacing j - 1 by i, 
which leads to the following theorem: 

Theorem 10.1. If joint j is revolute, then the parameters YYj, MZj and Mj can be 
grouped with the parameters of link i and link j , with i = a(j). The general grouping 
equations are the following: 

XXRi= XXi-YYj 
. 1 . 4 . Q . 1 0 

KRi = Ki + YYj ('Xj + 'Xp + MZj 'Aj + Mj 'Xj 

[10.14a] 

[10.14b] 

where 'Aj is the k'̂  column of the matrix 'Xj, which is a function of the geometric 
parameters defining frame Rj. In the following formulas, the corresponding subscript 
j has been dropped for simplicity. From Appendix 6, we obtain: 

iA^u*x; = 

l-SSySSa" 
CSySSa 
-SyCSa 

l-CCySSa 
CyCSa 

SSa 
0 
0 
0 
0 

[10.15] 
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• 2PzCa-2PyCYSa " 

PxCvSa-PySySa 
-PxCa-PzSySa 

2PxSYSa+2PzCa 

-PyCa-fPzCySa 

2PxSYSa-2PyCYSa 
SySa 

-CySa 
Ca 
0 

[10.16], ix]^ = 

rPy2+Pz2-| 

-PxPy 
-PxPz 

PMZ^ 
-PyPz 

Px2+Py2 
Px 
Py 
Pz 

[10.17] 

where P^, Py and Pj denote the coordinates of the vector *Pj, which can be obtained 
from equation [7.3] giving the general transformation matrix 'Tj such that: 

>Pj = 
LPZ. 

djCYj + rjSYjSOj' 

djSYj-rjCYjSOj 

L rjCttj + bj . 
[10.18] 

After expanding equations [10.14], we obtain: 

XXRj = XXj - YYj 

XXRi = XXi + YYj (1 ^ SSYjSSOj) + 2 MZj (P^COj - PyCyjSOj) 4- Mj (Py^ -̂  Pj^) 

XYRi = XYi + YYj(CSYjSSaj) + MZj(PxCYjSaj-PySYjSaj) + Mj(-PxPy) 
XZRi = XZj - YYj (SYjCSOj) + MZj (-PxCOj - PZSYJSOJ) + Mj (-PxPz) 

YYRi = YYi + YYj (1 -CCYjSSaj) 4 2 MZj (PXSYJSOJ + PzCotj) + Mj (Px^ + P^̂ ) 
YZRi =r YZi -I- YYj (CyjCSoj) + MZj (-Py Coj 4- PJCYJSOJ) 4 Mj (-PyPz) [ 10.19] 

ZZRi = ZZi + YYjSSOj + 2MZj (Px SYJSOJ -PyCYjSotj) + Mj(Px^ + Py )̂ 
MXRi = MXj + MZj (SYjSOj) + Mj Px 
MYRi ^ MYi - MZj (CYjSaj) -f Mj Py 
MZRi = MZi 4 MZj COj + Mj ?i 
MRj = Mi + Mj 

with SS(*) = sin(*) sin(*), CC(*) ^ cos(*) cos(*) and CS(*) = cos(*) sin(*). 

Theorem 10.2. If joint j is prismatic, then the elements of the inertia tensor ijj can 
be grouped with those of Ĵj using the following equation: 

KRi = Ki + "Xj XXj + ixjXYj+ ... + *XĴ ZZj 

which is equivalent to: 

[10.20al 
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' JRj = *Ji + iAj ijj JAi [ 10.20b] 

The expanded expressions of these equations are too complicated to be 
developed here. 

10.2.4.2. Particular grouped parameters 

Particular grouped parameters can be obtained by applying the results of serial 
robots to each main branch b. Let rib be the first revolute joint of branch b, and r2b 
be the subsequent revolute joint whose axis is not parallel to the rib ^̂ î - Additional 
grouping and/or elimination of certain elements among MXj, MYj and MZj takes 
place if j is prismatic and lies between rib ^"^ <'2b* ^̂ ^ simplicity, the subscript b is 
dropped in the remainder of this section. Two cases are considered: 

i) the axis of the prismatic joint j is not parallel to the rj axis. In this case, the 
coefficients hMXj' ^MYJ "̂̂  ^MZj satisfy the equation: 

Jaxrl hMXj + S r l M̂Yj +^azrl HMZJ = constant [10.21] 

where Jaji = [ âxri Jaŷ i Jâ ri JT }§ the unit vector of the m axis referred to frame 
Rj. The corresponding grouping equations are given in Table 10.1; 

ii) the axis of the prismatic joint j is parallel to the rj axis. The following equation is 
satisfied: 

[hMSj f = JAi [hMSi]'^- [ 2PxhzZk 2Pyhzzk 0 ]T [10.22] 

where k denotes the nearest revolute joint from j back to the base, k > ri; HMSJ = 
[ ^MXj hMYj hMZj ] ; Px and Py are the first and second coordinates of JPj 
respectively, with i = a(j). Using equation [7.4], we obtain: 

JPj = [Px Py P z F r : [-bjSejSoCj-djCOj -bjCBjSOj + djSej -bjCOj-rj ]T 

Therefore, we deduce that the parameter MZj has no effect on the dynamic model 
and the parameters MXj and MYj can be grouped with the first nK)ments of link i, 
and with the parameter ZZ^ of link k using the following equations: 

MXRi = MXj + (CYjCOj - SYjCOjSej) MXj ~ (CVjSej + SYJCOJCBJ) MYJ 

MYRi = MYi + (SYjCBj + CYjCajSOj) MXj + (-SYJSGJ -I- CYJCOJCOJ) MYJ 

MZRi = MZi + SBj Sotj MXj -i- CBj Sotj MYj [10.23] 
ZZRk = ZZic + 2(djCBj + bjSBjSaj)MXj~2(djSBj + bjCBjSaj)MYj 
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Table 10.1, Grouped parameters ifr] <j < r2, (Tj = i, and joint j axis 
is not parallel to the rj axis 

\ Conditions 

Ja^i ?S 0 

Jaai=O.Ja„iJayri#0 

ia^r, =0,Jax,i=0 

Jaai=0,iayfi = 0 

Grouping or elimination 

MXRi = M X i - r ^ M Z i 

MYRi = MYi -7^MZi 

MXRj = M X i - r ^ M Y i 
^ ^ Jayrl ' j 

MYjsO 

MXjsO J 

Therefore, the practical rules for computing the base inertial parameters given in 
§ 9.4.2.4 can be applied for the tree structure case. The only difference is that the 
joints ri and ra should be defined for each main branch b as rn, and r2b respectively. 
Thus, a rule like "if j is such that rj < j < ra" means in the tree structure case "if j is 
lying between ri^ and r2b". From this algorithm, it occurs that the number of 
minimum inertial parameters for the links (without considering the inertia of rotors) 
of a general robot is less than b^, such that: 

hm < 7 % + 4 np - 4 Ort)- 3 npo- 2 ngo [10.24] 

with: 

• n̂ : number of revolute joints = J^ OJ; 

• np: number of prismatic joints = J] OJ; 
• UfQi number of revolute joints connected directly to the base; 

• npo: number of prismatic joints connected directly to the base; 

• ngo: number of revolute joints connected directly to the base and whose axes 
are parallel to gravity. 

The grouped parameters of the rotor inertias concern those of the actuators of 
joints (pib, rib and r2b)i where pib denotes the first prismatic joint of the main 
branch b. They can be obtained by applying the results of serial robots (§ 9.4.2.5) 
for each branch of the tree structure. 
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10.3. Dynamic model of robots with closed kinematic cliains 

Many methods have been proposed in the literature to compute the dynamic 
models of robots containing closed kinematic chains. Among them, let us mention 
the works of (Chace 67], [Uicker 69], [Chace 71], [Baumgarte 72], [Wittenburg 77], 
[Megahed 84], [Touron 84], [Luh 85b], [Wittenburg 85], [Kleinfmger 86b], 
[Giordano 86]. The dynamic model developed in this section is based on firstly 
computing the dynamic model of an equivalent tree structure, then by multiplying it 
by the Jacobtan matrix representing the derivative of the tree structure variables with 
respect to the actuated variables [Kleinfmger 86b]. 

10.3.1. Description of the system 

The geometry of the robot is described using the method presented in Chapter 7. 
The system is composed of L joints and n -f 1 links, where link 0 is the base. N joints 
are actuated (active) and the other L - N joints are unactuated (passive). The number 
of independent closed loops B is equal to L - n. We assume that the structure is 
controllable and has the minimum number of actuators, thus the number of actuated 
joints that represent the independent variables is equal to the number of degrees of 
freedom of the mechanism. 

We construct an equivalent tree structure by virtually cutting each loop at one of 
its passive joints as has already been explained in § 7.3. Since a closed loop contains 
several unactuated joints, we select the cut joint in such a way that the difference 
between the number of links of the branches from the root of the loop to the cut joint 
is as small as possible. This choice reduces the computational complexity of the 
dynamic model [Kleinfmger 86a]. 

We represent the tree structure variables by the (nxl) vector Qtr, and the cut 
joints by the (Bxl) vector q .̂ The total joint variables are given by equation [7.7]: 

=[:] [10.25] 

The vector qtr is partitioned into the (Nxl) vector of active joints Qa and the 
(pxl) vector of passive joints qp: 

=[;] 
The relation between q̂  and qp is obtained by solving the loop closure equations 

(§ 7.3). The constraint kinematic equations of first and second order have already 
been derived in § 7.8 and are rewritten here as: 
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[ W . Wp] 

[ W . Wp] 

qa 

LQpJ 

qa 

Lip J 

= 0 

+ »? = 0 

[10.27] 

[10.28] 

where W, and Wp are (pxN) and (pxp) matrices respectively. In regular 
configurations, the rank of Wp is equal to p. Thus, from equation [10.27], we obtain: 

qp = Wq, 

where: 

W = : - W , Wa 

[10.29] 

[10.30] 

10.3.2. Computation of the inverse dynamic model 

If the joint positions and velocities can be expressed in terms of the independent 
actuated variables, we can use the standard Lagrange equation [9.4] to get the 
dynamic model of the closed chain structure [Desbats 90]. Otherwise, we have to use 
the Lagrange equation with constraints such that: 

^ jd^a. aL r5$(qtr)iT , 
*̂« = dt ^ " a q ^ L aqj J ^ "=^ " [10.31a] 

where L(qtr» qtr» 4tr) is ĥe Lagrangian of the equivalent tree structure; ^(qtr) - 0 is 
the vector containing the p independent constraint functions of the loop closure 
equations; X = [ ^i • • ^ ]'^ is the Lagrange multiplier vector. 

This equation can be rewritten as: 

r = FtrCqtf qtr» qtr) + l ~ 5 ^ J ^ [10.31bl 

where Ftr represents the inverse dynamic model of the equivalent tree structure. It is 
a function of qtr, qtr and qtr. 
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The general form of the dynamic model of the tree structure is given by: 

Ftr = At, 
qa 

LqpJ 
+ Ht, [10.32] 

where Atr is the inertia matrix of the equivalent tree structure, and Ht, is the vector of 
centrifugal, Coriolis and gravity torques of the equivalent tree structure. 

Using equation [10.27], we deduce that: 

[10.33] 

The term containing the Lagrange multipliers represents the reaction forces 
transmitted by the cut joints to ensure that the loops remain closed. Let us 
decompose Ftr in a similar way to equation [10.26]: 

-m [10.34] 

where Fa and Fp denote the torques of the actuated and unactuated joints of the 
equivalent tree structure respectively. 

The joint torques of the closed chain robot are given as: 

F 
[OpxlJ 

[10.35] 

where Tci denotes the torques of the N actuated joints, and the zero vector 
corresponds to the torques of the passive joints: 

•LopIJ-LrpJ-

T 

T 
[10.36] 

We have thus a system of n equations where the unknowns are F^ and X. 
Computing the Lagrange multipliers from the lower part of equation [10.36] leads 
to: 
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X = -[wJr^rp {10.37] 

Substituting [10.37] into the upper part of [10.36] yields: 

rci = ra-wl[wj]-^rp [10.38] 

Using equation [10.30], the actuator torque vector of the closed chain robot is 
written as: 

re = r. + wTrp = [iN '^''][l'\ [10.39] 
L *p J 

which can be rewritten as: 

Tel = [ IN wT ] r^ = [ [^]T [^]T]r« = GTr̂  [io.40] 

where IN is the (NxN) identity matrix; W is the Jacobian matrix representing the 
derivative of the passive joint positions with respect to the actuated ones; G is the 
Jacobian matrix representing the derivative of qtr with respect to qa, equal to 
aqi^Sqa. 

Equation [10.40] constitutes the inverse dynamic model of the closed chain 
structure. The vector Ttr can be computed using the efficient recursive Newton-Euler 
algorithm described in § 10.2.2. 

10.3.3, Computation of the direct dynamic model 

To simulate the dynamics of a closed chain robot with a given input torque for 
the active joints Td and a given state (qa, qa), the dynamic equation [10.40] is 
formulated and solved for the independent accelerations cja. The accelerations are 
then numerically integrated to obtain the velocities and positions at the next 
sampling time. This process is repeated until integration through the time interval of 
interest is completed. The direct dynamic model can be obtained by formulating the 
Lagrange dynamic model as follows: 

rci = Aciia + Hei [10.41] 

where Ad is the inertia matrix and Hd is the vector of centrifugal, Coriolis and 
gravity torques of the closed chain structure. 
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To derive Ad and Hci, we express qp as a function of q̂  in equation [ 10.40], then 
we identify the result with equation [10.41]. Using equations [10.28] and [10.30], 
we deduce that: 

qp = Wcia-Wp Y [10.42] 

Using equation [10.32], we rewrite equation [10.40] as: 

r c l = [ l N W T ] A , 

<ipj 

+ [ IN W T ] H „ [10.43] 

Partitioning the matrix Atr and the vector Htr to explicit the terms corresponding 
to the active and passive joints gives: 

fAaa Aap"| f H. "l 

where Apa=[Aap]'''. 

By combining equations [10.43] and [10.44], we obtain: 

Tcl = Aaaqa + Aap[Wqa-Wp Y] + WTApaqa + 

WT App [W iia ~ W;,̂  ^ + Ha + W^Hp [10.45] 

P 

^ ^ p p l ^ v H a - • • p 

Identifying equations [10.41] and [10.45] leads to: 

Acl = Aaa + AapW+WTApa + WTAppW [10.46] 

p — (Aap + " App) Wp Hci = Ha+ WTHp-(Aap+ WT App) W^ ^ [10.47] 

The solution of [10.41] gives the active joint accelerations, then the passive joint 
accelerations can be computed from equation [10.42]. Although the active joint 
accelerations are obtained by solving the linear system [10.41] without inverting the 
inertia matrix, we generally denote the direct dynamic model by: 

qa = A;l(rc,-Hc,) [10.48] 
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* Example lO.L Dynamic model of the Acma SR400 robot. The geometry and the 
constraint equations of the loop of this robot are treated in Example 7.1. The inverse 
dynamic model of the tree structured robot is computed using the recursive Newton-
Euler algorithm quoted in § 10.2.2. To compute the dynamic model of the closed 
chain, we have to calculate the Jacobian matrix G representing the derivative of the 
variables qtr with respect to the variables qa. We recall that: 

qa = [Ql 92 64 65 06 07]T 

qp = (63 egjT 

qtr = [61 62 O4 O5 06 O7 03 e g f 

The constraint equations are obtained in Example 7.1 as: 

O3 = 07 + 71/2 - 02 

0g = — ©7 + 02 

From these equations, we obtain: 

G T = 

r i o o o o o o o 
0 1 0 0 0 0 - 1 1 
0 0 1 0 0 0 0 0 
0 0 0 1 0 0 0 0 
0 0 0 0 1 0 0 0 

L o 0 0 0 0 1 1-1 

The actuated torques of the closed chain robot is computed in terms of the joint 
torques of the tree structure as: 

Tell = Ttri 

r'cia = ^^-2 - rtr3 + Ftrg 

ĉW = rtr4 

r̂ clS = TtrS 

rcl6 = Ttrt 

Tel? = rtr7 + rir3 - Ttrg 

where r^ij and Ftrj denote the torque of joint j in the closed structure and in the tree 
structure respectively. 
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10.3.4, Base inertial parameters of closed chain robots 

Since the matrix G is a function of the geometric parameters, we deduce from 
equation [10.40] that the minimum inertial parameters of the tree structure are valid 
to compute the dynamic model of the closed chain robot. The constraint equations of 
the loops may lead to additional elimination or grouping of certain inertial 
parameters. To compute the grouped parameters for the closed chain robot, we have 
to find the linear relations between the energy functions of the inertial parameters. 
We note that the expressions of the energy functions of the closed chain robot are 
obtained from those of the tree structure after expressing them as a function of the 
positions and velocities of the active joints. There is no complete symbolic solution 
for a general closed chain robot. Therefore, the numerical method developed in 
Appendix 5 [Gautier 91] can be used for this purpose. However, certain general 
grouped parameters can be obtained without solving the closure equations of the 
loops. These parameters belong to the links connected to the cut joints [Khalil 95a]. 
Furthermore, in § 10.3.5, we will show that the grouped parameters of a 
parallelogram closed loop can be computed explicitly. 

Referring to the notations of the closed chain robots described in Chapter 7, we 
assume that frame R^ and frame RR+B denote the frames placed on the cut joint k 
connecting link i to link j , with i = a(k) and j = a(k + B). Since frames Rĵ  and Rk̂ .B 
are aligned, then the kinematic screws of these frames are the same. Consequently, 
we deduce from equation [9.45] that the energy functions h)̂  are equal to hî +B-

hk = hK̂ B [10.49] 

Using the recursive equation of the energy functions [10.13] and by noting that i 
= a(k), j = a(k + B) and q̂ +B = 0» w« obtain the following equation: 

hi *Xk + qk Tlk = hj JXk+B [ 10.50] 

Since the elements of the matrix ^X^+B ^^ constants, two cases are considered to 
identify the linear combinations between the terms of hj and hj: 

i)for a revolute cut joint, we obtain the following three linear equations between the 
energy functions of links i and j : 

hi (ixj + *xj) = hj (Jxî B + J^k+e) [10.5 la] 

hjixj = hjixJ+B [10.51b] 

hj^J^ = hjJxIJB [10.51c] 
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The left side terms of equations [10.51] are functions of the geometric 
parameters of frame R^y while those of the right side are functions of the geometric 
parameters of frame R|C+B- The expressions of X are given by equations [10.15], 
[10.16] and [10.17] after considering the appropriate subscript. 

We deduce that for any closed loop, if the cut joint is revotute, then we have 
three linear relations between the elements of h| and hj. There is no general 
systematic choice for the parameters to be grouped. They must be studied on a case-
by-case basis. Furthermore, in some cases, these relations may not lead to three 
additional grouping parameters with respect to those obtained for the equivalent tree 
structure; 

ii)for a prismatic cut joint, we obtain the following six linear equations between the 
energy functions of links i and j : 

hi*xj^ = hji^^B forr= 1, . . . ,6 [10.52] 

In this case, we can group the parameters of the inertia tensor of link j with those 
of link i, with j > i, using the following equation: 

«JRi = Ĵi + ^Ak^B'̂ AjJJjiAk^^^BAj [10.53] 

10J.5. Base inertial parameters of parallelogram loops 

For parallelogram loops and planar loops, additional general linear relations 
between the energy functions can be deduced [Khalil 95a]. We develop in this 
section the grouping relations for parallelogram loops, where all the grouped 
parameters can be obtained systematically without computing explicitly the energy 
functions [Bennis 91b]. In fact, we can prove that one parameter among the first 
moments (MX or MY) of one link of the parallelogram can be grouped using 
equation [lO.Slc], and that the inertia tensors of two links can be grouped. 

Let us consider a parallelogram loop composed of links kl, k2, k3, k4. We 
assume that the loop is cut between links k3 and k4 and that link kl is parallel to link 
k3, and link k2 is parallel to link k4 (Figure 10.2). Thus: 

COkl = «0|c3 

^2 « C0k4 
[10.54] 

Consequently, we can group the inertia tensor ^^J|t3 with ^U^i using the 
equation: 

•̂ ĴRicl = ^^Jkl + ^^AK3 »̂ Ĵk3 ̂ ^Aki [10.55] 
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Figure 10.2. Examples of parallelograms 

Link k2 

r"' 
Similarly, '̂*Jî 4can be grouped with ^^Jk2 using the following equation: 

»̂ 2jRk2 = ^2Jk2 + ^2A„4 ^^Jk4 '^^AK2 [10.56] 

10.3.6. Practical computation of the base inertial parameters 

Most of the parameters to be eliminated or grouped can be computed by applying 
the following rules. Firstly, the joints ri and r2 for each main branch of the 
equivalent tree structure must be determined. Then, apply the following rules for 
j = n 1: 

1) if link j constitutes a link that is connected to a cut joint, that is to say j = a(k) 
with k > n, then apply either the general grouping equations or the grouping 
equations of the parallelogram depending on the type of the corresponding 
loop; 

2) group: 
a) YYj, MZj and Mj if Oj = 0, using Theorem 10.1; 
b) XXj, XYj, XZj, YYj, YZj and ZZj if Oj = 1, using Theorem 10.2; 

3) if joint j is prismatic and aj is parallel to a ]̂ for ri < j <r2, then eliminate MZj 
and group MXj and MYj using equation [10.23]; 

4) if joint j is prismatic and aj is not parallel to a î for rj < j < r2, then group or 
eliminate one of the parameters MXj, MYj, MZj using Table 10.1; 

5) if joint j is revolute and ri < j < r2, then eliminate XXj, XYj, XZj and YZj. 
Notice that the axis of this joint is parallel to the axis of joint ri, and that the 
parameter YYj has been eliminated by rule 2; 

6) if j is revolute and r] <j < r2, and aj is along a^], and if a î is parallel to both ai 
and gravity g for all i < j , then eliminate the parameters MXj, MYj. Notice that 
MZj has been eliminated by rule 2; 
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7) if j is prismatic and j <rj, then eliminate the parameters MXj, MYj» MZj. 

From this algorithm, we deduce that the number of minimum inertial parameters 
for the links (without considering the inertia of rotors) of a general robot is less than 
bm* such that: 

bm ^ 7nr + 4 n p - 4 n r t ) - 3 n p o - 11 npar-2ngo [10.57] 

with: 

• n,: number of revolute joints of the equivalent tree structure; 

• np: number of prismatic joints of the equivalent tree structure; 

• ngo: number of revolute joints that are directly connected to the base and 
whose axes are parallel to gravity; 

• ttjo: number of revolute joints directly connected to the base; 

• npo: number of prismatic joints directly connected to the base; 

• npar: number of parallelogram loops in the mechanism. 

• Example 10.2. Computation of the base inertial parameters of the Acma SR400 
robot. This structure has two main branches: the first contains links 1, ..., 6, while 
the second is composed of links 1,7 and 8. For the first branch, we obtain ri s 1 and 
r2=s2; for the second branch, we find ri = 1 and r2 = 7. Applying the general 
algorithm for j = 8,..., 1, we obtain: 

Link 8. This link constitutes a terminal link in a parallelogram loop. Equation 
[10.51c] gives: 

hxX3 dg^ + h2Z3 dg^ - hMY3 dg "•• HMS = hyvs d3^ + hzzg dy^ + hMXg d3 •»• hMg 

We choose to group MXg as follows: 

YYRg = YYg-d3MXg 
ZZRg = ZZg-d3MXg 

MXg 
M R g ^ M g — g ^ 

dg2 
XXR3 = XXa + MXg-^ 

dg2 
ZZR3 = ZZ3 + MXg-^ 

MYR3 = MY3-MX85^ 
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MXg 

Equation [10.55] allows us to group Jg with J2: 

2JR2= 2j2+2A8 8jg8A2 

Since the orientation matrix ^Ag = I3 (equation [7.39]), we obtain: 

XXR2 = XX2 + XXg 

XYR2 = XY2 + XYg 
XZR2 = XZ2 + XZg 
YYR2= YY2-KYYg-d3MX8) 
YZR2 = YZ2 + YZg 
ZZR2 = ZZ2 + (ZZg - d3 MXg) 

Finally, since joint 8 is revolute, we group the parameters MZg and MRg with the 
parameters of link 7 using equations [10.19]: 

XZR7 = XZ7-.MZgdg 

YYR7 = YY7 + Mgdg-MXg-5^ 

dĝ  
ZZR7 = ZZ7 + dg2 Mg ~ MXg -^-

MXR7 = MX7-MXg5| +Mgdg 

d3 

+ Mj 

MXg 
MR7 = M7 + Mg- ^ 

Thus, concerning link 8, only the parameter MYg belongs to the base inertial 
parameters of the robot. 

Link 7. This link is a terminal link of a parallelogram loop. We group J7 with J3 
using equation [10.55]: 

^JR3= ^J3 + ^A7 7J7 7A3 

Since '^X^ = rot(z, ^) , (equation [7.38]), we obtain: 

XXR3 = XX3 + YY7 + Mg dg2 

XYR3 = XY3-XY7 
XZR3 = XZ3 -I- YZ7 
YYR3 = YY3 + XXR7 = YY3 + XX7 
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YZR3 = YZ3 - XZR7 = YZ3 - XZ7 + MZg dg 

ZZR3 = ZZ3 + ZZ7 + dg^ Mg 

We group the parameters MR7 and MZ7 with the parameters of link 1 using the 
following equation: 

ZZR| = ZZ,+(M7 + M8)d22-MXg-^ 

Note that MZ7 does not appear in this expression. Thus, it has no effect on the 
dynamic model. The minimum parameters of link 7 are MXR7 and MY7. 

Link 6, From Theorem 10.1 and since a(6)= 5, we group the parameters YY5, MZ5 
and MR5 as follows: 

XXR6 = XXe-YYe 
XXR5 = XX5 4. YYe 
ZZR5 = ZZ5 + YY6 
MYR5 = MY5 + MZ6 
MR5 = M5 -I- Me 

The minimum parameters of link 6 are: XXR^, XY^, XZe» YZ^. ZZ^, MX^ and 
MYe. 

Link 5. We group the parameters YY5, MZ5 and MR5 with those of link 4: 

XXR5 « XX5 + YY6-YY5 
XXR4 =: XX4 + YY5 
ZZR4 = ZZ4 + YY5 
MYR4 = MY4-.MZ5 
MR4 = M4 + M5 -•- M^ 

The minimum parameters of link 5 are: XXR5, XY5, XZ5, YZ5» ZZR5, MX5 and 
MYR5. 

Link 4, We group the parameters YY4, MZ4 and MR4 with those of link 3: 

XXR4 = XX4 4.YY5-YY4 

XXR3 = XX3 + YY7 + Mg dg2 + YY4 + 2 RL4 MZ4 + RL42 MR4 
XYR3 = X Y3 - X Y7 - d4 MZ4 - d4 RL4 MR4 
XZR3 = XZ3 -h YZ7 

YYR3 = YY3 + XX7 ^ d42 MR4 
YZR3 = YZ3-XZ7 4MZgdg 
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ZZR3 = ZZ3 + ZZ7 + dĝ  Mg + YY4 + 2 RL4 MZ4 + {64^ + RL42) MR4 
MXR3 = MX3 + d4 MR4 

MXg 
MYR3 = MY3-d8-7-^ +MZ4 + RL4MR4 

MXg 
MR3 = M3 + -^— + M4 + M5 + M^ 

The minimum parameters of link 4 are: XXR4, XY4, XZ4, YZ4, ZZR4, MX4 and 
MYR4. 

Link 3. We group the parameters YYR3, MZ3 and MR3 with those of link 2: 

XXR3 = XX3 + YY7 + M8d82-»-YY4 + 2RL4MZ4 + RL42MR4-YY3-XX7-d42MR4 

XXR2 = XX2 + XXg + YY3 + XX7 + d4^ MR4 
XZR2 = XZ2-»-XZg-d3MZ3 
YYR2 = YY2 + YYg + YY3 - d3 MXg + XX7 + d4̂  MR4 + d32 MR3 
ZZR2 = ZZ2 + ZZg - d3 MXg + d^^ MR3 
MXR2 = MX2 + d3 MR3 
MR2 = M2 + MR3 

The minimum parameters of link 3 are: XXR3, XYR3, XZR3, YZR3, ZZR3, 
MXR3 and MYR3. 

Link 2. We group the parameters YYR2, MZ2 and MR2 with those of link 1: 

XXR2 = XX2 + XXg - YY2 - YYg - d^^ MR3 + d3 MXg 
MX 
d3 ZZRi = ZZi + (M7 + Mg)d2̂  - d22 "7"^ + YY2 + YYg + YY3 + XX7 + d42MR4 + 

d32MR3 - d3 MXg + d2̂ MR2 

The minimum parameters of link 2 are: XXR2, XYR2, XZR2, YZR2, ZZR2, 
MXR2 and MY2. Note that MZ2 does not appear in this expression. Thus, it has no 
effect on the dynamic model. 

Link /. Only the parameter ZZR] belongs to the base inertial parameters. 

Finally, the rotor inertias are treated as shown in § 9.4.2.5, leading to group lai, 
la2 and Ia7 with ZZR|, ZZR2 and ZZR3 respectively. 

The fmal result is summarized as follows: 
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- the following 11 parameters have no effect on the dynamic model: XXi» XYj, 
XZi, YYi, YZi, MXi, MYi, MZi, M^ MZ2 and MZ7; 

- the following 33 parameters have been grouped: Iai» YY2, M2, Ia2» YY3» MZ3, 
M3, YY4. MZ4, M4, YY5, MZ5, M5. YY6, MZ6, M6, XX7, XY7, XZ7, YY7, 
YZ7. ZZ7. M7. Ia7, XXg, XYg, XZg, YYg, YZg, ZZg, MXg, MZg and Mg; 

- the SR400 robot has 42 base parameters (Table 10.2); 

- the grouping equations are: 

ZZRi = lai -»• ZZ| 4. YY2 -•• YY3 + XX7 + YYg -f d42(M4+ M5 + Me) + 
d2 (̂M3 + M4 + M5 + Mg) + d3 (̂M2 + M3 + M4 + M5 -I- M )̂ -f d2 (̂M7 -i- Mg) 

XXR2 = XX2 •-YY2 -»- XXg - YYg - d32(M3 + M4 -f M5 •». M )̂ 
XYR2 = XY2 4. XYg 
XZR2 = XZ2 + XZg-.d3MZ3 
YZR2 = YZ2 + YZg 
ZZR2 = Ia2 + ZZ2-»-ZZg + d3̂ (M3 + M4 + M5 + M6) 
MXR2 = MX2 + MXg + d3(M3 + M4 + M5 + Me) 
XXR3 = XX3 - YY3 + YY4 - XX7 + YY7 - d42(M4 + M5 + Me) + 2MZ4RL4 + 

(M4 + M5 4. Me)RL42 + dĝ Mg 
XYR3 = X Y3 - X Y7 - d4MZ4 - d4RL4(M4 -»• M5 + Me) 
XZR3 = XZ3 4- YZ7 
YZR3 = YZ3-XZ7-».dgMZg 
ZZR3 = Ia7-̂ -ZZ3 + YY4 + ZZ7-|.dg2Mg + 2MZ4RL4 + (M4 + M5^•M6)*(d42 .̂Ru2) 
MXR3 = MX3 -¥ d4(M4 + M5 + Me) 
MYR3 = MY3-|.MZ4 + (M4-i-M5 4-Me)RL4 
XXR4 = XX4-.YY4 + YY5 
ZZR4 = YY5+ZZ4 
MYR4 = MY4-MZ5 
XXR5 = XX5 - YY5 -f YYe 
ZZR5 = YY6 + ZZ5 
MYR5 = MY5 + MZe 
xxRe = xXe-YYe 
MXR7 = MX7 ~ 5^ MXg + dgM8 

Table 10.3 illustrates the computational complexity of the inverse dynamic 
model for the Acma SR400 robot. Two cases are considered: general inertial 
parameters where all the parameters are assumed to have real values different from 
zero; and the simplified case where the links are assumed to be symmetric. For each 
case« the dynamic model is computed twice: firstly with the standard inertial 
parameters, and secondly with the base inertial parameters. We note that the real 
time computation of the inverse dynamic model for this robot can be realized using 
classical personal computers. 
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Table 10 J . Computational complexity of the inverse dynamic model 
of the Acma SR400 robot 

Set of inertial parameters 

1 Standard parameters 
[ Base parameters 

Complete 
Multiplicat. Additions 

430 420 
304 L__326 

Simplified 1 
Multiplicat. Additions { 

295 
243 

245 1 
118 1 

10.4. Conclusion 

In this chapter, we have developed the dynamics of robots with tree structure or 
containing closed chains. This treatment constitutes a generalization of the results 
presented in Chapter 9 for serial robots. We can use the efficient Newton-Euler 
method for computing the inverse and direct dynamic models of tree structured 
systems. The corresponding base inertial parameters can be determined using the 
symbolic algorithm, which is composed of simple rules and makes use of closed 
form grouping equations. Concerning the systems with closed chain, the inverse 
dynamic model is computed from the inverse dynamic model of the equivalent tree 
structure and the Jacobian matrix representing the derivative of the joint positions of 
the equivalent tree structure with respect to the actuated joint positions. The base 
parameters of general closed chain robots can be completely determined using the 
numerical method presented in Appendix S. However, most of them and even all of 
them in many cases can be computed using the rules of the symbolic algorithm. 

From this study, we can conclude that the computation of the dynamic model in 
real time is now possible using classical personal computers. In Chapters 11 and 12, 
we direct our attention toward the identification of the geometric and dynamic 
parameters appearing in the different models of robots. 



Chapter 11 

Geometric calibration of robots 

11.1. Introduction 

A high level of positioning accuracy is an essential requirement in a wide range 
of applications involving industrial robots. This accuracy is affected by geometric 
factors, such as geometric parameter errors, as well as non-geometric factors, such 
as flexibility of links and gear trains, gear backlashes, encoder resolution errors, 
wear, and thermal effects. Positioning accuracy of an industrial robot can be 
improved to approach its repeatability by a calibration procedure that determines 
current values of the geometrical dimensions and mechanical characteristics of the 
structure. Practical techniques to compensate for all geometric and non-geometric 
effects are not yet developed. Based on investigation of the error contribution from 
various sources, Judd and Knasinski concluded that the error due to geometric 
factors accounted for 95% of the total error [Judd 90]. Hence, a reasonable approach 
would be to calibrate the current geometric parameters and treat the non-geometric 
factors as a randomly-distributed error. This calibration procedure is also important 
for robot programming using CAD systems where the simulated robot must reflect 
accurately the real robot [Craig 93], [Dombre 94), [Chedmail 98]. In recent years, 
considerable attention has been paid to the problem of geometric calibration. A 
partial list of these works is given in references [Schefer 82], [Wu 84], [Khalil 85b], 
[Payannet 85), (Sugimoto 85], [Aldon 86], [Veitschegger 86], [Whitney 86], [Roth 
87], [Hollerbach 89], [Mooring 91], [Lavallde 92], [Cacnen 93], [Guyot 95], 
[Damak 96], [Maurine 96], [Besnard 00a]. 

The problem of geometric calibration can be divided into four distinct steps. The 
first step is concerned with a particular mathematical formulation that results in a 
model, which is a function of the geometric parameters ^, the joint variables q, and 
eventually some external measurements x. The second step is devoted to the 
collection of experimental data for a sufficient number of configurations. The third 
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step is concerned with the identification of the geometric parameters and validation 
of the results obtained. The last step is concerned with compensating the geometric 
parameter errors in the direct and inverse geometric models. 

This chapter addresses all the four steps outlined above for serial robots. The 
case of the parallel robot is covered briefly at the end. 

1L2. Geometric parameters 

The geometric parameters concerned with geometric calibration are the 
parameters required to compute the direct and inverse geometric models. The direct 
geometric model, which gives the location of the end-effector frame Rn+i relative to 
a fixed world frame R.i, is given by equation [3.13] and is rewritten as: 

-»T„ ,̂ = ZOTn(q)E = - 'To^i 'T2 ... "'Tn^Tn^i [11.1] 

where: 

• Z = *̂ To denotes the transformation matrix defining the robot base frame RQ 
relative to the world reference frame R.i; 

• E = "Tn+i is the transformation matrix defining the end-effector frame with 
respect to the terminal link frame Rn; 

• ^ n is the transformation matrix of the robot defining frame Rn relative to 
frame RQ. 

Equation [11.1] contains three kinds of parameters: the robot geometric 
parameters appearing in ^n« ^^ ^^^^ frame parameters defining the matrix Z and 
the end-effector parameters defining the matrix E. We add to these parameters the 
joint gear transmission ratios that can be calibrated in the same manner as the 
geometric parameters. 

For convenience, in the remainder of the chapter, we denote the origin On+i of 
the end-effector frame R„+i as the endpoint of the robot. 

11.2.1. Robot parameters 

The robot parameters are deduced from the notations developed in Chapter 3. 
According to these notations, frame Rj is fixed with link j . It is located relative to 
frame Rj.i by the homogeneous transformation matrix i'^Tj, which is a function of 
the four geometric parameters (Oj, dj, 6j, TJ) (Figure 3.2), such that: 

i-'Tj = Rot (x, Oj) TransCx, dj) Rot(z, 0j) Traiis(z, TJ) [11.2] 
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Note that the parameters ai and d) can be taken to be equal to zero by assigning 
the base frame Ro aligned with frame Ri when q\ = 0. 

If two consecutive joint axes j ~ 1 and j are parallel, the Xj.i axis is taken 
arbitrarily along one of the common normals between them. When Zj.i or Zj 
becomes slightly misaligned, the common normal is uniquely defined and the 
corresponding variation in the parameter rj.i can be very large. To ensure that small 
variation in axis alignment produces proportionally small variations in the 
parameters, we make use of a fifth parameter pj [Hayati 83] representing a rotation 
around the yj.i axis. The general transformation matrix J"̂ Tj becomes: 

i-^Tj = Rot(y, pj) Rot(x, Oj) Trans(x, dj) Rot(2, Gj) Trans(z, rj) [11.3] 

The nominal value of Pj is zero. If Zj.i and Zj are not parallel, pj is not 
identifiable. We note that when Zj.j and z, are parallel, we can identify either rj.] or 
rj (§ 11.4.2), thus the number of identifiable parameters for each frame is at most 
four. 

11.22. Parameters of ihe base frame 

Since the reference frame can be chosen arbitrarily by the user, six parameters 
are needed to locate the robot base relative to the world frame. As developed in 
§ 7.2, these parameters can be taken as (YZ, bz, ttz, dz, Oz, t^ (Figure 11.1): 

Z = -iJo = Rot(z, Yz) Trans(z, bz) Rot(x, Oz) Trans(x, dz) 
Rot(z,e2)Trans(z,r2) [11.4] 

The transformation matrix "^Ti is given by: 

-iTj = -^To ̂ 1 = Rot(z, Yz) Trans(z, bz) Rot(x, a^ Trans(x, dz) Rot(z, Gz) 
Tran$(z, t^ Rot(x, aO Trans(x, di) Rot(z, GO Trans(z, ri) [11.5] 

Since ai = 0 and di = 0, we can write that: 

-^To ^ 1 = Rot(x, Oo) Trans(x, do) Rot(z, Go) Trans(z, ro) 
Rot(x, a*i) Trans(x, d\) Rot(z, G'l) Trans(z, r'O [11.6] 

with 00 = 0, do = 0, Go = Yzj 0̂ = ^z,a'l -Oz, d\ = dz, &x = Gi + Gz, r*i = ri + TZ 

Equation [11.6] represents two transformations having the same kind of 
parameters as those of equation [11.2]. We note that the parameters Gz and rz are 
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grouped with 81 and ri respectively. This proves that consecutive frames are 
represented at most by four independent parameters. 

Figure 11.1. Description of frame RQ relative to frame R.j 

11.23. End-effector parameters 

Since the end-effector frame Rn+i can be defined arbitrarily with respect to the 
terminal link frame Rn, six parameters (ye, be, ae, de, 6©, TQ) are needed to define the 
matrix E. As previously, we can extend the robot notations to the definition of the 
end-effector frame: 

"Tn+i = Rot(z, Ye) Trans(z, be) Rot(x, ae) Trans(x, de) 
Rot(z, Ge) Trans(z, re) [11.7] 

The transformation matrix "'^Tn+i can be written as: 

"-lTn+, = "-^Tn^Tn+i 

= Rot(x, On) Trans(x, dn) Rot(z, Ĝ ) Trans(z, rn) Rot(z, Ye) 
Trans(z, be) Rot(x, a©) Trans(x, de) Rot(z, Ge) Trans(z, re) [11.8] 

which gives: 

'̂ •̂ Tn+i = Rot(x, On) Trans(x, d̂ ) Rot(z, G'n) Trans(z, r'n) Rot(x, On+i) 
Trans(x, d„+i) Rot(z, Gn+i) Trans(z, Tn+i) [11.9] 

with G*n = Gn + Ye> ^n = Tn + be, On+i = tte, d^+l = de, Gn+i = Ge, tn+i = fe-
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Thus, the end-effector frame introduces four independent parameters (x«, d̂ , 9e, 
rg, whereas the parameters Ye and be are grouped with 9n and rn respectively. 

Finally, the description of the location of the end-effector frame Rn+i in the 
reference frame R.i of an n degree-of-freedom robot, needs at most (4n + 6) 
independent parameters. More precisely, since in the case of a prismatic joint only 
two parameters can be identified, the maximum number of independent parameters 
reduces to (4nr + 2np + 6), where n̂  and np are the numbers of revolute and prismatic 
joints of the robot respectively [Everett 88]. 

11.3. Generalized differential model of a robot 

The generalized differential model provides the differential variation of the 
location of the end-effector as a function of the differential variation of the 
geometric parameters. It is represented by: 

AX = 
dPn l̂ 

= VA4 [11.10] 

with: 

• dPn+i: (3x 1) differential translation vector of the origin On+i; 

• 8n+l- (3x1) differential rotation vector of frame Rn+i; 

• ^: (6xNpar) generalized Jacobian matrix; 

• A :̂ (NparX 1) vector of the differential variation of the geometric parameters. 

The columns of the generalized Jacobian matrix V can be computed using simple 
vector relationships as we did in Chapter 5 for the computation of the base Jacobian 
matrix. According to the kind of parameter, we obtain [Khalil 89c]: 

i) column corresponding to the parameter A^i: the parameter p, represents a 
rotation about the y\.\ axis. A differential variation on PJ generates a differential 
position on frame Rn+i equal to (nj.i x Lj.i n+i) AP, and a differential orientation 
equal to n̂ .j Apj. The column of V corresponding to the parameter Apj is given by: 

'i'Pi = 
"i-i 

[1111] 

where Li.|,n+| is the vector connecting Oi.) to On+i, and nj.i is the unit vector along 
theyj.i axis; 
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ii) column corresponding to the parameter AOi: the parameter cq represents a 
rotation about the Xj.i axis. A differential variation on oq generates a differential 
position on frame Rn̂ .i equal to (Si.] x Li.i n+i) Aoj and a differential orientation 
equal to s\^\ Acq. The column of Y corresponding to the parameter Acq is given by: 

Ycq = 
-lxLi.i,n+i "I Si-

[11.12] 

where Si.i is the unit vector along the X{.\ axis; 

Hi) column corresponding to the parameter A/,-.* the parameter dj represents a 
translation along the Xi.i axis. A differential variation on di generates a differential 
position on frame Rn+i equal to Sj.j Ad,, but produces no differential orientation. 
Thus, the corresponding column is expressed as: 

"=[%',] 
iv) column corresponding to the parameter A0{. this case has been handled in 
Chapter 5 while calculating the base Jacobian matrix. The corresponding column is 
given by: 

r »! X Li,n I,n+1 
[11.14] 

where ai is the unit vector along the 24 axis; 

v) column corresponding to the parameter zlr,-; this case has also been developed in 
Chapter 5. The corresponding column is given by: 

•'-[ZA 
vi) column corresponding to a differential variation in the gear transmission ratio: 
Let us denote Kj =1/Ni, where Nj is the gear transmission ratio. In general, the joint 
variables are given by: 

q = Cadlag(K, Kn)Cmq^+qo [11.16] 

with: 

• Cm: (nxn) matrix representing the coupling between the motor variables; 
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• Ca: (nxn) matrix representing the coupling between the variables after the gear 
transmission; 

• <lm- vector of motor variables; 

• qo: constant vector representing the offset values on the joint variables. 

Thus, the column corresponding to K| is given by: 

^ki = J n ^ l ^ (11.17) 

where Jn+i is the base Jacobian matrix of the robot (§ 5.3) whose î*̂  column is either 
Wr\ if joint i is prismatic or VB{ if joint i is revolute. 

If the joints are actuated independently, we have: 

^ i = flmi ^ n if joint i is prismatic 

"V^i = qmi "FOi if joint i is revolute '^ **^ '̂ 

NOTE.- All the vectors used in the computation of ^ are derived from the matrices * 
^Tj, i = 0, . . . , n-f 1. The vectors "^Sj/̂ iii and "̂ aj are obtained directly from these 
matrices, whereas the vector L\^n^\ is computed using the following equation: 

• ' k„+ , = - 'P„+,-- 'Pi [11.19] 

11.4. Principle of geometric calibration 

The calibration of the geometric parameters is based on estimating the 
parameters minimizing the difference between a function of the real robot variables 
and its mathematical model. The methods proposed in the literature differ according 
to the variables used to define this function. In § 11.5, we will present some of these 
methods. In the following section, they are formulated using a unified approach. 

11.4.1. General calibration model 

The calibration model can be represented by the general nonlinear equation 
[11.20] and by the general linearized equation [11.21]: 
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0 = f(q. X, ^ 

Ay(q,x,^ = •(q,^)A^ 

[11.20] 

[11.21] 

where: 

• X represents the external measured variables, such as the Cartesian variables 
giving the position and orientation of the end-effector frame, or the distance 
traveled by the endpoint between two configurations; 

• q is the (nxl) vector of the joint variables; 

• ^ is the (NparX 1) vector of the geometric parameters; 

• 0 is the (pxNpar) calibration Jacobian matrix, whose elements are computed as 
functions of the generalized Jacobian matrix ^; 

• Ay is the (pxl) prediction error vector. 

To estimate A ,̂ we apply equation [11.20] and/or equation [11.21] for a 
sufficient number of configurations. Combining all the equations results in the 
following nonlinear and linear systems of (pxe) equations, where e is the number of 
configurations: 

0 = F(Qt,Xt,4) + p* 

AY = W(Qt,^)A5 + p 

with: 

F = 

AY = 

f(q^x^^) 

Aykq»,x>,^) 

L Aŷ (q̂ x<=,̂ ) 

[11.22] 

[11.23] 

[11.24] 

[11.25] 

where Qt = [q^^ ... q^'^f, Xt = [x^'^ ... x̂ '̂ ]'̂  and W is the (rxNpar) observation 
matrix, p and p* are the modeling error vector for the nonlinear and linear models 
respectively, including the effects of unmodeled non-geometric parameters: 



w = 
•kq^4) 

L*w»^ 
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[11.26] 

The number of configurations e must be chosen such that the number of 
equations, r = pxe, is greater than Np̂ r- In practice, good results can be obtained by 
taking r^SNpar and by choosing configurations optimizing the observability 
measure (§ 11.4.2.2). 

Equation [11.22] and/or equation [11.23] can be used to estimate the geometric 
parameters. However, before solving these equations, we have to rewrite them such 
that the unknown vector is only composed of the identifiable parameters. Of course, 
if a parameter is exactly known, it will not be included in the unknown vector ^. 

NOTES.-

- the errors corresponding to the joint variables represent the joint offset errors; 

- the number of equations of the function f is also called the calibration index 
[Hollerbach 96]; 

- in autonomous calibration methods, both f and Ay are computed in terms of 
the joint variables and the robot parameters. No external measuring device is 
needed. 

11.4.2. IdeniifiabilUy of the geometric parameters 

It may happen that some parameters are not uniquely determined by the 
identification equation. All sources of parameter ambiguity can be linked to the rank 
of the matrix W. If some columns of W are linearly dependent, then the 
corresponding parameters may vary arbitrarily such that these variations only satisfy 
the linear dependence. For example, in the conventional calibration method, which 
uses the measurements of the end-effector location or position (§ 11.5.1), if the joint 
axes i - 1 and i are parallel, then the columns corresponding to the parameters rj.i 
and T\ are equal in the calibration Jacobian matrix CfT{.\ = Hfti). Thus, an infinite set 
of solutions can be obtained for the errors in rj.i and n. The basic solution consists 
of identifying the error in one of these parameters while assuming that the error in 
the other parameter is zero. 

The loss of identifiability of some parameters may be caused by two kinds of 
problems, namely structural identifiability and selection of calibration 
configurations. Unidentifiability of some parameters constitutes a structural problem 
when some columns of the observation matrix are zero or are linearly dependent 
whatever the number and the values of the configurations used to construct the 
observation matrix. The structurally unidentifiable parameters depend on the 
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calibration model and on the structure of the robot. In § 11.4,2.1, we will give an 
algorithm to determine the structurally identifiable parameters. 

The problem of the identifiability as a function of the calibration configurations 
is known as the excitation problem. It will be addressed in § 11.4.2.2 by selecting 
the calibration configurations that optimize an observability measure. For example, 
it is obvious that if one joint has a constant value in all the calibration 
configurations, some parameters concerning this joint will not be identified. 

The determination of the identifiable geometric parameters is based on the 
determination of the independent columns of the calibration Jacobian matrix ^. A 
symbolic method is presented in [Khalil 91b] to determine these parameters for the 
conventional calibration methods. However, in the following, we develop a general 
method based on the QR decomposition to determine the identifiable parameters. 
This method is similar to that which has been presented in Appendix S for the 
determination of the dynamic base parameters. 

11.4.2.1. Determination of the identifiable parameters 

Numerically, the study of the identifiable parameters, also termed base geometric 
parameters, is equivalent to the study of the space spanned by the columns of an 
(rxNpar) matrix W similar to that defined in equation [11.23] but obtained using 
random configurations satisfying the constraints of the calibration method. The 
identifiable parameters are determined through the following three steps: 

~ if a column of W is zero, then the corresponding parameter has no effect on 
the geometric calibration model. Eliminating such parameters and the 
corresponding columns reduces W to an (rxc) matrix; for convenience, we 
continue to indicate this new matrix by W; 

- the rank of W, denoted by b, gives the number of identifiable parameters; 

- a set of identifiable parameters can be chosen as those corresponding to b 
independent columns of W. The other parameters are not identifiable. 

To carry out the last two steps, we make use of the QR decomposition of the 
(rxc) matrix W. The matrix W can be written as [Dongarra 79], [Lawson74], 
[Golub 83]: 

W = Q 
R 

L ®(r-c)xc 
[11.27] 

where Q is an (rxr) orthogonal matrix, R is a (cxc) upper triangular matrix, and Ojxj 
is the (ixj) null matrix. 
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Theoretically, the non-identifiable parameters are those whose corresponding 
elements on the diagonal of the matrix R are zero. In practice, they are defined using 
a numerical tolerance T# 0[Forsythe 77]. Thus, if |Rii|, which represents the 
absolute value of the (i, i) element of R, is less than t, the corresponding parameter 
is not identifiable. The numerical zero t can be taken as [Dongarra 79]: 

T = r.e.maxjRiil [11.28] 

where t is the computer precision, and r is the number of rows. 

It is obvious that the identifiable parameters are not uniquely defined. The QR 
method will provide as base parameters those corresponding to the first b 
independent columns of the matrix W. It is convenient to identify, if possible, the 
parameters that can be updated in the control system without changing the closed-
form geometric models of the robot. Therefore, we permute the columns of W and 
the elements of ^ to first place the following parameters: 

- the joint offsets and the gear transmission ratios; 

- the parameters rj and dj whose nominal values are not zero; 

- the angles otj and Oj whose nominal values are not k 7i/2, where k is an integer; 

- the parameters defining the matrices Z and E. 

Having determined the identifiable parameters, the linearized identification 
equation [11.23] is rewritten as: 

AY = W b A ^ + p [11.29] 

Wb is composed of the columns of W corresponding to the identifiable 
parameters. The nonlinear model will be solved in ^ . In the remainder of the 
chapter, the subscript b will be dropped for simplicity. Hence, W and A5 will stand 
for Wb and A ^ respectively. 

11.4.2.2. Optimum calibration configurations 

The goal is to select a set of robot configurations that yield maximum 
observability of the model parameters and minimize the effect of noise on the 
parameter estimation. The condition number of the observation matrix W (Appendix 
4) gives a good estimate of the observability of the parameters [Driels90], 
[Khalil 91b]. Thus, optimum calibration configurations provide a condition number 
of W close to one. We have either to determine the calibration configurations by 
solving a nonlinear optimization problem that minimizes the condition number, or to 
verify that the randomly collected data give a good condition number. 
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The optimization problem has (exn) unknowns (n is the number of joints, e is the 
number of configurations). It can be formulated as follows [Khalil 91b]: 

Find the configurations Qt = [q^^ ... q^^]^ 
minimizing the criterion QOt) = cond[W(Qt)] = ||W||.||W+||, 
under the calibration method constraints and the following joint Umit 
constraints: 
qi,min ^Qt [i-^G- l)ii] ̂  qi,max where i= 1,..., n and j = 1,..., c 

where qj is the (nxl) joint position vector corresponding to configuration j , W*" is 
the pseudoinverse of W, ||W|| is a norm of W, and qî min* %xmx give the minimum 
and maximimi values of the position of joint i respectively. 

We recall that, when using the 2-norm, the condition number is given by 
(Appendix 4): 

cond2(W) = ^ ^ ^ [11.30] 
^min 

where a^ax ^^^ Gmin are the largest and smallest singular values of W. 

This algorithm has been appUed in [Khalil 91b] for the conventional calibration 
methods that use the Cartesian end-effector coordinates (§ 11.5.1). The optimization 
algorithm was based on the gradient conjugate method proposed by Powell [Powell 
64]. 

Other observability measures have been proposed in the literature, namely the 
smallest singular value [Nahvi 94], and the product of the singular values of W 
[Borm 91], but the condition number is shown to be more efficient [Hollerbach 95]. 

It is worth noting that most of the geometric calibration methods give an 
acceptable condition number using random configurations [Khalil 00b]. 

11.43. Solution of the identification equation 

The calibrated geometric parameters are obtained by solving the nonlinear 
algebraic equation [11.22] in order to minimize the least-squares enor: 

^ = min||F|p 

This optimization problem can be performed using the Levenberg-Marquardt 
algorithm, which is implemented in Matlab. 
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For rigid robot calibration, the linearized model can be used to solve iteratively 
this nonlinear optimization problem. Equation [11.23] is solved to get the least-
squares error solution to the current parameter estimate. This procedure is iterated 
until the variation A^ approaches zero and the parameters have converged to sonfc 
stable value. At each iteration, the geometric parameters are updated by adding Aq 
to the current value of %. The observation matrix W and the prediction error AY are 
updated as well. 

The least-squares solution Aq of equation [11.23] is written as: 

A^ = min ||p|p = min ||AY - W A'̂ IP [11.31] 
A§ A5 

The solution can be obtained using the pseudoinverse matrix (Appendix 4): 

A^ = W+AY [11.32] 

where W"*" denotes the pseudoinverse matrix of W. If W is of full rank, the explicit 
computation of W^ is given by (W*̂  W)"* W'̂ . 

In general, for rigid robots, the iterative least-squares method converges much 
faster than the Levenberg-Marquardt algorithm. 

Standard deviation of the parameter estimation errors is calculated using the 
matrix W as a function of the estimated geomeu-ic parameters. Assuming that W is 
deterministic, and p is a zero mean additive independent noise with standard 
deviation Op, the variance-covariance matrix Cp is given by: 

Cp = E(ppT) = ap2l, [11.33] 

where E is the expectation operator and Ir is the (rxr) identity matrix. 

An unbiased estimation of a^ can t)e computed using the following equation: 

The variance-covariance matrix of the estimation error is given by 
[deLarminat??]: 

q = E[(4- b (^ 4i^] = W^ Cp (W )̂T = ap2 (WT WV» [11.35) 
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The standard deviation of the estimation error on the j * parameter is obtained 
from the (j, j) clement of C :̂ 

a { j = ^ / q ( j j ) [11.36] 

Equations [11.34] and [11.35] are valid when using the Levenberg-Marquardt 
method, but o^ is rather evaluated using the residual of ||F|p: 

v = —JTT)— fi*-̂ î 

In order to validate the success of the parameter estimation process, we can 
evaluate the residual error on some configurations that have not been used in the 
identification. We can also compare the values of the estimated parameters using 
different calibration methods. 

11.5. Calibration methods 

In this section, we present the most common calibration methods. The first 
method requires an external sensor, which provides either the location or the 
position coordinates of the end-effector; the second requires an external sensor to 
provide the distance traveled by the endpoint when moving from one configuration 
to another. The other methods are termed as autonomous because they only make 
use of the joint variables. They are based on realizing geometric constraints between 
the robot configurations or between the robot and the environment. 

11.5.1. Calibration using the end-effector coordinates 

This method is the most popular one and can be considered as the conventional 
approach. The function to be minimized is the difference between the measured and 
calculated end-effector locations. This method needs an external sensor to measure 
the location of the end-effector frame with respect to the world reference frame. In 
§ 11.8, we describe some measurement systems that can be used for that. The 
nonlinear calibration model is given by: 
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•*VlW--X^,(q,4) = 0 [11.38] 

where "'Tn^.i(x) is the measured location of the end-effector with respect to frame 
R.,. 

Equation [11.38] contains twelve elements that may be different from zero, but it 
has only six independent degrees of freedom. To obtain six independent elements, 
we rewrite this equation as: 

AX = 
AXp(x,q,^) 

AXr(x,q,^) J 
= 0 [11.39] 

with: 

• AXp: (3x1) vector of the position error, equal to: 

AXp = •>P„+,(x)--ip„+,(q,^) [11.40] 

• AXp (3x1) vector of the orientation error (representing the difference between 
the measured and computed "^A^^j), given by: 

AXr s u a (11.411 

where u and a are obtained by solving the following equation (§ 2.3.7): 

•>A'„^, = rot(u, a)-^Ar^-i [11.42] 

where "*An .̂i(x) = [ Sr n̂  ay ] is the measured (3x3) orientation matrix of 

frame Rn^.l, and *^An+i(q, §)= [ Sm ^m ^m ] is the computed orientation 

matrix using the direct geometric model. 

If the orientation error is small, the following equation can be used (§ 2.3.8 and 
equation [2.35]): 

AXr = u sin(a) = j 

L. 

"z-

ax-

Sy-

-ay 

-Sz 

"x «J 

[11.43] 
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where the s, n, a components are obtained from the equation: 

[ s n a ] = -U'„+, C«A;r̂ ,)-> [11.44] 

The linear differential model defming the deviation of the end-effector location 
due to the differential errors in the geometric parameters can be obtained as: 

AX = 
AXp(x, q, i) 

AX,(x,q,^) 
= y(q,^)A^ [11.45] 

where: 
• AX represents the (6x1) vector of position and orientation errors (representing 

the difference between the measured and computed '^Tn^|); 

• ^ is the (6xNpar) generalized Jacobian matrix developed in § 11.3. 

The calibration index of this method is 6. If we only measure the position of the 
endpoint, the first three equations of the nonlinear or linear calibration models only 
should be used. The calibration index reduces to 3. 

It is worth noting that the geometric parameters have different units: meters (for 
distances), radians (for angles) or even no unit (for gear transmission ratios). The 
effect of this heterogeneity can be handled by introducing an appropriate weighting 
matrix. However, for industrial robots of about the size of a human arm, one obtains 
good results by using meters for the distances, radians for the angles, and by 
normalizing the encoder readings such that the elements K̂  are of the order of one. 
Of course, if the links are much smaller (like fingers) or much larger (like 
excavators), the situation is different. 

11.5.2. Calibration using distance measurement 

In this method, we make use of the distance traveled by the endpoint when 
moving from one configuration to another [Goswami 93]. Thus, an external sensor 
measuring the distance such as an extendable ball bar system or a linear variable 
differential transformer (LVDT) is required. The calibration index of this method is 
1. Let Dj j be the measured distance traveled by the endpoint between configurations 
q' and n^. Thus, the nonlinear calibration equation is given by: 

[Px(qi4)--Px(q^4)l2 + [Py(q*»^)-Py(q^^)l2^ [Pz(q*'̂ )-Pz(q^4)l2 = i^^/ 
[11.46] 
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The differential calibration model is given by: 

2{[Px«|J)-Px(q*)] [ yx(q*)-^x(q01 + [Py(q*)-Py(q»)) [^y(q*)-^y(q*)] + 

[P2(q*)-P2(q*)](^z(q*)-^z(qO]) A^ = (D;/-(Dij)2 [11.47] 

where: 
• Dj j is the computed distance traveled by the endpoint between configurations 

q* and qi, using the nominal parameters; 

• ^x' ^y 3"d Yz denote the first, second and third rows of the generalized 
Jacobian matrix respectively. 

1L5.3. Calibration using location constraint and position constraint 

The main limitation of the previous approaches is that they require an accurate, 
fast and inexpensive external sensor to measure the Cartesian variables. Location 
constraint and position constraint methods are autonomous methods that do not 
require an external sensor. These methods can be used when the specified end-
effector locations (or positions) can be realized by multiple configurations. It is 
worth noting that a robot with more than three degrees of freedom (n > 3) can be 
calibrated by the position constraint method, whereas for the location constraint 
method we must have n > 6 [Khalil 95b]. 

Let q* and qi represent two configurations giving the same location of the end-
effector. Then, the nonlinear calibration model is given by: 

"'Tn..,(qi,4)~-»T„^i(qU) = 0 [11.48] 

This equation can be transformed into a (6x1) vectorial equation as illustrated in 
§ 11.5.1. The resulting equation is as follows: 

AX(q»,qi,^) = 
AXp(q>,q),4) 

AXr(q»,qi,^) 
[11.49] 

The differential calibration model is given by: 

AXCqi, qi, ̂ ) = [^(qi, ^)« V(q», 5)] A^ [11.50] 

where T is the generalized Jacobian matrix developed in § 11.3, AX is the (6x1) 
vector representing the position and orientation differences between the locations 
*^Tn^l(qi»^)and->Tn^,(qU). 
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The calibration index for this method is 6. In the position constraint method, the 
endpoint at configuration q̂  should coincide with the endpoint at configuration qi. 
Thus, the first three equations of [11.49] and [11.50] only are considered. Hence, the 
calibration index is 3. 

We note that the calibration Jacobian matrices of these methods are obtained by 
subtracting the generalized Jacobian matrices of two configurations. Thus, the 
number of identifiable parameters is less than that of the conventional methods 
(Example 11.1). For example: 

~ if a column of the generalized Jacobian matrix is constant, then the 
corresponding parameter will not be identified. This is the case of the 
parameters AYZ, Abz, Aoĉ* Adz, Adp, Arp, Apo for both location constraint and 
position constraint methods; 

- if a column of the generalized Jacobian matrix is identical for any two 
configurations q* and qi satisfying the calibration constraint, then the 
corresponding parameter cannot be identified. For example, since in the 
location constraint method *̂ Tn+i(qO = '̂ Tn+iCq*), then -̂ TnCq*) = '̂ TnCqi). 
Thus, the parameters Arns AÔ s A^^s Ade, AOe, AB̂ , Are ^̂ ^ "ot identifiable. 

11.5.4. Calibration methods using plane constraint 

In this approach, the calibration is carried out using the values of the joint 
variables of a set of configurations for which the endpoint of the robot is constrained 
to lie in the same plane. Several methods based on this technique have been 
proposed [Tang 94], [Zhong 95], [Khalil 96b], [Ikits 97]. The main advantage of this 
autonomous method is the possibility to collect the calibration points automatically 
using touch or tactile sensor (such as LVDT, a trigger probe, or a laser telemeter). 
Two methods are developed in this section: the first makes use of the plane equation 
while the second uses the coordinates of the normal to the plane. The calibration 
index of these methods is 1. Special care has to be taken to locate the constraint 
plane and to select the calibration points in order to obtain a good condition number 
for the observation matrix [Ikits 97], [Khalil 00b]. 

11.5.4.1. Calibration using plane equation 

Since the endpoints are in the same plane, and assuming that the plane does not 
intersect the origin, the nonlinear calibration model is: 

aPx(q. 5) + bPy(q, ̂ ) + cPz(q, ^) + 1 = 0 [11.51] 

where: 
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• a, b, c represent the plane coefTicients referred to the reference world frame; 

• Px, Py, Pz represent the Cartesian coordinates of the endpoint relative to the 
reference frame. 

Applying equation [11.51] to a sufficient number of configurations, the resulting 
system of nonlinear equations can be solved to estimate the plane coefficients and 
the identifiable geometric parameters. 

Using a first order development for equation [11.51] leads to the following 
linearized calibration model: 

"Aa" 

[ Px(q) Py(q) PzCq) a^x(q) + b^y(q)-Hc^z(q) ] 
Ab 

Ac 

LA^J 
= - aPx(q) - bPy(q) - cP,(q) - 1 [11.52] 

where: 

• Vx» ^y and ^2 are the first, second and third rows of the generalized Jacobian 
matrix respectively; 

• Px(q)» Py(q)» Pz(q) represent the computed Cartesian coordinates of the 
endpoint in the reference frame. 

The coefficients of the plane are initialized by solving the equation of the plane 
for the collected configurations: 

r-r 
... 

L-i-
=r 

r J r.^ T>1 1 
Px Py Pz 

-^C _^C -^C 

_Px Py PzJ 

fa 

b 

Lc 
+ p [11.53] 

where Pĵ , Py and P̂  are the coordinates of the endpoint as given by the DOM with 
the nominal values of the geometric parameters for configuration qi. 

If the coefficients a, b, and c of the plane are known, the corresponding columns 
and unknowns in equation [11.52] are eliminated. The resulting linear calibration 
model is given by: 

[a^xCq) -̂  bYy(q) + cYz(q)] A^ = ~ aPx(q) - bPy(q) - cP,(q) - 1 [11.54] 
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11.5.4.2. Calibration using normal coordinates to the plane 

In this method, the calibration model is established by using the fact that the 
scalar product of the vector normal to the plane and the vector between two points in 
the plane is zero [Zhong 95], [Maurine 96]. The coordinates of the normal can be 
obtained with inclinometers. Since this method is independent of the plane position, 
it may give poor results if the initial values of the robot parameters are not close to 
the real values. 

The nonlinear calibration model for the configurations q* and qi is such that: 

a[Px(q*, ^) - Px(q\ ^)) + b[Py(qi, ?) ~ Py(qi, ^)] + c[Pz(qJ, ^) - P,(q*, ^)] = 0 
[11.55] 

Assuming that the normal coordinates are known, we obtain the following 
linearized equation: 

{a[yx(q*)-^x(qO] + b[yy(qi)-Ty(qi)] + c[y^(qi)-Y,(qi)]}A5 = 
-a[Px(qi)-Px(q«)] - b[Py(qi)-Py(qi)] - c[Pz(qi)-Pz(q01 [ 11.56] 

where Vu, ?„, for u = x, y, z, are computed in terms of q and ^. 

NOTE.- The concatenation of the equations of several planes in a unique system of 
equations increases the number of identifiable parameters [Zhuang 99]. The use of 
three planes gives the same identifiable parameters as in the position measurement 
method if the robot has at least one prismatic joint, while four planes are needed if 
the robot has only revolute joints [Besnard 00b]. 

* Example 11.1. Determination of the identifiable parameters with the previous 
methods for the StMubli RX-90 robot (Figure 3.3b) and the Stanford robot (Figure 
11.2). The geometric parameters of these robots are given in Tables 11.1 and 11.2 
respectively. For the plane constraint methods, we assume that the plane coefficients 
are known. 

Tables 11.3 and 11.4 present the identifiable geometric parameters of the two 
robots as provided by the software package GECARO "GEometric CAlibration of 
Robots" [Khalil 99a], [Khalil 00b]. The parameters indicated by "0" arc not 
identifiable, because they have no effect on the identification model, while the 
parameters indicated by "n" are not identified because they have been grouped with 
some other parameters. 
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Figure 11.2. Stanford robot 

Table 11.1. Geometric parameters of the RX'90 Stdubli robot^ 
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^ Distances are in meters and angles are in radians. 
^ r^ is equal to the end-effector frame parameter b^. 
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Table 11.2. Geometric parameters of the Stanford robot^ 
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ĵ 

0.5 

0 

0.2 

3̂ 
0 

0 

0.3 > 

0.1 

Pj 
0 

0 

0 

0 

0 

0 

0 

0 

"A] 
0 

1 0 

From Tables 11.3 and 11.4, the following general results are deduced: 

1) the location measurement method allows the identification of the maximum 
number of parameters (36 parameters for the Staubli RX-90 robot and 34 for 
the Stanford robot), which corresponds to the following general equation 
[Everett 88]: 

b = 4(nr+l) + 2 + 2np-»-n 

including: 

- 4(nr+ 1) parameters for the n̂  re volute joints and for frame Rn+i; 

- 2 parameters for Ro; 

- 2 Up parameters for the prismatic joints; 

- n parameters for the joint gear transmission ratios; 
2) the parameters of frames Ro and Ri have no effect on the model and cannot be 

identified when using the following methods: distance measurement, position 
constraint and location constraint; 

3) most of the parameters of frames Rn and Rn+i» (R6 "̂d R7), are not 
identifiable with the location constraint method; 

4) most of the parameters of frames Ro, Ri and R7 are not identifiable with the 
planar methods. Some of them are grouped with other parameters; 

5) the parameter pj is not identifiable when Oj ^ 0; 

6) the offsets of joint variables 2 n-1 are identifiable with all the methods; 

^ Distances are in meters and angles are in radians. 



Geometric calibration of robots 279 

7) the offset of joint 1 is not identifiable with the following methods: distance 
measurement, position constraint, location constraint; whereas the offset of 
joint n is not identifiable with the location constraint method; 

8) all the gear transmission ratios Kj are identifiable; 

9) the parameter r6 is not identifiable with the position constraint and the plane 
constraint methods for both robots. It represents the scale factor of these 
methods. Note that the constraint equations are also verified when all the 
distances are zero. 

10) in the location constraint method, the parameter r̂  has no effect. The scale 
factor is represented by r4 for the Stilubli robot and ri for the Stanford robot. It 
is worth noting that in the case of the Stanford robot, the scale factor could be 
the prismatic variable r3 (instead of r̂  or r2) if we assume that the gear 
U-ansmission ratio K3 is known and has not to be identified; 

11) the parameters 07, 67 and r7 arc not identifiable with the position 
measurement, position constraint, and plane constraint methods. This is 
because the end-effector reduces to a point that is defined by the three 
parameters r^, 65 and d7. 

11.6. Correction and compensalion of errors 

Once the identification is performed, the estimated parameters must be integrated 
into the robot controller. Computing the DGM with the general identified parameters 
is more time consuming than the analytical solution, but it can be performed on-line. 
If the IGM were computed using a general numerical iterative algorithm, we could 
compensate all the calibrated parameters. But, a major problem stems for industrial 
robots whose IGM is analytically implemented. The calibration may result in a non-
analytically solvable robot. For example, a spherical wrist could be found not to be 
spherical. In this case, the following geometric parameters can be updated in the 
controller straightaway: end-effector parameters, robot base parameters, joint 
offsets, rj and dj whose nominal values are not zero, and the angles Oj, 6j whose 
nominal values are not k n/2, with k being an integer. For the other parameters, an 
iterative approach must be implemented. A possible approach is to use the closed-
form solution in order to compute a good first guess. Then, an accurate solution is 
obtained using an iterative algorithm. Such a process converges in a small number of 
iterations, or even in a single iteration if the end-effector location error due to the 
geometric parameters to be compensated is not too high. The iterative tuning process 
is summarized as follows (Figure 11.3): 
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Table 11.3. Identifiable parameters of the RX'90 Stdubli robot 
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(n: non-identifiable parameter. Its effect is grouped with some other parameters. 

0: non-identifiable parameter having no effect on the model) 
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Table 11.4. Identifiable parameters of the Stanford robot 
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1) use the analytical IGM to compute the joint variables q corresponding to the 
desired end-effector location '^Tn+i; 

2)comput5j the differentia] error AX between *^Tn+i and "^Tn+i(^, q), where 
"^Tn+i(^, q) indicates the direct geometric model using the estimated 
parameters. Note that AX can also be computed using the generalized 
differential model (§ 11.3); 

3) if AX is sufficiently small, stop the tuning process. Otherwise, compute Aq 
corresponding to the error AX using the classical inverse differential model 
Aq = r A X ; 

4) update the joint variables such that q = q -H Aq; 

5) return to step 2. 

X<i IGM of 
the robot 
controller 

K*\i%.i) 
AX tr^ 

Figure 113. Principle of compensation 

In the context of off-line programming systems, once a calibration has been 
performed, the compensated joint values can be downloaded directiy to the 
controller. 

11.7, Calibration of parallel robots 

One of the attractive feature of parallel robots is their potential for higher 
accuracy as compared to serial robots, mainly due to the higher stiffness of their 
closed-loop structure. However, this stiffness does not result directly into better 
accuracy, but rather into higher repeatability. Therefore, good calibration of the 
geometric parameters is also necessary for a parallel robot to improve its accuracy. 

In this section, we consider the case of a six degree-of-freedom parallel robot of 
the Gough-Stewart family (Figures 8.1 and 8.11). It is composed of six legs of (RR)-
P-(RRR) architecture, a fixed base, and a mobile platform to which the tool is 
attached. The prismatic joints are actuated, while the universal joints (U-joints) and 
the spherical joints (S-joints) are passive. The reference frame Rf is assumed to be 
attached to the base and the end-effector frame Rg is attached to the platform. We 
assume that the universal and spherical joints are perfect, and that the prismatic 
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joints are perfectly assembled. Consequently, 42 geometric parameters are needed to 
compute the geometric model, namely: six leg lengths denoted by the joint variable 
vector q, 3x6 coordinates of the centers of the U-joints with respect to the reference 
frame (̂ ^PAI* for i = 1,..., 6), and 3x6 coordinates of the centers of the S-joints with 
respect to the end-effector frame (̂ PBi» for i = 1, ..., 6). The geometric calibration 
consists of estimating these parameters accurately. As in serial robots, the calibration 
procedure consists of four steps: construction of a calibration model, collection of a 
sufficient number of configurations, identification of the geometric parameters from 
the calibration equation, and implementation of error compensation. It is worth 
noting that for parallel robots the parameters estimated can be introduced into the 
controller straightaway. 

Various calibration models are proposed in the literature. We will only consider 
the conventional techniques where the calibration model is a function of the 
Cartesian coordinates of the location of the mobile platform frame, which must be 
provided by an external sensor. In this case, the calibration model can be derived 
from the IGM [Zhuang 95] or the DOM. Recall that the IGM is easy to compute 
using closed-form expressions and that it gives a unique solution q for a desired 
location ^Tg, whereas the DGM has multiple solutions and is computed iteratively. 

11.7.1. IGM calibration model 

The error function in the IGM calibration model is the difference between the 
measured and computed joint variables. It is represented by the following equation: 

q-.IGM(^TE(x),^) = 0 [11.57] 

where ^denotes the current geometric parameters, and ^T£(x) is the measured 
location of the end-effector frame relative to the fixed reference frame. 

The IGM providing the joint position q\ in terms of the desired transformation 
matrix ^TE and of the fixed geometric parameters ^P^i and ^Pei is given by equation 
[8.11]. It is rewritten as: 

qi2 = (^PBi-^PAi)^(^PBi-^PAi) [11.58] 

The joint variable qj is given by: 

qi = Di-^qci [11.59] 

where qci represents the joint i sensor value and Di is a constant offset. 

The nonlinear calibration nx)del is obtained from equation [11.58] as: 
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qi2-(^AEEPBi + ^PE-̂ PAi)'̂ (̂ AE^^PBi + *E-^PAi) = 0 [11.60] 

Equation [11.60] shows that the parameters of each leg can be identified 
separately. Thus, we can split the identification problem into six independent 
systems of equations where each system is a function of the seven parameters of one 
leg. Applying equation [11.60] for a sufficient number of configurations e and 
concatenating all the equations together leads to the following nonlinear equation: 

0 = Fi(Qti,Xt,^i) + pi [11.61] 

where Qtj = qi^ ...»qj^ represents the calibration configurations of leg i, Xt = x^ ..., 
x̂  indicates the corresponding locations of the mobile platform, î indicates the 
geometric parameters of leg i, and pj is the vector of modeling error for leg i. 

This nonlinear optimization problem can be solved by the Levenberg-Marquardt 
algorithm as described in § 11.4.3. 

The Jacobian matrix of the IGM calibration method is formulated for leg i by: 

Aqi = *i(x,^i)A^ [11.62] 

The closed-form expressions of the columns of the calibration Jacobian matrix ĵ 
can be obtained by differentiating equations [11.58] and [11.59] with respect to the 
elements of ^PBI, ^VM and Dj: 

Aqi = i : [ (-*Bi+*Ai)'^ (̂ PBi-̂ PAi)'̂ ^AE qi ] 
Hi 

A*Ai 

A^Psi 
L ADi J 

[11.63] 

Since the Jacobian matrix can be obtained using closed-form expressions, we can 
use the iterative pseudoinverse solution to solve this problem as for serial robots. 
The prediction error function of all the joints at configuration qi is calculated in 
terms of the measured location ^TE* and the current geometric parameters ^ by: 

Aqi = qi - IGM(^E*» ^) [11 -64] 
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11.7.2. DGM calibraiion model 

The second nonlinear calibration model, which makes use of the iterative DGM, 
is given by: 

AX(q,fTE(x),^) = 0 [11.65] 

where AX indicates the (6x1) vector of the difference between the measured location 
^TE(X) and the computed location of the platform DGM(qi, 5)-

The vector AX can be determined as given in § 11.5.1 by computing AXp and 
AXp The identification equation can be solved using the Levenberg-Marquardt 
method. 

The advantage of the DGM calibration approach is the possibility to use in the 
calibration equation partial elements of the location of the end-effector 
[Besnard99]. For example, we can carry out the calibration using the position 
coordinates of the platform by considering the first three components of equation 
[11.65]. In the same manner, we can also make use of two inclinometers 
[Besnard99]. By comparison, the IGM calibration approach needs complete 
measurement of the location. The main drawback of the DGM method is its 
computational complexity. Besides, the corresponding Jacobian matrix cannot be 
computed analytically. 

Before closing this section, we have to mention the autonomous calibration 
methods that are based on measuring some of the passive joint variables [Zhuang 
97] or by locking some of them [Murareci 97], [Besnard 00a], [DaneyOO], 
[Khalil 99b]. Recall that providing some passive joints with sensors simplifies the 
direct geometric model solution. With these autonomous methods, the coordinates of 
points Aj and Bj, for i = 1, ..., 6, are estimated with respect to frames Ro and Rm 
respectively and not with respect to frames Rf and Rg (see § 8.6.1 for the definition 
of these frames). The identifiable parameters of all these methods are presented in 
[Besnard 01]. 

1L8. Measurement techniques for robot calibration 

Conventional calibration methods, as well as the evaluation of positioning 
accuracy and repeatability of robots, requires measurement of either the end-effector 
location or position with high accuracy. Most of the current measurement schemes 
are based on vision systems, measuring machines, laser interferometers, laser 
tracking systems, and theodolites [Mooring 91], [Bernhardt 93]. 

Ideally, the measurement system should be accurate, inexpensive and should be 
operated automatically. The goal is to minimize the calibration time and the robot 
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unavailability. At this time, such devices are not yet available. Nevertheless, we 
present in this section sonie principles that have given place to industrial realization. 

11.8.1. Three-cable system 

Such a system is basically composed of three high resolution optical encoders 
PI, P2, P3. Low mass cables are fixed to one of their ends on the encoder shafts 
whereas the other ends are fixed on the endpoint M of the robot (Figure 11.4). The 
encoder readings give the cable lengths, which represent the radii pi, p2, P3 of three 
spheres whose centers are on the encoder shafts. The intersection of the spheres 
determines the coordinates of M. 

^^^J'mn 

Figure 11.4. A three-cable system 

This low cost device provides automatically the coordinates of the endpoint M. 
As a commercial example of such a system, we can mention the 3D CompuGauge 
from Dynalog whose accuracy is about 0.1 mm for a cubic measuring space of 1.5 m 
of side. 

11.8.2. TheodolUes 

A theodolite is a telescope where the two angles giving the orientation of the line 
of sight can be measured precisely. The Cartesian coordinates of a target ball M on 
the end-effector can be obtained in terms of the readings of two theodolites Thl and 
Th2 pointing this ball and of the transformation matrix T between the two 
theodolites (Figure 11.5). 
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The accuracy of this system is excellent (of the order of 0.02 mm at about 1 m 
distance). The cost of a theodolite is rather high. The first systems had to be 
manually operated, but the data were read and stored by a computer (ECDS3 from 
Leica for example). Now, we can find motorized theodolites that can u-ack 
automatically an illuminated target ball (TCA from Leica, Elta from Zeiss). Their 
cost is naturally greater. 

M(x, y, z) 

Figure 11.5, ^feasurement system using two theodolites 

11.8.3. Laser tracking system 

This device is composed of two 2-D scanner systems Tl and T2 external to the 
robot. Each of the two systems deflects a laser beam in a vertical plane and a 
horizontal plane, thanks to two motorized mirrors. The direction of the beam is 
controlled to track a retroreflector fixed on the terminal link of the robot (Figure 
11.6). The position of the target point is calculated automatically using the angles of 
the laser beams. The precision is of the order of 0.1 mm for a target at 1 m distance. 
As examples of this system, we can mention the LASERTRACES system from ASL 
(UK) and OPTOTRAC fi^om the University of Surrey (UK). The limitation of this 
system is the requirement of a dedicated end-effector. 

11.8.4. Camera'type devices 

The principle is to acquire at least simultaneously two images of the robot 
configuration using two cameras. The two images are processed in real time to 
estimate the 3D coordinates of target markers attached to the robot links. 



288 Modeling, identification and control of robots 

Practically, the existing systems differ by the number and the type of the cameras 
used. We can mention as an example the R0DYM6D from Krypton, which uses an 
OPTOTRAK sensor from Northern Digital. The sensor is composed of 3 CCD 
canf)eras and can handle up to 24 infrared light emitting diode markers. The 
precision is of the order of 0.2 mm for points at 2.5 m distance. 

OPTOTRAC SYSTEM 

Laser head # 1 Laser head #2 

Figure 11.6. Laser tracking system (University of Surrey) 

11.9. Conclusion 

We have presented various approaches for the geometric calibration of serial 
robots. The geometric parameters of the robot, the base frame parameters and the 
end-effector frame parameters are defined using the Hayati modification of Khalil-
Kleinfmger notations. All of the calibration methods are described by a unified 
nonlinear equation and a general linear equation. The Jacobian matrix of each 
calibration method is obtained as a function of the generalized Jacobian matrix 
relating the variation of the end-effector location with the geometric parameter 
variation. The generalized Jacobian matrix is computed using an efficient method 
making use of the elements of the transformation matrices of the link frames. The 
identifiable parameters are determined numerically by studying the QR 
decomposition of the observation matrix using random configurations satisfying the 
constraints of the calibration method. The nonlinear estimation problem is resolved 
using the Levenberg-Marquardt method or using an iterative pseudoinverse method. 
The optimum selection of the calibration configurations is treated by minimizing the 
condition number of the observation matrix. These methods can be extended to 
include the calibration of joint elasticity and link flexibility [Besnard 00a]. 

We have also presented the geometric calibration of parallel robots when the 
measurement of the end-effector location is available. The problem can be 
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formulated either with inverse or with direct geonwtric models. References are given 
for autonomous calibration approaches for these structures. 

The instrumentation for geometric calibration is quite varied. Good commercial 
systems measuring the end-effector coordinates are beginning to emerge, and some 
of them have been described. The autonomous calibration methods do not need such 
external sensors. They are only based on the joint sensor readings, which are 
available with good precision on all the robots. 

In the next chapter, we address the problem of estimating the inertial parameters 
and friction parair^ters. 



Chapter 12 

Identification of the dynamic parameters 

12.1. Introduction 

Most advanced control schemes formulated in the recent literature for robots 
require dynamic models (Chapter 14). The precision, performance, stability, and 
robustness of these schemes depend, to a large extent, on the accuracy of the 
parameters that describe the dynamic model. Adaptive and robust schemes can 
tolerate some errors in the dynamic parameters, while other schemes aimed at 
achieving perfect feedback linearization, such as the computed torque technique, 
assume precise knowledge of the dynamic parameters. In view of this, a priori 
precise determination of the dynamic parameters is useful to most schemes and is 
crucial to some others. Furthermore, these values are necessary to simulate the 
dynamic equations. 

Accurate values of the dynamic parameters are typically unknown, even to the 
robot manufacturers. In this chapter, we will exploit the fact that the dynamic model 
and the energy model are linear in these parameters in order to identify them. The 
problem will be reduced to the least-squares solution of an overdetermined linear 
system of equations. 

We assume a priori knowledge of the geometric parameters (Chapter 11). The 
dynamic parameters of link j and actuator j are composed of the inertial parameters 
of the link, the actuator rotor inertia, and the friction parameters (Chapter 9). We 
combine these parameters in the vector x*-

X* = [XXj Xyj XZj YYj YZj ZZj MXj Myj MZj Mj laj Fcj FvjF 
[12.1] 

The dynamic parameters of a robot with n mobile links are represented by the 
vector X such that: 
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f\T v2T ... vnTiT X = W' r' •• X"']* [12.2] 

To simplify the notations, we will address the case of serial robots only. The 
extension to tree structure or closed-chain robots can easily be carried out using the 
results of ChapterlO. 

12.2. Estimation of inertial parameters 

There are three main methods for estimating the inertial parameters of a robot: 

i) physical experiments: if we could disassemble the robot to isolate each link, the 
following parameters could be obtained by physical experiment [Armstrong 86]: 

- the mass could be weighed directly; 

- the coordinates of the center-of-mass could be estimated by determining 
counterbalanced points of the link; 

- the diagonal elements of the inertia tensor could be obtained by pendular 
motions. 

This method is very tedious and should be realized by the manufacturer before 
assembling the robot; 

ii) using CAD/CAM models: all robotics CAD/CAM packages provide tools to 
calculate the inertia parameters from 3D models. This method is prone to errors due 
to the fact that the geometry of the links is complicated to define precisely, and that 
certain parts such as bearings, bolts, nuts, and washers are generally neglected; 

Hi) identification: this approach is based on the analysis of the "input/output" 
behavior of the robot on some planned motion and on estimating the parameter 
values by minimizing the difference between a function of the real robot variables 
and its mathematical model. This method has been used extensively and was found 
to be the best in terms of ease of experimentation and precision of the obtained 
values. In this chapter, we consider off-line identification methods, for which wc 
collect all the input-output data prior to analysis. The on-line identification will be 
treated in Chapter 14 when presenting the adaptive control techniques. 

12.3. Principle of ttie identification procedure 

Several schemes have been proposed in the literature to identify the dynamic 
parameters [Ferreira 84], [Mayeda 84], [An 85], [Khosla 85], [Atkeson 86], 
[Gautier 86], [Olsen 86], [Aldon 86], [Kawasaki 88], [Bouzouia 89], [Raucent 90], 



Identification of the dynamic parameters 293 

[Aubin 91], [PrUfer 94), [Gautier 95], [Restrepo 96]. These methods present the 
following common features: 

- the use of a linear model in the dynamic parameters (dynamic model, energy 
model, power model, model of the wrench exerted on the base of the robot); 

- the construction of an overdetermined linear system of equations by applying 
the identification model at a sufficient number of points along some 
trajectories of the robot. In general, a constant sampling rate is used between 
the different points; 

- the estimation of the parameter values using linear regression techniques 
(ordinary least-squares solution or any other alternative method). 

12.3.1. Resolution of the identification equations 

All the identification models can be written in the following general form: 

y(r,q) = w(q,q,q)x [12.3] 

Applying the identification model at a sufficient number of points on some 
trajectories, we construct the following overdetermined linear system of equations in 

Y(r,q) = W(q,q,q)X+P [12.4] 

where W is an (rxc) observation matrix, or regressor, r is the total number of 
equations, c is the number of parameters such that r » c, and p is the residual error 
vector. 

The identification handbooks provide a large variety of deterministic and 
stochastic methods to estimate x from the previous system of equations. The use of 
ordinary least-squares solution of linear overdetermined system of equations, such as 
those based on the SVD or QR decomposition (Appendix 4), gives good results if 
some care is taken in processing the data measured and the elements of the matrices 
Y and W as we will show in this chapter. Note that the use of scientific software 
packages such as Matlab or Mathematica facilitates the application of the proposed 
data processing. Consequently, the estimated values X can be obtained from equation 
[12.4] such that: 

X = Min||p|p 
X 
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If W is of full rank, the explicit solution of this problem is given by 
(Appendix 4): 

X = (WT W)-l WTy = W^ Y [12.5] 

where W^ is the pseudoinvcrse matrix of W. 

It should be noted that this least-squares estimation is biased because the 
observation matrix W is random, and because W and p are realizations of random 
and correlated variables [Mendel 73], [Eykhoff 74], [de Larminat 77], [Gautier 86]. 
Furthermore, the elements of the matrix W are nonlinear functions in q and q, which 
leads one to assume some statistical properties of the noise in order to calculate the 
quality of the estimation process (bias and standard deviation) [Armstrong 89], 
[Raucent 90]. Consequently, it is in^ortant to verify the accuracy of the values 
obtained using appropriate validation procedures (§ 12.7). 

The standard deviations of the estimated values are calculated by assiuning that 
W is deterministic, and p is a zero mean additive independent noise, with standard 
deviation Gp. As stated in § 11.4.3, the variance-covariance matrix Cp is given by: 

Cp = E(ppT) = ap2l, [12.6] 

where E is the expectation operator, and Î  is the (rxr) identity matrix. 

An xmbiased estimation of Gp can be calculated using the following equation: 

„ 2 - l | Y - W y J P .,271 
^P - ( r -c ) f̂ -̂̂ J 

The variance-covariance matrix of the estimation error is given by 
[de Larminat 77]: 

Cj = E[(x - X) (X - X)"̂ ] = W+ Cp (W+)T = ap2 (WT W)-» [12.8] 

The standard deviation on the j * parameter is obtained from the (j, j) element of 
CA: 

X 

Ĵi [. = VqOj) [12.9] 

This interpretation has been proposed by Raucent [Raucent 90], but we should 
be careful with the results obtained because the corresponding assunq>tions are not 
verified. 
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The relative standard deviation can be used as a criterion to measure the quality 
of the identification value for each parameter (§ 12.7). It is obtained as: 

a j . % -lOO-r^ [12.10] 
'J^ lx.i 

For example, if the relative standard deviation of a parameter is greater than ten 
times the minimum relative standard deviation value, this parameter can be 
considered as poorly identified. 

12.3.2. IdentifiabilUy of the dynamic parameters 

The dynamic parameters can be classified into three groups: fully identifiable, 
identifiable in linear combinations, and conq)letely unidentifiable. Consequently, the 
observation matrix W corresponding to the set of parameters % is rank deficient 
(some columns of W are linearly dependent whatever the values of q, q and q). In 
order to obtain a unique solution, we have to determine a set of independent 
identifiable parameters, which are also called base dynamic parameters or minimum 
dynamic parameters. 

We have shown how to calculate the base inertial parameters using symbolic 
methods (Chapters 9 and 10) or numerical methods (Appendix 5). It is easy to 
demonstrate that the columns corresponding to the Coulomb and viscous friction 
parameters are independent. The determination of the base parameters is a 
prerequisite for the identification algorithms. It should be noted that the grouping 
equations do not need to be computed since the identification will give directly the 
grouped values. 

To simplify the notations, we assume in the following that % represents the base 
inertial parameters and the friction parameters, and that W is composed of the 
corresponding columns. 

12.33. Estimation of the friction parameters 

Using the classical friction model at non-zero velocity, which is represented by 
viscous and Coulomb frictions, we can write the friction torque on joint j as 
(§9.3.4): 

rfj = FcjSign(qj) + Fvjqj [12.11] 

Two approaches can be used to identify the joint friction parameters: 
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i) global identification of the inertial and friction parameters: in this approach, we 
consider the estimation of the inertial parameters together with the friction 
parameters; 

ii) separate identification of the friction parameters: in this approach, we identify at 
first the friction parameters using constant velocity motion on an axis-by-axis basis 
[Spetch 88], [Held 88]. These parameters are then considered to be known for the 
identification of the inertial parameters. This simple method induces the risk of error 
accumulation between the two steps. 

12.3.4. Trajectory selection 

In order to improve the convergence rate and the noise immunity of the least-
squares estimation, the trajectory used in the identification must be carefully 
selected. Such a trajectory is known as a persistently exciting trajectory. To obtain 
an exciting trajectory, two schemes are generally used: 

- calculation of a trajectory satisfying some optimization criteria; 

- use of sequential sets of special test motions, where each motion will excite 
some dynamic parameters. As the number of the parameters to be identified is 
reduced with respect to the global problem, it is easier in this case to find an 
exciting trajectory. 

12.3.4.1. Trajectory optimization 

The sensitivity of the least-squares solution with respect to the modeling errors 
and noise can be measured by the condition number of the observation matrix. Thus, 
the planification of an exciting trajectory can be formulated by calculating a 
trajectory whose points give a "good" conditioned observation matrix. This is a 
nonlinear optimization problem whose degrees of freedom are the starting point, the 
intermediate points, the maximum joint velocities and accelerations, etc. In the 
literature, the following criteria have been used to define the exciting condition 
[Armstrong 89], [Lu 93], [Gautier 92a], [Benhlima 93]: 

/) the condition number of the matrix W, which is defined using the 2-norm, as: 

cond(W) = —^ > 1 [12.12] 
^min 
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where Omax ^nd Omin denote the maximum and minimum singular values of W 
(Appendix 4). The optimization problem consists of determining the trajectory, 
which provides a condition number of W that is close to 1; 

ii) the sum of the condition number ofW with a parameter equilibrating the values 
of the elements of W such that they will be of the same order of magnitude 
[Gautier90a]: 

maxlWiil 
C = cond(W) + ki ^ i ^ i ^ ^ i with min |Wij| # 0 [12.13] 

where jWj j | is the absolute value of the (i» j) element of W, and ki >0 is a weighting 
scalar parameter; 

Hi) the sum of the condition number of W and the inverse of the smallest singular 
value ofW: 

C = cond(W) -f k2 ~ - [12.14] 

This criterion prevents a trajectory of good condition number but with small 
singular values being obtained [Press6 93]. It equilibrates the standard deviation 0A 
on the different parameters, but the relative standard deviation of the parameters with 
small values will be too high; 

iv) the condition number of a weighted observation matrix. If we have a priori 
information about the order of magnitude of the dynamic parameters, the following 
cost function will equilibrate the contribution of each parameter on the identification 
model. This will result in equilibrating the relative standard deviation of the different 
parameters [Press^ 93]: 

C = cond(Wdlag(Z)) [12.15] 

where diag(Z) is the diagonal matrix formed by the elements of the vector Z 
representing the (bxl) vector of the a priori absolute values of the dynamic 
parameters. 

The generation of an exciting trajectory by an optimization procedure for the 
identification of the dynamic parameters presents the following difficulties: 

- there is no analytical expression for the cost functions; 

- the algorithm must take into account the joint limits, the maximum velocities, 
and the maximum accelerations; 
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- the number of degrees of freedom of the optimization problem is very large. 

The generation of an exciting trajectory for the energy identification model 
(§ 12.6) is easier than that for the dynamic model because the energy model 
expression is simpler and does not need the joint accelerations [Gautier 92b], [Presse 
94]. In any case, if we cannot determine an exciting trajectory using an optimization 
procedure, we make use of a random trajectory and verify the corresponding cost 
criterion. 

12.3.4.2. Sequential identification 

The most widespread approaches propose to use a set of different trajectories 
where each trajectory excites some parameters. For instance, we can move some 
joints while locking some others [Mayeda 84], [Olsen 86], [Atkeson 86], [Ha 89], 
[Aubin 91], [Gaudin 92]. This technique simplifies the identification equations. 
However, an accumulation of errors may occur since the values of some estimated 
parameters will be assumed to be known in subsequent identification. 

Vandanjon [Vandanjon 95] has proposed to avoid this drawback by generating 
four different trajectories to excite four different physical phenomena, which are: 
inertial effect, centrifugal coupling, inertial coupling and gravity effect. The 
trajectories are periodic between two points (except for gravity). During an 
experiment, a limited number of joints move while the others are locked. The 
experiments are designed in order to ensure optimal condition number of the 
observation matrix. These trajectories are then combined in a global identification 
system of equations. 

12.3.5. Calculation of the joint velocities and accelerations 

The observation matrix elements are functions of q, q and also q in the case of 
the dynamic identification model. Industrial robots are generally equipped with 
position sensors with good accuracy although they can be corrupted by high 
frequency noise due to quantization errors. On the contrary, velocity sensors provide 
noisy information, and the acceleration sensors are not used in industrial robots. 
Consequently, the joint velocities and accelerations have to be obtained by 
numerically differentiating the joint positions. However, the derivative, and 
especially the second derivative, of the joint positions amplifies the high frequency 
noise because the differentiation process behaves like a high-pass filter. 

A solution to this problem is to filter the joint position readings using a low-pass 
filter prior to compute the derivatives [Khosla 86], [Bouzouia 89], [Benhlima 93], 
[Gautier 95]. Such a strategy has been successfully used while identifying the 
dynamic parameters of the Acma SR400 robot [Restrepo 96]: the position filtering is 
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carried out with a non-causal zero-phase digital filter by processing the input data 
through an IIR low-pass Butterworth filter in both the forward and reverse direction, 
thanks to the "filtfilt" procedure of Matlab. The numerical derivation is carried out 
using a central difference algorithm to avoid phase shift. Thus, the velocity is 
obtained from: 

q(k) = [q(k4-l)-q(k-l)]/2T [12.16] 

where q(k) indicates the joint positions at the k̂ ^ sanple, and T is the sampling 
period. 

Another solution to avoid the calculation of joint accelerations consists of using 
an identification model devoid of joint accelerations such as the filtered dynamic 
model (§ 12.5.2), the energy model (§ 12.6.1), the power model (§ 12.6.2 ), or by 
using a stochastic filter such as the extended Kalman filter [Guglielmi 87], 
[Gautier93]. 

12.3.6. Calculation of Joint torques 

The dynamic identification methods are based on estimating the parameters 
minimizing a cost function of the difference between the real robot variables and its 
mathematical model. Most of the proposed cost functions require joint torques. 
Since torque sensors are not used in industrial robots, the actuator torque may be 
estimated from the reference current of the amplifier current loop. Owing to the high 
bandwidth of the current loop, the relation between the actuator torque and the 
reference ciirrent can be represented by a constant gain in the operating range of the 
robot. For joint j , this relation can be written as (Figure 12.1): 

Fj^GijUj [12.17a] 

where: 

Gxj-NjKajKTj [12.17b] 

and where GTJ is the torque gain of the drive chain of joint j , Uj is the reference 
current, Nj is the gear transmission ratio, Kaj is the current an^lifier gain, and KTJ is 
the actuator torque constant. 

The parameters of equations [12.17] can be obtained from the manufacturers 
data sheets. A global estimation of Gxj can be obtained using specific 
experimentation [Restrepo 95]. 
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Note that the dynamic identification methods can be reformulated to be 
independent of the drive chain constant GTJ [Khaiil 93], [Gautier 94]. In this case, a 
new set of dynamic parameters is defined. 

Lii »i 

GJJ: 

Kyj 

= Nj K̂ j Kjj 

Nf. LJ 
^ it 

qj.qj.qj 

Figure 12.1. Drive chain of joint j 

12.4. Dynamic identification model 

The dynamic model is linear in the dynamic parameters. It is given by the 
following equation: 

r = 0(q,q,q)X [12.18] 

where O is an (nxb) matrix, and b is the number of the base dynamic parameters. 

From the above equation, we deduce that the i* column of O, denoted by O*, is 
equal to: 

*^ = r(q,q,qwithXi=I,Xj = Oforj^i) [12.19] 

Consequently, <̂* can be computed using a specialized version of the inverse 
dynamic model in which the dynamic parameters are assumed to be Xi = 1, Xj = 0 for 
j ^ i. To increase the efficiency of this algorithm, we use the customized symbolic 
technique, taking into account that the forward recursive equations are the same for 
all the columns 4^. Moreover, we note that this customized symbolic technique is 
convenient for the computation of the observation matrix using an array multiply 
operator (.* of Matlab). Collecting (q, q, q, r)(i) for a sufficient large number of 
points i = 1,..., e on a given trajectory, and using equation [12.19], we can construct 
the following overdetermined system of equations: 

Y(n = W(q,q,q)x-^P 

with: 

[12.20] 
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Y = 

rni)" 

Lr(e). 
. w = 

"«K1)1 

Mc)\ 
(12.21] 

such that: 
• r - n x e » b 

• * ( i ) = 0[(q. q» q)(i)l 

• (q» i q)(i) = q(ti)» q(ti) • q(ti) 
• Hi) = mo 

In order to eliminate high frequency noise out of torque signals, we filter the 
vector Y and the columns of the observation matrix W. The values obtained are then 
decimated at a low rate. This procedure is known as parallel filtering [Richalet 98]. 
For the identification of the Acma SR400 robot [Restrepo 96], the authors used a 
low-pass Tchebychev filter of order 8 with a cut-off frequency of 40 Hz. The filtered 
signal was then decimated at order 10. The "decimate" procedure of Matlab (Signal 
Processing ToolBox) can be used to carry out these two steps. 

12.5. Other approaches to the dynamic Identification model 

In this section, we present two different approaches to develop the identification 
model. The first is sequential and is based on a link-by-link identification starting 
from the terminal link. The second approach makes use of a filtered dynamic model, 
which is a function of q and q, and no more of q. The two approaches can be 
combined to obtain a filtered sequential dynamic identification model. 

12.5.1. Sequential formulation of the dynamic model 

Since the torque of joint j is independent of the dynamic parameters of links 1, 
..., j - 1 (property d, § 9.3.3.3), we can write the dynamic model [12.18] such that the 
matrix <b is upper-block triangular: 

r," 
r2 
» 

r„. 

"*n*12-*tn-l*ln~| 

0 022-*2n-l*2n 

: 0 ... : : 

_ 0 0 ... 0 ^nnJ 

rx' 
r ' : 
Lx" 

[12.22] 
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where j() contains the identifiable parameters of both link and actuator j , and Oy is 
the row vector to be multiplied by î in the equation for Fj. 

This form of the dynamic equation can be exploited to estimate the dynamic 
parameters of each link individually, starting sequentially from link n and proceeding 
back to link 1. Thus, the dynamic parameters of link j are known when considering 
the torque equation of link j - 1 . This sequential procedure reduces the number of the 
dynamic parameters that must be estimated at each step. The method can be 
summarized as follows: 

- identify the base parameters of link n, x"** using the dynamic equation of joint 
n on a sufficient number of points: 

Tn = *nn(q,q»q)X" [12.23] 

- then, identify x""̂  using the torque equation of joint n - 1 assuming x" to be 
known: 

r„., - 4>„-i.„(q, q, q) X" = «>n-l.n.l(q. q. q) X"' H2.24] 

- and so on until the estimation of the parameters of link 1. 

Since the vector 9^ is independent of the positions, velocities and accelerations 
of joints j + 1,.. . , n, we can lock these joints while identifying the parameters of link 
j . Furthermore, the number of points needed for the identification is significantly 
reduced with respect to the global method, owing to the reduced number of 
parameters. Consequently, the problem of planning an exciting trajectory is greatly 
simplified. 

The main drawback of this method is the possible accumulation of errors from 
one step to the next. To overcome this problem, a weighted least-squares solution 
can be used [Gautier 97]. 

12.5.2. Filtered dynamic model {reduced order dynamic model) 

We can avoid calculating the joint accelerations by applying to the dynamic 
equations a low-pass filter of at least second order with unit gain at zero frequency 
[Aubin 91]. This approach has also been used for adaptive control schemes [Slotine 
87], [Middleton 88]. To develop the new model, let us expand equation [12.18] to 
isolate the elements that are functions of the joint accelerations: 
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r = [AUq)q ... A'"(q)q]K + H2(q,q)K + dlag(sign(q))Fc + diag(q)Fv 
[12.25] 

where K is the (mxl) vector of the base inertial parameters with m = b-2n; AJ is the 
(nxn) matrix of the coefficients of the inertial parameter Kj in the robot inertia matrix 
A; H2 is the (nxm) matrix of the coefficients of the inertial parameters in the 
centrifugal, Coriolis and gravity terms; diag(u) is a diagonal matrix whose diagonal 
elements are composed of the elements of the vector u; Fc = [Fd ... Fcn]^ and Fy = 
[Fvi ... Fvnl^are the friction parameters. 

The vector Ai ij can be written as: 

Aiq = ^ ( A J q ) - A i q [12.26] 

Using equations [12.25] and [12.26], we obtain: 

r = [|f Bl(q, q) + B2(q, q)] K + dlag(sign(q)) Fc + dlag(q) Fv [12.27] 

with: 

Bl(q,q) = [^(A«q) ^(A^q) ... ^(A««q)l 

B2(q,q) = h A > q - A ^ q ... -A«"q] + H2(q,q) 

Applying the Laplace transformation of the filter F($) to equation [12.27] yields: 

F(s) r = [sF(s) Bl(q, q) ^ F(s) B2(q, q)] K + 

F(s) dlag(sign(q)) Fc ^ F(s) diag(q) Fy [12.28] 

In [Aubin 91], the following second order filter was proposed: 

F(s) = ^ [12.29] 

The cut-off frequency value "a" should be chosen to be sufficiently large to 
maintain the dynamic behavior of the robot while rejecting the high frequency 
components (10 < a < 40). 

Using equation [12.27] on a sufficient number of points leads to the 
overdetermined system of equations: 
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Y = [(^Wl-»-W2) W3 W4] 

K 

Fc 

FvJ 
+ P [12.30] 

In practice, the application of F(s) is carried out in equation [12.30] as follows: 

- numerically differentiating Wl using a central difference algorithm; 

- using the "decimate" function of Matlab on Wl , Y, W2, W3, and W4. 

Jhjj least-squares solution is applied to the filtered model to estimate the values 
ofK, FeandFv 

The computation of equation [12.28] requires the symbolic expressions of AJ 
and AJ, for j = 1,..., m. For a robot with more than three degrees of freedom, these 
expressions are dramatically complex. To overcome this difficulty, we propose to 
develop the filtered dynamic model starting from the Lagrange equation [9.4] 
[Khalil 96a]. In fact, taking into account the friction effects, the Lagrange equation 
can be written as: 

^ = d l ^ - l ^ - ^ "a^-^ ***8<̂ '8̂ ^̂ » ""c ^ dlag(q) ¥, [12.31] 
9q ^ ^ 

Since the energy is linear in the inertial parameters (§ 9.4), we can write: 

E = e(q,q)K 
U = u(q)K 

[12.32] 

where E and U arc the kinetic energy and potential energy of the robot respectively. 

The elements of the row vector c are obtained using equations [9.44] and [9.25]. 
Consequently, we can write: 
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r I 
exxj = 2®i.j®ij 
eXYj = 0)tjCl)2,j 

exzj = toi.jtt>3o 
1 

eYYj = 2 ^ J ^ J 

eYZj = <02jW3.j 

\ ezzj = 2«3j<^j n2.331 

eMXj=«>3.jV2,j-(02jV3j 

eMYj=WljV3o-0)3jV, j 

eMZj = 0)2 jV, j -W, , jV2j 

whereas[0)1 j (05j o>jj]'''andiVj = [Vij Vjj S-^^. 

The elements of the row vector u are obtained from equation [9.25] as: 

UXXj = UXYj = •• = UzZj = 0 

UMXj = - V ^ S j 

UMYi = - ®g^ % 
0 TO (12.34) 

UMZi = - V ° a j 

where ^Sj, ^nj, ^aj and '̂ Pj are the (3x1) vectors appearing in the transformation 
matrix ^ j and g is the acceleration of gravity. 

Thus, equation [12.31] can be written as: 

r = [JJ Bl(q. q) + B2(q, q)] K + dlag(sign(q)) Fc + dlag(q) Fv [12.35] 

with: 

Bl(q.q) = - ^ [12.36] 
5q 



306 Modeling, identification and control of robots 

B2(q.q) = - ^ - - ^ 112.37] 

Since the expressions for the velocity vectors JVj and JcOj are not so complicated, 
even for a six degree-of-freedom robot, we can symbolically compute Bl and B2. 
We can also make use of efficient recursive algorithms to compute them using 
customized symbolic techniques [Stepanenko 93], [Khalil 96a]. However, the 
computational burden of the filtered dynamic model is still higher than that of the 
dynamic model. 

12.6. Energy (or integral) identification model 

In order to avoid the calculation of the joint accelerations, a model based on 
energy theorem has been proposed [Gautier 88]. In addition, this model has the 
following advantages: 

- it is linear in the dynamic parameters, and the corresponding base dynamic 
parameters are the same as those of the dynamic model; 

- the planning of an exciting trajectory is easier than for the dynamic model; 
~ the computation of the observation matrix is easier than that using the dynamic 

model. 

12.6.1. Principle of the energy model 

The energy (or integral) nKxiel is based on the energy theorem, which states that 
the total mechanical energy applied to the robot is equal to the sum of potential and 
kinetic energy contained in the system. 

Let the total energy of the system, also termed Hamiltonian, be denoted by 
H = E -f U. From the energy theorem, we can write (§ 14.5.2): 

dH = jT'dq [12.38] 

dH = T'^qdt [12.39] 

where: 

T = r - diag(sign(q)) Fc - diag(q) Fv [ 12,40] 

After integration: 
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«b 

y = / x T q d t = H(tb)-H(g = AH [12.41] 

The total energy of the system can be written as equation [9.41]: 

H = [ h , ... h „ ] [ K , T ... K „ T ] T = h K [12.42] 

tb 

y = / r T q d t = [ Ah Afc Afy ] 

with: 
Ah = h(tb)-h(t,) 

«b 

K 

Afcj = Jqj sign(qj) dt 
«a 
«b 

Afvj = /qj2dt 

Afc = [ Afc, ... Afcn ] 

Afv = [ Afv, ... Afv„ ] 

where Kj is the vector of the base inertial parameters of link j , and hj is the row 
vector of the energy functions such that hj = ej + Uj. 

Hence, the energy equation is linear in the dynamic parameters of the robot. The 
expressions of the elements of h\ are given by equations [12.33] and [12.34]. 
Substituting equation [12.42] into equation [12.41] yields the scalar identification 
model: 

[12.43] 

[12.44] 

[12.45] 

[12.46] 

[12.47] 

[12.48] 

Applying equation [12.43] to a sufficient number of intervals ab(i) and collecting 
the corresponding (F, q, q)ab(i). we obtain a linear system of r equations in b 
unknowns such that r » b, where b is the number of base dynamic parameters: 

Y(r.q) = W(q,q) 

K 

Fc 

LFVJ 

+ P [12.49] 
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with: 

Y = 

•yd)' 

.y(r). 
. w = 

•Ah(l) Afc(l) Afv(l)" 

LAh(r) Afc(r) Afv(r). 

.Ah(i) = h((q,q)b(i)]-h[(q,q)a(i)] 

• (q. q)a(i) = [q(ta(i)). q(ta(i))] 

• (q. q)b(i) = lq(tb(i))' q^ îxi))] 
«b(i) 

•y(>) = JrTqdt 
*a(i) 

The lea t̂-sjjuares ^solution of equation [12.49] gives the estimated dynamic 
parameters K, Fg and Fy. 

12.6.2. Power model 

The integrator appearing in the energy model is an infinite-gain filter at zero 
frequency. This means that small low-frequency errors such as offsets can produce 
large errors. To overcome this problem, we can make use of the differential equation 
[12.39] instead of the integral one [Gautier 96]. This leads to the power model, 
which is written as: 

r r q = 3J (h K) + qT [dlag(sign(q)) F̂  + diag(q) Fy] [12.50] 

or, in a linear form with respect to the dynamic parameters: 

pTq = [ j jh q'''diag(sign(q)) qi'diag(q)] 

K 

v j 

[12.51] 

Using a sufTicient number of points, we obtain the system of linear equations: 

Y = [gjWl W2 W3] 

K 

Fc 

.Fv. 

+ P [12.52] 
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As we did for the filtered dynamic model (§ 12.S.2), we process the columns Y, 
W2 and W3 using a low-pass filter F(s)» while the columns of Wl are filtered by 
sF(s). In practice, this process can be carried out using a central difference algorithm 
to obtain the time derivative of Wl, then by using the "decimate" function of Matlab 
to fitter all the model. The least-squares solution can then be used to estimate the 
dynamic parameters. 

Another advantage of the power model with respect to the integral model comes 
from the fact that it is calculated for each point of the trajectory such that the 
problem of determining the integration period [tj, - taJ is avoided. 

Before closing this section, we note that the energy and the power identification 
methods do not minimize the torque errors. Thus, minimum equation errors with 
these models do not guarantee that the torques will be correctly evaluated using the 
identified parameters. Therefore, when using these methods, the results must be 
validated by comparing the real torques and the prediction torques (inverse dynamic 
model) on a test trajectory. 

12.7. Recoimnendations for experimental application 

For experimental application of the identification algorithms, the following 
recommendations and remarks should be taken into account: 

- the dynamic model consists of as many equations as the number of joints, 
while the energy (or power) model is composed of a single one. Thus, the 
dynamic model is basically more exciting and the energy model is more 
sensitive to the use of exciting trajectories; 

- the energy identification method is robust with respect to high frequency 
perturbation, thus less sensitive to the filtering parameters (cut-off frequency, 
order of the filter). On the contrary, the dynamic identification model is more 
sensitive to the filtering parameters and to the quality of estimating the joint 
velocities and accelerations; 

- after filtering the joint positions, the joint velocities and accelerations should 
be obtained with a central difference algorithm to avoid phase lag; 

- when using the dynamic identification model, we must filter the vector of 
measured torques in order to reject the high frequency ripples. The same filter 
must be applied to the columns of the observation matrix. This process is 
called parallel filtering. We note that parallel filtering is automatically 
incorporated in the filtered dynamic model (reduced order dynamic model); 

~ it may appear that the filtered dynamic model has the advantages of the 
dynamic model (number of equations equal to the number of joints) and that 
of the energy model (no joint accelerations are needed). However, if the 
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dynamic model is correctly processed, it gives equivalent results to the 
filtered dyimmic model [Restrepo 96]; 

- in the case of robots with several degrees of freedom, six for instance, it is 
recommended to carry out the identification sequentially in two steps: first, 
identify the parameters of the wrist links, then, identify the parameters of the 
shoulder links while locking the wrist joints and assuming that the wrist 
parameters are known. This procedure is especially efficient because the 
dimensions of the wrist links are generally not in the same order of magnitude 
as those of the shoulder; 

- the number of equations must be at least 500 times the number of parameters 
to identify; 

- the filtering parameters (cut-off frequency, order of the filter, ...) can be 
determined by simulating the identification method; 

- flie relative standard deviation given by equation [12.10] can be used as a 
criterion to measure the identification quality of a parameter. If the relative 
standard deviation of a parameter is greater than ten times die minimum 
relative standard deviation value, this parameter can be considered as poorly 
identified. Thus, either this parameter has not been sufficiently excited or its 
contribution to the model is negligible. If the same result is obtained with 
different trajectories, and if the value of this parameter is relatively small with 
respect to the other parameters, we can cancel this parameter and dcRae a new 
set of essential parameters that can be better identified [Pham 91b]; 

- in order to validate the results obtained, the following tests can be carried out: 
- direct validation on the identification trajectory, by calculating the error 

vector; 
-cross validation on a new trajectory that has not been used for the 

identification; 
- verify that the inertia matrix of the robot computed with the estimated 

parameters is positive definite [Yoshida 00]; 
- identification of the dynamic parameters twice: without load, and with a 

known load, to verify if the load parameter values can be correctly estimated; 
- carrying out the identification using different methods - dynamic nwdel, 

filtered dynamic model and power nKKlel - to conqjare the results; 
-realizing a simulator of the robot using the identified parameters and 

conq^aring the response of the real robot with that of the simulator. 

12.8. Conclusion 

In this chapter, we have addressed the problem of identification of the dynamic 
parameters of robots. We have proposed several methods that are linear in these 
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parameters and have the same set of base dynamic parameters. The filtered dynamic 
model, the energy model and the power model do not need the joint accelerations. 
Other identification methods, which have not been treated in this chapter, can be 
found in the literature, namely the method based on the minimization of die error 
between the measured and calculated reaction wrench (forces and moments) on the 
base of the robot [West 89], [Raucent 92], [Geffard 00] and the method based on the 
use of the extended Kalman filter [Guglielmi 87], [Poignet 00]. 

We have presented different criteria to measure the excitation of a given 
trajectory. We have pointed out that the dynamic and filtered dynamic models are 
basically more exciting than the energy and power models. 

Having laid the foundation to identify the dynamic parameters, we can now 
proceed further with the generation of reference trajectories and the control schemes 
to track them. 



Chapter 13 

Trajectory generation 

13J. Introduction 

A robotic motion task is specified by defining a path along which the robot must 
move. A path is a sequence of points defined either in task coordinates (end-effector 
coordinates) or in joint coordinates. The issue of trajectory generation is to compute 
for the control system the desired reference joint or end-effector variables as 
functions of time such that the robot tracks the desired path. Thus, a trajectory refers 
to a path and a time history along the path. 

The trajectories of a robot can be classified as follows: 

- trajectory between two points with free path between them; 

- trajectory between two points via a sequence of desired intermediate points, 
also called via points, with free paths between via points; 

- trajectory between two points with constrained path between the points 
(straight tine segment for instance); 

- trajectory between two points via intermediate points with constrained paths 
between the via points. 

In the first two classes, the trajectory is generally generated in the joint space. In 
the last two classes, it is better to generate the trajectory in the task space. 

In the next sections, we present trajectory generation techniques related to this 
classification, but we first analyze the reasons that motivate the choice of either the 
joint space or the task space for the generation. 
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13.2. Trajectory generation and control loops 

The two approaches to trajectory generation - in the joint space and in the task 
space - are illustrated in Figures 13.1 and 13.2 (superscripts i and f designate the 
initial and final values respectively). 

Trajectory 
generation 

inq 

q' I 
b^LA^^^^ Robot 

Figure 13.1. Trajectory generation in the joint space 

xf Trajectory 
generation 

inX 

^ ^DGM^ 

Robot 

Figure 13.2. Trajectory generation in the task space 

Trajectory generation in the joint space presents several advantages: 

- it requires fewer on-line computations, since there is no need to compute the 
inverse geometric or kinematic models; 

- the trajectory is not affected by crossing singular configurations; 

- maximum velocities and torques are determined from actuator data sheets. 

The drawback is that the corresponding end-effector path in the task space is not 
predictable, although it is repetitive, which increases risk of undesirable collisions 
when the robot works in a cluttered environment. In conclusion, the joint space 
scheme is appropriate to achieve fast motions in a free space. 

Trajectory generation in the task space permits prediction of the geometry of the 
path. It has, however, a number of disadvantages: 

- it may fail when the computed trajectory crosses a singular configuration; 

- it fails when the generated points are out of the joint limits or when the robot 
is forced to change its current aspect (§ S.7.4); 
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- velocities and accelerations of the task coordinates depend on the robot 
configuration. Lower bounds are generally used such that joint velocity and 
torque limits are satisfied. Consequently, the robot may work under its 
nominal performance. 

The choice of a trajectory generation scheme depends on the application at hand. 
Each approach has its own limits, due to the fact that constraints are specified either 
in the joint space (velocities, torques, joint limits), or in the task space (accuracy, 
geometry of obstacles). Accounting for these remarks, the first two sections cover 
the problem of trajectory generation between two points in the joint space and the 
task space respectively. The last section extends the results to u-ajectory generation 
between several points. 

13.3. Point-to-point trajectory in tiie joint space 

We consider a robot with n degrees of freedom. Let q* and q̂  be the joint 
coordinate vectors corresponding to the initial and final configurations. Let Icv and 
Ica be the vectors of maximum joint velocities and maximum joint accelerations 
respectively. The value of kyj can be exactly computed from the actuator 
specifications and transmission ratios, while the value of k̂ j is approximated by the 
ratio of the maximum actuator torque to the maximum joint inertia (upper bound of 
the diagonal element Ajj of the inertia matrix defined in Chapter 9). Once the 
trajectory has been computed with these kinematic constraints, we can proceed to a 
time scaling in order to better match the maximum joint torques using the dynamic 
model [Hollerbach 84a]. 

The trajectory between q* and q̂  is determined by the following equation: 

q(t) = qi + r(t) D for 0 < t < tf [13.1] 

q(t) = f(t)D [13.2] 

with D = q̂  - q^ 

The boundary conditions of the interpolation function r(t) are given by: 

[r(0) = 0 
r(tf)=l 

Equation [13.1] can also be written as: 

q(t) = q^(t)-[l-r(t)]D [13.3] 
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which is more appropriate for tracking moving objects where q̂  is time-varying 
[Taylor 79). In this case, D = q (̂0) - q». 

Several interpolation functions can provide a trajectory such that q(0) = q̂  and 
q(tf) = qf. We will study successively the polynomial interpolation, the so-called 
bang-bang acceleration profile, and the bang-bang profile with a constant velocity 
phase termed trapeze velocity profile. 

13.3.1. Polynomial interpolation 

The most commonly used polynomials are the linear interpolation, the third 
degree polynomials (cubic) and the fifth degree polynomials (quintic). 

13.3.1.1. Linear interpolation 

The trajectory of each joint is described by a linear equation in time. The 
equation of the joint position is written as: 

q(t) = q*+^D [13.4] 

With this trajectory, the position is continuous but not the velocity. This induces 
undesirable vibrations on the robot and may cause early wear and tear of the 
mechanical parts. 

13.3.1.2. Cubic polynomial 

If the initial and final velocities are also set to zero, the minimum degree of the 
polynomial satisfying the constraints is at least three, and has the form: 

q(t) = ao + ait + a2t2 + ast^ [13.5] 

The coefficients ai are determined fi'om the following boundary conditions: 
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a | = 0 

S a2 = ̂ D [13.6] 

The expression [13.5] can also be written under the form [13.1] or [13.3] with 
the following interpolation function: 

r(t) = 3(f^)^-2(^)^ [13.7] 

The cubic polynomial ensures the continuity of velocity but not of acceleration. 
Practically, the industrial robots are sufficiently rigid so that this discontinuity is 
filtered by the mechanical structure. Therefore, such a trajectory is generally 
satisfactory for most applications. 

Figure 13.3 shows the position, velocity and acceleration profiles for joint j . The 
velocity is maximum at t»tf / 2 and its magnitude is given by: 

3|Di| f i 
| q j m a x | - i i f with p j h jq] - qj | [13.8] 

The maximum acceleration occurs at t ~ 0 and t s tf with the magnitude: 

6|Dil 
IqjmaxI = -J;r [13.9] 

13.3.1.3. Quintic polynomial 

For high speed robots or when a robot is handling heavy or delicate loads, it is 
worth ensuring the continuity of accelerations as well, in order to avoid exciting 
resonances in the mechanics. The trajectory is said to be of class C .̂ Since six 
constraints have to be satisfied, the interpolation requires a polynomial of at least 
fifth degree [Binford 77]. The additional two constraints are written as: 

q(0) = o 
[13.10] 

q(tf) = 0 
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Figure 13.3. Position, velocity and acceleration profiles for a cubic polynomial 

Solving for the six constraints yields the following interpolation function: 

r(t) = l 0 ( ^ / - 1 5 ( ^ / + 6 ( ^ / [13.11] 

The position, velocity and acceleration with respect to time for joint j are plotted 
in Figure 13.4. Maximum velocity and acceleration are given by: 

r i_ill5il 
Hjmaxl - 8tj 

r- I - BBi 
WjmaxI ~ yj2t^ 

[13.12] 

[13.13] 
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Figure 13.4. Position, velocity and acceleration profiles for a quintic polynomial 

13.3.1.4. Computation of the minimum traveling time 

Generally, the duration tf of a trajectory is not specified. The goal is to minimize 
the time to travel from the initial configuration q̂  to the final one q̂  while satisfying 
velocity and acceleration constraints. The approach is to compute the minimum time 
separately for each joint, and then to synchronize all the joints at a common time. 

The minimum traveling time tq for joint j occurs if either the velocity or the 
acceleration is saturated during the trajectory. This minimum time is computed from 
the maximum magnitudes of velocity and acceleration of the different polynomial 
interpolation functions (Table 13.1). The global minimum traveling time tf is equal 
to the largest minimum time: 

tf = max(tf, tf„) [13.14] 
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Table 13.1. Minimum traveling time for joint j 

Interpolation function 

Linear interpolation 

Cubic polynomial 

Quintic polynomial 

Bang-bang profile (§ 13.3.2) 

Minimum time | 

"i = ^ 1 
tfj := max 

tfj = max 

tfj - max 

fajDji lem 1 
L2kvj'^k,jJ 1 

15 pil /lOpJi" 
8kvj' VV3kaj. 

[̂ .̂ Afl 1 

13.3.2. Bang'bang acceleration profile 

A bang-bang acceleration profile consists of a constant acceleration phase until 
tf/2 followed by a constant deceleration phase (Figure 13.5). The initial and final 
velocities are zero. Thus, the trajectory is continuous in position and velocity, but 
discontinuous in acceleration. 

The position is given by: 

r . 12 tf 
q(t) = q' + 2(r) D forO<t<2 

< 

[q(t) = q' ^ [-1 +4(f^-2(^^) D for5<t<tf 

For joint j , the maximum velocity and acceleration are given by: 

2|DJ 
NjmaxI = J-

4|Dil 
HjmaxI - ^2 

[13.15] 

[13.16] 

[13.17] 

The minimum traveling time is obtained as for a polynomial trajectory (Table 
13.1). 
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Figure 13.5. Bang-bang velocity profile 

13.3.3. Trapeze velocity profile 

With a bang-bang profile, when the velocity reaches its maximum, adding a 
constant velocity phase would allow us to saturate also the acceleration and to 
minimize the traveling time (Figure 13.6). According to equations [13.16] and 
[13.17], the condition to have a constant velocity phase on joint j is such that: 

Pjl 
k 2 

•^aj 
[13.18] 

The trapeze velocity trajectory results in the minimum traveling time among 
those providing the continuity of velocity. The joint j trajectory (Figure 13.7) is 
represented by the following equations: 
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^ * 4,2 qj(t) = qj + 21^ •'aj sign (Dj) for 0 < t < Tj 

i '̂ i 
qj(0 = qj + (t - 2) N sign (Dj) for Tj < t < tg-Tj 

l,qj(t) = qj - 2 (tfj -1)^ ''aj sign (Dj) for tfj-Tj < t < tfj 

[13.19] 

with: 

'i-Z [13.20] 

Saturated velocity 
and acceleration 

Non-saturated 
acceleration 

Figure 13.6. Trapeze velocity profile versus bang-bang acceleration profile 

The area of the trapeze under the velocity curve is equal to the distance traveled 
in the interval [0» tg], which can be written as: 

ĵ f̂j-'̂ j k^.2 

Pjl = lqj-qjl = Zjfkajtdt + Jkvjdt = kvjtrj--i^ 
f i. [13.21] 

Hence, the minimum time for joint j is given by: 

[13.22] 
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Figure 13.7. Position, velocity and acceleration profiles for a trapeze trajectory 

In order to synchronize the joint trajectories, we present in the following a 
method giving homothetical trajectories with the same acceleration and deceleration 
duration for all joints. Such a method is the most conunon in use in industrial robot 
controllers. Let us designate by (Xj the ratio between the velocity profile of joint j and 
an arbitrary joint k. We can write that (Figure 13.8): 

qj(0 = cxjqk(t) forj = l, [13.23] 

Doing this, the duration T of the acceleration phase of the synchronized 
trajectories is a priori not equal to any optimal tj computed for each joint separately 
(equation [13.20]). 

Let Xj kyj be the maximum velocity of the synchronized trajectory for joint j and 
let \)j kaj be the corresponding maximum acceleration. To calculate the optimal t, 
resulting in a minimum time tf, let us first solve the problem for two joints. 
According to equation [13.22], the minimum traveling time for each joint, if 
calculated separately, should be: 
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Pii 

ID2I 

qk 

qi 

qn 

[13.24] 

Figure 13^. nomothetical velocity profiles 

The synchronized trajectories should be such that: 

Xikvi j D j | _ ^ ^ k v 2 ID2I 
^^ ~ Vlkal *^lkvl ~ U2ka2*^2'̂ v2 

with tf> max (tn,tf2). 

From equation [13.25], it is straightforward to obtain: 

Xikvi A.2kv2 
T = 

Vl kai U2ka2 

, - kv»|D2l 
^2 = ^lkv2p, | 

«2 = « 1 M ^ 

[13.25] 

[13.26] 

[13.27] 

[13.28] 

The velocity constraints imply that: 
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(13.29] 
0 < X i < l 

0<X2<1 

Combining the last inequality with equation [13.27] yields: 

0 < X, < i ^ [13.30] 

Likewise, from the acceleration constraints, we get: 

0 < \ ) | < 1 

[13.31] 

The minimum time tf is obtained when the parameters K\ and \)i are the largest 
and satisfy simultaneously the above constraints, which results in: 

• r, hM\ 

. r, ka2p,l1 
[13.32] 

and the corresponding duration of the acceleration phase is: 

A.1 kvi 

These equations are easily generalized for n joints: 

assuming that Di # 0 and Dj ^ 0. 

NOTE.- If, for a given joint j , the distance |Dj| is such that the maximum velocity kyj 
cannot be attained, we replace in the above formulas the term kyj by the maximum 
achievable velocity. According to equation [13.18], this occurs when: 
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Pji< 
kvi^ 

which implies that the maximum achievable velocity is: 

[13.35] 

13.3.4. Continuous acceleration profile with constant velocity phase 

We can modify the previous niethod to have a continuous trajectory in 
acceleration by replacing the acceleration and deceleration phases either by a second 
degree polynomial (Figure 13.9a) or by a trapeze acceleration profile (Figure 13.9b) 
[Castain 84]. In the following, we detail the first approach, which is simpler to 
implement. Let t' be the new duration of the acceleration and let Xj kyj be the 
maximum velocity of the trapeze profile. The boundary conditions for joint j are 
defined as: 

^j^aj 

Figure 13.9, Modification of the acceleration of the trapeze profile to ensure 
a continuous acceleration 
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'qj(0) = qj 

qj(0) = 0 

qj(t') = Ajkvjsign(Dj) [13.36] 

qj(0) = 0 

.qj(T') = 0 

From these constraints, we derive the equations of position, velocity and 
acceleration of joint j for l< j<nasO<t<T'as follows: 

qj(0 == qj - 7 ^ kyj sign(Dj) {\ t - T') t3 [13.37] 

qj(0 = - 73^i kyj si8n(Dj) (2t - 3T') t̂  [13.38] 

qjW = - : ^ ^ ^ sign(Dj) (t -1') t [13.39] 

The acceleration is maximum at t = T'/2 and its magnitude is: 

IqjmaxI = f ^ [13.40] 

If we take for IqjmaxI the value Uj kgj of the velocity trapeze profile, all the joints 
have the same synchronized duration of acceleration such that: 

V = I^V^ [13.41] 
2ujkaj ^ J 

Hence, the duration of the acceleration phase is l.S times that with a constant 
acceleration. The joint position equation corresponding to the constant velocity 
phase, given a duration h*, is as follows: 

qjCt) = qj(t') + (t - x') \i kvj sign(Dj) for T*< t < T' + h' [13.42] 
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Assuming that the acceleration and deceleration phases are symmetrical 
(tV= 2x' + h'), the trajectory corresponding to the deceleration phase is defined in the 
interval x' + h' < t < tf as: 

qj(t) = qj + 5 [:^t-3T'-h')(t~f-h')3 + (2t-3T'-2h')] XjkvjSign(Dj) 

i qj(t) = [:^(2t-5f-2h')(t-T'-hy +1] XjkvjSign(Dj) [13.43] 

[qj(t) =:^(t-2x'~h')(t~T'-h') XjkvjSign(Dj) 

According to equations [13.37] and [13.41], it should be noted that the distance 
traveled during the acceleration phase is equal to: 

By computing the area under the velocity curve, we verify that: 

Pil 
t'f = f + x-if- [13.45] 

This expression is similar to equation [13.22] giving the traveling time for the 
trapeze profile, which suggests that the computation of Aj and Uj can be achieved 
with equations [13.32]. We note as well that to saturate the velocity and the 
acceleration of a joint trajectory, the distance to travel must be such that: 

| D j | > | ^ [13.46] 

If this condition is not verified, we replace kyj in equations [13.34] and [13.36] 
by the maximum achievable velocity: 

k'vj = ^ ^ |kaj [13.47] 
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13.4. Potnt-to-point trajectory in the task space 

Let ^ c and ^ g be the honx>geneous transformations describing the initial and 
final desired locations respectively. For convenience, let us note: 

OTU 
0 0 0 1 J 

and OTE = 
Af Pf 

0 0 0 1 J 

The most common way to move from one location to the other is to split the 
motion into a linear translation between the origins of frames ̂ c and ^ g , and a 
rotation a around an axis of the end-effector ^ to align A' and AT The translation 
and the rotation should be synchronized. 

The distance to travel for the translation is obtained as: 

D = r - p i i i = ^(p;-pi,)2+(Py-Py)2+(p;-p;)2 

The terms u and a are computed from the equation: 

A'rot(u,a) = Â  

[13.48] 

[13.49] 

where we recall that rot(u, a) is a (3x3) rotation matrix corresponding to a rotation 
of an angle a about a vector u. Hence, we get: 

rot{u,a) = [A']'''A'» [ s ' .n = 
s'.s^ s*.n̂  s*.â "l 

n̂ .ŝ  ii'.n^ n^a^ 

L a*.ŝ  a'.n^ a*.â  J 

[13.50] 

the symbol "•** designating the dot product. Using equations [2.34] through [2.37] 
yields: 

1 
Ca = 2 [s'»ŝ  + n^n^ -f aU^ - 1] 

Sa = 5 V(a*-n^- n«.a02 + (s*.af- dfs^)^ + (ii>.s^- si.nO^ 

a = atan2(Sa, Ca) 

1 

[13.51] 

u s 2Sa 

a'.ii^-ii*.a^ 
s'.a^~a^s^ 

.ii*.s^-s*.iir 

When Sa is small, the vector u is computed as indicated in § 2.3.8. 
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Let kvi and kai be the maximum velocity and acceleration for the translation 
motion, and let kv2 and k̂ a be the maximum velocity and acceleration for the 
rotation motion. The methods described in § 13.3 can be used to generate a 
synchronized trajectory for the two variables D and oc, resulting in the minimum time 
tf. The trajectory of the end-effector frame is given by: 

^E(t) = 

with: 

P(t)"] 
0 1 J 

A(t) 
• [13.52] 

0 0 - ^ ^ ' 

P(t) = p i + ^ ( l r f - P ) = P + r(t)(lrf-P) [13.53] 

A(t) = A'rot(u, r(t) a) [13.54] 

where s(t) = D r(t) is the curvilinear distance traveled at time t and r(t) is the 
interpolation function. 

NOTES.-
- we can specify the rotation from A* to Â  with the three Euler angles (j), 6 and 

\|/. Let (<|>*, 6^ V) and (<|>̂  9^ \|fO designate the Euler angles corresponding to 
A* and Â  respectively. Thus, equation [13.54] is replaced by: 

A(t) = A> rot(2, <|)» + r(t) <(>) rot(x, e« + r(t) 0) rot(z, V + r(t) \|/) [13.55] 

with <|> = <|)*̂  - 4>*, 9 = 9̂  - 9», \|/ = V̂  - \|/'. The computation of <>, 9 and v can 
be carried out as described in §3.6.1. Thus, we have to deal with four 
variables: D, <|>, 9 and \|f; 

- we can also choose to specify the rotation around an axis that is fixed with 
respect to frame Ro. In this case, u and a are calculated by solving: 

rot(u,a)Ai = Â  [13.56] 

- the angular velocity (o of the end-effector, with respect to the frame where u is 
defined, is such that: 

= uf(t)a = wu [13.57] 
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13.5. Trajectory generation with via points 

We now consider the problem of generating a trajectory when the path includes 
via points. These via points are inserted between the initial and final points in order 
to avoid collisions between the robot and its environment. Passing through the via 
points without stopping reduces the traveling time. 

For each variable Ooint or Cartesian), we can calculate a single polynomial 
passing through these points and satisfying the boundary conditions. However, the 
use of such a polynomial is difficult to exploit with increasing the number of points. 
Splitting the trajectory in low degree polynomials between the path points provides 
an elegant way of overcoming this problem and reduces the computational burden of 
trajectory generation. 

In this section, we present three methods based on this principle. The first 
method consists of specifying linear interpolations with continuous acceleration 
blends; in the second method, the trajectory between two consecutive points is 
interpolated by a cubic spline providing continuity of velocity and acceleration; in 
the third method, the path generation is totally decoupled from the specification of 
the time history along the path, which gives the possibility of modifying at run-time 
the velocity of the robot while tracking the desired path. 

13,5.L Linear inierpoUUions with continuous acceleration blends 

This method can be used for both trajectory generation schemes in the joint 
space and in the task space. The via points are connected by straight line segments at 
constant velocity, and the segments are connected around each via point by 
continuous acceleration motions. This approach was initially described in 
[Taylor 79], [Paul 81]. The trajectory can be computed on-line, by only looking 
ahead at a single point. Experimental methods to identify this type of trajectories on 
a Puma robot have been proposed by [Blanchon 87], [Tondu 94], [Douss 96]. 

13.5.1.1. Joint space scheme 

Let the path be represented by the configurations q^ q^ ..., q"*"̂ , q"*. First, 
according to the method presented in § 13.3.3, we compute the terms Xj, Uj and t^' 
for the segment k between points q*̂  and q^'^\ for k = 1, ..., m - 1, assuming zero 
velocity at the points. 

The constant velocity on the segment k, denoted by q:, is such that: 

qf = XJ" kvj sign(Df) for j = 1 n [13.58] 
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k k-fl k 
withDj=qj - q j . 

This velocity allows us, if necessary, to stop at point k +1 without overshooting. 
If we assume a constant velocity along the segnient k (Figure 13.10), the conunon 
traveling time ĥ  on this segment is given by: 

hk = - t forj = l n [13.59] 

To generate a smooth trajectory without stopping at the via points, we connect 
the trajectories at segments k - 1 and k by a blend (Figure 13.10). The duration of 
the blend region at point k is equal to 2Tk. If a velocity continuity is only 
satisfactory, we can specify a constant acceleration along the blend. Otherwise, it is 
necessary to use a second degree function providing acceleration continuity. We 
describe here such a solution, which is a generalization to the one used for a point-
to-point trajectory (equations [13.36] through [13.44]). The blend region is traveled 
at maximum acceleration for each joint in order that the obtained path is as close as 
possible to the via point. As will be verified further, the blend time is given by: 

Tkj = I * ̂ J fork = 2 m - l a n d j = l n [13.60] 

Thus, the blend times are not identical for all joints. The joints are only 
synchronized at the blends around the initial and final points where we can use 
equation [13.41] giving T^j = 1^72. 

k k 

Let qj 2 and qj |, he the positions of joint j at the beginning and at the end of the 
blend region around point k respectively (Figure 13.11): 

, k k ^ .k-l 

, k k _, .k 
Kb^qj+Tkjqj 

forks l , . . . .m [13.61] 

For convenience, Tĵ  j will be denoted by T .̂ The equation of the linear motion of 
joint j at segment k (Figure 13.10) is given by: 

qj(t) == (t - tk ~ Tk) qj" + qJ" for tk + 2Tk < t < tk+, [13.62] 

with: 
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^i4 

Figure 13.10. Linear interpolations with continuous acceleration blends 
(joint space) 

k-l 

i.i for k = 2,..., m 

U, = o 
tl3.63] 

We now consider the blend region around point k. Writing the boundary 
conditions gives: 

.k 
qj(tk + 2Tk) = qj 

qj(tk) = 0 

kqj(tk + 2Tk) = 0 

I I 

forks 1 m [13.641 

m m withqj(t|) = qj = q j , andqj(tm+2Tm) = qj =qjj,, 

Due to the synnmetry, the trajectory of joint j along the blend segment k, when it 
exists (Tk # 0), is given by the following fourth degree polynomial: 

"î ^̂  ° qj'-Ii;^0-'k)'a-'k-4Tk)(q]'-qj'"')+(t-tk-Tk)qj"' [13.65] 
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with tk < t < tk + 2Tie and 1 < k < m. 

1 

1 1 ^ 

2 

2 

k 

Figure 13.11. Notations 

m m 

0 m 

X 0 m-l 

• m - l 

The corresponding velocity and acceleration equations are as follows: 

^^^^ = qf ' -^ [^( t - tk )2 ( t - tk -3T0(q '^ [13.66] 

qj(t) = -J^ii'h)it-tk-2T0{q^-qf^ [13.67] 

The acceleration is maximum at t = t̂  -i- Tî  and has the magnitude: 

|qj(t)maxl = 4f;;lqNqr'l [13.68] 

This expression has been used to calculate T^ in terms of the maximum 
acceleration kaj (equation [13.60]). 

NOTES.-
- it is mandatory that hî  > T^ + T^+j. If this condition does not hold, the 

velocity at segment k + 1 should be scaled down, or even set to zero at point 
k + 1 ; 

- the maximum error around the via point k for joint j is given by: 

Ej = |qj(t = tk+Tk)-qj | = 64"^^;;^ ^13.69] 

which justifies high acceleration value to minimize EJ; 
- if it is possible to look ahead at several via points, the value of the constant 

velocity at each segment may be scaled up. 
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13.5.1.2. Task space scheme 

Thepath in the task space is defined by a sequence of end-effector locations ^TE, 
..., ^̂ Tg. The results obtained in the joint space may be extended in the task space 

after splitting the trajectory into: 
k k+1 

- a translation between ^Pg and ^Pg , represented by the distance to travel 

- and a rotation represented by the three Euler angles to move from 6*̂  to 9*̂ "*'̂  

(where 6*̂  = [ <t)̂  9*̂  \\f^ ]^ represents the Euler angles corresponding to ^Ag). 

As in the joint space, we first calculate the trajectory parameters at each segment, 
assuming zero velocity at the via points according to the method presented in 
§ 13.3.3. We thus obtain Xj, Ujand tî ' for each segment, j s l designating the 
translation variable, j s 2, 3, 4 indicating the rotation variables. Then, the transition 
between the constant velocity segments is carried out by a second degree 
acceleration whose duration is 2T\> (Figure 13.12). 

a) Translation nK>tion 

Let kvi designate the maximum velocity of translation. The magnitude of the 
constant velocity of translation at segment k, denoted by v*̂ . is defined as: 

v*̂  = k\ kvi [13.70] 

The constant velocity at segment k is given by: 

pk+l _ pk 
V^^ v»^jjpkTrrpk| f o r k = l , . . . , m - l [13.71] 

ID̂ I 
and the traveling tinoe ĥ  at segment k is equal to |̂ . 

The blend time around point k is such that: 

Tkj = f " j^J " fork = 2 m-landVO = V"» = 0 [13.72] 

where k^\ is the maximum acceleration for the translation motion. For the initial and 
final points, the blend time is equal to T|e i = V/2 where Xĵ* is obtained by equation 
[13.41]. 
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Figure 13.12. Linear interpolations with continuous acceleration blends 
(translation P in the task space) 

The linear trajectory at segments k = 1,...»m-1 is given by: 

P(t) = ( t - tK - Tk,,) V̂^ + Pk for tk + 2Tk,i < t < iM 

where tî  is defined by equation [13.63]. 

[13.73] 

The blend trajectory around point k for t̂  < t < 1^+2T|ej (T̂ l̂ 9̂  0) and 
1 < k < m is given by: 

1 
P(t) = P''"i6(Tu)^ ^̂ "̂ ^̂ ^ (t-tk-4Tk,,) i\^-\^'^) ^ (t-tk-Tkj) \^-' 

[13.74] 

b) Rotation motion 

Let P represent one of the Euler variables, and p^ be the velocity along segment 
k. The trajectory at constant velocity for t̂  + 2Tkj < t < tî +i and k = 1, . . . , m - 1 is 
given by: 

P(t) = (t-tK-Ty)p'^ + P»̂  [13.75] 

where j = 2, 3, 4 designate 0, 6, \|/ respectively, and the trajectory along the blend 
region for tî  < t < tĵ  + TT^j and 1 < k < m is given by: 
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• • m = P''-Ti(T;-)3 (t-tk)3(t-tk-4Tkj) (pk-pH) + (t-tk-Tkj) p n [13.76] 

The blend time T^j is deduced from equation [13.60] by replacing qj with p. 

13.5.2. Trajectory generation with cubic spline functions 

13.5.2.1. Principle of the method 

As in § 13.S.1, we consider the path defmed by a sequence of joint 
configurations q^ q ,̂ ..., q"̂  such that m> 4. We assume that the corresponding 
traveling times t], t2,..., t^ are known. On each segment k, i.e. between points k and 
k+1« the trajectory is represented by a cubic function (Figure 13.13). This method is 
also termed cubic spline function [Edwall 82], [Lin 83]. 

The principle is to globally calculate the joint accelerations at the via points to 
satisfy the velocity and acceleration continuity. The acceleration of the cubic 
function for joint j (for convenience, we will omit the subscript j) is written as a 
linear function of time for tî  < t < t̂ +i and k = 1,..., m~ 1: 

Fk(t) = -n i ;^Fk( tk ) + -hr^''^*''*'^ withhk = tk^,-tk [13.77] 

Integrating equation [13.77] twice yields the velocity and position equations: 

(tk+j - 0^ •• (t - tk)2.. 

rotL hfcFie(tiê i), gk hj|k(t0 

FkW = -^^^^Fk(tk)+-6hrFk(tk^, ) 

. rq*|+' l>kFk(tk+l)i , . ro'' hkFk(tk)i „ , _ - , 
+ (t - tk) [ \ - - — 6 Ĵ + (tk+i - 0 [J;; - —6—J 113.79] 

where Fk(tk) = q^ and Fk(tk+i) = q''*'. 
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Figure 13.13* Notations used for the cubic spline functions 

Thus, knowing the accelerations F]((t]e) allows us to calculate F|c(t) for k = 1, ..., 
m-1 . Continuous velocity constraint implies that: 

Fk(tk) = Fk.i(tk) for k = 2,..., m-1 

which, after substitution, yields: 

hk.i q^'^ + 2 (hk.i + hk) q^ + hkq»̂ ^̂  = 6 ( ^ - ^ ) 

[13.80] 

[13,81] 

with Fk(tk l̂) = Fk^l(tk+l) = q'̂ ^̂  

LD'^=:ql^+l-qk 

For convenience, we rewrite equation [13.81] in matrix form: 

[h .̂i 2(hk.i+hk) h j 

jjk+1 J 

£)k Dk-1 
[13.82] 

Let us assume that m > 4 and that qj and qj are known^ (for example, zero). By 
calculating equation [13.82] for k = 2, ..., m~l , and combining all the equations 
together, we obtain for joint j a system of equations that can be written in the 
following matrix form: 

' One could assume that q- and q- are known instead. 



Trajectory generation 339 

M qj » Nj [13.83] 

withqj = [qj ... qj F. 

Thus, we can calculate the accelerations at points k = 2, ..., m-1, and 
consequently the interpolation functions F^ for k = 1, ..., m-1. The niatrix M is 
identical for all the joints but the vector Nj is different. M is tridiagonal and regular. 
Efficient methods to inverse such matrices can be implemented [de Boor 78]. It is 
worth noting that the initial and final joint velocities are obtained from these 
equations. To specify desired velocities at the initial and final points, we can either 
use fourth degree polynomials or two cubic spline functions for the first and the last 
segments [Edwall 82]. In the following, we develop the second solution. It requires 
specification of two additional points: one after the initial point and the other before 
the final point. For convenience, we consider that the total number of points is still 
denoted by m. 

Let us assume that velocities and accelerations on the boundary points are given 
by 4(ti), q(ti), q(tm), q(tin)* To satisfy the constraints of continuity, Lin [Lin 83] has 
shown that the new second point should be defined as: 

q2 = q U h, q(ti) + ̂  q(ti) + \ q(t2) [13.84] 

and the (m-1)̂ ** one as: 

Thus, the first two and the last two equations of system [13.82] must be nxxlified 
and the matrix M becomes: 

r ., 1 
I 3h,-i-2h2 

h j - - - * - 2(h2+h3) hj 0 ... ... 0 

0 h3 2(h3-i>h4) h4 0 ... 0 

0 »»„.3 2(h„.3th„.2) K^2-f^ 
"m-2 

0 0 h- , 
in 

-2 J''„.,+2h„.j+|illUl| 
*m-2j 
[13.86] 
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while the vector Nj becomes 

Nj = 

-12 h, 
- L . ' w 1 

h2 

h, h.>-'<r^><'' ""'"l^t'l^-"!'! 1 "2 

—(q' +h,v, +-la, )+^.6(-L+J.)q3 

6(lai:ali_iai:a!i, 
hj hj 

,m -m-2 

h2 

3 

m-3 
^ m H 

"m-a 
-6( ' . / )q"'-^ 

^in-2^ **m-3 

. K-y K-2 h„-l hm-2 n,-I m 3 m m-1 mj 

[13.87] 

with vi = qj(ti), ai = qj(ti), v^ = qj(tm) and a^ = qj(tn,). 

13.5.2.2. Calculation of the minimum traveling time on each segment 

If the traveling times (hi,...» hm-i) are not specified, their calculation in order to 
obtain a minimum global time is not as simple as in the case of a point-to-point 
trajectory. Optimization techniques must then be implemented [Lin 83]. Nowadays, 
this problem is facilitated by the existence of efficient optimization softwares. 

If [hi, h2, ..., hm-i] is the vector of variables to be optimized and T the total 
traveling time, the problem is formulated as follows: 

m-l 
Minimize the function T = ^ ĥ  under the constraint that velocities. 

k=l 
accelerations and eventuallv ierks (rate of change of the acceleration) in the 
joint space remain within their bounds all over the trajectorv. 

Since cubic spline functions are linear in acceleration, the corresponding 
inequality constraints are expressed by: 

fijl - K) fo^j = 1» • Mn and k = 2 , . . . ,m- l 

The magnitude of the jerk is bounded such that: 

[13.88] 

(5— < ksj for j = 1,..., n and k = 2 m-1 [13.89] 
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Maximum velocities occur at the time when qj(t) = 0. If for a given function 
F|̂ (t), the value of this time i& not between t|c and tic+hĵ , then the maximum velocity 
for this function will be |qj| or |qj |; otherwise it is necessary to calculate the 
velocity corresponding to this sampling time. 

To initialize the optimization procedure, we calculate a lower bound h'lc of the 
traveling time on each segment k using the equation: 

h*K = maxiYT-} for j = 1 n and k = 1 m-1 [13.90] 

For the first and last two segments, the traveling times are initialized as follows: 

3 1 

h'i = h2 = max{ 2k ^ 

'm m.2. fon = l n [13.91] 

hW2 = h'm-i = niax{ S u ' } 

Then, in order to derive an acceptable solution satisfying the constraints, we 
scale up the time by a factor X, which modifies the velocity, acceleration and jerk by 
1/X, 1/X̂  and 1/X̂  respectively. The time h'l̂  is thus replaced by hî : 

hk = kh\ [13.92] 

The scale factor X is selected to saturate the velocity, the acceleration, or the 
jerk: 

X = max 
Iqimaxl .|qimaxLl/2 JqimaxLl/3 

forj = l n [13.93] 

where qjmax* Qjmax 2ind qfjmax denote the maximum velocity, acceleration and jerk of 
joint j . 

NOTES.-

- the minimum traveling time problem is a nonlinear programming problem that 
can be solved with the "constr" function (Optimization ToolBox) of Matlab 
(quasi-Newton algorithm); 

- instead of calculating the global trajectory for all the points, Chand and Doty 
[Chand 85] showed that the trajectory could be computed on-line by 
itcratively considering only a limited number of points at each time. 
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13.53. Trajectory generation on a continuous path in the task space 

In the previous sections, we showed how to generate a trajectory of the robot 
endpoint passing through, or close to, a sequence of points. Another procedure, 
commonly used in continuous processes such as machining or arc welding, consists 
of fkst generating a continuous path from the sequence of points at hand, then 
determining a time history along the path. Processing separately the path generation 
and the trajectory generation allows the robot to follow the specified spatial path 
whatever the velocity, which can be modified on-line by an extemal action (operator 
or sensor). 

Generally, the geometry of the path is described in terms of a parameter u over 
the interval 0 < u < 1. For convenience, let us consider only the position path (the 
following results are extendable to orientation): 

P(u) = [ Px(u) Py(u) Pz(u) ] T [13.94] 

To specify a continuous trajectory in acceleration, the path P(u) should be of 
class C^ in u, which means a continuity of curvature. For example, cubic splines, 
cubic B-splines or Bezier curves can be used to represent P(u) as a polynomial 
function in u, as is done in CAD/CAM systems [Bartels 88], [L6on 91]. 

Then, we determine the trajectory by choosing for u a suitable function of time. 
The simplest function is u = A, t, but it is more interesting to specify the velocity of 
the curvilinear abscissa of the tool along the path. This requires computation of a 
one-to-one mapping between the curvilinear abscissa, denoted by s, and the 
parameter u, using the fact that: 

ds(u) 
du -V^^^^V:^'-!^! n»5, 

The curvilinear abscissa s is given as a function of u by integration: 

ui ui 

Thus, the trajectory generation consists of specifying the time history of the 
curvilinear abscissa s. Cartesian velocities and accelerations are given by: 

^^^' dt ds dt * ds l"-^'J 
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j , , . , - ^ . , . - ^ [13.98] 

Considering equation [13.95], we obtain: 

dP(s) ^ dP(u)du ^ dP(u) 1 
ds ~ du ds ~ du ..dP(u).. [13.99] 

A closed-form solution for P(s) exists in the case of straight line and circular 
paths. For a straight line path for instance, let P̂  and P^be the initial and final points, 
and D be the Cartesian distance to travel. We can write that: 

P ( s ) - F + p(Pf -Pi ) [13.100] 

For a circular path in the (XQ, yc) plane of the circle, the equation is given by: 

P(s) = pc + 
Rcos(]j + <>o) 

S I 

Rsin(p[4.(|>o) J 

[13.101] 

where F is the vector of the x and y coordinates of the circle center, R is the circle 
radius, <|̂  is the angle between the vector P̂ P̂  and the axis Xc, and P* is the initial 
point such that: 

cos(<t>o) 

sin(0o) J 
= 5 ( F - F ) [13.102] 

In the general case, we numerically determine a polynomial giving s as a function 
of u. Indeed, integrating the equation ds/du yields curvilinear abscissa s(u) at regular 
intervals of u. Then, to evaluate s(u), it is sufficient to interpolate the resulting points 
with a polynomial function in u, whose coefficients Ci are estimated by a least square 
procedure. A fourth degree polynomial should provide sufficient accuracy 
[Froissart91]: 
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4 

s(u) = X^i"* [13.103] 
i=0 

Then, the algorithm can be as follows: 
- compute a path P(u); 
- compute the curvilinear abscissa s(u) along the path; 
- compute the time history s(t); 
- compute u(t); 
- compute the trajectory P(t). 

The time history can be computed as indicated previously for the curvilinear 
abscissa s. Another method has been proposed in [Sgarbi 92]: it consists of 
accelerating until the desired velocity is reached (or velocity and acceleration 
bounds are attained), maintaining this value, and fmally decelerating to finish at zero 
velocity at the end of the path. Thus, the velocity tracks a trapeze profile. Let s be 
the current curvilinear velocity, ŝ  be the desired one, Tg be the sampling period, and 
L(i) be the distance between the current point and the final point. The algorithm is as 
follows: 

if {abs jT [s(i-1) - sd(i)]} > s'maxt then: 

s(i) =: s(i -1) + s^x Tc sign(sd(i) - s(i -1)] 

else s(i) = sd(i) 

[s(i)l^ if L(i) < , then begin deceleration phase. 

An immediate extension of this algorithm would be to generate a continuous 
curvilinear acceleration by implementing a trapeze acceleration profile. 

13.6. Conclusion 

In this chapter, we have presented several methods of trajectory generation that 
are commonly used in robotics. We have first dealt with point-to-point trajectories: 
different interpolation functions have been studied, namely the trapeze velocity 
profile, which is implemented in most of the industrial controllers. For each 
function, we computed the minimum traveling time, from which it is possible to 
synchronize the joints so that they reach the final point simultaneously. We have also 
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presented three noethods of trajectory generation with via points. In the first method, 
straight hne segments joining the via points are blended together by continuous 
acceleration phases. In the second method, the path passes tlvough the via points, 
the trajectory being described by a sequence of cubic spline functions. In the third 
method, the trajectory is computed on a predefined continuous path. 

These methods apply for both joint space and task space. The choice of a space 
depends on the trajectory specification and on the task description. 

The interested reader will find in [Shin 85], [Fourquet 90], [Shiller 94], other 
techniques using the dynamic model which allows replacement of the consu-aints of 
acceleration by those more realistic of actuator torques. Likewise, in [Pledel 96], an 
approach using an exact model of actuators is considered. However, instead of 
implementing these techniques, an a posteriori verification of the constraint validity 
and scaling the traveling time may be satisfactory [Hollerbach 84a]. 



Chapter 14 

Motion control 

14.1. Introduction 

The problem of controlling robots has been extensively addressed in the 
literature. A great variety of control approaches have been proposed. The most 
common in use with present industrial robots is a decentralized "proportional, 
integral, derivative" (PID) control for each degree of freedom. More sophisticated 
nonlinear control schemes have been developed, such as so-called computed torque 
control, termed inverse dynamic control, which linearizes and decouples the 
equation of motion of the robot. Owing to the modeling uncertainties, nonlinear 
adaptive techniques have been considered in order to identify on-line the dynamic 
parameters. More recently, properties of the dynamic model have led Lyapunov-
based and passivity-based controls to be proposed. 

In this chapter, we first study the classical PID control, then the nonlinear 
linearizing and decoupling control, which is considered to be the best theoretical 
solution for the control of robots. Finally, we present some advanced methods related 
to passivity-based and adaptive controls. Detailed surveys on robot control can be 
found in [Spong 89], [Samson 91], [Lewis 93], [Zodiac 96]. 

For simplicity, we will only consider serial robots. The methods presented can 
easily be generalized to robots with complex structures by employing the results of 
Chapter 10. 

14.2. Equations of motion 

In order to understand the basic problem of robot control, it is useful to recall the 
dynamic model (Chapter 9) whose general form for a robot with n degrees of 
freedom is the following: 
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r = A(q)q+C(q,q)q + Q(q) + dlag(q)Fv-^dlag(sign(q))Fc [14.1] 

or, in a more compact form: 

r = A(q)q+H(q,q) [14.2] 

and, since the model is linear in the dynamic parameters (equation [12.18]), we can 
write: 

r = 0(q,q.q)X [14.3] 

where F is the (nxl) vector of joint torques; A(q) is the (nxn) inertia matrix of the 
robot; C(q, q) q is the (nxl) vector of Coriolis and centrifugal torques; Q(q) is the 
vector of gravity torques; Fy and F^ are the vectors of the viscous friction and 
Coulomb friction parameters respectively; % is the vector of the dynamic parameters 
(inertial parameters and friction parameters). 

The torque transmitted to joint j by a current-driven electrical actuator 
(continuous or synchronous), assuming that the transmissions introduce neither 
backlash nor flexibility, is expressed by (equation [12.17]): 

Fj = NjKajKTjUj [14.4] 

where Nj is the gear transmission ratio, Kaj is the current amplifier gain, Kjj is the 
torque constant of actuator j , and Uj is the control input of the amplifier. 

The design of the control consists of computing the joint actuator torques (Fj, 
then Uj) in order to track a desired trajectory or to reach a given position. 

14.3. PID control 

143.1. PID control in the joint space 

The dynamic model is described by a system of n coupled nonlinear second order 
differential equations, n being the number of joints. However, for most of today's 
industrial robots, a local decentralized "proportional, integral, derivative" (PID) 
control with constant gains is implemented for each joint. The advantages of such a 
technique are the simplicity of implementation and the low computational cost. The 
drawbacks are that the dynamic performance of the robot varies according to its 
configuration, and poor dynamic accuracy when tracking a high velocity trajectory. 
In many applications, these drawbacks are not of much significance. 
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Practically, the block diagrams of such a control scheme in the joint space is 
shown in Figure 14.1. The control law is given by: 

r = Kp(qd-q) + Kd(q^-q) + Kijr(q<i-q)dx [14.5] 

to 

where q (̂t) and q (̂t) denote the desired joint positions and velocities, and where Kp, 
K^ and K| are (nxn) positive definite diagonal matrices whose generic elements are 
the proportional Kpj, derivative K<ij and integral Ky gains respectively. 

^ 

^ • t ^ 
* \ 

r 
h - ^ 

^ 

L 

S 

L ^ ' l 

Kd 

r*w^ Robot 
iqj 

q 

Figure 14.1. Block diagram of a PID control scheme in the joint space 

The computation of Kpj, K ĵ and Ky is carried out by considering that joint j is 
modeled by a linear second order differential equation such that: 

Fj = ajqj + Fvjqj + Yj [14.6] 

where aj = Ay,̂ ^̂  is the maximum magnitude of the Ay element of the inertia matrix 
of the robot and YJ represents a disturbance torque. 

Hence, assuming Yj = 0, the closed-loop transfer function is given by: 

qi(s) K<ii ŝ  •>• Kpj s •>• K|i 

qj*(s) " aj ŝ  + (Kdj + Fvj) s^ + Kpj s + K,j 

and the characteristic equation is: 

[14.7] 
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A(s) = aj s3 + (Kdj + Fvj) s^ + Kpj s + K,j [14.8] 

The most common solution in robotics consists of adjusting the gains in order to 
obtain a negative real triple pole. This yields the fastest possible response without 
overshoot. Thus, the characteristic equation is written as: 

A(s) = aj(s + (Oj)̂  [14.9] 

with (Oj > 0, and after solution, we obtain: 

rKpj = 3aj(Oj2 

Kdj + Fvj = 3ajCDj [14.10] 

iK,j = aj(0j3 

NOTES.-

- high gains Kp and K^ decrease the tracking error but bring the system to the 
neighborhood of the instability domain. Thus, the frequency (Oj should not be 
greater than the structural resonance frequency (O .̂ A reasonable trade-off is 
that (Oj = (Oy / 2; 

- in the absence of integral action, a static error due to gravity may affect the 
final position. Practically, the integral action can be deactivated when the 
position error is very large, since the proportional action is sufticient. It should 
also be deactivated if the position error becomes too small in order to avoid 
oscillations that could be caused by Coulomb frictions; 

- the predictive action K^ q^ of equation [14.5] reduces significantly the 
tracking errors. In classical control engineering, this action is not often used; 

- the gain K<j is generally integrated within the servo amplifier, whereas gain Kp 
is numerically implemented; 

- the performance of a robot controlled in this way is acceptable if high-gear 
transmission ratios are used (scaling down the time-varying inertias and the 
coupling torques), if the robot is moving at low velocity, and if high position 
gains are assigned [Samson 83]. 

14.3.2. Stability analysis 

If gravity effects are compensated by an appropriate mechanical design as for the 
SCARA robot, or by the control software, it can be shown that a PD control law is 
asymptotically stable for the regulation control problem [Arimoto 84]. The 
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demonstration is based on the definition of the following Lyapunov function 
candidate (Appendix 9): 

V = 5 q T A ( q ) q 4 p T K p e [14.11] 

where e = q^ - q is the position error, and where q^ is the desired joint position. 

Since q^ is constant, the PD control law is given by: 

r = Kpe~Kdq + Q(q) [14.12] 

From equations [14.1] and [14.12], and in the absence of friction, we obtain the 
following closed-loop equation: 

K p e - K ^ q = A q - f C q [14.13] 

Differentiating the Lyapunov function [14.11] with respect to time yields: 

V = ^ q T A q + q ^ A q - c T R p q [14.14] 

and substituting A q from equation [14.13] yields: 

V = 5 q T ( A - 2 C ) q - q T K d q [14.15] 

Since the matrix [A - 2 C] is skew-synunetric [Koditschek 84], [Arimoto 84] 
(§ 9.3.3.3), the term q'̂  [A - 2 C] q is zero, giving: 

V = -q'^K^q < 0 [14.16] 

This result shows that V is negative semi-definite, which is not sufficient to 
demonstrate that the equilibrium point (e = 0, q s 0) is asymptotically stable 
(Appendix 9). We have now to prove that as q » 0, the robot does not reach a 
configuration q 9̂  q .̂ This can be done, thanks to the La Salle invariant set theorem 
[Hahn 67] (A{)pendix 9). The set Si of points in the neighborhood of the equilibrium 
that satisfies V s: 0 is such that q = 0 and thus q = 0. From equation [14.13], we 
conclude that necessarily e = 0. Consequently, the equilibrium point (e = 0, q = 0) is 
the only possible equilibrium for the system and is also the largest invariant set in Ji, 
Therefore, the equilibrium point is asymptotically stable. 
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Furthermore, it has been demonstrated that the system is asymptotically stable if 
in equation [14.12] we replace Q(q) by the constant term Q(q^), corresponding to 
gravity torque at the desired position q**. The stability is also proven if one takes 
Kpj > ||9Q(q)/9q||, which represents the 2-norm of the Jacobian matrix of gravity 
torques with respect to the joint variables [Korrami 88], [Tomei 91]. For more 
details on the computation of the gains when considering the robot dynamics, 
interested readers should refer to [Qu 91], [Kelly 95], [Rocco 96], [Freidovich 97]. 

14.3.3. PID control in the task space 

When the motion is specified in the task space, one of the following schemes can 
be used to control the system: 

- the control law is designed in the task space; 

- the specified trajectory in the task space is transformed into a trajectory in the 
joint space, then a control in the joint space is performed. 

For PID control in the task space, the control law is obtained by replacing q by X 
in equation [14.5] and by transforming the task space error signal into the joint space 
by multiplying it by j1'(Figurc 14.2): 

r = jT[Kp(Xd-X)-^Kd(X<»-X) + K,J(X<J-X)dx] [14.17] 

to 

T-
Xd^/Qv, 

^ ^ 

ir "̂  1 

- > 
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X = f(q) ̂ ^ 
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r-wH 
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1 I 
|x«Jq i ^ 

> # -
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q 1 

q 

Figure 14.2. Block diagram of a PID control scheme in the task space 
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Two solutions are possible to transform the desired task space trajectory into the 
joint space: either we use the IGM to compute the joint positions then we compute 
the velocities and accelerations by differentiating the positions; or we compute the 
joint positions, velocities and accelerations as indicated below: 

i) using the IGM (Chapter 4) to compute the joint positions: 

q̂  = g(Xd) [14.18] 

ii) using the IKM (Chapter 6) to compute the joint velocities. In the regular 
positions: 

qd = J(qd)-'xd [14.19] 

In singular positions or for redundant robots, the matrix J"l should be replaced by 
a generalized inverse as described in Chapter 6; 

Hi) using the second order IKM (§ 5JO) to compute the joint accelerations (if 
desired): 

q<i = J-^{Xd-Jq<J) [14.20] 

with: 

14.4. Linearizing and decoupling control 

14.4.1. introduction 

When the task requires fast motion of the robot and high dynamic accuracy, it is 
necessary to improve the performance of the control by taking into account, partially 
or totally, the dynamic interaction torques. Linearizing and decoupling control is 
based on canceling the nonlinearities in the robot dynamics [Khalil 78], [Zabala 78], 
[Raibert 78], [Khatib 80], [Luh 80a], [Freund 82], [Bejczy 85]... Such a control is 
known as computed torque control or inverse dynamic control since it is based on 
the utilization of the dynamic model. Theoretically, it ensures the linearization and 
the decoupling of the equations of the model, providing a uniform behavior whatever 
the configuration of the robot. 

Implementing this method requires on-line computation of the inverse dynamic 
model, as well as knowledge of the numerical values of the inertial parameters and 
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friction parameters. Efficient modeling approaches to minimize the computational 
burden have been presented in § 9.6. With current computer performance, the 
computation can be handled on-line at a sufficiently high rate and is not anymore a 
limiting problem. The inertial parameters can be determined off-line with good 
accuracy by identification techniques as described in Chapter 12. 

The linearizing and decoupling techniques consist of transforming a nonlinear 
control problem into a linear one by using an appropriate feedback law. In the case 
of rigid robot manipulators, the design of a linearizing and decoupling control law is 
facilitated by the fact that the number of actuators is equal to the number of joint 
variables, and that the inverse dynamic model giving the control input F of the 
system as a function of the state vector (q, q) and of q is naturally obtained. These 
features ensure that the equations of the robot define a so-called flat system whose 
flat outputs are the joint variables q [Fliess 95]. Since the control law only involves 
the state variables q and q, it is termed a static decoupling control law. In the 
following, we describe this method both in the joint space and in the task space. 

14,4.2. Computed torque control in the joint space 

14.4.2.1. Principle of the control 

Let us assume that joint positions and velocities are measurable and that 
measurements are noiseless. Let A and H be the estimates of A and H respectively. 
Hence, from equation [14.2], if we define a control law F such that [Khalil 79]: 

r = A(q)w(t) + ft(q,q) [14.22] 

then, after substituting [14.22] into [14.2], we deduce that in the ideal case of perfect 
modeling and in the absence of disturbances, the problem reduces to that of the 
linear control of n decoupled double-integrators: 

q = w(t) [14.23] 

w(t) is the new input control vector. In order to define w(t), we study in the 
following sections two schemes: the first one is suited for tracking control when the 
trajectory is fully specified, the second one is suited for position (regulation) control 
when just the final point is specified. 
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14.4.2.2. Tracking control scheme 

Let q^t), q**(t) and q^(t) be the desired acceleration, velocity and position in the 
joint space. If we define w(t) according to the following equation^: 

w(t) = q^ + Kd (q<« - q) + Kp (q^ - q) [14.24] 

where Kp and K4 are (nxn) positive definite diagonal matrices; hence, referring to 
equation [14.23], the closed-loop system response is determined by the following 
decoupled linear error equation: 

c + Kde-fKpe = 0 [14.25] 

where e = q^ - q. 

The solution e(t) of the error equation is globally exponentially stable. The gains 
Kpj and K<ij are adjusted to provide the axis j , over the whole set of configurations of 
the robot, the desired dynamics with a given damping coefficient £»j, and a given 
control bandwidth fixed by a frequetn ŷ (OJ: 

L 7t tl4.26] 

Generally, one seeks a critically damped system (̂ j = 1) to obtain the fastest 
response without overshoot. The block diagram of this control scheme is represented 
in Figure 14.3. The control input torque to the actuators includes three components: 
the first compensates for Coriolis, centrifugal, gravity, and friction effects: the 
second is a proportional and derivative control with variable gains A Kp and A K4 
respectively; and the third provides a predictive action of the desired acceleration 
torques A q**. 

In the presence of modeling errors, the closed loop equation corresponding to 
Figure 14.3 is obtained by combining equations [14.22] and [14.2]: 

A(q^-hK<|e + Kpe)-f ft = Aq-hH [14.27] 

yielding: 

e + Kde + KpC = A-U(A-A)q + H-.ft] [14.28] 

^ An integral action on w(t> can also be added. 
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In this equation, the modeling errors constitute an excitation for the error 
equation. When these errors are too large, it is necessary to increase the proportional 
and derivative gains, but their magnitudes are limited by the stability of the system. 
The robustness and the stability of this control are addressed by Samson et al. 
[Samson 87]. It is shown namely that the matrix A must be positive definite. It is 
shown as well that the errors e and e decrease while the gains increase. 

Figure 14J. Computed torque: block diagram of the tracking control scheme 
in the joint space 

14.4.2.3. Position control scheme 

Let q^ be the desired position. A possible choice for w(t) is as follows (Figure 
14.4): 

w(t) = Kp(qd-q)-Kdq [14.29] 

From equations [14.23] and [14.29], we obtain the closed-loop equation of the 
system: 

q + Kdq + Kpq = Kpqd [14.30] 

which describes a decoupled linear system of second order differential equations. 
The solution q(t) is globally exponentially stable by properly choosing Kp and K̂ -
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HS^ 

Newton-Euler 
algorithm 

Robot 

H H(«1»Q) 

Figure 14.4, Computed torque: block diagram of the position control scheme 
in the joint space 

14.4.2.4. Predictive dynamic control 

Another scheme has been proposed by [Khali! 78] based on a predictive dynamic 
control: the estimates A and H are no longer computed with the current values of q 
and q, but rather with the desired values q^ and q .̂ Thus, the control law is written 
as: 

r = A (qd) w(t) + A (q<«, qd) [14.31] 

where w(t) is given by equation [14.24] or [14.29] according to the desired scheme. 

In the case of exact modeling, we can assume that A(q) = A(q^) and H(q, q) = 
H(q<*, q^). The control law [14.31] linearizes and decouples the equations of the 
system as in the previous case. The main advantage of this scheme is that the 
computation of A(q**) and H(q^, q )̂ is not corrupted by noisy variables. 

14.4.2.5. Practical computation of the computed torque control laws 

The control laws [14.22] and [14.31] can be computed by the inverse dynamic 
Newton-Euler algorithm (§ 9.S) without requiring explicit knowledge of A and H. 
The algorithm provides the joint torques as a function of three arguments, namely the 
vectors of joint positions, velocities and accelerations. By comparing equations 
[14.2] and [14.22], we can conclude that: 
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- to compute the control law [14.22] (Figures 14.3 and 14.4), the input 
arguments of the Newton-Euler algorithm should be: 

- the joint position is equal to the current joint position q; 

- the joint velocity is equal to the current joint velocity q; 

- the joint acceleration is equal to w(t); 

- to compute the control law [14.31], the input arguments of the Newton-Euler 
algorithm should be: 

- the joint position is equal to the desired joint position q ;̂ 
- the joint velocity is equal to the desired joint velocity q ;̂ 
- the joint acceleration is equal to w(t). 

The computational cost of the computed torque control in the joint space is 
therefore more or less equal to the number of operations of die inverse dynamic 
model. As we stated in Chapter 9, the problem of on-line computation of this model 
at a sufficient rate is now considered solved (Chapter 9). Some industrial robot 
controllers offer a partial implementation of the computed torque control algorithm. 

14.4.3* Computed torque control in the task space 

The dynamic control in the task space is also known as resolved acceleration 
control [Luh 80a]. The dynamic behavior of the robot in the task space is described 
by the following equation, obtained after substituting q from equation [5.44] into 
equation [14.2]: 

r = A r * ( X - J q ) + H [14.32] 

As in the case of the joint space decoupling control, a control law that lii^arizes 
and decouples the equations in the task space is formulated as: 

r = Aj-Uw(t)-Jq) + ft [14.33] 

Assuming an exact model, the system is governed by the following equation of a 
double integrator in the task space: 

X = w(t) [14.34] 

Several schenies may be considered for defining w [Chevallereau 88]. For a 
tracking control scheme with a PD controller, the control law has the form: 



w(t) = Xd + K<,(Xd.X) + Kp(X^-X) 
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[14.35] 

The closed-loop behavior of the robot is described by the following error 
equation: 

ex + K^ex+Kpex = 0 

with: 

ex = X<*..X 

[14.36] 

[14.37] 

The corresponding block diagram is represented in Figure 14.5. The control input 
r can be computed by the inverse dynamic algorithm of Newton-Euler with the 
following arguments: 

- the joint position is equal to the current joint position q; 

- the joint velocity is equal to the current joint velocity q; 

- the joint acceleration is equal to J"'(w(t) ~ J q). 

T ^ •••.^n.Srr—-—1*11 > I A(q)f-^^)p^ 

Newton-Euler 
H(q.q)C 

Figure 14.5. Computed torque control in the task space 

In Appendix 10, we present an efficient algorithm to implement the computed 
torque control in the task space [Khalil 87a], [Chevallereau 88]. The proposed 
inverse dynamic algorithm uses many variables that must also be comput^ for the 
kinematic models. The computation of J q is achieved with a recursive algoridim 
without differentiating J. In the case of the StMubli RX-90 robot, the computational 
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cost of such an algorithm is 316 multiplications and 237 additions if we use the 
simplified base inertial parameters of Table 9.4. 

NOTE.- If the robot is redundant, we replace the matrix J"̂  in equation [14,33] by a 
generalized inverse. It can be shown that the robot is also governed by equation 
[14.36] in non-singular configurations. The homogeneous term of the generalized 
inverse must be chosen appropriately in order to avoid self joint motions in the null 
space of J [Hsu 88), [de Luca 91a], [Ait Mohamed 95], 

14.5. Passivity-based control 

14.5.1. Introduction 

In the previous section, it is shown that the computed torque control exploits the 
inverse dynamic model to cancel the nonlinearities in the robot dynamics. In this 
section, we investigate another approach that uses the property of passivity of the 
robot (system that dissipates energy). Such control laws modify the natural energy of 
the robot so that it satisfies the desired objectives (position control or tracking 
control). In what follows, we first describe the robot dynamics with the Hamiltonian 
formalism, then we introduce the concept of passivity in the case of regulation 
control (fixed desired point). Finally, we show how to design a tracking controller 
by using properties of the passive feedback systems (Appendix 11). This section is 
largely based on the work of [Berguis 93] and [Landau 88]. 

14.5.2. HamiUonian formulation of the robot dynamics 

The Hamiltonian gives the total energy of the robot: 

H = E + U [14.38] 

where: 

• E(q, q) is the kinetic energy of the robot equal to "j Q̂  A(q) q; 

• U(q) is the potential energy of the robot; 

• A(q) is the inertia matrix of the robot. 

The (nxl) vector of generalized momenta is defined as: 

P = A(q)q [14.39] 
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Therefore, equation [14.38] becomes: 

H = pTq~L(q,q) f 14.40] 

where L = E - U is the Lagrangian of the robot. From equation [14.39], it also 
follows that: 

E(p.q) = 5p'^A-»p [14.41] 

Defming the state variables by the vectors q and p, we obtain the Hamiltonian 
equations of motion in state space form as: 

Equation [14.43] is obtained from the Lagrangian equation [9.4], noting that: 

gE(p.q)^ 5E(q,q) 
9q " " dq 

The time derivative of H is such that: 

n = ^ ^ = [ ^ f q> [ ^ f P = q-r 114.441 

which yields: 

tl 

/qT(t) r(t) dt = H[p(tl), q(tl)l - H[p(0), q(0)l [14.45] 
0 

A rigid robot is defined as passive from the input F to the output q when there 
exists a constant 0 < ̂  < oo such that: 

/qT(t)r(t)dt>-P 
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which is true, from equation [14.45], when P = H[p(0), q(0)]. This means that the 
total energy has a bounded minimum. 

14.5.3. Passiviiy'based position control 

Let us assume that we want to drive the robot to a desired position q .̂ Intuitively, 
this can be achieved by shifting the open-loop energy minimum from (q = 0, q = 0) 
towards (q = 0, e = 0) for the closed-loop system, where e = q^ - q is the position 
error. This shifting can be obtained by reshaping the potential energy of the system 
such that it attains the desired minimum at e = 0. To this end, let U'̂ (q) be an 
arbitrary ftmction of the desired potential energy for the closed-loop system. Let us 
defme the following control law: 

5U*(q) aU(q) 
r = - - 9 f i + - ^ H - v [14.46] 

where v is the (nxl) new input control vector [Takegaki 81b]. The Hamiltonian 
equations become: 

q = ^ ^ [14.471 ap 
P = - Iq - ~ a < r + ^ [14.481 

Hence, by using the control law [14.461, the initial Hamiltonian H(p, q) is 
modified into the desired one H*(p, q) such that: 

H' = E + U* [14.49] 

and we can verify that: 

H* = qTy [14.50] 

This implies that the robot is passive from the new input v to the output q. To 
asymptotically stabilize the system, we add a damping in the loop such that: 

v = - K d q [14.51] 

where K^ > 0 is a diagonal matrix. Equation [14.50] becomes: 
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H* = -qTK<,q tl4.52] 

This expression is negative semi-definite. However, it can be verified that the 
equilibrium point (e = 0, q « 0) is the largest invariant set within the set H*(q, p) = 
0. Hence, using the La Salle invariance theorem [Hahn 67], the asymptotic stability 
of the equilibrium can be proven. 

Various choices are possible for the desired potential energy function U*(q, p) 
[Wen 88]. An obvious one that satisfies the constraint of a strict minimum at e s 0 
is: 

V*^^e^Kpe [14.53] 

For this choice, the control law [14.46] becomes: 

r = Kpe~Kdq + Q(q) [14.54] 

which represents gravity compensation and a linear state-feedback loop 
[Takegaki 81b], as the one presented in § 14.3. 

The following choice for U'̂ (q, p), under the condition that Kp is large enough, is 
also minimum when e = 0 [Takegaki 81b]: 

U* = je'^ Kp e + U(q) - U(q^) + e'̂ Q(qO) [14.55] 

Hence, the control law is: 

r = Kpe-Kdq-fQ(q<*) [14.56] 

14.5.4. Passiviiy^based tracking control 

For a tracking task, it is necessary to nKxlify the control law so that the strict 
energy minimum (q = 0, q = 0) of the open-loop system is shifted towards (e = 0, 
e s 0) for the closed-loop. This can be achieved by modifying both the kinetic 
energy and the potential energy. 

In this section, we analyze the passivity-based control laws of [Paden 88] and 
[Slotine 87] using the passive system feedback approach proposed by [Landau 88] 
(Appendix 11). Consider the following control law [Paden 88]: 
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r = A(q) ci^+ C(q, q) q<* + Q(q) + Kpe + K^e [14.57] 

In the absence of friction, equations [14.57] and [14.1] lead to the closed-loop 
equation: 

Kpe + K^e = T [14.58] 

with : 

t = -A(q)c -C(q ,q )e [14.59] 

Equation [14.58] represents a system of two interconnected feedback blocks 
(Figure 14.6): 

- a linear block Bl in the feedforward chain whose input and output are e and t 
respectively; 

- a nonlinear block B2 in the feedback chain whose input and output are x and 
-e respectively. 

In order to prove that the nonlinear block is passive, let us consider the integral 
of the input-output dot product: 

tl tl 

/-eT(t) Kt) dt = /[cTA(q) e + e^ C(q, q) e] dt [ 14.60] 
0 0 

Since: 

eTA(q)e = ~[cTA(q)c]-5cTA(q)e [14.61] 

then: 

tl tl 

/-€T(t)x(t)dt = J[^ | [ i ' rA(q)e] -pTA(q) i + feTc(q,^)i] dt [14.62] 

Since [A(q)-2 C(q, q)] is skew-symmetric, then e'̂  [A(q)-2 C(q, q)] c is zero, 
which reduces equation [14.62] to: 
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/-«T(t) t(t) dt = J j ^ [eT A(q) e] dt 

= r (eT(ti) A(q(tl)) e(tl) - eT(0) A(q(0)) e(0)) f 14.63] 

and finally: 

II 

/-eT(t)t(t)dt > -vo2 = -reT(0)A(q(0))e(0) 
0 ^ 

and, since YÔ  < oo, it follows that the block B2 is passive. 

[14.64] 

f" 
1 * 1 
1 -c 1 

R" 
-̂

" " • " ^ 

c ^ 

Ka 

*r| 

Nonlinear passive 
system 

• ~ i 

¥ | 
L^ 1 [^ • • 

Figure 14.6. Equivalent feedback representation of the closed-loop equation [14.581 
(from fLandau 881) 

The linear block of the feedforward chain is characterized by a positive real 
transfer matrix: 

H(s) = Kd + j K p [14.65] 

which proves (Appendix 11) that the system represented by equation [14.58] is 
stable, and more precisely that the error e of the linear system is bounded. 
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In order to ensure that e ^ 0 as t - • oo, the control law should be modified so 
that the transfer function of the feedforward chain be strictly positive reafi. This can 
be done by removing the pole from the origin, choosing for exanple H(s) such that: 

H(s) = Kd + Kp[sI + A]-l [14.66] 

where A is a positive definite matrix. Modifying the control law accordingly yields: 

r = A(q)q<l + C(q,q)qd + Q(q) + Kp? + Kae 

with T : c = - A e + e. 

The closed-loop equation becomes: 

[14.67] 

Kpe + Kde = T [14.68] 

The corresponding system is shown in Figure 14.7. As the transfer function of 
the feedforward chain is strictly positive definite, we can conclude that e(t) -> 0 as 
t -> 00 and e -> 0 as t -> 00, but unfortunately we cannot conclude that e -> 0. 

6^ 
[sI + A]-

1 "̂  

fc-
• • " " • ^ K j 

Nonlinear passive 
system 

+ J 

^̂  1 
^ 

Figure 14.7. Equivalent feedback representation of the closed-loop equation [14.68] 
(from [Landau 88]) 

In order to ensure that e -> 0 as t -> oo, e should be a state of the feedforward 
chain. This is achieved with the following control law: 

^ We can find in [Paden 88] another demonstration proving that (his law is asymptotically stable, i.e. 
that (e = 0, e = 0) for arbitrary values Kp = Kp^ > 0 and K^ = K^̂  > 0. 
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r = A(q)q' + C(q,q)q'-f Q(q) + Kpe + Kdir 

with: 

• c = q^-q 
• efSe + Aesq'^-q 
• q«̂  = q<* + A e 

• A = AT>O 

[14.69] 

which implies that e and k^ are related through the transfer function [si •¥ A] ^ The 
q' vector is called the reference velocity. 

Combining equations [14.69] and [14.1], and assuming for convenience that 
friction torques are either compensated or neglected, leads to the following closed-
loop equation: 

Kpe+Kde , = -A(q) e, - C(q, q) e, = t [14.70] 

The corresponding system is shown in Figure 14.8. Note that, in this case, e(t) is 
the state of the feedforward chain that is strictly positive real. Thus, the system is 
globally asymptotically stable. 

The tracking control law [14.69] presents several interesting analogies with the 
position control law [14.54]. First, the terms Q(q) and Kp e modify the potential 
energy as in the control law [14.54]. Then, the compensations for A(q) and C(q, q) 
modify the kinetic energy in the desired sense. Finally, the term K4 if introduces a 
damping that contributes to satisfy the tracking objective. 

(gHM 

Nonlinear passive 
system 

Figure 14.8. Equivalent feedback representation of the closedAoop equation [14.70) 
(from [Landau 88]) 
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NOTE.- The computation of the passivity-based control law [14.69] cannot be 
achieved by the Newton-Euler inverse dynamic model due to the presence of both q 
and q' in the expressions of the Coriolis and centrifugal forces. [Kawasaki 96] 
proposes an efficient algorithm for its computation. 

14.5.5. LyapunoV'based method 

In [Wen 88], we can find the demonstration of the stability of all the control laws 
presented in the previous sections with the definition of a suitable Lyapunov 
function. The exponential stability demonstrations of the following laws are also 
given: 

r = A(q)qd + C(q,q<»)q<«-^^+Q(q) + Kde [14.71] 

r = A(q) q<J + C(q, q) q - ^ ^ + Q(q) + K^e [14.72] 

r = A(qd)q<* + C(qd,q<^)q^-^^^ + Q(q<>) + Kde [14.73] 

* 1 T au*(q) 
Choosing U = 2 « Kp e results in —^rp = -Kp e, but other choices are also 

possible. Note that equations [14.71] and [14.72] can be computed by the inverse 
dynamic algorithm of Newton Euler. 

14.6. Adaptive control 

14.6.1. Introduction 

Since the dynamic model is often not exactly known (inaccuracies in the dynamic 
parameters of the robot, of the payload, high-frequency unmodeled dynamics...), the 
adaptive control theory has been investigated extensively as an interesting approach 
to estimate or adjust on-line the dynamic parameter values used in the control. The 
nonlinear adaptive control of rigid robot manipulators can be considered today to be 
mature, as is indicated by the large number of methods published over the last two 
decades [Bayard 88], [Ortega 89]. The different approaches of adaptive control can 
be classified as: 

i) simplification of the dynamic model [Dubowsky 79], [Takegaki 81a]; 

ii) application of the adaptive techniques, which were developed for linear 
systems [Horowitz 80], [Nicosia 84], [Hsia 86]; 
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iii) formulation of a nonlinear decoupling and linearizing adaptive control 
[Craig 86b]; 

iv) formulation of a nonlinear adaptive control based on the passivity property of 
the robot [Slotine 87], [Sadegh 87], [Landau 88], [Kelly 88]; 

v) formulation of parameter adaptation mechanisms that avoid joint acceleration 
computation as the filtered dynamic model [Middleton 88], [Li 89] or the 
energy-based model [El Seraft 91 a]. 

The control laws proposed in the first two strategies are only valid for slow 
motion and do not take into account the full dynamics of the robot. The nonlinear 
adaptive control law of Craig requires joint accelerations and assumes that the 
estimated inertia matrix is invertible. The fourth and fifth schemes avoid the joint 
acceleration estimation and are, at least from a theoretical viewpoint, the most 
interesting. 

In the next sections, we present the principles of the nonlinear linearizing 
adaptive control and of the passivity-based adaptive control. 

14.6.2. Adaptive feedback linearizing conirol 

The first version of an adaptive dynamic control has been formulated by Craig et 
al. [Craig 86b]. The control law has the same structure as the computed torque 
control law of equation [14.22], and can be >\Titten in the following form (Figure 
14.9): 

r - A(q, X) w(t) -H H(q, q, x) [14.74] 

where % is the vector of the estimated base dynamic parameters, and: 

w(t) = qd + Kjc + Kpe [14.75] 

The control law [14.74] is associated with an on-line identification law, which 
provides x(t). For brevity, the control law will be noted: 

r = A(q)w(t) + ft(q,q) [14.76] 

Combining equations [14.2], [14.3] and [14.76], leads to the closed-loop error 
equation (see equation [14.28]): 



370 Modeling, identification and control of robots 

e + Kd e + Kp e = A'Cq) Wq, q. q) X " «Kq, q. q) Xl = A'(q) ^(q. q. q) X 
{14.77] 

with: 

X = X - X [14.78] 

Let us rewrite equation [14.77] under the state space form: 

X = a X + b A-'(q) 4» (q, q. q) % [14.79] 

where 0^ and !„ are the (nxn) null matrix and identity matrix respectively. 

Let us consider the following Lyapunov function candidate: 

V = x'^Px + x'^Ax [14.81] 

where A =s diag(Xi, X2,..., X^) is a positive definite adaptation gain matrix. 

P is the unique positive definite matrix, which is the solution of the Lyapunov 
equation such that: 

a'Tp + P a = - F [14.82] 

Differentiating V with respect to time leads to: 

V = -x'^Fx + 2x'^[0'^(q,q,q)A-Hq)bTpx + Ax] [14.83] 

Assuming the following adaptation law: 

i = - A-> 4>\q. q, q) k'^q) b^ P x = - X [14.84] 

the expression of V becomes: 

V = -x'^Fx < 0 [14.85] 

Therefore, the vector x is bounded and x ~> 0 as t -> QO. Since x is composed of e 
and e, then e —̂  0 and e --> 0. The adaptive dynamic control algorithm given by 
equations [14.76] and [14.84] is thus globally asymptotically stable. 
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This method has two major limitations: the first is that the joint accelerations are 
required for implementation; the second is that the inverse of the estimated inertia 
matrix has to be bounded. Craig et al. [Craig 86b] suggested projection of the 
estimated parameters in a bounded region of the parameter space. However, this 
projection does not guarantee that the inverse of the inertia matrix exists. 

Spong and Ortega [Spong 90] proposed a new version of this algorithm in which 
the condition of the invertibility of the matrix A is relaxed, but the joint accelerations 
are still required. 

%8H 
Figure 14.9. Nonlinear adaptive control (from [Craig 86b j) 

14.6.3. Adaptive passivity^based control 

In order to develop an adaptive algorithm based on the full dynamic model, 
Slotine and Li [Slotine 87] exploited the property of skew-symmetry of the matrix 
t A - 2 C]. This property is a consequence of the passivity of the robot. 

The control law is derived from equation [14.69] with Kp = 0: 

r = A(q, X)q' + C(q,q,x)q'+Q(q»X) + Kde, [14.86] 

rewritten as: 

r = A(q)q'̂ -h6(q,q)q'+6(q) + Kdir [14.87] 
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with: 

• e = q^ - q 

• er = e + A e 

• q̂  = q + Cf = q̂  + A e 

er may be regarded as a sliding surface in the state space plane defined by e and 
c. To design the adaptation law, let us consider the following Lyapunov function 
candidate: 

V = 5[e7Aer-hx'^Fx] [14.88] 

with: 

• X* vector of the estimated base dynamic parameters; 

• F: positive definite gain adaptation matrix. 

The differentiation of V with respect to time leads to: 

[14.89] 

and after substitution of A q, using equation [14.1] while assuming no friction for 
sake of brevity, it becomes: 

V = e,T [ i A e, + A q' - r + C(q. q) (q' - e,) + Q(q)] + x"̂  F ^ [14.90] 

Since [A - 2C] is skew-symmetric [Koditschek 84] (§ 9.3.3.3), we obtain: 

V = e,T [A q' - r + C(q, q) q' + Q(q)l + x"̂  F ^ [14.91] 

Substituting the control law [14.87] in equation [14.91] yields: 

V = efT [A q' + C(q, q) q' + Q(q) - K<i er) + x"̂  F X [14.92] 
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where: 

A = A - - 1 C = C ~ 6 , Q = Q - ^ [14.93] 

Since A, C and Q are linear in the dynamic parameters, we can write that: 

A q̂  + C(q, q) q' + Q(q) = 0(q, q, q^ q') X [ 14.94] 

By combining equations [14.94] and [14.92], it follows that: 

V = -er'^Kder + x'^[Fi4•l^T(q^q,q^q0er) [14.95] 

Let us choose the adaptation law: 

i = -^»4>T(q,q,q^qOe, = - x [14.96] 

where the matrix F"̂  is the adaptation gain. Equation [14.95] becomes: 

V = -e^Kaer < 0 [14.97] 

From equation [14.97], we conclude that the control law [14.87] associated with 
the adaptation law [14.96] is stable. 

Since V is only negative semi-definite, we cannot conclude on the asymptotic 
stability of the closed-loop system. Unfortunately, the La Salle invariance theorem 
cannot be applied to non-autonomous systems, which is the case in tracking tasks. 
To complete the proof of asymptotic stability, the Barbalat lemma can be used 
(Appendix 9). 

It is worth noting that adding a proportional gain Kp e to the control law [14.87] 
makes it possible to use the results on passivity of § 14.5.4. and to prove asymptotic 
stability with a Lyapunov function. Let us consider the following law [Landau 88]: 

r = A(q) qr + 6(q, q) q̂  -h ^(q) -f Kp e -h K^ ê  [ 14.98) 

which can be rewritten as: 
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r = A(q,x)q' + C(q,q,x)q'+Q(q»X) + Kpe + Kder 

- A(q, X) q' ~ C(q. q, x) q' - Q(q, X) [14.99] 

the adaptation law being given by equation [14.96]. 

From equations [14.1] and [14.99], in the absence of friction, we can represent 
the system by the three interconnected blocks of Figure 14.10. Blocks Bl and B2 
represent the system of Figure 14.8 whose passivity has been demonstrated in § 
14.5. To demonstrate the passivity of the block B3, we must verify that: 

J - ^T^it) O X dt > -70^ with 70̂  < 00 [14.100] 

Figure 14.10. Equivalent feedback representation of the closed-loop equation for the 
passivity-based adaptive control (from [Landau 88)) 

From equation [14.96], and since F is symmetric, it follows that: 

-^'^(t)0 = x'̂ F 

and using equation [14.100], we obtain: 

tl 'K tl 

[14.101] 

/~^'^(t)*Xdt = Jx'^Fxdt = J^^X'^Fjadt>4x^^^^ [14.102] 
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Since F is positive definite, equation [14.100] is verified and the block B3 is 
passive, which demonstrates the asymptotic stability since the block Bl is strictly 
positive real. 

To demonstrate the stability of the control law [14.98] with the adaptation law 
[14.96] using a Lyapunov analysis, let us choose the following Lyapunov function 
candidate [Sadegh 90]: 

V = 5 e j A c , - h p T ' K p e + 5 x ' ^ F x [14.103] 

Unlike the function [14.88], equation [14.103] is a function of the transformed 
state vector [e^ e ^]'^. It can be verified that: 

V = -Cf'^Kder-e'^AKpe < 0 [14.104] 

Since V is a function of er and e, we can conclude that the closed-loop system is 
globally asymptotically stable. Note that the two control laws [14.87] and [14.98] 
are similar, but the second one is more practical for tuning since there is an 
additional gain Kp. 

The passivity-based adaptive control law does not require joint acceleration 
estimations. However, its drawback is that the inverse dynamics cannot be directly 
computed by the Newton-Euler algorithm, due to the presence of both q and q' in the 
expressions of the Coriolis and cenU*ifugal forces. Kawasaki [Kawasaki 96] proposes 
an efficient algorithm for its computation. 

To avoid this computational problem, Sadegh and Horowitz [Sadegh 90) 
proposed to calculate both the control and adaptation laws in terms of the desired 
position, velocity and acceleration: 

r = W ) q < « + ft(qd,qd) + Kdfer + Kpe + Kn||e||e, [14.105] 

i=r rJ0T(qd,^d^gd)i^ [14.106] 

where K^ || e || er is an additional nonlinear feedback component to compensate for 
the errors introduced by the modification of the original adaptive control law. 

The control law [14.105] can be computed by the Ncwton-Euler algorithm. The 
adaptation law [ 14.106] requires the computation of the elements of O related to the 
dynamic parameters that have to be adapted. The corresponding computational cost 
of both laws for a six degree-of-freedom robot such as the Stdubli RX-90 is about 
700 additions and 950 multiplications. These figures can considerably be reduced if 
only the parameters of the pay load are adapted [El Serafi 91b]. 
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14.7. Conclusion 

Although the controllers of most present day industrial robots are merely 
designed from linear control theory, more advanced methods must be developed to 
cope with the nonlinear nature of the articulated structures, namely for applications 
requiring high dynamic performances (cycle time, dynamic accuracy...)-

We presented in this chapter three methods achieving this objective: computed-
torque or dynamic control, passivity-based control and adaptive control. The 
implementation of such controls requires on-line computation of the inverse dynamic 
model, which can be carried out according to the algorithms proposed in Chapter 9. 
In order to estimate the dynamic parameters, we make use of the techniques 
described in Chapter 12. 

We assumed that the system and the controller are continuous. In practice, the 
control is achieved by a computer, which introduces time delays due to data 
acquisition and control law computation. The effect of these delays on the process 
performance is an issue of the sampling control theory and is out of the scope of this 
book. However, from an implementation viewpoint, the sampling period should be 
small enough with respect to the bandwidth of the mechanical system. Typically, a 
frequency close to 1000 Hz has been used for the controller of the Acma SR400 
robot [Restrepo 96]. Note that the use of a high frequency allows us to increase the 
value of the feedback gains and results in a more robust control [Samson 87]. 

All the control laws presented in this chapter rely on the availability of joint 
positions and velocities. All the robots are equipped with high precision sensors for 
joint position measurements. On the other hand, the tachometers used for joint 
velocity measurements provide noisy signals. Therefore, it is better to generate the 
velocity signal by numerical differentiation of the position measurements. Other 
sophisticated techniques consist of designing a velocity observer from the input 
torque and the joint position data [Nicosia 90], [Canudas de Wit 92], [Berguis 93], 
[Khelfi 95], [Cherki 96]. 

In this chapter, we only considered rigid robots. For further reading about the 
control of robots with flexible joints, refer for example to [Benallegue 91], 
[Brogliato 91], [Zodiac 96]. 



Chapter 15 

Compliant motion control 

15.1. Introduction 

Many industrial applications require the contact of the robot end-effector with an 
uncertain environment. A long list of such applications could be given, including 
contour following, pushing, polishing, twisting, deburring, grinding, assembling, etc. 
Implementation of all these tasks intrinsically necessitates that the robot follows the 
desired path while providing the force necessary either to overcome the resistance 
from the environment or to comply with it. In order to control force with purely 
position-based systems, a precise model of the mechanism and knowledge of the 
exact location and stiffness of the environment are required. High precision robots 
can be manufactured only at the expense of size, weight and cost. The ability to 
control the contact forces generated on the end-effector offers an alternative for 
extending effective precision. A classification of robot force control algorithms 
includes: 

- methods involving the relation between position and applied force: passive 
stiffness control, active stiffness control; 

- methods using the relation between velocity and applied force: impedance 
control or accommodation control; 

- methods using position and force feedback: parallel hybrid position/force 
control and external hybrid control; 

- methods using force feedback: explicit force control; 

- methods based on passivity. 

In this chapter we will develop the first three methods that constitute the most 
commonly used. For more details, the reader can refer to [Siciliano 00]. 
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15«2. Description of a compliant motion 

In pure position control, the user has to completely specify the end-effector 
position and orientation. This implies that the robot moves in free space. The 
absence of any contact prevents the exertion of forces. On the other hand, in pure 
force control the manipulator end-effector is constrained by the environment in all 
directions; hence, there is no motion at all. 

Between the extremes of free space and totally constrained space is the 
workspace with constraint surfaces, termed C-surfaces [Mason 82]. In this case, 
motion is possible along the C-surface tangents, while force can be exerted along the 
C-surface normals. Thus, position control and force control exclude themselves 
mutually: we cannot control a force and a position along the same direction 
simultaneously. Consequently, compliant tasks require control of the end-effector 
forces along some directions and its motion along others. 

Practically, a compliant task is defmed in a frame, call^ a compliance frame, 
providing six degrees of freedom along and around the frame axes. For every degree 
of freedom, we specify either a position or a force. According to the task, this frame 
can be attached to the end-effector, to the environment or to the manipulated object 
(Figure 15.1). 

a) b) c) 
Figure ISA* Choice of compliance frame according to the task 

(from [Mason 82]) 

15.3. Pa^ive stiflTne^ control 

Passive stiffness control or passive compliance is a simple solution to reduce the 
contact forces between the robot and its environment. It consists of interposing 
between the manipulated part and the robot a mechanical device able to change its 
configuration under the effect of contact forces, thus adding to the structure an 
elastic behavior that compensates for positioning errors [Drake 77), [Whitney 79]. 
Figure 15.2 shows the principle of such a device, the so-called RCC (Remote 
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Compliance Center) [Nevins 77], that is typically used to handle peg-in-hole 
assembly problems. The basic compliance formulation follows from a generalization 
of the linear spring equation and is given by: 

dX = Ci [15.1] 

where Cis the (6x6) compliance matrix, ff = [ f̂  m^ ]^ represents the wrench that 
is composed of a force f and a moment m (§ 2.6). The differential displacement 
vector dX = [ dP*^ 6*̂  Y^ is composed of the differential translation vector dP and 
the differential orientation vector 5 (§ 2.5). 

The compliance matrix Cis diagonal with respect to the compliance frame whose 
origin Oc is called the compliance center: the application of a force at Oc along a 
given direction causes a pure translation in this direction; the application of a 
moment causes a pure rotation around an axis passing through O^. 

Flexible links for 
lateral motion 

^ ^ Robot/RCC 
r ^ interface 

Compliance 
center 

\ Flexible links for 
angular rotation 

Figure 15.2. Principle of the RCC device (from [Nevins 77J) 

Passive compliance offers some advantages such as fast and accurate insertions 
of parts without requiring complex strategy (typically, less than 0.2 sec. for tolerance 
of the order of 1/100 mm). It has achieved success in specific assembly tasks, for 
example inserting a peg in a hole. The limitation is diat each compliant device is 
devoted to a given task and to a given workpiece. 

15.4. Active stiffness control 

This method actively controls the apparent stiffness of the robot end-effector and 
allows simultaneous position and force control. The user can specify the three 
translational and three rotational stiffnesses of a desired compliance frame. Stiffness 
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may be changed under program control to match varying task requirements 
[Salisbury 80]. High gain is assigned to the directions that have to be position 
controlled, while low gain is assigned to the force controlled directions. The basic 
stiffness formulation is given by: 

% = Kc^dXc [15.2] 

where K^ is the desired (6x6) stiffness matrix, which is diagonal in frame R .̂ The 
wrench 1̂1̂  and the differential displacement ^dXc are expressed in frame Re, and 
will be simply denoted by f and dX respectively. Assuming that the friction and 
dynamic forces are compensated or are small enough to be neglected, equation 
[5.43] gives the joint torque F necessary to apply a wrench IT: 

r = jTir [15.3] 

Let us recall the differential model [5.2]: 

dX = Jdq [15.4] 

where J is the Jacobian matrix of the robot describing the differential translational 
and rotational vectors of the compliance frame as a function of the differential 
variations of joint positions dq. It should be noted that the Jacobian may be 
computed for any point fixed in the end-effector frame. Combining equations [15.2], 
[15.3] and [15.4], we obtain: 

r = jTKcJdq = K^dq [15.5] 

The matrix Kq is called the joint stiffness matrix and is not diagonal but 
synunetric. It determines the proportional gains of the servo loops in the joint space. 
It presents the same singular positions as the Jacobian matrix of the kinematic 
model, which means that, for these configurations, we cannot get the desired 
stiffness along or about all the degrees of freedom of the compliance frame. The 
principle of this control scheme is shown in Figure 15.3. The joint torque vector is 
given by: 

r = Kq(q^-q) + Kd(q^-q) + Q [15.6] 

where Q represents gravity torque compensation, and K^ can be interpreted as a 
damping matrix. A feedforward force term can be added if pure force control is 
desired in some direction. It is computed using equation [15.3]. 
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The advantage of such an active stiffness control scheme is that it is relatively 
simple to implement. The stiffness matrix can be changed on-line to adapt the robot 
behavior to various task constraints. 

Robot 

Figure 15 J . Principle of the active stiffness control scheme 

15.5. Impedance control 

According to Hogan [Hogan 85], [Hogan 87], the basic idea of impedance 
control is to assign a prescribed dynamic behaviour for the robot while its effector is 
interacting with the environment. The desired performance is specified by a 
generalized dynamic impedance representing a mass-spring-damper system. 

The end-effector velocity X and the applied force are related by a mechanical 
impedance Z. In the frequency domain, this is represented by: 

F(s) = Z(s) X(s) 

In terms of position X(s), we can write: 

F(s) = s Z(s) X(s) 

[15.7al 

(i5.7b] 

The robot should behave like a mechanical system whose impedance Z is 
variable according to the different phases of the task. In general, we suppose that the 
robot is equivalent to a mass-spring-damper second order system, whose transfer 
function is: 

sZ(s) = As2 + B s + K [15.8] 

where A, B and K represent the desired inertia, damping and stiffness matrices 
respectively. The values of these matrices are chosen to obtain the desired 
performance: 
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- high values are given to A in the directions where a contact is expected in 
order to limit the dynamics of the robot; 

- high values are given to B in the directions where it is necessary to dissipate 
the kinetic energy and therefore to damp the response; 

- the stiffness K affects the accuracy of the position control: along the force 
controlled directions, the stiffness should be small enough to limit the contact 
forces; conversely, along the position controlled directions, the user should set 
a high stiffness to obtain an accurate positioning of the end-effector. 

Two families of control schemes can be implemented depending on whether or 
not a force sensor is available (Figures 15.4 and 15.5). 

^i0-H As^ + Bs + K Robot 

X=f(q) 

Figure 15.4. Impedance control scheme without force feedback 

PCL: Position Control Law 

Figure 15.5. Impedance control scheme with force feedback 

Figure 15.6 shows an implementation of the impedance control scheme of the 
first family. The dynamics of the robot is neglected. The control law is given by: 

r = JT[B(X<1-X) + K(X^-X) ] + Q [15.9] 

The K and B matrices contain the proportional and derivative gains in the task 
space, which can be interpreted as the stiffness matrix and the damping matrix of the 
robot respectively. As previously, the vector Q represents gravity torque 
compensation. This control scheme places the compliance center at the desired point 
X^. It is equivalent to the PD control in the task space (§ 14.3.3). 
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X = f(q) 

X = Jq 

Figure 15.6. Impedance control scheme without force sensor feedback and 
with a PD control law in the task space 

In the following, we present two forms of impedance control representative of 
the second family, using the dynamic nK)del of the robot in the joint space, then in 
the task space. 

Let us note that the dynamic model of a robot exerting a wrench IT on its 
environment is written as (Chapter 9): 

r = A(q)q + C(q,q)q + Q(q) + jT|r 

The desired behavior is deduced from equation [IS.7b] as: 

t == A(X<*-X) + B(Xd-X) + K(X<*-X) 

which leads to: 

X(t) = X^ + A'MB(X^-X)-i-K(X^-X)-in 

where X^(t) is the desired trajectory. 

[15.10] 

[15.11] 

[15.12] 

To achieve this impedance control scheme, let us consider the decoupling 
nonlinear control law in the task space of equation [14.33] (resolved acceleration 
control law) in which w(t) is replaced by equation [15.12], and the external wrench 
exerted by the robot on the environment J*̂  ITis taken into account: 
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r = Aj-MXd + A->[B(Xd-X) + K(X<*--X)-iri--Jq} + ft(q,q) + J'̂ ir 
[15.13] 

Another formulation of this control law can be derived from the dynamic model 
in the task space [Zodiac 96]. Combining the first and second order kinematic 
models (§ S.IO) with the dynamic equation [15.10], yields: 

J-T r = Ax(q) X + Cx(q, q) X •*• Qx(q) + 1 [15.14] 

where: 

• J"'''is the inverse of J^; 

• Ax(q) is the inertia matrix in the task space^ equal to J'''̂  A(q) J'^; 

• Cx(q, q) is the vector of Coriolis and centrifugal torques in the task space. It is 
equal to [J-T C(q, q) J-̂  - Ax(q) J J"^]; 

• Qx(q) = J"̂  Q(q) is the vector of gravity torques in the task space. 

We obtain the decoupled control law as indicated in § 14.4: 

r = M x ( q ) w(t) + 6x(q, q) X + 6x(q) + n [15.15a] 

Replacing w(t) by X(t), as given by equation [15.12], leads to: 

r = jTAx(q){X^ + A-UB(X^~X) + K(X<i-X)]} + 

J'̂  [6x(q, q) X 4- ^x(q) + (I - Ax(q) A-i) in (15.15b] 

This control scheme is represented in Figure 15.7. It is equivalent to the control 
scheme [15.13], which is easier to implement when the complete control law must 
be computed. The algorithm is similar to that presented in Appendix 10. The control 
scheme [15.15] is preferred in quasi-static cases, where the inertia matrix and the 
Jacobian matrix are roughly constant [Kazerooni 86]. Thus, J and Ux(q, q) X are 
considered to be equal to zero, and equation [15.15b] becomes: 

r = JT Ax A ' U A Xd + B(X<* - X) + K{X^ - X) - J] •»- Q(q) + J'̂  ir [15.16] 

^ The reader can find in [Lilly 90] an efficient algorithm for computing Ax without computing the 
inertia matrix. 
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Note that the wrench if appears twice in this equation: once with the term J*̂  IT that 
compensates for the external wrench exerted by the robot and once with the term 
-J'^ Ax A*̂  ir, which represents a force feedback whose gain is -J"^ A^ A'^ Besides, 
note that if A = Ax(q), the terms containing IT vanish, which yields to the decoupled 
control law shown in Figure 15.7: 

r = A(q)J-l[Xd + A-»[B(Xd-X) + K(X<*-.X)]-Jq] + A(q,q) [15.17] 

NOTES.-

~ a long time before the formulation of the impedance control by Hogan» 
particular cases of this control had been proposed in the literature such as 
those based on a stiffness matrix or on a damping matrix [Whitney 85). In the 
former, A = 0 and B s 0; in the latter, A = 0 and K ^ 0; 

- the active stiffness control proposed by Salisbury (§ 15.2.2) is also a particular 
case of impedance control where A = 0 and B = 0; 

- impedance control is similar to resolved acceleration conu^ol with the only 
difference being the inclusion of the desired inertia in the force gain. 

M 1 
1 Hx:.jqK==zizi=ir| 

X 
X** " A 1 1 

Xd , < sM K r^X)-
X 

1 M 
Q.\ 1—l^j«i*i|H~| 

\ / * 1 1 

<P*I A,r*QSr-H jTH*l Robot t n 

1 | -A ,AMH 
1 V tf ui\ M - J 

LZirir!iT 

Figure 15.7. Nonlinear decoupling impedance control without force feedback 

1S.6. Hybrid position/force control 

Using the previous methods, we can specify a desired dynamic behavior of the 
robot but we cannot prescribe a desired wrench. In the following, we address some 
methods where both position and force can be specified. Much work has been 
carried out on this topic such as that of [Nevins 73], [Reboulet 85], [Merlet 86], 
[Robert 86], [Perdereau 91], [D6goulange93]. [Morel 94], etc. Two families of 
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control schemes with force control loops arc introduced: parallel hybrid 
position/force control and external hybrid control. 

15.6.1. Parallel hybrid posUion/force control 

The parallel hybrid position/force control finds its roots in the work of Raibert 
and Craig [Raibert 81]. It satisfies simultaneously the desired position and force 
constraints of the task. Positions and forces are specified according to the Mason 
formulation: directions that are constrained in position are force controlled, while 
those that are constrained in force (zero force) are position or velocity controlled. 
Duffy [Duffy 90] has shown that it is not correct to consider the velocity subspace 
and the force subspace as orthogonal as suggested in [Raibert 81]. Rather, it is the 
position or velocity controlled directions and the force controlled directions that 
have to be orthogonal in the compliance frame. 

In the parallel hybrid control method, the robot is controlled by two 
complementary feedback loops, one for the position, the other for the force. Each 
has its own sensory system and control law. The control laws of both loops are 
added before being sent to the actuator as a global control signal G (Figure IS.8). 
Each degree of freedom of the compliant frame is controlled by the position or force 
loop through the use of 2i compliance selection matrix S, which is diagonal such that: 

S = dlag(si,S2, ...,S6) [15.18] 

where Sj = 1 if the j * degree of freedom of the compliance frame is position 
controlled or Sj = 0 if it is force controlled. 

I PCL[-^(^)-»^G-»r[ 

FCL ' 

Robot 

PCL: Position Control Law; FCL: Force Control Law 

Figure 15.8. Principle of the hybrid position/force control 
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Since both loops act cooperatively, each joint contributes to the realization of 
both the position control and the force control. 

Three forms of hybrid control schemes can be distinguished according to the 
type of the global control signal G: 

• G is equivalent to joint torques (Figure IS.9); 

• G is equivalent to displacements or velocities in the task space and has to be 
multiplied by the robot inverse Jacobian to obtain joint positions (Figure 
15.10); 

• G is equivalent to forces in the task space and has to be multiplied by the 
transpose of the Jacobian matrix (Figure 15.11). 

X = f(q)K 

• 2 i^ (gH^^ 

PCU: Position Control Law in the Joint space; FCL: Force Control Law 

Figure 15,9. Hybrid force-position control scheme with addition of joint torques 
(from [Raibert 81]) 

X = f(q)K 

- f f 
1 - S H FCLl--»ke 

PCU t->fRobor^-^ 

PCU: Position Control Law in the Joint space; FCL: Force Control Law 

Kg"' .• estimate of the stiffness matrix of the environment 

Figure 15.10. Hybrid force-position control scheme with addition of velocities 
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PCLT: Position Control Law in the Task space; FCL: Force Control Law 

Figure 15.11, Hybrid force-position control scheme with addition of task forces 

In these figures, the frame transformation computations for velocities, forces and 
for the Jacobian matrix are not indicated. Practically, the matrices S and (I - S) are 
applied to signals expressed in the compliance frame. For position control in the 
joint space (Figures 15.9 and 15.10), we can use one of the laws presented in 
Chapter 14, for example the PID controller of equation [14.5], which is: 

r = Kp(q<i-q) + Kd(qd-q) + K,J(qd-q)dT [15.19] 

to 

whereas for a PID control in the task space (Figure 15.11), we have (equation 
[14.17]): 

r = jT[Kp(xd-x) + Kd(x<*-X) + Kijr(xd-x) dx] [15.20] 

to 

Normally, the force control law is chosen as: 

r = jT[iid + Kf(ir*-i[)-KfdX + Kflj(ir*-iDdx] 
to 

[15.21] 

Note that, due to the noise of force sensors, the velocity in the task space is used 
with the derivative gain rather than the derivative of the force. 

In these schemes, we can also include feedforward compensation for the 
nonlinear dynamics of the robot. For example, the position loop of the hybrid 
control of Figure 15.11 may be realized by the nonlinear decoupling control law in 
the task space described in § 14,4.3. The corresponding block diagram is given in 
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Figure 15.12 [Khatib 87]. The computation of the control vector T can be achieved 
with the Newton-Euler algorithm in a similar way to that described in Appendix 10» 
with the following arguments: 

- the joint position is equal to the current joint position q; 

- the joint velocity is equal to the current joint velocity q; 

- the joint acceleration is equal to: 

q = J-JS[XO+Kd(X<J-X) + Kp(XO-X)-.jq] 115.22) 

- the force exerted by the terminal link on the environment can be taken to be 
equal to: 

lien = (I - S) [I[̂  + Kf (IPl - ID - Kfd X + KfljfdPl - ID dx] [15.23] 

to 

where all terms are computed in the compliance frame R .̂ 

Xd 

X = J q 

X = f(q)K 

Figure 15.12, Implementation of the dynamic hybrid position-force control scheme 

An and Hollerbach [An 87} showed that the control schemes of Figures 15.9 and 
15.10, which require the inverse of the Jacobian matrix, have an unstable behavior 
when implemented on a robot with revolute joints, even in non-singular 
configurations. They assigned this instability to an interaction between the inertia 
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matrix and the inverse kinematic model J'^ whereas the scheme using J^ 
(Figure 15.11) always produces stable results. Fisher and Mutjaba [Fisher 92] 
showed that this instability comes from the formulation of the inverse kinematic 
model in the position loop of the hybrid scheme. Using the selection matrix S to 
separate position and force requirements in the task space is conceptually 
straightforward. Geometrically, the selection matrix is a projection that reduces the 
task space to a desired subspace of interest. Problems may arise when this selected 
task subspace is mapped onto the joint space using the robot Jacobian matrix. From 
the classical scheme of Figure 15.9 and equation [5.2], we can write that: 

SdX = (SJ)dq [15.24] 

From this equation, it can be seen that the selection matrix S reduces the task 
space of the robot, which becomes redundant with respect to the displacement task. 
Thus, instabilities of the hybrid control scheme of Craig and Raibert are the 
consequence of an erroneous formulation of the projection of the task error vector 
into the joint space. In fact, knowing that (SJ)"*" S = (SJ)"*", the general solution of 
[15.24] is: 

dq = ( S j r dX + [I - (S j r (SJ)] Z [15.25] 

Fisher and Mutjaba [Fisher 92] showed that choosing Z = J'̂  S dX as the 
optimization term in equation [15.25] is equivalent to the inverse kinematic relation 
dq = J~̂  S dX. This choice of Z does not ensure stability and explains the 
instabilities that can appear with the hybrid control scheme. Indeed, they showed 
that the first term of equation [15.25], which is the minimal norm solution, is always 
stable. Consequently, as indicated in Figure 15.13, the position loop reference input 
should be: 

dq = (SJ^dX [15.26a] 

In a similar manner, they showed that the force loop reference input could remain 
as the original one: 

dy = [(I - S) J]T (i!̂  - ff) [ 15.26b] 

More general solutions with optimization terms are: 

dq = ( S j r dX + [I - r J] Zq [15.27a] 

dy = [(I-S)J]T(i[d-.D + [ I - r j ] Z f [15.27b] 
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where Ẑ j and Zf are arbitrary position and force vectors in the joint space 
respectively. 

PCU: Position Control Law in the Joint space; FCL: Force Control Law 

Figure 15.13. Hybrid force-position control scheme (from [Fisher 92]) 

IS.6,2. External hybrid control scheme 

The external hybrid control scheme is con^osed of two embedded control loops 
[De Schutter 88], [Perdereau 91]: the outer loop controls force while the inner one 
controls position (Figure 15.14). The ou^ut of the outer loop is transformed into a 
desired position input for the inner loop. The resulting displacement of the robot 
permits exertion of the desired contact force on the environment. The external 
hybrid control scheme is relatively easy to implement and requires a rather small 
amount of computation. It can be implemented in industrial robots while keeping 
their conventional controllers [Thirond 96]. 

The position control loop can be achieved either in the task space or in the joint 
space by implementing one of the methods presented in Chapter 14. 

The additional displacement reference signal is given by: 

dXf = kl^ [^ + Kf (IPI-ID 4- Kfl r(ff ^-1) dt] [15.28] 

to 
where K^ is an estimate of the stiffness of the environment. 

Thanks to the integral force action, the wrench error (ff̂  -1) is allowed to prevail 
over the position error (X^ - X) at steady state [Pujas 95]. 
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Position control law 1 
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Figure 15.14. Principle of the external hybrid control scheme 

This control can be applied with a nonlinear decoupling impedance control in the 
task space [Chiaverini 93] by setting w(t) as the sum of two terms, wx(t) and wp(t), 
which are the contributions of the position loop and the force loop respectively: 

w(t) = wx(t) -f WF(t) 

wx(t) = Xd4.A-HKd(X^-X)-hKp(X<*-X)] 

WF(t) = A-UKf(lf*-lD + Kflr{ff^-lDdT] 

[15.29] 

[15.30] 

[15.31] 

to 

Note that wp(t) is obtained by multiplying the force signal by A'̂  because it is 
equivalent to an acceleration. The decoupled control law is obtained from equation 
[15.15] as: 

r = JT [Ax(q) (wx + wp) + 6x(q. 4) x+dx(q) + n [15.32] 

If the robot dynamic model is perfectly known, combining equations [15.30], 
[15.31] and [15.32] yields: 

A(X^-X) + Kd(X^-X) + Kp(X<*~X) + Kf(ff^-© + Kflhlf*^lDdT = 0 

[15.33] 
to 
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When Kf = 0 and Kn = 0, the control law [15.32] becomes equivalent to the 
impedance control (Figure 15.7). Besides, if A = I, it reduces to the decoupling 
nonlinear control in the task space such as that shown in Figure 14.5. 

15.7. Conclusion 

In this chapter, we have presented the most popular position/force control 
approaches. For other methods, the reader should refer to [Brogliato 91], 
[Siciliano 96a], for the passive force control, to [Siciliano 93], [Colbaugh 93], 
[Arimoto 93], [Siciliano 96b] for the adaptive force control or to [Volpe93], 
[Volpe 95] for explicit force control. 

We did not address the stability problem of force control and the interested 
reader should refer to [Wen 91], [Yabuta 92], [Wang 93], [Zodiac 96], 
[Siciliano 00]. 

The problem of exerting a force on a moving target, thus of controlling 
simultaneously force and velocity along the same direction, is addressed in the work 
of[deLuca91b]. 

Among the yet open problems, we have to mention the control of impact when 
the robot and the environment enter in contact. Another class of problem concerns 
the programming of compliant tasks: the choice of the axes of the compliance frame 
and their roles requires from the user a lot of experience and is much more difficult, 
in terms of abstraction capabilities, than programming displacements. Besides, some 
physical parameters, like the stiffness of the robot and the environment, are not easy 
to quantify, which results in instability problems. 



Appendix 1 

Solution of the inverse geometric model 
equations (Table 4.1) 

Al.l. Type 2 

The equation to be solved is: 

XSei + YCBj = Z [Al.l] 

Four cases are possible: 

i) ifX = 0 and Y^O,v/e can write that: 

CBj = Y [A 1.2] 

yielding: 

Gi = atan2(±>/l-.(Cei)2.C0i) [A1.3) 

ii) ifY^OandXi^O, we obtain: 

S0i = \ [MA] 

yielding: 

Gi = atan2(SGi.±-s/l~(SGi)2) [A1.5) 
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iii) ifX and Y are not zero, and Z = 0: 

Oi = atan2(-Y, X) 

Gj' = 81 + 71 
(A 1.6] 

(if X = Y = 0, the robot is in a singular configuration); 

iv) ifX, Y and Z are not zero, we can write that [Gorla 84]: 

YCGi = Z-XSOi [A1.71 

Squaring the equation leads to: 

Y2 C^GJ = Y2 (I -.S^Gi) = Z2 ^2Z X SGj + X^ S \ [A1.8] 

Therefore, we have to solve a second degree equation in SGj. Likewise, we can write an 
equation in CGj. Finally, we obtain: 

f XZ + eY^/x^^^Y^-Z^ 

na Y Z - E X V X ^ + Y ^ - Z ^ 

.^^•" X2 + Y2 

with E = ± 1 (it is straightforward to verify that two combinations of SG( and CGj can only 

satisfy the original equation). If X^ + Y^ < Z^, there is no solution. Otherwise, the solution is 
given by: 

Gi = atan2(SGi, CGj) [ALIO] 

A1.2. Type 3 

The system of equations to be solved is the following: 

rxlSGi + YlCGi = Zl 
|x2SGi + Y2CGi = Z2 [AMI] 

Multiplying the first equation by Y2 and the second by Yl, under the condition that 
XIY2-X2Yl9to,yields: 

CD ZI Y2-Z2YI . . , ^_ 
SGi = XI Y2-X2Y1 [AI.12J 
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then, multiplying the first equation by X2 and the second by XI, yields: 

„ Z2X1->Z1X2 . . , , - . 
C«i = XI Y2~X2Y1 IM,U] 

Thus: 

Oi s atan2(Sei, COi) [A 1.14] 

The condition XIY2 - X2Y1 ^ 0 means that the two equations of [Al.ll] are 
independent. If it is not the case» we solve one of these equations as a type-2 equation. 

In the frequent case where Yl and X2 are zero, the system [Al.ll] reduces to: 

fxiseistzi 
lY2cei=z2 l̂ -̂̂ l̂ 

whose solution is straightforward: 

0i s atan2(3^. YI^ [A 1.16] 

A1.3. Type 4 

The system of equations to be solved is given by: 

fXlnSGisYl 

We first compute rj by squaring both equations and adding them; then, we obtain Oj by 
solving a type-3 system of equations: 

f rj = ± V(Y1/X1)2 + (Y2/X2)2 
ID • o/Yl Y 2 , {A1.18] 
^ei = atan2(3^,X27:) 

A1.4. Types 

The system of equations to be solved is as follows: 
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fXlS8i = Yl+Zlrj 
| x 2 CBj = Y2 + Z2 Fj [A1.191 

Let us normalize the equations such that: 

rS9i = Vl+Wlri 

|cei = v2.w2;j l̂ -̂̂ l̂ 

After squaring both equations and adding them, we obtain a second degree equation in rj, 
which can be solved if: 

[Wl2 4.W22-(Vl W2-V2W1)2] > 0 [Al.21] 

Then, we obtain Gj by solving a type-3 system of equation. 

A1.5. Type 6 

The system of equations is given by: 

wsej = xcei + Ysei + zi 
wcei = xsei-.Ycei + z2 

[Al.221 

with Zl i^O and/or Z2 ^ 0. By squaring both equations and adding them, we obtain a type-2 
equation in OJ: 

BlSei + B2Cei = B3 [A 1.231 

with: 
Bl = 2(Z1 Y + Z2X) 
B2 = 2(Z1X-Z2Y) 
B3 = W 2 - . X 2 - Y 2 ~ Z 1 2 - Z 2 2 

Knowing 9,, we obtain 9j by solving a type-3 system of equation. 

A1.6. Type? 

The system of equations is the following: 

fWl C9j + W2 S9j = X C9i + Y S9i + Zl 
j w i S9j - W2 C9j = X SGj - Y C9i + Z2 [Al.241 
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It is a generalized form of a type-6 system. Squaring both equations and adding them 
gives a type-2 equation in 6J: 

BlS0i + B2C0i = B3 [A 1.25] 

where 83 = Wl^ -»• W2^ - X^ - Y^ - Zl^ - 72^. The terms Bl and B2 are identical to those 
of equation [A1.23]. 

After solving for 6i, we compute 6j as a solution of a type-3 system of equation. 

AL7. Types 

The system of equations is the following: 

fxcei-i.YC(ei-fej)=zi 
IxSBi-f YS(ei + 9j) = Z2 

By squaring both equations and adding them, Oj vanishes, yielding: 

[A 1.26] 

CGj = ^ ' ^ " ^ f x Y ^ ^ " ^ ^ 1^ -̂271 

hence: 

Gj = atan2(±Vl-(Cej)2,Cej) [A1.281 

Then, [A 1.26] reduces to a system of two equations in Bj such that: 

B1Z2-B2Z1 
^^'" Bl2^B22 
__ B1Z1^B2Z2 f̂ '̂ ^̂  
^®*" B12 + B22 

with Bl = X + Y CGj and B2 = Y SBj. Finally: 

Bi = atan2(SBi, CBj) IA 1.30] 
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The inverse robot 

The n degree-of-frccdom robot whose set of geometric parameters are (Oj', Oj'. dj\ 6j'» rj') 
is defined as the inverse of the robot (Oj, otj, dj, 9j, rj) if the transformation matrix ^n(oj'» Oj", 
dj\ Gj\ rj') is equal to ^n'k<^j»«). ^y ®j» fj)-

Table A2.1 gives the geometric parameters of a general six degree-of-freedom robot. 
Table A2.2 gives those of the corresponding inverse robot. Indeed, let us write the 
transformation matrix ^ 5 under the following form: 

^ 6 = Rot(2,ei) Traiis(«,ri) Rot(x.a2) Traiis(x,d2) Traiis(2,r2) Rot(2,92)... Rot(x,(x^) 
Trans(x,d^) TransCẑ r̂ ) RotCẑ ê ) [A2.1 ] 

Table A2.1. Geomeiric parameters of a general six degree-of-freedom robot 

1 j 
1 ' 
1 2 
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' 6 
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1 04 
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[ 06 
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<k 

ds 
d6 

Oj 

ei 
92 

03 

64 

O5 

66 

'J 1 
n 
r2 1 
r3 1 
4̂ 

rs 
'"6 1 

The inverse transformation matrix ^ o <̂ ^ ^ written as: 

% « Rot(z.-e6) Trans(a.H-6) Traiis(x,-d6) Rot(x,-a6) ROKL-QS) 
Trtiis(x,-T5)... Traiis(x,-<l2) Rot(x,-a2) Rot(i.-e|) Trans(z,-r|) tA2.2] 
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The parameters of Table A2.2 result from comparing equations [A2.1J and [A2.2]. The 
corresponding elementary transformation matrices are denoted by J'^Tj' such that: 

% • = ^{ ^12'... ^T6 = % - ^ [A2.3] 

Table A2.2. Geometric parameters of the six degree-of-freedom inverse robot 
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Dyalitic elimination 

Let us consider the following system of equations in the two unknowns x, y: 

{a x^ y^ + b xy = c y + d 

ex^y^ + fxy-f gssO 
[A3.11 

where the coefficients a» b» ..., g are constants with arbitrary values. The so-called dyalitic 
elimination technique [Salmon 1885] consists of: 

i) transforming the system [A3.1] as a linear system such that: 

ax 

ex̂  

^ bx-c -d 

fx g 
y 

L 1 
^ 0 [A3.21 

where y ,̂ y and 1 are termed power products', 

ii) increasing the number of equations: by multiplying both equations by y» we obtain two 
new equations that form, together with those of [A3.2], a homogeneous system consisting of 
four equations in four unknowns (power products): 

M Y a 0 

where M is a function of x: 

[A3.3] 
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M = 

0 ax^ 

0 cx2 

ax^ bx-c 

ex^ fx 

bx-c 

fx 

-Ki 

g 

-4"1 

g 
0 

0 J 

and Y = [ y3 y2 y l ]T 

Since one of the elements of Y is I, the system [A3.3] is compatible if, and only if, it is 
singular, which implies that the determinant of M is zero. Applying this condition to the 
example leads to a fourth degree equation in x. For each of the four roots, we obtain a 
different matrix M. By choosing three equations out of the system [A3.3], we obtain a system 
of three linear equations of type A Y'« B where Y' = [ y^ y^ y ] . Doing that, each value of 
X provides a single value of y. 

To summarize, the method requires four steps: 

- construct the power product equation in order to minimize the number of unknowns; 

- add equations to obtain a homogeneous system; 

- from this system, compute a polynomial in a single unknown using the fact that the 
system is necessarily singular; 

- compute the other variables by solving a system of linear equations. 
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Solution of systems of linear equations 

A4.L Problem statement 

Let us consider the following system of m linear equations in n unknowns: 

Y s r W C [A4.1] 

where W is an (mxn) known matrix, Y is an (mxl) known vector and t^ is the unknown (nxl) 
vector. 

Let Wa be the augmented matrix defmed by: 

Wa = tW : Y] 

Let r and TJ denote the ranks of W and Wj respectively. The relation l)etween r and r, can 
be used to analyze the existence of solutions: 

a) if r = ra, the system has at least one solution: 

- if r = ra = n» there is a unique solution; 

- if r = ra < n, the number of solutions is infmite; the system is redundant. For 
example, this case is encountered with the inverse kinematic model (Chapter 6). 

b) if r 9& ra, the system [A4.1] is not compatible, meaning that it has no exact solution; it 
will be written as: 

Y = WC + p [A4.2] 
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where p is the residual vector or error vector. This case occurs when identifying the geometric 
and dynamic parameters (Chapters 11 and 12 respectively) or when solving the inverse 
kinematic model in the vicinity of singular configurations. 

A4.2. Resolution based on the generalized inverse 

A4.2.L Definitions 

The matrix W "̂̂ ) is a generalized inverse of W if: 

WW<->)W = W [A4.31 

If W is square and regular, then Ŵ ">> = W ^ In addition, W<-') is said to be a left 
inverse or a right inverse respectively if: 

W<-̂ >W = IorWW<->) = I [A4.4J 

It can be shown that W has an infinite number of generalized inverses unless it is of 
dimension (nxn) and of rank n. A solution of the system (A4.1], when it is compatible, is 
given by: 

C = W(-^)Y [A4.51 

All the solutions are given by the general equation: 

5 = W<-̂ ) Y + (I - W<">) W) Z [A4.6] 

where Z is an arbitrary (nxl) vector. Note that: 

Wa-W(->>W)Z = 0 [A4.7] 

Therefore, the tenn (I - W '̂̂ ^ W) Z is a projection of Z on the null space of W. 

A4.2.2. Computation of a generalized inverse 

The matrix W is partitioned in the following manner: 

W [A4.8] 
LW2i W22J 



Solution of systems of linear equations 407 

where W] | is a regular (rxr) matrix* and r is the rank of W. Then, it can be verified that: 

This method gives the solution as a function of r components of Y. Thus, the accuracy of 
the result may depend on the isolated minor. We will see in the next section that the 
pseudoinverse method allows us to avoid this limitation. 

NOTE.- If the (r,r) matrix W]| built up with the first r rows and the first r columns is not 
regular, it is always possible to define a matrix W such that: 

' L W ' 2 1 W22J 
W* :» RWC = „,. „„ [A4.10] 

where W*| 1 is a regular (rxr) matrix. The orthogonal matrices R and C permute the rows and 
columns of W respectively. The generalized inverse ofYf is derived from that of W* as: 

W<-̂ > = C(W)(-^)R [A4.11] 

A4,3. Resolution based on the pseudoinverse 

A4.3.1. Definiiion 

The pseudoinverse of the matrix W is the generalized inverse W** that satisfies 
(Penrose 55J: 

(W-̂ W)T = W*W ^^^'^^^ 

It can be shown that the pseudoinverse always exists and is unique. All the solutions of 
the system [A4.1] are given by: 

C = W"̂ Y + (I-W+W)Z (A4.13] 

The first term W"** Y is the solution minimizing the Euclidean norm |( | | | . The second 
term (I - W*" W) Z, also called optimization term or homogeneous solution, is the projection 
of an arbitrary vector Z of 91̂  on lA^W), the null space of W, and therefore, does not change 
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the value of Y. It can be shown that (I - W*" W) is of rank (n - r). Consequently, when the 
robot is redundant, this term may be used to optimize additional criteria satisfying the 
primary task. This property is illustrated by examples in Chapter 6. 

When the system [A4.1] is not compatible, it can be shown that the solution W*" Y gives 
the least-squares solution minimizing the error |(W ^ - Y|p = ||p|p. 

A4J.2. Pseudoinverse compuiation methods 

A4.3.2.1. Method requiring explicit computation of the rank [Gorla 84] 

Let the matrix W be partitioned as indicated in equation [A4.8] such that W| i is of full 
rank r. Using the following notations: 

W, andW2 = [ W n W,2] 

it can be shown that: 

W+ = W2''' (WiT W Wi^y^ Wi^ [A4.141 

When W is of full rank, this equation may be simplified as follows: 

- if m > n: W = Wi -^ W-̂  = (W^ W)̂ ^ W'r, (W^ is then the left inverse of W); 

- if m < n: W =: W2 -* W+ = WT (W W'^yK (W+ is then the right inverse of W); 

- ifm = n:W = Wi:=W2->W+ = W->. 

If W] I is not of rank r, the orthogonal permutation matrices R and C of equation [A4.10] 
should be used, yielding: 

W+ = CCW^-^R [A4.15] 

A4.3.2.2. Greville method [Greville 60], [Foumier 80] 

This recursive algorithm is based on the pseudoinverse properties of a partitioned matrix. 
It does not require the explicit computation of the rank of W. Let W be a partitioned matrix 
such that: 

W = [ U : V ] [A4.16J 

Its pseudoinverse W"*" can be written as [Boullion 71]: 
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, U+ - U+VC+ - U+V(I - C+C) M VT(U+)'''U+{I - VC+) 1 
W+= ^ ^ , tA4.17] -[ C*̂  + (I - C-̂ C) M V W)'^U"*'(I - VCT') J 

with: 
C = (I-UU-^)V 
M = [I 4.(1 -.C+C)VT(U'^)Tu+V(I -C-^OJ-l 

If the matrix V reduces to a single column, a recursive algorithm that does not require any 
matrix inversion may be employed. 

Let W|( contain the first k columns of W. If Vf^ is partitioned such that the first (k - 1) 
columns are denoted by W^ î and the k^ column is wĵ , then: 

Wk = [ >Vk-l • Wk ] [A4.I8] 

The pseudoinversc Wĵ  is derived from Wĵ .j and from the k**̂  column of W: 

w;.[< 
bk 

[A4.19] 

where: 

dk = y^lx Wk [A4.201 

In order to evaluate b^, we define: 

Ck« Wk-Wk-idk tA4.211 

then, we compute: 

bk = cĵ  = (C|cTcicr>C|cT ifcjc^O 

= (1 + d̂ '̂ d̂̂ r̂  dic"̂  Wj .̂, if CK = 0 [A4.22) 

This recursive algorithm is initialized by calculating W| using equation [A4.14]: 

W | = w | = (WjTwir^ wi''' (ifW| =0.then W | = 0T'). [A4.23) 

The pseudoinversc of W can also be calculated by handling recursively rows instead of 
columns: physically, it comes to consider the equations sequentially. . 
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* Example A4.L Computation of the pseudoinverse using the Greville method. Let us 
consider the following matrix: 

" • [23! ] 
i) first iteration (initialization): 

W | = [ 1/5 2/5 ] 

ii) second iteration: 

d2 = 8/5.C2=[_^^}b2 = [ 2 - l ] . W ^ [ ; ' _ ' ] 

Hi) third iteration: 

Finally, the pseudoinverse is: 

w-̂  = 
-11/6 4/3 

-1/3 1/3 

7/6 -2/3 J 

A4.3.2.3. Method based on the singular value decomposition of W 

The singular value decomposition theory [Lawson 74], [Dongarra 79], [Klema 80] states 
that for an (mxn) matrix W of rank r, there exist orthogonal matrices U and V of dimensions 
(mxm) and (nxn) respectively, such that: 

w = uzvT [A4.24) 

The (mxn) matrix £ is diagonal and contains the singular values a\ of W. They are 
arranged in a decreasing order such that ofj > 02 > ... >Or, £ has the following form: 

r Sfxr Orx(n-r) 1 

L (̂in-r)xr (̂m-r)x(n-r) J 
[A4.25] 
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where S is a diagonal (rxr) matrix of rank r, formed by the non-zero singular values ai of W. 

The singular values of W are the square roots of the eigenvalues of the matrices W*̂  W or 
W W^ depending on whether n < m or n > m respectively. 

The columns of V are the eigenvectors of W^ W and are called right singular vectors or 
input singular vectors. The columns of U are the eigenvectors of W W'̂  and are called left 
singular vectors or output singular vectors. 

The pseudoinverse is then written as: 

W+ = V l^V^ (A4.26) 

with: 

L 0 Oj 

This method* known as Singular Value Decomposition (SVD) (Maciejewski 89]« is often 
implemented for rank determination and pseudoinverse computation in scientific software 
packages. 

The SVD decomposition of W nutkes it possible to evaluate the 2-norm condition 
number, which can be used to investigate the sensitivity of the linear system to data variations 
on Y and W. Indeed, if W is a square matrix, and assuming uncertainties C + ̂ C the system 
[A4.1) may be written as: 

Y + dY = [W + dW] [C + dO IA4.27] 

The relative error of the solution may be bounded such that: 

1 g j ^ < c o n d p ( W ) ^ [A4.28al 

condp(W) is the condition number of W with respect to the p-norm such that: 

condp(W) = ||W||p||Wip (A4.29] 

where ||*||p denotes a vector p-norm or a matrix p-norm. 

The 2-norm condition number of a matrix W is given by: 
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cond2(W) = 5 ^ [A4.301 

Notice that the condition number is such that: 

cond2(W) > 1 (A4.31J 

NOTES-

- the p-norm of a vector ^ is defined by: 

IICIIp = (ZlCiP)^'P f o r p > l [A4.32J 
i:=l 

- the p-norm of a matrix W is defined by: 

IJWBp = m a x i ^ * ^ : C ̂  0„,,} = max{|(W CBp : ||a|p= 1} [A4.33] 

- the 2-nonn of a matrix is the largest singular value of W. It is given by: 

IWh = <Jmax 

- equations similar to [A4.28] can be derived for over determined linear systems. 

• Example A4.2. Computation of the pseudoinverse with the SVD method. Consider the 
same matrix as in Example A4.1: 

W 
r i 2 3 - | 

L2 3 4 j 

It can be shown that: 

0.338 0.848 -0.408 

V = 
r 6.55 0 0 1 r 0.57 -0.8221 

0.551 0.174 0.816 L z s Lu = 
f L 0 0.374 O i L 0.822 0.57 J 

L 0.763 -0.501 -0.408 J 

The pseudoinverse is obtained by applying equation [A4.26]: 
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w-̂  = 
-1.83 1.33 

-0.333 0.333 

1.17 -0.667 

A4.4. Resolution based on the QR decomposition 

Given the system of equations [A4.1], two cases are to be considered depending on 
whether W is of fiill rank or not. 

A4.4.1. Full rank system 

Let us assume that W is of full rank. The QR decomposition of W consists of writing that 
[Golub831: 

'\ * 1 
L ^(m-r).ii J 

Q^W = A form>n.r = n [A4.34) 
L V(m-r).ii J 

QT w = [ R On,,n.r J for n > m, r =: m [A4.351 

where R is a regular and upper-triangular (rxr) matrix and where Q is an orthogonal (mxm) 
matrix. 

For sake of brevity, let us only consider the case m > n» which typically occurs when 
identifying the geometric and dynamic parameters (Chapters 11 and 12 respectively). The 
case n > m can be similarly handled. The matrix Q is partitioned as follows: 

Q « [ Ql Q2 ] [A4.361 

where the dimensions of Ql and Q2 are (mxr) and mx(m-r) respectively. 

Let us define: 

Since the matrix Q is orthogonal, it follows that [Golub 83]: 

l|Y-WCI|2 * HQTY-QTWOI^ = |G1-RC»2 + |G2||2 = ||p||2 IA4.381 
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From equation [A4.38], ( is the unique solution of the system: 

Ri; = Gi [A4.39] 

Since R is a regular and upper-triangular (rxr) matrix, the system [A4.39) can be easily 
solved with a backward recursion technique (compute sequentially ^ , l^,\,...). The norm of 
the residual for the optimal solution is derived as: 

llPllmin = IIG2II = | | Q 2 T Y | | [A4.40] 

This solution (when m > n and r = n) is identical to that obtained by the pseudoinverse. In 
order to speed up the computations for systems of high dinoensions (for example, this is the 
case for the identification of the dynamic parameters), we can partition the system [A4.1] into 
k sub-systems such that: 

Y(i) = W(i); fori=l, ...,k [A4.41] 

Let Q(i) s [Ql(i) Q2(i)] and R(i) be the matrices obtained after a QR decomposition of 
the matrix W(i). The global system reduces to the following system of (nxk) equations in n 
unknowns: 

r QiT(i)Y(i) • 

L QlT(k)Y(k). 

r QiT(i)Y(i)" 

L QlT(k)Y(k) . 

s 

' QlT(l)W(l) 1 

. Ql'''(k)W(k) J 

• R( l ) • 

. R(k) . 
; [A4.42J 

A4.4.2« Rank deficient system 

Again, let us assume that m > n but in this case r < n. We permute the columns of W in 
such a way that the first columns are independent (the independent columns correspond to 
the diagonal non-zero elements of the matrix R obtained after QR decomposition of W). We 
proceed by a QR decomposition of the permutation matrix and we obtain : 

r Rl R2 1 

L "(m-r),r v(in-r),(n-r) J 
[A4.43] 
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where P is a permutation matrix obtained by permuting the columns of an identity matrix» Q 
is an orthogonal (mxm) matnx» and Rl is a regular and upper>triangular (rxr) matrix. 

Let: 

Ml] C2 

From equation [A4.37), we obtain: 

||p||2 = H Y - w g p = i i Q T Y - Q T w p p T g p 

J-Gil rRici-nacil 

= I|G1 - [Rl CI + R2 {;2)||2 + ||G2|2 (A4.441 

(1 is the unique solution of the system: 

R1C1 = G 1 - R 2 C 2 [A4.4S} 

Then, we obtain a family of optimal solutions parameterized by the matrices P and {|2: 

All solutions provide the minimum norm residual given by equation [A4.40]. We obtain a 
base solution for (2 ^ 0((|.r),]. Recall that the pseudoinverse solution provides the minimum 
norm residual together with the minimum norm || ( |p . 
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Numerical computation of the base 
parameters 

A5.1. Introduction 

The base parameters constitute the minimum set of parameters that characterize 
completely a given system. They also represent the identifiable parameters of the system. 
They are obtained from the standard parameters by eliminating those that have no effect on 
the model and by grouping some others in linear combinations. The determination of the base 
inertial parameters has been carried out in Chapters 9 and 10 by the use of straightforward 
symbolic methods for serial and tree structured robots. However^ the symbolic approach 
cannot give all the base parameters for robots containing closed loops. ITiis problem can be 
solved by the use of the numerical method presented in this appendix. In addition, the 
numerical n^thod can also be applied to determine the base parameters for the geometric 
calibration of robots. 

The symbolic approach of computing the base paran^ters is based on determining the 
independent elements of the energy functions represented by the row vector h (equation 
(9.41]), or by determining the independent columns of the D matrix of the dynamic model 
(equation [9.36]). Numerically this problem is equivalent to the study of the space span by 
the columns of a matrix W fonmd from h (or D) using r random values of q, q (or q, q, q). 
This study can be carried out using the singular value decomposition (SVD) or the QR 
decomposition of W [Oautier 91]. In this appendix^ we develop the numerical method that is 
based on the QR decomposition of a matrix W, which is derived from the energy functions. 
Both cases of tree structured robots and closed loop robots are treated. 
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A5.2. Base inertial parameters of serial and tree structured robots 

The total energy of the system H is linear in terms of the standard inertial parameters. It is 
given by the following equation: 

H = hK [A5.1] 

where: 

- K represents the (1 Inxl) vector of the standard inertial parameters of the links and of 
the rotors of actuators; 

- h(q, q) is the (1x1 In) row vector composed of the energy functions; 

- q and q are the (nx 1) joint position and joint velocity vectors respectively. 

To determine the base parameters, we construct a matrix W by calculating the energy row 
h for r random values of joint positions and velocities such that: 

W = 

•h(l)-

h(2) 
[A5.21 

Lh(r)J 

with h(i) = h[q(iX q(i)). i = 1 r. and r » 1 In. 

An inertial parameter has no effect on the dynamic model if the elements of its 
corresponding column in W have the same value, i.e. its function in h is constant and 
independent of q(i), q(i). By eliminating such parameters and the corresponding columns, the 
matrix W is reduced to c columns and r rows. 

We note that: 

- the number of the base inertial parameters b is equal to the rank of W; 

- the base parameters are those corresponding to b independent columns of W; 

- the grouping equations are obtained by calculating the relationship between the 
independent columns and the dependent columns of W. 

The application of the foregoing statements can be achieved by the use of the QR 
decomposition of W (§ A4.4), which is given by: 

-[" 1 
L%-c)xcJ 

Q T W = L [A5.3] 
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where Q Is an (rxr) orthogonal matrix, R is a (cxc) upper-triangular matrix, wd Ojxj is the 
(ixj) matrix of zeros. 

Theoretically, the non-identifiable parameters are those whose corresponding elements on 
the diagonal of the matrix R are zero (Forsythe 77], [Golub 83]. Let x be the numerical zero: 

t = r e max(|Rii|) [A5.4] 

where |Rii| is the absolute value of Ri|, and e is the computer precision. 

Thus, if iRjil < t. then the i*** parameter is not identifiable. On the contrary, if |Rii| > t. 
then the corresponding column in W is in^pendent and constitutes a base of the space span 
by W. Let the b independent columns be collected in die matrix Wl. and the corresponding 
parameters be c^l l^t^ in the vector KL The other columns and parameters are represented 
by W2 and K2 respectively, such that: 

W K = [ W 1 W 2 ] [ ^ ] fA5.5} 

The matrix W2 can be written in terms of Wl as follows: 

W2 = Wl P [A5.6) 

Consequently: 

([".'J-WK, W K = [ Wl W2 ] U Wl K B IA5.7] 

where the base parameter vector K B is given by: 

K B = K l ^ - P K l tA5.8] 

Thus, the matrix P allows us to obtain the grouping equations of the parameters K2 with 
Kl. In order to determine P. we compute the QR decomposition of the matrix [ Wl W2 ] , 
which is written as: 

r Rl R2 1 
[ Wl W2 ] = [ Ql Q2 ]l ^ U [ QlRl Q1R2 ] (A5.9] 

L''(r.b)xb v(r.b)x(c.b) J 

where Rl is an (rxr) regular upper-trianplar matrix, and R2 is a (bx(c-b)) matrix. 
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From equation IA5.9], we obtain: 

Ql = WlRl-l (A5.10) 
W2 = Q1R2 = WlRr*R2 [A5.11] 

and finally, using equation [A5.6]: 

P = R1'^R2 [A5.12] 

A5.3. Base inertial parameters of closed loop robots 

The geometric description of closed loop robots is given in Chapter 7. The joint position 
vector of the equivalent tree structure is given by: 

•a qar = [A5.13] 

where q^ is the (Nxl) vector of the active joint variables, and qp is the ((n - N)xl) vector of 
the passive joint variables. 

The energy functions of the inertial parameters of the closed loop structure are the same 
as those of the equivalent tree structure. This means that we can apply the algorithm of the 
tree structured robots to the closed loop structures with the difference that the matrix W is 
calculated using random values for the independent active variables q̂ Ci) and qa(i) for 
i s 1,..., r. The corresponding passive variables qp and qp are evaluated from the constraint 
equations of the loops. 

A5.4. Generality of the numerical method 

The numerical method can be used for the determination of the minimum parameters of 
other applications such as: 

- determination of the identifiable parameters for the geomeuic calibration of the 
parameters (Chapter 11) [Khalil 91a]; 

- calculation of the minimum parameters of flexible structures [Pham 91a]. 

This numerical method is easy to implement, thanks to a software package such as 
SYMOROf- [Khalil 97] for the automatic computation of the symbolic expressions of the 
energy functions (to determine the elements of h) and thanks to scientific software packages 
of matrix computation such as Matlab and Mathematica. 



Appendix 6 

Recursive equations between the energy 
functions 

In this appendix, we establish the recursive equation between the energy functions of the 
inertial parameters of two consecutive links in an open loop structure (serial or tree structured 
robots). 

A6.1. Recursive equation between the kinetic energy functions of serial robots 

The kinetic energy of link j can be written using equation [9.19] as: 

with: 

'i = LSJ 

and: 

jjj = 
Mjl3 - J M S J 

JMSj JJj 

[A6.11 

tA6.2) 

[A6.3] 

The recursive equation of the kinematic screw is written using equation [9.22] as: 

JVj=iTj.,i->Vj.,+qjJ|.j [A6.4] 



422 Modeling, identification and control of robots 

where Jfij is defined by equation [9.23a]. 

The kinetic energy of link j is linear in the inertial parameters of link j . Consequently, it 
can be written as: 

Ej = Cj Kj [A6.5] 

where Cj is the (1x10) row matrix containing the energy functions of die inertial parameters of 
link j . TTie parameters of link j are given by: 

Kj = [ XXj XYj XZj YYj YZj ZZj MXj MYj MZj Mj f [A6.6] 

By substituting for JVj from equation [A6.4] into equation [A6.1], we obtain: 

Ej = l(Jirj.i i'%x + qj iap'^ijj (iTj.i i->Vj.i + qj inj) [A6.7] 

Developing equation [A6.7] gives: 

Ej = jJ-^vJi (JTTJ,ijjiTj.i)J->Vj.i + qj iapj jJVj- |q j i | i jJJj iftj [A6.81 

Let us set: 

i'Uj = JTrJ,JJIjiTj.i [A6.9] 

qj r\j JKj = i^JiJj iVj - ^ qj i^ijj Jtij [A6. lOJ 

where the row vector T̂J is given by: 

n j = a j [ 0 0 (Oij 0 a)2j ( (03j-2^P ^2.j "^U ^ 1̂ •»* 

OjIO 0 0 0 0 0 -0)2j toij 0 (Vsj-^qj)] IA6.111 

with: 

iVj = [V,j V2.j V 3 j f 

j©) = (Wlj (02 j (03 j f 

Equation [A6.9] transfonns the inertial parameters of link j from frame Rj into frame 
Rj.l. It can be written as: 
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i'% =J->XjJKj [A6.12J 

The expression of J'̂ Xj is obtained by comparing equations [A6.9] and [A6.12]. It is 
given in Table 9.1 for serial robots. 

Using equations [A6.5], [A6.9]» [A6.10] and [A6.12]» we rewrite equation [A6.8] as 
follows: 

Ej = (ej.iJ-^Aj4qjf»j)Kj [A6.13] 

Finally, from equations [A6.5] and [A6.13], we deduce that: 

ej = Cj.ii-^Xj-»-qjT)j [A6.14] 

witheo = Oixio. 

A6.2. Recursive equation between the potential energy functions of serial robots 

The potential energy of link j is written as (equation [9.25b]): 

Uj = - V [^j Mj + % JMSjl [A6.15] 

where ^g = [ El S2 83 ] indicates the acceleration due to gravity. 

This expression is linear in the inertial parameters. It can be written as: 

Uj=:UjKj [A6.16] 

Using equations [A6.15] and [A6.12], we can write that: 

Uj = gu%Kj [A6.17] 

where: 

gu = [ 01x6 ~ V 0 1 [A6.181 

From equation [A6.17], we deduce that: 

Uj = g^% (A6.19] 

Since ^ j = ^ j . | i'̂ Xj, we obtain the following recursive equation for the potential 
energy functions: 
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with UQ = gu-

(A6.20] 

A63. Recursive equation between the total energy functions of serial robots 

The total energy of link j is written as: 

Hj = Ej + Uj = (Cj + Uj) Kj = hj Kj [A6.21] 

with: 
hj = ej-»-Uj [A6.22] 

From equations [A6.14] and [A6.20], we obtain the following recursive equation: 

hj -h j . ,HXj + qjTlj [A6.23J 

with ho = gu 

A6.4. Expression of ̂ (î Xj in the case of the tree structured robot 

In the case of the tree structured robot, equation [A6.23] is valid after replacing j - 1 by 
i= a(j)- The (10x10) matrix *Aj represents the matrix transforming the inertial parameters Kj 
from frame Rj to frame Rj and can be obtained by developing the following equation: 

ijj = JTj JJfjiTi 

which is equivalent to: 

'Kj = 'XjiKj 

[A6.24] 

[A6.25] 

By comparing equations [A6.24] and [A6.25], we obtain the expressions of the elements 
of 'Arj in terms of the elements of the matrix ^Tj, which are functions of the geometric 
parameters (YJ, bj, otj, dj, 6j, rj) defming frame Rj relative to frame Rj (Chapter 7), as follows: 

[A6.26] iXj = 

' Xll XI2 A.13 

©3x6 'Aj iPj 

. 0ix6 Ou3 1 
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The dimensions of the n»trices M l , X12 andX13 are (6x6). (6x3) and (6x1) respectively. 
To simplify the writing, let: 

iAj = [ s n a ] 

'Pj = [ P x Py Pz] '" 

IA6.27) 

[A6.28] 

Thus: 

Xll 

*X*X ^^X"X ^^X"X "X"X ^"X^X "X*X 

Sx»y synx+sxny Syax+Sxay n,ny nya^+n^ay axay 

SzSx s^nx+Sxn^ s^ax+Sjaj nxn^ n^ax+nxa^ a^a, 

SySy 2nySy 2syay nyny 2nyay ayay 

SySz Sjny+syn^ ays^+sya, nyn^ n^ay+nya^ aya^ 

|_ SjSj, IrijSt 2SA n^n^ 2nia^ a^a^ _J 

p 2(SiP3+SyPy) 2(n,P,+nyPy) 2(a,P,+ayPy) 

-8yPx-$xPy -nyPx-nxPy -"yPx-axPy 

-SzPx-SxPr -nzPx-nxPi -azPx-axPt 

2(SzPz+SxPx) 2(n,P^+nxPx) 2(a,Pj+axPx) 

-s.Py-SyP, -n,Py-nyP, -a^Py-ayP, 

2(SyPy+SxPx) 2(nyPy+nxPx) 2(ayPy+axPx) J 

X13 = (PzPz+PyPy "PxPy "PxPz PzPz+PxPx -PzPy PxPx+PyPy ] ^ 

X12« 

[A6.29] 

tA6.301 

IA6.31] 
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Dynamic model of the StSubli RX-90 robot 

In this appendix, we present the simplified Newton-Euler inverse dynamic model of the 
Stftubli RX-90 robot. Hiis model is obtained automatically using the software package 
SYMORQf [Khalil 97]. The inertial parameters correspond to the case of symmetric links, 
which are given in Table 9.4. The components of the force and moments exerted by the end-
effector on the environment are denoted by FX6, FY6, FZ6, CX6, CY6, and CZ6. The joint 
friction forces are neglected. Hie velocity, acceleration and torque of joint j are denoted by 
QPj, QDPj and OAMj respectively. The acceleration of gravity is denoted by 03. As already 
mentioned, Sj and Cj denote sin(Oj) and cos(Oj) respectively. 

Noting that the equations with an asterisk (*) on their left are constants and can be 
evaluated off-line, the computational cost of this model is 160 multiplications and 113 
additions. 

No31=QDPl*2ZlR 
Wn2=QPl*S2 
WI22=C2*QP1 
WPl 2=QDP1 •S2 + QP2*W122 
WP22=C2*QDPI ~QP2*Wn2 
DV222=~W122**2 
DV332«-QP2**2 

DV122=:WI12*WI22 
DV132=QP2*W112 
DV232=QP2*WI22 
U112=DV222 4DV332 

U212=DV122 + QDP2 

U312=DV132-.WP22 
VP12«-G3*S2 
VP22=-.C2*G3 
PIS22=XXR2-ZZR2 
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Nol2=WPl2*XXR2 + DV232*ZZR2 

No22=DV132*PIS22 

No32=-DV122*XXR2 + QDP2*ZZR2 

WI13=C3*WI12 + S3*WI22 

WI23=-S3*WI12 + C3*WI22 

W33=QP2 + QP3 

WP13=QP3*W123 + C3*WP12 + S3*WP22 

WP23=MJP3*WI13 - S3*WP12 + C3*WP22 

WP33=QDP2 + QDP3 

DV113»-WI13**2 

DV333=^-W33••2 

DVl23=Wn3*WI23 

DVl33=W33*Wn3 

DV233=W33*WI23 

U123=DV123-WP33 

U223=DV113 + DV333 

U323=DV233 + WP13 

VSP13=d3*Un2 + VPl2 

VSP23=d3*U212 + VP22 

VSP33=d3*U3l2 

VP13=C3*VSP13 + S3*VSP23 

VP23=-S3*VSPI3 + C3*VSP23 

F13=MYR3*U123 

F23=MYR3*U223 

F33=MYR3*U323 

*PIS23=XXR3-ZZR3 

Nol3=WPl3*XXR3 + DV233*ZZR3 

No23=:DV133*PIS23 

No33:=-DVl23*XXR3 + WP33*ZZR3 

WI14=-S4*W33 + C4*WI13 

WI24=-C4*W33 - S4*W!13 

W34=QP4 + WI23 

WP14M}P4*WI24 + C4*WP13 - S4*WP33 

WP24=-QP4*Wn4 - S4*WP13 - C4*WP33 

WP34=QDP4 + WP23 

DV124=Wn4*WI24 

DV134=W34*WI14 

DV234=W34*W124 

VSP14«RU*U!23 + VP13 

VSP24=RU*U223 + VP23 

VSP34«RL4*U323 + VSP33 

VP14=C4*VSP14 - S4*VSP34 

VP24=-S4*VSP14 - C4*VSP34 
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•PIS24«XXR4-ZZR4 

Nol4=WP14*XXR4 + DV234*ZZR4 

No24«DV134*PIS24 

No34=-DV124*XXR4 + WP34*ZZR4 

W115=S5*W34 + C5*WI14 

WI25=C5*W34-.S5*Wn4 

W35=QP5 - WI24 

WPI5=QP5*WI25 -f C5*WP14 + S5*WP34 

WP25«-QP5*WI15 - S5*WP14 + C5*WP34 

WP35=QDP5-WP24 

DVn5=-WI15**2 

DV335«--W35**2 

DV125=WI15*WI25 

DV135=W35*Wn5 

DV235aW35*W125 

U125«DV125-WP35 

U225=DV115 + DV335 

U325=DV235 + WP15 

VP15«C5*VPI4 + S5*VSP24 

FI5«MYR5*U125 

F25=MYR5*U225 

F35=MYR5*U325 

•PIS25=XXR5-ZZR5 

Nol5=WP15»XXR5 •»• DV235*ZZR5 

No25=:DV135*PlS25 

No35=:-DV125*XXR5 -»• WP35*ZZR5 

Wn6a-S6*W35 •»• C6*WI15 

W126=-C6*W35 - S6*Wn5 

W36=QP6 + WI25 

WP16=QP6*W126 ^ C6^WP15 - S6*WP35 

WP36aQDP6 + WP25 

DV126=WI16*W126 

DV136=:W36*WI16 

DV236=W36*WI26 

*PIS26=XXR6-ZZ6 

Nol6=WP16*XXR6 + DV236*ZZ6 

No26=DV136*PIS26 

No36=-DV126*XXR6 + WP36*ZZ6 

N16=CX6 + Nol6 

N26=CY6 •«• No26 

N36«CZ6 + No36 

FDn6«C6*FX6-FY6*S6 

FD136=-C6*FY6 - FX6*S6 
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E15=F15 + FDI16 

E25=F25 + FZ6 

E35=F35 + FD136 

NI5=C6*N16 + Nol5 ' N26*S6 - MYR5*VP24 

N25=N36 + No25 

N35=-<C6*N26) + No35 - N16*S6 - MYR5*VP15 

FDn5=C5*E15-E25*S5 

FDI35=C5*E25 + E15*S5 

N14=C5*N15 + Nol4-N25*S5 

N24=-N35 + No24 

N34=C5*N25 + No34 + N15*S5 

FDn4=C4*FDn5 + E35*S4 

FDI34=C4*E35 - FDn5*S4 

E13=F13 + FDn4 

E23=F23 + FDI35 

E33=F33 + FDI34 

N13«C4*N14 + Nol3 + FD134*RU - N24*S4 + MYR3*VSP33 

N23=N34 + No23 

N33MC4*N24) + No33 - FDn4*RU - N14*S4 - MYR3*VP13 

FDI23=C3*E23 + EI3*S3 

N12=C3*N13 + Nol2'N23*S3 

N22=Hd3*E33) + C3*N23 + No22 + NI3*S3 

N32=d3*FDl23 + N33 -»- No32 - MY2*VP12 + MXR2*VP22 

N3l=C2*N22 + No3l + N12*S2 

GAM1=:N31 

GAM2=N32 

GAM3=N33 + IA3*QDP3 

GAM4«N34 + IA4*QDP4 

GAM5=N35 + 1A5*QDP5 

GAM6=N36 + 1A6*QDP6 
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Computation of the inertia matrix of tree 
structured robots 

In this appendix, we develop a method to compute efficiently the inertia matrix of tree 
structured robots. Note that a serial robot is a special case of the tree structured robot. This 
method is based on the utilization of a simplified special case of Newton-Euler algorithm and 
on the concept of composite links [Khalil 90b]. 

A8.1. Inertial parameters of a composite link 

The composite link j"** is composed of link j and of the links supported by link j (Figure 
A8.1). The inertial parameters of the composite link j"^ can be calculated in terms of the 
standard parameters (or base parameters) of its links using the following recursive algorithm: 

i) initialization. For J =/,...,«.• 

i j * = ijj, JMSJ = iMSj, M^ = Mj 

We recall that a(j) indicates the link that is antecedent to link j ; 

ii)forj = n,..., 2 and a(j) ^ 0: 

+ »(J)Pj«(J)pjMj* (A8.1al 



432 Modeling, identification and control of robots 

with: 

- »0)MSJ^ = »(J)AjiMsJ'; 
- v: (3x3) skew-symmetric matrix of the components of the vector v; 

- aO)Tj = 
aO)Aj «(J)Pj 

L 03,1 ' 

- JJj: inertia tensor of the composite link j * referred to frame RJ; 

- JMS:: first moments of the composite link j"** referred to frame RJ; 

- M:: mass of the composite link j"*". 

We note that equations [A8.1] are equivalent to the following: 

where ^̂ ^Xj andJKj are defined in Chapters 9 and 10 and Appendix 7. 

IA8.2] 

NOTE.- The relationship between the concept of composite link parameters and base inertia! 
parameters is considered in [Khalil 90a]. 

Figure A8.1. Composite linkj^ 



Inertia matrix of tree structured robots 433 

A8.2. Computation of the inertia matrix 

We have seen in § 9.7.1 that the j^** column of the inertia matrix A can be computed by 
the Newton-Euler inverse dynamic algorithm by setting: 

ij = Uj, q = 0, g = 0, Fc = 0 (fci = 0, mei = 0 for i = 1 n) 

where Uj is an (nxl) vector with a 1 in the j^** row and zeros elsewhere. 

Under these conditions, the forward recursive equations of the Newton-Euler inverse 
dynamic (Chapter 9) are only applied to link j"*": 

*̂CDk =: 0, *̂d) ic = 0, ^Vk = 0, ^Fk = 0, ^Mk = 0 for k < j [A8.3] 

i(Dj = 0 (A8.4] 

i(bj = SjJaj [A8.5] 

iVj = Ojiaj [A8.6] 

JFj = M J iVj -f Jd)j X JMSJ [A8.7] 

JMj = i j j id)j + iMsJ X iVj [ A8.8] 

We deduce that: 

- if joint j is prismatic (icbj« 0, JMj« 0 and J Vj = [ 0 0 I ] \ then: 

JFj = [0 0 Mjf [A8.91 

JMj = (MYJ" -MX]^ o f [A8.10] 

- if joint j is revolute (iVj = 0 and Jcbj = [ 0 0 1 ] \ then: 

iFj = hMY^ MXj"" o f [A8.I1) 

iMj = [XZj YZ| izjf [A8.12] 

The recursive backward computation starts by link j and ends with link s» where a(s) = 0. 
The algorithm is given by the following equations: 

- if joint j is prismatic, then: 

jfj = JFj = [0 0 M]^f [A8.13] 
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i iT Jnij = JMj = [MYj -MXj 01' [A8.14] 

,+ 

ifj = JFj = [-MY/ 

Jitij = JMj = [XZ/ 

Ajj = Z z | + Iaj 

Mx/ 

vz; 
of 
Tzjf 

Ajj = Mj +Iaj [A8.15] 

- if joint j is rcvoIutc» then: 

[A8.16) 

[A8.17J 

(A8.18] 

Then, the following equations are computed for k=:j. a(j), a(a(j),..., s. where a(s)=0: 

a(k)f̂ (,,̂  = a(k)A^kf^ [A8.19] 

ra(k) = Aa(k),j = (C â(k)̂ a(k) + 5a(k)ina(k))^*^^^«a(k) [A8.21] 

NOTES-

- the element Aj j of the inertia matrix is set to zero if link i does not belong to the path 
between the base and link j ; 

- this algorithm provides the elements of the lower part of the inertia matrix. The other 
elements are deduced using the fact that the inertia matrix A is symmetric. 



Appendix 9 

Stability analysis using Lyapunov theory 

In this appendix, we present some results about the stability analysis of nonlinear systems 
using Lyapunov theory. It is largely based on [Slotine 91] and [Zodiac 96]. 

A9.1. Autonomous systems 

Let us consider the autonomous system (i.e. time-invariant) represented by the following 
state equation: 

X = f(x) [A9.1] 

A9.1.1. Definition of stability 

An equilibrium point x = 0 such that f(x) = 0 is said to be: 

a) stable if for any e > 0, there exists R > 0 such that if ||x(0)|| < E, then ||x(t)|| < R; 

b) asymptotically stable if for any E > 0 and if ||x(0)|| < E, then ||x(t)|| -> 0 as t -^ oo; 

c) exponentially stable if there exist two strictly positive numbers a and X such that: 

||x(t)||<aexpKt)||x(0)|| 

d) an equilibrium point is globally asymptotically (exponentially) stable if it is 
asymptotically (exponentially) stable for any initial value x(0). A linear system is 
always globally exponentially stable or unstable. 

Some of these definitions are illustrated in Figure A9.1. 
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1: stable 
2: asymptotically stable 
3: unstable 

Figure A9.1. Stability definition 

A9.1.2. Positive definite and positive semi'definite functions 

The real function V(x) is positive definite (PD) in a ball B at the equilibrium point x = 0 
if V(x) > 0 and V(0) = 0. The ftinction V(x) should have continuous partial derivatives. 
Moreover, for some e > 0, V(x) should be less than e in a finite region at the origin. 

If V(x) > 0, then the function is positive semi-definite (PSD). 

A9.1.3. Lyapunov direct theorem (sufficient conditions) 

If there exists V(x) PD in a ball B around the equilibrium point x = 0 and if: 

- V(x) is negative semi-definite (NSD), then 0 is a stable equilibrium point; 

- V(x) is negative definite (ND), then 0 is asymptotically stable; 

- V(x) is NSD and ̂  0 along all the trajectory, then 0 is asymptotically stable. 

Moreover, if V(x) is PD all over the state space Vx ^ 0, V(x) -> 0 as x -^ 0, 
lim V(x) -> <» as Ijxll -^ oo and if V(x) is ND, then 0 is globally asymptotically stable. 

A Lyapunov function can be interpreted as an energy function. 



Stability analysis using Lyapunov theory 437 

A9.1.4. La Salle theorem and invariani sei principle 

If V(x) is only NSD, it is yet possible to prove that the system is asymptotically stable, 
thanks to La Salle theorem [Hahn 67]. 

Definitloii. The set G is invariant for a dynamic system if every trajectory starting in G 
remains in G Vt. 

Theorem. Let R be the set of all points where V = 0 and M be the largest invariant set of R; 
then every solution originating from R tends to M as t -4 «>. 

A9.2. Non-autonomous systems 

Let us consider the non-autonomous system (i.e. time-varying) represented by the 
following state equation: 

X = f(x, t) [A9.2] 

A9.2.1. Definition of stability 

The equilibrium point x = 0 such that f(x, 0) s 0 Vt > to is said to be: 

a) stable at t = to, if for any e > 0 there exists R(e, to) > 0 such that if ||x(to)|| < e then 

| |x(t)| |<RVt>to; 

b) asymptotically stable at t = to, if it is stable and if there exists R(to) > 0 such that 
||x{to)|| < R(to) => X(t) - > 0 as t - ^ oo; 

c) exponentially stable, if there exist two positive numbers a and X such that: 

||x(t)|| < a exp (-X (t-to)) ||x(to)||, Vt > to for x(to) sufficiently small; 

d) globally asymptotically stable, if it is stable and if x(t) -> 0 as t - > » , Vx(to); 

e) uniformly stable, if R = R{e) can be chosen independently of to-

A9.2.2. Lyapunov direct method 

Definition 1 (Function of class K) 

A continuous function a : St*" -> 9t^ is of class K if a(0) = 0, a(a) > 0 Vo > 0, and a is 
non-decreasing. 
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Definition 2 (PD function) 

A function V(x, t) is locally (globally) PD if and only if there exists a function a of class 
K such that V(0, t) = 0, V(x, t) > a(||x||). Vt > 0 and Vx in a ball B. 

Definition 3 (Decreasing function) 

A function V(x, t) is locally (globally) decreasing if there exists a function a of class K 
such diat V(0. t) = 0 and V(x. t) < a(||x||). Vt > 0 and Vx in a ball B. 

LyapunoY ttieorem 

Let us assume that in a ball B around the equilibrium point x = 0: 

- there exists a Lyapunov function V(x, t) whose first derivatives are continuous; 

- there exist functions a, P, y of class K; 

then, the equilibrium point is: 

a) stable if V(x, t) > a(||x||), V(x. t) < 0; 

b) uniformly stable if a(||x||) < V(x. t) < P(||x||), V(x. t) < 0; 

c) uniformly asymptotically stable if: 

a(||x|D < V(x, t) < p(||x||), V(x. t) < -Y(||x||) < 0; 

d) globally uniformly asymptotically stable if: 

a(||x||) < V(x. t) < 3(||x||). V(x, t) < -Y(l|x||) < 0, a(||x||) - • oo as x ->«. 

Barbalat lemma. If f(t) is a uniformly continuous function such that lim f(t) is bounded as 

t -> oo, then f(t) -> 0 as t -* <». 

Barbalat tlieorem. If V(x, t) has a lower bound such that V(x, t) > a(||x||) and if V(x. t) < 0. 
then V(x, t) —> 0 as t - • <» if V(x, t) is uniformly continuous with respect to time. 



Appendix 10 

Computation of the dynamic control law in 
the task space 

In this appendix* we present the computation of the decoupling nonlinear control in die 
task space [Khalil 87a]. The dynamic RKxlel is computed by a specialized Newton-Euler 
algorithm, which takes into account many variables that are evaluated for the kinematic 
models. 

The number of operations of this control law for the St&ubli RX-90 robot, assuming 
symmetrical links whose inertial parameters are given in Table 9.4, is 316 multiplications and 
237 additions. 

A10.1. Calculation of the location error e^ 

The current location of the terminal link is given by the homogeneous transformation 
matrix ^ n , which can be obtained using a customized symbolic algorithm (Chapter 3): 

^ n = ^ 1 ^T2...""^Tn = 

Os„ 0„^ 03^ Op̂  

L O G O 1 J 
[AlO.ll 

Let the desired position and orientation be given by ^ „ and [̂ ŝ  ^n„ ^a )̂ respectively. 
The location error, denoted by e,, is given by: 

ex = [ d x j d X ^ j T [A10.21 

where dXp and dXr indicate the position error and orientation error respectively. 
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The position error is obtained by: 

dXp = dP = 0P^0P„ 

The orientation error is given by [Luh 80a]: 

dXr = ^u a 

where % and a are obtained by solving rot(u,a) ^An = ^A .̂ 

Let us assume that: 

OA^AI=[S n a] 

[A10.3] 

[A10.4J 

[A10.5] 

If a is small, the orientation error dXr can be considered to be equal to u sin(a) or equal 
to ̂ 8n (§ 2.5). Using equation [2.35], we obtain: 

dXr = u sin(a) = x 

fn^ -

ax-

Lsy-

•ay-j 

•Sz 

"x J 

[A10,6] 

Using equation [5.59]. we obtain: 

dXr = 08„ = Op CD [A10.7] 

dXr = ^ [ \ x < + 0„^xOnJ + 03^,03dj [A 10.8] 

A10.2. Calculation of the velocity of the terminal link X 

The terminal link velocity is composed of the linear velocity ^Vn and of the angular 
velocity ^(On' 

X = 
LVJ 

[A 10.9] 
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^ n and ^(On are calculated using the following recursive equations, which are developed 
in Chapter 9: 

Forj= 1, ..., n: 

JVj = JAj.i(i-JVj., ^y\i xi-»Pj)^ajqjiaj 

Ja)j = icDj.i + cFjqjiaj 

[AlO.lO] 
(AlO.U) 

[A10.12] 

The vectors ^ n and ĈDn are obtained by V̂̂  = ̂ An "Vn and ̂ (On - Â̂  "(On- We note 
that 'a>i,...» îOji dirt also required for the inverse dynamic algorithm. 

A10.3. Calculation of J q 

The calculation of this vector by differentiating the Jacobian matrix with respect to time 
and the multiplication of the result by q would need a prohibitive number of operations. We 
propose to use an efficient recursive algorithm derived from the second order kinematic 
model. Many intermediate variables of this algorithm are used for the computation of the 
inverse dynamic nK)del. The second order kinematic model is given by: 

x„ = 
.0>nJ 

= J(q)q + J(q, q)q [A 10.13] 

From equation [A 10.13], we deduce that j(q, q) q is equal to X^ when setting q = 0. 

i(q- q) q = 
V„(q = 0) 

.«On(q=o)J 
•[:.] (A10.14] 

Consequently, j q can be computed using equations [9.86], [9.87] and [9.90] after setting 
q = 0. The algorithm is given as follows: 

Forj s /,..., ft; 

i* j= iAj . ,J -%i + 5j(ia)j.,xqjiaj) 

j*i = JAj.1 0'\x 4.>>U* 1 i-»Pj) + 2 aji(Dj.i X (qjiap 

The initial values are: ^ o « 0 and ^^ « 0. 

[A10.15) 

[A10.16] 

[AIO.171 
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A10.4. Calculation of J(q)'^y 

The vector y indicates the term (w(t) - J q) as given in equation [14.33]. This problem is 
treated in Chapter 6. The solution for the regular case of the St^ubli RX-90 robot is 
developed in Example 6.1. 

AlOJ. Modified dynamic model 

We modify the inverse dynamic model developed in Chapter 9 to take into account the 
availability of Oj and Yj. Equations [9.86] and [9.87], giving d)j and Vj, are replaced by: 

id)j=JVj+iej [A10.18] 

JVj = J4j+ibj [A 10.19] 

where -lej and ibj represent io) j and -IV; respectively, when q = 0: 

iej = JAj.i i-^ej.i + Oj Jjj Jaj [A10.201 

ibj = JAj.i(J-^bj.i +J-Uj.i J-̂ Pp + OjcijJaj [A10.21] 

with the initial values ^eo = 0 and %o = - g. 

* 
The matrix JUj, defmed in equation [9.90], is computed using JUj (equation [A10.16]) 

and-iej (equation [A 10.20]) such that: 

JUj = iU*+ic j [A10.22] 

Taking into account that the angular velocities have been evaluated while computing X, 
the modified dynamic model needs 110 multiplications and 82 additions instead of 160 
multiplications and 113 additions. 



Appendix 11 

Stability of passive systems 

In this appendix, we present some useful results for the analysis and the design of passive 
and adaptive control laws [Landau 88]. For more details, the reader is referred to (Popov 73], 
[Desoer 75], [Landau 79]. 

A U . L Definitions 

Definition 1: positive reaifimction 

A rational function h(s) of the complex variable s s a -»- jo) is positive real if: 

a) h(s) is real when s is real; 

b) h(s) has no poles in the Laplace right half plane Re(s) > 0 (Re denotes the real part of 
s); 

c) the possible poles of h(s) along the axis Re(s) s 0 (when s = jcD) are separate and the 
corresponding residuals are positive real or zero; 

d) for any o) for which s s jo) is not a pole of h(s), then Re(h(s)) > 0. 

Definition 2: strictly positive realfiinction 

A rational function h(s) of the complex variable s = a -f jco is strictly positive real if: 

a) h(s) is real when s is real; 

b) h(s) has no poles in the Laplace right half plane Re(s) > 0; 

c) Re[h(j (0)] > 0 for any real value of (o, - «» < o x «>. 
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Definition 3: Hermitian matrix 

A matrix H(s) of rational real functions in the complex variable s = a + jo) is Hermitian if: 

H(s) = H V ) [A 11.1] 

where s* is the conjugate of s. 

Definition 4: positive real matrix offidnctions 

An (mxm) transfer matrix H(s) of rational real functions is positive real if: 

a) no poles of the elements of H($) are in the Laplace right half plane Re(s) > 0; 

b) the possible poles of H(s) along the axis Re(s) = 0 are distinct and the corresponding 
matrix of residuals is Hermitian positive semi-defmite; 

c) the matrix H(j(o) + H^(-j(o) is Hermitian positive semi-defmite for any real value (o 
that is not a pole of any element of H(s). 

Definition 5: strictly positive real matrix offidnctions 

An (mxm) transfer matrix H(s) of rational real functions is strictly positive real if: 

a) no poles of the elements of H(s) are in the Laplace right half plane Re(s) > 0; 

b) the matrix H(jo)) + H^(-ja)) is Hermitian positive definite for any real value of co. 

Al 1.2. Stability analysis of closed-loop positive feedback 

Let us consider the closed-loop system of Figure AIM, where the linear and time-
invariant feed-forward block is described by the following state equations [Landau 88]: 

lx = Ax-i-Bu|=Ax-By2 [All 2] 
[y, =Cx + Dui=Cx-Dy2 

in which (A, B) and (A, C) are controllable and observable respectively. The system is 
characterized by the transfer matrix H(s) defined by: 

H(s) = D + C[sI-A]-*B [A11.31 

The nonlinear time-varying feedback block is such that: 

72 = f(U2» ̂ » T) with T < t [A 11.4] 

and satisfies the Popov inequality (proving the block passivity): 
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Figure Al l . l . Closed-loop positive feedback system 

f y2'^(0 U2(0 d̂  ^ - YÔ  with Yô  < oo, for ti > to 

to 

[All.5] 

Theorem I (hyperstability) 

For the closed-loop system of Figure Al l . l described by equations [A 11.2], [Al 1.3) and 
[Al 1.4]» and for any feedback block satisfying the inequality [Al 1.5], all solutions x(x(0), t) 
satisfy the inequality: 

||x(t)|| < 8[||x(0)|| + otol for 5 > 0, do > 0, t > 0 [A11.6] 

if, and only if, H(s) is a positive real transfer matrix. 

Theorem 2 (asymptotic hyperstability) 

For the closed-loop system of Figure Al l . l described by equations [Al 1.2], [Al 1.3] and 
[Al 1.4], and for any feedback block satisfying the inequality [Al 1.6], all solutions x(x(0), t) 
satisfy both the inequality [Al 1.6) and lim x(t) - » 0 as t -4 «> for any bounded input Ui(t) if, 
and only if, H(s) is a strictly positive real transfer matrix. 

NOTE.- Theorems 1 and 2 provide sufficient conditions to prove the stability and asymptotic 
stability respectively in the case where the Popov inequality is satisfied by the feedback 
block. 

A l l J . Stability properties of passive systems 

Lemma I 

A feedback combination of two strictly passive (positive) systems is always 
asymptotically stable. 
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Lemma 2 

Any system obtained by a parallel combination of two passive (positive) blocks is itself a 
passive (positive) system. 

Lemma 3 

Any system obtained by a feedback combination of two passive (positive) blocks is itself 
a passive (positive) system. 
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