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Introduction

The control and simulation of robots requires the development of different
mathematical models. Several levels of modeling ~ geometric, kinematic and
dynamic - are needed depending on the objectives, the constraints of the task and
the desired performance.

Obtaining these models is not an easy task. The difficulty varies according to the
complexity of the kinematics of the mechanical structure and its degrees of freedom.
The mathematical tools presented in this book are based on a description of
mechanisms allowing a unified approach whatever the type of structure: serial, tree
structured, or containing closed loops.

Using these models in control and simulation requires efficient and easy-to-use
algorithms to estimate the values of the geometric parameters and the dynamic
parameters of the robot. Besides, the on-line implementation of a control law on a
robot controller requires efficient models with a reduced number of operations. The
techniques proposed in this book have been developed to meet these requirements.

This book is a revised and augmented edition of the French version
"Modélisation, identification et commande des robots" published by Hermes in
1999, whose first edition "Modélisation et commande des robots” was published in
1988. We consider it to be the third edition as it contains substantial modification
and updating. The content is the following:

— Chapter 1 gives an introduction to the terminology and general definitions for
the concepts used in this book: kinematic chains, types of joints, configuration
space, task space, redundancy, singular configurations, architectures of robot
manipulators, robot characteristics;

~ Chapter 2 sets out the basic mathematical tools used in robot modeling:
homogeneous transformations, differential transformations, screws, twists and
wrenches;

~ Chapter 3 deals with the direct geometric modeling of simple open chain
robots (also termed serial robots). The Khalil-Kleinfinger notation is used to
describe the geometry of the mechanical structure. This notation, which is a
variation of the Denavit-Hartenberg one, also handles the description of
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complex chains with tree structures or closed loops (Chapters 7 and 10). The
various methods of describing the orientation of a solid in space are covered at
the end of the chapter;

Chapter 4 treats the inverse geometric model. Three approaches are described:
the Paul method, which can be used for most industrial robots, the Pieper
method, which deals with six degree-of-freedom robots having three prismatic
joints or a spherical joint, and the Raghavan-Roth method, which is suitable
for six degree-of-freedom robots with general geometry;

Chapter 5 addresses the direct kinematic model. After developing efficient
methods for calculating the Jacobian matrix, we present several applications:
analysis of the robot workspace, determination of the degrees of freedom of
structure, velocity and force ellipsoids, twist-wrench duality;

Chapter 6 covers inverse kinematics. The main topics are: inversion at regular
configurations, inversion close to singularities, inversion for redundant robots,
and minimal task description,

Chapter 7 examines the geometric and kinematic models of complex chain
robots with tree or closed chain structures. The problem of solving the
constraint equations of closed loop robots is treated using both geometric
constraint equations and kinematic constraint equations;

Chapter 8 introduces the geometric and kinematic models of parallel robots.
The main architectures and features of these structures are given;

Chapters 9 and 10 deal with dynamic modeling: simple open chains are
considered in Chapter 9, whereas complex kinematic chains are presented in
Chapter 10. Lagrangian and Newton-Euler formulations, which are linear in
the dynamic parameters, are presented. The determination of the minimum
inertial parameters, also termed base inertial parameters, is carried out using a
direct symbolic method and by a numerical method, which is based on a QR
decomposition. The number of operations of the inverse dynamic model are
minimized thanks to the use of the base parameters and customized symbolic
programming techniques. The models obtained allow on-line implementation
with today’s personal computers. We also give different methods for the direct
dynamic model computation, more especially a method avoiding the inversion
of the inertia matrix;

Chapters 11 and 12 are devoted to identification of the geometric and dynamic
parameters respectively. In Chapter 11, we present various geometric
calibration methods. Some of them need external sensors, the others being
autonomous. The construction of the observation matrix and the solution of
the calibration equation are detailed for all the methods. A short subsection
introduces the active field of research into parallel robot calibration. In
Chapter 12, which concerns the dynamic parameters, several identification
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methods based on the dynamic model or energy model are introduced. All of
them consist in solving a model that is linear in the dynamic parameters;

— Chapter 13 introduces the problem of trajectory generation. Beginning with
point-to-point trajectories both in the joint space and in the task space, the
chapter then examines the problem of adding intermediate points. At the end,
the trajectory generation on a continuous path is briefly treated;

— Chapters 14 and 15 deal with motion control and force control. The motion
control chapter specifically covers PID control, computed torque control,
passive control and adaptive control while the force control chapter addresses
passive control, impedance control, hybrid force-position control and hybrid
external control.

At the end of the book the reader will find eleven appendices, which give either
detailed computations of examples or introductions to relevant mathematical
methods. An abundant bibliography of more than 400 references related to this fast-
growing field of research is also included.

This book is intended for researchers, university lecturers, engineers and
postgraduates in the fields of automatic control, robotics and mechanics. It provides
the necessary tools to deal with the various problems that can be encountered in the
design, the control synthesis and the exploitation of robot manipulators. It can also
be recommended as a textbook for students. It constitutes a complete course of about
70 lecture hours on modeling, identification and control of robot manipulators for
engineering schools or Master of Science classes. For an introduction course of
about 25 hours, the content could be reduced to: geometric and kinematic models of
serial structures, trajectory generation between two points, and PID control
(Chapters 1, 2, 3, 4, 5 and 6; partially Chapters 13 and 14). For a course of about 50
lecture hours, one could treat further dynamic modeling, calibration of geometric
parameters, identification of dynamic parameters, and trajectory generation as well
as the methods of motion control (Chapters 9, 11, 12, 13 and 14).



Chapter 1

Terminology and general definitions

1.1. Introduction

A robot is an automatically controlled, reprogrammable, multipurpose
mechanical system with several degrees of freedom, which may be either fixed in
place or mobile. It has been widely used so far in various industrial automation
applications. Since the last decade, other areas of application have emerged:
medical, service (spatial, civil security, ...), transport, underwater, entertainment, ...,
where the robot either works in an autonomous manner or in cooperation with an
operator to carry out complex tasks in a more or less structured environment. We
can distinguish three main classes of robots: robot manipulators, which imitate the
human arm, walking robots, which imitate the locomotion of humans, animals or
insects, and mobile robots, which look like cars.

The terms adaptabiliry and versatility are often used to highlight the intrinsic
flexibility of a robot. Adaptability means that the robot is capable of adjusting its
motion to comply with environmental changes during the execution of tasks.
Versatility means that the robot may carry out a variety of tasks — or the same task in
different ways ~ without changing the mechanical structure or the control system.

A robot is composed of the following subsystems:

— mechanism: consists of an articulated mechanical structure actuated by
electric, pneumatic or hydraulic actuators, which transmit their motion to the
joints using suitable transmission systems;

~ perception capabilities: help the robot to adapt to disturbances and
unpredictable changes in its environment. They consist of the internal sensors
that provide information about the state of the robot (joint positions and
velocities), and the external sensors to obtain the information about the
environment (contact detection, distance measurement, artificial vision);
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— controller: realizes the desired task objectives. It generates the input signals
for the actuators as a function of the user’s instructions and the sensor outputs;

— communication interface: through this the user programs the tasks that the
robot must carry out;

~ workcell and peripheral devices: constitute the environment in which the
robot works.

Robotics is thus a multidisciplinary science, which requires a background in
mechanics, automatic control, electronics, signal processing, communications,
computer engineering, etc.

The objective of this book is to present the techniques of the modeling,
identification and control of robots. We restrict our study to rigid robot manipulators
with a fixed base. Thus, neither flexible robots for which the deformation of the links
cannot be neglected {Cannon 84], [Chedmail 90a], [Boyer 94], nor mobile robots
will be addressed in this book.

In this chapter, we will present certain definitions that are necessary to classify
the mechanical structures and the characteristics of robot manipulators.

1.2. Mechanical components of a robot

The mechanism of a robot manipulator consists of two distinct subsystems, one
(or more) end-effectors and an articulated mechanical structure:

-~ by the term end-effector, we mean any device intended to manipulate objects
(magnetic, electric or pneumatic grippers) or to transform them (tools, welding
torches, paint guns, etc.). It constitutes the interface with which the robot
interacts with its environment. An end-effector may be multipurpose, i.e.
equipped with several devices each having different functions;

— the role of the articulated mechanical structure is to place the end-effector at
a given location (position and orientation) with a desired velocity and
acceleration. The mechanical structure is composed of a kinematic chain of
articulated rigid links. One end of the chain is fixed and is called the base. The
end-effector is fixed to the free extremity of the chain. This chain may be
serial (simple open chain) (Figure 1.1), tree structured (Figure 1.2) or closed
(Figures 1.3 and 1.4). The last two structures are termed complex chains since
they contain at least one link with more than two joints.
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Figure 1.1, Simple open (or serial) chain

Serial robots with a simple open chain are the most commonly used. There are
also industrial robots with closed kinematic chains, which have the advantage of
being more rigid and accurate.

e QgOQ

Figure 1.2, Tree structured chain
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Figure 1.3. Closed chain

Figure 1.4 shows a specific architecture with closed chains, which is known as a
parallel robot. In this case, the end-effector is connected to the base by several
parallel chains [Inoue 85], [Fichter 86), [Reboulet 88], {Gosselin 88], [Clavel 89),
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[Charentus 90], [Pierrot 91a), [Merlet 00]. The mass ratio of the payload to the robot
is much higher compared to serial robots. This structure seems promising in
manipulating heavy loads with high accelerations and realizing difficult assembly
tasks.

Figure 1.4. Parallel robot

1.3. Definitions
1.3.1. Joints

A joint connects two successive links, thus limiting the number of degrees of
freedom between them. The resulting number of degrees of freedom, m, is also
called joint mobility, such that 0 £ m < 6.

When m = |, which is frequently the case in robotics, the joint is either revolute
or prismatic. A complex joint with several degrees of freedom can be constructed by
an equivalent combination of revolute and prismatic joints. For example, a spherical
joint can be obtained by using three revolute joints whose axes intersect at a point.

1.3.1.1. Revolute joint

This limits the motion between two links to a rotation about a common axis. The
relative location between the two links is given by the angle about this axis. The
revolute joint, denoted by R, is represented by the symbols shown in Figure 1.5.

O e} §

Figure 1.5. Symbols of a revolute joint

'/.
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1.3.1.2. Prismatic joint

This limits the motion between two links to a translation along a common axis.
The relative location between the two links is determined by the distance along this
axis. The prismatic joint, denoted by P, is represented by the symbols shown in
Figure 1.6.

<>

Figure 1.6, Symbols of a prismatic joint

1.3.2. Joint space

The space in which the location of all the links of a robot are represented is called
joint space, or configuration space. We use the joint variables, q& RN, as the
coordinates of this space. Its dimension N is equal to the number of independent
joints and corresponds to the number of degrees of freedom of the mechanical
structure. In an open chain robot (simple or tree structured), the joint variables are
generally independent, whereas a closed chain structure implies constraint relations
between the joint variables.

Unless otherwise stated, we will consider that a robot with N degrees of freedom
has N actuated joints.

1.3.3. Task space

The location, position and orientation, of the end-effector is represented in the
task space, or operational space. We may consider as many task spaces as there are
end-effectors. Generally, Cartesian coordinates are used to specify the position in R®3
and the rotation group SO(3) for the orientation. Thus the task space is equal to
R3x SO(3). An element of the task space is represented by the vector X € RM, where
M is equal to the maximum number of independent parameters that are necessary to
specify the location of the end-effector in space. Consequently, M<6 and M<N.
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1.3.4. Redundancy

A robot is classified as redundant when the number of degrees of freedom of its
task space is less than the number of degrees of freedom of its joint space. This
property increases the volume of the reachable workspace of the robot and enhances
its performance. We will see in Chapter 6 that redundant robots can achieve a
secondary objective besides the primary objective of locating and moving the end-
effector with desired velocity.

Notice that a simple open chain is redundant if it contains any of the following
combinations of joints:

- more than six joints;

- more than three revolute joints whose axes intersect at a point;
—~ more than three revolute joints with paralle] axes;

- more than three prismatic joints;

— prismatic joints with paraliel axes;

- revolute joints with collinear axes.

NOTES.~

— for an articulated mechanism with several end-effectors, redundancy is
evaluated by comparing the number of degrees of freedom of the joint space
acting on each end-effector and the number of degrees of freedom of the
corresponding task space;

— another type of redundancy may occur when the number of degrees of
freedom of the task is less than the number of degrees of freedom of the
robot. We will discuss this case in Chapter 6.

1.3.5. Singular configurations

For all robots, redundant or not, it is possible that at some configurations, called
singular configurations, the number of degrees of freedom of the end-effector
becomes less than the dimension of the task space. For example, this may occur
when:

~ the axes of two prismatic joints become parallel;

— the axes of two revolute joints become collinear;

— the origin of the end-effector lies on a line that intersects all the joint axes.

In Chapter 5, we will present a mathematical condition to determine the number

of degrees of freedom of the task space of a mechanism as well as its singular
configurations.
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1.4. Choosing the number of degrees of freedom of a robot

A non-redundant robot must have six degrees of freedom in order to place an
arbitrary object in space. However, if the manipulated object exhibits revolution
symmetry, five degrees of freedom are sufficient, since it is not necessary to specify
the rotation about the revolution axis. In the same way, to locate a body in a plane,
one needs only three degrees of freedom: two for positioning a point in the plane and
the third to determine the orientation of the body.

From these observations, we deduce that:

— the number of degrees of freedom of a mechanism is chosen as a function of
the shape of the object to be manipulated by the robot and of the class of tasks
to be realized;

- a necessary but insufficient condition to have compatibility between the
robot and the task is that the number of degrees of freedom of the end-
effector of the robot is equal to or more than that of the task.

1.5. Architectures of robot manipulators

Without anticipating the results of the next chapters, we can say that the study of
both tree structured and closed chains can be reduced to some equivalent simple
open chains. Thus, the classification presented below is relevant for simple open
chain architectures, but may also be generalized to the complex chains.

In order to count the possible architectures, we only consider revolute or
prismatic joints whose consecutive axes are either parallel or perpendicular.
Generally, with some exceptions (in particular, the last three joints of the GMF P150
and Kuka IR600 robots), the consecutive axes of currently used robots are either
parallel or perpendicular. The different combinations of these four parameters yield
the number of possible architectures with respect to the number of joints as shown in
Table 1.1 [Deligniéres 87}, {Chedmail 90a).

The first three joints of a robot are commonly designed in order to perform gross
motion of the end-effector, and the remaining joints are used to accomplish
orientation. Thus, the first three joints and the associated links constitute the
shoulder or regional positioning structure. The other joints and links form the wrist.

Taking into account these considerations and the data of Table 1.1, one can
count 36 possible combinations of the shoulder. Among these architectures, only 12
are mathematically distinct and non-redundant (we eliminate, a priori, the structures
limiting the motion of the terminal point of the shoulder to linear or planar
displacement, such as those having three prismatic joints with parallel axes, or three
revolute joints with parallel axes). These structures are shown in Figure 1.7,
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Table 1.1. Number of possible architectures as a function of the number of degrees of
Sfreedom of the robot

Number of degrees of Number of
freedom of the robot architectures
2 8
3 36
4 168
5 776
6 3508

A survey of industrial robots has shown that only the following five structures
[Liégeois 79] are manufactured:

- anthropomorphic shoulder represented by the first RRR structure shown in
Figure 1.7, like PUMA from Unimation, Acma SR400, ABB IRBx400,
Comau Smart-3, Fanuc (S-xxx, Arc Mate), Kuka (KR 6 to KR 200), Reis (RV
family), Statibli (RX series), etc.;

~ spherical shoulder RRP: "Stanford manipulator” and Unimation robots (Series
1000, 2000, 4000);

— RPR shoulder corresponding to the first RPR structure shown in Figure 1.7:
Acma-H80, Reis (RH family), etc. The association of a wrist with one revolute
degree of freedom of rotation to such a shoulder can be found frequently in
the industry. The resulting structure of such a robot is called SCARA
(Selective Compliance Assembly Robot Arm) (Figure 1.8). It has several
applications, particularly in planar assembly. SCARA, designed by Sankyo,
_has been manufactured by many other companies: IBM, Bosch, Adept, etc.;

~ cylindrical shoulder RPP: Acma-TH8, AFMA (ROV, ROH), etc.;

~ Cartesian shoulder PPP: Acma-P80, IBM-7565, Sormel-Cadratic, Olivetti-
SIGMA. More recent examples: AFMA (RP, ROP series), Comau P-Mast,
Reis (RL family), SEPRO, etc.

The second RRR structure of Figure 1.7, which is equivalent to a spherical joint,
is generally used as a wrist. Other types of wrists are shown in Figure 1.9
[Deligniéres 87].

A robot, composed of a shoulder with three degrees of freedom and a spherical
wrist, constitutes a classical six degree-of-freedom structure (Figure 1.10). Note that
the position of the center of the spherical joint depends only on the configuration of
joints 1, 2 and 3. We will see in Chapter 4 that, due to this property, the inverse
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geometric model, providing the joint variables for a given location of the end-
effector, can be obtained analytically for such robots.

According to the survey carried out by the French Association of Industrial
Robotics (AFRI) and RobAut Journal [Fages 98], the classification of robots in
France (17794 robots), with respect to the number of degrees of freedom, is as
follows: 4.5% of the robots have three degrees of freedom, 27% have four, 9% have
five and 59.5% have six or more. As far as the architecture of the shoulder is
concerned, there is a clear dominance of the RRR anthropomorphic shoulder
(65.5%), followed by the Cartesian shoulder (20.5%), then the cylindrical shoulder
(7%) and finally the SCARA shoulder (7%).

il
Wiale
e

Figure 1.7, Architectures of the shoulder (from [Milenkovic 83])
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Figure 1.8. SCARA robot

One-axis wrist

ot

Two intersecting-axis wrist

Two non intersecting-axis wrist

Three intersecting-axis wrist (spherical wrist)

Three non intersecting-axis wrist

Figure 1.9. Architectures of the wrist (from [Deligniéres 87})
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Figure 1.10. Classical six degree-of-freedom robot

1.6. Characteristics of a robot

The standard 1SO 9946 specifies the characteristics that manufacturers of robots
must provide. Here, we describe some of these characteristics that may help the user
in choosing an appropriate robot with respect to a given application:

-~ workspace: defines the space that can be swept by the end-effector. Its range
depends on the number of degrees of freedom, the joint limits and the length
of the links;

— payload: maximum load carried by the robot;

- maximum velocity and acceleration: determine the cycle time;

— position accuracy (Figure 1.11): indicates the difference between a
commanded position and the mean of the attained positions when visiting the
commanded position several times from different initial positions;

— position repeatability (Figure 1.11): specifies the precision with which the
robot returns to a commanded position. It is given as the distance between the
mean of the attained positions and the furthermost attained position;

— resolution: the smallest increment of movement that can be achieved by the
joint or the end-effector.

However, other characteristics must also be taken into account: technical (energy,
control, programming, etc.) and commercial (price, maintenance, etc.). Thus, the
selection criteria are sometimes difficuit to formulate and are often contradictory. To
a certain extent, the simulation and modeling tools available in Computer Aided
Design (CAD) packages may help in making the best choice {Dombre 88b],
[Zeghloul 91}, [Chedmail 92), [Chedmail 98].
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Position
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Figure 1.11, Position accuracy and repeatability (from [Priel 90])

1.7. Conclusion

In this chapter, we have presented the definitions of some technical terms related
to the field of modeling, identification and control of robots. We will frequently
come across these terms in this book and some of them will be reformulated in a
more analytical or mathematical way. The figures mentioned here justify the choice
of the robots that are taken as examples in the following chapters. In the next
chapter, we present the transformation matrix concept, which constitutes an
important mathematical tool for the modeling of robots.



Chapter 2

Transformation matrix between vectors,
frames and screws

2.1. Intreduction

In robotics, we assign one or more frames to each link of the robot and each
object of the workcell. Thus, transformation of frames is a fundamental concept in
the modeling and programming of a robot. It enables us to:

compute the location, position and orientation of robot links relative to each
other;

describe the position and orientation of objects;

specify the trajectory and velocity of the end-effector of a robot for a desired
task;

describe and control the forces when the robot interacts with its environment;

implement sensory-based control using information provided by various
sensors, each having its own reference frame.

In this chapter, we present a notation that allows us to describe the relationship
between different frames and objects of a robotic cell. This notation, called
homogeneous transformation, has been widely used in computer graphics
[Roberts 65), [Newman 79) to compute the projections and perspective
transformations of an object on a screen. Currently, this is also being used
extensively in robotics [Pieper 68), [Paul 81). We will show how the points, vectors
and transformations between frames can be represented using this approach. Then,
we will define the differential transformations between frames as well as the
representation of velocities and forces using screws.
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2.2. Homogeneous coordinates
2.2.1. Representation of a point

Let (Py, iPy, iP,) be the Cartesian coordinates of an arbitrary point P with respect
to the frame R;, which is described by the origin O; and the axes x;, y;, z; (Figure
2.1). The homogeneous coordinates of P with respect to frame R; are defined by
(wiPy, wiPy, WiP,, w), where w is a scaling factor. In robotics, w is taken to be equal
to 1. Thus, we represent the homogeneous coordinates of P by the (4x1) column
vector:

ip = (2.1]

Figure 2.1. Representation of a point vector

2.2.2. Representation of a direction

A direction (free vector) is also represented by four components, but the fourth
component is zero, indicating a vector at infinity. If the Cartesian coordinates of a
unit vector u with respect to frame R; are ('uy, 'uy, 'u,), its homogeneous coordinates
will be:

we| 22]
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2.2.3. Representation of a plane

The homogeneous coordinates of a plane Q, whose equation with respect to a
frame R; is Jox + 1By + yz + 15 = 0, are given by:

iQ=[loa Bl i3] (2.3]
If a point P lies in the plane Q, then the matrix product 'Q iP is zero:
ipx
o A I
QP = [l By i) =0 (24]
1
2z

1

2.3. Homogeneous transformations [Paul 81]
2.3.1. Transformation of frames

The transformation, translation and/or rotation, of a frame R; into frame R;
(Figure 2.2) is represented by the (4x4) homogeneous transformation matrix 'T; such
that:

Sx Ny ax Py
, Ce Sy ny ay Py
T = [is; n; ‘a; P} = ., n, 5, P, [2.5a)

0001

where is;, 'n; and 'a; contain the components of the unit vectors along the x;, y; and z;
axes respectively expressed in frame R, and where in is the vector representing the
coordinates of the origin of frame R; expressed in frame R;.

We can also say that the matrix i’l’j defines frame R; relative to frame R;.
Thereafter, the transformation matrix [2.5a] will occasionally be written in the form
of a partitioned matrix:

. iA. ip. ig. in. iy, P,
‘TJ = [ ) J] = [ B Bl | J] (2.5b]
000 0001
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Apparently, this is in violation of the homogeneous notation since the vectors
have only three components. In any case, the distinction in the representation with
either three or four components will always be clear in the text.

In summary:

— the matrix .iTj represents the transformation from frame R; to frame R;;

~ the matrix iTj can be interpreted as representing the frame R, (three orthogonal
axes and an origin) with respect to frame R;.

. i,
X T;

Figure 2.2. Transformation of frames

2.3.2. Transformation of vectors

Let the vector JP define the homogeneous coordinates of the point P with respect
to frame R; (Figure 2.3). Thus, the homogeneous coordinates of P with respect to
frame R; can be obtained as:

P = i(O;P) = i5;P, + P, +ia;iP, + P; = IT;iP (2.6}

3

iT.
xi ]

Figure 2.3. Transformation of a vector
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Thus the matrix i'l‘j allows us to calculate the coordinates of a vector with respect
to frame R; in terms of its coordinates in frame R;.

¢ Example 2.1. Deduce the matrices iTj and JT; from Figure 2.4. Using equation
[2.5a], we directly obtain:

0 01 3 00 -1 6
i 010 12 it 01 0 -12
=l 1006 "] 100 =3
0 00 1 00 0 1
L
> i
/
6
12 Y;
N >
.! XJYI'
| 4
................ 4
Figure 2.4. Example 2.1

2.3.3. Transformation of planes

The relative position of a point with respect to a plane is invariant with respect to
the transformation applied to the set of {point, plane}. Thus:

iQip = iQiP = iQiT;iP
leading to:

iQ =iQ i'r,- 2.7

2.3.4. Transformation matrix of a pure translation

Let Trans(a, b, ¢) be this transformation, where a, b and ¢ denote the translation
along the x, y and z axes respectively. Since the orientation is invariant, the
transformation Trans(a, b, ¢) is expressed as (Figure 2.5):
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1 0 0 a

, 01 06D

‘T; = Trans(a, b, ¢) = 00 1 c [2.8]
0 001

From now on, we will also use the notation Trans(u, d) to denote a translation
along an axis u by a value d. Thus, the matrix Trans(a, b, c) can be decomposed
into the product of three matrices Trans(x, a) Trans(y, b) Trans(z, c), taking any
order of the multiplication.

Zi

Figure 2.5. Transformation of pure translation

2.3.5. Transformation matrices of a rotation about the principle axes
2.35.1. Transformation matrix of a rotation about the x axis by an angle 8

Let Rot(x,8) be this transformation. From Figure 2.6, we deduce that the
components of the unit vectors isj, 'n;, 'a; along the axes x;, y; and 2; respectively of
frame R; expressed in frame R; are as follows:

=1 0 0 O
in;=[0 CO $8 0]T (2.9]
ig;=[0 -S6 CO 0T

where SO and CO represent sin(0) and cos(6) respectively, and the superscript T
indicates the transpose of the vector.
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10 0O 0
T = R o 0Co-S00 rot(x,0) O 210
s o= t(x, = = .
= RoteO =1 656 co 0 0 (210
00 01 0 0 01
where rot(x, 0) denotes the (3x3) orientation matrix.
5 A
y.
Bj """" ]
i
PN\ T &
1 ¢
1 [}
: ! ,
: 2 >
0
Figure 2.6. Transformation of a pure rotation about the x-axis
2.3.5.2. Transformation matrix of a rotation about the y axis by an angle 0
In the same way, we obtain:
Cce 0 S8 0 0
"T. = Rot(v. 8 0100 rot(y,8) O .
. = Rot(y, 8) = = 11
J 9=\ se0ceo 0 (2.11]
0 001 0 0 01

2.3.5.3. Transformation matrix of a rotation 6 about the z axis by an angle 6

We can also verify that:
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Cco-S600 0
'T. = Rot(z, ) S8 C8 00O rot(z,8) O 2.12]
i = Rot(z,0) = = .
} 0 010 0
0 0 01 0 0 01
2.3.6. Properties of homogeneous transformation matrices
a) From equations [2.5], a transformation matrix can be written as:
Sx Ny ay Py
sy 0y, a, P A P
T=| > 77" =[ ] [2.13)
sz N, a, Py 0001
0001

The matrix A represents the rotation whereas the column matrix P represents the
translation. For a transformation of pure translation, A = I3 (I represents the identity
matrix of order 3), whereas P = 0 for a transformation of pure rotation. The matrix A
represents the direction cosine matrix. It contains three independent parameters (one
of the vectors s, n or a can be deduced from the vector product of the other two, for
example s = nxa; moreover, the dot product n.a is zero and the magnitudes of n and
a are equal to 1).

b) The matrix A is orthogonal, i.e. its inverse is equal to its transpose:

Al = AT [2.14]

¢) The inverse of a matrix IT; defines the matrix IT;.

To express the components of a vector 'P; into frame R;, we write:

ip, = iT;iP, [2.15]

If we postmultiply equation [2.6] by 'T;! (inverse of iT}), we obtain:

iTj’] iP] = JP] [2.16}

From equations [2.15] and [2.16], we deduce that:

Tyl = T [2.17]
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d) We can easily verify that:

Rot!(u, 8) = Rot(u, -8) = Rot(-u, 6) [2.18]
Trans'!(u, d) = Trans(-u, d) = Trans(u, d) [2.19]

e) The inverse of a transformation matrix represented by equation [2.13] can be
obtained as:

~-sTP
AT _nTP [ AT —ATP]
T! = = 2.20
—aTPp 000 | [2.20]
000 1

f) Composition of two matrices. The multiplication of two transformation
matrices gives a transformation matrix:

[ Ay Py ][ Aj Pz] AA; AP+ Py
T, = =
' looo1Jlooo1 0 0 0 1
[2.21]

Note that the matrix multiplication is non-commutative (T;T; # T,T)).

g) If a frame R is subjected to k consecutive transformations (Figure 2.7) and if
each transformation i, (i = 1, ..., k), is defined with respect to the current frame R;.;,
then the transformation °Ty can be deduced by multiplying all the transformation on
the right as:

oTk = 0T| ]Tz 2T3 k'ITk {2.22]

h) If a frame R;, defined by iTj. undergoes a transformation T that is defined
relative to frame R;, then R; will be transformed into R; with 'T; = T 'T; (Figure
2.8).

From the properties g and h, we deduce that:

— multiplication on the right (postmultiplication) of the transformation iTj
indicates that the transformation is defined with respect to the current frame
R;;

~ multiplication on the left (premultiplication) indicates that the
transformation is defined with respect to the reference frame R;.
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Figure 2.8. Composition of transformations: multiplication on the left

¢ Example 2.2. Consider the composite transformation illustrated in Figure 2.9 and
defined by:

°T, = Rot(x, %) Trans(y, d)

— reading T from left to right (Figure 2.9a): first, we apply the rotation; the
new location of frame Ry is denoted by frame R;; then, the translation is
defined with respect to frame Ry;
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— reading T from right to left (Figure 2.9b): first we apply the translation, then
the rotation is defined with respect to frame Rg.

2y

’)/---—»,/ K

% Trans(y, d)

Figure 2.9. Example 2.2

i) Consecutive transformations about the same axis. We note the following
properties:

Rot(u, 6;) Rot(u, 6;)
Rot(u, 6) Trans(u, d)

Rot{u, (6;+967)) [2.23]
Trans(u, d) Rot(u, 9) [2.24)

j) Decomposition of a transformation matrix. A transformation matrix can be
decomposed into two transformation rnatrices, one represents a pure translation and
the second a pure rotation:

BRI E R
“Looo1]J Loooi1lJlooo1 (2.25]

2.3.7. Transformation matrix of a rotation about a general vector located at the
origin

Let Rot(u, 6) be the transformation representing a rotation of an angle 0 about an
axis, with unit vector u = [u, uy u.]T, located at the origin of frame R; (Figure
2.10). We define the frame Ry such that z; is along the vector u and xy is along the
common normal between z; and z;. The matrix Ty can be obtained as:

Ty = Rot(z, a) Rot(x, B) [2.26)

where a is the angle between x; and x about z;, and f is the angle between z; and u
about xy.
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From equation {2.26], we obtain:

. Ux Sa SB
u= ‘ak = uy = -CgBSB [227]

Uz

Figure 2.10. Transformation of pure rotation about any axis

The rotation about u is equivalent to the rotation about zy. From properties g and
h of § 2.3.6, we deduce that:

Rot(u, 6) iTy = Ty Rot(z, 0) (2.28)
thus:
Rot(u, 8) = iTy Rot(z, 8) iT;!

[}

Rot(z, o) Rot(x, ) Rot(z, 0) Rot(x, -B) Rot(z, 1) (2.29]

From this relation and using equation [2.27], we obtain:

rot(u, 0)
Rot (u,9) =

-0 o O
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[ u(1-CO+CO  uguy(1~C6)-u,S0  uyu,(1-CO)+uySO 0

uxuy(1-COM+u,56  u,2(1-C8)+CB  uyu,(1-CO)-u,S6 0

= {2.30]
uxu,(1-CO)-uySO  uyu,(1-CO}+u, SO  u,%(1-CH}+C8 0
L 0 0 0 1
We can easily remember this relation by writing it as:
rot(u, 8) = uuT (1 -C8) + I3 CO + u SO [2.31]

AL . .
where u indicates the skew-symmetric matrix defined by the components of the
vector u such that:

0 ‘-uz Uy
a=| u 0 -u [2.32]
-y u O

Note that the vector product uxV is obtained by av.

2.3.8. Equivalent angle and axis of a general rotation

Let T be any arbitrary rotational transformation matrix such that:
Sx My

Sy Ny ay
S; n; a4,

0 0 0 1

[2.33]

o O O

We solve the following expression for u and 6:
Rot(u,6) = T with0<8<n

Adding the diagonal terms of equations [2.30] and [2.33], we obtain:

Co = %(sx +ny+2a;~1) [2.34]
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From the off-diagonal terms, we obtain:

2u;S8=n,-ay,
2uySB=2a,-5, [2.35]
2u;S8=sy-ny

yielding:

1
S8 = 5/(n; -2 + (ax - )% + (5, — ny)? (2.36]

From equations [2.34] and [2.36], we deduce that:
0 = arctg (S6/C6) with0<8<mn {2.37]

Uy, Uy and u, are calculated using equation {2.35] if S6# 0. When S8 is small,
the elements uy, uy and u, cannot be determined with good accuracy by this
equation. However, in the case where C8 < 0, we obtain uy, uy, and u, more
accurately using the diagonal terms of Rot(u, 0) as follows:

s, - C6O n, -C6 a,-Co
U= \/ ;-Ce'“v“ 'f'__c?“f‘-“ \/ 1Z—ce [2.38]

From equation [2.35], we deduce that:

<]

( . Sx - Ce
uy = sign(nz-ay)

|
]
2]

CO
1

A\

uy = sign(ax—s,) [2.39]

—-|&

NR
®)
@

L U= sign(sy~ny) Co

where sign(.) indicates the sign function of the expression between brackets, thus
sign(e)=+1 if e20, and sign(e)=~1 ife<O.

¢ Example 2.3, Suppose that the location of a frame Rg, which is fixed to the end-
effector of a robot, relative to the reference frame Ry is given by the matrix Rot(x, ~
1/4). Determine the vector Eu and the angle of rotation 0 that transforms frame R to
the location Rot(y, /4) Rot(z, 1/2). We can write:

Rot(x, - /4) Rot(u, 8) = Rot(y, v4) Rot(z, w/2)
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Thus:

Rot(u, 8) = Rot(x, 7/4) Rot(y, /4) Rot(z, /2)

0 -1A2 IN2 0
N2 -12 -1 0

N2 1”2 12 o
0 0o 0 1

Using equations [2.34] and {2.36], we get: CO = ~ %, S0 = 325. giving 0 = 2r/3.

2
Equation [2.35) yields: uy = \—j—%, uy=0,u,= \/;

2.4. Kinematic screw

In this section, we will use the concept of screw to describe the velocity of a
body in space.
2.4.1, Definition of a screw

A vector field H on % is a screw if there exist a point O; and a vector Q such
that for all points O; in R

Hj = Hi + ﬂinOj

where Hij is the vector of H at O; and the symbol x indicates the vector product; Q is
called the vector of the screw of H.

Then, it is easy to prove that for every couple of points Oy and Og,:

Thus, the screw at a point O; is well defined by the vectors H; and €, which can
be concatenated in a single (6x1) vector.
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2.4.2. Representation of velocity (kinematic screw)

Since the set of velocity vectors at all the points of a body defines a screw field,
the screw at a point O; can be defined by:

* 'V, representing the linear velocity at O; with respect to the fixed frame Ry,
d
such that V; = 31(000;);

* () representing the angular velocity of the body with respect to frame Ry. It
constitutes the vector of the screw of the velocity vector field.

Thus, the velocity of a point O is calculated in terms of the velocity of the point
O; by the following equation:

Vj =V,+axx Oin [2.40]

The components of V; and & can be concatenated to form the kinematic screw
vector V;, i.e.:

Vi=[ Vil o7 )7 [2.41)

The kinematic screw is also called rwist or spatial velocity.

2.4.3. Transformation of screws

Let iV; and i, be the vectors representing the kinematic screw in O;, origin of
frame R;, expressed in frame R;. To calculate JV; and Jay; representing the kinematic
screw in O; expressed in frame R;, we first note that:

o= o [2.42)
V; = Vi+wxLy (2.43)

L; j being the position vector connecting O; to O;.

Equations {2.42] and [2.43] can be rewritten as:

[vj] - [ L L }[v‘] [2.44]
o; 03 I o
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where I3 and 03 represent the (3x3) identity matrix and zero matrix respectively.
Projecting this relation in frame R;, we obtain:

MEFRIN
oy 6 I JL'o

Since V; = JA; iV; and J; = JA; ', equation [2.45] gives:
jvj = JT,V; [2.46]
where IT; is the (6x6) transformation matrix between screws:
. . A
. A HAPy
T = i [2.47]
0; JA
The transformation matrices between screws have the following properties:
i) product:
oTj = O, 1T, ... .j‘lTj {2.48]
ii) inverse:
i, iP)iA
Tyt = [ SRR P [2.49]
03 ‘A

Note that equation {2.49] gives another possibility, other than equation [2.45], to
define the transformation matrix between screws.

2.5. Differential transiation and rotation of frames

The differential transformation of the position and orientation - or location —of a
frame R; attached to any body may be expressed by a differential translation vector
dP; expressing the translation of the origin of frame R;, and of a differential rotation
vector §;, equal to u; d6, representing the rotation of an angle d6 about an axis, with
unit vector u;, passing through the origin O;.
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Given a transformation iTj, the transformation iT; + d'T; can be calculated,
taking into account the property h of § 2.3.6, by the premultiplication rule as:

'T; + d'Tj = Trans(idx;, idy;, dz;) Rot(iu;, d6) 'T; [2.50]
Thus, the differential of iTj is equal to:
diT; = [Trans(idx;, 'dy;, 'dz) Rot(u;, d8) - L;] 'T; {2.51]

In the same way, the transformation 'Tj + d'T; can be calculated, using the
postmultiplication rule as:

IT; + d'T; = 'T; Trans(dx;, idyj, idz;) Rot(u;, d6) [2.52]
and the differential of 'T; becomes:
d'T; = iT; [Trans(dx;, Jdy;, dz;) Rot(u;, d6) — L] [2.53]

From equations [2.51] and [2.53], the differential transformation matrix A is
defined as [Paul 81}:

A = [Trans(dx, dy, dz) Rot(u, d6) — I4] [2.54]
such that:

diTj = iA T, [2.55]
or:

diTj = iT;iA [2.56]

Assuming that dO is sufficiently small so that S(d6) = d6 and C(d6) = 1, the
transformation matrix of a pure rotation d8 about an axis of unit vector u can be
calculated from equations [2.30} and [2.54] as:

. . A .
. 1S JdP: . IdP;
iA = { § o ] = [ ude  Jdpy ] [2.57)
000 0 0 0 0 0

where u and § represent the skew-symmetric matrices defined by the vectors u and
§ respectively.
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Note that the transformation matrix between screws can also be used to transform
the differential translation and rotation vectors between frames:

F‘“”] - m.[idPi] [2.58)
i8; 11§ '

In a similar way as for the kinematic screw, we call the concatenation of dP; and
§; the differential screw.

¢ Example 2.4. Consider using the differential model of a robot to control its
displacement. The differential model calculates the joint increments corresponding
to the desired elementary displacement of frame R, fixed to the terminal link
(Figure 2.11). However, the task of the robot is often described in the tool frame Rg,
which is also fixed to the terminal link. The problem is to calculate "dP, and "§; in
terms of EdPg and E5g.

Let the transformation describing the tool frame in frame R, be:

010 O
-1 0 0 0l

0 01 -03
0 00 1

Ty =

and that the value of the desired elementary displacement is:

Eqpg=[ 0 O -001 T, Egg=[ 0 ~005 0T

Figure 2.11. Example 2.4
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Using equation [2.58), we obtain:

08, = "Ag ESg , "dP, = "Ag (ESExEP, + EdPg)

The numerical application gives:

ndpP,=[ 0 0015 -0005 T, n§ =[ 005 0 O]T

In a similar way, we can evaluate the error in the location of the tool frame due to
errors in the position and orientation of the terminal frame. Suppose that the position
error is equal to 10 mm in all directions and that the rotation error is estimated as
0.01 radian about the x axis:

ndp,=[ 0.01 001 001 JT, n§ =[ 001 0 O ]T

The error on the tool frame is calculated by:

E8g = FA, "8y, FdPg = FA, ("8px"Pg + "dPy)

which results in:

Eqpg=[ -0.013 001 0011 JT, Ec=[ 0 001 0 |7

2.6. Representation of forces (wrench)

A collection of forces and moments acting on a body can be reduced to a wrench
f; at point O;, which is composed of a force fj at O; and a moment m; about O;:

£
f = [ ] {2.59]
m; .

Note that the vector field of the moments constitutes a screw where the vector of
the screw is f;. Thus, the wrench forms a screw.

Consider a given wrench if;, expressed in frame R;. For calculating the equivalent
wrench Mj, we use the transformation matrix between screws such that:

HEN
) =im| [2.60]
if; if;
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which gives:

jfj = JA;If; {2.61)}
jmj = JA; (ifixipj +imy) [2.62]

It is often more practical to permute the order of f; and m;. In this case, equation
[2.60] becomes:

5] [
=T (2.63)
Im m; |

¢ Example 2.5. Let the transformation matrix "Tg describing the location of the tool
frame with respect to the terminal frame be:

010 0
-1 0 0 01
"Te = 01 05
0 00 1

Supposing that we want to exert a wrench Efg with this tool such that Bfg =
[0 0 5]Tand Emg = [0 O 3]T, determine the corresponding wrench fj, at the origin
O, and referred to frame R,,. Using equations [2.61] and [2.62], it follows that:

o, = AgHy
"my, = "Ag (EfgxEP,+ Emg)

The numerical application leads to:

nf,=[0 0 05]T
fm,=[05 0 3]T

2.7. Conclusion

In the first part of this chapter, we have developed the homogeneous
transformation matrix. This notation constitutes the basic tool for the modeling of
robots and their environment. Other techniques have been used in robotics:
quaternion [Yang 66]), {Castelain 86], (3x3) rotation matrices. [Coiffet 81} and the
Rodrigues formulation [Wang 83]. Readers interested in these techniques can
consult the given references.
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We have also recalled some definitions about screws, and transformation
matrices between screws, as well as differential transformations. These concepts will
be used extensively in this book. In the following chapter, we deal with the problem
of robot modeling.



Chapter 3

Direct geometric model of serial robots

3.1. Introduction

The design and control of a robot requires the computation of some mathematical
models such as:

~ transformation models between the joint space (in which the configuration of
the robot is defined) and the task space (in which the location of the end-
effector is specified). These transformation models are very important since
robots are controlled in the joint space, whereas tasks are defined in the task
space. Two classes of models are considered:

— direct and inverse geometric models, which give the location of the end-
effector as a function of the joint variables of the mechanism and vice
versa;

— direct and inverse kinematic models, which give the velocity of the end-
effector as a function of the joint velocities and vice versa;

— dynamic models giving the relations between the input torques or forces of the
actuators and the positions, velocities and accelerations of the joints.

The automatic symbolic computation of these models has largely been addressed
in the literature [Dillon 73], [Khalil 76], [Zabala 78], [Kreuzer 79], [Aldon 82],
[Cesareo 84), [Megahed 84], {Murray 84)], [Kircdnski 85], [Burdick 86],
[1zaguitre 86), [Khalil 89a). The algorithms presented in this book have been used in
the development of the software package SYMORO+ [Khalil 97}, which deals with
all the above-mentioned models.

The modeling of robots in a systematic and automatic way requires an adequate
method for the description of their structure. Several methods and notations have
been proposed {Denavit 55], [Sheth 71], [Renaud 75}, [Khalil 76)], [Borrel 79],
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[Craig 86a]. The most popular among these is the Denavit-Hartenberg method
[Denavit 55]. This method is developed for serial structures and presents ambiguities
when applied to robots with closed or tree chains. For this reason, we will use the
notation of Khalil and Kleinfinger [Khalil 86a], which gives a unified description for
all mechanical articulated systems with a minimum number of parameters.

In this chapter, we will present the geometric description and the direct
geometric model of serial robots. Tree and closed loop structures will be covered in
Chapter 7.

3.2. Description of the geometry of serial robots

A serial robot is composed of a sequence of n+ 1 links and n joints. The links are
assumed to be perfectly rigid. The joints are either revolute or prismatic and are
assumed to be ideal (no backlash, no elasticity). A complex joint can be represented
by an equivalent combination of revolute and prismatic joints with zero-length
massless links. The links are numbered such that link O constitutes the base of the
robot and link n is the terminal link (Figure 3.1). Joint j connects link j to link j—1
and its variable is denoted g;. In order to define the relationship between the location
of links, we assign a frame R; attached to each link j, such that:

- the z; axis is along the axis of joint j;

—~ the x; axis is aligned with the common normal between z; and z,;. If 2; and
z;4) are parallel or collinear, the choice of x; is not unique. The intersection of
X; and z; defines the origin O;. In the case of intersecting joint axes, the origin
is at the point of intersection of the joint axes;

— the y; axis is formed by the right-hand rule to complete the coordinate system
(Xj, Y; Zj).

Figure 3.1. Robot with simple open structure
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The transformation matrix from frame R;.; to frame R; is expressed as a function
of the following four geometric parameters (Figure 3.2):

* «ay: the angle between z;.) and z; about x;.;;

* dj; the distance between z;.; and ; along x;.;;
¢ 6 the angle between x;.; and x; about 2;;

¢ 1y the distance between x;.) and x; along z;.

OJ_‘

Figure 3.2. The geometric parameters in the case of a simple open structure

The variable of joint j, defining the relative orientation or position between links
j=1 and j, is either 8; or rj, depending on whether the joint is revolute or prismatic
respectively. This is defined by the relation:

q = Gj ej + O‘j T (3.1a]
with:

¢ 0;=0if joint j is revolute;

* 0;= lif joint j is prismatic;

i Oj =1~ O'j.

By analogy, we define the parameter ﬁj by:

aj =0 9j+6j T {3.1b]
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The transformation matrix defining frame R; relative to frame R;; is given as
(Figure 3.2):

FIT; = Rot(x, o) Trans(x, dj) Rot(z, §;) Trans(z, r;)

Cej —Sej 0 dj

Ca,-SB,- Ca,-C()j —SU.j —l'jS(!j

= [3.2}
Sajsej Sa,-COj C(!j er(!j
0 0 0 1
We note that the (3x3) rotation matrix ' A; can be obtained as:
I1A; = rot(x, &) rot(z, 6;) (3.3]

The transformation matrix defining frame R;.; relative to frame R; is given as:

IT;.; = Trans(z, -1;) Rot(z.-6;) Trans(x,~d;) Rot(x ,-0;)

—d;C6;
FIAT  d.se:
= oo (3.4]
._rj
000 1

NOTES.—

— the frame Ry is chosen to be aligned with frame Ry when q; = 0. This means
that zg is aligned with z;, whereas the origin Oy is coincident with the origin
O if joint 1 is revolute, and xg is parallel to x; if joint 1 is prismatic. This
choice makes oy =0,d; =0 and q; = 0;

- in a similar way, the choice of the x;, axis to be aligned with x,.; whenq, =0
makes q, = 0;

— if joint j is prismatic, the z; axis must be taken to be parallel to the joint axis
but can have any position in space. So, we place it in such a way that d; = 0 or
dj+1=0;

- if z; is parallel to z;,, we place x; in such a way thatrj=0orrj,; = 0;

— assuming that each joint is driven by an independent actuator, the vector of

joint variables q can be obtained from the vector of encoder readings q. using
the relation:
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q=Kg+q

where K is an (nxn) constant matrix and g is an offset vector representing the
robot configuration when q¢ = 0;

~ if a chain contains two or more consecutive parallel joints, the transformation
matrices between them can be reduced to one equivalent transformation
matrix using the sum of the joint variables. For example, if 041 = 0, i.e. if 2
and zj, are parallel, the transformation J"Tj,q is written as:

1Ty, = F1TTj,; = Rot(x, 0;) Trans(x, dj) Rot(z, 6;) Trans(z, rj)
Trans(x, dj+|) Rot(z, 8;,,) Trans(z, r;,) (3.5]
C(9j+9j+|) —S(9j+9j+|) 0 dj+dj+|C9j
CajS(9j+9j+|) CajC(6j+9j+,) —SOj dj,,,CajSﬂj—(erj“)Saj
S(!J'S(ej+ej+1) SayC(6;+0;41) Coy dj+1SQjSBj+(rj4-l‘j+| )Coy
0 0 0 |

L}

and the inverse transformation has the expression:

-4;C(8+8;41)-d;+1CH;4
. FAL, diS(0;+8;,1)+di1S04.
J+1Tj‘l - J+l ) e b > )+ [3.6]
—(rj+1541)
0 0 o 1

The above expressions contain terms in (8; + 8j,1) and (rj + rj,1). This result can
be generalized for the case of multiple consecutive parallel axes [Kleinfinger 86a}.

* Example 3.1. Geometric description of the Stiubli RX-90 robot (Figure 3.3a). The
shoulder is of RRR type and the wrist has three revolute joints whose axes intersect
at a point (Figure 3.3b). From a methodological point of view, we first place the z;
axes on the joint axes, then the x; axes according to the previously mentioned
conventions. Then, we determine the geometric parameters defining each frame R;
with respect to frame R;.i. The link coordinate frames are indicated in Figure 3.3b
and the geometric parameters are given in Table 3.1.
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Table 3.1. Geometric parameters of the Stidubli RX-90 robot

bl j % | % |8 |5
1 0 0 0 | o 0
2 0 |n2| 0 |6, ] O
3 0 0 | D3 | o3 | O
4 0 {-w2| 0 | o4 | RL4
5 0 | w2 0 | 65 | O
6 0 l-a2{ © 8 Y

Figure 3.3a. General view of the Stiubli RX-90 robot
(Courtesy of Stdaubli company)
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Figure 3.3b. Link coordinate frames for the Stdubli RX-90 robot

¢ Example 3.2, Geometric description of a SCARA robot (Figure 3.4). The
geometric parameters of a four degree-of-freedom SCARA robot are given in

Table 3.2.

AWh A’z

A 23,24

O=| B~

D2

X3, X4

D3

Figure 3.4. SCARA Robot
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Table 3.2. Geometric parameters of a SCARA robot

b 1o o |4 |6 |5
1t Jo]lo]o]el!l o
2 o] o|D2]e | o0
3 1o ] o |Dp3fe] o
4 1 {olof o

3.3. Direct geometric model
The Direct Geometric Model (DGM) is the set of relations that defines the

location of the end-effector of the robot as a function of its joint coordinates. For a
serial structure, it may be represented by the transformation matrix 9T, as:

0T, = OTy(q) 'T2q) -.- ™' Tu(gn) (3.7
This relation can be numerically computed using the general transformation
matrix J“Tj given by equation [3.2], or symbolically derived after substituting the
values of the constant geometric parameters in the transformation matrices (Example

3.3). The symbolic method needs less computational operations.
The direct geometric model of a robot may also be represented by the relation:

X =f(q [3.8]
where q is the vector of joint variables such that:

9=1{q q..ql 3.9

The position and orientation of the terminal link are defined as:

X = [x; X3...xp)T [3.10]

There are several possibilities of defining the vector X as-we will see in § 3.6.
For example, with the elements of the matrix OT,,:

X=[Px Py P, sx s s, ng 0y, n, ay ay a," (3.11

Taking into account that s = n x 8, we can also take:
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X=(P Py P, n, ny m, a ay a,ff (3.12]

¢ Example 3.3. Symbolic direct geometric model of the Stdubli RX-90 robot
(Figure 3.3). From Table 3.1 and using equation [3.2], we write the elementary
transformation matrices J-!T; as:

C1-5100 C2-8200 C3-S30D3

S1 Cl100 0 0 -10 S3C300
1= IT, = , 2T =

0 0 107 S$2C200 0 010

0 001 0 0 01 0 001

Since the joint axes 2 and 3 are parallel, we can write the transformation matrix
IT3 using equation [3.5) as:

C23 -823 0 C2D3

i 0 0 -1 0
371 $23 €23 0 s2D3
0 0 0 1

with C23 = cos(8; + 63) and S23 = sin(8s + 63).

C4 -S40 O C5-8500 C6 -S600
= 0 0 IRLA oTy= 0 0 -10 5T, = 0 010
-S4-C40 0 [ §5Cs 00 ~-S86 ~C600
0 0 01 0 0 01 0 0 01

In order to compute OTg, it is better to multiply the matrices I-'T; starting from
the last transformation matrix and working back to the base, mainly for two reasons:

- the intermediate matrices /T¢, denoted as U;, will be used to obtain the inverse
geometric model (Chapter 4);

— this reduces the number of operations (additions and multiplications) of the
model.

We thus compute successively U; forj =5, ..., 0:

Us= 5T6
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[~ C5C6 -C586 -S5 O
S6 Ceé 0 0
S5C6 -S8586 C5 O
. 0 0 0 1

Uy = 4T =4Ts Us =

[~ C4C5C6-8456 —C4C5S6-S4C6 -C4S5 0

e 23T o $5C6 -8556 C5 R4
357 T6="TeUs=| _s4c506-Cas6 $4C556-C4C6 S4s5 0
_ 0 0 o 1

Uy=2Tg=2T; U3
The s, n, a, P vectors of U; are:

sy = C3(C4C5C6 - S456) — S355C6
sy = $3(C4C5C6 - 5456) + C355C6
s, =~ 84C5C6 - C456

iy = - C3(C4C5S6 + S4C6) + S35586
ny =~ $3(C4C556 + S4C6) - C3S556
n, = S4C556 — C4C6

ay = — C3C4S5 - S3C5

ay = — 83C4S5 + C3C5

a, = 5485

Py =-S3RL4 + D3

U =1Te=1T, Uy = 1T3 U;

The corresponding s, n, a, P vectors are:

sx = C23(C4C5C6 — S4S6) - S2355C6
sy = S4C5C6 + C456

s, = $23(C4C5C6 ~ S4S6) + C2355C6
ny = - C23(C4C556 + S4C6) + $238556
ny = - S4C556 + C4C6

n, =~ S23(C4C586 + S4C6) ~ C23S586
ay = - C23C4S85 - 823C5

ay =— 8485

a, =~ $23C4S85 + C23C5

P, =~ S23 RI4 + C2D3
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P, = C23 RLA + 52D3

Finally:
Up= 0T6 = 0T| Uy
The corresponding s, n, a, P vectors are:

s, = C1(C23(C4CS5C6 ~ S456) - $2385C6) - S1(S4C5C6 + C4S6)

s, = S1(C23(C4C5C6 — 5456) - S2355C6) + C1(S4C5C6 + C4S6)
s, = $23(C4CS5C6 - S486) + C2355C6

ny = C1(~ C23 (C4C5S6 + S4C6) + $235556) + S1(S4C556 — CAC6)
ny = S1(- C23 (C4C5S6 + S4C6) + 5238556) - C1(S4C5S6 ~ C4C6)
ng = - $23(C4C5S6 + S4C6) - C235556

a, = - CI(C23C4S5 + S23C5) + S154S5

ay = - S1(C23C4S5 + $23C5) - C184S5

a, = - $23C4S5 + C23C5

P, = - C1(523 RL4 - C2D3)

Py =~ S1(523 RL4 - C2D3)

P, = C23 RL4 + 52D3

3.4. Optimization of the computation of the direct geometric model

The control of a robot manipulator requires fast computation of its different
models. An efficient method to reduce the computation time is to generate a
symbolic customized model for each specific robot. To obtain this model, we
expand the matrix multiplications to transform them into scalar equations. Each
element of a matrix containing at least one mathematical operation is replaced by an
intermediate variable. This variable is written in the output file that contains the
customized model. The elements that do not contain any operation are kept without
modification. We propagate the matrix obtained in the subsequent equations.
Consequently, customizing eliminates multiplications by one and zero, and additions
with zero. Moreover, if the robot has two or more successive revolute joints with
parallel axes, it is more interesting to replace the corresponding product of matrices
by a single matrix, which is calculated using equation [3.5). We can also compute
Os, using the vector product (On, x %a,). In this case, the multiplication of the
transformation matrices from the end-effector to the base saves the computation of
the vectors s, of the intermediate matrices iTy, (j = n, ..., 1).

¢ Example 3.4. Direct geometric model of the Stiubli RX-90 robot using the
customized symbolic method.
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a) computation of all the elements (s, n, a, P)

We denote Tijrs as the element (r, s) of the matrix iTj. As in Example 3.3, the
product of the matrices is carried out starting from the last transformation matrix.
We obtain the following intermediate variables for the matrix 4Tg:

T4611 =C5Cé6
T4612 =-C5 S6
T4631 =S5 C6
T4632 =-S5 S6

Proceeding in the same way, the other intermediate variables are written as:

T3611 = C4 T4611 - S4 86
T3612 = C4T4612 -S4 Cé6
T3613=-C4 S5 )
T3631 =- S4 T4611 - C4 S6
T3632 =- 84 T4612-C4 C6
T3633 =S4 S5

Ti1314=D3C2

T1334 =D3 82

T1611 = C23 T3611 - §23 T4631
T1612 = C23 T3612 - S23 T4632
T1613 =C23 T3613 -S23C5
T1614 =-S23 R14 + T1314
T1631 = 823 T3611 + C23 T4631
T1632 = S23 T3612 + C23 T4632
T1633 =823 T3613 +C23 C5
T1634 = C23 RI4 + T1334
TO611 = C1 T1611 + St T3631
T0612 =C1 T1612 + S1 T3632
TO0613 = C1 T1613 + S1 T3633
TO614 =C1 T1614

T0621 = S1 T1611 - C1 T3631
T0622 = S1 T1612 - C1 T3632
T0623 = S1 T1613 - C1 T3633
T0624 = S1 T1614

T0631 = T1631

T0632 = T1632

T0633 = T1633

T0634 = T1634

Total number of operations: 44 multiplications and 18 additions
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b) computing only the columns (n, a, P)

T4612 =-CS5 S6

T4632 = -85 S6

T3612 = C4 T4612 - S4 C6
T3613=-C4 S5

T3632 = -S4 T4612 - C4 C6
T3633 =S4 85

T1314=D3C2

T1334=D3 82

T1612 = C23 T3612 - S23 T4632
T1613 = C23 T3613 - 523 C5
T1614 = - S23 RL4 + T1314
T1632 = S23 T3612 + C23 T4632
T1633 = S23 T3613 + C23C5
T1634 = C23 RLA + T1334
T0612 = C1 T1612 + S1 T3632
T0613 = C1 T1613 + §1 T3633
T0614 =C1 T1614

T0622 = S1 T1612 - C1 T3632 .
T0623 = S1T1613 - C1 T3633
T0624 = S1 T1614

T0632 = T1632

T0633 =T1633

T0634 = T1634

Total number of operations: 30 multiplications and 12 additions

These equations constitute a complete direct geometric model. However, the
computation of Js¢ requires six multiplications and three additions corresponding to
the vector product (Ong x %ag).

3.5. Transformation matrix of the end-effector in the world frame

The robot is a component among others in a robotic workcell. It is generally
associated with fastening devices, sensors..., and eventually with other robots.
Consequently, we have to define a reference world frame R¢, which may be different
than the base reference frame Ry of the robot (Figure 3.5). The transformation
matrix defining Rg with reference to R¢ will be denoted as Z = T,

Moreover, very often, a robot is not intended to perform a single operation at the
workcell: it has interchangeable different tools. In order to facilitate the
programming of the task, it is more practical to define one or more functional
frames, called fool frames for each tool. We denote E = *Tg as the transformation
matrix defining the tool frame with respect to the terminal link frame.
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Figure 3.5. Transformations between the end-effector and the world frame

Thus, the transformation matrix fTg can be written as:
fTg = ZOTy(q) E [3.13]

In most programming languages, the user can specify Z and E.

3.6. Specification of the orientation

Previously, we have used the elements of the matrix T, to represent the position
and orientation of the end-effector in frame Rg. This means the use of the Cartesian
coordinates to describe the position:

op, = [Px Py P T (3.14)
and the use of the direction cosine matrix for the orientation:

A, = [ %, Ony Cay ) (3.15]

Practically, all the robot manufacturers make use of the Cartesian coordinates for

the position even though the cylindrical or spherical representations could appear to
be more judicious for some structures of robots.

Other representations may be used for the orientation, for example: Euler angles
for CINCINNATI-T3 robots and PUMA robots, Roll-Pitch-Yaw (RPY) angles for
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ACMA robots, Euler parameters for ABB robots. In this section, we will show how
to obtain the direction cosines s, n, a from the other representations and vice versa.
Note that the orientation requires three independent parameters, thus the
representation is redundant when it uses more than that.

3.6.1. Euler angles

The orientation of frame R;, expressed in frame Rg is determined by specifying
three angles, ¢, 8 and y, corresponding to a sequence of three rotations (Figure 3.6).
The plane (x,, ¥,) intersects the plane (xg, ¥o) following the straight line ON, which
is perpendicular to 2z and z,. The positive direction is given by the vector product
agXx 8,. The Euler angles are defined as:

* ¢: angle between xg and ON about 2y, with 0 < ¢ < 27;

* 0 : angle between 2 and z, about ON, with0 <0< m;

* y: angle between ON and x, about zg, with 0 S y < 21,

Figure 3.6. Euler angles (2, x, z representation)

The orientation matrix is given by:

0A, = rot(z, ¢) rot(x, 0) rot(z, y)
CoCy-SoCoSy -CoSy-S¢COCy  S¢S6
=1 S¢Cy+CoCOSY ~SoSy+CoCoCy ~CoSo [3.16}
SeSy SeCy ceo
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Inverse problem: expression of the Euler angles as functions of the direction
cosines. Premultiplying equation [3.16] by rot(z, ~¢), we obtain [Paul 81]:

rot(z, -¢) %A, = rot(x, 6) rot(z, y) [3.17)

Using relations [3.15] and [3.17] yields:

Cosx+S¢sy Cony+Sény Coax+Soay Cy -Sy O
~S¢sx+Cdsy -Sony+Coény, ~S¢a,+Coay | = | COSy COCy ~S6 | [3.18]
s; n, a, S6Sy S6Cy Co

Equating the (1, 3) elements of both sides, we obtain:
Coay+Spay =0
which gives:

¢ = atan2(-ay, a,)
¢' = atan2(a,, -a,) = ¢ + 7 [3.19]

NOTE.- atan2 is a mathematical function (Matlab, Fortran, ...), which provides the

arc tangent function from its two arguments. This function has the following
characteristics:

— examining the sign of both a, and ay allows us to uniquely determine the angle
¢suchthat-n<éo<m;

— the accuracy of this function is uniform over its full range of definition;
~ whena, =0, ay, =0, a,= %1 the angle ¢ is undefined (singularity).

Using the (2, 3) and (3, 3) elements of equation [3.18], we obtain:

6 = atan2(S¢ ay — C¢ ay, a,) {3.20]
We proceed in a similar way to calculate y using the (1, 1) and (1, 2) elements:
vy = atan2(- Cé ny — S¢ ny, C s + So sy) {3.21]
When a, and ay are zero, the axes z, and zq are aligned, thus 8 is zero or 7. This

situation corresponds to the singular case: the rotations ¢ and y are about the same

axis and we can only determine their sum or difference. For example, when a,= 1,
we obtain:
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0A, = rot(z, v + ¢)
and from this, we deduce:
¥+ ¢ = atan2(- ny, ny) [3.22)

NOTE.~ The Euler angles adopted here correspond to a (z, X, z) representation
where the first rotation is about zg, followed by a rotation about the new x axis,
followed by a last rotation about the new z axis. Some authors prefer the (2, y, z)
representation (Paul 81]. A specific but interesting case can be encountered in the
PUMA robot controller [Lee 83}, [Dombre 88a) where an initial shift is introduced
so that the orientation matrix is written as:

0A, = rot(z, §) rot(x,  + -;5) rot(z, ¥ - ’—2‘) (3.23]

3.6.2. Roll-Pitch-Yaw angles

Following the convention shown in Figure 3.7, the angles ¢ , 0 and v indicate
roll, pitch and yaw respectively. If we suppose that the direction of motion (by
analogy to the direction along which a ship is sailing) is along the z axis, the
orientation matrix can be written as:

0A, = rot(z, 9) rot(y, 6) rot(x, y)

CoCO CoSOSy-SoCy CoSOCy+SoSy
=| S¢CO S¢SOSy+CoCy SoS6Cy-CoSy (3.24)]
-S6 CoSy CoCy

Inverse problem: expression of the Roll-Pitch-Yaw angles as functions of the
direction cosines. We use the same method discussed in the previous section.
Premultiplying equation [3.24) by rot(z, — ¢), we obtain:

rot(z, - ¢) %A, = rot(y, 0) rot(x, y) [3.25)

which results in:
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C¢5x"'s¢sy C¢nx+s¢ny C¢ax+s¢ay CO S6Sy SeCy
—S¢sx+C¢sy --S<|>n,‘+C4)r|y --Stj)a,p»-Ctt»ay = 0 Cy -Sy [3.26}
Sz n, a, -S6 C6Sy CoCy

Figure 3.7. Roll-Pitch-Yaw angles

From the (2, 1) elements of equation [3.26], we obtain:
-S¢sx+Cosy =0
thus:

= atan2(sy, Sy)
¢ r (3.27)
¢' = atan2(- Sy —Sx) =0+ W
There is a singularity if s, and s, are zero (6 =+ 22[‘ )

In the same way, from the (1, 1) and (1, 3) elements, then from the (2, 2) and
(2, 3) elements, we deduce that:

0 = atan2(- s, Cd s, + Sé'sy) {3.28]
v = atan2(S¢a, — C¢ ay, - S¢ n, + Co ny) [3.29]
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3.6.3. Quaternions

The quaternions are also called Euler parameters or Olinde-Rodrigues
parameters. In this representation, the orientation is expressed by four parameters
that describe the orientation by a rotation of an angle 8 (0 < 6 < n) about an axis of
unit vector u (Figure 3.8). We define the quaternions as:

Q) =C(6/2)
Q2 =uy, S(6/2)
27 (3.30)
Q3= uy S5(6/2)
Qa4 =y, S(6/2)
Figure 3.8. The quaternions
From these relations, we obtain:
2 2 2 2
Q+Q+Q3+Q =1 [3.31)

The orientation matrix %A, is deduced from equation [2.30], defining rot(u, 6),
after rewriting its elements as a function of Q;. We note that:

O = C2012) - S¥BR) = 2Q} -1 (3.32)

and that:
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'Q§=u§s2(e/2)=%uf(l—ce)
2 12

Q3=§uy(l-—C9)

2 12

Qs =7u; (1-C8)

1
Q2 Q3=5uxuy (1-CO)

v,

1 (3.33)
Q2Q4=75uxu, (1 -CO)

1
Q Q= 7 Uyll, (1-Co)
u, S0 =2u, §(6/2) C(6/2)=2Q; Q,

uy S8=2Q Q3
(u; S8=20Q; Q4

Thus, the orientation matrix is given as:

2Q1+Q) -1 2QQ-QQw)  2QQs+Q1Qs)
0A, = | 2(QQ:#QiQ) 2@QH+QD-1  2(Q:Q-QiQ) 3.34)
2QaQu-Q1Q3) 2(QsQe+QQ 2(Q+QD) -1

For more information on the algebra of quaternions, the reader can refer to
(de Casteljau 87].

Inverse problem: expression of the quaternions as functions of the direction
cosines. Equating the elements of the diagonals of the right sides of equations [3.34]
and [3.15] leads to:

1
Qi = 7\sx+ny+a;+1 [3.35]

which is always positive. If we then subtract the (2, 2) and (3, 3) elements from the
(1, 1) element, we can write after simplifying:

4Q§ = sy-Ny-a,+ 1 {3.36]

This expression gives the magnitude of Q,. For determining the sign, we
consider the difference of the (3, 2) and (2, 3) elements, which leads to:
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4QiQ; = n,-ay (3.37]

The parameter Q; being always positive, the sign of Q, is that of (n, ~ a,), which
allows us to write:

Q= %sign (ng—-ay)\[sx-ny-2a,+1 {3.38]
Similar reasoning for Q3 and Q4 gives:

Q= %sign (@ax—s)\-sx+tny—-a;+1 {3.39]

Q4 = %sign (sy—ny)\[-sx~ny+a,+1 [3.40]

These expressions exhibit no singularity.

3.7. Conclusion

In this chapter, we have shown how to calculate the direct geometric model of a
serial robot. This model is unique and is given in the form of explicit equations. The
description of the geometry is based on rules that have an intrinsic logic facilitating
its application. This method can be generalized to tree and closed loop structures
(Chapter 7). It can also be extended to systems with lumped elasticity [Khalil 00a}.

We have also presented the methods that are frequently used in robotics to
specify the orientation of a body in space. We have shown how to caiculate the
orientation matrix from these representations and inversely, how to find the
parameters of these descriptions from the orientation matrix.

Having calculated the direct geometric model, in the next chapter we study the
inverse geometric problem, which consists of computing the joint variables as
functions of a given location of the end-effector.
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Inverse geometric model of serial robots

4.1. Introduction

The direct geometric model of a robot provides the location of the end-effector
in terms of the joint coordinates. The problem of computing the joint variables
corresponding to a specified location of the end-effector is called the inverse
geometric problem. This problem is at the center of computer control algorithms for
robots. It has in general a multiple solution and its complexity is highly dependent
on the geometry of the robot. The model that gives all the possible solutions for this
problem is called the Inverse Geometric Model (IGM). In this chapter, we will
present three methods to obtain the IGM of serial robots. First, we present the Paul
method [Paul 81}, which can be used to obtain an explicit solution for robots with
relatively simple geometry that have many zero distances and parallel or
perpendicular joint axes. Then, we develop a variation on the Pieper method
{Pieper 68], which provides the analytical solution for the IGM of six degree-of-
freedom robots with three prismatic joints or three revolute joints whose axes
intersect at a point. Finally, we expose the Raghavan-Roth method [Raghavan 90},
which gives the IGM for six degree-of-freedom robots with general (arbitrary)
geometry using, at most, a sixteen degree polynomial.

When the inverse geometric model cannot be obtained or if it is difficult to
implement in real time applications, iterative numerical techniques can be used. For
this purpose, several algorithms can be found in the literature [Grudi¢ 93). Most of
these algorithms use either the Newton-Raphson-based method [Pieper 68],
[Goldenberg 85] or inverse Jacobian-based methods [Pieper 68], [Whitney 69],
[Fournier 80), [Featherstone 83a]. In Chapter 6, we will present the second
technique.
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4.2. Mathematical statement of the problem

Let ng; be the homogeneous transformation matrix representing the desired
location of the tool frame Rg relative to the world frame. In general, we can express
fTE in the following form (§ 3.5):

fT§ = ZOTy(@ E [4.1]

where (Figure 3.5):

¢ Z is the transformation matrix defining the location of the robot (frame Rgp)
relative to the world frame;

» OT, is the transformation matrix of the terminal frame R, relative to frame Rg.
It is a function of the joint variable vector g;

¢ E is the transformation matrix defining the tool frame R relative to R;,.

Putting all the known matrices of relation [4.1] on the left side leads to:

Uo = °Tu(g) [42]
with Ug = Z! T E-!

The problem is composed of a set of twelve nonlinear equations of n unknowns.
The regular case has a finite number of solutions, whereas for redundant robots or in
some singular configurations we obtain an infinite number of solutions. When the
desired location is outside the reachable workspace there is no solution.

We say that a robot manipulator is solvable [Pieper 68], [Roth 76] when it is
possible to compute all the joint configurations corresponding to a given location of
the end-effector. Now, all non-redundant manipulators can be considered to be
solvable [Lee 88], [Raghavan 90). The number of solutions depends on the
architecture of the robot manipulator and the amplitude of the joint limits. For six
degree-of-freedom robots with only revolute joints (6R), or having five revolute
joints and one prismatic joint (SR1P), the maximum number of solutions is sixteen.
When the robot has three revolute joints whose axes intersect at a point, the
maximum number of solutions is eight. For the 3P3R robots, this number reduces to
two. In all cases, it decreases when the geometric parameters take certain particular
values.

Robots with less than six degrees of freedom are not able to place the end-
effector frame in an arbitrary location. Thus, we only specify the task in terms of
placing some elements of the tool frame (points, axes) in the world frame. Under

these conditions, the matrix E is not completely defined, and the equation to solve is
given by:
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Z T8 = OT (@ E [4.3]

4.3. Inverse geometric model of robots with simple geometry

For robots with simple geometry, where most of the distances (rj and d;) are zero
and most of the angles (6; and Q) are zero or 11/2, the inverse geometric model can
be analytically obtained using the Paul method [Paul 81]. Most commercially
available robots can be solved using this method.

4.3.1. Principle

Let us consider a robot manipulator whose transformation matrix has the
expression:

0Ty = OTy(qy) 'T2(q2) ... ! Th(qw) [4.4)
Let Up be the desired location such that:

Sx Ny 8 Py
sy 0, a, P
y Uy Sy tY
Up = [4.5]
s; N, 8; P,

0001

The IGM is obtained by solving the following equation:
Up = T1(q1) 'Ta(q) ... "'Tx(qn) {4.6)

To find the solutions of this equation, Paul [Paul 81] proposed to move each
joint variable to the left side one after the other by successively premultiplying
equation [4.6] by JTj.l, for j varying from 1 to n - 1. Then, the joint variables are
determined by equating the elements of the two sides of each equation. For example,
for a six degree-of-freedom robot, we proceed as follows:

— premultiply equation [4.6] by Ty
ITo Up = T2 2T33T4 4T5 5T [4.7]

The elements of the left side are constants or functions of qy. The elements of
the right side are constants or functions of q, ..., q¢;
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~ try to solve q; by equating the elements of the two sides of equation [4.7];
~ premultiply equation [4.7] by 2T and try to determine qa;
— continue the process until all the variables are solved.

In summary, the equations used to obtain all the joint variables are written as:

Up = OT; 'T, 2T33T4 *T5°Ts
IToUp = 1T, 2T3 31, 4T, 5T6

2T, Uy = 2T3 3T, *Ts 5T, ' (4.8]
3T, U, = 3T, 4T 5T,

T3 U3 = 4T55T,

5T, Ug = 5T

with Uj = jT6 = jTj_l Uj-l

The resolution of equations [4.8] needs intuition, but the use of this method on a
large number of industrial robots has shown that only few fundamental types of
equations are encountered [Khalil 86b] (Table 4.1). The solutions of these equations
are given in Appendix 1.

NOTES.-

— the matrices of the right side of equations [4.8] are already available when
computing the direct geometric model (DGM) if the multiplication of the
transformation matrices is started from the end of the robot;

— in certain cases, it may be more convenient to solve the robot by first
determining q, and ending with q). In this case, we postmultiply equation
{4.6] by IT;.; for j varying from n to 2.
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Table 4.1, Types of equations encountered in the Paul method

Type | Xn=Y
Type 2 X86;+YC8=2
Type 3 X186;+ Y1Co; =21
X2 56; + Y2C6; =Z2
Type 4 X1 56;=Y1
X21;CO; = Y2
Type 5 X186;=Y1+Zlr
X2CO;=Y2 + 221
Type 6 W S6j= X C6; + Y §6; + ZI
W CBj = X 56; - Y C8; + Z2
Type 7 W1Coj + W2 88 = X C8; +Y $8; + Z1
W1 56; - W2 C8; = X S6; -Y C0; + Z2
Type 8 X CB; + Y C(6; + 9)) =Z1
X S6; + Y 5(8; + 8)) =22

§6;, CG;: sine and cosine of a revolute joint variable 8;.

ri: prismatic joint variable,

4.3.2. Special case: robots with a spherical wrist

Most six degree-of-freedom industrial robots have a spherical wrist composed of
three revolute joints whose axes intersect at a point (Figure 4.1). This structure is

characterized by the following set of geometric parameters:

d5=r5=d6=0
U4=05=04=0

Sas # 0, Sag # 0 (non-redundant robot)

The position of the center of the spherical joint is obtained as a function of the
joint variables q,, q; and g3. This type of structure allows the decomposition of the
six degree-of-freedom problem into two three degree-of-freedom problems
representing a position equation and an orientation equation. The position problem,
which is a function of q;, q; and q3, is first solved, then the orientation problem

allows us to determine 64, 05, Og.

61
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Figure 4.1, Six degree-of-freedom robot with a spherical wrist

4.3.2.1. Position equation

Since 9P¢ = OP,, the fourth column of the transformation matrix 9Ty is equal to
the fourth column of Uy:

Px
[4.9]

We obtain the variables qy, q2, q3 by successively premultiplying this equation
by g, j = 1, 2, 10 isolate and determine sequentially the joint variables. The
elements of the right side have already been calculated for the DGM.

4.3.2.2. Orientation equation
The orientation part of equation {4.2] is written as:
[s n a]=0Aqq
yielding:
3A0(a1.92,93) [ s n a ] = 3A40,, 65, 66)
which can be written as:
[F G H ] = 3A4®4, 65, 6) [4.10]

Since qy, q2, q3 have been determined, the left side elements are considered to be
known. To obtain 64, 85, 85, we successively premultiply equation [4.10] by 4A5
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then by 5A4 and proceed by equating the elements of the two sides. Again, the
elements of the right side have already been calculated for the DGM.

¢ Example 4.1. IGM of the Stiubli RX-90 robot. The geometric parameters are
given in Table 3.1. The robot has a spherical wrist. The DGM is developed in
Chapter 3.

a) Computation of 8, 9, 64
i) by developing equation [4.9], we obtain:
Py C1(-S23RL4 + C2 D3)
Py _ [ S1(-S23RLA4 + C2 D3)
P, |~ C23RL4 + S2 D3
1 i

Note that the elements of the right side constitute the fourth column of °Tj,
which have already been calculated for the DGM. No variable can be determined
from this equation;

ii) premultiplying the previous equation by 'Tq, we obtain the left side elements as:
U(l) = C1Px+S1Py
Uu@3) =P,

The elements of the right side are obtained from the fourth column of !T:

T(l) = ~S23RL4 + C2 D3
TQ) = 0
T(3) = C23 RL4 + S2 D3

By equating U(2) and T(2), we obtain the following two solutions for 8;:

0, =atan2(Py, Py)
0=0;+n
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iii) premultiplying by 2T\, we obtain the elements of the left side as:

U(1) = C2(C1 P, +S1P) + S2P,
U(2) = -S2(C1 P, +S1P,) +C2P,
UB3) = S1P,-CIP,

The elements of the right side represent the fourth column of 2T
T(l) = -S3RI4+ D3

T(2) = C3RIA4

T3) =10

We determine 0, and 83 by considering the first two elements, which constitute a
type-6 system of equations (Table 4.1). First, an equation in 8, is obtained:

XS82+YC2 =12

with:
X = -2P,D3
Y = -2BID3
Z = (RL4)? - (D3)? - (Pp? - (B1)?

Bl = P, Cl +PySl
from which we deduce that:

YZ-eX\X2+Y2-Z2

c2 X2 +Y? .
o XZeey EYIIp e
- X2 +Y?

This gives two solutions of the following form:
0, = atan2(S2, C2)

0, being known, we obtain:

03 = atan2(S3, C3)

with:
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_—Pz282-BIC2+D3

§3= RLA
~B1S2 +PzC2
C3= oSt ERs

b) Computation of 64, 05, ¢

Once the variables 6;, 6, 03 are determined, we define the (3x3) orientation
matrix 3A¢ as follows:

[F G H]=3As[{s n a]
The elements of F are written as:

U(L,1) = C23 (Cl sx + Sl sy) + 8235,
U@2,1) = - 823 (Cl sy +Slsy) +C235,
U@B,1) = S15,-Clsy

The elements of G and H are obtained from F by replacing (sy, sy, sp) by (ny, ny,
n,) and (ay, ay, a,) respectively.

i) equating the elementsof [F G H ]=3Aq

The elements of 3A¢ are obtained from 3Tg, which is calculated for the DGM:

C685 -86S5 Cs
-C6C584-S6C4 S6C584-C6C4  S584

': C6CS5C4-5684 ~S6C5C4-C6S4 —SSC4:|
A, =

We can determine 65 from the (2, 3) elements using an arccosine function. But
this solution is not retained, considering that another one using an atan2 function
may appear in the next equations;

ii) equating the elements of ‘A3 [ F G H ]=4A¢
The elements of the first column of the left side are written as:

U(l, 1) = C4F, - S4F,
U2, 1) = -C4F, -S4 F,
UG, 1) = Fy
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The elements of the second and third columns are obtained by replacing (Fy, Fy,
Fp with (Gx, Gy, Gp) and (Hy, Hy, H,) respectively. The elements of 4A¢ are
obtained from 4T, which has already been calculated for the DGM:

C6C5 -S6C5 -S5
4Ag = S6 Cé6 0

C6S5 -S6S5 C5
From the (2, 3) elements, we obtain a type-2 equation in 04:
~C4H,-S4H, =0

which gives two solutions:

084 = atan2(H,, -H,)
04=04+7
From the (1, 3) and (3, 3) elements, we obtain a type-3 system of equations in 65

~S5 = C4H, -S4 H,
C5 = Hy

whose solution is:
85 = atan2(S5, C5)

Finally, by considering the (2, 1) and (2, 2) elements, we obtain a type-3 system
of equations in O,

S6 = ~C4F, -S4 F,
C6 = —C4 G, -S4 G,

whose solution is:
0¢ = atan2(S6, C6)

NOTES.— By examining the IGM solution of the Stiubli RX-90 robot, it can be
observed that:
a) The robot has the following singular positions:

i) shoulder singularity: takes place when the point Og lies on the zg axis (Figure
4.2a). Thus Py =Py =0, which corresponds to S23RLA4-C2D3=0. In this case,
both the two arguments of the atan2 function used to determine ©; are zero,
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thus leaving 6; undetermined. We are free to choose any value for 8;, but
frequently the current value is assigned. This means that one can always find a
solution, but when leaving this configuration, a small change in the desired
location may require a significant variation in 81, impossible to realize due to
the speed and acceleration limits of the actuator;

ii) wrist singularity: takes place when C23(Cla, + Slay) + S23a, = H, = 0 and
(Slax - Clay) = H, = 0. The two arguments of the atan2 function used to
determine 04 are zero. From the (2, 3) element of 3A4, we notice that in this
case COs = £1. Thus, the axes of joints 4 and 6 are collinear and it is the sum
04 + 04 that can be determined (Figure 4.2b). For example, when 85 = 0, the
orientation equation becomes:

C46 -S46 0
[F G H]=3g=| O 0 1

-S46 -C46 0O

Thus, 84 + 86 = atan2(~Gy, —-G,). We can arbitrarily assign 4 to its current
value and calculate the corresponding 0¢. We can also calculate the values of
84 and B for which the joints 4 and 6 move away from their limits;

iii) elbow singularity: occurs when C3 = 0. This singularity will be discussed in
Chapter 6. It does not affect the inverse geometric model computation
(Figure 4.2c).

b) The above-mentioned singularities are classified as first order
singularities. Singularities of higher order may occur when several singularities of
first order take place simultaneously.

¢) Number of solutions: in the regular case, the Stiubli RX-90 robot has
eight solutions for the IGM (product of the number of possible solutions for each
joint). Some of these configurations may not be accessible because of the joint
limits.

4.3.3. Inverse geometric model of robots with more than six degrees of freedom

A robot with more than six degrees of freedom is redundant and its inverse
geometric problem has an infinite number of solutions. To obtain a closed form
solution, (n—6) additional relations are needed. Two strategies are possible:

~ arbitrarily fixing (n - 6) joint values to reduce the problem to six unknowns.
The selection of the fixed joints is determined by the task specifications and
the robot structure;
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— introducing (n - 6) additional relations describing the redundancy, as is done
in certain seven degree-of-freedom robots [Hollerbach 84b}.

Iy 7

a) Shoulder singularity b) Wrist singularity ($5=0)
(Py=Py=0o0r S23RL4-C2D3=0)
| %

¢) Elbow singularity (C3 = 0)

Figure 4.2. Singular positions of the Stdubli RX-90 robot

4.3.4. Inverse geometric model of robots with less than six degrees of freedom

When the robot has less than six degrees of freedom, the end-effector frame Rg
cannot be placed at an arbitrary location except if certain elements of 0Tgd have
specific values to compensate for the missing degrees of freedom. Otherwise, instead
of realizing frame-to-frame contact, we consider tasks with less degrees of freedom
such as point-to-point contact, or (point-axis) to (point-axis) contact [Manaoui 85].
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In the next example, we will study this problem for the four degree-of-freedom
SCARA robot whose geometric parameters are given in Table 3.2,

¢ Example 4.2. IGM of the SCARA robot (Figure 3.4).
i) frame-to-frame contact

In this case, the system of equations to be solved is given by equation [4.2] and
Uy is defined by equation [4.5]:

C123 -S8123 0 Ci12D3+C1D2

S123 CI23 0 S12D3+SID2
Up =Ty =| 0 1 r

0 0 0 1

Examining the elements of this matrix reveals that frame-to-frame contact is
possible if the third column of Uy is equal to [0 0 1 0]T. This implies two
independent conditions, which compensate for the missing degrees of freedom. By
equating the (3, 4) elements, we obtain:

rg =P,

The (1, 4) and (2, 4) elements give a type-8 system of equations in 9y and 6,
with the following solution:

92 = atan2([1 - (C2)2, C2)

= atan2(S1, C1)
with:
_ D2~ (D2~ (D3)?
B1P,-B2P B1P,+B2P

Bl = D2+D3C2, B2 = D3 S2
After determining 8; and 0,, we obtain 6; as:

83 = atan2(sy, s,) - 62 - 61
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ii) (point-axis) to (point-axis) contact

Let us suppose that the tool is defined by an axis of unit vector ag, passing by Og
such that: )

4PE = [Qx Qy Qz]’r
dag = [W, W, WT

The task consists of placing the point O at a point of the environment while
aligning the axis ag with an axis of the environment, which are defined by:

P

d
OaE

Py Py PJT

{ax ay a )T

The system to be solved is written as:

- - ax Px - = wx QX
- - ay Py | - - Wy Q
- - a, P | 0T4 - - W, Q
- -0 1 - - 0 i

After simplifying, we obtain:

Pl [QxC123-QS123+C12D3+C1D2
P, | = | QxS123+Q,C123+S12D3+S1D2
Pl | Q,+rd

ay | = | W,S123+W,C123
L22) L W,

"a] 'wxc123-wysx23}

Thus, we deduce that the condition a; = W4 must be satisfied to realize the task.
The IGM solutions are obtained in the following way:
- from the a, and ay equations, we obtain (8; + 8, + 83) by solving a type-3
system (Appendix 1):

8y + 62+ 03 = atan2(S123, C123)

W, —a,W a, W, +

. a X
with S123 = Wit Wy2 and C123 = W2+ Wyz

if (W2 + W,2) #0;
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- when W, = W, = 0, the axis of the end-effector is vertical and its orientation
cannot be changed. Any value for 8; may be taken;

~ from Py and Py equations, we obtain 6, and 8 by solving a type-8 system of
equations;
~ finally, from the third element of the position equation, we obtain ry =P, - Q..

In summary, the task of a SCARA robot can be described in one of the following
ways:
- placing the togl frame onto a specified frame provided that the third column of
the matrix T, = OTg E-! = [0 0 1 0]T, in order to satisfy that z, is vertical;

~ placing an axis and a point of the tool frame respectively onto an axis and a
point of the environment provided that a, = W,. The obvious particular case is
to locate a horizontal axis of the end-effector frame in a horizontal plane
(a,=W,=0).

4.4. Inverse geometric model of decoupled six degree-of-freedom robots
4.4.1. Introduction

The IGM of a six degree-of-freedom decoupled robot can be computed by
solving two sub-problems, each having three unknowns [Pieper 68]. Two classes of
structures are considered:

a) robots having a spherical joint given by one of the following four
combinations: XXX(RRR), (RRR)XXX, XX(RRR)X, X(RRR)XX, where
(RRR) denotes a spherical joint and X denotes either a revolute (R) or a
prismatic (P) joint. Consequently, each combination resuits in eight structures;

b) robots having three revolute and three prismatic joints as given by one of the
following 20 combinations: PPPRRR, PPRPRR, PPRRPR, ...

In this section, we present the inverse geometric model of these structures using
two general equations [Khalil 90c], [Bennis 91a). These equations make use of the
six types of equations shown in Table 4.2. The first three types have already been
used in the Paul method (Table 4.1). The explicit solution of a type-10 equation can
be obtained symbolically using software packages like Maple or Mathematica. In
general, however, the numerical solution is more accurate. We note that a type-11
equation can be transformed into type-10 using the half-angle transformation by
writing C6; and S6; as:

1+

0.
C6; = tz and S6; = T_Z_t_ with t = tan 7’

+2
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Table 4.2. Types of equations encountered in the Pieper method

Type 1 Xn=Y
Type 2 XCO+YS8=Z
Type 3 X186;+Y1CH;=2Z1
X286; + Y2C6; =22
Type 9 azriz+alri+a0=0
Type 10 a4ri4+a3ri3+azri2+alfi+30=°
Type 11 a4 56,2 + a3 CO; S6; + a5 CO; + 27 $6; + 29 =0

4.4.2. Inverse geometric model of six degree-of-freedom robots having a
spherical joint

In this case, equation {4.6] is decoupled into two equations, each containing three
variables:

— a position equation, which is a function of the joint variables that do not
belong to the spherical joint;

— an orientation equation, which is a function of the joint variables of the
spherical joint.

4.4.2.1. General solution of the position equation

The revolute joint axes m—1, m and m+ | (2<m<5) form a spherical joint if:
dn=Tm=dmy1=0
Soy, #0
Sam+ # 0

The position of the center of the spherical joint, O, or Oy, 1, is independent of

the joint variables 6p,.1, 8, and 6p,,;. Thus, we can show (Figure 4.3) that the
position of Oy, relative to frame Ry, 5 is given by:

dm-1
m-2p, -1 “Tm-190n.1
M-2T e 1 Trans(z,~rmq )P = [ lm ] = r mlcaml [4.11]
m- -

I
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where po={0 0 0 1] Tand ™2P,,  is obtained using equation {3.2].

”

m+1

Figure 4.3. Axes of a spherical joint

To obtain the position equation, we write equation [4.6] in the following form:
0T .2 ™2T e ™I Tg = Uy [4.12]

Postmultiplying this relation by 6Ty, Trans(z, ~ry,1) po and using equation
[4.11], we obtain:

m-2p. 1
O'rm.z[ 1"‘ ] = Ug 5Ty Trans(z, ~tma1) Po (4.13]

Equation [4.13] can be written in the general form:
Rot(z, 6;) Trans(z, r;) Rot(x, o) Trans(x, d;)

fi
Rot(z, Gj) Trans (z, rj)[ (c:k)] = [ﬂ (4.14]

where:

— the subscripts i, j and k represent the joints that do not belong to the spherical
joint; i and j represent two successive joints;

- the vector f is a function of the joint variable q;
- the vector g is a constant.

By combining the parameters g; and g; with g and f respectively, equation [4.14]
becomes:

Faw] [G
Rot/Trans(z, q;) Rot(x, o) Trans(x, d,-) Rot/Trans(z, 9j) 1 1=l [4.15])
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with:
* Rot/Trans(z, q;) = Rot(z, 6;) if q; = 6;
= Trans(z, rj) if g =;

Fx
F(‘-lk)] Fy _ [f(CIk)]
.[ L= F, = Rot/Trans(z, q;) 1
1
Gy
(M & prome5 ]
117 G, = Rot/Trans(z, —q;) 1
1

* Rot/Trans(z, q;) = Trans(z, r;) if joint i is revolute

= Rot(z, 8;) if joint i is prismatic

The components of G are constants and those of F are functions of the joint
variable qy. We note that if joint k is revolute, then:

IIFJ2 = aCB, +b SO, +¢ [4.16]
where a, b and ¢ are constants.

Table 4.3 shows the equations that are used to obtain the joint variable qy
according to the types of joints i and j (columns 1 and 2). The variables g; and q; are
then computed using equation [4.15]. Table 4.4 indicates the type of the obtained
equations and the maximum number of solutions for each structure; the last column
of the table indicates the order in which we calculate them. In Example 4.3, we will
develop the solution for the case where joints i and j are revolute. We note that the
maximum number of solutions for g;, q; and gy is four.

NOTE.~ The assignment of i, j and k for the joints that do not belong to the spherical
joint is not unique. In order to get a simple solution for gy, this assignment can be
changed using the concept of the inverse robot (presented in Appendix 2). For
instance, if the spherical joint is composed of the joints 4, 5 and 6, we can take i=1,
j=2,k=3. But we can also take i=3, j=2, k=1 by using the concept of the inverse
robot. We can easily verify that the second choice is more interesting if these joints
are revolute and Say #0, d #0 but d3=0 or Soz=0.
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Table 4.3. Solutions of qy and types of equations

Type
i Conditions Equations for qi O |
R[  so=0 Cotj Fy(qn) = G 211
4=0 IFIP = IGI2 2|9
di20 F2-IGJ*-d:2 2 [F,CuaG, P 110
] [u n ‘;du it B + Z s 0'] Z = Gx2+ Gyz
and Soy # 0 J e
Pl cCo=0 Fy(a) = 505G, 21
Co; 20 F,-So; G 1} o
j (Ftd? + [.J_C.i’n_s]z = G2+Gy?
%
R Coy=0 Gy = - Sq Fy(qy) 211
Co; 20 Gy +Sa; F, |2 19
o (Gx—d‘)2+ 1z =F12+F2
] Caj y
P Fx+dj = Gy 2 |1

Table 4.4. Type of equations and maximum number of solutions for q;, qj and g

Type / Number of solutions
i i Conditions 6y rk G gj Order
R IR |So=0 2/2 [1/1 ]3/1 |2/2 |[B;then§;
dj=0 212 1972 {3/1 3/2 | 6jthen;
dj#0andSoy#0 |11/4 [10/4 |3/] 3n 9; then 6;
R |P |Coj=0 2/2 |1/1 |2/2 [1/1 |8jtheny
Co.j#:O 11/74 |9/2 371 171 0; then;
P |R |Co=0 272 1/1 /1 |2/2 |8theny
Coy#0 11/74 |9/2 |1/1 371 6; thenr;
P {P 212 11/1 1/1 1/1 rj then
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¢ Example 4.3. Solving qx when joints i and j are revolute. In this case, equation
(4.15] is written as:

F(qy) G
Rot(z, 9;) Rot(x, o) Trans(x, d;) Rot(z, 8;) 1 =1, [4.17]

Postmultiplying equation [4.17] by Rot(z, —6;), we obtain:

ce; S8 0 4| Fx Co, S8 0 0 [ Gy
Co;86; CoyCl; -Soy 0 Fy 1 | -S6, C6; 0 0 Gy [4.18]
So;S6; SoyCO; Coy 0 || Fe 0 0 10|l G ’
0 0 0 1 1 0 0 01 1

Expanding equation [4.18] gives:
C(-)j Fx - Sej Fy + dj = Cei Gx + Sei Gy {4.18a]
Co; S6; Fy + Coy CB; Fy - Soy F, = - 86; G, + C6; Gy [4.18b]
So; SO; F, + S0 Co; Fy + Coy F, = G, [4.18¢)

Three cases are considered depending on the values of the geometric parameters
o; and d;:

a) Saj = 0 (thus Caj =+1), dj # 0. Equation [4.18c} can be written as:
Coy Fq) = G, (4.19]

We thus deduce that:
— if qx = By, equation [4.19] is of type 2 in B;
- if q¢ = 1, equation [4.19] is of type 1 inry.

Having determined qy, the components of F are considered to be known. Adding
the squares of equations [4.18a] and [4.18b] eliminates 6; and gives a type-2
equation in 6;:

Fy2 + F2 + di2 + 2 d; (CO; Fy - S8 Fy) = G,2 + G,? (4.20}

After obtaining ©;, equations [4.18a) and [4.18b] give a system of type-3
equations in 0;.

b) dj = 0 and Soy # 0. Adding the squares of equations [4.18] gives:
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(FI? = IGI? [4.21}

Note that ||Fj[2 is a function of q whereas ||G|f? is a constant:
- if qx = B, equation [4.21] is of type 2 in 6y;
- if g = ry, equation [4.21] is of type 9 in ry.

Having obtained qy and F, equation [4.18c] gives 6; using the type-2 equation.
Finally, equations [4.18a] and [4.18b] give a system of type-3 equations in 6;.

c) d; # 0 and So; # 0. Writing equation [4.17] in the form:

[F(QR)

G
| ] = Rot(z, -9;) Trans(x, ~d;) Rot(x, -0;) Rot(z, -9;) [ l] (4.22)

after expanding, we obtain the third component as:
F, = Sa; 86; G, - Sa; C8; Gy + Co; G, (4.23a)
Adding the squares of the components of equation [4.22] eliminates 6;:
IGI? + di? - 2 d; (C8; G, - S6; Gy) = |IFI? [4.23b)

By eliminating 6; from equations [4.23], we obtain:

2 2
|F||2- G2 - d:2 F,~-Co: G
[' ” =]+ so:,)-'j ?| = 62+Gy2 (4.24]

Here, we distinguish two cases:
—~ if qx = By, equation [4.24] is of type 11 in Oy;
~ if qg =1, equation [4.24] is of type 10 in ry.

Knowing 6y, equations {4.23a] and [4.23b] give a system of type-3 equations in
8;. Finally, equations [4.18a] and [4.18b] are of type 3 in 6;.

* Example 4.4. The variables 8;, 6, 03 for the Stiubli RX-90 robot can be
determined with the following equations using the Pieper method:

~ equation for 85: —2D3 RLA 83 = (Py)? + (P))? + (P,)? - (D3)? - (RL4)?

~ equation for 0: (- RL4 83 + D3) S2 + (RL4C3)C2 = P,

~ equations for 8;: [(- RL4 S3 + D3) C2~-RL4 C3 S2)Cl = P,
[(-RL4 83+ D3)C2-RL4C382] 81 = P,
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4.4.2.2. General solution of the orientation equation

The spherical joint variables Op.;, O, and Oy, are determined from the
orientation equation, which is deduced from equation {4.2] as:

OAm2™Ap,™Ag=[s n a] (4.25]

The matrices %A .5 and M*1A¢ are functions of the variables that have already
been obtained. Using equation [3.3] and after rearranging, equation [4.25] becomes:

rot(z, 8y.1) rot(x, Gy) rot(z, Op) rot(X, Omy ) rot(z,0pm,) = [ S N A ]
[4.26]
with[ S N A ]J=rot(x,—an.) ™2A¢[ s n a J6A,,

The left side of equation {4.26} is a function of the joint variables 8, ;, 8y, and
Om+1 whereas the right side is known. Since rot(z, 0) defines a rotation about the
axiszg=[ 0 O 1]T, then zq is invariant with this rotation, which results in:

rot(z, 0) zg = zg and zg! rot(z, 6) = zg! [4.27)

i) determination of 6,,

To eliminate 6,1, we premultiply equation [4.26] by 2o and postmultiply it by
2o

29" rOt(X, O) TOH(Z, By) FOL(X, Ome1) 2o = 207 [ S N A ]zg [4.28]
thus, we obtain:

Soim SOm4) COm + Couy Copy g = A,

Equation {4.28] is of type 2 in 8, and gives two solutions (Appendix 1);
ii) determination of 6,,_;

Having obtained Oy, let us write:

{ St N1 Al ] = rot(x, o) rot(z, 8y) rot(x, Om.1) [4.29]
Postmultiplying equation [4.26] by z, and using equation {4.29] gives:

rot(z, 0, DAl = A [4.30}
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The first two elements of [4.30] give a type-3 system of equations in 8p,.);
iii) determination of Oy, ;

By premultiplying equation [4.26] by zoT and using equation [4.29], we obtain:

[ S1; Nl Al; Jrot(z,8my) = [ Sz N2 Az ] {4.31]

This gives a type-3 system of equations in Op,.

These equations yield two solutions for the spherical joint variables. Thus, the
maximum number of solutions of the IGM for a six degree-of-freedom robot with a
spherical joint is eight.

4.4.3, Inverse geometric model of robots with three prismatic joints

The IGM of this class of robots is obtained by solving firstly the three revolute
joint variables using the orientation equation. After this, the prismatic joint variables
are obtained using the position equation. The number of solutions for the IGM of
such robots is two.

4.4.3.1. Solution of the orientation equation

Let the revolute joints be denoted by i, j and k. The orientation equation can be
deduced from equations [4.2] and {3.3] as:

rot(z, 6;) [ S1 N1 A1 ]rot(z6) [ S2 N2 A2 ]rot(z6,) = [S3 N3 A3]
(4.32)

where the orientation matrices [ Si Ni Ai ], fori =1, 2, 3, are known. The solution
of equation [4.32] is similar to that of § 4.4.2.2 and gives two solutions.
4.4.3.2. Solution of the pasition equation

Let the prismatic joints be denoted by i', j' and k'. The revolute joint variables
being determined, the position equation is written as:

Trans(z, r;;) T1 Trans(z, 1) T2 Trans(z, ry) = T3 [4.33]
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h T [ Si* Ni' Ai' PV ]
with Ti = 0 0 o0 1
The matrices Ti, for i = 1, 2, 3, are known. The previous equation gives a system

of three linear equations in ry, ry and ry.

4.5. Inverse geometric model of general robots

The Raghavan-Roth method [Raghavan 90] gives the solution to the inverse
geometric problem for six degree-of-freedom robots with general geometry (the
geometric parameters may have arbitrary real values). In this method, we first
compute all possible solutions of one variable g; using a polynomial equation, which
is called the characteristic polynomial. Then, the other variables are uniquely
derived for each q;. This method is based on the dyalitic elimination technique
presented in Appendix 3.

In order to illustrate this method, we consider the 6R robot and rewrite equation
[4.2] as follows:

0T| sz 2T3 3T4 = Up 61'5 5T4 (4.34]

The left and right sides of equation [4.34] represent the transformation of frame

R4 relative to frame R using two distinct paths. The joint variables appearing in the
elements of the previous equation are:

01.92.03.84 61,02,05,04 61,062,803 61,0293 05,06 0586 0506 0596

01.02.03,84 0,.02.03.84 0,,0,,03 61,0,,8; 05,06 0506 059 05.06

01,02,03,05 01,02,05.04 61,0205 6,005 | | 0585 0506 0506 0506
0 0 0 1 0 0 0 1

From this equation, we observe that the third and fourth columns of the left side
are independent of 84. This is due to the fact that the elements of the third and fourth
columns of the transformation matrix i"!'T; are independent of 0; (see equation [3.2]).
From equation [4.34], we can thus establish the following equations devoid of 65:

a; = a [4.35a)
P=P [4.35b]

where the vectors a and P contain the first three elements of the third and fourth
columns of equation [4.34] respectively, and the subscripts "1" and "r" indicate the
left and right sides respectively. Equations [4.35] give six scalar equations.
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It is now necessary to eliminate four of the five remaining variables to obtain a
polynomial equation in one variable. This requires the use of the following
additional equations:

@"P) = @aTP), [4.36a]
(PTP) = (PTP), {4.36b)
(axP), = (axP), [4.36¢]
[a(PT P) - 2P(aT P)}; = [a(PT P) - 2P(a P)), [4.36d)

Equations [4.36a} and [4.36b) are scalar, whereas equations [4.36¢) and [4.36d]
are vectors. They do not contain sin?(.), cos?(.) or sin(.)cos(.). We thus have
fourteen scalar equations that may be written in the following matrix form:

AXl1 =BY 4.37]
where:

o« X1={S283 S2C3 C283 C2C3 S2 C2 83 C3 1]T {4.381

+ Y=[ S586 S5C6 C586 C5C6 S5 CS5 S6 C6 JT [4.39]

¢ A: (14x9) matrix whose elements are linear combinations of S1 and Cl;
+ B: (14x8) matrix whose elements are constants.

To eliminate 05 and 86, we select eight scalar equations out of equation {4.37].
The system [4.37] will be partitioned as:

[Al] [Bl]
az X =g, ¥ [4.40)

where A1X1=B1Y gives six equations, and A2 X1=B2Y represents the remaining
eight equations. By eliminating Y, we obtain the following system of equations:

DX1 = Ogy (4.41]

where D = [Al -~ B1 B2-! A2] is a (6x9) matrix whose elements are functions of St
and Cl.

Using the half-angle transformation for the sine and cosine functions in equation

) l- Xiz , 2xi . 91 . .
{4.41) (Ci = —l T and Si = T+ x2 ") with x; = tan 2 fori=1, 2, 3) yields the new

homogeneous system of equations:
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EX2 = 04y [4.42)
where E is a (6x9) matrix whose elements are quadratic functions of x;, and:

X2 = [ x%x3% xp%x3 x% xax3? xax3 X3 x32 x3 1]T [4.43]

Thus, we have a system of six equations with nine unknowns. We now eliminate

x2 and xj dyalitically (see Appendix 3). Multiplying equation [4.42] by x;, we
obtain six additional equations with only three new unknowns:

EX3 = 0y (4.44]
with X3=[ x2%3? x2%x3 %% x5 x%x3 x? xpxa? xx3 xp IT.

Combining equations {4.42] and [4.44], we obtain a system of twelve
homogeneous equations:

SX =0z [4.45)
where:
X = [ x2x32 x27x3 %23 x22x3% x3%x3 %% x3%3% x9x3 X3 x32 x3 1]T
{4.46]

and S is a (12x12) matrix whose elements are quadratic functions of x; and has the
following form:

S [ . 06"3] [4.47)
N 06)(3 E )

In order that equation {4.45] has a non-trivial solution, the determinant of the
matrix S must be zero. The characteristic polynomial of equation [4.47], which gives
the solution for x1, can be obtained from:

det(S) =0 {4.48)

It can be shown that this determinant, which is a polynomial of degree 24, has
(1+x,2)4 as a common factor (Raghavan 90}]. Thus, equation [4.48] is written as:

det (S) = f(x;) (1+x;2)* = 0 [4.49]

The polynomial f(x;) is of degree sixteen and represents the characteristic
polynomial of the robot. The real roots of this polynomial give all the solutions for
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01. For each value of 01, we can calculate the matrix S. The variables 8, and 65 are
uniquely determined by solving the linear system of equation [4.45]. By substituting
01, 6, and 03 in equation [4.37] and using eight equations, we can calculate 85 and
8¢. Finally, we consider the following equation to calculate 0,:

4T3 = 4T5 Uo 0T3 [4.50]

By using the (1, 1) and (2, 1) elements, we obtain 84 using an atan2 function.

The same method can also be applied to six degree-of-freedom robots having
prismatic joints. It this case, Si and Ci have to be replaced by r;2 and r; in X1 and Y
respectively, i being the prismatic joint.

NOTE.— Equation [4.34] is a particular form of equation [4.2] that can be written in
several other forms [Mavroidis 93], for example:

4T55Tg 5T7 0T = 4T3 3T, 2T, [4.51a)
5T6 6T7 OTl sz = 5T4 4T3 3T2 [4.5 lb]
6T, 9T 1T, 2T; = 6T 5T, 4T, [4.51¢]
0T, 1T, 2T3 3Ty = "T6%T5 5T, [4.51d]
1T, 2T 3T4 4T = 1T "Tg 5T [4.51¢)
274 3T4 4T 5T = 2T T 'Ts [4.51)

with 7T6 = Upand 6T7 = U()'1

The selection of the starting equation not only defines the variable of the
characteristic equation but also the degree of the corresponding polynomial. For
specific values of the geometric parameters, certain columns of the matrix S become
dependent and it is necessary to either change the selected variables and columns
[Khalil 94b), [Murareci 97] or choose another starting equation [Mavroidis 93}.

When the robot is in a singular configuration, the rows of the matrix S are
linearly dependent. In this case, it is not possible to find a solution. In fact, this
method has proved the maximum number of solutions that can be obtained for the
inverse geometric problem of serial robots, but it is hardly usable to develop a
general numerical method to treat any robot architecture.

4.6. Conclusion

In this chapter, we have presented three methods for calculating the inverse
geometric model. The Paul method is applicable to a large number of structures with
particular geometrical parameters where most of the distances are zero and most of
the angles are zero or *7/2. The Pieper method gives the solution for the six degree-
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of-freedom robots having three prismatic joints or three revolute joints whose axes
intersect at a point, Finally, the general method provides the solution for the IGM of
six degree-of-freedom robots with general geometry.

The analytical solution, as compared to the differential methods discussed in the
next chapter, is useful for obtaining all the solutions of the inverse geometric model.
Some of them may be eliminated because they do not satisfy the joint limits.
Generally, the selected solution is left to the robot's user and depends on the task
specifications: to avoid collisions between the robot and its environment; to ensure
the continuity of the trajectory as required in certain tasks prohibiting configuration
changes (machining, welding,..); to avoid as much as possible the singular
configurations that may induce control problems (namely discontinuity of velocity),
etc.



Chapter 5

Direct kinematic model of serial robots

5.1. Introduction

The direct kinematic model of a robot manipulator gives the velocity of the end-
effector X in terms of the joint velocities §. It is written as:

X=Joq [5.1]
where J(q) denotes the (mxn) Jacobian matrix.

The same Jacobian matrix also appears in the direct differential model, which
provides the differential displacement of the end-effector dX in terms of the
differential variation of the joint variables dq:

dX = J(q) dq (5.2

The Jacobian matrix has multiple applications in robotics [Whitney 691, [Paul
81]. The most obvious is the use of its inverse to numerically compute a solution for
the inverse geometric model, i.e. to compute the joint variables q corresponding to a
given location of the end-effector X (Chapter 6). The transpose of the Jacobian
matrix is used in the static model to compute the necessary joint forces and torques
to exert specified forces and moments on the environment. The Jacobian matrix is
also used to determine the singularities and to analyze the reachable workspace of
robots [Borrel 86], [Wenger 89].

In this chapter, we will present the computation of the Jacobian matrix and
expose its different applications for serial robots. The kinematic model of complex
chain robots will be studied in Chapter 7.
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5.2. Computation of the Jacobian matrix from the direct geometric model
The Jacobian matrix can be obtained by differentiating the DGM, X = f(q), using
the partial derivative % such that:

of;
Jj =—é%) fori=1,...,mandj=1,...,n (5.3}

where Jj; is the (i, j) element of the Jacobian matrix J.

This method is convenient for simple robots having a reduced number of degrees
of freedom as shown in the following example. The computation of the basic
Jacobian matrix, also known as kinematic Jacobian matrix, is more practical for a
general n degree-of-freedom robot. It is presented in § 5.3.

¢ Example 5.1. Let us consider the three degree-of-freedom planar robot presented
in Figure 5.1. Let us denote the link lengths by L1, L2 and L3.

Yo

S

X

Figure 5.1. Example of a three degree-of-freedom planar robot

The task coordinates, defined as the position coordinates (Py, Py) of the terminal
point E and the angle a giving the orientation of the third link relative to frame Ry,
are such that:

Py = C1L1+CI12L2+C123L3
P, = S1L1+S12L2+S123L3
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o =0;+0,+6;

where C1 = cos(8;), S1 = sin(8;), C12 = cos(0;+6;), S12 = sin(6;+6,),
C123 = cos(8; +82+03) and S123 = sin(8, +8,+0,).

The Jacobian matrix is obtained by differentiating these expressions with respect
to 01, 65 and 64:

—-S1L1-S12L2-8123L3 -S12L2-8123L3 -S123L3
J =] CIL1+CIi2L2+CI123L3 CIl2L2+CI123L3 CI123L3
1 1 1

5.3. Basic Jacobian matrix

In this section, we present a direct method to compute the Jacobian matrix of a
serial mechanism without differentiating the DGM. The Jacobian matrix obtained is
called the basic Jacobian matrix, or kinematic Jacobian matrix. It relates the
kinematic screw of frame R, to the joint velocities §:

Va
v =[ ]= hi [5.4a]
®n

where V;, and @y, are the linear and angular velocities of frame R,, respectively. We
note that V,, is the derivative of the position vector P, with respect to time, while o,
is not the derivative of any orientation vector.

The basic Jacobian matrix also gives the relationship between the differential
translation and rotation vectors (dP,, 8,) of frame R, in terms of the differential
joint variables dq:

N |
=J,d 5.4b
5 1 [5.46]

We will show in § 5.11 that the Jacobian giving the end-effector velocity X, for
any task coordinate representation, can be deduced from the basic Jacobian Jj,.
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5.3.1. Computation of the basic Jacobian matrix

The velocity gy of joint k produces the linear and angular velocities (Vi , and
@y o respectively) at the terminal frame R;,. Two cases are considered:

— if joint k is prismatic (oy = 1, Figure 5.2):

{vk,n = ay Gk [5.5]

Oxn=0

where ay is the unit vector along the z axis;

— if joint k is revolute (oy = 0, Figure 5.3):

Vion= 8y X Ly n = (ay x Ly n)dx
[5.6]
@ n = B qx

where Ly , denotes the position vector connecting Oy to Oy,

Thus, Vi , and @ , can be written in the following general form:

Vion = [Oxag+ 0y (ay x Ly n)1 Gk (571
@y n = Ok Ay gy

The linear and angular velocities of the terminal frame can be written as:

n n _ .
Vo= X Vin= Tlogar+0x(ayg x Ly n)Jax
k=1 k=1 [5.8]
n n_ .
Wy = Y Oxn= ¥ Oxayqx
k=1 k=1

Writing equation [5.8] in matrix form and using equation [5.4}, we deduce that:

cja;+0;(a;xLyy) ... Opdp+0n(agxLyy)
Ja= _ _ {5.9]
(e3¢ 8] Op 8y

Referring the vectors of J,, with respect to frame R;, we obtain the (6xn) Jacobian
matrix 1J,, such that:
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 {o¥

Figure 5.2. Case of a prismatic joint

Figure 8.3. Case of a revolute joint

Vo = a4 (5.10]
In general, we calculate V,, and ), in frame R,, or frame Ry. The corresponding

Jacobian matrix is denoted by "Jy or 0J, respectively. These matrices can also be
computed using any matrix 'Jy, fori =0, ..., n, thanks to the foliowing expression:

s SAi 03 i
Jn = 0; 5A; Jn (5.11)
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where fA; is the (3x3) orientation matrix of frame R; relative to frame R;.

In general, we obtain the simplest matrix iJ, when i = integer (n/2). We note that
the matrices 'J, , for i = 0, ..., n, have the same singular positions.

5.3.2. Computation of the matrix ],

_ Since the vector product ax x Ly y can be computed by ak Ly o, the k™ column of
'Jp, denoted as 'jy.x, becomes:

R - . A
Ok ‘ak + O 'Ak "ak kkan
Yok = .
Ok 'ak

Sincekay=[0 0 1]Tand kL, = kP, we obtain:

Ok iak + (—Ik (- kPny isk + kan ink)
g = [5.12]
Ek iak

where ¥P,,, and kP, denote the x and y components of the vector kP, respectively.

From this expression, we obtain the k' column of 2J,, as:

O " + O (= ¥Pp, "s¢ + Py, "my)
“nx = _ (5.13)
Ok "ax

The column Pj,,i is computed from the elements of the matrix T}, resulting from
the DGM.
In a similar way, the kth column of 1], is also written as:

‘ Ok igy + O iﬁk (P, - iPk)
ok = - (5.14)
Oy 'ay

which gives fori=0:
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0y Oay + Gy 08 (°P, - OPy)
Unx = _ (5.15)
Oy %ay

In this case, we need to compute the matrices 9Ty fork=1, ..., n.

NOTE. - To find the Jacobian EJg defining the velocity of the too! frame Rg, we can
either make use of equation [5.9] after replacing Ly , by Ly g, or compute "V as a
function of "Vy, and deduce EJg. From § 2.4.3, we can see that:

BVE = ET,, nVn = E'II‘n an‘.l

where ET), is the (6x6) screw transformation matrix defined in equation [2.47).
Consequently, we deduce that:

A
G, - [ EA, -EA,nPg

]"J., = B nj, (5.16)
03 EPn

¢ Example 5.2. Compute the Jacobian matrix $J¢ of the Staubli RX-90 robot. Using
equation [5.13] and the matrices ¥Tg resulting from the DGM, we obtain:

J (1,1) = (- C6C554 ~ S6C4)(S23RLA - C2D3)
J(2,1) = (S6C554 ~ C6C4)(S23RLA ~ C2D3)

J (3,1) = S584(823RLA - C2D3)

J (4,1) = (C6CSC4 ~ S654)S23 + C655C23

J (5,1) = (-~ S6C5C4 ~ C654)S23 —~ S655C23

J (6,1) = - §5C4523 + C5C23

3 (1,2) = (- C6C5C4 + S654)(RLA - S3D3) + C6S5C3D3
J (2,2) = (S6C5C4 + C6S4)(RL4 ~ S3D3) - S655C3D3
J (3,2) = S5C4(RLA - S3D3) + CSC3D3

J (4,2) = - C6C584 - S6C4

}(5,2) = S6C554 - C6C4

J(6,2) = §554

J (1,3) = (- C6C5C4 + S6S4)RLA4

§(2,3) = (86C5C4 + C6S4)RLA

J(3,3) = S5C4RLA

J (4,3) = - C6C554 - S6C4

J (5,3) = S6C554 - C6C4

J(6,3) =5554

J(1.4)=0

J24)=0

134)=0

J (4,4) = C6SS5

J (5,4) = - S6S5
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J(64)=CS
J(1,5=0
I1(25=0
J(3.5=0
J(4,5)=-S6
J1(5,5)=~C6
J(6,5)=0
J(1,6)=0
1(2,6)=0

1 (3,6)=0

1 (4,6)=0
1(56)=0
1(6,6)=1

* Example 5.3. Determine the Jacobian matrix 3J¢ of the Staubli RX-90 robot. The
column k of the matrix 3Jg for a revolute joint is obtained from equation [5.12] as:

- kPﬁy 3Sk + kPﬁx 3llk
k

The elements ¥Pg, and ¥Pgy are obtained from the DGM. The vectors 3si, 3ny
and 3ay, for k = 2, 3, 4 and 6, are deduced from the matrices 3A,, 3A3, 3A4 and 3Ag,
which are also computed for the DGM. The additional matrices to be computed are
3A, and 3As. Finally, we obtain:

— 0 -RI4+8S3D3 -RI4 0 O 0 T
0 C3D3 0o o0 O 0
3 = 523 RL4-C2D3 0 0 0 O 0
523 0 0 0 S4 -S5C4
C23 0 0 1 0 C5
— 0 1 1 0 C4 S584 A

5.4. Decomposition of the Jacobian matrix into three matrices

We have shown in equation [5.11] that the matrix ], could be decomposed into
two matrices; the first is always of full-rank and the second contains simple
elements. Renaud {Renaud 80b} has shown that the Jacobian matrix could also be
decomposed into three matrices: the first two are always of full-rank and their
inverse is straightforward; the third is of the same rank as %J,, but contains simpler
clements.
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Figure 5.4 illustrates the principle of the proposed method: the influence of the
joint velocities is not calculated at the level of the terminal frame R, but at the level
of an intermediate frame R;. Therefore, we define the Jacobian matrix J, ; as:

0181+0;)(81xLyj) ... Oplp+Cn(@y X Lyj)
Jnj = (5.17)
6]8] e anan

The matrix J,,; is equivalent to the Jacobian matrix defining the velocity of a
frame fixed to link n and aligned instantaneously with frame R;. We can compute J,
from J, ; using the expression:

A
l3 _Lj’n

o= Jn,j (5.18)
0 Iy

By projecting the elements of this equation into frame R;, we obtain:

A
i I4 -'Lj’n i
Jn = Jn,j [5.19]
03 I3
with:
iL;, = iA;iP, [5:20]

The k' column of iJ, j, deduced from equation {5.17], is expressed in frame R;
as:

' Ok iak + Oy (—kPjy isk + kij illk)
Ungx = {5.21]

O 'ax

We note that iJ, = iJ,,. Thus, the matrix 3J, can be expressed by the
multiplication of the following three matrices where the first two are of full-rank:

A
sJ N [ SAi 03 ] l3 _le’n lJ ' [5 22]
" 0; SA; 0; I ™

In general, the shift frame R; and the projection frame R; leading to a simple
matrix 'Jp j are chosen such that i = integer (n2) and j=i + 1.
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Thus, for a six degree-of-freedom robot, the simplest Jacobian matrix is 3J¢ 4. If
the robot has a spherical wrist, the vector L4 g is zero and consequently 3J6,4 =3J¢.

b) Renaud method

Figure 5.4. Principle of Renaud method

5.5. Efficient computation of the end-effector velocity

Having calculated J,, the linear and angular velocities V, and @), of frame R,
can be obtained from equation [5.4a]. However, in order to reduce the computational
cost, it is more efficient, as we will see in Chapter 9, to use the following recursive
equations forj=1, .., n:

Yy =g ey
jay = Jay. + 6 G Ja; 5231
IVj=IAj1 61V + ey x VB + 0 §j e

where Ja; is the unit vector [0 0 1]T. We initialize the algorithm by the linear and

angular velocities of the robot base (Vg and @) respectively), which are zero if the
base is fixed.
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5.6. Dimension of the task space of a robot

At a given joint configuration g, the rank r of the Jacobian matrix iJ, - hereafter
written as J to simplify the notation — corresponds to the number of degrees of
freedom of the end-effector. It defines the dimension of the accessible task space at
this configuration. The number of degrees of freedom of the task space of a robot,
M, is equal to the maximum rank, rp,x, Which the Jacobian matrix can have at all
possible configurations. Noting the number of degrees of freedom of the robot as N
(equal to n for serial robots), the following cases are considered [Gorla 84):

— if N=M, the robot is non-redundant and has just the number of joints required
to provide M degrees of freedom to the end-effector,;

~ if N> M, the robot is redundant of order (N - M). It has more joints than
required to provide M degrees of freedom to the end-effector;

~ if r < M, the Jacobian matrix is rank deficient. The robot is at a singular
configuration of order (M -r). At this configuration, the robot cannot generate
an end-effector velocity along some directions of the task space, which are
known as degenerate directions. When the matrix J is square, the singularities
are obtained by the zeros of det(J) =0, where det(J) indicates the determinant
of the Jacobian matrix of the robot. They correspond to the zeros of
det(J JT) =0 for redundant robots.

* Example 5.4. Computation of the singularities of the Stiubli RX-90 robot. Noting
that the Jacobian matrix 3J¢ (obtained in Example 5.3) has the following particular
form:

s [ A 0 ]
=18 c
we obtain det (3Jg) = det (A) det (C) = - C3 D3 RL4 S5 (S23 RL4 - C2 D3).

The maximum rank is ry,x = 6. The robot is not redundant because it has six
degrees of freedom. However, this rank drops to five in the following three singular
configurations:

C3=0
S23RL4-C2D3=0
S5=0

~ when C3 = 0, the robot is fully extended (Figure 4.2c) or fully folded. In this

case, the origin Og is located on the boundary of its workspace: this elbow
singularity has not been deduced from the inverse geometric model (§ 4.3.2,
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Example 4.1). In this configuration, where the second row of 3Jg is zero, the
robot cannot generate linear velocity for Og along the direction OgOj;

— the singularity S23 RL4 — C2 D3 = 0 (Figure 4.2a), already deduced from the
inverse geometric model, corresponds to a configuration in which Og is
located on the zy axis (shoulder singularity). In this configuration, where
Py =Py =0, the third row of 3J is zero. The robot cannot generate velocity
for Og along the normal to the plane containing the points O,, O3 and Og;

— for 85 = 0 (Figure 4.2b), the axes of the joints 84 and 8¢ are aligned, resulting
in the loss of one degree of freedom of the robot. We notice that the columns
4 and 6 of 3] are identical. In this configuration, the robot cannot generate
rotational velocity for frame Rg about the normal to the plane containing the
axes zg4, Zs and zg. This wrist singularity has already been deduced from the

inverse geometric model.
5.7. Analysis of the robot workspace
The analysis of the workspace is very important for the design, selection and

programming of robots.

5.7.1. Workspace

Let q = [qy, ..., ) be an element of the joint space and let X = [xy, ..., x;y] be
the corresponding element in the task space, such that:

X = f(q) [5.24]

The joint domain Q is defined as the set of all reachable configurations taking
into account the joint limits:

Q = {4} qimin S Gi £ Gimax, Vi=1,...,n} [5.251

The image of Q by the direct geometric model DGM defines the workspace W of
the robot:

W = 1{(Q) [5.26}

Thus, the workspace W is the set of positions and orientations reachable by the
robot end-effector. Its geometry depends on the robot architecture. Its boundaries are
defined by the singularities and the joint limits. However, when there is an obstacle
in the robot workspace, additional boundaries limiting the reachable zones will
appear [Wenger 89].
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For robots with two joints, the workspace is easy to obtain and can be visualized
in a plane. For a three degree-of-freedom positioning shoulder, the workspace can be
represented by a generic planar cross section of W. This cross section contains the
axis of the first joint if it is revolute, whereas it is perpendicular to the axis of the
first joint if it is prismatic. The whole workspace is obtained from the generic cross
section by rotating it about (or translating it along) the first joint axis. However, if
there are obstacles or joint limits, the generic planar section is not sufficient for a
complete analysis of the workspace.

In general, the workspace is a 6-dimensional space, which is difficult to handle.
However, we can study its projection in the 3-dimensional position space.

5.7.2. Singularity branches

The singularity branches are the connected components of the set of singular
configurations of Q. Since the singularities are always independent of the first joint,
we can represent them in the joint space excluding the first joint. They are
represented by surfaces of Q. However, for some particular cases, they can be
reduced to subspaces of fewer dimensions (curves or points for example), which do
not have a boundary in Q.

For the two degree-of-freedom planar robot with revolute joints shown in
Figure 5.5, the determinant of the Jacobian matrix is equal to L1 L2 S2. The
singularity branches, assuming unlimited joint ranges, are defined by the lines 8, =0
and 8, =z 7t (Figure 5.6). The corresponding workspace is presented in Figure 5.7.

Figure 5.5. Two degree-of-freedom planar robot

For the Stiubli RX-90 robot, the joint space is partitioned by three singularity
surfaces C3 = 0, 823 RL4-C2 D3 = 0 and S$S = 0. Figure 5.8 shows these surfaces
in the (83, 03, Bs) space and in the (83, 63) plane.
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Ao $2=0
F .
92>0
L 9
62<0
- .-
- T

Figure 5.6. Singularity branches of the planar robot with unlimited joints

Figure 5.7. Workspace of the planar robot with unlimited joints (L1>L2)

5.7.3. Jacobian surfaces

Mapping the singularities into the workspace generally leads to surfaces (or
subspaces with fewer dimensions) called Jacobian surfaces. These surfaces divide
W into regions where the number of solutions of the IGM is constant and even [Roth
76}, {Kholi 85], [Burdick 88]. In the presence of joint limits, additional boundaries
appear in W, which define new regions in which the number of solutions of the IGM
is always constant but not necessarily even [Spanos 85]. The Jacobian surfaces can
be defined as the set of points in W where the IGM has at least two identical
solutions [Kholi 87], [Spanos 85]. When the robot has three identical solutions for a
point of the Jacobian surface, the robot is said to be cuspidal [El Omri 96].
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S23RI4-C2D3=0

P ///’ 9, \ \ 9,
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C3=0—7 )

Figure 5.8. Singularity branches of the Stdubli RX-90 robot

In the case of a three degree-of-freedom robot, if the Jacobian surfaces are
subspaces of fewer dimensions (for example a curve or a set of isolated points), the
IGM for these points has an infinite number of solutions.

For the two degree-of-freedom planar robot shown in Figure 5.5, the Jacobian
surfaces correspond to the singular configurations "extended arm” and "folded arm".
They are represented by the circles with radii L1 + L2 and L1 - L2 respectively
(Figure 5.7).

For the anthropomorphic shoulder of the Stiubli RX-90 robot, the Jacobian
surfaces in the position workspace are of two types (Figure 5.9). The first is
associated with the singular configurations where the point Og lies on the axis of the
first joint. Their reciprocal mapping in Q give the singularity surfaces defined by
S23RLA4 - C2D3 = 0. For any point of these configurations, the IGM has an infinite
number of solutions since 6; can be chosen arbitrarily. The other type of Jacobian
surface corresponds to the singular configuration C3 = 0, and is represented by the
surfaces of the spheres whose center is Og, with radii D3 + RL4 ("extended arm”
configuration) and D3 — RL4 ("folded arm" configuration) defining the external and
internal boundaries of the workspace respectively. For the Stiubli RX-90 robot, the
internal sphere is reduced to a point because D3 =RLA4.

5.7.4. Concept of aspect
The concept of aspect has been introduced by Borrel [Borrel 86]. The aspects are

the connected regions of the joint space inside which no minor of order M extracted
from the Jacobian matrix J is zero, except if this minor is zero everywhere in the
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joint domain. For a non-redundant robot manipulator, the only minor of order M is
the Jacobian matrix itself. Therefore, the aspects are limited by the singularity
branches and the joint limits (Figures 5.6 and 5.8). Consequently, they represent the
maximum singularity-free regions.

Figure 5.9. Generic section of the workspace of an anthropomorphic shoulder
with unlimited joints

For a long time, it has been thought that the aspects also represent the uniqueness
domains of the IGM solutions. Although this is indeed the case for most industrial
robots with simple architectures, which are classified as non-cuspidal robots
(El Omri 96], the IGM of cuspidal robots can have several solutions in the same
aspect. Thus, a cuspidal robot can move from one IGM solution to another without
encountering a singularity. Figure 5.10 shows a cuspidal robot with three revolute
joints whose successive axes are perpendicular. The inverse geometric solution of
the point X (Figure 5.11a) whose coordinates are Py =2.5, Py=0, Pz=0 is given by
the following four configurations (in degrees):

gV = [-101.52 —158.19 104.88 JT, g2 = [ -50.92 —46.17 141.16 |T
q® = [-164.56 -170.02 -12.89 |T, q# = [ 10.13 -22.33 -106.28 |T

The joint space of this robot is divided into two aspects (Figure 5.11a). We
notice that the configurations q(2) and q©3) are located in the same aspect whereas
qM and q@ fall in the other aspect.

For cuspidal robots, the uniqueness domains of the IGM in the joint space are
separated by the characteristic surfaces [Wenger 92], which are defined as the
mapping of the Jacobian surfaces in the joint space using the IGM. Figure 5.11b



Direct kinematic model of serial robots 101

shows the singularities and the characteristic surfaces of the shoulder structure of
Figure 5.10.

There is no general simple rule to identify the architectures of non-cuspidal
robots. However, Table 5.1 gives a list of non-cuspidal shoulders as presented in
[Wenger 93], [Wenger 98].

A=l ., d=2 AB 415

’

a 2l
;0
7’ e
’, ’
’ ’
’ 7
/| » Y
X4 &

Figure 5.10. Example of a cuspidal shoulder [Wenger 92

Table 8.1. Non-cuspidal shoulders

PPP { RPP | PRP | PPR RRR PRR RPR RRP
so=0 cop=0 cop=0 sop=0
so3=0 s03=0 cay=0 caz=0

all | all | all ] all d,=0 dy=0 220 dy=0
dy=0 (say=0 and d3+d2c2=0 | (cap=0, sa3=0

(Ca2=0. r2=0 r3=0) and r2=o)
and r;=0) (soa2=0 d3+dgc3=0
and cai3=0)

§.7.5. t-connected subspaces

The t-connected subspaces are the regions in the workspace where any
continuous trajectory can be followed by the robot end-effector. These subspaces are
the mapping of the uniqueness domains in W using the DGM. For the non-cuspidal
robots, the largest t-connected subspaces are the mapping of the aspects (and more
generally of the free connected regions of the aspects when the environment is
cluttered with obstacles [Wenger 89]). We do not present here the definition of the t-
connected subspaces for the cuspidal robots. The interested reader can refer to
(El Omri 96).
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For the two degree-of-freedom planar robot shown in Figure 5.5, the straight line
S2 = O scparates the joint space domain into two aspects (Figure 5.12a)
corresponding to the two solutions of the IGM, 8, >0 and 8,<0.

The mapping of these aspects in the workspace is identical if the joint ranges are
equal to 27. Figure 5.12b shows, for certain joint limits 8;,,, and Oy, the t-
connected regions: the hatched and non-hatched zones represent the mapping of the
aspects 87 > 0 and 6, < O respectively. The trajectory PP’ is located in the region
mapped by the aspect 8; < 0: thus it can only be realized if the initial configuration

of the robot is 6, < 0. Otherwise, one of the joints reaches its limit before arriving at
the final position.

AR AR SRR / X!:i

o e NN N v
W" i AN ; >

. 7 a ~ H
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2/ @ XA {
Y eoq 2 ;
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Joint space

Operational space (z, p =4x% + y?)

Figure 5.11a. Aspects and workspace of the cuspidal shoulder of Figure 5.10
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Figure 5.11b. Singularity branches and characteristic surfaces of the cuspidal shoulder
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Figure 5.12a. Aspects in the presence of joint limits
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Figure 5.12b. t-connected regions in the workspace

5.8. Velocity transmission between joint space and task space
5.8.1. Singular value decomposition

At a given configuration, the (mxn) matrix J represents a linear mapping of the
joint space velocities into the task space velocities. For simplicity, we write the basic
Jacobian matrix J, as J. When the end-effector coordinates are independent, we
have n=N and m=M.

The singular value decomposition (SVD) theory states that for any (mxn) matrix
J of rank r [Lawson 74], [Dongarra 79}, [Klema 80}, there exist orthogonal matrices
U and V of dimensions (mxm) and (nxn) respectively such that:
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J=UZVT [5.27)

The (mxn) matrix T has the following form:
5 |: err 0rx(n-r) j} (5.28]
- 0(m~r)xr 0(m-r)x(n-r) ‘

S is an (rxr) diagonal matrix, formed by the non-zero singular values of J, which
are arranged in decreasing order such that 6; 2652 ... 26,. The singular values of J
are the square roots of the eigenvalues of the matrix JTJifn2m (or JJT if n<m).
The columns of V are the eigenvectors of and are called right singular vectors or

input vectors of J. The columns of U are the eigenvectors of J JT and are called left
singular vectors or output vectors.

Using equation [5.27], the kinematic model becomes:
X=UzVTq (5.29}

Since o; = 0 for i > r, we can write:

. T

X= Yo UViTq {5.30]
i=1

From equation [5.30], we deduce that (Figure 5.13):

- the vectors Vy, ..., V, form an orthonormal basis for the subspace of
generating an end-effector velocity;

— the vectors Vi), ..., V, form an orthonormal basis for the subspace of q
giving X =0. In other words, they define the null space of J, denoted by A{J);
— the vectors Uy, ..., U; form an orthonormal basis for the set of the achievable

end-effector velocities X . Hence, they define the range space of J, denoted by
RJ);

~ the vectors Upy, ..., Uy form an orthonormal basis for the subspace
composed of the set of X that cannot be generated by the robot. In other
words, they define the complement of the range space, denoted by R(J)+;

— the singular values represent the velocity transmission ratio from the joint
space to the task space. In fact, multiplying equation [5.30] by U;T yields:

UTX = o;V;Tq fori=1,...r (531}
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ge ¥ R

Non-accessible
domain

Figure 5.13. Null space and range space of J (from [Asada 86])

- since JT = V Z UT, we deduce that:

o™ = R+ KD = RD+ ANID
* = RIT) + ND)

5.8.2. Velocity ellipsoid: velocity transmission performance

The velocity transmission performance of a mechanism can be evaluated through
the kinematic model {5.1]. Let us suppose that the joint velocities are limited such
that:

= Gmax < 4 S Gmax (5.32}

At a given configuration q, the task space velocity satisfying these conditions
belongs to:

Xomin < X < Xpax [5.33]
with:

Xmax = max(J(q) §) [5.34]

Xmin = min(J(q) §) (5.35)

Thus, the set of possible joint velocities (equation {5.32]) can be represented
geometrically by a hyper-parallelepiped in the joint space. Equation {5.33] can also
be represented by a hyper-parallelepiped in the task space. In this section, we
develop another common approach to studying the velocity transmission between the
joint space and the task space using an analytical ellipsoidal representation.
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Let us consider the joint velocities contained in the unit sphere of the joint
velocity space, such that [Yoshikawa 84b]:

qTgs<1 [5.36)

We can show that the corresponding velocities in the task space are defined by
the ellipsoid:

XTJIN'X < 1 (5.37]

The velocity ellipsoid is a useful tool for analyzing the velocity transmission
performance of a robot at a given configuration. It is called the manipulability
ellipsoid. The principal axes of the ellipsoid are given by the vectors Uy, ..., Up,
which are the eigenvectors of J JT. The lengths of the principal axes are determined
by the singular values Gy, ..., Oy of J. The optimum direction to generate velocity is
along the major axis where the transmission ratio is maximum. Conversely, the
velocity is most accurately controlled along the minor axis. Figure 5.14 shows the
velocity ellipsoid for a 2R planar mechanism.

The volume of the velocity ellipsoid of a robot gives a measurement of its
capacity to generate velocity. Consequently, we define the velocity manipulability of
a robot as:

w(q) = Vdet{J(q) JT(q)] [5.38]

For a non-redundant robot, this expression becomes:

w(q) = |det{J(q)] | (5.39]
+q2 — A
A B
40
C j D

Joint space Task space
B

Figure 5.14. Velocity ellipsoid for a two degree-of-freedom planar robot
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5.9. Static model

In this section, we establish the static model, which provides the joint torques
(for revolute joints) or forces (for prismatic joints) corresponding to the wrench
(forces and moments) exerted by the end-effector on the environment. We also
discuss the duality between the kinematic model and the static model.

5.9.1. Representation of a wrench

Let us recall (§ 2.6) that a wrench f is represented by the screw, which is
composed of a force f; and a moment m;:

N
g = (5.40]
m;

We assume, unless otherwise stated, that the moment is defined about the point
O, origin of frame R;. Let the static wrench f; to be exerted on the environment be
defined as:

fen
Lon =[ ] =[fx fy f, my my m T [541]
Men
The subscript n indicates that the wrench is expressed at the origin O, of frame
an
5.9.2. Mapping of an external wrench into joint torques
To compute the joint torques and forces I', of a serial robot such that its end-

effector can exert a static wrench {,;, we make use of the principle of virtual work,
which states that:

T

T »
T, dq° = (5.42)

where the superscript (*) indicates virtual displacements.

Substituting dP; and 5; from equation [5.4b] gives:
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I, = J) (5.43]

We can use either the Jacobian matrix "J, or 0J, depending on whether the
wrench {,,, is referred to frame R, or frame Ry respectively.

5.9.3. Velocity-force duality

The Jacobian matrix appearing in the static model (equation {5.43]) is the same
as that used in the differential or kinematic model. By analogy with the velocity

transmission analysis (§ 5.8.1), we deduce the following results (Figure 5.15)
[Asada 86]:

— the torques of the actuators are uniquely determined for an arbitrary wrench [

the range space of JT, denoted as R(JT), is the set of I" balancing the static
wrench { according to equation [5.43];

— for a zero T, the corresponding static wrench can be non-zero; we thus define
the null space of JT, A{JT), as the set of static wrenches that do not require
actuator torques in order to be balanced. In this case, the endpoint wrench is
borne by the structure of the robot. Note that the null space of JT, A(JT),

which is the orthogonal complement of K(J), also represents the set of
directions along which the robot cannot generate velocity;

— some joint torques I'" cannot be compensated by {. These torques correspond
to the vectors of the null space A{J), orthogonal complement of the space

RJID).

The basis of these spaces can be defined using the columns of the matrices U and
V of the singular value decomposition of J as indicated for the velocity case
(§5.8.1).

Analogously, we can study the force transmission performance using a force
manipulability ellipsoid, which corresponds to the set of achievable wrench in the
task space R™ corresponding to the constraint I'T I" < 1. Thus, the force ellipsoid is
defined by fT J JT f< 1. Consequently, we can deduce that the velocity ellipsoid
(equation [5.37]) and the force ellipsoid have the same principal axes but the axis
lengths are reciprocal (Figure 5.16). This means that the optimum direction for
generating velocity is the optimum direction for controlling force. Similarly, the
optimal direction for exerting force is also the optimum direction for controlling
velocity.

From the control point of view, this behavior makes sense: the velocity is
controlled most accurately in the direction where the robot can resist large force
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disturbances, and force is most accurately controlled in the direction where the robot
can rapidly adapt its motion.

R

Non-accessible
domain

Non-accessible
domain

Figure 5.16. Velocity and force ellipsoids
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5.10. Second order kinematic model

The second order kinematic model allows us to compute the acceleration of the
end-effector in terms of positions, velocities and accelerations of the joints. By
differentiating equation [5.1] with respect to time, we obtain the following
expression:

X=Ji+jg [5.44]
where:

.. d .

J@. 9 = ;)@ {5.45]

Using the basic Jacobian matrix, the second order kinematic model can be
written as:

\/ .
.“ = Jod+Jaq [5.46]
wy,

. However, it is most efficient from the computational cost point of view to obtain
V, and @, from the following recursive equations, for j = 1, ..., n, which will be
developed in Chapter 9:

Yooy = A1 .1 + O Gy + Iy g x §Jm)
. A A LA
1U; = Jay + oy b [5.47)
j‘.’j =jAj_| (j'l‘."_l +j'IUj_|j'le) + Oj (Zij-iaj + 2j(!)_|.] X c';,JaJ)
The angular velocities i) and Jo; are calculated using equation [5.23].
In certain applicatiqns, such as the control in the task space (§ 14.4.3), we need
to compute the vector J §. Instead of taking the derivative of J with respect to time

and muitiplying by q, it is more efficient to make use of the recursive equations
[5.47] with § equal to zero in order to leave out the terms involving { {Khalil 87a}.
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5.11. Kinematic model associated with the task coordinate representation

X
Let X = [xp] be any representation of the location of frame R, relative to frame
T

Ry, where Xp, and X, denote the position and orientation vectors respectively. The

relationships between the velocities )‘(p and )‘(, and the velocities OV, and %w, of
frame R;, are given as:

Xp=0,%V,

xr=nr0mn

[5.48]

Similar relations can be derived to-express the differential vectors dX,, and dX,
as functions of the vectors 9dP,, and 98,,:

dX, = Q, OdP,
P on ’ [5.49)
dX; = Q, %8,
In matrix form, equation [5.48] becomes:
X, | [a 67 %, v,
= 0 = Q 0 {5.50]
X, O & J{ %, o
Using equation [5.4a], we deduce that:
XP
=Q%,4 = Jq {5.51)
X;
with:
I = Q9% [5.52)

The matrix Qj, is equal to I3 when the position of frame R, is described by the
Cartesian coordinates.

In this section, we show how to calculate Q, and Q,"! for different orientation
representations. These expressions are necessary for establishing the kinematic
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model corresponding to the representation at hand. When the orientation description
is not redundant, the inverse of £ can be written as:

13 03
Q! = [03 Q- ] [5.53]

If the description of the orientation is redundant, which is the case with the
direction cosines and the quaternions (Euler parameters), the matrices £, and
consequently €, are rectangular. We then use the so-called left inverse, which is a
particular case of the pseudoinverse (Appendix 4). The left inverse is defined by:

I; 0;
o= 5.54
“ 0 Qf 534

with:

{a* =@t Qr
(5.55]

Q' Q=I

Such a matrix exists if £ is of rank 6, which means that £, is of rank 3.

8.11.1. Direction cosines
The velocity of the vectors s, n, a are given by:
05, = Oy, x Os,
On, = Owy, x O, [5.56]
%4, = %, x %a,

Using the vector product operator defined in [2.32], equations [5.56] can be
written in the following matrix form [Khatib 80]:

%, -3,
X =| %, | =] -%8 |%, = Qcpe, (5.57)
Oén “osn

where Qcp is a (9x3) matrix. To calculate QED, we use the fact that:
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QlpQcp = 213 (5.58]

Using equation [5.55] and taking into account that the matrices 3, ﬁ. a are skew-
symmetric, we obtain:

1 T 1
Qp = 28cp =31 08, O, Od, ] (5.59]

$.11.2, Euler angles

We deduce from § 3.6.1 that ¢ is the rotation angle about zg=[0 0 1]T, @ is
the rotation angle about the current x axis (after applying rot(z, ¢)) whose unit
vector with respect to Ry is [ C¢ S¢ 0 ]T, and v is the rotation angle about the
current 2 axis (after applying rot(z, ¢) rot(x, 8)) whose unit vector components with
respect to Rgare [ S0S6 —C¢SO CO JT. Thus, the velocity of frame R, relative to
frame Ry is given by:

0 Co S¢S0
O, =| O [¢p+| SO |8+| ~CoSO |y (5.60)
1 0 ce
thus:
0 Co S¢S o
O, =| O S¢ oS8 || & [5.61]
1 0 Co .
v

which we identify with:

S

S -1
%, = Qg X, = Qg (5.62]

D

v

By taking the inverse of Q'B’ul, we obtain:



114  Modeling, identification and control of robots

~Sé cotgd Codcotgh 1
Qpy = Cé S 0 [5.63])
S¢/S6 -C¢/S8 0

Qg is singular when SO = 0, as already obtained in § 3.6.1.

5.11.3. Roll-Pitch-Yaw angles

Similarly, we can write:

0 -so Coco | ¢ ¢
-1

1 0 -S6 . .

v v

from which we obtain:

Cotgd Sotgd 1
Qrm=| -S5¢ C¢ O [5.65]
Co/CO S¢/CH O

This matrix is singular when C8 = 0, as already obtained in § 3.6.2.

5.11.4. Quaternions

Differentiating equation [3.34] with respect to time and equating the diagonal
elements with those of equation [5.56] leads to the following equation:

2Q1Q1 + Q2Q2) = (QQ4 ~ QQ)wy - (Q2Qs3 + QQW),
20Q Q1 + Q3Q3) = (Q2Q3 - Q1Qa)®, - (Q3Q4 + Q1 Qe (5.66]
2(Q1Qs + QuQq) = (Q3Q4 - Q1 Q) - (QQ4 + QiQ3)y

By differentiating equation [3.31] with respect to time, we obtain:

QUU+QP+QQY+QQ =0 [5.67]
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From equations [5.66] and [5.67], we deduce that:

X =Q=1Q Q@ Q& Qf = 2%;, (5.68]
with:
~Q Q3 Q4
1l @ QU Q
% =2 -Q QU Q [3.69]
Q Q Q

To obtain the inverse relationship, we use the left inverse. While taking into
account that ﬂé Qo= ;l{, we obtain:

g = 40q [5.70]

We note that, since the integration of the angular velocity %m, does not yield an
orientation representation, equation [5.69] can be used to obtain Q whose
integration gives the orientation by the Quaternion representation.

5.12. Conclusion

In this chapter, we have shown how to obtain the kinematic model of a robot
manipulator using the basic Jacobian matrix. This model allows us to compute the
linear and angular velocities of the end-effector in terms of the joint velocities. The
Jacobian matrix can be decomposed into two or three matrices containing simpler
terms.

Then, we have shown how to use the Jacobian matrix to analyze the workspace
and the velocity space of a robot. We have also demonstrated how to use the
Jacobian matrix to obtain the static model and we have highlighted the duality of
this model with the kinematic model. Finally, the kinematic models associated with
the various representations of the task coordinates have been established.

The kinematic model can also be used to find a numerical solution to the inverse
geometric problem for a general robot. The necessary tool to obtain this solution is
the inverse kinematic model, which is the topic of the next chapter.



Chapter 6

Inverse kinematic model of serial robots

6.1. Introduction

The inverse kinematic model gives the joint velocities q for a desired end-
effector velocity X. This model is equivalent to the inverse differential model, which
determines the differential variation of the joint variables dq corresponding to a
given differential displacement of the end-effector coordinates dX. We obtain the
inverse kinematic model by solving a system of linear equations analytically or
numerically. The analytical solutions, whenever they exist, offer much lower
computational complexity than the numerical solutions, but all the singular cases
must be considered separately on a case by case basis [Chevallereau 87). Thus, the
computational complexity of numerical methods is compensated by its generality in
handling the regular, singular and redundant cases in a unified way.

In this chapter, we present the techniques used to develop an inverse kinematic
model for the regular, singular and redundant cases. The analytical solution is
developed for the regular case. The numerical methods presented for the other cases
are based essentially on the pseudoinverse of the Jacobian matrix. Finally, we show
how to take advantage of redundancy in the inverse kinematic problem using a
minimum description of tasks. We assume that the reader is familiar with the
techniques of solving linear equations, which are exposed in Appendix 4.

6.2. General form of the kinematic model

From equations {5.22] and [5.50), whatever the method used to describe the end-
effector coordinates, the direct kinematic model can be expressed as:
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. Qp 03 :H:oAi 0; ] I _ifJ. ]
X = W liy g 6.1
[ 0; &l oy0a)o 1, |9 (o1}

or in compact form as:

X =94 (6.2}

Equation [6.1] can be written as:

Ky = nj 4 [6.3]

with:

" I, if,j,n iAo 03 [ ! 03 7,
Xy . X (6.4]
0; I 0; 'Ag 03 QF

We find in § 5.11 the expression of the pseudoinverse Q,* for different
representations of the orientation, while Qp" = I if the Cartesian coordinates are
used to describe the position.

Since the elements of iJ, j are simpler than those of %J,, equation [6.3] is more
appropriate for developing an analytical solution to the inverse kinematic problem.

To simplify the notation, we will use the following form for both equations [6.2] and
[6.3]:

X=1J§ (6.5]

NOTE.- If n < 6, we cannot use the Jacobian matrix iJ, j Systematically. The

singularities of this matrix do not take into account the corresponding particular
choice of the task coordinates [Borrel 86].

6.3. Inverse kinematic model for a regular case

In this case, the Jacobian matrix J is square and of full rank. Thus, it is possible
to move the end-effector with finite velocity in any desired direction of the task
space. The joint velocities can be evaluated using one of the following methods.
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6.3.1. First method

We compute J-1, the inverse of J, either numerically or analytically. Then, the
joint velocity vector { is obtained as:

[3

(‘I = J‘l X [66]

If the matrix J has the following form:

[ A0 ] 67

J= B C (6.7]
the matrices A and C being square and invertible, it is easy to show that:

J! [ A ° ] 6.8

- L-CBAT ! (681

Consequently, the inverse of J reduces to the inverse of two matrices of smaller
dimension. For a six degree-of-freedom robot with a spherical wrist, the general
form of J is given by equation [6.7] where A and C are (3x3) matrices [Gorla 84].

6.3.2. Second method

In this method, instead of solving a linear system of n equations in n unknowns,
the problem is reduced to solving two linear systems of equations of lower
dimensions. In general, this technique requires less computational complexity. Let us

take for example a six degree-of-freedom robot with a spherical wrist whose
Jacobian matrix (see Example 5.3) can be written as:

X AO ;
Xb B C ‘.Ib

A and C being (3x3) regular square matrices.

The solution q is given by:

a=AlX
qQa .a (6.10]
qb=C'! (X~ B G,
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which, a priori, is simpler than that obtained by the first method.

* Example 6.1. Calculate the inverse kinematic model of the Stdubli RX-90 robot.
The Jacobian 3J¢ has been computed in Example 5.3. We develop the solutions

according to equations [6.8] and [6.10].

i) first method. The inverses of A and C are respectively:

Al = 0 V3 0

-0 0 v1‘l
| _I/RL4 V2V3RI4A 0 |

T V4 1 V5 T
cl=| sS4 0 cC4 J
| —C4/S5 0 S4/S5

with:

]
V1 = $33R14 - C2D3
V2 = -RLA4 + S3D3

1

V3 = Gip3
V4 = C4 cotgs
VS = 84 cotg$s

Using equation [6.8], we obtain:

- 0 O O

0

- 0 0 V1
0 V3 0
. -I/RLA V2V3RL4 0
I6° = _sacsvi vsve V8
C4RL4 -C4V6  —-52354VI
| S4V7  —S4V6/S5 S23C4V1/S5 —C4/S5 0 S4/S5 -]
with:
s3
V6 = G3Ria
|
V7 = S5R14

V8 = (-823V4-C23)V1
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The computation of q by equation [6.8] needs 18 additions, 47
muitiplications/divisions and 8 sine/cosine functions;

ii) second method. We calculate successively q, and qp:

Xb"'B‘.la =

ds

ViX;

V3X,

(-X; + V2V3X,) /RL4

%6
)'(5'

X¢'

).(4 -823 ¢4
Xs-C23
X -d2-43
C4 cotgs 5(4- + 5{5~ ~ 54 cotgs X6
= S4 5(4' +C4 5(6'

(-C4 X4 + S4 Xg) / S5

This solution requires 12 additions, 22 multiplications/divisions and 8
sine/cosine functions.

6.4. Solution in the neighborhood of singularities

When the robot is non-redundant, the singular configurations are the roots of
det(J) = 0. In the redundant case, they are given by the roots of det(JJT) = 0. Thus,
singularities are identified by the rank deficiency of the matrix J, which physically
represents the inability of the robot to generate an arbitrary velocity in the task
space. The neighborhood of a singular position is more precisely detected by using
the singular values. In fact, the decrease of one or several singular values is
generally more significant to indicate the vicinity of a singular configuration than
that of examining the value of the determinant. In the neighborhood of these
configurations, the use of the classical inverse of the Jacobian matrix will give
excessive joint velocities. Since such high velocities are physically unrealizable, we
cannot obtain an accurate motion.
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The redundancy can be exploited to design robots that avoid singularities
[Hollerbach 84b], [Luh 85a]. However, robots with revolute joints will have
unavoidable singularities [Baillieul 84}. In § 6.5, we will see that redundancy may be
exploited to go away from avoidable singularities [Baillieul 84]. An avoidable
singularity is a singular configuration where the corresponding tool location can be
reached with a different non-singular configuration.

6.4.1. Use of the pseudoinverse

The most widely proposed methods for solving the inverse kinematic problem
near singularities involve the use of the pseudoinverse J* of the matrix J (Appendix
4):

q=J3X (6.11]

This solution, proposed by Whitney {Whitney 69], minimizes Il and X-J G,
Depending on X, the following cases are distinguished:

. X belongs to R(J), representing the range space of J: equation [6.11] gives an
exact solution with zero error even though the inverse Jacobian J° is not
defined;

. X belongs to the subspace of the degenerated directions R(J)L: there are no
joint velocities that can generate this velocity. In this case, the solution {6.11]
gives q = 0. If the next desired velocity is also defined along this direction, the
robot is blocked and it is necessary to define strategies to release it
[Chevallereau 88];

X belongs to both R(J) and R(J)L: the solution [6.11}] gives 4, which only
realizes the components belonging to R(J).

A major shortcoming of this method is that it produces discontinuous joint
velocities near singularities [Wampler 86]. This can be seen by expressing the joint
velocity solution in terms of singular value decomposition (§ 5.8.1). In fact, far from
singularities, the joint velocities are given by:

. m l g
§=3T-ViUTX 6.12]

=t

While approaching a singularity, Op;, becomes small, leading to high joint
velocities. At singularity, the smallest singular value Op;, becomes zero,
consequently, it is not taken into account any more. The summation in equation
[6.12] is carried out up to m— I, and the joint velocity q decreases significantly.
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NOTE.~ Both ||§J? and |X-J§J® may contain elements with different units.
However, using radians for the angles and meters for the distances gives good results
for industrial robots of common size (1 to 2 meters reach).
6.4.2. Use of the damped pseudoinverse

A general approach to solving the problem of discontinuity of the pseudoinverse
solution at a singular configuration is to use the damped least-squares method, which

is known as the Levenberg-Marquardt stabilization method [Wampler 86],
[Nakamura 87]. This solution minimizes the following expression:

IX - J&I? + o2 [4Ii2 6.13]
where o is a constant.

This new criterion means that the end-effector tracking error is weighted against
the norm of joint velocity by using the factor o, also known as the damping factor.
This solution is typically obtained as the least-squares solution of the following
system:

J1. X
HEN

which is given as:

= UTI+ 2L JTX (6.15]

When n > m, the following equivalent relation is easier to compute
[Maciejewski 88]:

G = JTUIT+ 21, X [6.16]

Using the singular value decomposition, the solution is written as:

* m oi T 3
G = }:l——oizmz ViU’ X (6.17]
1=
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If 6;>>a, then—5—3=—. If 6;<<aq, —_—
i ol+02 oy 1o then P R The error due to the

damping factor o in the joint coordinates is expressed as:
m az

PO P U - L
1= 9" % E’l(oi%az)oi

Vi UTX [6.18]

The error in X is obtained as:

2
6 =J e = Y=y, UTX (6.19]
q i=loi2+0'2 L

The damping factor o limits the norm of the solution. However, at positions far
away from singularities, no damping is needed. Thus, a trade-off must be found
between the precision of the solution and the possibility of its realization.

Wampler {Wampler 86] proposes to use a fixed damping factor o = 0.003, while
Nakamura [Nakamura 86] suggests the computation of the damping factor as a
function of the manipulability w (equation [5.38)) as follows:

w
a=0og(l-—)2 if w<w,
% -y 0 (6.20]
a=0 if w2wg

where 0y is a positive constant and wy is a threshold, which defines the boundary of
the neighborhood of singular points.

A more appropriate solution can be obtained by adjusting the value of aas a
function of the smallest singular value Op;,, which is the exact measure of the
neighborhood of a singular position. Maciejewski and Klein [Maciejewski 88]
propose to compute the damping factor as follows:

o=€2-0Opip2  if Opip<E
min ) min (6.21]
a=0 if Oin>€

where € is a constant.

In [Maciejewski 88), we find an efficient method to estimate G,. In the
damping least-squares method, the robot can stay blocked in a singular configuration
if the desired velocity is along the degenerated directions, i.e. when (equations
[5.30) and [5.31]):
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, m \
X= TU;UTX) [6.22]

i=r+l

where r < m gives the rank of J.

6.4.3. Other approaches for controlling motion near singularities

The kinematic model, which is a first order linearization, does not give an exact
solution respecting the actuator constraints in the neighborhood of singularities.
Some authors [Nielsen 91], [Chevallereau 98] have used the IGM or a kinematic
model of higher order to determine the joint variables corresponding to a Cartesian
motion passing through a singularity. Recently, it has been shown [Lloyd 96] that the
end-effector could move along any specified path using a suitable time law.

To show the efficiency of such techniques, let us consider the case of a two
degree-of-freedom planar robot in the singular configuration "extended arm". Let us
suppose that we want to move the terminal point towards the origin along the x-axis
(Figure 6.1a) (which is a degenerated direction for the kinematic model). It is easy to
deduce from the kinematic model that a constant velocity motion along this direction
is not feasible. However, a motion with a constant end-effector acceleration and a
zero initial velocity can be proved realizable (Figure 6.1b) by developing the IGM
up to the second order [Nielsen 91] or by using the second-order kinematic model
[Chevallereau 98].

y boundary of the

workspace

X

— —
path to travel: degenerated path to travel: degenerated
x()=2-t direction x(t)=2-t! direction
yt)=0 yt)=0

a) non feasible trajectory b) feasible trajectory

Figure 6.1. Displacement along a degenerated direction

In addition, Egeland and Spangelo [Egeland 91] showed that, in certain cases, a
non-feasible path could become realizable after carrying out a specific motion in the
null space of J. This motion does not modify the end-effector coordinates but it
modifies the degenerated direction. Let us illustrate this method for the two degree-
of-freedom planar robot with identical link lengths. From the initial configuration
"folded arm" of Figure 6.2a, it is not possible to track a trajectory along the x
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direction. However, after a 7/2 rotation of the first joint, which does not modify the
terminal point coordinates but modifies the degenerated direction (Figure 6.2b), we
can produce a velocity along the x-axis by using the kinematic model.

Before rotation y After /2 rotation y
degenerated
degenerated direction
direction

a) non feasible trajectory b) feasible trajectory

Figure 6.2. Motion in the null space of J

6.5. Inverse kinematic model of redundant robots

A robot manipulator is redundant when its number of degrees of freedom N is
greater than the dimension of the workspace M. The difference (N — M) represents
the degree of redundancy. In this case, the inverse kinematic model gives an infinite

number of solutions. Consequently, secondary performance criteria can be
optimized, such as:

— minimizing the norm of the joint velocities [Whitney 69];
avoiding obstacles [Maciejewski 85], [Baillieul 86};

avoiding singular configurations [ Yoshikawa 84a];

avoiding joint limits [Fournier 80], [Klein 84];

minimizing driving joint torques [Baillieul 84}, [Hollerbach 85].

t

When the end-effector coordinates are independent, we have n=N and m=M.
For a redundant mechanism, the Jacobian J is represented by an (mxn) matrix, with
n>m. In the following sections, we present several approaches to solving the inverse
kinematic problem of redundant robots.

6.5.1. Extended Jacobian

In this approach, we add n — m secondary linearly independent equations to the
end-effector coordinates X [Baillieul 85], [Chang 86], (Nenchev 92]. These
equations can represent either physical constraints on the robot or constraints related
to the environment. They are written in the following general form:
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X = k(g [6.23]

In this expression, X, is an ((n-m) x1) vector whose elements are functions of q.
Differentiating equation {6.23] with respect to time gives:

X. = Jnd [6.24)

where Jn = oh(q)/dq is the ((n — m)xn) Jacobian matrix of h(q). Combining this
equation with the kinematic model, we obtain an (nxn) extended Jacobian matrix J,
and a new velocity vector X, such that:

X, =Jaq {6.25]

ith X X dJ [J]
with X, = xc and J, = I |

If the extended Jacobian J, is not singular, a unique solution for the joint velocity
q is obtained by inverting J,. We can use this technique to optimize the desired
objective function ¢(q) by taking h(q) such that:

hi(@) = 0 = M;)TVé¢ fori=1,..,n-m (6.26]

where the (nx1) vectors n;, for i = 1, ..., n—~ m, form a basis for the null space of J,
and V¢ is the gradient of ¢.

Since the calculation of the basis of the null space of the Jacobian matrix must be
carried out analytically, this method can be used only for systems with a small
degree of redundancy. A solution to this problem can be found in [Klein 95].

The extended Jacobian method presents the following disadvantages:

~ the choice of the (n—m) additional relationships is not a trivial matter;

— the extended Jacobian J, may be singular even though the end-effector
Jacobian is of full rank. These configurations are called artificial singularities
or algorithmic singularities.

A desirable property of this method is that it yields cyclic behavior, meaning that
a closed path in the task space is always tracked by a closed path in the joint space.
This is important because it allows one to judge the suitability of a trajectory after
executing one cycle.
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6.5.2. Jacobian pseudoinverse

The vast majority of research in the control of redundant robots has involved the
resolution through the use of the pseudoinverse J* of the Jacobian matrix:

g=JX [6.27)

This solution minimizes |J|j2. Because of this minimization property, the early
hope of researchers [Whitney 69] was that singularities would automatically be
avoided. It has been proved that, without modification, this approach does not avoid
singularity [Baillieul 85). Moreover, Klein and Huang {Klein 83) have pointed out
that it does not produce cyclic behavior, which is a serious practical problem.

For these reasons, we generally add to the pseudoinverse solution another
component belonging to the null space of the Jacobian, in order to realize the
secondary objective function.

6.5.3. Weighted pseudoinverse
Since each joint has different limits and even different units, it may be interesting
to weight the contribution of each joint in the objective function differently. This can

be achieved by the use of the weighted pseudoinverse, which minimizes a criteria C
such that:

c= 4TEq [6.28]

When J is of full rank, the solution is given by:

q=JgX (6.29]
with:
Jgt = BT E Ty [6.30)

Benoit et al. [Benoit 75] propose to take for E the inertia matrix of the robot
(Chapter 9) in order to minimize the kinetic energy. Konstantinov et al.
[Konstantinov 81] have used the weighted pseudoinverse to avoid the joint limits.
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6.5.4. Jacobian pseudoinverse with an optimization term

One of the advantages of the pseudoinverse solution is the possibility to utilize
the null space to optimize another objective function (beside that of |gj2). In fact,
the general solution of the linear system [6.5] is written as (Appendix 4):

=X+~ DZ [6.31]
where Z is an arbitrary (nx1) vector in the § space.

The second term on the right belongs to the null space of J. It corresponds to a
self-motion of the joints that does not move the end-effector. This term, which is
called homogeneous solution or optimization term, can be used to optimize a desired
function ¢(q). In fact, taking Z = aV¢ where V¢ is the gradient of this function with
respect to q, minimizes the function ¢(q) when o <0 and maximizes it when o> 0.
Equation {6.31] is rewritten as:

q=JX+al,-J')) Vo (6.32)
with:
_ .9 3¢ .T
Vo = [W -a-i;] [6.33)

The value of o allows us to realize a trade-off between the minimization of ||/
and the optimization of ¢(q). In the following sections, we present two examples of
desired objective functions.

6.5.4.1. Avoiding joint limits

A practical solution to control a redundant robot is to keep the joint variables
away from their limits q;nsy and gp;n. Let:

1
Gmoy = 3 (@max + Gmin) [6.34)
where oy is the mean value of the joint positions, and:

Aq = Qmax ~ Gmin [6.35]



130 Modeling, identification and control of robots

A possible scalar function, whose minimization generates a motion away from
the joint limits, can be expressed in the following quadratic form [Fournier 80]:

g -q
o(q) = %['—Aqim 2 (6.36]

i=1

The division by Aq; allows us to weight the contribution of each joint in ¢(q)
such that it varies between 0 and 1. The it element of the vector Z is written as (with
a<0):

Z = o d9(q) 20 (Gi ~ Gimoy)
T dg Aqg;?

[6.37]

NOTE.- If the mean position of a joint corresponds to a singular configuration, it is
recommended to replace the corresponding value of g;,,, by another value.

About the criterion {6.36}, Klein [Klein 84] pointed out that the quadratic form,
used generally to solve optimization problems, does not always give the best
solution to the desired objectives. To avoid joint limits in particular, the following
form is more suitable:

lqi - qimoxl

® = max i

fori=1,...,n [6.38]
Introducing this criterion in equation [6.32] is however not as easy as the

quadratic criterion. A solution consists of approximating the criterion [6.38] by a p-
norm function defined as {Klein 83]:

19 - Gmoylp = 13 ai- Gimoyl"1P [6.39]

When p tends towards infinity, the corresponding p-norm meets the criterion
[6.38]. However, sufficient approximation can be achieved by taking p = 6.

6.5.4.2. Increasing the manipulability

In § 5.8.2, we showed that the manipulability w(q) of a robot manipulator
(equation [5.38]) could be used as a measure of the ability of the mechanism to
move its end-effector. At a singular point, w is minimum and is zero. In order to
improve the manipulability of a structure, we can choose to maximize a scalar
function ¢ such that:
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o(q) = det [J(@ JT(g)] [6.40]

We calculate Z as indicated previously with o > 0. Maximizing ¢ moves the
robot away from the singular configurations.

NOTE.- Certain singular configurations are unavoidable [Baillieul 84]. This is the
case if there is no other configuration that can yield the same end-effector location.
For the three degree-of-freedom planar robot of Example 6.1, the unavoidable
singularities correspond to the configurations where it is fully stretched out or folded
up (Figure 6.3). The other singularities are avoidable and the robot can find other
configurations to achieve them (Figure 6.4).

Figure 6.3. Unavoidable singularities of a three degree-of-freedom planar robot

Figure 6.4. Avoidable singularities of a three degree-of-freedom planar robot

6.5.5. Task-priority concept

To solve the inverse kinematic model of redundant robots, Nakamura [Nakamura
87] introduced the concept of task priority, where a required task is divided into a
primary task X of higher priority and a secondary task X of lower priority. These
tasks are described by the following relationships:

X; = fi(q) (6.41]
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Xy = fi(g) [6.42]

Let m; and my be the dimensions of X; and X, respectively. Differentiating
equations {6.41] and {6.42] with respect to time gives:

X, =)ig [6.43]
X; = )24 | [6.44)

where J; = ofi(q)/dq is the (m;xn) Jacobian matrix of the task X;. Using the
pseudoinverse, the general solution of equation [6.43] is given by:

a=1X+0L-3Iz [6.45]
Substituting equation [6.45] into equation [6.44] yields:

LUL-HWZ = X-LI X [6.46]
From this equation, the vector Z; can be determined by using the pseudoinverse:

Z = X -0 X+ 0-3309) 2, [6.47]

where J3 = J5 (I, - J1 J}) is an (myxn) matrix and Z, is an arbitrary (nx1) vector
chosen to satisfy the optimization criterion.

The joint velocity q of the robot is obtained from equations [6.45] and [6.47]:

4 =JI X + @ -37 3D (33 (Xo- 32 3T X1+ (- 33 J3) Z) (6.48]

The interpretation of this method is illustrated in Figure 6.5.
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k] e RMl

RIy)

Figure 6.5. Null space and range space of tasks X; and X 5 (from (Nakamura 87])

6.6. Numerical calculation of the inverse geometric problem

When it is not possible to find a closed-form solution to the inverse geometric
problem, we can use the differential model to compute an iterative numerjcal
solution. To obtain the joint positions q¢ corresponding to a desired location °T, of
the terminal link, we proceed as follows:

— initialize q° by the current joint configuration or by any random value within
the joint domain of the robot;

— calculate the location of the terminal frame "'I‘,c1 corresponding to q° using the
direct geometric model;

~ calculate the vectors of position error dX,, and rotation error dX;, representing

the difference between the desired location OTg and the current location OT;,
Note that dX, = dP, = P: - P; and dX; = u a, where the angle o and the unit
vector u are obtained by solving the equation (§ 2.3.8): °A: = rot(u, o) OA:,
which can be written as OA: (OA;)T = rot(u, o);

- if dX, and dX, are sufficiently small, then q¢ = q° and stop the calculation;
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— to remain in the validity domain of the differential model, which is a first
order expansion, we must introduce thresholds S, and S; on dX; and dX;
respectively such that:

- if [[dXp| > Sy, then dX,, = ﬁ‘-‘ Sp

dX;
- if [dXd]| > Sy, then dX, =135 Sy

The values 0.2 meter and 0.2 radian for these thresholds are acceptable for
most of the industrial robots in view of their dimensions;

calculate the Jacobian matrix 93,(q°) denoted as J;

calculate the joint variation dq = J* dX. An optimization term in the null
space of J can also be taken into account;

update the current joint configuration: ¢° = q° + dq;
retum to the second step.

This algorithm converges rapidly and can be executed in real time. If it does not
converge within a relatively large number of iterations, we have to restart the
calculation using a new random value q°% if no convergence occurs for many
different values of g%, it can be stated that there is no solution.

6.7. Minimum description of tasks [Fournier 80}, [Dombre 81}

In current robot controllers, the desired trajectory of the end-effector is described
by a sequence of frames. However, in many industrial applications, it is not
necessary to completely specify the location of the end-effector frame and the task
could be described by a reduced number of coordinates. For example:

— when the manipulated object is symmetric: for a spherical object, it is not
necessary to specify the orientation; likewise, the rotation of a cylindrical
object about its axis can be left free;

- releasing an object into a container: if the end-effector is already above the
container, only an approach distance has to be specified; the task is thus
described by a translational component;

— transferring objects from one point to another with arbitrary orientation; the
task can be described by three translational components;

— placing a cylindrical object on a conveyor: the only orientation constraint is
that the principal axis of the cylinder is horizontal; if the end-effector is
already above the conveyor, the task could be described by two components
(one vertical translation and one rotation).
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When the number of components of a task is less than the number of degrees of
freedom of the robot, the robot is redundant with respect to the task. Consequently,
an infinite number of solutions can be obtained to realize such tasks. This
redundancy can be exploited to satisfy secondary optimization criteria (§ 6.5).

6.7.1. Principle of the description

The proposed description of task is minimal in the sense that it only constrains
the degrees of freedom of the task that have a functional role. The formulation is
based on the use of the contact conditions between usual surfaces (plane, cylinder,
sphere) that describe usual mechanical joints (or pairing) (Table 6.1 and Figure 6.6).
To these six joints, we add the composite revolute and prismatic joints, which have
one degree of mobility (Figure 6.7), and the fixed rigid pairing, which has no degree
of freedom.

The description of a task is realized by a sequence of virtual mechanical joints.
The choice of a type of joint is dictated by the local constraints associated with the
task.

Table 6.1. Simple mechanical joints

Plane Cylinder Sphere
Plane Plane contact Line contact Point contact
Cylinder Cylindrical joint Cylindrical groove
joint
Sphere Spherical joint

A practical description of the mechanical joint formulation consists of specifying
the task in terms of contact between two simple geometric entities (point, line,
plane), one belonging to the robot, the other to the environment [Dombre 85]. A
spherical joint, for example, is specified by matching two points. In the same way,
the revolute and prismatic joints will be specified with two simultaneous
combinations of geometric elements. The choice is not unique: a revolute joint for
example can be achieved either by a line-to-line contact and a point-to-plane contact
simultaneously or by a line-to-line contact and a point-to-point contact.

This geometric description is particularly convenient for graphic programming
of tasks. Figure 6.8 shows the example of a peg-in-hole assembly, realized with the
CAD/CAM software package CATIA [Catia] in which this formulation was
implemented for robotic application. The different steps are as follows:
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L C '
Point contact Line contact
Plane contact Cylindrical groove joint
Cylindrical joint Spherical joint

Figure 6.6. Simple mechanical joints
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Revolute joint Prismatic joint

Figure 6.7. Revolute and prismatic joints

1) definition of a point-to-point contact (spherical joint) by selecting a point of
the robot and a point of the environment (Figure 6.8a); after execution, the
cylinder is positioned with an arbitrary orientation above the assembly site
(Figure 6.8b);

2) definition of a line-to-line contact (cylindrical contact) by selecting a line of
the robot and a line of the environment (Figure 6.8b); after execution, the axes
of the hole and the peg are aligned (Figure 6.8c);

3) definition of a revolute joint by selecting a point and a line of the robot, and a
point and a line of the environment (Figure 6.8c); after execution, the
assembly task is completed (Figure 6.8d).

6.7.2. Differential models associated with the minimum description of tasks

To implement these types of tasks, we write the differential model of the location
of frame R in the following form:

[“dl’g] [OA,, 0, ][“dPB:l [ 0A, 0; ] I, _nf»E][“dPnJ
OSE B 0, OAn "3 B 0, OAn 0 I "3a
oAn _OAnnf)B
= nJ,dq (6.49]
03 oAn

where "Pg defines the origin of frame Rg referred to frame R,



138 Modeling, identification and control of robots

The differential model of a virtual joint can be written as:
dX = H"J,dq {6.50]

where "J;, and H are (6xn) and (cx6) matrices respectively, and c indicates the
number of constraint equations of the task.

We will show in the following section how to determine H for the virtual joints
[Dombre 81].

d)

Figure 6.8. Graphic programming of an assembly task with a minimum description

6.7.2.1. Point contact (point on plane)

This joint drives a point O of the tool on any position on a plane Q (Figure 6.9).
Let N be the unit vector normal to the plane Q and let Op be an arbitrary point of Q.
The necessary global displacement to realize the point contact is expressed in frame

Ry by:
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r = ONT [OPp, - OPg] (6.51]

where OPp and Py define the coordinates of the points Op and O in frame Rq,

Figure 6.9. Realization of point contact

The displacement r is realized by a sequence of elementary displacements along
a single direction such that (equation [6.49}):

dX = dr = ONTOdPg = [ ONTOA, -ONTOA By ] "J,dq
= ONTOAL[ I; -"Pg]"Jodq  [6.52]

Expression {6.52] constitutes the differential model of the point contact. The
matrix H is given by the row vector 'ONTOA, [ I;  -"Pg ).

6.7.2.2. Line contact (line on plane)

The equations of a line contact are derived from Figure 6.10. The line Ug is
driven on plane Q without constraining its orientation in the plane. We can realize
this joint by simultaneously carrying out a rotation and a translation [Dombre 88a].
However, it is more judicious to avoid the calculation of an angle by defining the
task as driving two points Og; and Oy of Ug on plane Q. The joint is thus
equivalent to two point contact. The corresponding differential model is written as:

dX = = A |"ndq (6.53]
dry ONTOA, -ONTO "Pp,
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where H is a (2xn) matrix.

We can generalize this approach for the other joints where the jth row of H takes
the following general form:

A
H; = ONjTOAn[ I, -Pg) [6.54]

where °Nj denotes the unit vector of the normal to the plane of the j point contact,
and "ng is the vector of the coordinates of the tool point Og; with respect to frame
Rq.

U
E,’

Figure 6.10. Realization of line contact

6.7.2.3. Planar contact (plane on plane)

This joint drives a plane Qg attached to the tool on a plane Qp of the
environment, without orientation or position constraints (Figure 6.11). We select
three non-aligned points Ogj, Og; and Ogj in Qg, then we carry out three
simultaneous point contacts.

6.7.2.4. Cylindrical groove joint (point on line)

The cylindrical groove joint drives a point Og of the tool on a line Up of the
environment. This is done by simultaneously realizing two point contacts of Og on
two arbitrary orthogonal planes Qp; and Qpy whose intersection is the line Up
(Figure 6.12).



Inverse kinematic model of serial robots 141

Figure 6.11. Realization of a plane contact

6.7.2.5. Cylindrical joint (line on line)

The task consists of aligning two lines Ug and Up without position or orientation
constraints along and about these lines (Figure 6.12). We define two arbitrary
orthogonal planes Qp; and Qp; whose intersection is the line Up and whose
normals are Np; and Npy respectively. To realize a cylindrical joint, any two
distinct points Og) and Ogp; of the line Ug are driven simultaneously on the planes
Qp; and Qpj. In other words, the cylindrical joint corresponds to four point

contacts.
Up
N‘Dl

Rn N’ /UE

Ry E »

Q1) A2

Figure 6.12. Realization of cylindrical groove joint, cylindrical joint and revolute joint
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6.7.2.6. Spherical joint (point on point)

A spherical joint drives a point Og of the tool on a point Op of the environment
without constraining the orientation of the tool. The task can be realized by three
point contacts that drive Og simultaneously on the planes Qp, Qps and Qps, which
are parallel to the planes (yg, 2g), (X, 2g), (X0, Yo) and pass through the point Op.
The required displacements 1y, r; and r3 are the components of the vector OgOp
along the axes of frame Rg. The task is defined as:

dr1

dX = | drz | = [ 0a, -0A,9Pg ] "J,dq (6.55)
dl‘3

6.7.2.7. Revolute joint (line-point on line-point)

A revolute joint (Figure 6.12) consists of aligning a line U of the tool with a line
Up of the environment while simultaneously driving a point Og of Ug on a plane Qp
normal to Up (not represented in the figure). Let Og; and Ogj be any two distinct
points on Ug. Similar to the cylindrical groove joint, let us consider that Qp, and
Qp are two arbitrary orthogonal planes whose intersection is the line Up. The joint
is thus equivalent to the simultaneous realization of five point contacts:

— driving the point Og; on the planes Qp; and Qpj;
—~ driving the point Og; on the planes Qp; and Qp3;
-~ driving the point Og on the plane Qp.

In practice, it is more convenient to describe the revolute joint by a line-to-line
contact and a point-to-point contact. This choice leads to seven equations, and the
rank of the matrix H J is five.

6.7.2.8. Prismatic joint (plane-plane on plane-plane)

A prismatic joint consists of aligning two lines of the tool with two geometrically
compatible lines of the environment, and making a translation along an arbitrary
axis. To simplify, we consider that the two lines are perpendicular and the
displacement is carried out along one of these lines.

Let Ug; and Ug; be the two lines of the tool and let Up; and Up; be two
compatible lines of the environment (Figure 6.13). Let us suppose that the free
translation is along the line Up;. Let Qpj, and Qpgy be two arbitrary orthogonal
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planes whose intersection is Upy, and Ogj, and Ogjp be any two distinct points on
the line Ug;. We realize the prismatic joint by five point contacts:

- driving the point Og,, on the planes Qp;, and Qpap:
~ driving the point Ogjy, on the planes Qp;, and Qpap;

- driving any point of Ugy, that is not the intersection of Ug; and Ugy, on the
plane formed by the lines Up, and Upy.

Similar to the revolute joint case, it may be more convenient for the user to
specify a prismatic joint using two plane-to-plane contacts. In this case, the number
of equations is six.

Figure 6.13. Realization of a prismatic joint

NOTES.~-
— for the fixed rigid pairing, we use the complete description of dX = J dq;

— Table 6.2 summarizes the specification of each virtual mechanical joint as
well as the number of necessary equations.
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Table 6.2. Equivalence between virtual mechanical joints and geometric specification

Type of joint Elements of Elements Number of | Total number
the tool of the independent | of equations
environment equations
Point contact Point Plane 1 1
Line contact Line Plane 2 2
Plane contact Plane Plane 3 3
Cylindrical groove Point Line 2 2
Spherical Point Point 3 3
Cylindrical Line Line 4 4
Revolute Line-Point Line-Point 5 7
Prismatic Plane-Plane Plane-Plane 5 6

6.8. Conclusion

In this chapter, we have studied the inverse kinematic model by considering the
regular, singular and redundant cases. The solution may be obtained either
analytically or numerically. The analytical solution can be used for simple robots in
regular configurations, whereas the numerical methods are more general.

We have also shown how to reduce the functional degrees of freedom of the task
using a description method based on the virtual mechanical joints formulation.

The redundancy, whether it is a built-in feature of the robot or the consequence
of a minimum description of the task, can be used to optimize the trajectory
generation of the mechanism. In this respect, the solution based on the
pseudoinverse method proves to be very powerful. It allows us to realize secondary
optimization functions such as keeping the joints away from their limits or
improving the manipulability.



Chapter 7

Geometric and kinematic models of
complex chain robots

7.1. Introduction

In this chapter, we develop a method to describe the geometry of complex robots
with tree or closed chain structures. This method constitutes the extension of the
notation presented in Chapter 3 for serial robots [Khalil 86a]. We also present the
computation of the direct and inverse geometric models of such mechanisms.
Finally, we establish their direct and inverse kinematic models. The results are
illustrated using the AKR-3000 robot, which contains two closed loops, and the
Acma SR400 robot, which contains a parallelogram closed loop.

7.2. Description of tree structured robots

A tree structured robot is composed of n mobile links and n joints. The links are
assumed to be perfectly rigid. The joints are either revolute or prismatic and
assumed to be ideal (no backlash, no elasticity). A complex joint can be represented
by an equivalent combination of revolute and prismatic joints with zero-length
massless links.

The links are numbered consecutively from the base to the terminal links. Thus,
link O is the fixed base and link n is one of the terminal links (Figure 7.1). Joint j
connects link j to link a(j), where a(j) denotes the link antecedent to link j, and
consequently a(j) < j. We define a main branch as the set of links on the path
between the base and a terminal link. Thus, a tree structure has as many main
branches as the number of terminal links.
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The topology of the system is defined by a(j) for j = 1, ..., n. In order to compute
the relationship between the locations of the links, we attach a frame R; to each link
i such that:

* z; is along the axis of joint i;
*+ x; is taken along the common normal between z; and one of the succeeding

joint axes, which are fixed on link i. Figure 7.2 shows the case where links j
and k are articulated on link i.

Two cases are considered for computing the transformation matrix iTj, which
defines the location of frame R, relative to frame R; with i = a(j):

1) if x; is along the common normal between z; and z;, then iTj is the same as the
transformation matrix between two consecutive frames of serial structure. It is
obtained as a function of the four geometric parameters (o, dj, 9j, ;) as
defined in § 3.2 (equation [3.2]):

it

T; = Roft(x, o) Trans(x, dj) Rot(z, 6;) Trans(z, ;)

Ch; -S6; 0 d;
Co;S6; Ca,'CGJ -Soy —1;8¢y

[7.1}
SayS6; SajCBj Coy 1Coy

0 0 0 1

2) if x; is not along the common normal between z; and z;, then the matrix iTj
must be defined using six geometric parameters. This case is illustrated in
Figure 7.2, where x; is along the common normal between z; and zy. To obtain
the six parameters defining frame R; relative to frame R;, we define u; as the
common normal between 2; and z;. The transformation from frame R; to
frame R; can be obtained as a function of the six geometric parameters (y; , bj,
a;, d;, 6;, ) where:

* 7j is the angle between x; and u; about z;;
* b; is the distance between x; and u; along z;.

The parameters yj and b; permit to define u; with respect to x;, whereas the
classical parameters o, dj, 6;, rj; permit to define frame Ry with respect to the
intermediate frame whose x axis is along u; and z axis is along z;.

The transformation matrix iTj is obtained as:

iTj = Rot(z, v;) Trans(z, b;) Rot(x, o;) Trans(x, d;) Rot(z, 6;) Trans(z, r;)
(7.2
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Figure 7.2. Geometric parameters for a link with more than two joints
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After development, we obtain:

CYjCBj—SYjCajSGj —CYjSGj—SYjCO.jCBj SYjSGj deYj"’rjs‘YjS“j
SYjC9j+C‘YjCG,jSBj —SYjSBj-I-C‘YjC(!jCGj —C‘YjS(lj djSYj‘er'Yjsaj

iT. =
! S, So;C8, Coy  rCoy+dy
0 0 0 1
. [7.3]

The inverse transformation JT; is expressed by:

—bjS(xjsej—deGj
, AT -b;S0,;CO;+d;S6;
iT; = J f it D et b | (7.4]

—bjCQj—rj
0 0 0 1

NOTES .-

equation {7.3] represents the general form of the transformation matrix. The

special case of serial robots (equation [7.1]) can be obtained from it by setting
bj=0andy;=0;

as for the serial structure, the joint variable q; is given by:
9j = Gy 8 +0r; [7.5]

where 0; = 0 if joint j is revolute, gj = 1 if joint  is prismatic and c_!j =1-0j
we set 0; = 2 to define a frame R; with constant position and orientation with
respect to frame a(j). In this case, q; and gj are not defined;

the definition of frame Ry and the frames fixed to the terminal links can be
made as in the case of serial robots.

7.3. Description of robots with closed chains

A

closed chain structure consists of a set of rigid links connected to each other

with joints where at least one closed loop exists. This structure enhances both the
accuracy and the load-carrying capacity of the robot. The system is composed of L

joints

and n+ | links, where link O is the fixed base and L > n. It may contain several

terminal links. The number of independent closed loops is equal to:

B

=L-n [7.6]
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The joints are either active or passive. The N active joints are provided with
actuators. We assume that the number of actuated joints is equal to the number of
degrees of freedom of the robot. Thus, the position and orientation of all the links
can be determined as a function of the active joint variables.

We introduce the parameter J; such that:

o w=1if joint j is actuated (active joint);
* p;=0if joint j is non-actuated (passive joint).

To determine the geometric parameters of a mechanism with closed chains, we
proceed as follows:

a) construct an equivalent tree structure having n joints by virtually cutting each
closed chain at one of its passive joints. Since a closed loop contains several
passive joints, select the joint to be cut in such a way that the difference
between the number of links of the two branches from the root of the loop! to
the links connected to the cut joint is as small as possible. This choice reduces
the computational complexity of the dynamic model [Kleinfinger 86a]. The
geometric parameters of the equivalent tree structure are determined as
described in the previous section;

b) number the cut joints from n + 1 to L. For each cut joint k, assign a frame Ry
fixed on one of the links connected to this joint, for instance link j. The z; axis
is taken along the axis of joint k, and the xy axis is aligned with the common
normal between zy and z; (Figure 7.3). Let i = a(k) where link i denotes the
other link of joint k. The transformation matrix from frame R; to frame Ry can
be obtained as a function of the usual six (or four) geometric parameters ¥y,
by, O, dy. By, rx, where qy is equal to By or ry;

c) since frame Ry is fixed on link j, the transformation matrix between frames R;
and Ry is constant. To avoid any confusion, this transformation will be
denoted by JTy,p, with j = a(k+B). The geometric parameters defining this
transformation will have as a subscript k + B. Note that frame Ry.p is aligned
with frame Ry, and that both ry,g and 6y, are zero.

In summary, the geometric description of a structure with closed loops is defined
by an equivalent tree structure that is obtained by cutting each closed loop at one of
its joints and by adding two frames at each cut joint. The total number of frames is
equal to n+ 2B and the geometric parameters of the last B frames are constants.

1 The root of a loop is the first common link when going from the links of the cut joint to the base of
the robot.
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ak+B)=j
ak)=i

Figure 7.3. Frames of a cut joint

The (Lx1) joint variable vector q is written as:
qQa

q=|9
Gc

* @,: vector containing the N active joint variables;

(771

* gp: vector containing the p=n—N passive joint variables of the equivalent tree

structure;

¢ q.: vector containing the B variables of the cut joints. When a cut joint has
several degrees of freedom (spherical, universal, ...), we can consider all of its

joint variables to be belonging to q..

Only the N active variables q, are independent. Thus, there are c=L-N
independent constraint equations between the joint variables q. These relations form
the geometric constraint equations satisfying the closure of the loops. Since Ry and
Ry.p are aligned, the geometric constraint equations for each loop can be written as:

k4B LTy = Iy

where 14 is the (4x4) identity matrix.

[7.8]
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For a spatial loop, the maximum number of independent geometric constraint
equations is six, while for a planar loop this number reduces to three. The geometric
constraint equations can be obtained from relation [7.8]. They are represented by the
nonlinear equation:

91(q)

92(q)
¢(q) = = O Ny {(7.9]

oL@

To determine the locations of all the links of the closed chain structure, we have
to compute the passive joint variables in terms of the active joint variables. For
simple mechanisms, equation {7.9] may be solved in an analytical closed-form such
that:

G = 8p(qa) [7.10a}
qc = 8 (qa qp) [7.10b}

Otherwise, numerical methods based on the inverse differential mode! can be
used (§ 7.9) [Uicker 69], [Wang 91].

¢ Example 7.1. Description of the geometry of the Acma SR400 robot. This
mechanism has six degrees of freedom, eight moving links and nine revolute joints.
It contains a parallelogram closed loop. Joints 3, 8 and 9 are passive. The equivalent
tree structure is obtained by cutting the loop at joint 9, which connects link 3 and
link 8. The link coordinate frames are shown in Figure 7.4. The geometric
parameters are given in Table 7.1.

* Example 7.2. Description of the AKR-3000 painting robot. This six degree-of
freedom robot has 12 joints and 10 links. It contains two independent closed loops.
Figure 7.5 shows the link coordinate frames. The first loop is cut at the joint
connecting links 5 and 7, and the second loop is cut at the joint connecting links 2
and 6. Joints 1, 5, 6, 8, 9 and 10 are active, while joints 2, 3, 4, 7, 11 and 12 are
passive. The geometric parameters are given in Table 7.2.
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Figure 7.4, Acma SR400 robot

Table 7.1. Geometric parameters of the Acma SR400 robot

HNEALEEER RN 4; 8 | 7
i 0 1 0 0 0 0 0 01 0
2 1 1 0 0 0 -n/2 d2 0, 0
3 2 0 0 0 0 0 d3 03 | o©
4 3 1 0 0 0 |-n2 dg 0, | RLA
5 4 1 0l o | o] 6s | ©
6 5 1 0 0 0 |-n2 8 | O
7 1 1 0 0 0 |-n2 d2 6; | 0
8 7{0] oo} o dg 8g | O
9 g8 { oJojfoijo dg=d3 Bg | 0
10 3 0 2 w2 0 dyo=dg 0 0




Models of complex chain robots 153

X3, X9, Xio

X12, X14

Figure 7.5. AKR-3000 robot

7.4. Direct geometric model of tree structured robots

We have shown in Chapter 3 that the DGM of a serial robot is obtained from the
transformation matrix OT,, giving the location of the terminal link n relative to frame
Ry, The extension to tree structured robots is straightforward. The transformation
matrix Ty specifying the location of the terminal link k relative to frame Ry is
obtained by multiplying the transformation matrices along the main branch
connecting this terminal link to the base;

0T, = OT; ‘(‘(k))Ta(k) ()T (7.1}
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Table 7.2. Geometric parameters of the AKR-3000 robot

J a(j) H oj ¥ bj 9 dj 8 5
1 0o | 1 o [ o] o] o 8

2 0 0 0 0 | m 6

3 1 0 0 0 0 | w2 | d3 | ey

4 1 0 0 0 0 w2 d4 84

3 3 1 1 0 0 [-n2f o 0 | rs
6 4 1 0 0o 2] o 0 | 1
7 2 0 0 0 0 0 d7 & 0
8 7|t [ ol o] o -] o e | 1
9 8 1 0 0 o [m2] 0o [ g | o
10 | 9 1 0 0 0 [m2] 0 Joo| ©
1 5 0 0 0 o [nm2] 0 Jeg | ©
12| 6 | 0] 0| o] 0 |n2 | 0 |6g,] 0
B3] 70 2 [y ]| 0] o0 [dz]| o]0
14 2 0 2 Y14 0 dig 0 0

7.5. Direct geometric model of robots with closed chains

For a robot with closed chains, the DGM gives the location of the terminal(s)
link(s) as a function of the active joint variables. The location of a terminal link k
relative to the base Ty is obtained, as usual, by multiplying the transformation
matrices along the direct shortest path between the base and the terminal link as

given by equation [7.11].

If the matrix Ty contains passive joint variables, we have to compute these
variables in terms of the active joint variables. This implies solution of the geometric

constraint equations {7.8) as developed in § 7.7.

* Example 7.3. Direct geometric model of the Acma SR400 robot (Figure 7.4). The
location of the terminal link relative to frame Ry is obtained as:

0T¢ = OT; 1T, 2T 3T4 4T5 5T,

Since joint 3 is passive, we have to express q3 in terms of the active variable q7.

This equation will be developed in Example 7.6.
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* Example 7.4. Direct geometric model of the AKR-3000 robot (Figure 7.5). The
transformation matrix through the direct path between the terminal link 10 and the
base is written as:

OTyo = Ty IT, 2T "T5 3Ty °Ty

The computation of the passive joint variables 8, and 97 in terms of the active
joint variables rs and rg is developed in Example 7.5.

7.6. Inverse geometric mode) of closed chain robots

The IGM of a robot with a closed chain structure gives the active joint variables
as a function of the location of the end-effector.

We first determine the joint variables of the direct path between the base and the
end-effector. This problem can be solved using the approaches developed for serial
robots in Chapter 4. Then, we solve the geometric constraint equations of the loop to
compute the passive joint variables belonging to this path in terms of the active joint
variables (§ 7.7). To use the methods of Chapter 4, we have to define the link frames
such that the geometric parameters b; and y; of the frames of the direct path of the
terminal link are zero. Otherwise, they can be eliminated by grouping them with the
parameters r; and 6;, for i = a(j), respectively. This can be proved by developing the
elements of two consecutive transformation matrices 20T; and IT;:

T, ‘T, Rot(x, o;) Trans(x, d;) Rot(z, 6;) Trans(z, r;) Rot(z, y;)
Trans(z, b;) Rot(x, o) Trans(x, d;) Rot(z, 6)) Trans(z, r;

This equation can be rewritten as:

s0)T; IT; = Rot(x, o;) Trans(x, d;) Rot(z, 6;") Trans(z, ;") Rot(x, o)
Trans(x, d;) Rot(z, Bj) Trans(z,r)) {7.12]

with ri'=r; +b; and 6;'=6; +¥;.

7.7. Resolution of the geometric constraint equations of a simple loop
7.1.1. Introduction
The computation of the geometric and dynamic models of robots with closed

loop structure requires the resolution of the geometric constraint equations of the
loops [7.8). The objective is to compute the passive joint variables in terms of the
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active joint variables. Equation [7.8] constitutes a system of twelve nonlinear
equations with up to six independent unknowns. Thus, a closed loop can have at
most six passive joints, and a planar loop can have at most three passive joints. The
problem of solving the geometric constraint equations is similar to that of the inverse
geometric model of serial robots (Chapter 4). In this section, we develop an
analytical method to obtain the solution for simpie loops having three passive joints
[Bennis 93], which is the case for most industrial robots with closed chains. This
method can be extended to loops with four passive joints. We assume that the
structure is compatible with the closure constraints of the loops, otherwise there
would be no solution. This hypothesis will be developed in § 7.10 and will be
verified when solving the constraint equations.

7.1.2. General principle

Let the three passive joints of the loop be denoted by i, j and k. We can obtain
two systems of equations, one by using the position elements and the other by using
the orientation elements of equation [7.8].

The general case is when a passive joint is situated between two active joints.
Thus, equation {7.8] can be written as:

T 2VT; (@) Tag) 20T (q) 1Tagy *®Ti(ge) = Is (7.13a]

The transformation matrices XTy), 'Ty(j) and /Ty, are functions of the supposed
known active joint variables. The matrices 20T;, 20)T; and *®Ty are functions of the
unknown variables g;, q; and gy, respectively.

Equation {7.13a] can also be written in the following forms:

T 20Ty kTa(i).a(i)Ti iTa(j)"mTj =14 [7.13b]
2Ty ¥Ta) 2T; Tag) 20T Tag) = 1g (7.13c)
Tag) *OTj i Tag Ty KTy 20T, = Iy [7.13d]

We can rewrite equation [7.13a] such that the first transformation matrix
contains the variable of joint i, namely 6; or ;.

i) position equation

We can obtain the position equation of the loop by postmultiplying equation
[7.13a] by the vector pp=[ 0 0 O 1 ]T, and premultiplying it by Rot(x, —a;)
Trans(x, —d;) Rot(z, -y;) Trans(z, -b;) 2T, This equation depends on r and not
on 0y, and can be rewritten as:
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Rot(z, 6;) Trans(z, r;) 'Ty() Rot(x, o;) Trans(x, d;)

f(ry) g
Rot(z, 6)) Trans(z, r;) | =1, [7.14)

where g is known.
ii) orientation equation

The orientation equation can be obtained by premultiplying relation [7.13a] by
Rot(x, ~a) Rot(z, ;) 3Ty while only keeping the orientation terms:

rot(z,0) [ S1 Ni At ]rot(z, 0)) [ S2 N2 A2] rot(z,8y) = [ S3 N3 A3]
[7.15]

where the (3x1) vectors S;, Nj and A;, for i = 1, 2, 3, are functions of the active joint
variables.

Equations [7.14} and [7.15] have the same form as the position and orientation
equations of serial robots (§ 4.4). However, as they are functions of the same
variables, they must be resolved simultaneously [Bennis 91a]. An application of this
method is given in Example 7.5 for the AKR-3000 robot.

* Example 7.5. Resolution of the loop constraint equations of the AKR-3000 robot.
From Table 7.2, we deduce that:

qa=[9| 5 re 63 69 910]T

qp=[92 03 04 97]T

Q@ =[0n 62]T

a) Equation of the loop composed of links 1, 2.4 and 6

Frames Ry3 and Ry, are placed on the cut joint between links 2 and 6. The loop
contains three revolute passive joints with parallel axes and one prismatic active
joint. We need to calculate the passive variables 05, 84 and 8,5 in terms of the active
variable rg. For convenience, let us group Y4 with 0, such that:

8 = 02+v14 [7.16]
The geometric constraint equation of the loop can be written as:

IT44T 5Tz = T, 2Ty (7.17
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i) orientation equation
1A4%A65A 1 = 1A;2A 4 (7.18]

Since the axes of the passive joints are parallel, equation [7.18] gives:

rot(z, 04) rot(z, 0;2) = rot(z, 6;) [7.19]
We deduce that:
02+012 = 62+714 [7.20)

ii) position equation

We choose to eliminate the passive joint variable 0. Premultiplying equation
{7.17) by T, and postmultiplying it by the vectorpg=[ 0 0 0 1 JTleads to:

4Te®Ti12po = *T1'T2 2T14 po [7.21]

which gives:

F(6,' G
Rot(z, -e.,)[ ( 12)] = [ (1'6)] (7.22]
with:
CO,'d 4—d4
(F(0,' Y
(12)] = Trans(x, -d4) Rot(z, 07) 2T 4 P = SezodM [7.23]
1
0
[G
(;6)] = 4T¢*Ti2po = rg [7.24]
1

0, can be obtained in terms of rg by developing the expression:
IFIZ = IGI? [7.25]

which leads to:

e+ d3-2d,d1sCO) = 1 [7.26)
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Having determined 0;' from equation [7.26], the components of F are known.
The variable 04 can be obtained from equation [7.22] as:

{—894 r¢ = Fy 727

COsr6 = Fy
where F=[F, F, FJT
The variable 81, can be determined from equation {7.20].
b) Equation of th mposed of links 1,2, 7, an

Frames Ry; and R;3 are placed on the cut joint between links 5 and 7. The loop
contains four revolute passive joints with paralle]l axes and one prismatic active
joint, but the passive variable 8, has already been obtained from the first loop. Thus,
the three unknowns 0y, 63 and 07 have to be computed in terms of the active
variable r5 and the variable 0,. To simplify the development, let us group y;3 with 6,
such that:

87 = B+ 113 (7.28]

The loop equation is written as:

T3 3T5 5T = 1T,2T7 7Ty3 (7.29)
i) orientation equation

By proéeeding as for the first loop, we obtain the equation:

0;+ 6 = 03+6, (7.30]
ii) position equation

We choose to eliminate the passive variable 83 from equation [7.29], which can
be rewritten as:

2777713 3Ty UTs5T3 po = 2T 'Tapo (7.31]

where the vector !'T3 pg is devoid of 5. Equation [7.31) becomes:

F(Gn,r5)] _ [G(ez)]

) | {7.32)

Rot(z, 6;) [
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with:
-—Senr5+d13
F
[1] = Trans(x, d;3) Rot(z, -81;) Rot(x, —0a;1) T3 pg = —Seonrs
1
[7.33]
CO,d3-d;
G -
[1] = Trans(x, -d7) °T; T3 po = 822d3 [7.34)

1

The variable 8;; can be obtained in terms of the variables rs and 6, by
developing the equality || F |2 = || G ||?:

12+ doy-2dy315 S8y = d +d2 —2d3 dy CB, [7.35]

Having determined 0, we calculate 8;' thanks to equation [7.32):

Gx

CO,'F, - S0 F
{ TIxTOT Y G [7.36]
y

S8 Fy + Co;'Fy

The variable 83 can be determined from equation {7.30].

7.1.3. Particular case of a parallelogram loop

A parallelogram loop has three revolute passive joints and one revolute active
joint. In this section, we propose a specific method, which is simpler than the
general approach exposed previously. We use the fact that the orientation matrix
between the frames of two parallel links is constant. Thus, if links ki, k3, k3 and k4
constitute a parallelogram, where links k; and k; are parallel to links ky and k4
respectively (Figure 7.6), then [Bennis 91a]:

kIAL4 = rot(u, 8,;) = constant [7.37a]
k27,4 = rot(u, 8;) = constant {7.37b]
KAk = KA BAL A MA L = I3 [7.37¢)
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The constants 6, and 8., can be obtained from a particular configuration of the
robot. Equation [7.37¢c] allows us to compute the cut joint variable in terms of the
other joint variables.

Z zk+B
Cut Jo,m Link k3 / lks
Link k4 Link k2
Zp 1) Ly
Link k1 LS
, e Lmk
k0 lko

Figure 7.6, Parallelogram closed loop

¢ Example 7.6. Resolution of the geometric constraint equations of the Acma SR400
robot. From Table 7.1, we deduce that:

=[06 6; 84 65 06 07T
=[03 6T
9. =[ 9]
The loop composed of links 7, 2, 3 and 8 forms a parallelogram (Figure 7.4).

Joints 3, 8 and 9 are passive, whereas joint 7 is active. In this loop, links 2 and 3 are
parallel to links 8 and 7 respectively. Using equations [7.37] we obtain:

7A3 = 7A1 1A, 2A3 = rot(z, ~67+0,+01) = rot(z, n/2) (7.38]
2Ag = 2A; 'A77A;g = rot(z, -9) rot(z, 8;) rot(z, 8g) = rot(z, 0) [7.39]
9A3%A77A1 142243340 = Iy {7.40)

From these equations we deduce that:

03 =n/2-0,+6 (7.41)
Bg = B, 6, (7.42]
By = n/2+0; = = ez+e7 [7.43]
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7.8. Kinematic model of complex chain robots

The kinematic model provides the velocity of the terminal link corresponding to
the specified velocities of the active joints. Since the joints of a tree structured robot
are actuated and independent, the kinematic model for these robots can be obtained
by applying the techniques developed for serial robots to each main branch. For
robots with closed chains, we first compute the kinematic model of the direct chain
between the end-effector and the base by proceeding as for a serial robot. Then, we
compute the passive joint velocities in terms of the active joint velocities. The
solution can be obtained either by differentiating the geometric constraint equations,
or by resolving the kinematic constraint equations of the loops.

The kinematic constraint equations can be obtained by equating the velocities of
frames Ry and Ry, g associated with each cut joint. They can be computed using the
Jacobian matrix of the two branches of each loop as follows:

Vi
o |~ Jk @b1 = JkeB Qb2 [7.44)

where qp and Gy are the joint velocities along each branch of the loop.

Equation [7.44] can be rewritten as:

Jk@v1 —JksB Qo2 = 0 [7.45)

Using equation [5.9] and taking into account Figure 7.7 leads to:

Ocle + Ge(@cXLek) .- Opay + Ox(agxLyy)
J = ] ) [7.46]
Ce 8¢ Oxayx

where e indicates the first link, after the root of the loop, of the branch leading to
frame Ry, and:

Og484 + Gg(agx Lak+B) - oja; + Gj(aj X Lj,k+B)
Jup = i [7.47)
Bdad Oja;

where d indicates the first link, after the root of the loop, of the branch leading to
ﬁame Rk+B.
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a(k+B)=j
ak)=i

Figure 7.7, General notations for a closed loop

The elements of the Jacobian matrices Ji and Ji.p are generally computed with
respect to frames Ry and Ry.p respectively, or with respect to the frame of the root
of the loop. By combining the constraint equations of all the loops, and after
climinating the possible zero rows, the kinematic constraint equation can be written
as [Zghaib 92}:

Jg=0 [7.48]
which can be developed as:
%
[ W, W, 0
a = 7.4
Wae We W ap 0 [7.49)
4
with:

* @y (Nx1) vector of the active joint velocities;

* qp: (px1) vector of the passive joint velocities of the equivalent tree structure,
where p=n-N;

* c: (Bx1) vector of the cut joint velocities;

¢ the dimensions of the matrices are the following: W, (pxN), W, (pxp),
W (BxN), wpc (Bxp), W¢ (BxB).
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When the cut joint is complex with several degrees of freedom (spherical,
universal, ...), we can consider the corresponding joint velocities to be belonging to
Q.. From the first row of equation [7.49], we obtain:

wp “lp =-W,.4q, [(7.50}

If the system is compatible with the loop constraints, the rank of W, will be
equal to p (outside the possible singular positions). We deduce that:

. -1 . .
@ = -W, W,q, = Wq, [(7.51]

By differentiating equation [7.49] with respect to time, we obtain the acceleration
constraint equation:

s
)| & L)
a. |+ =0 7.52
Wa Woe Wl ¥ "l 0 (7.32]

dc
where ¥ and ® represent the vector J §.

The components of the vectors ¥ and ® of the loop of the cut joint k can be

determmed with the recursive equations giving the terminal accelerations Vk and

kg relative to the root of the loop when setting Gp; =0 and Gy = 0 (§ 5.10). We
obtain:

Vi (Gp1=0) _ k+BV, . p(Gp2=0)

o o = KJ i db1 - “*Plisn b2 [7.53]
kin(Gp1=0)] | ¥*Bin,n(G2=0)

The vectors ¥ and @ are determined by applying equation [7.53] to all the loops,
k=1, ..., L, and by grouping them in the same order as those of the velocity
constraint equation [7.49]. The computation of equation {7.53] can be carried out
using the efficient recursive equations [5.47] after replacing j-1 by a(j).

* Example 7.7. Calculation of the kinematic constraint equations of the Acma
SR400 robot described in Example 7.1. By differentiating with respect to time the
geometric constraint equations developed in Example 7. 6, we obtain:
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é3=‘éz+é7
ég=é2"é7
69=‘é2+é7

The acceleration constraint equations can be obtained by differentiating the
kinematic constraint equations.

* Example 7.8. Computation of the kinematic constraint equations of the AKR-3000
robot described in Example 7.2. We recall that:

. S S S N §

G = [0 fs 6 Og B9 B0]

dp = [6; 65 b, 671"

g = [y 612"

The kinematic constraint equations can be obtained either by projecting the
Jacobian matrices in the terminal frame Ry of each loop or in the frame fixed to the
root of each loop. We present these two cases in the following.

i) projection of the Jacobian matrices in the base frame of the loop.
The kinematic constraint equation of the first loop is written as:

i1 @b - Ji3 G20 = ©

withqp 1=[83 s ©6,)Tand qyz1 =002 ©7]7, giving the following non-trivial
equations:

—r5C3ég-S3i5+(d7sz-d,3Sa)é2+d|3Saé7 =0
-15S3 83+ C3 is~(d7C2+d;3Ca) §,-d;3Cady = 0
—é3—én+é2+é7 =0

with a=¥;3+ 03+ 0.

The kinematic constraint equation of the second loop is written as:

U282 1422 = 0
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with Gpy 2 = [ 6, 1t 01207 and Gv22 = 0,, giving the following non-trivial
equations:

16 C40,—-S4i+disSH14+62)6; = 0
~16540,+Caig-di4Cly14+02)6; = 0

—64—é|2+ éz =0
These six equations can easily be put in the form [7.49].

ii) projection of the Jacobian matrices in the terminal frame of the loop.

The kinematic constraint equation of the first loop is written as:

Q1 - B3 du = 0
After developing, we obtain the following non-trivial equations:

~15COyy B3+ 50y fs-d7S(13+687) 8, = 0

rs S6;1 63 + COy) 75— [dy3 + d7 C(¥13+67)]1 8, - dj38; = 0
—-é3-—é“+é2+é7 =0

The kinematic constraint equation of the second loop is written as:
2312412 - "4 dp22 = 0

After developing, we obtain the following non-trivial equations:
—T¢ C9|2 é4 + 89|2 i'6 + d14 éz =0

16 5013 0, + COpzig =0

—é4—612+62 =0

We note that the equations of the second solution are less complicated, but they
have the disadvantage of being functions of the cut joint variables.
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7.9. Numerical calculation of g, and g in terms of q,

Based on equation {7.45), we derive the following differential model, which can
be used to numerically compute the variables g, and g, for a given gg:

kLR SPTERRNLIR A bigxn+l

e 256
dq 17:54

83,5 -®BJL bBaxL

where dXk corresponds to the vector of position and orientation errors between
frame Ry and frame Ry, and b; denotes the frame of the root of loop j.

The left side terms of equation [7.45] are deduced from equation [7.54] by
combining the equations of all the loops, eliminating the trivial rows, and by
eliminating the columns corresponding to dq, since qq is given.

To calculate g, and q. we use the following algorithm:

1) from the current configuration of qp and q. (which can be initialized by

random values within the joint domain), compute biTy(q) and YTy.g(q) for k
=n+1, .., L;
2) compute the vector of position and orientation etrors of all the loops:

daxnt!
dX =
dxt
where dXX corresponds to the difference between the transformation matrices
bT,(q) and YTy4p(q) as detailed in § 6.6;
3) - if dX is sufficiently small, then the desired q, and q. are equal to their
current values. Stop the calculation;

- if |[dX|| > S, then set dX = i dx” = S, where S is a fixed threshold value;

4) calculate dq, and dq. corresponding to dX by solving equation [7.54]. Update
the variables gy and q using the equation:

{qp qp + dgp
qc +dq.
5) return to the first step.

[7.55)
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7.10. Number of degrees of freedom of robots with closed chains

The number of degrees of freedom N of a mechanism is equal to the number of
independent joint variables required to specify the location of all the links with
respect to the fixed base. Thus N is equal to the difference between the number of
joints L and the number of independent geometric constraint equations ¢ :

N=L-c [7.56]

The problem consists in determining ¢. As mentioned in § 7.7.1, this number is,
at most, six for a spatial loop and three for a planar loop.
The following simple formula is true for most robot structures:

B
N=L-ZXg [7.57]
=1

where ¢; is the number of independent geometric constraint equations of the loop j,

in general six for a spatial loop and three for a planar loop. The application of
equation [7.57] for the SR400 robot and AKR robot gives N=6.

Several formulas like [7.57] have been proposed to systematically determine the
number of degrees of freedom of a mechanism. These formulas are based on the
number of links and joints and their degrees of freedom but do not take into account
the geometric constraints that some mechanisms possess. Consequently, they may
provide an erroneous result [Sheth 71]. For example, these formulas do not work
with the Bennett mechanism [Bennett 03]. For this reason, an exact solution is
obtained by analyzing the geometric and kinematic constraints using the mechanism
theory techniques {Le Borzec 75], [Hervé 78], or by studying the rank of the
Jacobian matrix as given in the following.

From equation [7.49] we deduce that q belongs to the null space of J. Therefore,
at a given configuration, the number of degrees of freedom is equal to the dimension
of the null space of J. Consequently:

N = min (dim (N(J)) [7.58]
q

where A{J) is the null space of the matrix J.

Thus, the number of independent constraints c is given by the maximum value of
the rank of the matrix J (equation 7.49) [Angeles 88], [Gosselin 90]:

¢ = max (rank J(q)) [7.59]
q
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7.11. Classification of singular positions

The general kinematic equation of a closed chain robot is given by [Gosselin 90]:
@ é = @X 7.60]

where X is the velocity of the end-effector.

Input/output singularities occur in the configurations where J; and/or J, are
singular. Three kinds of singularities are encountered:

i) Jy is singular: in this configuration, we can find the non-zero vector g, # 0 for
which X = 0. The terminal link loses one or more degrees of freedom and it
cannot generate motion in some directions. This kind of singularity is the only
one that occurs in serial robots. It is called serial singularity,

ii) Jy is singular: in this case, the structure is not in static equilibrium. Thus, X
#0 even though the actuated joints are locked (4, = 0). This kind of
singularity takes place in parallel robots (Chapter 8) and is known as parallel
singularity. To avoid such singularity, redundant actuators may be used;

iii} Jy and J, are singular: in this case, the structure has both serial and parallel
singularities simultaneously. Thus, some links may move even though ¢, = 0
and motions in some directions of the terminal link are unrealizable.

From equation [7.49], we can deduce another type of singularity that occurs
when W, is singular, giving g # 0 while q, = 0. This singularity is termed internal
singularity.

7.12. Conclusion

The method of description presented in this chapter allows extension of the
results obtained for serial robots to complex chain robots. In fact, a serial robot can
be considered as a special case of a tree structured robot. We showed that the
computation of the direct and inverse geometric models of a closed chain robot
could be formulated as the calculation of these models for a serial structure together
with the resolution of the geometric constraint equations of the closure of the loops.

The geometric constraint equations of the loops can be solved using the methods
for computing the IGM exposed in Chapter 4. We also presented a general analytical
method for loops with less than four passive joints.

We also showed how to establish the kinematic model of such structures and how
to obtain the kinematic constraint equations using the Jacobian matrix. The problem
of the determination of the number of degrees of freedom of a closed chain robot has
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finally been addressed. For a survey of the manipulability, which we did not cover
here, the reader is referred to [Bicchi 98].

The following chapter deals with the geometric and kinematic modeling of
parallel robots, which require a specific approach for the description and the
modeling.



Chapter 8

Introduction to geometric and kinematic
modeling of parallel robots

8.1. Introduction

Parallel architectures were originally proposed in the context of tire-testing
machines and flight simulators {Gough 56], [Stewart 65). Since then, they have been
used in other applications requiring manipulation of heavy loads with high
accelerations such as vehicle driving simulators or the riding simulator developed
for the French National Riding School.

Recently, these kind of structures have attracted considerable interest in various
manufacturing applications due to their inherent characteristics, as compared with
those of serial robots, which include high structural rigidity and better dynamic
performances. This concept is currently used in designing new generations of high
speed machine tools.

This chapter deals with the geometric and kinematic modeling of such robots. It
is shown that the closed-form solution of the inverse geometric model is
straightforward for a six degree-of-freedom parallel robot. The explicit formulation
of the direct geometric model is usually more complicated since it can have up to 40
solutions [Husty 96). Similarly, the computation of the inverse kinematic model is
easier than the computation of the direct kinematic model.

8.2. Parallel robot definition

A parallel robot is composed of a mobile platform connected to a fixed base by a
set of identical parallel kinematic chains, which are called legs. The end-effector is
fixed to the mobile platform. A parallel robot is said to be fully parallel when the
number of legs is greater or equal to the number of degrees of freedom of the mobile
platform, each parallel chain having a single actuator [Gosselin 88]. For example,
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Figures 8.1 and 8.2 show a six degree-of freedom fully parallel robot where the
mobile platform and the base are linked together by six legs. The desired mobile
platform location can be obtained by changing the leg lengths using actuated
prismatic joints. This architecture has been used by Gough in 1947 to design tire-
testing machines and has inspired Stewart [Stewart 65] to design a flight simulator.
1t is known as the Gough-Stewart paralle] robot.

Note that a hybrid parallel robot is formed by a series of several parallel robots.
The advantage of such a structure is to increase the workspace of the terminal
platform. Figure 8.3 shows the Logabex hybrid robot [Charentus 90], which is
composed of four units of parallel structures.

Variable leg length
actuated by a
prismatic joint

Universal joint
(U-joint)

Figure 8.1. A six degree-of-freedom parallel robot

8.3. Comparing performance of serial and parallel robots

The main criteria for comparing performance of serial and parallel robots are the
workspace, the ratio between the payload and the robot mass, the accuracy, and the
dynamic behavior:

i) workspace. The main drawback of a parallel robot is its comparatively small
workspace. It is determined by the intersection of the workspaces of all the
parallel kinematic chains;

ii) payload - robot mass ratio. In a serial architecture, the end-effector and the
manipulated object are located at the extremity of the mechanical chain.
Consequently, each actuator must have the necessary power to move not only
the object, but also the links and actuators in between. This leads to a poor
payload - rebot mass ratio.
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Parallel robots

Figure 8.2, The SPACE-1 parallel robot from CERT
(courtesy of CERT)
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Figure 8.3. Logabex robot, LX4 model
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In parallel structures, the load is directly supported by all the actuators.
Besides, the actuators can be located either on or close to the base. Therefore,
the links between the mobile platform and the base can be lightened
considerably, and the payload - robot mass ratio is much higher, generally
with a factor of at least 10;

iii) accuracy and repeatability. Serial robots accumulate errors from one joint to
the next, since defaults like clearance, friction, flexibility, etc. also act in a
serial manner. Moreover, the influence of a joint default on the end-effector
location is larger when the joint is close to the robot base.

Parallel robots do not present this drawback and their architecture provides a
remarkable rigidity even with light connecting links;

iv) dynamic behavior. Considering their high payload - robot mass ratio and their
reduced coupling effect between joints, parallel robots have better dynamic
performance.

8.4. Number of degrees of freedom

A parallel manipulator is a complex closed loop structure. We recall that
computing the number of degrees of freedom of a closed structure using classical
formulas (§ 7.10) that do not take into account the geometric constraints may give
wrong results. Nevertheless, the number of degrees of freedom of a parallel robot N
can be determined using the following simple relationship, which is derived from
equation [7.57] and proved to be true for a large number of architectures:

N=Ym- ZB:Cj . (8.1]

j=1

M

|}
with:

¢ B: number of independent closed loops, equal to (n, — 1), where n is the
number of paralle! chains;

* m;: mobility of joint i;
 L: total number of joints;

* cj: number of constraints of the jth loop. In general, ¢j = 3 for a planar loop,
¢; = 6 for a spatial loop.

If the kinematic chains between the base and the mobile platform are identical
and if the loops have the same number of constraints, equation [8.1] becomes:

N = ncd-¢B (8.2]
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where d is the sum of the degrees of freedom of the joints in a chain and ¢; indicates
the number of constraints per loop.

For non-redundant robots, N gives the number of dégrees of freedom of the
mobile platform with respect to the base.

8.5. Parallel robot architectures

Practically, two classes of parallel robots may be distinguished: planar robots and
spatial robots. In this section, we present both classes as well as a specific family of
spatial robots: the Delta robots.

8.5.1. Planar parallel robots

A planar robot is composed of a mobile platform with three degrees of freedom
with respect to the base: two translations and one rotation about the normal to the
plane of the mobile platform (Figure 8.4). In accordance with the definition of the
fuily parallel robot, the mobile platform is connected to the base by three legs, each
including an actuated joint.

The number of independent loops B of the planar robots of Figure 8.4 is two. If
we assume that the three legs are identical, the application of equation [8.2] leads to:

N=3d-6 (8.3]

From equation [8.3], we deduce that, for N = 3, the number of degrees of
freedom d of a leg must be three (two passive and one active).

Let A), Az and A3 be the connection points of the base with the legs and B, B,
and B3 be the connection points of the legs with the mobile platform. To control the
position and the orientation of the mobile platform, we have to change the length of
the A;B; legs. The following three architectures are possible for the legs:

-~ R-P-R architecture (Figure 8.4a), which is actuated by the prismatic joint;
- P-R-R architecture (Figure 8.4b), which is actuated by the prismatic joint;

- R-R-R architecture (Figure 8.4c), which is actuated by the revolute joint close
to the base.
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Prismatic

\ / actuator

Revolute

/ joint

Revolute

actuator \'“’ Aoy

Ay
Cox,

c)

Figure 8.4. Examples of planar robot architectures

8.5.2. Spatial parallel robots

In general, the mobile platform of spatial robots can have either three degrees of
freedom to place a point in the space or six degrees of freedom to place the end-
effector at any arbitrary location. To determine the type of joints of each leg, we
proceed as for planar robots while assuming that the legs are identical.
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8.5.2.1. Three degree-of-freedom spatial robots

The mobile platform is connected to the base by three legs. There are two
independent loops, and equation [8.2] yields:

N =3d-12 [8.4]

Since N = 3, the number of degrees of freedom d of each leg must be five (four
passive and one active). The passive degrees of freedom can be distributed
according to the combinations (0,4), (1,3) or (2,2).

The (1,3) combination is the most commonly used. It is composed of a revolute
joint at one end and a spherical joint (RRR) at the other. Figure 8.5a depicts such an
example, where the leg length is actuated by a prismatic joint, giving for each leg an
R-P-(RRR) architecture. Figure 8.5b gives an example of the (0,4) combination,
where the four degree-of-freedom joint is constructed with two universal joints
(RR). Each leg is actuated by a revolute joint fixed on the base and presents an R-
(RR)-(RR) architecture.

Spherical
joint

U-joint

Prismatic
joint

Figure 8.5, Three degree-of-freedom spatial robots

8.5.2.2. Six degree-of-freedom spatial robots

We consider the Gough-Stewart structure as representative of the six-degree-of-
freedom spatial robots. Merlet [Merlet 00] describes three concepts of six degree-of-
freedom architectures where the base and the mobile platform are connected by six
legs driven by prismatic actuated joints (Figure 8.6):

~ SSM robot (Simplified Symmetric Manipulator) in which the base and the

mobile platform are hexagons. The legs are connected to the vertices of the
hexagons;
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— TSSM robot (Triangular Simplified Symmetric Manipulator) in which the
mobile platform is triangular whereas the base is hexagonal. Two legs are
connected on the same vertex of the triangle;

— MSSM robot (Minimal Simplified Symmetric Manipulator) in which the base
and the mobile platform are triangular. Legs are mounted by pairs at both
ends. The architecture forms an octahedron.

With six legs in parallel, there are five loops, and the application of equation
[8.2] (N = 6d — 6x5) results in six degrees of freedom per leg (five passive and one
active). The passive degrees of freedom can be distributed according to the
combinations (0,5), (1,4) or (2,3). The (2,3) combination is the most popular one. It
is composed of a universal joint (RR) and a spherical joint (RRR). The six degrees
of freedom of the mobile platform are obtained by actuating each leg by either a
prismatic joint (Figure 8.7) or a revolute joint (Figure 8.8). In the first case, the leg
architecture is composed of (RR)-P-(RRR) joints, and in the second case, of R-(RR)-
(RRR) joints.

Platform

c) MSSM
Figure 8.6. SSM, TSSM and MSSM paralliel robots

Figure 8.9 presents a robot with a (0,5) combination for the passive joints. In this
case, the leg orientation is fixed with respect to the base, whereas the mobile
platform is connected to each leg through a five degree-of-freedom passive joint, a
so-called CS5 joint [Dafaoui 94]. The CS joint is realized by a spherical joint fixed to



Parallel robots 179

two perpendicular prismatic joints. The leg lengths are actuated by prismatic joints,
giving for each leg a P-(RRRPP) architecture.

Note that we can find a six degree-of-freedom spatial robot with only three legs
with R-R-P-(RRR) architecture as shown in Figure 8.7a. In this case, each leg has
two active joints, namely the revolute joint, which is close to the base, and the
prismatic joint. Such structure has been achieved on the so-called Space robot
[Beji 97). The application of equation [8.2] gives N = 6 for this structure.

Universal joint Platform
(U-joint)
S-joint
Actuated

prismatic joint

Actuated Spherical joint A U-joint
prismatic joint (S-joint)

a) b)

Figure 8.7. (RR)-P-(RRR} architecture

Platform —

S-joint
i U-joint

Actuated
revolute joint
.I

Figure 8.8. R-(RR)-(RRR) architectures

8.5.3. The Delta robot and its family

An interesting realization actually being implemented in several industrial
applications is the Delta robot designed by Clavel [Clavel 89] (Figure 8.10a). This
robot has four degrees of freedom, the fourth being fixed on the mobile platform and
allowing the end-effector to rotate around the vertical axis. The moving platform
always remains parallel to the base. It is connected to the base by three identical
kinematic chains having a R-(RR)-(RR) architecture. The parallel chains are
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actuated by the revolute joints, which are close to the base, using DC motors fixed to
the base. With this architecture, the Delta has a very low inertia and can manipulate
light pieces within a very short cycle time (typically, two pieces of 10g per second).
This robot also presents the advantage of having a relatively large workspace. One
can find in [Hervé 91], [Goudali 96) examples of robots derived from this
architecture.

Pierrot [Pierrot 91b] has extended the Delta robot concept into a six degree-of-
freedom robot, the Hexa robot (Figure 8.10b). The six actuators are fixed to the base
and provide a speed of 8 m/s and an acceleration of 22 g to the mobile platform.

a)
Figure 8.10. The Delta (a) and Hexa (b) robots
(from [Clavel 89] and [Pierrot 91b] in [Merlet 00])
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8.6. Modeling the six degree-of-freedom parallel robots

In this section, we present the geometric and kinematic models of the Gough-
Stewart parallel robots. The techniques developed in Chapter 7 for closed loop
structures, namely the geometric description notations and the geometric and
kinematic modeling methods can also be used for parallel robots. However, specific
methods are usually more efficient. The proposed approach has direct relevance to
the entire class of parallel robots such as the Delta robot [Clavel 89] and Hexa robot
[Pierrot 91b}.

8.6.1. Geometric description

We assume that the universal joints (U-joint) and the spherical joints (S-joint)
are perfect, and that the prismatic joints are perfectly assembled. The centers of the
U-joints and S-joints are denoted by A; and B;, for i = 1, ..., 6, respectively
(Figure 8.11). Two coordinate systems need to be set up for the geometric
description of a parallel structure: frame Ry is attached to the base and frame Rp, is
attached to the mobile platform. They are defined as follows:

- A, is the origin of frame Ry, the xg axis is along AjAj, and the xgyg plane is
determined by A}, Aj and Ag;

- similarly, B) is the origin of frame R, the x, axis is along B{B,, and B, B,,
Bg are in the Xy, plane.

The geometry of such a robot is described by:

~ the (6x1) joint variable vector q representing the leg lengths A;B; fori=1, ...,
6;

~ the coordinates of the connection points A; and B; in frames Ry and Ry,
respectively (OP,; and ™Pp, for i =1, ..., 6). Note that the points A; may not
be necessarily in the same plane, nor the points B;.

According to the definition of frames Ry and R, we obtain:

Pxar = Pya; = Pza) = Pya; = Pzaz = Prpq = 0
MPxp) = MPyp; = ™Pzp| = MPyp; = MPzp; = ™Pzgg = 0

where iji denotes the position of a point P; with respect to frame R;:

jPPi = { ijpi ijpl jPzpi ]T
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Figure 8.11. Geometric notations

Thus, the robot is described by 24 constant parameters that may be not zero.

In order to describe the location of the robot base frame Ry with respect to the
environment world reference frame Ry, we use the matrix Z = fTy. Similarly, to
define a general end-effector frame Rg with respect to frame R;,, we use the matrix
E = ™Tg. Consequently, the location of the end-effector frame relative to the world
reference frame is:

Tg = ZT(qQ) E (8.5

The coordinates of a connection point A; relative to frame Ry are given by:

a7
[1 =l M=z (8.6]

The coordinates of the connection point B; relative to frame Rg are:

e[ T[]
[1 =BT, Y |=E| | (8.7)

The matrices Z and E can be defined arbitrarily; therefore, six independent
parameters are needed to define each of them.
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To conclude, we can define the end-effector frame with respect to the reference
frame using 42 geometric parameters (36 constant geometric parameters and 6 joint
variables representing the leg lengths). The 36 constant parameters can be defined
either by fP,; and EPg,, or by the 24 coordinates of OP,; and ™Pg;, which may be
not zero, and the matrices E and Z. These parameters allow us to calculate the
kinematic and geometric models. The second set of parameters is interesting when
calibrating the geometric parameters using autonomous methods and when
developing symbolic geometric or kinematic models.

8.6.2. Inverse geometric model

The inverse geometric model (IGM) provides the joint variables q corresponding
to a given location T of the end-effector. It is represented by:

q = IGM(Tg) (8.8]
with:
q = [q) ... q6lT (8.9)

Since EPp; and fT§ are known, we can compute the coordinates of the connection
points B, with respect to the reference frame by the following relation:

fp,.. Ep..
[ PIB'] = fTE[ ]:“'] (8.10]

The prismatic variable q; is equal to the distance between the connection points
A; and B;:

qi2 = ("Pg;— PA)T (P, - Pa) = (fA;B)TIAB; (8.11]

This equation shows that the IGM of the Gough-Stewart parallel robot is unique
and can be easily determined. The equations giving the leg lengths are independent
and can be computed in parallel [Merlet 00). This result is not general for all parallel
robots. For example, the IGM of a three degree-of-freedom spatial robot (Figure
8.5) is not unique: for a given position of the endpoint, there are four possible
solutions for the leg lengths {Gosselin 88).
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8.6.3. Inverse kinematic model

The inverse kinematic model (IKM) provides the actuated joint velocity q
corresponding to a given kinematic screw of the end-effector. It is denoted by:

Gl fv
4= fJE'[fmZ] (8.12]

where Vg is the linear velocity of O, origin of frame Rg, and fwg is the angular
velocity of the end-effector.

The inverse differential model can be defined by:

af fap
dq = fJE‘[ fsﬁE] [8.13]

The computation of fJg is obtained by projecting the velocity of the connection
points of the mobile platform onto the leg directions. Let fVp; be the velocity of the
point B; with respect to frame Rg; hence we can write:

fvg;, = Vg + B;Og x fug (8.14]

Thus, the joint velocity §;, fori= 1, ..., 6, can be computed by:

. T

G = fu; 'V (8.15)
where u; is the unit vector along the ith leg:

AB;  AB; 816
S TABT T o (8.16]

Combining equations [8.14] and [8.15] leads to:

g = fuiT Ve + fu;r ('B;Og x fog) (8.17]

which can be rewritten as:

& = fu;r Vg + (fu; x B;OE)T fg (8.18]
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Consequently, the ith row of the inverse Jacobian matrix is given by:
Li=[ fy (uxBO0pT ] (8.19]
and finally:

fw T (fu x B,0p)T

fu T (f f T
fJis' _| fw" (uyx'B20p) (8.20]

fugT  (fus x BcOR)T

The direct kinematic model is obtained by inverting equation [8.20].

8.6.4. Direct geometric model

The direct geometric model (DGM) provides the location of the end-effector
corresponding to a given joint configuration q. It is written as:

Te = DGM(q) [8.21]

8.6.4.1. Closed-form solution

The solution of the DGM is relatively complicated to derive. In general, for a
given set of joint variables, the mobile platform can take several different locations.

In order to find an analytical solution to the general six degree-of-freedom
Gough-Stewart paralle]l robot, some authors propose to incorporate additional
position sensors on some selected passive joints [Cheok 93], [Merlet 93],
{Baron 94], [Han 95], [Tancredi 95].

Recently, Husty [Husty 96] presented a method giving all the DGM solutions of
a general Gough-Stewart parallel robot. It is based on the resolution of a 40th degree
polynomial in a single variable. The other variables are then uniquely determined.
Some of these solutions may be complex numbers. However, this method does not
give the maximum number of real solutions. It does not indicate if the solutions can
be reached from a given configuration without crossing a singularity or after having
crossed a singularity. The Husty algorithm confirms Raghavan's work [Raghavan 91]
and Lazard's work [Lazard 92) that found the same number of solutions by
numerical methods. In [Dietmaier 98}, we find an example of a robot with 40 real
solutions.

Closed-form solutions of the DGM have been proposed for the special (non-
exhaustive) following architectures:
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1) TSSM architectures (Figure 8.6b): the notion of equivalent mechanism allows
us to derive the direct geometric model of spatial robots with a triangular platform.
This approach has been used by Hunt {Hunt 83] and {Charentus 90] to compute the
DGM of TSSM architectures. The problem is reduced to solving three equations in
three unknowns, which are the rotation angles of these triangles about the base.

Indeed, in the TSSM architecture, each of the triangular faces A;A;B;, A3A4B;
and AsAgB3 can only rotate around the axes AjA;, A3A4 and AsAg respectively.
This results in the equivalent mechanism shown in Figure 8.12.

The three equivalent segments ry, ry and r3 sweep three circles in the space and it
can be shown that the solution of the DGM is given by an 8t degree polynomial.
Thus, the number of possible configurations for a given vector q is 16 while taking
into account the symmetry of solutions with respect to the base.

Platform \‘
Equivalent
link \‘

B,
~___ Spherical

joint
N

o 2 Revolute
ioint

Figure 8.12. Equivalent TSSM architecture with three rigid triangular faces

2) Gough-Stewart robots with five collinear connection points: Zhang and Song
[Zhang 92] showed that the DGM of such a parallel robot has an analytical solution
(ath degree polynomial at most) if the connection points of five legs on either the
base or the platform are collinear. Such structure decouples a rotational degree of
freedom of the platform from the other five (Figure 8.13). The number of solutions
is eight, four with P, positive, the other four with P, negative. A study of the
duality of this architecture with a six degree-of-freedom serial robot having a
spherical wrist can be found in {Khalil 96c¢].

3) 4-4 Gough-Stewart robots: [Lin 92] gives the polynomial solution of the
DGM of a Gough-Stewart robot in which two pairs of connection points of the
mobile platform are coincident, as well as two pairs of connection points of the base
plate. The connection points of the base lie on one plane ag‘ld those of the mobile
platform lie on another one. The solution is given by a 12" degree polynomial at
most.
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4) 5-4 Parallel robots: Innocenti and Parenti-Castelli [Innocenti 93] give the
solution of a Gough-Stewart robot in which two connection points of the base are
coincident as well as two pairs of connection points of the mobile platform (Figure
8.14). The solution is given by a 24th degree polynomial in one variable, the other
variables being uniquely determined. A similar result has been obtained for the 5-5
robot [Innocenti 95).

Figure 8.13. Architectures with five collinear connection poinis

5) Gough-Stewart robot with similar base and platform: it has been shown that
all the joint variables can be obtained from linear or quadratic equations when the
connection points of the base lie on one plane and those of the mobile platform lie
on another one, and the form of the base and the mobile platform are similar (same
form but different sizes). The number of solutions is 16 [Lee 93].

6) Gough-Stewart robot with three coincident connection points on the base as
well as on the mobile platform: this so-called (3-1-1-1)* robot has eight solutions
that can be analytically computed [Bruyninckx 98).
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7) Six degree-of-freedom parallel robot with a CS5 joint: it can be shown that
such an architecture (Figure 8.9), which has a very small workspace, has a unique
solution for both the DGM and the IGM [Dafaoui 94).

8) Delta family: the DGM may be obtained by solving a 2"d degree polynomial
[Pierrot 91a].

Figure 8.14. Six degree-of-freedom (5-4) parallel robot

8.6.4.2. Numerical solution

Practically, we can use the inverse differential model to compute a numerical
solution of the DGM in an iterative manner. For a given qd, the algorithm is as
follows:

- from an initial location fo.; (random or current location) of the mobile
platform, compute the corresponding joint variables q° using the IGM;

~ compute the difference between qd and the current ¢¢: dq = q9 - q°. If dq is
smalil enough, fTE = fTE, then stop the computation;

— using equation [8.20], compute the inverse Jacobian matrix fjg;

- compute numerically the direct Jacobian matrix fJg= (fJ}; A

- compute the position error fdPg and the orientation error {5 = 6 u (where u is
a unit vector) corresponding to dq by using the relation:

fdPg
[ 5 ] =fJgdq [8.22]
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- update the current position and orientation of the mobile platform:

fAp PR
fTE:[ 0 oE 0 15] a2
with:
fpg =P + fdPg [8.24]
fAL = rot(u, 6) AR (8.25)

— return to the first step.

This algorithm is efficient and can be computed in real time.

8.7. Singular configurations

Singular configurations of parallel robots are particular configurations at which
the robot loses its natural rigidity. At these configurations, one or more degrees of
freedom of the platform become uncontrollable. From such an initial configuration,
the mobile platform moves toward an equilibrium location under the effect of the
wrench applied to the mobile platform, for example, under the effect of the gravity
loading of the platform and the manipulated load. Such a motion is due to the
passive joints, while the actuated joints are fixed (§ 7.11).

Mathematically, the singular configurations can be determined by analyzing the
static equilibrium of the robot. Let I" be the vector of the joint torques and let f be
the static wrench applied to the mobile platform. The static equilibrium of the robot
is defined as (§ 5.9.2):

f=gH'r [8.26)

In order to maintain the equilibrium of the robot, the inverse Jacobian matrix has
to be regular, such that for a given wrench f, there is a corresponding finite joint
torque vector I'.

The singular configurations can be determined by analyzing the rank of the
matrix J-!. From equation [8.12], we can deduce that at a singular configuration, a
motion in the null space of J-! is possible even though q = 0 (§ 7.11). From equation
[8.26], we see that at a singular configuration the motor torques I' can be infinity,
which may damage the robot. Thus, parallel robots should be designed without
singularities in the reachable space. This can be attained by good selection of joint
geometric parameters and joint limits, and even by providing the robot with
redundant actuators on some passive joints {Merlet 00].
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Merlet [Merlet 89] proposed to study the singularity using another interesting
geometric method based on Grassmann manifolds.

The analysis of singularities has led some authors to propose design-related rules
in order to avoid singular structures. Ma and Angeles [Ma 91] demonstrated that the
inverse Jacobian matrix is singular throughout the whole workspace of the robot if
the mobile platform and the base are made of regular and similar polygons with six
connecting points. Such singularity is called architecture singularity and the
corresponding architecture is called singular architecture. Figure 8.15 depicts this
architecture, the mobile platform and the base being homothetical.

Figure 8.15. Singular architectures

Base

8.8. Conclusion

In this chapter, we have presented the geometric and kinematic models of
Gough-Stewart structures, which are considered to be representative of parallel
robots. We have shown that the techniques developed for serial robots are often not
appropriate and special approaches have to be used. The IGM and IKM are simple
and straightforward to derive. On the contrary, the analytical DGM is not easy to
compute in the general case since 40 solutions are possible. It was observed that
merging some of the connection points on the platform or the base or both, by
groups of two or three, simplifies the closed-form solution of the problem and also
reduces the maximum number of possible solutions.

In addition, the numerical solution of the DGM can be used in most practical
applications where only one real solution is required provided that a good initial
location is available.



Chapter 9

Dynamic modeling of serial robots

9.1. Introduction

The inverse dynamic model provides the joint torques and forces in terms of the
joint positions, velocities and accelerations. It is described by:

I=1fq44L (9.1]

with:
» T vector of joint torques or forces, depending on whether the joint is revolute
or prismatic respectively. In the sequel, we will only write joint torques;
* q: vector of joint positions;
* q: vector of joint velocities;

* q: vector of joint accelerations;
* f.: vector of forces and moments exerted by the robot on the environment.

Equation [9.1] is an inverse dynamic model because it defines the system input
as a function of the output variables. It is often called the dynamic model.

The direct dynamic model describes the joint accelerations in terms of the joint
positions, velocities and torques. It is represented by the relation:

d=gqqrl0 (9.2

The dynamic model of robots plays an important role in their design and
operation. For robot design, the inverse dynamic model can be used to select the
actuators [Chedmail 90b], {Potkonjak 86], while the direct dynamic model is
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employed to carry out simulations (§ 9.7) for the purpose of testing the performance
of the robot and to study the relative merits of possible control schemes. Regarding
robot operations, the inverse dynamic model is used to compute the actuator torques,
which are needed to achieve a desired motion (Chapter 14). It is also used to identify
the dynamic parameters that are necessary for both control and simulation
applications (Chapter 12).

Several approaches have been proposed to model the dynamics of robots
[Renaud 75], [Coiffet 81], [Vukobratovic 82]. The most frequently employed in
robotics are the Lagrange formulation [Uicker 691, {Khalil 76], [Renaud 80a},
{Hollerbach 80], {Paul 81}, [Megahed 84], [Renaud 85] and the Newton-Euler
formulation [Hooker 65], [Armstrong 79], [Luh 80b], [Orin 79], [Khalil 85a},
[Khosla 86}, [Khalil 87b], [Renaud 87].

In this chapter, we present the dynamic modeling of serial robots using these two
formulations. The problem of calculating a minimum set of inertial parameters will
be covered in detail. We will focus our study on the minimization of the number of
operations of the dynamic model in view of its real time computation for control
purposes. Lastly, the computation of the direct dynamic model will be addressed. In
Chapter 10, these results will be generalized for tree structured and closed chain
robots.

9.2. Notations

The main notations used in this chapter are compiled below:

unit vector along axis z;;

external forces on link j;

force exerted on link j by link j- 1;

¢j  force exerted by link j on the environment;

Fg  parameter of Coulomb friction acting at joint j;

Fy;  parameter of viscous friction acting at joint j;

g gravitational acceleration;

Gj  center-of-mass of link j;

Ig; inertia tensor of link j about G; and with respect to a frame parallel to
frame R;;

Ia;  moment of inertia of the rotor and the transmission system of actuator j
referred to the joint side;

iJ ;  inertia tensor of link j with respect to frame R;. It is described by:

oS e
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Jy*4z2dm Jxydm  ~fxzdm XX XY; XZ;
iy = —fxydm Jx2+z)dm  -fyzdm | =] XYj YY; YZ; (93]
~Jxzdm  -fyzdm J(x%+y%)dm X7, YZ; ZZ;

J; (6x6) spatial inertia matrix of link j (relation [9.21]);

L position vector between O;.( and O;;

M;  massof link j;

MS; first moments of link j with respect to frame R;, equal to M; §;. The
components of IMS; are denoted by [ MX; MY; MZ;]T;

Mg; moment of external forces on link j about Gj;

M;  moment of external forces on link j about O;;

m;  moment about O exerted on link j by link j~1;

m,; moment about O; exerted by link j on the environment;

S; vector of the center-of-mass coordinates of link j. It is equal to 0;G;;

V;  linear velocity of O;; '

Vj  (6x1) kinematic screw vector of link j, formed by the components of V;

. and oy;

V;  linear acceleration of O;;

Vg; linear velocity of the center-of-mass of link j;

\"GJ linear acceleration of the center-of-mass of link j;

o5  angular velocity of link j;

d)j angular acceleration of link j.

9.3. Lagrange formulation
9.3.1. Introduction

The dynamic model of a robot with several degrees of freedom represents a
complicated system. The Newton-Euler method developed in § 9.5 presents an
efficient and systematic approach to solving this problem. In this section, we
develop a simple Lagrange method to present the general form of the dynamic model
of robots and to get an insight into its properties. Firstly, we consider an ideal system
without friction or elasticity, exerting neither forces nor moments on the
environment. These phenomena will be covered in § 9.3.4 through 9.3.8.

The Lagrange formulation describes the behavior of a dynamic system in terms
of work and energy stored in the system. The Lagrange equations are commonly
written in the form:
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a o

d .
I = Et—aqi—aqi fori=1,...,n [9.4a]

where L is the Lagrangian of the robot defined as the difference between the kinetic
energy E and the potential energy U of the system:

L=E-U [9.4b]

9.3.2. General form of the dynamic equations

The kinetic energy of the system is a quadratic function in the joint velocities
such that:

E = %éTAc‘: [9.5]

where A is the (nxn) symmetric and positive definite inertia matrix of the robot. Its
elements are functions of the joint positions. The (i, j) element of A is denoted by
Ay

Since the potential energy is a function of the joint positions, equations [9.4] and
[9.5] lead to:

= A(@g§+Cq.qq+Q4q) [9.6]

where:

* C(q, q) q is the (nx1) vector of Coriolis and centrifugal torques, such that:

. i. OE
Ca=Aq-3,

*+Q=[Q ... Qu)Tis the vector of gravity torques.

Consequently, the dynamic model of a robot is described by n coupled and
nonlinear second order differential equations.

There exist several forms for the vector C(q, q) q. Using the Christoffell symbols
Ci,jk» the (i, j) element of the matrix C can be written as:
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n
G = z Cijk dx
k=1
8A aA,k OA; OAjx 9.7}
Cijk = 73 [ ]
The Q; element of the vector Q is calculated according to:

3
Q = ag [9.8]

The elements of A, C and Q are functions of the geometric and inertial
parameters of the robot.
9.3.3. Computation of the elements of A, C and Q

To compute the elements of A, C and Q, we begin by symbolically computing

the expressions of the kinetic and potential energies of all the links of the robot.
Then, we proceed as follows:

~ the clement A;; is equal to the coefficient of (§;2/2) in the expression of the
kinetic energy, while Aj;, for i # j, is equal to the coefficient of §; ;;

— the elements of C are obtained from equation [9.7};
- the elements of Q are obtained from equation [9.8].

9.3.3.1. Computation of the kinetic energy

The kinetic energy of the robot is given as:
E = IE 199
where E; denotes the kinetic energy of link j, which can be computed by:
B = 5 (@7 Ig o + M; Vg Vi 9.10
j =2 (@ lgjoy+ M; V' Vg 9.10}

Since the velocity of the center-of-mass can be expressed as (Figure 9.1):

Vgj = Vj+ @y x §; (9.11]
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and since:
A A
Jj = lGj - Mj SJ Sj [9.12]
equation {9.10] becomes:

1
Ej = 310 Jja5+ M, V] Vj+2MS] (V;x &) [9.13]

Figure 9.1. Composition of velocities

Equation [9.10] is not linear in the coordinates of the vector Sj. On the contrary,
equation {9.13] is linear in the elements of M;, MSj and Jj, which we call the
standard inertial parameters. The linear and angular velocities V; and ay are
computed using the following recursive equations (Figure 9.1):

@ = &1 +05G; 8 [9.14]
Vj = vj-l +@y. X Lj +0j ilj a; [9.15)

If the base of the robot is fixed, the previous equations are initialized by Vg = 0
and gy =0.

All the clements appearing in equation [9.13] must be expressed in the same
frame. The most efficient way is to express them relative to frame R;. Therefore,
equations [9.13], [9.14] and [9.15] are rewritten as:
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Ej = %[ijTJ‘J,- Joyy + M;IViTiv + 2IMS;T 0V x i) [9.16]
Jay = JAj. oy + 8540 = Jayg + 54 Jay [9.17]
WV = iAjy 0V + 5@ x3IP) + 0; §ja; [9.18]

The parameters 1J; and JMS; are constants.
Using the spatial notation, the kinetic energy can be written in the following
compact form:

1.1. .
where:
. W,
JVj = i [9.20]
o
A
‘ Mjl3 -JMSj
J,Uj =| . ‘ [9.21]
-’MSj JJj

The recursive velocity relations [9.17] and [9.18] can be combined as follows:

jVj = j'ﬂ'j.| j']Vj_l + éj jmj [9.22]

where J"]I‘j_l is the (6x6) screw transformation matrix defined in [2.46] as:

. . LA R A .

_ Ay AP Ay B JA;

T S B L Y (9.23a]
0, JAj. 05 JA;,

and where jmj is the (6x1) column matrix:

0 Ja;
inj = [9.23b]

Oj Jaj
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9.3.3.2. Computation of the potential energy
The potential energy is given by:

n n
Us=3Ui=3 -Mgloj+S) (9.24]
j=1 =

where Lo ; is the position vector from the origin Op to O;. Projecting the vectors
appearing in [9.24] into frame Rg, we obtain:

Uj - "Mj OgT (OPJ. + OAj _)SJ) [9.25a]

an expression that can be rewritten linearly in M; and the elements of J'MSj as:

. jMSj
Uj = _OgT (MJ 0Pj+ oAjJMSj) = '-[ OST 0 ]OTJ[ Mj ] [9.25b]

Since the kinetic and potential energies are linear in the clements of j.lj, jMSj.
M;, we deduce that the dynamic model is also linear in these parameters.

9.3.3.3. Dynamic model properties

In this section, we summarize some important properties of the dynamic model
of robots:

a) the inertia matrix A is symmetric and positive definite;

b) the energy of link j is a function of (qy, ..., qj) and (4, ..., §;);

c) the element A;; is a function of gy, ..., gy, With k = min(j, j), and of the
inertial parameters of links r, ..., n, with r=max(, j);

d) from property b and equation [9.4], we deduce that T is a function of the
inertial parameters of links i, ..., n;

¢) the matrix [d%A—ZC(q, )] is skew-symmetric for the choice of the matrix C

given by equation [9.7] [Koditschek 84], [Arimoto 84]. This property is used
in Chapter 14 for the stability analysis of certain control schemes;

f) the inverse dynamic model is linear in the elements of the standard inertial
parameters Mj'-"MSj and 3J,~. This property is exploited to identify the dynamic
parameters (inertial and friction parameters), to reduce the computation
burden of the dynamic model, and to develop adaptive control schemes;
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g) there exist some positive real numbers ay, ..., a7 such that for any values of q
and ¢ we have [Samson 87]:

IA@I < ag+azllqli+asliq?

IC@®l <llqlias+asliql

NQll < ag+a7]ql

where ||*] indicates a matrix or vector norm. If the robot has only revolute
joints, these relations become:

HA@ < 2

IC@ dll < allql
1Ql < a

h) a robot is a passive system which dissipates energy. This property is related to
property e).

9.3.4. Considering friction

Friction plays a dominant role in limiting the quality of robot performance. Non-
compensated friction produces static error, delay, and limit cycle behavior [Canudas
de Wit 90). Many works have been devoted to studying friction torque in the joint
and transmission systems. Various friction models have been proposed in the
literature [Dahl 77], [Canudas de Wit 89], [Armstrong 88}, [Armstrong 91],
[Armstrong 94]. In general, three kinds of frictions are noted: Coulomb friction,
static friction, and viscous friction.

The model based on Coulomb friction assumes a constant friction component
that is independent of the magnitude of the velocity. The static friction is the torque
necessary to initiate motion from rest. It is often greater than the Coulomb friction
(Figure 9.2a). The viscous friction is generally represented as being proportional to
the velocity, but experimental studies [Armstrong 88] have pointed out the Stribeck
phenomenon that arises from the use of fluid lubrication. It results in decreasing
friction with increasing velocity at low velocity, then the friction becomes
proportional to velocity (Figure 9.2b). A general friction model describing these
components is given by:

I'g = Fgsign(q;) + Fyi q; + (Fyy - Fei) sign(qi) e-HilB; (9.26]

In this expression, I'y denotes the friction torque of joint i, F; and F,; indicate
the Coulomb and viscous friction parameters respectively. The static torque is equal
to Fyy; sign(q;).
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The most often employed model is composed of Coulomb friction together with
viscous friction (Figure 9.2c). Therefore, the friction torque at joint i is written as:

I'g = Feisign(@;) + Fy; §; [9.27]

To take into account the friction in the dynamic model of a robot, we add the
vector I'y on the right side of equation [9.6] such that:

Iy = diag(Q)F, + diag[sign(q)1F, [9.28]

where:
e Fy=[Fu - Fu]T,
o Fo=[Fa - Fau]T;
* diag(q) is the diagonal matrix whose elements are the components of §.

This friction model can be approximated by a piecewise linear model as shown
in Figure 9.2d.

T Tr g

ﬁ
o /\ b

c) d)

Figure 9.2. Friction models
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9.3.5. Considering the rotor inertia of actuators

The kinetic energy of the rotor (and transmission system) of actuator j, is given
by the expression 5 Ia; qu. The inertial parameter Ia; denotes the equivalent inertia

referred to the joint velocity. It is given by:
laj = N Jny [9.29]

where Jiy; is the moment of inertia of the rotor and transmissions of actuator j, N; is
the transmission ratio of joint j axis, equal to qm; / G; where qp,; denotes the rotor
velocity of actuator j. In the case of a prismatic joint, Ia; is an equivalent mass.

In order to consider the rotor inertia in the dynamic model of the robot, we add
the inertia (or mass) Iaj to the Ajj element of the matrix A.

Note that such modeling neglects the gyroscopic effects of the rotors, which take
place when the actuator is fixed on a moving link. However, this approximation is
justified for high gear transmission ratios. For more accurate modeling of the rotors
the reader is referred to {Llibre 83], [Chedmail 86}, [Murphy 93], [Sciavicco 94].

9.3.6. Considering the forces and moments exerted by the end-effector on the
environment

We have seen in § 5.9 that the joint torque vector I', necessary to exert a given
wrench e, on the environment is obtained using the basic static equation:

n=ﬁ% [9.30)

Thus, we have to add the vector I, on the right side of equation {9.6).

9.3.7. Relation between joint torques and actuator torques

In general, the joint variables are not equal to the motor variables because of the
existence of transmission systems or because of couplings between the actuator
variables. The relation between joint torques and actuator torques can be obtained
using the principle of virtual work. Let the relationship between the infinitesimal
joint displacement dq and the infinitesimal actuator variable dqp, be given by:

dq = Jg, d9m [9.31]
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where Jg, is the Jacobian of q with respect to qp, equal to E?;l .
m

The virtual work can be written as:
. T *
I'Tdq* = 1,dq,, [9.32]

where Ty, is the actuator torque vector and the superscript (*) indicates virtual
displacements.

Combining equations [9.31] and [9.32] yields:

T
Tm = qul" {9.33]

9.3.8. Modeling of robots with elastic joints

The presence of joint flexibility is a common feature of many current industrial
robots. The joint elasticity may arise from several sources, such as elasticity in the
gears, transmission belts, harmonic drives, etc. It follows that a time-varying
displacement is introduced between the position of the driving actuator and the joint
position. The joint elasticity is modeled as a linear torsional spring for revolute
joints and a linear spring for prismatic joints [Khalil 78], [Spong 87]. Thus, the
dynamic model requires twice the number of generalized coordinates to completely
characterize the configuration of the links and the rotors of the actuators. Let gy
denote the (nx1) vector of rotor positions as reflected through the gear ratios (Figure
9.3). Consequently, the vector of joint deformations is given by (q — q)4). Note that
the direct geometric model is only a function of the joint variables g.

The potential energy of the springs is given by:

1
Ui = 3@-qyk(q-aqy) [9.34]

where k is the (nxn) definite positive joint stiffness matrix.

The dynamic equations are obtained using the Lagrange equation, i.e.:

AG+Cq+Q+k(g-qy) =0 (9.35a)
I, Gy + diag(Qyy) Fip, + diag(sign(@y)) Fem-k(@-qy) = T [9.35b)
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where I, is the (nxn) diagonal matrix containing the inertia of the rotors, Fyp, and
Fem are the (nx1) vectors containing the viscous and Coulomb parameters of the
actuators and transmissions referred to the joint side. The joint friction terms can
easily be included in equation {9.35a].

A general and systematic method to model systems with lumped elasticity is
presented in {Khalil 00a].

rotor/gear j joint j

Figure 9.3. Modeling of joint flexibility

* Example 9.1. Computation of the elements of the matrices A and Q for the first
three links of the Stiubli RX-90 robot whose geometric parameters are given in
Example 3.1.

i) computation of the angular velocities (equation {9.17])

00»:0

lyy = s 1T
o ={0 0 q

2w, = 2A; oy + 4§, %8,

c2 o s27[© 0
202 O+ O )=124 24 4"
0 -1 0Jiad La

3wy = 3A2 % + 43303

c3 s307 S24 | [0
-3C30 || 24, |+ O | =184 234 §.q"
0 01 &

92

ii) computation of the linear velocities (equation {9.18])

Vg = 0
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v, =0

v, = ly;+lagyx'Py = 0

v, =0

2Vy = 20,x2Py = [0 D3§, -C2D3 )"

3V, = 34,2V = [S3D3§; C3D34, -C2D3§)"

iti) computation of the inertia matrix A. With the following general inertial
parameters:

iMS; = MX; MY; Mz)T

XX; XY; XZ; Iy 0 0
XZ; YZ; ZZ; 0 0 Iy

we obtain the elements of the robot inertia matrix as:

Ay = Iap + ZZ; + SS2 XX, + 2CS2 XY; + CC2 YY; + S823 XX; + 2CS23
XY; + CC23 YY; + 2C2 C23 D3 MX; - 2C2 $23 D3 MY; + CC2 D32

M,
Az = S2XZ; + C2YZy + §23 XZ3 + C23 YZ3 - S2 D3 MZ,
A3 = S23 X753+ C23YZ;

Ay = lay+ZZy+ 775 + 2C3 D3 MX; - 2S3 D3IMY3+ D32 M;
Ayy = ZZ3 + C3 D3 MX; -S3 D3 MY,
Ay = lay+ZZ3

where SSj = (sin Gj)z, CCj = (cos Gj)2 and CSj = cos 6; sin 6. The elements of the
matrix C can be computed by equation [9.7};

iv) computation of the gravity forces. Assuming that gravitational acceleration is
givenasO% = [0 0 G3], and using equation [9.25], the potential energy is
obtained as:

U = -G3 (MZ; + S2MX; + C2MY; + S23MX; + C23MY; + D3S2M3)

Using equation [9.8] gives:

Q=0
Q; = -G3(C2 MX;-S2 MY, + C23 MX;3~S23 MY;3 + D3 C2 M,)
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Q3 = ~G3(C23 MX; - S23 MY3)

9.4. Determination of the base inertial parameters

In this section, we study the concept of base inertial parameters or identifiable
parameters. We develop a straightforward closed-form method to determine them.
These parameters constitute the minimum set of inertial parameters that are needed
to compute the dynamic model of a robot (Mayeda 90]. The use of the base inertial
parameters in a customized Newton-Euler algorithm reduces its computational cost
[Khalil 86¢}, [Khalil 87b}. The determination of the base parameters is also essential
for the identification of the dynamic parameters (Chapter 12), since they constitute
the only identifiable parameters. The base inertial parameters can be deduced from
the standard parameters by eliminating those that have no effect on the dynamic
model and by grouping some others.

9.4.1. Computation of the base parameters using the dynamic model

Since the kinetic energy and the potential energy are linear in the standard °
inertial parameters, we deduce that the dynamic model is also linear in these
parameters. It can be written as:

N
r‘=§mxj=nx [9.36]
j=1
where:
* D: (nxNp) matrix, which is a function of g, q, § and the geometric parameters;

* K: (Npx1) vector of the standard inertial parameters of the links representing

for each link a mass, three elements for the first moments, six elements for the
inertia tensor, and one element for the rotor inertia (Np=11n);

+ Di: jth column of D.

From equation {9.36], we deduce that:
a) a parameter K; has no effect on the dynamic model if:
Di=0 [9.37]

Consequently, we can set K; = 0 in equation [9.36] without changing the value of
I, which means that K; can be eliminated;
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_ b) a parameter K can be grouped with some other parameters K, ..., Ky, if the
DJ column is linearly dependent of Dil, ..., Dif such that:

D = 41 Dit + ...+ Ye D [9.38]
where all tj are constants.

In that case, the column Di and the parameter Kj can be eliminated while the
parameters Ky, ..., K., will be replaced by KR;;, ..., KRy, where KR, = Kjp + t;p
Kj, for p = 1, ..., r. This operation will be repeated until the elimination of all the
parameters with dependent columns. At the end, we obtain the minimum inertial
parameter vector Kp.

The selection of the parameters to be eliminated is not unique. We choose to
climinate those with the highest subscript in K. The search for dependent columns of
D starts with the last column and moves backwards toward the first one. The link
parameters are arranged in K such that we first place the parameters of link 1, and
lastly, those of link n. The parameters of link j, defined by the vector K, are given in
the following order: XX XY;, XZ;, YY;, YZ;, ZZ;, MX;, MY;, MZ;, M;, 1a;.

In summary, the calculation of Kp is based on the study of the linear dependence
of the columns of the matrix D. Assuming b to be the rank of the matrix D, the
determination of the base parameters can be illustrated in a compact and global form
by writing equation {9.36] as:

[D1 D2 [Kl]
I= 1| s (9.39]

where:
» D1 represents the first b independent columns of D;

* D2 represents the dependent columns of D such that D2 = D1f, where B is a
constant matrix.

We deduce that the parameters K2 can be grouped with K1 as follows:

' =D1[Kl+BK2]=D1Kg [9.40]

In Appendix 5, we present a general numerical method for determining the base
inertial parameters [Gautier 91]. This numerical approach is based on the use of the
QR decomposition. It can be used to determine the base parameters of closed chain
robots and the identifiable geometric parameters of robots (Chapter 11).



Dynamic modeling of serial robots 207

9.4.2. Determination of the base parameters using the energy model

The use of the dynamic model to compute the base inertial parameters is tedious
and error prone, owing to the complicated expressions of DJ. In this section, we
present a straightforward closed-form method for determining the base parameters.
The demonstration of this method is based on the energy formulation, but the
algorithm itself consists of simple rules, which do not need to calculate the energy

expressions [Gautier 90b], [Khalil 94a}.
Since the total energy of link j is linear in the inertial parameters, it can be

written as:
Hj = Ej+ U; = hiKj = (¢ +“j)jKj [9.41]
j](j = [XXj XYj XZj YYj YZj ZZj MXj MYj MZj M T (9.42)
h = [ hxxj bxvj hxzy byvj hyz hzzj hwmxj hmyj buz hv ] [9.43)

with:
* K;: (10x1) vector of the standard inertial parameters of link j (the parameter
Iy will be considered in § 9.4.2.5);

* h;: (1x10) row vector of the total energy functions of link j;
* ¢;: (1x10) row vector of the kinetic energy functions of link j;
* uy (1x10) row vector of the potential energy functions of link j.

The elements of h; are obtained from equations [9.13] and [9.25] as:

r 1
hxxj =2 0,01

hxyj = joy;
hxzj = o 03,

1
hyy; =3 Wz 02,
4 hyzj = anj w3

1

hzzj =7 W3 03,
hmxj = @3 Va,i - o V3 - OgT O;
hmy;j = @1 V3~ V- %T On;
hmzj = w5 V) j - V2, - 98T Oa;

i. \
hwj =3 1V;T3V; - 0T Op;

[9.44)

"
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where joj = [01j @2j w3j1TandiVj=([V1j V2 V3.

From equations [9.13] and [9.25], we deduce the following recursive relationship
between the energy functions of link j and link j— 1 (Appendix 6):

hj = by 1A+ gy [9.45]

where J-1A; is a (10x10) matrix whose elements are given in Table 9.1. It is a
function of the geometric parameters of frame R; [Gautier 90a). The matrix J-A;
represents the transformation matrix of the inertial parameters of a link from frame
R; into frame R;.; such that:

The row vector 1; is written as:
- l,
n =50 0 wy 0 mp (-394 Va3 -Vi; 0 0]

1.
+0;[0 0 0 0 0 0 -op; ay; O (V3;-3q)] [947]

9.4.2.1. Determination of the parameters having no effect on the dynamic model

From equation [9.37], we deduce that an inertial parameter K; has no effect on
the dynamic model if the corresponding energy function h; is constant;

h; constant > K; has no effect on the dynamic model [9.48]

Referring to the velocity equations [9.17) and [9.18] and to the h; functions
[9.44], we can obtain general rules to determine the parameters that have no effect
on the dynamic model [Khalil 94a). Let us assume that r, is the first revolute joint
and r; is the subsequent revolute joint whose axis is not parallel to the axis of joint ry
(Figure 9.4). The parameters that have no effect on the dynamic model belong to the
links 1, ..., rp, owing to the restricted motion of these links. The rules allowing us to
determine them are given in the general algorithm presented in § 9.4.2.4.



Table 9.1. Expression of the elements of matrix j'llj

cco -2CS0 i} $s8 0 0 0 0 2 2
CSOCa | (CCO-SSO)YCa —CoSa —-CSeCa S6Sa 0 ~dS8Ca+rCOSa | -dCOCa-rS6Sa dSa drSa
CS6Sa | (CCO-5S8)Sar CoCar -CS6Sa -S6Ca (1 -dS8Sa-1CBCa | ~dCOSa+rS6Ca | -dCa -drCa

$SBCCa | 2CS6CCa -286CSae | CCOCCa | -2COCSa SSa | 2dCe+rSOCSa) | 2(~dSB+CACSa) | 2CCa | d?+1%CCa
SS6CSa | 2CSBCSa | S&(CCa-SSa) | CCOCSa | CHCCo-SSa) | —CSax | S8(SSa—CCay | rCOSSa—CCa) | 2CSa |  f2CSa
ssesSa | 2CsesSa 256CSat CCossa 2C6CSa CCa | 2(dC8-1S6CSa) | 2(-dS8-rCOCSay | 2SS | d2+r?sSa

0 0 0 0 ) 0 co -0 0 d

0 0 0 0 0 0 SeCa CoCa -Sa -1Sa

(] [)) 0 (1} (1] 0 S0Sa CoSa Ca Ca

0 0 0 0 0 0 0 0 0 1

The subscript j of the geometric parameters has been omitted.
The following notations are used: CS* = cos(*) sin(*), CC* = rnszl *) S§* — sinz( *)
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- -

Figure 9.4. Definition of joints ry and r)

9.4.2.2. General grouping relations

From condition [9.38], a parameter K; is grouped with the parameters Kjp for
p =1, ..., rif the corresponding energy function h; can be written as:

r
hj = 3 tjp hjp + constant (9.49]
p=!

The grouping relations are the same as in § 9.4.1, that is to say if equation [9.49]
holds, then the parameter K; can be grouped with the parameters Kjp forp=1, ..., r
using the relation KR;, = Kjp + 4, K;.

Using the recursive relation [9.45] between the energy functions h; and h;;, we
can find general energy functions that satisfy equation [9.49]. These functions
depend on the type of joint.

Let us first consider the case where joint j is revolute. The following three
relations always hold:

hXXj + hyyj = by (j'lljl +j'l).;) [9.50a]
bwz; = hji 1A [9.50b]
hg = by J’-‘;.j'° [9.50c]

i 1.k ALY
where J-1A;" denotes the k™ column of the matrix J1Aj.

Consequently, three inertial parameters can be grouped with the others. The

choice of these parameters is not unique. By choosing to group the parameters YY;,
MZ; and M; we obtain:

XXR; = XXj—YYj [9.51]
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12l pgad 129 i1 10
KRj.; = K+ YY; (1A +11A5) + MZ A + Mo [9.52]

Substituting for A, j")«.;, lljg, 3“)«,} % from Table 9.1 into equations [9.51] and
[9.52] gives the following theorem:

Theorem 9.1. If joint j is revolute, the parameters YY;, MZ; and M; can be grouped
with the parameters of link j and link j— 1. The resulting grouped parameters are:

XXRj = XX;-YY;

XXRj.1 = XXj 1+ YYj+ 21, MZ; + l‘j2 M;

XYRj_l = XYj.l + dj S(Xj MZJ‘ ‘+ dj s Saj Mj

XZR;.| = XZj.| - d; Co;j MZ; - d; r; Co; M;

YYRj.; =YY + CCoy YYj +27; CCGj MZj + (djz + rj-" CC(Xj) M;
YZR;.) = YZ;.; + CSoy YY; + 2 1; CSoy MZ; + rj2 CSoy M; [9.53]
ZZRj.l = ZZj_l + 8805 YY; + 2 1;SSoy MZj + (dj2 + l’jz SSO.j) Mj
MXR;; = MX;, 1 +4; M;

MYR;,| = MY, - Soy MZ; - r; Soy M

MZR;.; = MZ;.) + Coy MZ; +7; Coy Mj

MRj_] = Mj.] + M}

where SS(*) = S(*) S(*), CC(*) = C(*) C(*) and CS(*) = C(*) S(*).
On the other hand, if joint j is prismatic, the following six relations always hold:
= h i) = j-13,2 = 17,8
hxxj = hjp! Xj,hxyj = hj,y)J Xj, ooy hzzy = by Aj {9.54]

Therefore, six parameters can be grouped. Choosing to group the parameters of
link j with those of link j—1 yields:

KR;; = Kj+ 1A XX+ XY+ .. +5710 22 [9.55)
Expanding equation {9.55] gives the following theorem:

Theorem 9.2. If joint j is prismatic, the parameters of the inertia tensor of link j can
be grouped with those of link j- 1. The grouping relations are:

XXRj.I
XYR,.i

XX j + CCO; XX; - 2 CS6; XY; + SS6; YY;
XYH + Csej C(!j XXj + (CCGJ'—SSQJ’) C(X.j XYj - Cej S(lj XZJ
-CS6;Coy YY; + SO; Sy YZ;
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XZRj_l = XZj_] + Csej S(lj XXj + (CCGj—SSGj) Saj XYJ' + Cej C(X,j XZj
- CSGj Saj YYj - Sej CG.j YZJ'

YYR;.; = YYj + 5, CCay XX; + 2CS6; CCa; XY; - 256; CSo; XZ;
+ CCB; CCo; YY; — 2C8; CSo; YZ; + SSo; ZZ; [9.56]
YZR;| = YZj.; + 556;CSy XX; + 2CS8; CSo; XY; + 56; (CCoy-SSey) XZ;

+ CCGj CSay YY; + C8; (CCoy-SSoy) YZ; - CSay; ZZ;
ZZR;.\ = ZZ;.) + SS6; SSo; XX; + 2CS6; SSa; XY + 256; CSoy; XZ;
+ CCO; SSoy YY; + 2CO; CSoy YZ; + CCo; ZZ;

Equation [9.56] can be rewritten under the following matrix form:
j"JRj-] = j'le.l +j“Aj ij jAj_] [9.57}

where JJ; is the inertia tensor of link j, and J-1A; is the (3x3) orientation matrix of
frame R; relative to frame R;..

Relation [9.57] can be also obtained by calculating the sum of the rotational
kinetic energy of link j— 1 and link j in terms of the angular velocity of link j— 1, and
by noting that when joint j is prismatic the angular velocity of link j is equal to the
angular velocity of link j- 1.

9.4.2.3. Particular grouped parameters

Equations [9.53] and [9.56] allow us to compute most of the grouped inertial
parameters of any serial robot. Additional grouping of inertial parameters concerns
the parameters of the prismatic links between link ry and link ry (joints ry and r; are

defined in § 9.4.2.1). The following two cases are considered [Khalil 94a):

i) if the axis of the prismatic joint j, rj < j < ry, is not parallel to the r; axis, then the
functions hyx;, hmyj and hygz; satisfy the relation:

jaxﬂ hMXj + jayﬂ hMYj + jam hMZj = constant [9.58]

where jag) = [ay  Jayy  Jag]T is the unit vector along the 2y axis referred to
frame R;.

Therefore, depending on the particular values of the components of ja;|, one
parameter can be eliminated or grouped as shown in Table 9.2.
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Table 9.2. Grouped parameters if r} <j<r, ;=1 and j is not parallel to the r) axis

Condition Grouping or elimination
MXR; = MX; - %1
Jag #0 j = MX;j - — MZ
MYR; = MY; g MZ;
Jagy = 0,JayJay £0 ja
zrl xri “dyrl MXR, =ij.-j...’.‘.r.£ MY,
Jagr1 = 0,38, =0 MY; = 0 (has no effect)
lag) =0,y =0 MX; = 0 (has no effect)

ii) if the axis of the prismatic joint j, r; <j<r,, is parallel to the r; axis, then the
following relation is obtained:

hys; = JAj1 bygsg + [ 26108 hzzi —24S6;bzzi 0 ] [9.59]
where i denotes the nearest revolute joint from j back to the base, i > ry, and:

hys; = [ Bmxj bmy; Bz ]

Therefore, we deduce that the parameter MZ; has no effect on the dynamic
model and that the parameters MX; and MY can be grouped using the relations:

MXRJ'.I = MXj_l + Cej MXj - SO,- MYj

MYR;.; = MYj.; + 88; Coy MX; + CO; Coy MY; [9.60]
MZR;.; = MZ;; + 86; Soy MX; + C6; Soy MY

ZZR; = ZZ;+2d; Co; MX;~2 d; S6; MY;

9.4.2.4. Practical determination of the base parameters

The following algorithm can be used to determine all the parameters that can be
eliminated or grouped. The remaining parameters constitute the set of base inertial
parameters of the links. The grouped relations make use of closed-form symbolic
expressions.
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Forj=n,..,1:

1) use the general grouping relations {9.53] or [9.56] to group:
a) YY;, MZ; and M; if joint j is revolute (0= 0);
b) XX, XY, XZ;, YY, YZ; and ZZ; if joint j is prismatic (0= 1);
2) if joint j is prismatic and a; is parallel to a;, for ry <j <ry, then eliminate MZ;
and group MX;; and MY using relation [9.60};

3) if joint j is prismatic and a; is not parallel to a,y, for ry <j <ry, then group or
eliminate one of the parameters MX;, MY;, MZ; using Table 9.2;

4) if joint j is revolute, for ry <j<r,, then eliminate XX, XY;, XZ; and YZ;. Note
that the axis of this joint is parallel to the axis of joint rj, and that the
parameter YY; has been eliminated by rule 1;

5) if joint j is revolute, for r{ <j<ry, and the a; axis is along a;;, and if a;; is
parallel to a; and to gravity g, for all i < j, then eliminate the parameters MX,
MY;. Note that MZ; is eliminated by rule 1;

6) if joint j is prismatic and j <ry, then eliminate the parameters MX;, MY;, MZ;.

From this algorithm, we deduce that the number of minimum inertial parameters

of the links for a general serial robot (without considering the inertia of the rotors) is
given by:

bn < Tn+4n,-3-01-2ny [9.61]

with:
* ng: number of revolute joints = ¥ o;;
* np: number of prismatic joints = ¥, 0j;

* ngo = | if the first joint is revolute and parallel to gravity, ngy = 0 otherwise.

This equation gives in most cases the exact number of base inertial parameters.

9.4.2.5. Considering the inertia of rotors

Considering the rotor inertial parameter Ia;, the number of standard inertial

parameters per link becomes equal to 11. The corresponding components in the
matrices h; and K; are given as:

[9.62]
K| 1j = Iaj [9.63]
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To verify if a parameter Ia; can be grouped with other parameters, let us look for
the existence of a linear relationship between hy;; and the other energy functions
{hg}. Such a relationship always holds for j = r, and exists under some conditions
for j = ry, and for the first prismatic joint denoted as p;:

i) for joint r}, we deduce that:

1,2
h6,|'l = Eer [9.64]

Consequently, the parameter Ia, can be grouped with ZZ; using the relation:
Z7R,y = ZZ;; + lapy [9.65]

ii) if the axis of joint r; is orthogonal to that of r;, we obtain:

)
her2 = 542 [9.66]

Thus, the parameter Ia,; can be grouped with ZZ,; using the relation:
Z7R;y = ZZ + 1ap (9.67]

iii) if the axis of the first prismatic joint p) is orthogonal to gravity, and if p; = 1 or
its axis is aligned with the revolute axes preceding it (such that M; has no effect on
the gravity force of joints 1, ..., py), then we can group Iap; with Mp;:

MRpl = Mpl + Iap1 [9.68]

* Example 9.2. Find the base inertial parameters of the Stiubli RX-90 robot. For
this robot, r; = 1 and ry = 2. Since all the joints are revolute, the use of equation
[9.53] for j=n, ..., 1 gives all the grouped parameters:

link 6:

XXR¢ = XX¢~YY
XXRs = XXs5+ YYg
Z7ZRs = ZZ5+ YY;
MYRs = MYs + MZg
MRj5 = M5+ Mg

The minimum inertial parameters of link 6 are: XXRg, XY¢, XZg, YZg, ZZ,
MX6 and MYG.
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link S:

XXRs = XXs5+YY6~-YY;5

XXRgq = XX4+YYs

ZZRy = ZZ24 + YY5

MYR4 = MYy -MZg

MR4 = Mg+ MR5 = Mg+ Mg+ Mg

The minimum parameters of link 5 are: XXRs, XYs, XZs, YZs, ZZR5, MXs and
MYR;.

link4:
XXRs = XX4+YYs-YY,
XXR3 = XX3+YY,4 + 2 RL4 MZ,4 + RL4Z (M4 + M5 + Mg)

ZZR3 = 7723+ YY4+2RIAMZy + RLAZ (Mg + M;s + Mg)
MYR3; = MY; + MZ4 + RL4A (M4 + M5 + Mg)
MR3 = M3+ My +Ms+ Mg

The minimum parameters of link 4 are: XXRy, XYy, XZ4, YZ4, ZZR4, MX,4 and
MYR,.

link 3:

XXR3 = XX3+YY4+2 RL4 MZ4 + RL42 (M4 + Mg + Mg) - YY3
XXR; = XX2+YY;3

XZR; = XZy-D3MZ3

YYR; = YY;+D32(M3+My+Ms+Mg)+YY3

ZZRy = ZZ; + D32 (M3 + Mg + Mg + Mg)
MXR3 = MX3 + D3 (M3 + Mg + Mg + Mg)
MZR; = MZy + MZ3

MRj; = Mj + M3+ My +Ms+ Mg

The minimum parameters of link 3 are: XXR3, XY3, XZ3, YZ3, ZZR3, MXj3 and
MYR3.

link 2:
XXR; = XX;- YY2-D32 (M3 + Mg + Ms + Mg)
ZZRy = ZZj + YY3+ D32 (M3 + My + M5 + Mg) + YY3

The minimum parameters of link 2 are: XXRj, XY, XZRj, YZ;, ZZR), MXR,
and MY,.
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link 1: from § 9.4.2.4 (rules 4 and 5), we deduce that the parameters XX, XY,
XZy, YY, YZ;, MX|, MY, MZ; and M; have no effect on the dynamic model.
Note that MZ, and M, have no effect because they are grouped with parameters
having no effect. The only parameter of link 1 is ZZR,.

Rotor inertia. From § 9.4.2.5, we can group the parameter Ia; with ZZ; and the
parameter la; with ZZ;:

ZZRy = ZZ; + lay + YY2 + D32 (M3 + Mg+ Mg + Mg) + YY3
ZZRy = ZZ; + lag + D32 (M3 + Mg + Ms + Mg)

The final result can be summarized as follows:

— the parameters that have no effect on the dynamic model are: XX, XY, XZ,,
YY\, YZ1, MX|, MYl, MZ}, M|, MZZ and Mz;

~ the parameters that are grouped are: Ia;, YY», Iaj, YY3, MZ3, M3, YY4, MZ,,
M4, YYs, MZs, Ms, YY¢, MZg and Mg;

~ the grouping equations are:

ZZRy = ZZy +la; + YY + D32 (M3 + Mg+ Ms + Mg) + YY3
XXRy = XX3-YY; - D32 (M3 + My + Ms + Mg)

XZRy = XZ;-D3 MZ3

ZZR) = ZZ, + lay + D32 (M3 + Mg + Ms + Mg)

MXR; = MX3+ D3 (M3 + Mg+ Ms + Mg)

XXR3 = XX3=YY3+ YY4+ 2 RLA MZ4 + RLAZ (M4 + Mg + Mg)
ZZR3y = ZZ3 + YY4 + 2RLA MZ,4 + RL4AZ (M4 + Ms + Mg)
MYR3 = MY3 + MZ4 + RL4 (M4 + Ms + Mg)

XXR4 = XXq4+YYs5-YYy

ZZR4 = 7ZZ4+ YYs

MYR4 = MY4-MZ;

XXRs = XXs+ YYg-YYs
ZZRs = ZZ5 + YY§

MYRs = MYs+ MZg
XXRg = XXg-YYg

Table 9.3 gives the 40 base inertial parameters of the Stdubli RX-90 robot.

* Example 9.3. Let us assume that the inertia tensors 5Jj, forj=1, ..., 6, are
diagonal and that the first moments of the links are given by:

IMS; = [0 0 MZI1]T
IMS; = [MX2 MY2 0]T
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3MS; = [0 MY3 0]T
4MS; = [0 0 MZ4]T
SMSs = [0 MYS 0]T
5MSs = [0 0 MZ6]T

The corresponding 19 base inertial parameters are given in Table 9.4. They are

derived using the general grouping relations after eliminating the parameters whose
values are zero.

Table 9.3. Base inertial parameters of the Stdubli RX-90 robot

| XXy (XY5] XZy |YY;1YZ| ZZ; | MX; | MY; (MZ;{ M; | I
1 0 o 0 0| 0 | ZZR, 0 0 0jo0o}o0
2 1XXRy|XY2] XZRy | O |YZy| ZZR; iIMXR I MY, 1 O] O ] O
3 | XXR3iXY3] XZ3 | 0 |YZ3| ZZR3 | MX; [MYR3| O | O | Ias
4 | XXRy |XYy| XZg | O {|YZ4| ZZRy | MXy [MYR4] O | O | Iag4
5 | XXRs {XYs| XZs | O [YZs] ZZRs | MXs |[MYRs| O | O | Ias
6 | XXRg |XYg| XZg | O [YZg] ZZ¢ | MXg | MYg | O | O | Iag
Table 9.4. Simplified base inertial parameters for the Stiaubli RX-90 robot
j XX; | XY51XZ1YY;{YZ | Z2Z; | MX; | MY; |[MZj| M; | Ig
1 0 00| 0] 0 |ZZRy 0 0 0jo0} O
2 IXXRyj 0 O} O 9 |ZZR, [MXR;| MY, | O ] 0O} O
JIXXR3| 0| 0 0] O |ZZR; 0 {MYR;| 0} O |Ias
4 | XXR4] 0| 0| 0] O }|ZZRy 0 0 0] 0 |Ia
S [XXRs|] 0| 0} 0| O | ZZRs 0 |MYRs] O | O |Iag
6 |XXRg{ O | O | O] 0| ZZg 0 0 0] 0 |Ia
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9.5. Newton-Euler formulation
9.5.1. Introduction

The Newton-Euler equations describing the forces and moments (wrench) acting
on the center-of-mass of link j are given as:

F; = M; Vg; 19.69]
Mg; = Ig; & + o x (Igj ) [9.70]

The Newton-Euler algorithm of Luh, Walker and Paul [Luh 80b], which is
considered as one of the most efficient algorithms for real time computation of the
inverse dynamic model, consists of two recursive computations: forward recursion
and backward recursion. The forward recursion, from the base to the terminal link,
computes the link velocities and accelerations and consequently the dynamic wrench
on each link. The backward recursion, from the terminal link to the base, provides
the reaction wrenches on the links and consequently the joint torques.

This method gives the joint torques as defined by equation [9.1] without
explicitly computing the matrices A, C and Q. The model obtained is not linear in
the inertial parameters because it makes use of M;, §; and Ig;.

9.5.2. Newton-Euler inverse dynamics linear in the inertial parameters

In this section, we develop a Newton-Euler algorithm based on the double
recursive computations of Luh et al. [Luh 80b], but which uses as inertial parameters
the elements of Jj. MS; and M; [Khalil 87b), {Khosla 86]. The dynamic wrench on
link j is calculated on O; and not on the center of gravity G;. Therefore, the resulting
model is linear in the dynamic parameters. This reformulation allows us to compute
the dynamic model in terms of the base inertial parameters and to use it for the
identification of the dynamic parameters.

The Newton-Euler equations giving the forces and moments of link j at the origin
of frame R; are given as:

Fj = M; V; + i x MS; + & x (& x MS)) (9.71)
M; = Jjdy+ o x (J; ) + MS;x V 19.72]

Using the spatial notation, we can write these equations as:
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. ©; X (0 x MS;)
Fj = J;Vj+ [ : (9.73]
@ x (J; &)
Fi v
where [F; = M, LY = b #j is the spatial inertia matrix (equation [9.21}).
®

i) forward recursive computation: to compute F; and M;, for j = 1, ..., n, using
equations [9.71] and [9.72], we need a;, q and V;. The velocities are given by the
recursive equations {9.14] and [9.15] rewritten hereafter as:

W = &1 +0;G;3 9.74]
Vj = Vj-] +Wg X Lj + O (.], 8 [9.75])

Differentiating equations [9.74] and [9.75] with respect to time gives:

@y = @51+ (§a) + 0.1 x §ja) 9.76]
V= Vi + @y X Li+ @1 x (@1 X L) + 0 o+ 2@y x G o) (9.77]

The initial conditions for a robot with a fixed base are @y = 0, @y = 0 and \"0 =0,

ii) backward recursive computation: this is based on writing for each link j, for j =
n,...,1, the Newton-Euler equations at the origin Oj, as follows (Figure 9.5):

F)' = f] - fj,,] + Mj g- fej [9.78]
M = my-my,; - Ljy xfj + SxMjg-mg; [9.79]

-y, \ '

Figure 9.5. Forces and moments on link j
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We note that f; and myj, which represent the force and moment exerted by link j
on the environment, may include contributions from springs, dampers, contact with
the environment, etc. Their values are assumed to be known, or at least to be
calculated from known quantities.

We can cancel the gravity terms from equations [9.78] and [9.79} and take into
account their effects by setting up the initial linear acceleration such that:

Vo= -g (9.80]
Thus, using equations [9.78] and [9.79], we obtain:

fi = Fj+ Gy + 1 (9.81)
ny = Mj +my+ Lj+| X fj+| + My [9.82]

This backward recursive algorithm is initialized by f,,, = 0 and m,, = 0.

Finally, the joint torque [j can be obtained by projecting f;j or m; on the joint
axis, depending whether the joint is prismatic or revolute respectively. We can also
consider the friction forces and the rotor inertia as shown in the Lagrange method:

I = (0;f+ G mj)T a;+Fy; sign(d;) + Fy; §; + Ia; § [9.83}

From equations [9.81], [9.82] and [9.83], we deduce that I is a function of the
inertial parameters of links j, j+1, ..., n. This property has been outlined in
§9.3.3.3.

9.5.3. Practical form of the Newton-Euler algorithm

Since J; and MS; are constants when referred to their own link coordinates, the
Newton-Euler algorithm can be efficiently computed by referring the velocities,
accelerations, forces and moments to the local link coordinate system [Luh 80b).
The forward recursive equations become, forj =1, ..., n:

oy = Iy ey (9.84]
oy = oy + ;4 (9.85]
iy = JA Iy + O (G Iy + Joyy x §jlay) {9.86)
Wj = iAgy (W + 510 TP + o) (e + 2y x §; Jay) (9.87]
IF = M;iV; + 3U; iMS; - [9.88]

IM; = 13 Jdoy + Joy x (0 o) + M8 x 3V [9.89]
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)U = ij + Jm’ ij {9.90]
For a stationary base, the initial conditions are @y = 0, dy =0 and Vo=-g.

The use of jU saves 21n multiplications and 6n additions in the computation of
the inverse dynatmc model of a general robot [Kleinfinger 86a].
It is to be noted that JV means JAOOVJ , and not the time derivative of JVJ, since

ij = 3Jv,- + ij xJVj. On the contrary, ij is equal to the time derivative of Ja)j.

The backward recursive equations, for j =n, ..., 1, are:

iy = iR +5g+1+3fej [9.91]
J~lf = JlA. ij [9.92]
imy = M+ A imgeg + 3P x I +img [9.93]

I = (ojf; + ojim;)T ia; + F sign(q;) + Fy; g + 1 §j [9.94]

The previous algorithm can be numerically programmed for a general serial
robot. Its computational complexity is O(n), which means that the number of
operations is linear in the number of degrees of freedom. However, as we will see in
the next section, the use of the base inertial parameters in a customized symbolic
algorithm considerably reduces the number of operations of the dynamic model.

9.6. Real time computation of the inverse dynamic model

9.6.1. Introduction

Much work has been focused on the problem of computational efficiency of the
inverse dynamic model of robots in order to realize real time dynamic control. This
objective is now recognized as being attained (Table 9.5).

Before describing our method, which is based on a customized symbolic
Newton-Euler formulation linear in the inertial parameters [Khalil 87b],
[Kleinfinger 86a], we review the main approaches presented in the literature,

The Lagrangian formulation of Uicker and Kahn [Uicker 69], [Kahn 69] served
as a standard robot dynamics formulation for over a decade. In this form, the
complexity of the equations precluded the real time computation of the inverse
dynamic model. For example, for a six degree-of-freedom robot, this formulation
requires 66271 multiplications and 51548 additions {Hollerbach 80]. This led
researchers to investigate either simplification or tabulation approaches to achieve
real time implementation,

The first approach towards simplification is to neglect the Coriolis and
centrifugal terms with the assumption that they are not significant except at high
speeds [Paul 72], [Bejczy 74]. Unfortunately, this belief is not valid: firstly, Luh et
al. [Luh 80b] have shown that such simplifications leads to large errors not only in
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the value of the computed joint torques but also in its sign; later, Hollerbach
[Hollerbach 84a] has shown that the velocity terms have the same significance
relative to the acceleration terms whatever the velocity.

An alternative simplification approach has been proposed by Bejczy [Bejczy 79).
This approach is based on an exhaustive term-by-term analysis of the elements A;;,
Ci jk and Q; so that the most significant terms are only retained. A similar procedure
has been utilized by Armstrong et al. [Armstrong 86] who also proposed computing
the elements Ajj, C;jx and Q; with a low frequency rate with respect to that of the
servo rate. Using such an analysis for a six degree-of-freedom robot becomes very
laborious and tedious.

In the tabulation approach, some terms of the dynamic equations are
precomputed and tabulated. The combination of a look-up table with reduced
analytical computations renders them feasible in real time. Two methods based on a
trade-off between memory space and computation time have been investigated by
Raibert [Raibert 77]. In the first method SSM (State Space Model), the table was
carried out as a function of the joint positions and velocities (q and q), but the
required memory was too big to consider in real applications at that time. In the
Configuration Space Method (CSM), the table is computed as a function of the joint
positions. Another technique, proposed by Aldon [Aldon 82] consists of tabulating
the elements Aj; and Q; and of calculating the elements C; jx on-line in terms of the
Ajj elements. This method considerably reduces the required memory but increases
the number of on-line operations, which becomes proportional to n3. We note that
the tabulated elements are functions of the load inertial parameters, which means
making a table for each load.

Luh et al. {Luh 80a} proposed to determine the inverse dynamic model using a
Newton-Euler formulation (§ 9.5). The complexity of this method is O(n). This
method has proved the importance of the recursive computations and the
organization of the different steps of the dynamic algorithm. Therefore, other
researchers tried to improve the existing Lagrange formulations by introducing
recursive computations. For example, Hollerbach {Hollerbach 80] proposed a new
recursive Lagrange formulation with complexity (n), whereas Megahed {Megahed
84] developed a new recursive computational procedure for the Lagrange method of
Uicker and Kahn. However, these methods are less efficient than the Newton-Euler
formulation of Luh et al. {Luh 80a].

More recently, researchers investigated alternative formulations [Kane 83],
[Vukobratovic 85], [Renaud 85], [Kazerounian 86], but the recursive Newton-Euler
proved to be computationally more efficient.

The most efficient models proposed until now are based on a customized
symbolic Newton-Euler formulation that takes into account the particularity of the
geometric and inertial parameters of each robot [Kanade 84], [Khalil 85a],
[Khalil 87b], [Renaud 87]. Moreover, the use of the base inertial parameters in this
algorithm reduces the computational cost by about 25%. We note that the number of
operations for this method is even less than that of the tabulated CSM method.



Table 9.5. Computational cost of the inverse dynamic modeling methods

Robot General case 2RP(3R) RZP)(3R) 6R
Method Stanford THS Stiubli RX-90
Operations nddl n=6 | General | Simplified* { General | Simplified* | General | Simplified*
Raibert 78** Mult. n® +2n2 288 288 288 288 288 288 288
Add. 3" +n? 252 252 252 252 252 252 252
Luh 80b Mulit. 137n-22 800 800 800 800 800 800 800
Add. 101n-11 595 595 595 595 595 595 595
Hollerbach 80** Mult. 412n-277 | 2195 2195 2195 2195 2195 2195 2195
Add. 320n-201 1719 1719 1719 1719 1719 1719 1719
Kane 83** Mult. ? ? 646 ? ? ? ? ?
Add. ? ? 394 ? ? ? ? ?
Vukobratovic 85** Mult. ? ? >372 ? >193 ? ?
Add. ? ? >167 ? >80 ? ?
Renaud 85** Mult. ? ? ? ? ? ? 368
Add. ? ? ? ? ? ? ? 271
Presented method Mult. 92n-127 425 240 142 175 104 253 159
Khalil [87b]) Add. 8In-117 369 227 99 162 72 238 113

7 the number of operations is not given.

* the matrix J; is diagonal and two components of the first moments are zero.

** forces and moments exerted by the end-effector on the environment are not considered.

> the given number of operations corresponds to the computation of the elements of A, Cj jk and Q.
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Before closing this section, it is worth noting the formidable technological
progress in the field of computer processors, to the point that the dynamic model can
be calculated at control rate with standard personal computers (Chapter 14).

9.6.2. Customization of the Newton-Euler formulation

The recursive Newton-Euler formulation of robot dynamics has become a
standard algorithm for real time control and simulation (§ 9.5.3). To increase the
efficiency of the Newton-Euler algorithm, we generate a customized symbolic model
for each specific robot and utilize the base dynamic parameters. To obtain this
model, we expand the recursive equations to transform them into scalar equations
without incorporating loop computations. The elements of a vector or a matrix
containing at least one mathematical operation are replaced by an intermediate
variable. This variable is written in the output file, which contains the customized
model [Kanade 84}, [Khalil 85a]. The elements that do not contain any operation are
not modified. We propagate the obtained vectors and matrices in the subsequent
equations. Consequently, customizing eliminates multiplications by one (and minus
one) and zero, and additions with zero. A good choice of the intermediate variables
allows us to avoid redundant computations. In the end, the dynamic mode! is
obtained as a set of intermediate variables. Those that have no effect on the desired
output, the joint torques in the case of inverse dynamics, can be eliminated by
scanning the intermediate variables from the end to the beginning.

The customization technique allows us to reduce the computational load for a
general robot, but this reduction is larger when carried out for a specific robot
[Kleinfinger 86a). The computational efficiency in customization is obtained at the
cost of a software symbolic iterative structure [Khalil 97} and a relatively increased
program memory requirement.

¢ Example 9.4. To illustrate how to generate a customized symbolic model, we
develop in this example the computation of the link angular velocities ju)j for the
Stdubli RX-90 robot. The computation of the orientation matrices I-!A; (Example
3.3) generates the 12 sinus and cosinus intermediate variables:

Sj
G

sin(q;)
cos(g;) forj=1,...,6

The computation of the angular velocities for j= 1, ..., 6 is given as:

0
-e[ )
QP1
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Computation of !@; does not generate any intermediate variable.
S2*QP1 WI12
201 = | C2*QP1 | = | WI22
0 0
Computation of 2@, generates the following intermediate variables:

WII2 = S2*QPI
WI22 = C2*QP1

In the following, the vector 2w, is set as:
WI12

20 = | WI22
QP2

Continuing the recursive computation leads to:

[ C3*WII2 + S3*WI22 ] [WII3
3wy = | ~S3*WII2+ C3*WI22 | = [wm]
X QP2 J Laor
 WII3 ] {wm“
3y = | WI23 | =|WI3
[ QP2 +QP3] L W33 ]

40y = | —~S4*WI12 - C4*W33 WI24
L WI23 WI23

© WII4 wiIii4
4(04 = WI24 = W124

" C4*WI13 - S4*W33 j] [WIM:I

L WI23 + QP4 W34
T C5*WI14 + S5*W34 WIi5
504 = | -S5*WI14 + C5*W34 | = | WI25
L -WI24 ~-WIi24
- WIIS WI15
Sas = WI2S = | WI25
| -WI24 + QPS5 W35
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S0 = | ~S6*WIL5 - C6*W35
_ WI25

" WII6 Wwi16
6w =| WI26 |=|WI26
| wi25 + Q6] L W36

[ C6*WI15 - S6*W35 WwIil6
= | WI26
WI2S

Finally, the computation of ja)j, for j = 1, ..., 6, requires the following
intermediate variables: WI12, WI22, WI13, WI23, W33, WIl4, W24, W34, WII5,
WI25, W35, WI16, WI26 and W36, in addition to the variables Sj and Cj for j = 2,
..., 6. The variables S1 and C! can be eliminated because they have no effect on the
angular velocities.

9.6.3. Utilization of the base inertial parameters

It is obvious that the use of the base inertial parameters in a customized Newton-
Euler formulation that is linear in the inertial parameters will reduce the number of
operations because the parameters that have no effect on the model or have been
grouped are set equal to zero. Practically, the number of operations of the inverse
dynamic model when using the base inertial parameters for a general n revolute
degree-of-freedom robot is 92n~ 127 multiplications and 81n - 117 additions (n > 2),
which gives 425 multiplications and 369 additions for n = 6. By general robot, we
mean:

~ the geometric parameters r, dj, o} and ry are zero (this assumption holds for
any robot);

— the other geometric parameters, all the inertial parameters, and the forces and
moments exerted by the terminal link on the environment can have an
arbitrary real value;

— the friction forces are assumed to be negligible, otherwise, with a Coulomb

and viscous friction model, we add n multiplications, 2n additions, and n sign
functions.

Table 9.6. shows the computational complexity of the inverse dynamic model for
the Stiubli RX-90 robot using the customized Newton-Euler formulation. In
Appendix 7, we give the dynamic model of the Stiubli RX-90 robot when using the
base inertial parameters of Table 9.4, which takes into account the symmetry of the
links. The corresponding computational cost is 160 multiplications and 113
additions.
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Table 9.6. Computational complexity of the inverse dynamic model
Jor the Staubli RX-90 robot

Inertial parameters | Multiplications| Additions
General inertial | Standard parameters 294 283
parameters Base parameters 253 238
Simplified inertial | Standard parameters 202 153
parameters Base parameters 160 113

9.7. Direct dynamic model

The computation of the direct dynamic model is employed to carry out
simulations for the purpose of testing the robot performances and studying the
synthesis of the control laws. During simulation, the dynamic equations are soived
for the joint accelerations given the input torques and the current state of the robot
(joint positions and velocities). Through integration of the joint accelerations, the
robot trajectory is then determined. Although the simulation may be carried out off-
line, it is interesting to have an efficient direct dynamic model to reduce the
simulation time. In this section, we consider two methods: the first is based on using
a specialized Newton-Euler inverse dynamic model and needs to compute the
inverse of the inertia matrix A of the robot; the second method is based on a
recursive Newton-Euler algorithm that does not explicitly use the matrix A and has a

computational cost that varies linearly with the number of degrees of freedom of the
robot.

9.7.1. Using the inverse dynamic model to solve the direct dynamic problem

From equation {9.6), we can express the direct dynamic problem as the solution
of the joint accelerations from the following equation:

A§ = [I-H(q @) [9.95
where H contains the Coriolis, centrifugal, gravity, friction and external torques:
H(g, §) = C(q, §) q + Q + diag(Q)F, + diag[sign(§)IF; + JT Ly

Although in practice we do not explicitly calculate the inverse of the matrix A,
the solution of equation {9.95] is generally denoted by:
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4 = Al[l- Hq ] [9.96)

The computation of the direct dynamics can be broken down into three steps: the
calculation of H(q, q), the calculation of A, and the solution of the linear equation
[9.95] for G.

The computational complexity of the first step is minimized by the use of a
specialized version of the inverse dynamics algorithm in which the desired joint
accelerations are zero [Walker 82]. By comparing equations [9.1] and [9.95], we
deduce that H(q, @) is equal to " if ¢ =0.

The inertia matrix can also be calculated one column at a time, using Newton-
Euler inverse dynamic model [Walker 82]. From relation {9.95], we deduce that the
ith column of A is equal to T if:

ii=lli,(.l=0,g=0,Fc=0(fej=0,m¢}'=0 forj=1,..,n) {9.97]

where u; is an (nx1) unit vector with 1 in the ith row and zeros elsewhere. Iterating
the procedure for i = 1,..., n leads to the construction of the entire inertia matrix.

To reduce the computational complexity of this algorithm, we can make use of
the base inertial parameters and the customized symbolic techniques. Moreover, we
can take advantage of the fact that the inertia matrix A is symmetric. A more
efficient procedure for computing the inertia matrix using the concept of composite
links is given in Appendix 8. Alternative efficient approaches for computing the
inertia matrix based on the Lagrange formulation are proposed in [Megahed 82],
[Renaud 85].

NOTE.- The nonlinear state equation of a robot follows from relation {9.95] as:

{ i‘] = [ a } (9.98]
i A1l -H(@q )

and the output equation is written as:
y=q or y=X(q) (9.99]

In this formulation, the state variables are given by [qT §T]T, the equation y = q
gives the output vector in the joint space, and y = X(q) denotes the coordinates of
the end-effector frame in the task space.
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9.7.2. Recursive computation of the direct dynamic model

This method is based on the recursive Newton-Euler equations and does not use
explicitly the inertia matrix of the robot [Armstrong 79}, [Featherstone 83b},
{Brandl 86]. In this section, we utilize the compact spatial notation, which is also
called screw notation. Consequently, by combining equations [9.87] and [9.86],
which give JV and ij we obtain:

jVj = jTH j-lvj-] + q_' jmj "’j'Yj [9.100]
where jmj is defined by equation [9.23b], and:
JA U o x (e x FP)] + 20; (o x G Jay)

W = [9.101]
O Ja.1 X g ay

Equations [9.88), [9.89], [9.91] and [9.93], which represent the equilibrium
equations of link j, can be combined as:

359 = -3 g, + 3B [9.102]
where:
Jy x (o x IMS;)
iy = —igyo| [9.103]
’ Tl dayx d3jiay)

In equation [9.102], we use equation [2.63] to transform the dynamic wrench
from frame R;,, to frame R;.

The joint accelerations are obtained as a result of three recursive computations:

i) first forward recursive computations for j = 1, ..., n: in this step, we compute the
screw transformation matrices J'II‘ -1, the link angular velocities Ju)j as well as J‘yj and

JBJ vectors, which represent the Imk accelerations and the link wrenches respectively
when § = 0;

ii) backward recursive computations for j = n, ..., 1: we compute the vectors and
matrices needed to express the joint acceleratlon q and the wrench th in terms of
J'V” To illustrate the equations required, we detall the case when j=n and
j=n-1. By combining equations [9.100] and [9.102] for j = n, and since
n+lf 1 = 0, we obtain:
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Ay ("Tpy ™ 1Vny + Gn "800+ P0) = "+ "Bn [9.104)
Since:

jn;r J]B = ‘tj - Ia‘, &ij [9' 105]
1 = Ij~Fysign(@;) - Fy; 4 (9.106)

multiplying equation [9.104] by "mI and using equation [9.105), we deduce the joint
acceleration of joint n:

dn = H;nl - nﬂ: " ("Ta-1 "'Ivn-l +Mp) + Ty + nﬂ:“ﬁn) [9.107)
where Hy is a scalar given as:
Hy = ("g,1 "J, "8, + Iay) [9.108}

Substituting for g, from equation [9.107] into equation [9.104], we obtain the
dynamic wrench Pf}, as:

of
nﬂ'n = [ n ] - nKn nTn-l n'lvn-l + nun [9.109]
m,
where:
MKy = "y — "Jp "oy H;,l nmI 2Ja [9.110]
Nap = MKy My + W Mg H, (T, + 98] %By) - "By (9.111]

We now have , and ™f, in terms of ""Vil,,_l. Iterating the procedure for j = n-1,
we obtain, from equation [9.102]:

Ll n',vn-l = "+ I"'H::-l o+ 2By (9.112]

which can be rewritten using equation [9.100] as:

B0y (1T 2V g+ oy gy + P lypy) = B0 + IR (9.113)

where:
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01y 1 + 0Ty 'Ky T, [9.114]
T
n1g, | - TL o, [9.115]

n-1 ‘U‘n-l

lMB.n-l

Equauon [9.113] has the same form as equation [9.104). Consequently, we can
express {,.; and ™ 'll'n 1 in terms of ™ ZV,, 2. Itcratmg this procedure for j = n-2, .
1, we obtain ¢ qJ and lll in terms of - IVJ-I forj=n-1,.., 1. Since OVO is composed of
the linear and angular accelerations of the base that are assumed to be known (Vg =
—g, G = 0), the third recursive computation allows us to compute ; and Jll forj=1,
., 1. These backward recursive equations are summarized as follows:

Forj=n,.., 1, compute:

Hj = (g 1710+ Ia)) (9.116)
K = 30~ 0y B i 0 (9.117]
Jay = 30y + 0 4 0B - [9.118)
1% = Fpy - IT), oy [9.119]
Mgy =105, +J'Ir}r.1inghrj-, [9.120]

Note that these equations are initialized by JJ*; = 1l and that equations [9.119)
and [9.120] are not calculated for j = 1;

iii) second forward recursive computations for j = 1, ..., n. The joint acceleration ;
and the dynamic wrench Jll' (if needed) are then obtamed from the following
equations (see equations [9. 107] and [9.109}):

. -1 s T o o . T e

G = H; [y W 0V + i) + 1 +Jay IB7) [9.122)
. I

Ji{l = Jm JKJ JVJ l-{-J(y,J 9.123]

W) = JVj_‘ +J'mj a’ +j‘Yj {9.124]
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NOTES.-

- to reduce the number of operations of this algorithm, we can make use of the
base inertial parameters and the customized symbolic technique. Thereby, the
number of operations of the direct dynamic model for the St4ubli RX-90 robot
is 889 multiplications and 653 additions [Khalil 97]. In the case of the use of
simplified inertial parameters (Table 9.4), the computational cost becomes
637 multiplications and 423 additions;

- the computational complexity of this method is O(n), while the method
requiring the inverse of the robot inertia matrix is of complexity O(n3);

~ from the numerical point of view, this method is more stable than the method
requiring the inverse of the robot inertia matrix [Cloutier 95).

9.8. Conclusion

In this chapter, we have presented the dynamics of serial robots using Lagrange
and Newton-Euler formulations that are linear in the inertial parameters. The
Lagrange formulation allowed us to study the characteristics and properties of the
dynamic model of robots, while the Newton-Euler was shown to be the most
efficient for real time implementation. We have illustrated that the base inertial
parameters can be determined using simple closed-form rules without calculating
neither the dynamic model nor the energy functions. In order to increase the
efficiency of the Newton-Euler algorithms, we have proposed the use of the base
inertial parameters in a customized symbolic programming algorithm. The problem
of computing the direct dynamic model for simulating the dynamics of robots has
been treated using two methods; the first is based on the Newton-Euler inverse
dynamic algorithm, while the second is based on another Newton-Euler algorithm
that does not require the computation of the robot inertia matrix.

In the next chapter, we extend these results to tree structured and closed loop
robots. Note that the inverse and direct dynamic algorithms using recursive Newton-
Euler equations have been generalized to flexible robots [Boyer 98] and to systems
with lumped elasticities [Khalil 00a}.



Chapter 10

Dynamics of robots with complex structure

10.1. Introduction

In this chapter, we present the dynamic modeling of tree structured robots and of
closed chain mechanisms. We also derive the base inertial parameters for these
structures. The algorithms given constitute a generalization of the results developed
for serial robots in Chapter 9. We make use of the notations of § 9.2 and we assume
that the reader is familiar with the geometric description of complex structures
exposed in Chapter 7.

10.2. Dynamic modeling of tree structured robots
10.2.1. Lagrange equations

Since the joint variables are independent in a tree structure, we can make use of
the Lagrange formulation in a similar way as for a serial structure. Thus, the kinetic
energy and the potential energy will be computed by equations [9.16] and [9.25].
The recursive equations for computing the angular and linear velocities of link j
must take into consideration that the antecedent of link j is link i, denoted as i = a(j),
and not j - 1 as in the case of simple open chain structures. The vector L; denotes the
position of frame R; with respect to its antecedent frame R;. Consequently, the linear
and angular velocities of link j can be obtained from equations [9.17] and [9.18] by
replacing j—1 by i:

ay = JA, i + 5 4 Jn [10.1]
WVj = JAi (Vi + iy x TP)) + ) [102)
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10.2.2. Newton-Euler formulation

The forward recursive equations of the Newton-Euler inverse dynamic model
(§ 9.5) can be generalized for tree structured robots by replacing j—1 by i, with

i=a@):

oy = JA; ey [10.3]
Jay = o + G; 4 a (10.4]
Yoy = JA; iy + B (Gjiaj + o x §jay) [10.5]
j\"j = JA,; (V; + U iP)) + 0; (dj 1a; + 2o, x g Jay) [10.6)
IFj = M;iV; +1U;IMS; (10.7)
M = iJjib; + o x (J;iey) +IMS; x iV, [10.8]

. . A A
wilh(m=0,(3)0=0,vo=-gand.|Uj=J(oj +J(’%Ja)j,

These equations will be computed recursively forj=1, ..., n.
Let us suppose that k denotes all the links such that a(k) = j (Figure 10.1). The
backward recursive equations for j = n, ..., 1 are written as follows:

i = F; + i+ 3 [10.9]
k/a(k)=j
'ty = 1A if; [10.10}
Jmy = M +imej . D 0Ay kmy + TPy xfy) (10.11]
k/a(k)=j
Tj = (0;if; + 0;im;)T Ja; + Fy; sign (§;) + F; g + Ia; §j [10.12]

For a terminal link, Jmy and ify are zero.

10.2.3. Direct dynamic model of tree structured robots

Similarly, the computation of the direct dynamic mode} of tree structured robots
can be obtained using the two methods presented in § 9.7 without any particular
difficulty.



Dynamics of robots with complex structure 237

10.2.4. Determination of the base inertial parameters

All the results concerning the base inertial parameters of serial robots can be
generalized for tree structured robots [Khalil 89b], [Khalil 95a). Thereby, equations
[9.37] and [9.38], or [9.48] and [9.49], giving the conditions of elimination or
grouping of the inertial parameters, are valid. To expose the computation of the base
parameters of tree structured robots, we recall that a main branch is composed of the
set of links of a path connecting the base to a terminal link. Thus, there are as many
main branches as the number of terminal links.

The parameters having no effect on the dynamic model for a tree structure can be
obtained by applying the rules derived for serial robots to each main branch.

As in the case of serial robots (§ 9.4.2.2), the general grouped parameters for tree
structures will concern the parameters YYj, MZ; and M; if joint j is revolute, and the
elements of the inertia tensor J if joint j is prismatic. The general grouping
equations are different than those of Chapter 9, because certain frames may be
defined by six geometric parameters.

fi-f

Figure 10.1. Forces and moments acting on a link of a tree structure
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10.2.4.1. General grouping equations

The recursive equation between the energy functions of two successive links is
given by:

hj = b A + g (10.13]

where h; is the (1x10) row matrix containing the energy functions of link j denoted
by [ hXXj hxy; ... huj ], while ‘).) is the (10x10) matrix expressing the
transformation of the inertial parameters of a link from frame R; to frame R;. The
general form of 1; and 'A;, with i = a(j), is developed in Appendix 6. We deduce that
equations [9.50] and [9.54] are valid for tree structures after replacing j— 1 by i,
which leads to the following theorem:

Theorem 10.1. If joint j is revolute, then the parameters YY;, MZ; and M; can be
grouped with the parameters of link i and link j, with i = a(j). The general grouping
equations are the following:

XXR; = XX; - [10.14a]
KR; = K;+ YY; (')Lj +in) + Mz A + M [10.14b]

where i\ is the k' column of the matrix 'A;. which is a function of the geometric
parameters defining frame R;. In the following formulas, the corresponding subscript
] has been dropped for simplicity. From Appendix 6, we obtain:

[~ 1~-SSySSa 7]
CSySSa.
-SYCSa.

1-CCySSa

i +iA = C;gz“ [10.15]

QOO0
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™ 2P,Co-2P,CYSa. 7] [~ Py2+P 27
P,CySo-P,SySo. PPy
-P,Ca-P,SySat BLE
2P, SYSu+2P,Car P:2+P/?
. . PP
) = | -PyCosPCrSa potsl, =] v | noan
2P, SYS0-2P,CYS0, Py"+Py
SySo. Px
—CySa By
Ca. P,
_ 0 . - 1 -

where P,, Py and P, denote the coordinates of the vector ’P which can be obtained
from equation [7.3] giving the general transformation matrix "l’J such that:

Py d; Cy; + 1;8Y;Sqy
iP; = | Py | = | dj Sy; - 5;Cy;Soy [10.18)
2 rjCo;+ b;

After expanding equations [10.14}, we obtain:

XXRj = XXj - YYj

XXR; = XX+ YYj (1-55Y;SSay) + 2 MZ; (P,Cay~ PyCY;S05) + M; (Py2 +P,%)
XYR; = XY;+ YY; (CSY;SSay) + MZ; (P,Cy;Say - PySy;Say) + M; (-PxPy)
XZR; = XZ; - YY; (8Y;CSay) + MZ; (-PxCay - P,SYjSay) + M (-PxP)

YYR; = YY; + YY; (1 -CCY;SS;) + 2 MZ; (P,Sy;S0; + P,Cax) + M; (P2 + P,2)
YZR; = YZi + YY; (CY{CSay) + MZ; (-Py Ca; + P,CY;Sa) + M; (-PyPp) [10.19}
ZZR; = ZZ; + YY;SSay + 2MZ; (Py Sy;Sa; ~P,Cy;Soy) + Mj(sz + Pyz)

MXR; = MX; + MZj (SY;Say) + M; Py

MYR; = MY;~MZ; (Cy;Say) + M; Py

MZR; = MZ; + MZ; Ca; + M; P,

MR; = M; + M;

with SS(*) = sin(*) sin(*), CC(*) = cos(*) cos(*) and CS(*) = cos(*) sin(*).

Theorem 10.2. If joint j is prismatic, then the elements of the inertia tensor JJJ can
be grouped with those of iJ; using the following equation:

KR; = K;+ A} XX+ & XY+ ... + 1A 22 [10.20a]

which is equivalent to:
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R; = 1J; + 1A;1Jj3A, [10.20b}

The expanded expressions of these equations are too complicated to be
developed here.

10.2.4.2. Particular grouped parameters

Particular grouped parameters can be obtained by applying the results of serial
robots to each main branch b. Let 1y, be the first revolute joint of branch b, and ry,
be the subsequent revolute joint whose axis is not parallel to the ry;, axis. Additional
grouping and/or elimination of certain elements among MX;, MY; and MZ; takes
place if j is prismatic and lies between ry, and ray. For simplicity, the subscript b is
dropped in the remainder of this section. Two cases are considered:

i) the axis of the prismatic joint j is not parallel to the r; axis. In this case, the
coefficients hyx;j, hmy;j and hyz; satisfy the equation:

jax,, hMXj +jay,, hMYj +jam hMZj = constant (10.21]

where jagy = [ Jaxr1 Jayri Jaz ]T s the unit vector of the zy axis referred to frame
R;. The corresponding grouping equations are given in Table 10.1;

ii) the axis of the prismatic joint j is parallel to the r; axis. The following equation is
satisfied:

{hms; 1T = JA; (hyi)T - [ 2Pxhzzc 2Pyhzz O JT (10.22)

where k denotes the nearest revolute joint from j back to the base, k 2 ry; hysj =
[ bmxj hmy; hmzj J; Py and P, are the first and second coordinates of IP;
respectively, with i = a(j). Using equation [7.4], we obtain:

jPi = [ P, Py P, ]T = [ —bjSﬁjSOj—djcej —bjCBjSaj+djSGj —bjCaj—rj ]T

Therefore, we deduce that the parameter MZ; has no effect on the dynamic model
and the parameters MX; and MY can be grouped with the first moments of link i,
and with the parameter ZZ of link k using the following equations:

MXR,; = MXi + (C'chej - SYjC(IjSGj) MXj - (C‘Yjsej + SijajCGj) MYj

MYR; = MY; + (SijBj + CYJC(X]SGJ) MXj + (—SijOj + CYJCG.]CGJ) MYj

MZR; = MZ; + S6; Soy; MX; + C8; So; MY; [10.23)
ZZRk = sz +2 (dj Cej + bj Sej SQ':') MXj -2 (dj SBJ- + bj Cej Sa]) MYj
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Table 10.1. Grouped parameters if r} <j<r, 0;= 1, and joint j axis
is not parallel to the r} axis

Conditions Grouping or elimination

MXR; = MX; Rt MZ,
Jag #0 35 T gy
ja
My, L
MYR; = MY} - - Mz,
Jaey =0, Ja, oy #0 ja
al =0 arttyn # MXR; = MX; - =2 MY;
j $ " Tayy U
jazrl =0, jaxrl =0 MYj =0

Therefore, the practical rules for computing the base inertial parameters given in
§ 9.4.2.4 can be applied for the tree structure case. The only difference is that the
joints ry and r should be defined for each main branch b as ryy, and ry), respectively.
Thus, a rule like "if j is such that r; < j <" means in the tree structure case "if j is
lying between r)p and ry,". From this algorithm, it occurs that the number of
minimum inertial parameters for the links (without considering the inertia of rotors)
of a general robot is less than by, such that:

bm € 7np+4ny—4no—3npp-2ng {10.24]

with:

ne: number of revolute joints = ¥ Gj;

np: number of prismatic joints = 3, j;

ny0: number of revolute joints connected directly to the base;
npo: number of prismatic joints connected directly to the base;

ngo: number of revolute joints connected directly to the base and whose axes
are parallel to gravity.

The grouped parameters of the rotor inertias concern those of the actuators of
joints (p1p, r1p and ryp), where pyp denotes the first prismatic joint of the main
branch b. They can be obtained by applying the results of serial robots (§ 9.4.2.5)
for each branch of the tree structure.
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10.3. Dynamic model of robots with closed kinematic chains

Many methods have been proposed in the literature to compute the dynamic
models of robots containing closed kinematic chains. Among them, let us mention
the works of [Chace 67], [Uicker 69], [Chace 71}, [Baumgarte 72}, {Wittenburg 77],
[Megahed 84}, [Touron 84], [Luh 85b], [Wittenburg 85], {Kleinfinger 86b],
{Giordano 86]. The dynamic model developed in this section is based on firstly
computing the dynamic model of an equivalent tree structure, then by multiplying it
by the Jacobian matrix representing the derivative of the tree structure variables with
respect to the actuated variables [Kleinfinger 86b].

10.3.1. Description of the system

The geometry of the robot is described using the method presented in Chapter 7.
The system is composed of L joints and n+ 1 links, where link 0 is the base. N joints
are actuated (active) and the other L — N joints are unactuated (passive). The number
of independent closed loops B is equal to L —n. We assume that the structure is
controllable and has the minimum number of actuators, thus the number of actuated
joints that represent the independent variables is equal to the number of degrees of
freedom of the mechanism.

We construct an equivalent tree structure by virtually cutting each loop at one of
its passive joints as has already been explained in § 7.3. Since a closed loop contains
several unactuated joints, we select the cut joint in such a way that the difference
between the number of links of the branches from the root of the loop to the cut joint
is as small as possible. This choice reduces the computational complexity of the
dynamic model {Kleinfinger 86a}.

We represent the tree structure variables by the (nx1) vector qy, and the cut
joints by the (Bx1) vector gq.. The total joint variables are given by equation [7.7]:

Qur
q= [ ‘Ic] [10.25]

The vector g is partitioned into the (Nx1) vector of active joints q, and the
(px1) vector of passive joints qp:

qa
Qg = [ Qp] (10.26]

The relation between q, and qp is obtained by solving the loop closure equations
(§ 7.3). The constraint kinematic equations of first and second order have already
been derived in § 7.8 and are rewritten here as:
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..
[We Wol| * [0 [1027)
[ Gp J
i *"” T
9a
[W. Wp) +¥ =0 (10.28)

L Gp

where W, and W, are (pxN) and (pxp) matrices respectively. In regular
configurations, the rank of W), is equal to p. Thus, from equation {10.27], we obtain:

4 = Wa, [10.29]
where:
W=-W, W, (10.30]

10.3.2. Computation of the inverse dynamic model

If the joint positions and velocities can be expressed in terms of the independent
actuated variables, we can use the standard Lagrange equation {9.4] to get the
dynamic model of the closed chain structure [Desbats 90]. Otherwise, we have to use
the Lagrange equation with constraints such that:

d oL aL [%(qu)“ izl .. (1031

where L(qy, e Gyr) is the Lagrangian of the equivalent tree structure; $(qy) = 0 is
the vector containing the p independent constraint functions of the loop closure
equations; A = [ A1 ... Ay ]Tis the Lagrange multiplier vector.

This equation can be rewritten as:

[‘3‘(%:)]

= ru»(qu». (.Iu-. iiu») + A [10.31b]

where Iy, represents the inverse dynamic model of the equivalent tree structure. It is
a function of qy, Gy and Gy
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The general form of the dynamic model of the tree structure is given by:

[ = Ay +Hy [10.32]
where Ay is the inertia matrix of the equivalent tree structure, and Hy, is the vector of
centrifugal, Coriolis and gravity torques of the equivalent tree structure.

Using equation [10.27], we deduce that:

) L [Wa Wy [1033)

The term containing the Lagrange muitipliers represents the reaction forces
transmitted by the cut joints to ensure that the loops remain closed. Let us
decompose Iy, in a similar way to equation [10.26]:

I
Ty = r, [10.34]

where T'; and I denote the torques of the actuated and unactuated joints of the
equivalent tree structure respectively.

The joint torques of the closed chain robot are given as:

_ I‘cl ]
= [opx] [10.35]

where I'; denotes the torques of the N actuated joints, and the zero vector
corresponds to the torques of the passive joints:

T
rcl ra wa)'
r=| o =l o ¥ [10.36]
P pd | wia

We have thus a system of n equations where the unknowns are T and A.
Computing the Lagrange multipliers from the lower part of equation [10.36] leads
to:
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T.-1
A= ~[Wp) Iy {10.37]
Substituting {10.37] into the upper part of [10.36) yields:
Ty =T-W, (W'T, (10.38)

Using equation [10.30], the actuator torque vector of the closed chain robot is
written as:

| Y
Fa=Ta+WITp = [In WT][ o (10.39]
Ip g
which can be rewritten as:
Ta=[In WHin, = [ [aq wh ['a_qE]T]ru- = GTly (10.40)

where Iy is the (NxN) identity matrix; W is the Jacobian matrix representing the
derivative of the passive joint positions with respect to the actuated ones; G is the
Jacobian matrix representing the derivative of q, with respect to q,, equal to

0q,/0q,.

Equation [10.40] constitutes the inverse dynamic model of the closed chain
structure. The vector Iy, can be computed using the efficient recursive Newton-Euler
algorithm described in § 10.2.2,

10.3.3. Computation of the direct dynamic model

To simulate the dynamics of a closed chain robot with a given input torque for
the active joints ') and a given state (q,, q,), the dynamic equation [10.40] is
formulated and solved for the independent accelerations {,. The accelerations are
then numerically integrated to obtain the velocities and positions at the next
sampling time. This process is repeated until integration through the time interval of
interest is completed. The direct dynamic model can be obtained by formulating the
Lagrange dynamic model as follows:

T = Agda+ Hy [10.41]

where A is the inertia matrix and H, is the vector of centrifugal, Coriolis and
gravity torques of the closed chain structure.
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To derive Acl and Hy, we express §p as a function of §, in equation [10.40], then
we identify the result with equation [10.41]. Using equations [10.28] and (10.30),
we deduce that:

dp = Wiia- W;,' ¥ (10.42)

Using equation [10.32], we rewrite equation [10.40] as:

Fa=[In WT]Au[ q’}[ In W H, [10.43)
dp

Partitioning the matrix Ay and the vector Hy to explicit the terms corresponding
to the active and passive joints gives:

A [ Aaa Aap ] H [ Ha ] [10 44]
tr = 'y r = R
Apa App Hp

where Ap, = [Ap]T.
By combining equations [10.43] and [10.44), we obtain:
Tot = A la+Agp (W~ W, Y1+ WT ARG, +
WT AL, (W, - W, W]+ Hy+ WH,  [10.45]
Identifying equations [10.41] and [10.45] leads to:

A = Apa+ Ay W+ WTAL + WTA, W (10.46]
Hy = Hy+ WTHy— (A + WTAL) W, W (10.47)

I

The solution of [10.41] gives the active joint accelerations, then the passive joint
accelerations can be computed from equation [10.42]. Although the active joint
accelerations are obtained by solving the linear system [10.41] without inverting the
inertia matrix, we generally denote the direct dynamic model by:

o -1
Ga = Ay Ta—-Hy) [10.48]
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¢ Example 10.1, Dynamic model of the Acma SR400 robot. The geometry and the
constraint equations of the loop of this robot are treated in Example 7.1. The inverse
dynamic model of the tree structured robot is computed using the recursive Newton-
Euler algorithm quoted in § 10.2.2. To compute the dynamic model of the closed
chain, we have to calculate the Jacobian matrix G representing the derivative of the
variables q;, with respect to the variables q,. We recall that:

q, = [6; 6; 64 65 6 6T
qp = (63 6g]T
qr = [0) 6, 64 05 65 687 03 64T

The constraint equations are obtained in Example 7.1 as:

0;
g

07+ W2-6,
-07+6,

From these equations, we obtain:

~ 1 0 00 0 0 0 07
01000O0-11
GT = 001 00O0O00PO
1 00 0100O00O0
00001000
L.0 0 0 0 0 1 1 -1~

The actuated torques of the closed chain robot is computed in terms of the joint
torques of the tree structure as:

Fet = i
Fep = Tya~ T3+ Dug
Fos = Tiea
Teis = Tys
Fas = Tue

Fep =T+ T3 ~Tus

where I'y; and 'y denote the torque of joint j in the closed structure and in the tree
structure respectively.
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10.3.4. Base inertial parameters of closed chain robots

Since the matrix G is a function of the geometric parameters, we deduce from
equation [10.40] that the minimum inertial parameters of the tree structure are valid
to compute the dynamic model of the closed chain robot. The constraint equations of
the loops may lead to additional elimination or grouping of certain inertial
parameters. To compute the grouped parameters for the closed chain robot, we have
to find the linear relations between the energy functions of the inertial parameters.
We note that the expressions of the energy functions of the closed chain robot are
obtained from those of the tree structure after expressing them as a function of the
positions and velocities of the active joints. There is no complete symbolic solution
for a general closed chain robot. Therefore, the numerical method developed in
Appendix 5 {Gautier 91] can be used for this purpose. However, certain general
grouped parameters can be obtained without solving the closure equations of the
loops. These parameters belong to the links connected to the cut joints [Khalil 95a].
Furthermore, in § 10.3.5, we will show that the grouped parameters of a
parallelogram closed loop can be computed explicitly.

Referring to the notations of the closed chain robots described in Chapter 7, we
assume that frame Ry and frame Ry,p denote the frames placed on the cut joint k
connecting link i to link j, with i = a(k) and j = a(k + B). Since frames Ry and Ry.p
are aligned, then the kinematic screws of these frames are the same. Consequently,
we deduce from equation [9.45] that the energy functions hy are equai to hy,p:

hy = hy,p [10.49]

Using the recursive equation of the energy functions [10.13] and by noting that i
=a(k), j = a(k + B) and §y.g = 0, we obtain the following equation:

b A+ Qe i = bjides {10.50)

Since the elements of the matrix JAy . g are constants, two cases are considered to
identify the linear combinations between the terms of h; and h;:

i) for a revolute cut joint, we obtain the following three linear equations between the
energy functions of links i and j:

by (g + A = by (Ag,p +ihy,p) [10.51a]
hiid, = hyidy,p [10.51b]
b Ay = byiAgeg [10.51c]
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The left side terms of equations [10.51] are functions of the geometric
parameters of frame Ry, while those of the right side are functions of the geometric
parameters of frame Ry.p. The expressions of A are given by equations [10.15},
(10.16] and [10.17] after considering the appropriate subscript.

We deduce that for any closed loop, if the cut joint is revolute, then we have
three linear relations between the elements of h; and h;. There is no general
systematic choice for the parameters to be grouped. They must be studied on a case-
by-case basis. Furthermore, in some cases, these relations may not lead to three
additional grouping parameters with respect to those obtained for the equivalent tree
structure;

ii) for a prismatic cut joint, we obtain the following six linear equations between the
energy functions of links i and j:

hyiAy = byAL,p forr=1,...,6 (10.52]

In this case, we can group the parameters of the inertia tensor of link j with those
of link i, with j > i, using the following equation:

iJRi = iJi + iAk+B kAj ij jAk k"‘BAi [10.53)

10.3.5. Base inertial parameters of parallelogram loops

For parallelogram loops and planar loops, additional general linear relations
between the energy functions can be deduced [Khalil 95a). We develop in this
section the grouping relations for parallelogram loops, where all the grouped
parameters can be obtained systematically without computing explicitly the energy
functions [Bennis 91b). In fact, we can prove that one parameter among the first
moments (MX or MY) of one link of the parallelogram can be grouped using
equation [10.51c], and that the inertia tensors of two links can be grouped.

Let us consider a parallelogram loop composed of links k1, k2, k3, k4. We
assume that the loop is cut between links k3 and k4 and that link k1 is parallel to link
k3, and link k2 is parallel to link k4 (Figure 10.2). Thus:

{mm = 3 (10.54]

W2 = W4

Consequently, we can group the inertia tensor ¥3Jy3 with K!Jy; using the
equation:

KRy = Ky + KA KB3Ji3 BAY (10.55]
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Figure 10.2. Examples of parallelograms

Similarly, ¥4J, 4 can be grouped with k2J,, using the following equation:

K2JRy; = ¥2Jyp + K2Au4 ¥4Ji KAy (10.56)

10.3.6. Practical computation of the base inertial parameters

Most of the parameters to be eliminated or grouped can be computed by applying
the following rules. Firstly, the joints r; and ry for each main branch of the
equivalent tree structure must be determined. Then, apply the following rules for
j=n,., 1L

1) if link j constitutes a link that is connected to a cut joint, that is to say j = a(k)

with k > n, then apply either the general grouping equations or the grouping
equations of the parallelogram depending on the type of the corresponding
loop;

2) group:

a) YYj, MZ; and M; if 0= 0, using Theorem 10.1;
b) XX, XYj, XZ;, YY;, YZ; and ZZ,; if 0j = 1, using Theorem 10.2;
3) if joint j is prismatic and a; is parallel to ay for rj <j <ry, then eliminate MZ;
and group MX and MY using equation [10.23];
4) if joint j is prismatic and a; is not parallel to a; for ry <j <ry, then group or
eliminate one of the parameters MX;, MY;, MZ; using Table 10.1;
5) if joint j is revolute and ry < j <1y, then eliminate XX;, XY, XZ; and YZ;.

Notice that the axis of this joint is parallel to the axis of joint r|, and that the
parameter YY; has been eliminated by rule 2;

6) if j is revolute and r) <j <ry, and a; is along ay, and if ay, is parallel to both a;

and gravity g for all i <, then eliminate the parameters MX;, MY;. Notice that
MZ; has been eliminated by rule 2;
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7) if j is prismatic and j <ry, then eliminate the parameters MX;, MY;, MZ;.

From this algorithm, we deduce that the number of minimum inertial parameters
for the links (without considering the inertia of rotors) of a general robot is less than
bm, such that:

bn < 7Tn+dnp-4ng-3npo-11np—-2ng {10.57]

with:

n;: number of revolute joints of the equivalent tree structure;
np: number of prismatic joints of the equivalent tree structure;

ngo: number of revolute joints that are directly connected to the base and
whose axes are parallel to gravity;

nyo: number of revolute joints directly connected to the base;
npo: number of prismatic joints directly connected to the base;
Npar: number of parallelogram loops in the mechanism.

* Example 10.2, Computation of the base inertial parameters of the Acma SR400
robot. This structure has two main branches: the first contains links 1, ..., 6, while
the second is composed of links 1, 7 and 8. For the first branch, we obtain ry = 1 and
r;=2; for the second branch, we find rj=1 and ry=7. Applying the general
algorithm for j = 8, ..., 1, we obtain:

Link 8. This link constitutes a terminal link in a parallelogram loop. Equation
[10.51¢] gives:

hxx3 dg? + hzz3 dg? - hmy3 dg + hm3 = hyyg d32 + hzzg d3? + hyxg d3 + hyg

We choose to group MXj as follows:

YYRg = YYg-~d3 MXg
ZZRg = ZZg-d3y MXy

XXR3 = XX13+MXg 73-

dgz

ZZR3y = ZZ3 + MX3'd';'

d
MYR; = MY3—MX3'd—§'
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MXsg
MR3 = M3 +13—-

Equation [10.55] allows us to group Jg with J,:
2JR; = 203+ 244 8J5 %A,
Since the orientation matrix 2Ag = I5 (equation [7.39]), we obtain:

XXR; = XX;+ XXg

XYR; = XY2 + XYg

XZR; = XZy + XZg

YYRs = YY7+(YYg-d3 MXg)
YZRy = YZy + YZg

ZZRy = ZZy+(ZZg~ d3 MXg)

Finally, since joint 8 is revolute, we group the parameters MZg and MRg with the
parameters of link 7 using equations [10.19]:

XZRy = XZ7-MZgdg
dg?
YYR7 = YY7+Mgdg-MXg _d3
de2

8

ZZR7 = ZZy + dg? Mg —- MXg 3

MXR7 = MXy-~- MXg% +Mgdg

MXg
MR7 = M7 + M8—13—

Thus, concerning link 8, only the parameter MYy belongs to the base inertial
parameters of the robot.

Link 7. This link is a terminal link of a parallelogram loop. We group J; with J3
using equation [10.55]:

3R; = 33+ 3477, 7A;

Since 7A3 =rot(z, % ), (equation [7.38]), we obtain:
XXR3 = XX3+ YY7+Mgdg?

XYRj3 = XY3-XYq

XZR3 = XZ3+ YZ7
YYR3 = YY3+ XXR7 = YY3+ XXq
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YZ3-XZRy = YZ3~XZ9+ MZgdg
223+ 277+ dgz Mg

YZR3
ZZR3

1]

We group the parameters MR7 and MZ; with the parameters of link 1 using the
following equation:
22

d
ZZR| = ZZ) + M7+ Mg) dzz—MXg'a;'

Note that MZ; does not appear in this expression. Thus, it has no effect on the
dynamic model. The minimum parameters of link 7 are MXR7 and MY.

Link 6. From Theorem 10.1 and since a(6)= 5, we group the parameters YY¢, MZg
and MRg as follows:

XXRg = XXg-YYg
= XXs+ YYg
ZZRs = ZZs+ YYg
MYRs = MYs + MZg
MRs = Ms + Mg

The minimum parameters of link 6 are: XXRg, XY, XZg, YZ¢, ZZ¢, MX;4 and
MYs.

Link 5. We group the parameters YY s, MZs and MR with those of link 4:

XXRs = XXs+YYg~YYs
XXRg = XX4+YYs5

ZZRy = ZZ4+ YY5

MYR4 = MY4-MZ;

MR4 = M4+ Ms + Mg

The minimum parameters of link 5 are: XXRs, XYs, XZs, YZs, ZZRs, MX5 and
MYR;.

Link 4. We group the parameters YY4, MZ4 and MRy with those of link 3:

XXRg = XX4+YYs-YY,

XXR3 = XX3+ YY7+Mgdg?+ YY4+2RLyMZ4 + RL4Z MR,
XYR3 = XY3~XY7-d4 MZ4~-dg RLy MRy

XZR3 = XZ3+ YZ3

YYR; = YY3 + XX7 +dg2 MR,

YZR3 = YZ3- XZ7 + MZg dg
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ZZR3 = 773+ 277+ dg?> Mg + YY4+ 2 RLy MZ,4 + (d42 + RL42) MR,
MXR3 = MX;3 +d4 MRy

MXg
MYR3 = MY;-dg _dg,— +MZ4+ RLy MRy

MXg
MRj3 = M3+T + M4+ M5+ Mg

The minimum parameters of link 4 are: XXRy, XY, XZ4, YZ4, ZZR4, MX4 and
MYR,.

Link 3. We group the parameters Y YR3, MZ3 and MR3 with those of link 2:

XXR3 = XX3+YY7+M8dg2+YYs+2RL4MZ4 + RL4ZMR4 - YY3-XX7 - dg2MRy4
XXR; = XX3+XXg+ YY3+ XX7+ d42 MR4

XZRy = XZ7 + XZg ~d3 MZ,

YYR; = YY3+ YYg+ YY3-d3 MXg + XX7 + dg? MR4 + d32 MR;

ZZR, = 725+ ZZg - d3 MXg + d32 MR3

MXR; = MX; +d3 MR;

MR; = M3 + MR3

The minimum parameters of link 3 are: XXR3, XYR3, XZR3, YZRj3, ZZR;,
MXR3 and MYR3.

Link 2. We group the parameters Y YRy, MZ; and MR with those of link 1:

XXRy = XXj + XXg- YY2 - YYg - d32 MR3 + d3 MXg
MX
ZZR) = ZZj + (M7 + Mg)dy? ~ dy? d: +YY2+ YYg + YY3 + XX7 + dg?MR4 +

d32MR; - d3 MX3 + d3°MR,
The minimum parameters of link 2 are: XXRj;, XYRj, XZR;, YZR;, ZZR;,
MXR; and MY. Note that MZ, does not appear in this expression. Thus, it has no
effect on the dynamic model.

Link 1. Only the parameter ZZR belongs to the base inertial parameters.

Finally, the rotor inertias are treated as shown in § 9.4.2.5, leading to group I,;,
1,2 and 1,7 with ZZR, ZZR, and ZZRj; respectively.

The final result is summarized as follows:
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the following 11 parameters have no effect on the dynamic model: XX, XY,
XZy, YY1, YZi, MXy, MY, MZ, My, MZ; and MZy;

the following 33 parameters have been grouped: 1,;, YY3, My, L2, YY3, MZ;,
Mj, YY4, MZ4, My, YY5, MZs, Ms, YY§, MZg, Mg, XX7, XY, XZ9, YY3,
YZ7. ZZ7, M7, 137, Xxg, XYg, XZg, YYg, YZg, ZZg, MXS. MZg and Mg;

the SR400 robot has 42 base parameters (Table 10.2);
the grouping equations are:

ZZRy = laj +ZZ; + YY2 + YY3+ XX7+ YYg + dg2(Mg+ Ms+Mg) +
dp2(M3 + Mg +Ms + Mg) + d32(M3 + M3 + Mg + Mg + Mg) + d22(M9 + Mg)
XXR; = XX2-YY3+ XXg- YYg - d32(M3+Mg+Ms+Mg)
XYRz = XY+ XYg
XZR; = XZj + XZg - d3MZ;
YZR) = YZ) + Y23
ZZRy = lag + ZZy + ZZg + d3%(M3 + Mg + Ms + Mg)
MXR; = MX; + MXg + d3(M3 + Mg + Ms + Mg)
XXR3 = XX3-YY3+ YYq-XXq+ YY7 - dd42(Mg + Ms + Mg) + 2MZ4RL4 +
(Mg + Ms + Mg)RL,42 + dg?Mg
XYR3 = XY3~XY7-d4MZ4 -~ d4RL4(M4+Ms +Mg)
XZRy = XZ3+ YZq
YZR3 = YZ3 - XZ7 + dgMZg
ZZR3 = lay +2Z3+ YY4 + ZZ7 + dg?Mg + 2MZ4RL4 + (M4 + MS + M6)*(d42 + RL42)
MXR3 = MX3 + dg(My+ Mg+ Mg)
= MY3+MZ4+ (Mg +Ms+MgRLy
XXR4 = XX4-YYq+YYs
2ZR4 = YYs+2Z,4
MYR4 = MYy -MZg
XXRs = XX5-YYs5+ YYg

ZZRS5 = YY6+ZZs
MYRs = MYs5 + MZg
XXRg = XX¢ - %Y6

MXR; = Mx7-3§Mx8+d8M8

Table 10.3 illustrates the computational complexity of the inverse dynamic
model for the Acma SR400 robot. Two cases are considered: general inertial
parameters where all the parameters are assumed to have real values different from
zero; and the simplified case where the links are assumed to be symmetric. For each
case, the dynamic model is computed twice: firstly with the standard inertial
parameters, and secondly with the base inertial parameters. We note that the real
time computation of the inverse dynamic model for this robot can be realized using
classical personal computers.
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Table 10.2. Base inertial parameters of the Acma SR400 robot

VXX | XY | XZy [YYi] YZ | ZZj | MXj | MYj [MZj] Mj | I3
1 0 0 0 0 0 | ZZR1 0 0 0 0| O
2 | XXR2|XYR2|XZR2| 0 | YZR2]|ZZR2 [MXR2{ MY2 | 0 | © 0
3 IXXR3|XYR3|XZR3| O | YZR3|ZZR3 {[MXR3|MYR3{ 0 | 0 | O
4 XXR4| XY4 | XZ4 | O | YZ4 |ZZR4 | MX4 IMYR4| 0 | 0 | Iad
S IXXRS]| XY5 | XZ5 | O | YZ5 |ZZR5 | MX5 |MYR5] 0 | 0 | Ia5
6 [XXR6] XY6 | XZ6 | O | YZ6 | ZZ6 | MX6 | MY6 | 0 0 | la6
7 0 0 0 0 0 0 |MXR7| MY7] O 0 0
8 0 0 0 0 0 0 0 MY8 | O 0 0
Table 10.3. Computational complexity of the inverse dynamic model
of the Acma SR400 robot
Set of inertial parameters Complete Simplified
Multiplicat. | Additions | Multiplicat. | Additions
Standard parameters 430 420 295 245
Base parameters 304 326 243 118

10.4. Conclusion

In this chapter, we have developed the dynamics of robots with tree structure or
containing closed chains. This treatment constitutes a generalization of the results
presented in Chapter 9 for serial robots. We can use the efficient Newton-Euler
method for computing the inverse and direct dynamic models of tree structured
systems. The corresponding base inertial parameters can be determined using the
symbolic algorithm, which is composed of simple rules and makes use of closed
form grouping equations. Concerning the systems with closed chain, the inverse
dynamic model is computed from the inverse dynamic model of the equivalent tree
structure and the Jacobian matrix representing the derivative of the joint positions of
the equivalent tree structure with respect to the actuated joint positions. The base
parameters of general closed chain robots can be completely determined using the
numerical method presented in Appendix 5. However, most of them and even all of
them in many cases can be computed using the rules of the symbolic algorithm.

From this study, we can conclude that the computation of the dynamic model in
real time is now possible using classical personal computers. In Chapters 11 and 12,
we direct our attention toward the identification of the geometric and dynamic
parameters appearing in the different models of robots.



Chapter 11

Geometric calibration of robots

11.1. Introduction

A high level of positioning accuracy is an essential requirement in a wide range
of applications involving industrial robots. This accuracy is affected by geometric
factors, such as geometric parameter errors, as well as non-geometric factors, such
as flexibility of links and gear trains, gear backlashes, encoder resolution errors,
wear, and thermal effects. Positioning accuracy of an industrial robot can be
improved to approach its repeatability by a calibration procedure that determines
current values of the geometrical dimensions and mechanical characteristics of the
structure. Practical techniques to compensate for all geometric and non-geometric
effects are not yet developed. Based on investigation of the error contribution from
various sources, Judd and Knasinski concluded that the error due to geometric
factors accounted for 95% of the total error {Judd 90]. Hence, a reasonable approach
would be to calibrate the current geometric parameters and treat the non-geometric
factors as a randomly-distributed error. This calibration procedure is also important
for robot programming using CAD systems where the simulated robot must reflect
accurately the real robot [Craig 93], [Dombre 94}, [Chedmail 98]. In recent years,
considerable attention has been paid to the problem of geometric calibration. A
partial list of these works is given in references [Schefer 82}, [Wu 84], {Khalil 85b],
[Payannet 85), [Sugimoto 85], [Aldon 86], [Veitschegger 86], [Whitney 86], [Roth
87), [Hollerbach 89], [Mooring 91]), [Lavallée 92], [Caenen 93], [Guyot 95],
{Damak 96}, {Maurine 96), [Besnard 00a).

The problem of geometric calibration can be divided into four distinct steps. The
first step is concerned with a particular mathematical formulation that results in a
model, which is a function of the geometric parameters &, the joint variables q, and
eventually some external measurements x. The second step is devoted to the
collection of experimental data for a sufficient number of configurations. The third
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step is concerned with the identification of the geometric parameters and validation
of the results obtained. The last step is concerned with compensating the geometric
parameter errors in the direct and inverse geometric models.

This chapter addresses all the four steps outlined above for serial robots. The
case of the parallel robot is covered briefly at the end.

11.2. Geometric parameters

The geometric parameters concerned with geometric calibration are the
parameters required to compute the direct and inverse geometric models. The direct
geometric model, which gives the location of the end-effector frame R, relative to
a fixed world frame R. |, is given by equation [3.13] and is rewritten as:

Moy = ZOTWQ E = T 0T, 'T; ... ™IT, "oy (11.1]

where:

» Z = "1T( denotes the transformation matrix defining the robot base frame R
relative to the world reference frame R_;;

¢ E = "T,,; is the transformation matrix defining the end-effector frame with
respect to the terminal link frame Ry;

+ OT, is the transformation matrix of the robot defining frame R, relative to
frame Rq.

Equation {11.1] contains three kinds of parameters: the robot geometric
parameters appearing in 0Ty, the base frame parameters defining the matrix Z and
the end-effector parameters defining the matrix E. We add to these parameters the
joint gear transmission ratios that can be calibrated in the same manner as the
geometric parameters.

For convenience, in the remainder of the chapter, we denote the origin Oy, of
the end-effector frame R, as the endpoint of the robot.

11.2.1. Robot parameters

The robot parameters are deduced from the notations developed in Chapter 3.
According to these notations, frame R; is fixed with link j. It is located relative to
frame R;.; by the homogeneous transformat:on matrix J-1T,, which is a function of

the four geometric parameters (0;, d;, 8;, r;) (Figure 3.2), such that:

1T, = Rot (x, o;) Trans(x, dj) Rot(z, 6;) Trans(z, r;j) [11.2])
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Note that the parameters o; and d; can be taken to be equal to zero by assigning
the base frame Ry aligned with frame R; when q; = 0.

If two consecutive joint axes j~1 and j are parallel, the x;.; axis is taken
arbitrarily along one of the common normals between them. When z.) or
becomes slightly misaligned, the common normal is uniquely defined and the
corresponding variation in the parameter r;_) can be very large. To ensure that small
variation in axis alignment produces proportionally small variations in the
parameters, we make use of a fifth parameter f3; [Hayati 83] representing a rotation
around the y;.; axis. The general transformation matrix J'“Tj becomes:

FIT; = Rot(y, Bj) Rot(x, o;) Trans(x, d;) Rot(z, 6;) Trans(z, r;) (11.3]

The nominal value of B; is zero. If z.) and z; are not parallel, §; is not
identifiable. We note that when 2;.) and z; are parallel, we can identify either r;) or
1 (§ 11.4.2), thus the number of identifiable parameters for each frame is at most
four.
11.2.2. Parameters of the base frame

Since the reference frame can be chosen arbitrarily by the user, six parameters
are needed to locate the robot base relative to the world frame. As developed in

§ 7.2, these parameters can be taken as (yz, b, 0, dz, 6,, 1,) (Figure 11.1):

Z = -1Ty = Rot(z, y,) Trans(z, b,) Rot(x, o) Trans(x, d,)
Rot (z, 6,) Trans(z, r,) [11.4]

The transformation matrix “!'T is given by:

IT; = -7y 9T; = Rot(z, v,) Trans(z, b,) Rot(x, a,) Trans(x, d,) Rot(z, 6,)
Trans(z, r;) Ret(x, a;) Trans(x, d;) Rot(z, 6,) Trans(z,r;) [11.5]

Since oy = 0 and dy = 0, we can write that:
1T9 9T, = Reot(x, ag) Trans(x, dy) Rot(z, 8p) Trans(z, rp)

Rot(x, o';) Trans(x, d';) Rot(z, 6'}) Trans(z, r'y) [11.6]
withop=0, dg=0,8p=y, Tg=bz &'y =0, d'}=d;, 8 =0, + 05, F'1 =1y +1,

Equation [11.6] represents two transformations having the same kind of
parameters as those of equation [11.2]. We note that the parameters 6, and r, are
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grouped with 0; and r; respectively. This proves that consecutive frames are
represented at most by four independent parameters.

Figure 11.1. Description of frame Rg relative to frame R_;

11.2.3. End-effector parameters

Since the end-effector frame R,+; can be defined arbitrarily with respect to the
terminal link frame R,,, six parameters (Y, be, 0, de, B¢, I¢) are needed to define the
matrix E. As previously, we can extend the robot notations to the definition of the
end-effector frame:

"Tp+1 = Rot(z, v.) Trans(z, b.) Rot(x, a.) Trans(x, d.)
Rot(z, 0,) Trans(z,r.) [11.7]

The transformation matrix ™! T4 can be written as:

M Ty = 1T "oy
= Rot(x, a,,) Trans(x, d,) Rot(z, 6,) Trans(z, r;) Rot(z, y.)
Trans(z, b.) Rot(x, o) Trans(x, d.) Rot(z, 6,) Trans(z,r,) [11.8]

which gives:

17,41 = Rot(x, a,) Trans(x, d,) Rot(z, 6',) Trans(z, r'y) Rot(x, 0t+1)
Trans(x, d,+1) Rot(z, 0,41) Trans(z, r,v;)  [11.9]

with 'y = 6, + Y, I'y = Iy + b, Ot = Qle, dp+1 = de, Oty = B¢, Tney =T1e.
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Thus, the end-effector frame introduces four independent parameters @, de, 8,
r., Whereas the parameters Y, and b, are grouped with 8, and r, respectively.

Finally, the description of the location of the end-effector frame Ry, in the
reference frame R_; of an n degree-of-freedom robot, needs at most (4n+ 6)
independent parameters. More precisely, since in the case of a prismatic joint only
two parameters can be identified, the maximum number of independent parameters
reduces to (4n; + 2np + 6), where n, and np are the numbers of revolute and prismatic
joints of the robot respectively [Everett 88].

11.3. Generalized differential model of a robot

The generalized differential model provides the differential variation of the
location of the end-effector as a function of the differential variation of the
geometric parameters. It is represented by:

[ dPy. ] g
AX = = YA (11.10]
8n+l
with:

s dP,,: (3x1) differential translation vector of the origin Oy, :
8n+1: (3x1) differential rotation vector of frame Ry, (;

¥: (6xNp,r) generalized Jacobian matrix;

A&: (Nparx1) vector of the differential variation of the geometric parameters.

The columns of the generalized Jacobian matrix ¥ can be computed using simple
vector relationships as we did in Chapter 5 for the computation of the base Jacobian
matrix. According to the kind of parameter, we obtain [Khalil 89¢}:

i) column corresponding to the parameter Af;: the parameter [3; represents a
rotation about the y;; axis. A differential variation on B; generates a differential
position on frame Ry, equal to (nj.; x Lj.j n+1) AB; and a differential orientation
equal to n;.; AB;. The column of ¥ corresponding to the parameter AB; is given by:

i X Lioj et
B, = ny {11.11]

where Li.) n4 is the vector connecting O;.; to Oy, and m;.; is the unit vector along
the y;.; axis;
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ii) column corresponding to the parameter Acq;: the parameter o represents a
rotation about the x;.; axis. A differential variation on o generates a differential
position on frame Ry, equal to (s;.; x Li.; n+1) A0; and a differential orientation
equal to s;.1 Aa;. The column of ¥ corresponding to the parameter Ag; is given by:

Si-1 X Li.y ns1 ]

va = |
% Si-1

{11.12]

where s;_; is the unit vector along the x;_; axis;

iii) column corresponding to the parameter Ad;: the parameter d; represents a
translation along the x;_; axis. A differential variation on d; generates a differential
position on frame Ry, equal to s;.; Ad;, but produces no differential orientation.
Thus, the corresponding column is expressed as:

Si-1
WYd; = [ :l [11.13]
03xl

iv) column corresponding to the parameter A this case has been handled in
Chapter 5 while calculating the base Jacobian matrix. The corresponding column is
given by:

2; X L ns1
v, = [11.14]
a;

where a; is the unit vector along the z; axis;

v) column corresponding to the parameter Ar;: this case has also been developed in
Chapter 5. The corresponding column is given by:

a;
¥, = [ N I] {11.15]

vi) column corresponding to a differential variation in the gear transmission ratio:
Let us denote K; =1/N;, where N; is the gear transmission ratio. In general, the joint
variables are given by:

q = C, diag(Ky,....K)) Cnqm + 90 [11.16]

with:

¢ Cy: (nxn) matrix representing the coupling between the motor variables;
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» C,: (nxn) matrix representing the coupling between the variables after the gear
transmission;

* qp: vector of motor variables;
* qq: constant vector representing the offset values on the joint variables.

Thus, the column corresponding to K; is given by:

5
Wi = It 30 [11.17]

where J;41 is the base Jacobian matrix of the robot (§ 5.3) whose it column is either
Wr; if joint i is prismatic or W8 if joint i is revolute.

If the joints are actuated independently, we have:

qmi ¥ri  if joint i is prismatic
Qmi ¥6;  if jointi is revolute

o
[11.18]

Wk;

NOTE.- All the vectors used in the computation of ¥ are derived from the matrices -
T, i=0,...,n+ 1. The vectors “!s; 'n; and -'a; are obtained directly from these
matrices, whereas the vector L; o4 is computed using the following equation:

Winet = Pryy - 1P; [11.19]

11.4. Principle of geometric calibration

The calibration of the geometric parameters is based on estimating the
parameters minimizing the difference between a function of the real robot variables
and its mathematical model. The methods proposed in the literature differ according
to the variables used to define this function. In § 11.5, we will present some of these
methods. In the following section, they are formulated using a unified approach.

11.4.1. General calibration model

The calibration model can be represented by the general nonlinear equation
{11.20] and by the general linearized equation [11.21}:
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0= f(q.x, & (11.20)
Ay(q.x, &) = ¢(q, &) AE (11.21)
where:

* x represents the external measured variables, such as the Cartesian variables
giving the position and orientation of the end-effector frame, or the distance
traveled by the endpoint between two configurations;

¢ q is the (nx1) vector of the joint variables;
o Eisthe (Nparx1) vector of the geometric parameters;

* ¢ is the (pxNp,,) calibration Jacobian matrix, whose elements are computed as
functions of the generalized Jacobian matrix ¥;

* Ay is the (px1) prediction error vector.

To estimate AE, we apply equation [11.20] and/or equation [11.21] for a
sufficient number of configurations. Combining all the equations results in the
following nonlinear and linear systems of (pxe) equations, where e is the number of
configurations:

0 = F(Q X, &) +p' [11.22]
AY = W(Q, 8 AE+p [11.23]
with:
f(q', x!, )
F = [11.24]
f(q®, x¢, §)

Ay'(qh, x1, ®)

AY = [11.25]
AY%(q®, X5, E)

where Q = [q'T ... ¢°T|T, X; = [x!T ... x*T|T and W is the (rXNp,,) observation

matrix. p and p' are the modeling error vector for the nonlinear and linear models
respectively, including the effects of unmodeled non-geometric parameters:
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¢'(q, &)
W = [11.26]
¢%(qt, &)

The number of configurations e must be chosen such that the number of
equations, r = pxe, is greater than Np,,. In practice, good results can be obtained by
taking r25Np,, and by choosing configurations optimizing the observability
measure (§ 11.4.2.2).

Equation [11.22] and/or equation [11.23] can be used to estimate the geometric
parameters. However, before solving these equations, we have to rewrite them such
that the unknown vector is only composed of the identifiable parameters. Of course,
if a parameter is exactly known, it will not be included in the unknown vector §,

NOTES.—-
~ the errors corresponding to the joint variables represent the joint offset errors;

- the number of equations of the function f is also called the calibration index
[Hollerbach 96];

~ in autonomous calibration methods, both f and Ay are computed in terms of
the joint variables and the robot parameters. No external measuring device is
needed.

11.4.2, Identifiability of the geometric parameters

It may happen that some parameters are not uniquely determined by the
identification equation. All sources of parameter ambiguity can be linked to the rank
of the matrix W. If some columns of W are linearly dependent, then the
corresponding parameters may vary arbitrarily such that these variations only satisfy
the linear dependence. For example, in the conventional calibration method, which
uses the measurements of the end-effector location or position (§ 11.5.1), if the joint
axes i — 1 and i are parallel, then the columns corresponding to the parameters r;.;
and r; are equal in the calibration Jacobian matrix (¥r;.; = Pr;). Thus, an infinite set
of solutions can be obtained for the errors in r;.; and r;. The basic solution consists
of identifying the error in one of these parameters while assuming that the error in
the other parameter is zero.

The loss of identifiability of some parameters may be caused by two kinds of
problems, namely structural identifiability and selection of calibration
configurations. Unidentifiability of some parameters constitutes a structural problem
when some columns of the observation matrix are zero or are linearly dependent
whatever the number and the values of the configurations used to construct the
observation matrix. The structurally unidentifiable parameters depend on the
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calibration model and on the structure of the robot. In § 11.4.2.1, we will give an
algorithm to determine the structurally identifiable parameters.

The problem of the identifiability as a function of the calibration configurations
is known as the excitation problem. 1t will be addressed in § 11.4.2.2 by selecting
the calibration configurations that optimize an observability measure. For example,
it is obvious that if one joint has a constant value in all the calibration
configurations, some parameters concerning this joint will not be identified.

The determination of the identifiable geometric parameters is based on the
determination of the independent columns of the calibration Jacobian matrix ¢. A
symbolic method is presented in [Khalil 91b] to determine these parameters for the
conventional calibration methods. However, in the following, we develop a general
method based on the QR decomposition to determine the identifiable parameters.
This method is similar to that which has been presented in Appendix S for the
determination of the dynamic base parameters.

11.4.2.1. Determination of the identifiable parameters

Numerically, the study of the identifiable parameters, also termed base geometric
parameters, is equivalent to the study of the space spanned by the columns of an
(rxNpar) matrix W similar to that defined in equation [11.23] but obtained using
random configurations satisfying the constraints of the calibration method. The
identifiable parameters are determined through the following three steps:

— if a column of W is zero, then the corresponding parameter has no effect on
the geometric calibration model. Eliminating such parameters and the
corresponding columns reduces W to an (rxc) matrix; for convenience, we
continue to indicate this new matrix by W;

— the rank of W, denoted by b, gives the number of identifiable parameters;

— a set of identifiable parameters can be chosen as those corresponding to b
independent columns of W. The other parameters are not identifiable.

To carry out the last two steps, we make use of the QR decomposition of the
(rxc) matrix W. The matrix W can be written as [Dongarra 79}, [Lawson 74},
{Golub 83]:

[ R
W=0Q (11.27)
0(l'-c)xc }

where Q is an (rxr) orthogonal matrix, R is a (cxc) upper triangular matrix, and 0jy;
is the (ixj) null matrix.
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Theoretically, the non-identifiable parameters are those whose corresponding
elements on the diagonal of the matrix R are zero. In practice, they are defined using
a numerical tolerance t# O [Forsythe 77]. Thus, if [Rjjl, which represents the
absolute value of the (i, i) element of R, is less than 1, the corresponding parameter
is not identifiable. The numerical zero 1 can be taken as [Dongarra 79}:

T = r.e.max |R;] [11.28]
where € is the computer precision, and r is the number of rows.

It is obvious that the identifiable parameters are not uniquely defined. The QR
method will provide as base parameters those corresponding to the first b
independent columns of the matrix W. It is convenient to identify, if possible, the
parameters that can be updated in the control system without changing the closed-
form geometric models of the robot. Therefore, we permute the columns of W and
the elements of & to first place the following parameters:

the joint offsets and the gear transmission ratios;
the parameters r; and d; whose nominal values are not zero;
the angles o; and 6; whose nominal values are not k 72, where k is an integer;

the parameters defining the matrices Z and E.

Having determined the identifiable parameters, the linearized identification
equation [11.23} is rewritten as:

AY = Wy Ag,+p (11.29]

Wy, is composed of the columns of W corresponding to the identifiable
parameters. The nonlinear model will be solved in &, In the remainder of the
chapter, the subscript b will be dropped for simplicity. Hence, W and AE will stand
for Wy, and AE,, respectively.

11.4.2.2. Optimum calibration configurations

The goal is to select a set of robot configurations that yield maximum
observability of the model parameters and minimize the effect of noise on the
parameter estimation. The condition number of the observation matrix W (Appendix
4) gives a pood estimate of the observability of the parameters [Driels 90],
[Khalil 91b). Thus, optimum calibration configurations provide a condition number
of W close to one. We have either to determine the calibration configurations by
solving a nonlinear optimization problem that minimizes the condition number, or to
verify that the randomly collected data give a good condition number.
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The optimization problem has (exn) unknowns (n is the number of joints, e is the
number of configurations). It can be formulated as follows [Khalil 91b}:

Find the configurations Q; = [q!T ... ¢¢TJT
minimizing the criterion C(Qy) = cond[W(Qy)] = [[W|L.IIW|,

under the calibration method constraints and the following joint limit
constraints:

Qi,min S Q¢ [i+(~1)n] £ qjmax wherei=1,..,nandj=1, .., ¢

where ¢/ is the (nx1) joint position vector corresponding to configuration j, W* is
the pseudoinverse of W, [[W]] is a norm of W, and ; min, Gi,max give the minimum
and maximum values of the position of joint i respectively.

We recall that, when using the 2-norm, the condition number is given by
(Appendix 4):

o
condy(W) = c@x [11.30]

min
where Gy and oy, are the largest and smallest singular values of W,

This algorithm has been applied in [Khalil 91b] for the conventional calibration
methods that use the Cartesian end-effector coordinates (§ 11.5.1). The optimization
algorithm was based on the gradient conjugate method proposed by Powell {Powell
64].

Other observability measures have been proposed in the literature, namely the
smallest singular value [Nahvi 94], and the product of the singular values of W
[Borm 91}, but the condition number is shown to be more efficient [Hollerbach 95].

It is worth noting that most of the geometric calibration methods give an
acceptable condition number using random configurations [Khalil 00b].

11.4.3. Solution of the identification equation

The calibrated geometric parameters are obtained by solving the nonlinear
algebraic equation [11.22] in order to minimize the least-squares error:

£ = min |FJ2
AE

This optimization problem can be performed using the Levenberg-Marquardt
algorithm, which is implemented in Matlab.
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For rigid robot calibration, the linearized model can be used to solve iteratively
this nonlinear optimization problem. Equation {11.23] is solved to get the least-
squares error solution to the current parameter estimate. This procedure is iterated
until the variation AL approaches zero and the parameters have converged to some
stable value. At each iteration, the geometric parameters are updated by adding l&
to the current value of &. The observation matrix W and the prediction error AY are
updated as well.

The least-squares solution A'E of equation [11.23] is written as:

A% = min |]pJ? = min JAY — W A¥J2 [11.31]
AE AE

The solution can be obtained using the pseudoinverse matrix (Appendix 4):

AL = W+AY [11.32]

where W* denotes the pseudoinverse matrix of W. If W is of full rank, the explicit
computation of W+ is given by (WT W)-1 WT,

In general, for rigid robots, the iterative least-squares method converges much
faster than the Levenberg-Marquardt algorithm.

Standard deviation of the parameter estimation errors is calculated using the
matrix W as a function of the estimated geometric parameters. Assuming that W is
deterministic, and p is a zero mean additive independent noise with standard
deviation 0, the variance-covariance matrix C, is given by:

C, = E(pp") = o2, (11.33)
where E is the expectation operator and I, is the (rxr) identity matrix.

An unbiased estimation of 6, can be computed using the following equation:

- 2
Y - W Ak 1134]

%"= -0

The variance-covariance matrix of the estimation error is given by
[de Larminat 77]:

Cg = E[E-B &-BT) = W* C, (WHT = 0,2 (WT Wyl [11.35)
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The standard deviation of the estimation error on the jb parameter is obtained
from the (j, j) element of Cy:

op = 1[Celd) (11.36]

Equations [11.34] and [11.35] are valid when using the Levenberg-Marquardt
method, but 6,2 is rather evaluated using the residual of |[F][%:

F(Qu X., OI
o2 = L-(—;_—c‘-)—' [11.37]

In order to validate the success of the parameter estimation process, we can
evaluate the residual error on some configurations that have not been used in the
identification. We can also compare the values of the estimated parameters using
different calibration methods.

11.5. Calibration methods

In this section, we present the most common calibration methods. The first
method requires an external sensor, which provides either the location or the
position coordinates of the end-effector; the second requires an external sensor to
provide the distance traveled by the endpoint when moving from one configuration
to another. The other methods are termed as autonomous because they only make
use of the joint variables. They are based on realizing geometric constraints between
the robot configurations or between the robot and the environment.

11.5.1. Calibration using the end-effector coordinates

This method is the most popular one and can be considered as the conventional
approach. The function to be minimized is the difference between the measured and
calculated end-effector locations. This method needs an external sensor to measure
the location of the end-effector frame with respect to the world reference frame. In
§ 11.8, we describe some measurement systems that can be used for that. The
nonlinear calibration model is given by:
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T ) = 1Ty (0,8 = 0 [11.38]

where "Tn +1(x) is the measured location of the end-effector with respect to frame
R,.

Equation [11.38] contains twelve elements that may be different from zero, but it
has only six independent degrees of freedom. To obtain six independent elements,
we rewrite this equation as:

AX((x, q, )
AX = =0 [11.39]
Axl’(x’ qv g)
with:
. AXP: (3x1) vector of the position error, equal to:
AX, = Py~ "Posr(q, &) [11.40)

¢ AX;: (3x1) vector of the orientation error (representing the difference between
the measured and computed "AM,). given by:

AX, = uo (11.41]

where u and o are obtained by solving the following equation (§ 2.3.7):

“1Ape; = rot(u, o) "'Any (11.42)

where "A:,H(x) = [ S m a ] is the measured (3x3) orientation matrix of
frame Rg,;, and "A,,m+|(q, £)= [ Sm Pm a8m ] is the computed orientation

matrix using the direct geometric model.

If the orientation error is small, the following equation can be used (§ 2.3.8 and
equation [2.35]):

nz-ay
AX, = usin(0) = 3| -5 [11.43]

Sy—nx
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where the s, n, a components are obtained from the equation:

[snal=-1A,, (lAn)! (11.44)

The linear differential model defining the deviation of the end-effector location
due to the differential errors in the geometric parameters can be obtained as:

[ AX(x, q, &)
AX =

= ¥(q,&) A 11.45
AX,(x,q,&)] (q, §) AE ( ]

where:

» AX represents the (6x1) vector of position and orientation errors (representing
the difference between the measured and computed -!T, )

¢ ¥ is the (6xNp,,) generalized Jacobian matrix developed in § 11.3.

The calibration index of this method is 6. If we only measure the position of the
endpoint, the first three equations of the nonlinear or linear calibration models only
should be used. The calibration index reduces to 3.

It is worth noting that the geometric parameters have different units: meters (for
distances), radians (for angles) or even no unit (for gear transmission ratios). The
effect of this heterogeneity can be handled by introducing an appropriate weighting
matrix. However, for industrial robots of about the size of a human arm, one obtains
good results by using meters for the distances, radians for the angles, and by
normalizing the encoder readings such that the elements K; are of the order of one.
Of course, if the links are much smaller (like fingers) or much larger (like
excavators), the situation is different.

11.5.2. Calibration using distance measurement

In this method, we make use of the distance traveled by the endpoint when
moving from one configuration to another [Goswami 93]. Thus, an external sensor
measuring the distance such as an extendable ball bar system or a linear variable
dlffcremlal transformer (LVDT) is required. The calibration index of this method is
1. Let D i, be the measured distance traveled by the endpoint between configurations
q' and ¢. Thus, the nonlinear calibration equation is given by:

{Px(9).&)-Py(q'.£))? + [Py(a.8) - Py(q'.©)) + [P,(q1E) -P(q|.)]> = (D; _,)2
(11.46)
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The differential calibration model is given by:

2{ [Px(@) - Px(g)] | ¥x(¢) - ¥x(@)] + [Py(@)~Py(g)] [¥y(¢))-P,(q)] +
(P(q)) - P(a)] (¥(@) - ¥(@)]} A = (Dj)2-(D;? [11.47]
where:

* D;; is the computed distance traveled by the endpoint between configurations
q' and ¢/, using the nominal parameters;

* ¥, ¥y and ¥, denote the first, second and third rows of the generalized
Jacobian matrix respectively.

11.5.3. Calibration using location constraint and position constraint

The main limitation of the previous approaches is that they require an accurate,
fast and inexpensive external sensor to measure the Cartesian variables. Location
constraint and position constraint methods are autonomous methods that do not
require an external sensor. These methods can be used when the specified end-
effector locations (or positions) can be realized by multiple configurations. It is
worth noting that a robot with more than three degrees of freedom (n > 3) can be
calibrated by the position constraint method, whereas for the location constraint
method we must have n 2 6 [Khalil 95b).

Let q' and g represent two configurations giving the same location of the end-
effector. Then, the nonlinear calibration model is given by:

1Tos1(@, &) - 'Toi(@h &) = 0 [11.48]

This equation can be transformed into a (6x1) vectorial equation as illustrated in
§ 11.5.1. The resulting equation is as follows:

N {Axp(q‘, 9, &)} 5 1149)
TEI ax@ iy | '

The differential calibration model is given by:

AX(q', ¢, &) = [¥(d. & - ¥(q'. &)] AE [11.50]

where W is the generalized Jacobian matrix developed in § 11.3, AX is the (6x1)
vector representing the position and orientation differences between the locations

.lTnH(qj' €) and -lTn+l(qi, £).
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The calibration index for this method is 6. In the position constraint method, the
endpoint at configuration q' should coincide with the endpoint at configuration g.
Thus, the first three equations of [11.49) and [11.50] only are considered. Hence, the
calibration index is 3.

We note that the calibration Jacobian matrices of these methods are obtained by
subtracting the generalized Jacobian matrices of two configurations. Thus, the
number of identifiable parameters is less than that of the conventional methods
(Example 11.1). For example:

— if a column of the generalized Jacobian matrix is constant, then the
corresponding parameter will not be identified. This is the case of the
parameters Ay,, Ab,, Aat,, Ad,, ABy, Ary, AP for both location constraint and
position constraint methods;

- if a column of the generalized Jacobian matrix is identical for any two
configurations q' and ¢ satisfying the calibration constraint, then the
corresponding parameter cannot be identified. For example, since in the
location constraint method “!Tp.1(q)) = “1Tyu1(q), then 1Ty(ql) = 1Ty(g)).
Thus, the parameters Ary, ABy, AByy, Ad,, Acte, AB,, Ar, are not identifiable.

11.5.4. Calibration methods using plane constraint

In this approach, the calibration is carried out using the values of the joint
variables of a set of configurations for which the endpoint of the robot is constrained
to lie in the same plane. Several methods based on this technique have been
proposed [Tang 94], [Zhong 95], [Khalil 96b], {Ikits 97]. The main advantage of this
autonomous method is the possibility to collect the calibration points automatically
using touch or tactile sensor (such as LVDT, a trigger probe, or a laser telemeter).
Two methods are developed in this section: the first makes use of the plane equation
while the second uses the coordinates of the normal to the plane. The calibration
index of these methods is 1. Special care has to be taken to locate the constraint
plane and to select the calibration points in order to obtain a good condition number
for the observation matrix {Ikits 97], [Khalil 00b].

11.5.4.1. Calibration using plane equation

Since the endpoints are in the same plane, and assuming that the plane does not
intersect the origin, the nonlinear calibration model is:

aPy(q,§) + bPy(q,§) +cP,(q, )+ 1 = 0 [11.51]

where:
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* a, b, c represent the plane coefficients referred to the reference world frame;

* Py, Py, P, represent the Cartesian coordinates of the endpoint relative to the
reference frame.

Applying equation [11.51] to a sufficient number of configurations, the resulting
system of nonlinear equations can be solved to estimate the plane coefficients and
the identifiable geometric parameters.

Using a first order development for equation [11.51] leads to the following
linearized calibration model:

Aa

Ab

Ac

3
= - aPy(q) - bPy(q) - cP(q) -1 [11.52]

[ Px(@) Pyq) Piq) a¥.(q@+b¥(q)+c¥,(q) ]

where:

* ¥,, ¥y and ¥, are the first, second and third rows of the generalized Jacobian
matrix respectively;

* Py(@), Py(q), P,(q) represent the computed Cartesian coordinates of the
endpoint in the reference frame.

The coefficients of the plane are initialized by solving the equation of the plane
for the collected configurations:

| S T |
-1 Py Py P, a
= ... .. .. bl+p [11.53)
-1 P; P, P, J-©

where P:(, P;, and P’z are the coordinates of the endpoint as given by the DGM with
the nominal values of the geometric parameters for configuration g.

If the coefficients a, b, and ¢ of the plane are known, the corresponding columns
and unknowns in equation [11.52] are eliminated. The resuiting linear calibration
model is given by:

{a¥x(q) + b¥,(q) + c¥,(q)] Af = - aPx(q) — bPy(q) - cPy(g) - | (11.54)
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11.5.4.2. Calibration using normal coordinates to the plane

In this method, the calibration model is established by using the fact that the
scalar product of the vector normal to the plane and the vector between two points in
the plane is zero [Zhong 95}, [Maurine 96]. The coordinates of the normal can be
obtained with inclinometers. Since this method is independent of the plane position,
it may give poor results if the initial values of the robot parameters are not close to
the real values.

The nonlinear calibration model for the configurations g' and ¢ is such that:

a[Py(q), &) - Py(q', &)1 + bIPy(d, &) - Py(q!, &)] + c[Pq), &) ~Py(q', §)] = O
[11.55]

Assuming that the normal coordinates are known, we obtain the following
linearized equation:

{al¥u(@) - ¥x(@)] + b[¥y(@) - Fy(a)] + c[¥(@) - F@) }AE =
~al[Py(@) ~Py(q")] - b[Py(@) ~Py(@)) - cP(@)-P,(q)) [11.56]

where ¥, P, for u=x, y, z, are computed in terms of q and §.

NOTE.- The concatenation of the equations of several planes in a unique system of
equations increases the number of identifiable parameters [Zhuang 99]. The use of
three planes gives the same identifiable parameters as in the position measurement
method if the robot has at least one prismatic joint, while four planes are needed if
the robot has only revolute joints [Besnard 00b].

¢ Example 11.1. Determination of the identifiable parameters with the previous
methods for the Stdubli RX-90 robot (Figure 3.3b) and the Stanford robot (Figure
11.2). The geometric parameters of these robots are given in Tables 11.1 and 11.2
respectively. For the plane constraint methods, we assume that the plane coefficients
are known.

Tables 11.3 and 11.4 present the identifiable geometric parameters of the two
robots as provided by the software package GECARO "GEometric CAlibration of
Robots" [Khalil 99a], {Khalil 00b). The parameters indicated by "0" are not
identifiable, because they have no effect on the identification model, while the
parameters indicated by "n" are not identified because they have been grouped with
some other parameters.
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Table 11.1. Geometric parameters of the RX-90 Stdubli robot!
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Table 11.2. Geometric parameters of the Stanford robot
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7 2 1.3 0.2 2 0.1 0 0

From Tables 11.3 and 11.4, the following general results are deduced:

1) the location measurement method allows the identification of the maximum
number of parameters (36 parameters for the Stidubli RX-90 robot and 34 for
the Stanford robot), which corresponds to the following general equation
[Everett 88]: :

b=4n+1)+2+2n,+n
including:
- 4(n,+ 1) parameters for the n, revolute joints and for frame Ry, 1;
- 2 parameters for Ry;
- 2 np parameters for the prismatic joints;
- n parameters for the joint gear transmission ratios;

2) the parameters of frames Rg and R have no effect on the model and cannot be
identified when using the following methods: distance measurement, position
constraint and location constraint;

3) most of the parameters of frames R, and R;.;, (Rg and R;), are not
identifiable with the location constraint method;

4) most of the parameters of frames Rg, R; and Ry are not identifiable with the
planar methods. Some of them are grouped with other parameters;

5) the parameter B; is not identifiable when oy # 0;
6) the offsets of joint variables 2, ..., n—1 are identifiable with all the methods;

3 Distances are in meters and angles are in radians.
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7) the offset of joint 1 is not identifiable with the following methods: distance
measurement, position constraint, location constraint; whereas the offset of
joint n is not identifiable with the location constraint method;

8) all the gear transmission ratios K are identifiable;

9) the parameter rg is not identifiable with the position constraint and the plane
constraint methods for both robots. It represents the scale factor of these
methods. Note that the constraint equations are also verified when all the
distances are zero.

10) in the location constraint method, the parameter rg has no effect. The scale
factor is represented by r4 for the Stiubli robot and r; for the Stanford robot. It
is worth noting that in the case of the Stanford robot, the scale factor could be
the prismatic variable ry (instead of rg or ry) if we assume that the gear
transmission ratio K5 is known and has not to be identified;

11) the parameters a7, 67 and ry are not identifiable with the position
measurement, position constraint, and plane constraint methods. This is
because the end-effector reduces to a point that is defined by the three
parameters rg, 85 and d4.

11.6. Correction and compensation of errors

Once the identification is performed, the estimated parameters must be integrated
into the robot controller. Computing the DGM with the general identified parameters
is more time consuming than the analytical solution, but it can be performed on-line.
If the IGM were computed using a general numerical iterative algorithm, we could
compensate all the calibrated parameters. But, a major problem stems for industrial
robots whose IGM is analytically implemented. The calibration may result in a non-
analytically solvable robot. For example, a spherical wrist could be found not to be
spherical. In this case, the following geometric parameters can be updated in the
controller straightaway: end-effector parameters, robot base parameters, joint
offsets, r; and d; whose nominal values are not zero, and the angles o, 6; whose
nominal values are not k /2, with k being an integer. For the other parameters, an
iterative approach must be implemented. A possible approach is to use the closed-
form solution in order to compute a good first guess. Then, an accurate solution is
obtained using an iterative algorithm. Such a process converges in a small number of
iterations, or even in a single iteration if the end-effector location error due to the
geometric parameters to be compensated is not too high. The iterative tuning process
is summarized as follows (Figure 11.3):
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Table 11.3. Identifiable parameters of the RX-90 Stiubli robot
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Table 11.4. Identifiable parameters of the Stanford robot

281

Position

Location
ent

t

@

Plane
equation

Plane normal

680

0

<@

al

di

61

rl

_B

[~ (=1 K] =) T=1 (-] K-}

(=] (=1 X—1 I—] E=1 [—] ¥ -]

a2

d2

02

r2

B2

o3

q3

63

r3

__ B3

a4

d4

64

t4

e

as

ds5

05

s

fs

a6

d6

66

6

Be

o7

2=

d7

07

0

0

0

r?

n

_p7

0

(=2 (=1 £—3 1=1 £=d £=1 (=1 ¥ -]

Kl, ...K6

Total

31

M

25

AU

21

27

26

(n: non-identifiable parameter. lts effect is grouped with some other parameters.
0: non-identifiable parameter having no effect on the model)




282 Modeling, identification and control of robots

1) use the analytical IGM to compyte the joint variables q corresponding to the
desired end-effector location “1T,,;

2) computg the differential error AX between "T:.H and "T:+1(£, q), where
AT 18, q) indicates the direct geometric model using the estimated
parameters. Note that AX can also be computed using the generalized
differential model (§ 11.3);

3) if AX is sufficiently small, stop the tuning process. Otherwise, compute Aq
corresponding to the error AX using the classical inverse differential model
Aq = J*AX;

4) update the joint variables such that g = q + Ag;

5) return to step 2.

xd IGM of 5, AX
——1P»1 the robot 1 ']T:ﬂ(a, Q) »
controller -

Figure 11.3. Principle of compensation

In the context of off-line programming systems, once a calibration has been

performed, the compensated joint values can be downloaded directly to the
controller.

11.7. Calibration of parallel robots

One of the attractive feature of parallel robots is their potential for higher
accuracy as compared to serial robots, mainly due to the higher stiffness of their
closed-loop structure. However, this stiffness does not result directly into better
accuracy, but rather into higher repeatability. Therefore, good calibration of the
geometric parameters is also necessary for a parallel robot to improve its accuracy.

In this section, we consider the case of a six degree-of-freedom parallel robot of
the Gough-Stewart family (Figures 8.1 and 8.11). It is composed of six legs of (RR)-
P-(RRR) architecture, a fixed base, and a mobile platform to which the tool is
attached. The prismatic joints are actuated, while the universal joints (U-joints) and
the spherical joints (S-joints) are passive. The reference frame Ry is assumed to be
attached to the base and the end-effector frame Rg is attached to the platform. We
assume that the universal and spherical joints are perfect, and that the prismatic
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joints are perfectly assembled. Consequently, 42 geometric parameters are needed to
compute the geometric model, namely: six leg lengths denoted by the joint variable
vector q, 3x6 coordinates of the centers of the U-joints with respect to the reference
frame (fPy;, for i =1, ..., 6), and 3x6 coordinates of the centers of the S-joints with
respect to the end-effector frame (EPg;, for i =1, ..., 6). The geometric calibration
consists of estimating these parameters accurately. As in serial robots, the calibration
procedure consists of four steps: construction of a calibration model, collection of a
sufficient number of configurations, identification of the geometric parameters from
the calibration equation, and implementation of error compensation. It is worth
noting that for parallel robots the parameters estimated can be introduced into the
controller straightaway.

Various calibration models are proposed in the literature. We will only consider
the conventional techniques where the calibration model is a function of the
Cartesian coordinates of the location of the mobile platform frame, which must be
provided by an external sensor. In this case, the calibration model can be derived
from the IGM [Zhuang 95] or the DGM. Recall that the IGM is easy to compute
using closed-form expressions and that it gives a unique solution q for a desired
location fTg, whereas the DGM has multiple solutions and is computed iteratively.

11.7.1. IGM calibration model

The error function in the IGM calibration model is the difference between the
measured and computed joint variables. It is represented by the following equation:

q - IGM('Tg(x),§) = 0 ‘ (11.57]

where & denotes the current geometric parameters, and fTg(x) is the measured
location of the end-effector frame relative to the fixed reference frame.

The IGM providing the joint position g; in terms of the desired transformation
matrix fT and of the fixed geometric parameters fP,; and EPg; is given by equation
(8.11]. It is rewritten as:

qi2 = (P~ Px)T (Pg; - Ppy) [11.58]

The joint variable g; is given by:

Qi = Di+qq [11.59]
where q.; represents the joint i sensor value and Dj is a constant offset.

The nonlinear calibration model is obtained from equation {11.58] as:
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qi2 - (FAg EPp; + Pg~ Po)T (AR EPRi + P - TPy;) = 0 {11.60)

Equation [11.60] shows that the parameters of each leg can be identified
separately. Thus, we can split the identification problem into six independent
systems of equations where each system is a function of the seven parameters of one
leg. Applying equation [11.60] for a sufficient number of configurations e and
concatenating all the equations together leads to the following nonlinear equation:

0 = Fi(Qu X0 §) + i (11.61]

where Q;; = q;!, ..., q; represents the calibration configurations of leg i, X; = x!, ...,
x¢ indicates the corresponding locations of the mobile platform, ; indicates the
geometric parameters of leg i, and p; is the vector of modeling error for leg i.

This nonlinear optimization problem can be solved by the Levenberg-Marquardt
algorithm as described in § 11.4.3.
The Jacobian matrix of the IGM calibration method is formulated for leg i by:

Aq; = ¢i(x, E) A (11.62]

The closed-form expressions of the columns of the calibration Jacobian matrix ¢;
can be obtained by differentiating equations [11.58] and [11.59] with respect to the
elements of EPg;, fP,; and D;:

AfPAi
1
Agi = o (-Pei+PA)T  (Ppi—PA)TIAE q; ]| AEPy; [11.63)
AD

Since the Jacobian matrix can be obtained using closed-form expressions, we can
use the iterative pseudoinverse solution to solve this problem as for serial robots.
The prediction error function of all the joints at configuration g is calculated in
terms of the measured location fTg/ and the current geometric parameters & by:

A¢ = ¢/~ IGM('TE), &) [11.64)
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11.7.2. DGM calibration model

The second nonlinear calibration model, which makes use of the iterative DGM,
is given by:

AX(q, "TE(x), &) = 0 [11.65)

where AX indicates the (6x1) vector of the difference between the measured location
fTg(x) and the computed location of the platform DGM(g, ).

The vector AX can be determined as given in § 11.5.1 by computing AX,, and
AX,. The identification equation can be solved using the Levenberg-Marquardt
method.

The advantage of the DGM calibration approach is the possibility to use in the
calibration equation partial elements of the location of the end-effector
[Besnard 99). For example, we can carry out the calibration using the position
coordinates of the platform by considering the first three components of equation
[11.65). In the same manner, we can also make use of two inclinometers
[Besnard 99]. By comparison, the IGM calibration approach needs complete
measurement of the location. The main drawback of the DGM method is its
computational complexity. Besides, the corresponding Jacobian matrix cannot be
computed analytically.

Before closing this section, we have to mention the autonomous calibration
methods that are based on measuring some of the passive joint variables [Zhuang
971 or by locking some of them [Murareci 97], [Besnard 00a], [Daney 00],
[Khalil 99b]. Recall that providing some passive joints with sensors simplifies the
direct geometric model solution. With these autonomous methods, the coordinates of
points A; and B;, for i =1, ..., 6, are estimated with respect to frames Rg and Ry,
respectively and not with respect to frames R¢ and Rg (see § 8.6.1 for the definition
of these frames). The identifiable parameters of all these methods are presented in
(Besnard 01].

11.8. Measurement techniques for robot calibration

Conventional calibration methods, as well as the evaluation of positioning
accuracy and repeatability of robots, requires measurement of either the end-effector
location or position with high accuracy. Most of the current measurement schemes
are based on vision systems, measuring machines, laser interferometers, laser
tracking systems, and theodolites [Mooring 91}, [Bernhardt 93].

Ideally, the measurement system should be accurate, inexpensive and should be
operated automatically. The goal is to minimize the calibration time and the robot
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unavailability. At this time, such devices are not yet available. Nevertheless, we
present in this section some principles that have given place to industrial realization.

11.8.1. Three-cable system

Such a system is basically composed of three high resolution optical encoders
P1, P2, P3. Low mass cables are fixed to one of their ends on the encoder shafts
whereas the other ends are fixed on the endpoint M of the robot (Figure 11.4). The
encoder readings give the cable lengths, which represent the radii py, p;, p3 of three
spheres whose centers are on the encoder shafts. The intersection of the spheres
determines the coordinates of M.

Figure 11.4. A three-cable system

This low cost device provides automatically the coordinates of the endpoint M.
As a commercial example of such a system, we can mention the 3D CompuGauge
from Dynalog whose accuracy is about 0.1 mm for a cubic measuring space of 1.5 m
of side.

11.8.2. Theodolites

A theodolite is a telescope where the two angles giving the orientation of the line
of sight can be measured precisely. The Cartesian coordinates of a target ball M on
the end-effector can be obtained in terms of the readings of two theodolites Thl and
Th2 pointing this ball and of the transformation matrix T between the two
theodolites (Figure 11.5).
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The accuracy of this system is excellent (of the order of 0.02 mm at about 1 m
distance). The cost of a theodolite is rather high. The first systems had to be
manually operated, but the data were read and stored by a computer (ECDS3 from
Leica for example). Now, we can find motorized theodolites that can track
automatically an illuminated target ball (TCA from Leica, Elta from Zeiss). Their
cost is naturally greater.

M(x, y, z)

Figure 11.5. Measurement system using two theodolites

11.8.3. Laser tracking system

This device is composed of two 2-D scanner systems T1 and T2 external to the
robot. Each of the two systems deflects a laser beam in a vertical plane and a
horizontal plane, thanks to two motorized mirrors. The direction of the beam is
controlled to track a retroreflector fixed on the terminal link of the robot (Figure
11.6). The position of the target point is calculated automatically using the angles of
the laser beams. The precision is of the order of 0.1 mm for a target at 1 m distance.
As examples of this system, we can mention the LASERTRACES system from ASL
(UK) and OPTOTRAC from the University of Surrey (UK). The limitation of this
system is the requirement of a dedicated end-effector.

11.8.4. Camera-type devices
The principle is to acquire at least simultaneously two images of the robot

configuration using two cameras. The two images are processed in real time to
estimate the 3D coordinates of target markers attached to the robot links.



288 Modeling, identification and control of robots

Practically, the existing systems differ by the number and the type of the cameras
used. We can mention as an example the RODYM6D from Krypton, which uses an
OPTOTRAK sensor from Northern Digital. The sensor is composed of 3 CCD
cameras and can handle up to 24 infrared light emitting diode markers. The
precision is of the order of 0.2 mm for points at 2.5 m distance.

Laserhead # 1 Laser head #2

Figure 11.6. Laser tracking system (University of Surrey)

11.9. Conclusion

We have presented various approaches for the geometric calibration of serial
robots. The geometric parameters of the robot, the base frame parameters and the
end-effector frame parameters are defined using the Hayati modification of Khalil-
Kleinfinger notations. All of the calibration methods are described by a unified
nonlinear equation and a general linear equation. The Jacobian matrix of each
calibration method is obtained as a function of the generalized Jacobian matrix
relating the variation of the end-effector location with the geometric parameter
variation. The generalized Jacobian matrix is computed using an efficient method
making use of the elements of the transformation matrices of the link frames. The
identifiable parameters are determined numerically by studying the QR
decomposition of the observation matrix using random configurations satisfying the
constraints of the calibration method. The nonlinear estimation problem is resolved
using the Levenberg-Marquardt method or using an iterative pseudoinverse method.
The optimum selection of the calibration configurations is treated by minimizing the
condition number of the observation matrix. These methods can be extended to
include the calibration of joint elasticity and link flexibility [Besnard 00a].

We have also presented the geometric calibration of parallel robots when the
measurement of the end-effector location is available. The problem can be
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formulated either with inverse or with direct geometric models. References are given
for autonomous calibration approaches for these structures.

The instrumentation for geometric calibration is quite varied. Good commercial
systems measuring the end-effector coordinates are beginning to emerge, and some
of them have been described. The autonomous calibration methods do not need such
external sensors. They are only based on the joint sensor readings, which are
available with good precision on all the robots.

In the next chapter, we address the problem of estimating the inertial parameters
and friction parameters.



Chapter 12

Identification of the dynamic parameters

12.1. Introduction

Most advanced contro! schemes formulated in the recent literature for robots
require dynamic models (Chapter 14). The precision, performance, stability, and
robustness of these schemes depend, to a large extent, on the accuracy of the
parameters that describe the dynamic model. Adaptive and robust schemes can
tolerate some errors in the dynamic parameters, while other schemes aimed at
achieving perfect feedback linearization, such as the computed torque technique,
assume precise knowledge of the dynamic parameters. In view of this, a priori
precise determination of the dynamic parameters is useful to most schemes and is
crucial to some others. Furthermore, these values are necessary to simulate the
dynamic equations.

Accurate values of the dynamic parameters are typically unknown, even to the
robot manufacturers. In this chapter, we will exploit the fact that the dynamic model
and the energy model are linear in these parameters in order to identify them. The
problem will be reduced to the least-squares solution of an overdetermined linear
system of equations.

We assume a priori knowledge of the geometric parameters (Chapter 11). The
dynamic parameters of link j and actuator j are composed of the inertial parameters
of the link, the actuator rotor inertia, and the friction parameters (Chapter 9). We
combine these parameters in the vector y:

¥ = [XXj Xyi XZj YYj YZj ZZj MXj Myj MZj M; lajj Fy FlT
[12.1]

The dynamic parameters of a robot with n mobile links are represented by the
vector % such that:
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x =T Tt [122]

To simplify the notations, we will address the case of serial robots only. The
extension to tree structure or closed-chain robots can easily be carried out using the
results of Chapter10.

12.2, Estimation of inertial parameters
There are three main methods for estimating the inertial parameters of a robot:

i) physical experiments: if we could disassemble the robot to isolate each link, the
following parameters could be obtained by physical experiment [ Armstrong 86]:

— the mass could be weighed directly;

~ the coordinates of the center-of-mass could be estimated by determining
counterbalanced points of the link;

— the diagonal elements of the inertia tensor could be obtained by pendular
motions.

This method is very tedious and should be realized by the manufacturer before
assembling the robot;

it) using CAD/CAM models: all robotics CAD/CAM packages provide tools to
calculate the inertia parameters from 3D models. This method is prone to errors due
to the fact that the geometry of the links is complicated to define precisely, and that
certain parts such as bearings, bolts, nuts, and washers are generally neglected;

iii) identification: this approach is based on the analysis of the "input/output”
behavior of the robot on some planned motion and on estimating the parameter
values by minimizing the difference between a function of the real robot variables
and its mathematical model. This method has been used extensively and was found
to be the best in terms of ease of experimentation and precision of the obtained
values. In this chapter, we consider off-line identification methods, for which we
collect all the input-output data prior to analysis. The on-line identification will be
treated in Chapter 14 when presenting the adaptive control techniques.

12.3. Principle of the identification procedure

Several schemes have been proposed in the literature to identify the dynamic
parameters [Ferreira 84], [Mayeda 84], [An 85], [Khosla 85], [Atkeson 86],
{Gautier 86}, [Olsen 86], [Aldon 86], [Kawasaki 88], [Bouzouia 89], [Raucent 90],
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[Aubin 91], [Priifer 94], [Gautier 95], [Restrepo 96). These methods present the
following common features:

- the use of a linear model in the dynamic parameters (dynamic model, energy
model, power model, model of the wrench exerted on the base of the robot);

~ the construction of an overdetermined linear system of equations by applying
the identification model at a sufficient number of points along some
trajectories of the robot. In general, a constant sampling rate is used between
the different points;

- the estimation of the parameter values using linear regression techniques
(ordinary least-squares solution or any other alternative method).

12.3.1. Resolution of the identification equations

All the identification models can be written in the following general form:

yI,q = w(g,q.9 % (12.3]

Applying the identification model at a sufficient number of points on some
trajectories, we construct the following overdetermined linear system of equations in

A1

YT, q = W@Qq.9x+p [12.4]

where W is an (rxc) observation matrix, ot regressor, r is the total number of
equations, ¢ is the number of parameters such that r>>c, and p is the residual error
vector.

The identification handbooks provide a large variety of deterministic and
stochastic methods to estimate % from the previous system of equations. The use of
ordinary least-squares solution of linear overdetermined system of equations, such as
those based on the SVD or QR decomposition (Appendix 4), gives good results if
some care is taken in processing the data measured and the elements of the matrices
Y and W as we will show in this chapter. Note that the use of scientific software
packages such as Matlab or Mathematica facilitates the application of the proposed
data processing. Consequently, the estimated values x can be obtained from equation
{12.4) such that:

% = Min Jjp?
X
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If W is of full rank, the explicit solution' of this problem is given by
(Appendix 4):

1= (WITWyIWTy = wry [12.5]
where W+ is the pseudoinverse matrix of W.

It should be noted that this least-squares estimation is biased because the
observation matrix W is random, and because W and p are realizations of random
and correlated variables [Mendel 73], [Eykhoff 74], [de Larminat 77], [Gautier 86].
Furthermore, the elements of the matrix W are nonlinear functions in q and q, which
leads one to assume some statistical properties of the noise in order to calculate the
quality of the estimation process (bias and standard deviation) [Armstrong 89],
[Raucent 90]. Consequently, it is important to verify the accuracy of the values
obtained using appropriate validation procedures (§ 12.7).

The standard deviations of the estimated values are calculated by assuming that
W is deterministic, and p is a zero mean additive independent noise, with standard
deviation 6. As stated in § 11.4.3, the variance-covariance matrix C,, is given by:

C, = E{p ph) = sz L [12.6]
where E is the expectation operator, and I is the (rxr) identity matrix.

An unbiased estimation of 6, can be calculated using the following equation:

—W vl
ot = %”- [12.7]

The variance-covariance matrix of the estimation error is given by
[de Larminat 77]:

C; = E[(x-%) @-07T) = W C, (WHT = 6, 2(WT W)yl [12.8]
The standard deviation on the jth parameter is obtained from the (j, j) element of
C:
1
og; = V€3 G) [12.9]

This interpretation has been proposed by Raucent [Raucent 90}, but we should

be careful with the results obtained because the corresponding assumptions are not
verified.
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The relative standard deviation can be used as a criterion to measure the quality
of the identification value for each parameter (§ 12.7). It is obtained as:

0’2,
o5,% = 1007 [12.10]

Ile

For example, if the relative standard deviation of a parameter is greater than ten
times the minimum relative standard deviation value, this parameter can be
considered as poorly identified.

12.3.2. Identifiability of the dynamic parameters

The dynamic parameters can be classified into three groups: fully identifiable,
identifiable in linear combinations, and completely unidentifiable. Consequently, the
observation matrix W corresponding to the set of parameters y is rank deficient
(some columns of W are linearly dependent whatever the values of q, ¢ and §). In
order to obtain a unique solution, we have to determine a set of independent
identifiable parameters, which are also called base dynamic parameters or minimum
dynamic parameters.

We have shown how to calculate the base inertial parameters using symbolic
methods (Chapters 9 and 10) or numerical methods (Appendix 5). It is easy to
demonstrate that the columns corresponding to the Coulomb and viscous friction
parameters are independent. The determination of the base parameters is a
prerequisite for the identification algorithms. It should be noted that the grouping
equations do not need to be computed since the identification will give directly the
grouped values.

To simplify the notations, we assume in the following that y represents the base
inertial parameters and the friction parameters, and that W is composed of the
corresponding columns.

12.3.3. Estimation of the friction parameters
Using the classical friction model at non-zero velocity, which is represented by

viscous and Coulomb frictions, we can write the friction torque on joint j as
(§9.3.4):

I'g = Fgjsign(@) + Fyj § (12.11]

Two approaches can be used to identify the joint friction parameters:
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i) global identification of the inertial and friction parameters: in this approach, we
consider the estimation of the inertial parameters together with the friction
parameters;

ii) separate identification of the friction parameters: in this approach, we identify at
first the friction parameters using constant velocity motion on an axis-by-axis basis
[Spetch 88], [Held 88]. These parameters are then considered to be known for the
identification of the inertial parameters. This simple method induces the risk of error
accumulation between the two steps.

12.3.4. Trajectory selection

In order to improve the convergence rate and the noise immunity of the least-
squares estimation, the trajectory used in the identification must be carefully
selected. Such a trajectory is known as a persistently exciting trajectory. To obtain
an exciting trajectory, two schemes are generally used:

- calculation of a trajectory satisfying some optimization criteria;

— use of sequential sets of special test motions, where each motion will excite
some dynamic parameters. As the number of the parameters to be identified is
reduced with respect to the global problem, it is easier in this case to find an
exciting trajectory.

12.3.4.1. Trajectory optimization

The sensitivity of the least-squares solution with respect to the modeling errors
and noise can be measured by the condition number of the observation matrix. Thus,
the planification of an exciting trajectory can be formulated by calculating a
trajectory whose points give a "good" conditioned observation matrix. This is a
nonlinear optimization problem whose degrees of freedom are the starting point, the
intermediate points, the maximum joint velocities and accelerations, etc. In the
literature, the following criteria have been used to define the exciting condition
[Armstrong 89], {Lu 93], [Gautier 92a], {Benhlima 93):

i) the condition number of the matrix W, which is defined using the 2-norm, as:

Omax

cond(W) = > 1 [12.12]

nmin
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where Opux and Opiq denote the maximum and minimum singular values of W
(Appendix 4). The optimization problem consists of determining the trajectory,
which provides a condition number of W that is close to 1;

ii) the sum of the condition number of W with a parameter equilibrating the values

of the elements of W such that they will be of the same order of magnitude
[Gautier 90a):

max Wil

C = cond(W) + k; min [W,,] with min [W; ;| #£0 [12.13]

where [W; ;| is the absolute value of the (i, j) element of W, and k; >0 is a weighting
scalar parameter;

iii) the sum of the condition number of W and the inverse of the smallest singular
value of W:

C = cond(W) + kj ;l_" {12.14)
'min

This criterion prevents a trajectory of good condition number but with small
singular values being obtained [Pressé 93]. It equilibrates the standard deviation o3
on the different parameters, but the relative standard deviation of the parameters witg
small values will be too high;

iv) the condition number of a weighted observation matrix. If we have a priori
information about the order of magnitude of the dynamic parameters, the following
cost function will equilibrate the contribution of each parameter on the identification
model. This will result in equilibrating the relative standard deviation of the different
parameters [Pressé 93}

C = cond(W diag(Z)) [12.15]

where diag(Z) is the diagonal matrix formed by the elements of the vector Z
representing the (bxl) vector of the a priori absolute values of the dynamic
parameters.

The generation of an exciting trajectory by an optimization procedure for the
identification of the dynamic parameters presents the following difficulties:

- there is no analytical expression for the cost functions;

~ the algorithm must take into account the joint limits, the maximum velocities,
and the maximum accelerations;
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— the number of degrees of freedom of the optimization problem is very large.

The generation of an exciting trajectory for the energy identification model
(§ 12.6) is easier than that for the dynamic model because the energy model
expression is simpler and does not need the joint accelerations [Gautier 92b], {Pressé
94]. In any case, if we cannot determine an exciting trajectory using an optimization
procedure, we make use of a random trajectory and verify the corresponding cost
criterion.

12.3.4.2. Sequential identification

The most widespread approaches propose to use a set of different trajectories
where each trajectory excites some parameters. For instance, we can move some
joints while locking some others [Mayeda 84], [Olsen 86), [Atkeson 86}, [Ha 89],
[Aubin 91], [Gaudin 92]. This technique simplifies the identification equations.
However, an accumulation of errors may occur since the values of some estimated
parameters will be assumed to be known in subsequent identification.

Vandanjon [Vandanjon 95] has proposed to avoid this drawback by generating
four different trajectories to excite four different physical phenomena, which are:
inertial effect, centrifugal coupling, inertial coupling and gravity effect. The
trajectories are periodic between two points (except for gravity). During an
experiment, a limited number of joints move while the others are locked. The
experiments are designed in order to ensure optimal condition number of the
observation matrix. These trajectories are then combined in a global identification
system of equations.

12.3.5. Calculation of the joint velocities and accelerations

The observation matrix elements are functions of q, q and also q in the case of
the dynamic identification model. Industrial robots are generally equipped with
position sensors with good accuracy although they can be corrupted by high
frequency noise due to quantization errors. On the contrary, velocity sensors provide
noisy information, and the acceleration sensors are not used in industrial robots.
Consequently, the joint velocities and accelerations have to be obtained by
numerically differentiating the joint positions. However, the derivative, and
especially the second derivative, of the joint positions amplifies the high frequency
noise because the differentiation process behaves like a high-pass filter.

A solution to this problem is to filter the joint position readings using a low-pass
filter prior to compute the derivatives [Khosla 86], {Bouzouia 89], [Benhlima 93],
[Gautier 95). Such a strategy has been successfully used while identifying the
dynamic parameters of the Acma SR400 robot [Restrepo 96]: the position filtering is
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carried out with a non-causal zero-phase digital filter by processing the input data
through an IR low-pass Butterworth filter in both the forward and reverse direction,
thanks to the "filtfilt" procedure of Matlab. The numerical derivation is carried out
using a central difference algorithm to avoid phase shift. Thus, the velocity is
obtained from:

q(k) = [q(k+1) - q(k-1)]/ 2T [12.16)

where q(k) indicates the joint positions at the kth sample, and T is the sampling
period.

Another solution to avoid the calculation of joint accelerations consists of using
an identification model devoid of joint accelerations such as the filtered dynamic
model (§ 12.5.2), the energy model (§ 12.6.1), the power model (§ 12.6.2 ), or by
using a stochastic filter such as the extended Kalman filter [Guglielmi 87],
[Gautier 93].

12.3.6. Calculation of joint torques

The dynamic identification methods are based on estimating the parameters
minimizing a cost function of the difference between the real robot variables and its
mathematical model. Most of the proposed cost functions require joint torques.
Since torque sensors are not used in industrial robots, the actuator torque may be
estimated from the reference current of the amplifier current loop. Owing to the high
bandwidth of the current loop, the relation between the actuator torque and the
reference current can be represented by a constant gain in the operating range of the
robot. For joint j, this relation can be written as (Figure 12.1):

Ij = Grjy [12.17a]
where:
Grj = Nj Ky Krj [12.17b]

and where Gr; is the torque gain of the drive chain of joint j, u; is the reference
current, N; is the gear transmission ratio, K is the current amplifier gain, and Kr; is
the actuator torque constant.

The parameters of equations {12.17] can be obtained from the manufacturers
data sheets. A global estimation of Gpj can be obtained using specific
experimentation [Restrepo 95},



300 Modeling, identification and control of robots

Note that the dynamic identification methods can be reformulated to be
independent of the drive chain constant Gr; [Khalil 93], [Gautier 94]. In this case, a
new set of dynamic parameters is defined.

S Pl ko v Lmi
3 Tj | m]
g Ly

Grj = N; Ky Kyy

Figure 12.1. Drive chain of joint j

12.4. Dynamic identification model

The dynamic model is linear in the dynamic parameters. It is given by the
following equation:

F'=®q4dx (12.18]
where @ is an (nxb) matrix, and b is the number of the base dynamic parameters.

From the above equation, we deduce that the ith column of ®, denoted by @, is
equal to:

@ = I(q, §, § withy; = 1, %;=0forj#i) (12.19]

Consequently, @' can be computed using a specialized version of the inverse
dynamic model in which the dynamic parameters are assumed to be x; = 1, x; = 0 for
j # i. To increase the efficiency of this algorithm, we use the customized symbolic
technique, taking into account that the forward recursive equations are the same for
all the columns @'. Moreover, we note that this customized symbolic technique is
convenient for the computation of the observation matrix using an array multiply
operator (.* of Matlab). Collecting (q, q, §, ;) for a sufficient large number of
points i = 1, ..., e on a given trajectory, and using equation [12.19], we can construct
the following overdetermined system of equations:

YD) = W, g9 x+p (12.20]

with:



Identification of the dynamic parameters 301

(1) o)
Y=|..lw=]|.. (1221
I(e) P(e)

such that:
* r=nxe>>b
+ O() = Pl(q, 4, )
* (4.4 @ = 9t 9, §&)
» TG) = I(y)

In order to eliminate high frequency noise out of torque signals, we filter the
vector Y and the columns of the observation matrix W. The values obtained are then
decimated at a low rate. This procedure is known as parallel filtering [Richalet 98).
For the identification of the Acma SR400 robot [Restrepo 96], the authors used a
low-pass Tchebychev filter of order 8 with a cut-off frequency of 40 Hz. The filtered
signal was then decimated at order 10. The "decimate” procedure of Matlab (Signal
Processing ToolBox) can be used to carry out these two steps.

12.5. Other approaches to the dynamic identification model

In this section, we present two different approaches to develop the identification
model. The first is sequential and is based on a link-by-link identification starting
from the terminal link. The second approach makes use of a filtered dynamic model,
which is a function of q and q, and no more of §. The two approaches can be
combined to obtain a filtered sequential dynamic identification model.

12.5.1. Sequential formulation of the dynamic model

Since the torque of joint j is independent of the dynamic parameters of links |,
... j—=1 (property d, § 9.3.3.3), we can write the dynamic model [12.18] such that the
matrix ® is upper-block triangular:

I 11912 D11 D1 | [Tyt

Iy 0 $1..02,.9; 2
= Gl (12.22]

0.y :

I, 0 0. 0 &Ly
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where ¥ contains the identifiable parameters of both link and actuator j, and ®;; is
the row vector to be multiplied by ¥ in the equation for I';.

This form of the dynamic equation can be exploited to estimate the dynamic
parameters of each link individually, starting sequentially from link n and proceeding
back to link 1. Thus, the dynamic parameters of link j are known when considering
the torque equation of link j— 1. This sequential procedure reduces the number of the
dynamic parameters that must be estimated at each step. The method can be
summarized as follows:

— identify the base parameters of link n, %%, using the dynamic equation of joint
n on a sufficient number of points:

[y = Opn(q, 4, § X" [12.23]

— then, identify %21 using the torque equation of joint n— 1 assuming %" to be
known:

o1 = ®na10(q 4.9 Qn = ®n.1 010G 4. 9) x“" {12.24]

— and so on until the estimation of the parameters of link 1.

Since the vector @;; is independent of the positions, velocities and accelerations
of joints j+ 1, ..., n, we can lock these joints while identifying the parameters of link
j. Furthermore, the number of points needed for the identification is significantly
reduced with respect to the global method, owing to the reduced number of
parameters. Consequently, the problem of planning an exciting trajectory is greatly
simplified.

The main drawback of this method is the possible accumulation of errors from
one step to the next. To overcome this problem, a weighted least-squares solution
can be used [Gautier 97].

12.5.2. Filtered dynamic model (reduced order dynamic model)

We can avoid calculating the joint accelerations by applying to the dynamic
cquations a low-pass filter of at least second order with unit gain at zero frequency
[Aubin 91]. This approach has also been used for adaptive control schemes [Slotine
87], [Middleton 88]. To develop the new model, let us expand equation [12.18] to
isolate the elements that are functions of the joint accelerations:
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I=[ANQ) G .. A™(q)q) K+ Hx(q, §) K + diag(sign(q)) F. + diag(q) F,
[12.25]

where K is the (mx1) vector of the base inertial parameters with m = b~2n; Aj is the
(nxn) matrix of the coefficients of the inertial parameter K;in the robot inertia matrix
A; Hj is the (nxm) matrix of the coefficients of the inertial parameters in the
centrifugal, Coriolis and gravity terms; diag(u) is a diagonal matrix whose diagonal
elements are composed of the elements of the vector u; Fe = [F; ... Fes]Tand F, =
[Fy; ... FynlT are the friction parameters.

The vector AJ § can be written as:

d .. .,
Alj=gAqg -Alg (12.26)
Using equations [12.25] and [12.26], we obtain:

' = ['a't' Bl(q, q) + B2(q, @)] K + diag(sign(q)) F. + diag(q) F, (12.27)

with:
d

* d * » 1]
Bl(q. = [;(A'd GH(AZD ... (%(A“‘ )
B2q. 9 = [-A'§G -A2§ .. —Am g1+ Hyq, @

Applying the Laplace transformation of the filter F(s) to equation [12.27] yields:
F(s)T" = [sF(s) B1(q, q) + F(s) B2(q, )} K +
F(s) diag(sign(q)) F¢ + F(s) diag(q) Fy [12.28)

In [Aubin 91], the following second order filter was proposed:

82
(s+a)?

F(s) = [12.29]

The cut-off frequency value "a" should be chosen to be sufficiently large to
maintain the dynamic behavior of the robot while rejecting the high frequency
components (10 < a £40).

Using equation [12.27) on a sufficient number of points leads to the
overdetermined system of equations:
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K
Y = [(;‘,’;wuwz) w3 w4l Fel+p [12.30]
Fy

In practice, the application of F(s) is carried out in equation {12.30] as follows:
- numerically differentiating W1 using a central difference algorithm;
— using the "decimate” function of Matlab on W1,Y, W2, W3, and W4.

JThe least-squares solution is applied to the filtered model to estimate the values
of K, F and F,.

The computation of equation [12.28] requires the symbolic expressions of Al
and A, for j= 1, ..., m. For a robot with more than three degrees of freedom, these
expressions are dramatically complex. To overcome this difficulty, we propose to
develop the filtered dynamic model starting from the Lagrange equation [9.4]
[Khalil 96a]. In fact, taking into account the friction effects, the Lagrange equation
can be written as:

r= d%_ag__%i_ + %«* diag(sign(Q)) F + diag(q) F, (12313
04

Since the energy is linear in the inertial parameters (§ 9.4), we can write:

{E =eq K (12.32]
U=u(q) K

where E and U are the kinetic energy and potential energy of the robot respectively.

The elements of the row vector e are obtained using equations [9.44] and [9.25].
Consequently, we can write:
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1
eXX) =2 W1, O
exyj =W ;Wy;
exzj = O 03,

1
eyyj =7 (W)
eyzj =W,

|

\ =301
emxj =g V- 2 V3
eMmyj =@y V3j-3;Vy
emzj = Wy V= V2

My =3 VTV,

L.,
Lelaj =2 gj
wherejn)j =fw; wy; (1)3J]T and jVj =[V; Vi V3J]T.
The elements of the row vector u are obtained from equation [9.25] as:

(uxxj = Uxyj=...=uzzj=0
umx; = - %7 Os;

J umy; = - g On;

umz; = - %87 Oa;

umj = - 0o T OPj
\ujy =0

[12.33]

(12.34]

where Os;, On;, Oa; and OP; are the (3x1) vectors appearing in the transformation

matrix oTj and g is the acceleration of gravity.

Thus, equation [12.31] can be written as:
d . . _— .
' = [§; Bl(q, @) + B2(q, @] K + diag(sign(q)) F, + diag(g) F,
with:

-
Bl(q.q) = —
oq

{12.35]

{12.36]
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.. ou Qe
B24.9) = 59~ 3q [12.37)

Since the expressions for the velocity vectors jVj and jn)j are not so complicated,
even for a six degree-of-freedom robot, we can symbolically compute B1 and B2.
We can also make use of efficient recursive algorithms to compute them using
customized symbolic techniques [Stepanenko 93], [Khalil 96a]. However, the
computational burden of the filtered dynamic model is still higher than that of the
dynamic model.

12.6. Energy (or integral) identification model

In order to avoid the calculation of the joint accelerations, a model based on

energy theorem has been proposed [Gautier 88]. In addition, this model has the
following advantages:

~ it is linear in the dynamic parameters, and the corresponding base dynamic
parameters are the same as those of the dynamic model;

— the planning of an exciting trajectory is easier than for the dynamic model;

— the computation of the observation matrix is easier than that using the dynamic
model.

12.6.1. Principle of the energy model

The energy (or integral) model is based on the energy theorem, which states that
the total mechanical energy applied to the robot is equal to the sum of potential and
kinetic energy contained in the system.

Let the total energy of the system, also termed Hamiltonian, be denoted by
H = E + U. From the energy theorem, we can write (§ 14.5.2):

dH = TT dq [12.38]

dH = TTqdt [12.39]
where:

T = I - diag(sign(y)) F - diag(q) F, [12.40)

After integration:
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L)
y= fTTt'ldt = H(ty) - H(ty) = AH (12.41]

ta

The total energy of the system can be written as equation [9.41]:
H=[l .. b ][KT ... KT]T=hK [12.42]

where K; is the vector of the base inertial parameters of link j, and by is the row
vector of the energy functions such that h; = ¢; + u;.

Hence, the energy equation is linear in the dynamic parameters of the robot. The
expressions of the elements of h; are given by equations [12.33] and [12.34].
Substituting equation [12.42] into equation [12.41] yields the scalar identification
model:

th K
y = fl"T(idt = [ Ah Afc Afv ] Fc [l243]
ta F,
with:
Ah = h(ty) - h(ty) [12.44)
tp
At = S g; sign(q;) dt [12.45]
ta
th
Aty = fa2dt [12.46]
ta
Afc = [ Afc] Iy Afcn] [12‘47]
Af, = [ Afyr ... Afy ] [12.48]

Applying equation [12.43] to a sufficient number of intervals ab(i) and collecting
the corresponding (I', q, §)an), We obtain a linear system of r equations in b
unknowns such that r>> b, where b is the number of base dynamic parameters:

K

YT, Q) = W(g, @ Fel+p (12.49]
Fy
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with:
y(1) Ah(1) Af (1) Af.(1)
Y=|.. | W=
y(r) Ah(r) Af(r) Af,(r)
* Ah(i) = h{(q, @iyl - h{(q, @agi)]
*(q Qagy = [9(ta))s 4(tay)

*(q, Dy = [qtwey: Atugy)
th(i)
e y(@i) = fl‘Tédt

ta(i)

The leaat-sguares ,Solution of equation [12.49] gives the estimated dynamic
parameters K, F. and F,.

12.6.2. Power model

The integrator appearing in the energy model is an infinite-gain filter at zero
frequency. This means that small low-frequency errors such as offsets can produce
large errors. To overcome this problem, we can make use of the differential equation

[12.39] instead of the integral one [Gautier 96]. This leads to the power model,
which is written as:

ITq = S MK) + 47 [diag(sign(@) F, + diag@ F,] (12.50]

or, in a linear form with respect to the dynamic parameters:

K
d
ITq = [gh q"diagGsign(@) 7 diag(@)] | Fe [12.51]
Fy
Using a sufficient number of points, we obtain the system of linear equations:

K

d
Y=[zwt w2 w3llFclsp (12.52)
F,
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As we did for the filtered dynamic model (§ 12.5.2), we process the columns Y,
W2 and W3 using a low-pass filter F(s), while the columns of W1 are filtered by
sF(s). In practice, this process can be carried out using a central difference algorithm
to obtain the time derivative of W1, then by using the "decimate” function of Matlab
to filter all the model. The least-squares solution can then be used to estimate the
dynamic parameters.

Another advantage of the power model with respect to the integral model comes
from the fact that it is calculated for each point of the trajectory such that the
problem of determining the integration period [ty — t,] is avoided.

Before closing this section, we note that the energy and the power identification
methods do not minimize the torque errors. Thus, minimum equation errors with
these models do not guarantee that the torques will be correctly evaluated using the
identified parameters. Therefore, when using these methods, the results must be
validated by comparing the real torques and the prediction torques (inverse dynamic
model) on a test trajectory.

12.7. Recommendations for experimental application

For experimental application of the identification algorithms, the following
recommendations and remarks should be taken into account:

~ the dynamic model consists of as many equations as the number of joints,
while the energy (or power) model is composed of a single one. Thus, the
dynamic model is basically more exciting and the energy model is more
sensitive to the use of exciting trajectories;

— the energy identification method is robust with respect to high frequency
perturbation, thus less sensitive to the filtering parameters (cut-off frequency,
order of the filter). On the contrary, the dynamic identification model is more
sensitive to the filtering parameters and to the quality of estimating the joint
velocities and accelerations;

— after filtering the joint positions, the joint velocities and accelerations should
be obtained with a central difference algorithm to avoid phase lag;

- when using the dynamic identification model, we must filter the vector of
measured torques in order to reject the high frequency ripples. The same filter
must be applied to the columns of the observation matrix. This process is
called parallel filtering. We note that parallel filtering is automatically
incorporated in the filtered dynamic model (reduced order dynamic model);

— it may appear that the filtered dynamic model has the advantages of the
dynamic model (number of equations equal to the number of joints) and that
of the energy model (no joint accelerations are needed). However, if the
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dynamic model is correctly processed, it gives equivalent results to the
filtered dynamic model [Restrepo 96];

in the case of robots with several degrees of freedom, six for instance, it is
recommended to carry out the identification sequentially in two steps: first,
identify the parameters of the wrist links, then, identify the parameters of the
shoulder links while locking the wrist joints and assuming that the wrist
parameters are known. This procedure is especially efficient because the
dimensions of the wrist links are generally not in the same order of magnitude
as those of the shoulder;

the number of equations must be at least 500 times the number of parameters
to identify;

the filtering parameters (cut-off frequency, order of the filter, ...) can be
determined by simulating the identification method;

the relative standard deviation given by equation [12.10] can be used as a
criterion to measure the identification quality of a parameter. If the relative
standard deviation of a parameter is greater than ten times the minimum
relative standard deviation value, this parameter can be considered as poorly
identified. Thus, either this parameter has not been sufficiently excited or its
contribution to the model is negligible. If the same result is obtained with
different trajectories, and if the value of this parameter is relatively small with
respect to the other parameters, we can cancel this parameter and define a new
set of essential parameters that can be better identified [Pham 91b);

in order to validate the results obtained, the following tests can be carried out:

- direct validation on the identification trajectory, by calculating the error
vector;

- cross validation on a new trajectory that has not been used for the
identification;

- verify that the inertia matrix of the robot computed with the estimated
parameters is positive definite [Yoshida 00];

- identification of the dynamic parameters twice: without load, and with a
known load, to verify if the load parameter values can be correctly estimated;

- carrying out the identification using different methods — dynamic model,
filtered dynamic model and power model - to compare the resulits;

- realizing a simulator of the robot using the identified parameters and
comparing the response of the real robot with that of the simulator.

Conclusion

In this chapter, we have addressed the problem of identification of the dynamic
parameters of robots. We have proposed several methods that are linear in these
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parameters and have the same set of base dynamic parameters. The filtered dynamic
model, the energy model and the power model do not need the joint accelerations.
Other identification methods, which have not been treated in this chapter, can be
found in the literature, namely the method based on the minimization of the error
between the measured and calculated reaction wrench (forces and moments) on the
base of the robot [West 89}, [Raucent 92}, [Geffard 00] and the method based on the
use of the extended Kalman filter [Guglielmi 87}, [Poignet 00].

We have presented different criteria to measure the excitation of a given
trajectory. We have pointed out that the dynamic and filtered dynamic models are
basically more exciting than the energy and power models.

Having laid the foundation to identify the dynamic parameters, we can now
proceed further with the generation of reference trajectories and the control schemes
to track them.



Chapter 13

Trajectory generation

13.1. Introduction

A robotic motion task is specified by defining a path along which the robot must
move. A path is a sequence of points defined either in task coordinates (end-effector
coordinates) or in joint coordinates. The issue of trajectory generation is to compute
for the control system the desired reference joint or end-effector variables as
functions of time such that the robot tracks the desired path. Thus, a trajectory refers
to a path and a time history along the path.

The trajectories of a robot can be classified as follows:

- trajectory between two points with free path between them;

- trajectory between two points via a sequence of desired intermediate points,
also called via points, with free paths between via points;

- trajectory between two points with constrained path between the points
(straight line segment for instance);

— ftrajectory between two points via intermediate points with constrained paths
between the via points.

In the first two classes, the trajectory is generally generated in the joint space. In
the last two classes, it is better to generate the trajectory in the task space.

In the next sections, we present trajectory generation techniques related to this
classification, but we first analyze the reasons that motivate the choice of either the
joint space or the task space for the generation.
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13.2. Trajectory generation and control loops

The two approaches to trajectory generation — in the joint space and in the task
space ~ are illustrated in Figures 13.1 and 13.2 (superscripts i and f designate the
initial and final values respectively).

f .
q Trajectory | q(t) +
—P»1 generation C?::vml —p»t Robot |
inq -
q T
Figure 13.1. Trajectory generation in the joint space
xf | Trajectory |xq) aw X + py—
——P»1 pgeneration 91 IGM g Robot {1
inX - law
xi f qi
DGM

Figure 13.2. Trajectory generation in the task space

Trajectory generation in the joint space presents several advantages:

— it requires fewer on-line computations, since there is no need to compute the
inverse geometric or kinematic models;

— the trajectory is not affected by crossing singular configurations;
-~ maximum velocities and torques are determined from actuator data sheets.

The drawback is that the corresponding end-effector path in the task space is not
predictable, although it is repetitive, which increases risk of undesirable collisions
when the robot works in a cluttered environment. In conclusion, the joint space
scheme is appropriate to achieve fast motions in a free space.

Trajectory generation in the task space permits prediction of the geometry of the
path. It has, however, a number of disadvantages:

— it may fail when the computed trajectory crosses a singular configuration;

- it fails when the generated points are out of the joint limits or when the robot
is forced to change its current aspect (§ 5.7.4);
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~ velocities and accelerations of the task coordinates depend on the robot
configuration. Lower bounds are generally used such that joint velocity and
torque limits are satisfied. Consequently, the robot may work under its
nominal performance.

The choice of a trajectory generation scheme depends on the application at hand.
Each approach has its own limits, due to the fact that constraints are specified either
in the joint space (velocities, torques, joint limits), or in the task space (accuracy,
geometry of obstacles). Accounting for these remarks, the first two sections cover
the problem of trajectory generation between two points in the joint space and the
task space respectively. The last section extends the results to trajectory generation
between several points.

13.3. Point-to-point trajectory in the joint space

We consider a robot with n degrees of freedom. Let qi and qf be the joint
coordinate vectors corresponding to the initial and final configurations. Let k, and
k, be the vectors of maximum joint velocities and maximum joint accelerations
respectively. The value of ky; can be exactly computed from the actuator
specifications and transmission ratios, while the value of k,; is approximated by the
ratio of the maximum actuator torque to the maximum joint inertia (upper bound of
the diagonal element Ajj of the inertia matrix defined in Chapter 9). Once the
trajectory has been computed with these kinematic constraints, we can proceed to a
time scaling in order to better match the maximum joint torques using the dynamic

mode! [Hollerbach 84a]).
The trajectory between g and qf is determined by the following equation:

qt) = gi+r)D for 0<t<tg (13.1]
qt = (D (13.2)

with D = qf - qi.
The boundary conditions of the interpolation function t(t) are given by:

r0)=0
rit) = 1

Equation [13.1] can also be written as:

q® = qf®-[1-r®]D [13.3]
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which is more appropriate for tracking moving objects where qf is time-varying
[Taylor 79). In this case, D = qf(0) - gf.

Several interpolation functions can provide a trajectory such that q(0) = q! and
q(tp = qf. We will study successively the polynomial interpolation, the so-called
bang-bang acceleration profile, and the bang-bang profile with a constant velocity
phase termed trapeze velocity profile.

13.3.1. Polynomial interpolation

The most commonly used polynomials are the linear interpolation, the third

degree polynomials (cubic) and the fifth degree polynomials (quintic).

13.3.1.1. Linear interpolation

The trajectory of each joint is described by a linear equation in time. The
equation of the joint position is written as:

.t
q(t) = q‘+t-fD [13.4)

With this trajectory, the position is continuous but not the velocity. This induces
undesirable vibrations on the robot and may cause early wear and tear of the
mechanical parts.

13.3.1.2. Cubic polynomial

If the initial and final velocities are also set to zero, the minimum degree of the
polynomial satisfying the constraints is at least three, and has the form:

q(t) = ag+ at + as? + ast3 [13.5)

The coefficients a; are determined from the following boundary conditions:
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< az=';3;D (13.6]

2
=-—=D
(=78

The expression [13.5] can also be written under the form [13.1) or [13.3} with
the following interpolation function:

0 = 3G -2¢)° (13.7]

The cubic polynomial ensures the continuity of velocity but not of acceleration.
Practically, the industrial robots are sufficiently rigid so that this discontinuity is
filtered by the mechanical structure. Therefore, such a trajectory is generally
satisfactory for most applications.

Figure 13.3 shows the position, velocity and acceleration profiles for joint j. The
velocity is maximum at t = t¢/ 2 and its magnitude is given by:

. 3/t £
marl = S with 1Dy =lgf -] (138

The maximum acceleration occurs at t = 0 and t = t¢ with the magnitude:

6|D;
Kjmaxl = 'ljz’l [139]

13.3.1.3. Quintic polynomial

For high speed robots or when a robot is handling heavy or delicate loads, it is
worth ensuring the continuity of accelerations as well, in order to avoid exciting
resonances in the mechanics. The trajectory is said to be of class C2. Since six
constraints have to be satisfied, the interpolation requires a polynomial of at least
fifth degree [Binford 77}. The additional two constraints are written as:

{q(O) =0 (13.10]

dtp=0
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Figure 13.3. Position, velocity and acceleration profiles for a cubic polynomial
Solving for the six constraints yields the following interpolation function:
13 1.4 t.5
r(t) = lO(tf) -15 (tf) +6 (tf) [13.11]

The position, velocity and acceleration with respect to time for joint j are plotted
in Figure 13.4. Maximum velocity and acceleration are given by:

* 15 lD.,
jmadd = “F & [13.12]
10 D{

ﬁjmaxl = ,\,3 t2 [13.13]
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Figure 13.4. Position, velocity and acceleration profiles for a quintic polynomial

13.3.1.4. Computation of the minimum traveling time

Generally, the duration t; of a trajectory is not specified. The goal is to minimize
the time to travel from the initial configuration qi to the final one gf while satisfying
velocity and acceleration constraints. The approach is to compute the minimum time
separately for each joint, and then to synchronize all the joints at a common time.

The minimum traveling time tg for joint j occurs if either the velocity or the
acceleration is saturated during the trajectory. This minimum time is computed from
the maximum magnitudes of velocity and acceleration of the different polynomial
interpolation functions (Table 13.1). The global minimum traveling time t; is equal
to the largest minimum time:

te = max (tfy, ..., tg,) (13.14)
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Table 13.1. Minimum traveling time for joint j

Interpolation function Minimum time
Linear interpolation th = ol
) kvj
. . 6 |D;|
bic polynomial B 2. Iy (127
Cubic polynomi tf = max [2 o o ]
Quintic polynomial tf = max .15_‘Djl’ M
! 8 kyj V3 kaj
Bang-bang profile (§ 13.3.2) tf = max [i.u.).l'. 2 Ell]
J kyj ’ kaj

13.3.2. Bang-bang acceleration profile

A bang-bang acceleration profile consists of a constant acceleration phase until
t¢/ 2 followed by a constant deceleration phase (Figure 13.5). The initial and final
velocities are zero. Thus, the trajectory is continuous in position and velocity, but
discontinuous in acceleration.

The position is given by:
. t2 i
q(t)=q‘+2(;;) D forO<t<3
. - [13.15)
q(t)=qi+[—l+4(§)-2(t—')]D for2<t<
For joint j, the maximum velocity and acceleration are given by:
ID l
Rjmaxl = (13.16]
|D‘ 13.17

The minimum traveling time is obtained as for a polynomial trajectory (Table
13.1).
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Figure 13.5. Bang-bang velocity profile

13.3.3. Trapeze velocity profile

With a bang-bang profile, when the velocity reaches its maximum, adding a
constant velocity phase would allow us to saturate also the acceleration and to
minimize the traveling time (Figure 13.6). According to equations [13.16] and
[13.17], the condition to have a constant velocity phase on joint j is such that:

k.2
D}l > TV: (13.18]

The trapeze velocity trajectory results in the minimum traveling time among
those providing the continuity of velocity. The joint j trajectory (Figure 13.7) is
represented by the following equations:
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qj(t)=q;+%t2 kyjsign (D)) for0<t<7y
=q ki ky; si fi <t< [13.19
qj(t) = qj + (t—3) ky; sign (D)) forgj<t<tg-7; 19]

f 1 .
qj(t) = g; - 3 (tg — )2 ky sign (D;) for t5-7 <t <t

with:
L (13.20]
A I kaj *
Y | .
Saturated velocity
kvj and acceleration
Non-saturated
/ acceleration
k..
aj
-
g * g ot
kaj
>
t

Figure 13.6. Trapeze velocity profile versus bang-bang acceleration profile

The area of the trapeze under the velocity curve is equal to the distance traveled
in the interval [0, tgl, which can be written as:

PR Y Y E‘.’.IE
D}l = laj - gl = 2fk,jtdt + fkvjdt = kyjt5- » [13.21]
0 1
i}

Hence, the minimum time for joint j is given by:

ky Dy Dy
- AJ —_— .
5 = —lkaj +'—Lkvj = TJ+_-Lkvj [13.22]
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Figure 13.7. Position, velocity and acceleration profiles for a trapeze trajectory

In order to synchronize the joint trajectories, we present in the following a
method giving homothetical trajectories with the same acceleration and deceleration
duration for all joints. Such a method is the most common in use in industrial robot
controllers. Let us designate by o the ratio between the velocity profile of joint j and
an arbitrary joint k. We can write that (Figure 13.8):

g = a() forj=1,..,n [13.23)

Doing this, the duration T of the acceleration phase of the synchronized
trajectories is a priori not equal to any optimal T; computed for each joint separately
(equation [13.20]).

Let A; ky;j be the maximum velocity of the synchronized trajectory for joint j and
let v; k;; be the corresponding maximum acceleration. To calculate the optimal T,
resulting in a minimum time t; let us first solve the problem for two joints.
According to equation [13.22], the minimum traveling time for each joint, if
calculated separately, should be:
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e
f1=T+%,

_ l.D_Zl (13.24]

)

élj=0tj"1k

-
i t
Figure 13.8. Homothetical velocity profiles
The synchronized trajectories should be such that:
Aikvi  Dif  Akyz Dy
= = +T 13.25
f V1K, * A'lkvl Uzka2 )"ZkVZ [ ]
with t¢> max (t4;, t52)-
From equation [13.25], it is straightforward to obtain:
Mkvi  Akyp
[ = —— = === 13.26
Urkap  V2ka2 [13.26]
kvl|D2|
Ay = A k2D {13.27]
ka1[Da|
V; =Yg F:Zl_D-I_I [13.28]

The velocity constraints imply that:
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0<A <1 13.29
0<A <1 (13.29]
Combining the last inequality with equation [13.27] yields:
ky2|Dy
0<A s kzn}Dz: [13.30]
Likewise, from the acceleration constraints, we get:
0<v; <1
ka2[Dy| [13.31]

00 S} R

The minimum time t; is obtained when the parameters Ay and v, are the largest
and satisfy simultaneously the above constraints, which results in:

[ kv2lDy|
M= mm[l, ky1[Dy]

ka:IDd]

[13.32]
Uy = min [1’ ka1[D2)

and the corresponding duration of the acceleration phase is:

T = — [13.33)

These equations are easily generalized for n joints:

kyiiDy[1
- i vitl
A.‘ = mm[l, ky]'Dle

forj=2,...n (13.34]
kD |]

= mi ajil
Vi =min [l, ka||DJI

assuming that Dy # 0 and D; # 0.

NOTE.~ If, for a given joint j, the distance |Dj} is such that the maximum velocity ky;
cannot be attained, we replace in the above formulas the term ki; by the maximum
achievable velocity. According to equation [13.18], this occurs when:
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Dl < % ai

which implies that the maximum achievable velocity is:

Ky =\ ky [13.35)

13.3.4. Continuous acceleration profile with constant velocity phase

We can modify the previous method to have a continuous trajectory in
acceleration by replacing the acceleration and deceleration phases either by a second
degree polynomial (Figure 13.9a) or by a trapeze acceleration profile (Figure 13.9b)
[Castain 84). In the following, we detail the first approach, which is simpler to
implement. Let ' be the new duration of the acceleration and let A; ky; be the
maximum velocity of the trapeze profile. The boundary conditions for joint j are
defined as:

G
Ajkyj 7 ~7
T ter t T thet t
qu A
vj kaj
T‘+h. T"+h"
III L ’ 7][1 >
tv t T" t
a) b)

Figure 13.9. Modification of the acceleration of the trapeze profile to ensure
a continuous acceleration
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(4j0) =g,
§j(0)=0

4 §i(7) = A; ky; sign(Dy) [13.36)
4;(0)=0
\§j(t)=0

From these constraints, we derive the equations of position, velocity and
acceleration of joint j for 1 <j <nas 0 <t<17'as follows:

i 1 1
9(t) = qj— 23 A kyj sign(Dy) (5 t-1) ¢ [13.37)
. 1 ,
G = - ;37\3 ky; sign(Dy) (2t - 31) 2 [13.38]
4;0 = -;%7\1 ky; sign(Dy) (t- ) t [13.39)

The acceleration is maximum at t = 1'/2 and its magnitude is:

Ko
[Gjmaxl = ‘3'}’,7“ [13.40]

If we take for |Gimaxl the value v; ky; of the velocity trapeze profile, all the joints
have the same synchronized duration of acceleration such that:

3Nk
Y ok [13.41]

Hence, the duration of the acceleration phase is 1.5 times that with a constant

acceleration. The joint position equation corresponding to the constant velocity
phase, given a duration It is as follows:

qi(t) = qi(r) + (t=1") Ajky;sign(D)) forv'<t<t'+h' [13.42]



328 Modeling, identification and control of robots

Assuming that the acceleration and deceleration phases are symmetrical
(t'r= 27" + h'), the trajectory corresponding to the deceleration phase is defined in the
interval T' + h' <t <tas:

4 f 1 1 v . e . . .
qi(t) = qj + 3 [3(t- 3¢ W)t~ 7'~ ')’ + (2t~ 37~ 2h)] Agky;sign(Dy)

4 gj(t) = [-3,3- (2t- 57 - 2h')(t -7 - W) + 1] Ajky;sign(D;) [13.43)

. 6 .
[ 80 =75 =20~ W)= -h) Ak, jsign(Dy)

According to equations [13.37] and [13.41], it should be noted that the distance
traveled during the acceleration phase is equal to:

i 3N kv')2
a0l = 35

= [13.44]
4 Vjky
By computing the area under the velocity curve, we verify that:
teg=1 +—l9i {13.45]
Ajky

This expression is similar to equation [13.22] giving the traveling time for the
trapeze profile, which suggests that the computation of A; and v; can be achieved
with equations [13.32]. We note as well that to saturate the velocity and the
acceleration of a joint trajectory, the distance to travel must be such that:

3k
P > 3%, [13.46)

If this condition is not verified, we replace ki; in equations [13.34] and [13.36]
by the maximum achievable velocity:

2
Ky = \/ 3D}l ky [13.47)
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13.4. Point-to-point trajectory in the task space

Let OT}; and 01{; be the homogeneous transformations describing the initial and
final desired locations respectively. For convenience, let us note:

i Ai Pi ¢ Af Pf
OTB= and 0TE=
000 1 000 1

The most common way to move from one location to the other is to iplit the
motion into a linear translation between the origins of frames °Tg and T, and a
rotation o around an axis of the end-effector Eu to align Al and Af. The translation
and the rotation should be synchronized.

The distance to travel for the translation is obtained as:

. f i f i f i
D = |Pf-Pi| = A/}~ P2+ @} - P2+ f-P))2 [13.48)
The terms u and o are computed from the equation:
Alrot(u, o) = Af [13.49)

where we recall that rot(u, o) is a (3x3) rotation matrix corresponding to a rotation
of an angle o about a vector u. Hence, we get:

§iT sisf sinf siaf
rot(u, @) = [Ai]TAf=| niT|[[ s nf af ] ={ nisf ninf nlaf {13.50}
alT . . .
aist alnf alaf

the symbol "." designating the dot product. Using equations [2.34] through [2.37]
yields:

rCot = % [sisf + ninf+aial - 1]

So.= %\/ (ai.nf-n'af)? + (s'af - alsh)? + (nisf - si.nh)?2

A\

o = atan2(Sa, Car) [13.51]

I ainf-nia
| ciaf_ aicf
\u =% s.a'~als

ni.sf - si.nf

When Sa is small, the vector u is computed as indicated in § 2.3.8.
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Let ky; and k,; be the maximum velocity and acceleration for the translation
motion, and let ky; and k;7 be the maximum velocity and acceleration for the
rotation motion. The methods described in § 13.3 can be used to generate a
synchronized trajectory for the two variables D and o, resulting in the minimum tlme
te. The trajectory of the end-effector frame is given by:

A P
OTg(t) = [ 0 0 0 1 } [13.52]
with:
P(t) = Pi+%l(Pf—Pi) = P +1(t) (Pf - PY) [13.53)
A@®) = Al rot(u, r(t) o) [13.54)

where s(t) = D r(t) is the curvilinear distance traveled at time t and r(t) is the
interpolation function.

NOTES.~

-~ we can specify the rotation from Al to Af with the three Euler angles ¢, 6 and
y. Let (¢4, 0, y) and (¢f, 6f, ) designate the Euler angles corresponding to
Aiand Af respectively. Thus, equation [13.54] is replaced by:

A(t) = Al rot(z, ¢! + r(t) ¢) rot(x, 6 + r(t) 6) rot(z, ¥ + r(t) y) [13.55]
with ¢ = ¢f - ¢!, 0 = 6f — 61, y = yf — yi. The computation of ¢, 8 and y can

be carried out as described in § 3.6.1. Thus, we have to deal with four
variables: D, ¢, 8 and y;

—~ we can also choose to specify the rotation around an axis that is fixed with
respect to frame Ry. In this case, u and « are calculated by solving:

rot(u, a) Al = Af [13.56]

~ the angular velocity @ of the end-effector, with respect to the frame where u is
defined, is such that:

o=uit)o = wu [13.57]
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13.5. Trajectory generation with via points

We now consider the problem of generating a trajectory when the path includes
via points. These via points are inserted between the initial and final points in order
to avoid collisions between the robot and its environment. Passing through the via
points without stopping reduces the traveling time.

For each variable (joint or Cartesian), we can calculate a single polynomial
passing through these points and satisfying the boundary conditions. However, the
use of such a polynomial is difficult to exploit with increasing the number of points.
Splitting the trajectory in low degree polynomials between the path points provides
an elegant way of overcoming this problem and reduces the computational burden of
trajectory generation.

In this section, we present three methods based on this principle. The first
method consists of specifying linear interpolations with continuous acceleration
blends; in the second method, the trajectory between two consecutive points is
interpolated by a cubic spline providing continuity of velocity and acceleration; in
the third method, the path generation is totally decoupled from the specification of
the time history along the path, which gives the possibility of modifying at run-time
the velocity of the robot while tracking the desired path.

13.5.1. Linear interpolations with continuous acceleration blends

This method can be used for both trajectory generation schemes in the joint
space and in the task space. The via points are connected by straight line segments at
constant velocity, and the segments are connected around each via point by
continuous acceleration motions. This approach was initially described in
[Taylor 79], [Paul 81]. The trajectory can be computed on-line, by only looking
ahead at a single point. Experimental methods to identify this type of trajectories on
a Puma robot have been proposed by [Blanchon 87], {Tondu 94}, {Douss 96).

13.5.1.1. Joint space scheme

Let the path be represented by the configurations q!, q2, ..., q™ L q™ First,
according to the method presented in § 13.3.3, we compute the terrm A. v; and 1’
for the segment k between points g and gk*!, fork = 1, .., m-1, assummg zero
velocity at the points.

The constant velocity on the segment k, denoted by g qJ , is such that:

& = A kysign(@}) forj=1,..n [13.58)
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. k k+1 k

This velocity allows us, if necessary, to stop at point k + 1 without overshooting.
If we assume a constant velocity along the segment k (Figure 13.10), the common
traveling time hy on this segment is given by:

D
hy=— forj=1,..n [13.59]
9

To generate a smooth trajectory without stopping at the via points, we connect
the trajectories at segments k — 1 and k by a blend (Figure 13.10). The duration of
the blend region at point k is equal to 2Ty. If a velocity continuity is only
satisfactory, we can specify a constant acceleration along the blend. Otherwise, it is
necessary to use a second degree function providing acceleration continuity. We
describe here such a solution, which is a generalization to the one used for a point-
to-point trajectory (equations [13.36] through {13.44]). The blend region is traveled
at maximum acceleration for each joint in order that the obtained path is as close as
possible to the via point. As will be verified further, the blend time is given by:

k .!(-II
K fork=2,...m-landj=1,...n [13.60]
aj

Thus, the blend times are not identical for all joints. The joints are only
synchronized at the blends around the initial and final points where we can use
equation [13.41] giving Ty j = 7,/2.

Let q;, and q;b be the positions of joint j at the beginning and at the end of the
blend region around point k respectively (Figure 13.11):

qk "Q'k—Tk' fl!‘-l
i 4 fork=1,...,m [13.61]
Qip=9; +Tk; qj

For convenience, Ty ; will be denoted by Ty. The equation of the linear motion of
joint j at segment k (Figure 13.10) is given by:

Q) = C-t-TOG +qf  forty+2TSt<tyyy [13.62]

with:
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h) hy ~ hpy

Figure 13.10. Linear interpolations with continuous acceleration blends
(joint space)

k-1
=Ty =T+ 3 ()
E, " fork=2,..,m [13.63]

t;=0

We now consider the blend region around point k. Writing the boundary
conditions gives:

k
(9t =4j,
k
qj(tx+2Ty = q;y
. Lkl
qj(t) =g
9. " fork=1,...,m (13.64)
Qj(tx+2Ty) = g;
gjt =0
\Gj(tx+2T) =0

‘ 11 m
with gj(ty) = qj = aj, and Qj(tm +2Te) = ;" =3

Due to the symmetry, the trajectory of joint j along the blend segment k, when it
exists (Ty # 0), is given by the following fourth degree polynomial:

k 1 K Lkl k-1
gj(t) = q; 'm(t"k)3_(t‘tk‘4Tk) G -q )+(t-%-To g [13.65]
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withty <t <ty +2Tyand 1 <k <m.

m
®4; =90
m
k Q/ e
m-]
%b ,° T
‘m-l
K 9
9
Figure 13.11. Notations

The corresponding velocity and acceleration equations are as follows:

. k- 1 K uk-

40 = § -3y - W - 43T @ -4 ) [13.66)
o 3 ko k-

60 = -3 W - %= 2T G -§ ) [13.67]

The acceleration is maximum at t = t, + Ty and has the magnitude:

. 3 ..x k!
hj(t)maxl = Z-'I-‘Ilqj —9q; | [13.68]

This expression has been used to calculate Ty in terms of the maximum
acceleration k,; (equation [13.60]).
NOTES.-

— it is mandatory that hy > Ty + Ty,;. If this condition does not hold, the

velocity at segment k + 1 should be scaled down, or even set to zero at point
k+1;

— the maximum error around the via point k for joint j is given by:

9 (G -4 )?
k k i ~ Y
Ej = lgjt=4+TY~qj| = a—l—q— (13.69]

which justifies high acceleration value to minimize E;;

- if it is possible to look ahead at several via points, the value of the constant
velocity at each segment may be scaled up.
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13.5.1.2. Task space scheme

The path in the task space is defined by a sequence of end-effector locations °T:5.
..., ’Tg. The results obtained in the joint space may be extended in the task space
after splitting the trajectory into:

- a transiation between OPE and °Pk+l. represented by the distance to travel
k+1 k
Dt = |0Pg" - OPgl;
— and a rotation represented by the three Euler angles to move from €% to ©k+1
(where ©% = [ ¢k 6% yk T represents the Euler angles corresponding to 0A';;).

As in the joint space, we first calculate the trajectory parameters at each segment,
assuming zero velocity at tt\e \&ia points according to the method presented in
§ 13.3.3. We thus obtain A;, vjand 7' for each segment, j=1 designating the
translation variable, j = 2, 3, 4 indicating the rotation variables. Then, the transition
between the constant velocity segments is camried out by a second degree
acceleration whose duration is 2Ty (Figure 13.12).

a)_ Translation motion

Let ky; designate the maximum velocity of translation. The magnitude of the
constant velocity of translation at segment k, denoted by vk, is defined as:

vk = A Ky [13.70]

The constant velocity at segment k is given by:

Pk+l_Pk
vk = v“m fork=1,...,m-1 [13.71]

Yy

and the traveling time hy at segment k is equal to -

The blend time around point k is such that:

k _ vk-1
%11"—‘(}’-11 fork=2,...,m—1and V0= VM= [13.72]

Ty =
where k, is the maximum acceleration for the translation motion. For the initial and

final points, the blend time is equal to Ty ; = 7,'/2 where 7' is obtained by equation
[13.41).
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PA

'm-1

Figure 13.12, Linear interpolations with continuous acceleration blends
(translation P in the rask space)

The linear trajectory at segments k = 1, ..., m—1 is given by:
P(t) = (t—ty~Tyy) VE+P*¥  forty+ 2T St Sty {13.73)
where ty is defined by equation {13.63].

The blend trajectory around point k for t <t<tx+2Ty; (Ty;#0) and
1 <k <mis given by:
1
P(t) = Pk =3 (t-1,)3 (1~ tx 4Ty ;) (VK= VK1) 4 (t—t, - Ty ;) VK'!
(t) 16(Tk,1)3( K> (t-t4—4Tk 1) ( )+ (t-%-Ty,1)
{13.74]

b) Rotation motion

Let B represent one of the Euler variables, and [;'Sk be the velocity along segment
k. The trajectory at constant velocity for ty + 2Ty j<t<ty,yandk=1, ..., m-1lis
given by:

Bt) = (t-tg- Ty B*+ B (13.75)

where j = 2, 3, 4 designate ¢, 8, y respectively, and the trajectory along the blend
region for ty <t <ty + 2Ty ;and 1 <k <miis given by:
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B0 = B - T (- (-t 4Tu) B*-BH) + =Ty B (137

The blend time T j is deduced from equation [13.60) by replacing g; with B

13.5.2. Trajectory generation with cubic spline functions
13.5.2.1. Principle of the method

As in § 13.5.1, we consider the path defined by a sequence of joint
configurations q!, q2, ..., ™ such that m > 4. We assume that the corresponding
traveling times ty, t, ..., t;; are known, On each segment k, i.e. between points k and
k + 1, the trajectory is represented by a cubic function (Figure 13.13). This method is
also termed cubic spline function [Edwall 82], [Lin 83].

The principle is to globally calculate the joint accelerations at the via points to
satisfy the velocity and acceleration continuity. The acceleration of the cubic
function for joint j (for convenience, we will omit the subscript j) is written as a
linear function of time for ty <t <t andk=1,..,m-1:

w (txs t-4% .
F(t) = k,: )Fk( W+ = Filteer)  with by = tyyy - b (3.1

Integrating equation [13.77] twice yields the velocity and position equations:

: (ter =02, -2,
F(t) = “—!%_—Fk( W+ "3, Filtkat)

k+l q¥
[QL hka(tm)] @ _bF l‘("‘)] [13.78]

(M= (-t} W
R0 = S E ) + g Fyltnn)

k+1 hF(t ) 1
+a-t0 [ -+ (k+|-)[9" kk("’] 13.79]

where Fy(ty) = g* and Fy(t,)) = q¥*.
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k+1

‘--o

>

hk+l

t teal te2
Figure 13.13. Notations used for the cubic spline functions

Thus, knowing the accelerations iék(tk) allows us to calculate Fy(t) fork=1, ...,
m- 1. Continuous velocity constraint implies that:

Ft) = Byt fork=2,..,m-1

{13.80]
which, after substitution, yields:
. " " pk Dk
B 1 +2 (g + B G+ G = 6 G- 3 (13.81]
with Fictie) = Fra1(teer) = G641
Dk = gk+! _ gk
For convenience, we rewrite equation [13.81] in matrix form:
g okl
(b 2(hy i+hy) Wj| gk |=6 (H—'h';) [13.82]
ak+l

Let us assume that m>4 and that qjl and qjm are known! (for example, zero). By
calculating equation [13.82] for k=2, ..., m-1, and combining all the equations

together, we obtain for joint j a system of equations that can be written in the
following matrix form:

1 One could assume that éjl and qjmare known instead.
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Mi; = N; {13.83]
002 b l
with § =[G ... g IT.
Thus, we can calculate the accelerations at points k = 2, .., m-1, and

consequently the interpolation functions Fy for k = 1, ..., m-1. The matrix M is
identical for all the joints but the vector N; is different. M is tridiagonal and regular.
Efficient methods to inverse such matrices can be implemented [de Boor 78). It is
worth noting that the initial and final joint velocities are obtained from these
equations. To specify desired velocities at the initial and final points, we can either
use fourth degree polynomials or two cubic spline functions for the first and the last
segments [Edwall 82]. In the following, we develop the second solution. It requires
specification of two additional points: one after the initial point and the other before
the final point. For convenience, we consider that the total number of points is still
denoted by m.

Let us assume that velocities and accelerations on the boundary points are given
by q(ty), 4(t;), 4(tm), G(tm). To satisfy the constraints of continuity, Lin [Lin 83) has
shown that the new second point should be defined as:

2 lar s b2, 2,
q° = q +h qt)) + 3740+~ §() (13.84]
and the (m- 1)!h one as:
By
4™ = gy ) + 3 q(tm)+ 3 q(tml) [13.85)

Thus, the first two and the last two equations of system [13.82] must be modified
and the matrix M becomes:

[ 2 1
:3h,+2h2+T:- h, 0 0 :
| b |
nz-TzL 2hy+hy) by 0 . 0
2
: 0 0 0 hy3 2hpo3+hy_2) m-2 E:‘; :
I. 0 0 0 0 Bm-2 - I’th-z’_hlzn'lJ
m-2
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while the vector Nj becomes:

i ,,2 1

l 6(}91-2 ﬂ;-) 6(—4"—)(q shyvpehay)-hpa, l

l —(q +h‘vI +—Lal)+s— 6(-—+ )q3 l

| s_ 4 3 3 "2 "3 |

N = ' 6i-92 Q@ -9), | [13.87)
hg hy

| 2 m-3 |

6 b 6q ol 1. .m-2
——(q = h 1Y + a_ )+ o )]

| w2 , P ™ hpy Mo hpg l
m m- 1 1 h

(=S 43— )¢ + ¥g™-n v 4=y oy ]

l. hm—l hm-2 hm-l hm-2 'm m-1 m..l

with v; =q;(ty), a) = §j(t1), Vi = §j(tm) and ag, = Gi(tm)-

13.5.2.2. Calculation of the minimum traveling time on each segment

If the traveling times (hy, ..., hy,.;) are not specified, their calculation in order to
obtain a minimum global time is not as simple as in the case of a point-to-point
trajectory. Optimization techniques must then be implemented [Lin 83]. Nowadays,
this problem is facilitated by the existence of efficient optimization softwares.

If fhy, hy, ..., hy.] is the vector of variables to be optimized and T the total
traveling time, the problem is formulated as follows:

m-1
Minimize the function T = )" hy under the constraint that velocities

k=1
accelerations and eventually jerks (rate of change of the acceleration) in the
joint space remain within their bounds all over the trajectory.

Since cubic spline functions are linear in acceleration, the corresponding
inequality constraints are expressed by:

ﬁrl Sky forj=1,..nand k=2,..,m-1 [13.88)

The magnitude of the jerk is bounded such that:

ﬁ!ul __k|
—J—B—k-l- <kj forj=1,..nand k=2,...m-1 (13.89]
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Maximum velocities occur at the time when Eij(t) = 0. If for a given function
Fy(t), the value of this time \s(» not bit»\'een ty and ty + hy, then the maximum velocity
. I3 - b . + . . .
for this function will be |g;] or |§; | otherwise it is necessary to calculate the
velocity corresponding to this sampling time.
To initialize the optimization procedure, we calculate a lower bound h'y of the
traveling time on each segment k using the equation:

k
;| .
hy = mjax{Ej-} forj=1,.,nandk=1,..,m-1 [13.90]

For the first and last two segments, the traveling times are initialized as follows:
J_qi]
h'y = by = max (=5}
vj )
m  m2 forj=1,...n [13.91]

la; -q;
iz = Wi = mx{ g i)

Then, in order to derive an acceptable solution satisfying the constraints, we
scale up the time by a factor A, which modifies the velocity, acceleration and jerk by
1/A, 1/A% and 1/A’ respectively. The time h'y is thus replaced by hy:

he = Ab [13.92)

The scale factor A is selected to saturate the velocity, the acceleration, or the
jerk:

A = max ['—q{a“‘:&' ('3;(':%"')"2, ('ﬂ&;‘—")"’J forj=1,..n [13.93]

where Gjmaxs Gjmax and Gjmax denote the maximum velocity, acceleration and jerk of
joint j.

NOTES.~-

- the minimum traveling time problem is a nonlinear programming problem that
can be solved with the "constr” function (Optimization ToolBox) of Matlab
(quasi-Newton algorithm);

- instead of calculating the global trajectory for all the points, Chand and Doty

[Chand 85] showed that the trajectory could be computed on-line by
iteratively considering only a limited number of points at each time.
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13.5.3. Trajectory generation on a continuous path in the task space

In the previous sections, we showed how to generate a trajectory of the robot
endpoint passing through, or close to, a sequence of points. Another procedure,
commonly used in continuous processes such as machining or arc welding, consists
of first generating a continuous path from the sequence of points at hand, then
determining a time history along the path. Processing separately the path generation
and the trajectory generation allows the robot to follow the specified spatial path
whatever the velocity, which can be modified on-line by an external action (operator
or sensor).

Generally, the geometry of the path is described in terms of a parameter u over
the interval 0 <u < 1, For convenience, let us consider only the position path (the
following results are extendable to orientation):

Pu) = [ Px(v) Pyw) P, |T [13.94]

To specify a continuous trajectory in acceleration, the path P(u) should be of
class C? in u, which means a continuity of curvature. For example, cubic splines,
cubic B-splines or Bézier curves can be used to represent P(u) as a polynomial
function in u, as is done in CAD/CAM systems [Bartels 88], [Léon 91].

Then, we determine the trajectory by choosing for u a suitable function of time.
The simplest function is u = A t, but it is more interesting to specify the velocity of
the curvilinear abscissa of the tool along the path. This requires computation of a
one-to-one mapping between the curvilinear abscissa, denoted by s, and the
parameter u, using the fact that:

&) _AEZ] o )\ dPW), (13.95]

The curvilinear abscissa s is given as a function of u by integration:
uw u2
ds(u dP(u
s = deu_l du = ﬁr—d&zﬂ du [13.96]
ui ul

Thus, the trajectory generation consists of specifying the time history of the
curvilinear abscissa s. Cartesian velocities and accelerations are given by:

P(s) = —%ﬂ = dl:lgs) %% = édl;f:) [13.97]
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. 2
P(s) = 's°‘";ss +§2%‘;§S—2 [13.98]

Considering equation [13.95], we obtain:

dP(s) dP(udu dPw_ 1 (13.99]

ds T du ds - du Idﬂuzl
l du l

A closed-form solution for P(s) exists in the case of straight line and circular
paths. For a straight line path for instance, let Pi and Pf be the initial and final points,
and D be the Cartesian distance to travel. We can write that:

P(s) = Pi+p5 (PI-P) [13.100]
For a circular path in the (x, y¢) plane of the circle, the equation is given by:

R cos(% + dp)
PGs) = Pc+ (13.101]
R sin(g + 4o)

where ¢ is the vector of the x and y coordinates of the circle center, R is the circle
radius, ¢y is the angle between the vector PCP* and the axis x., and P is the initial
point such that:

[ cos(g)

1 ,

sinbo) ] = g(P-P) [13.102]

In the general case, we numerically determine a polynomial giving s as a function
of u. Indeed, integrating the equation ds/du yields curvilinear abscissa s(u) at regular
intervals of u. Then, to evaluate s(u), it is sufficient to interpolate the resulting points
with a polynomial function in u, whose coefficients c; are estimated by a least square
procedure. A fourth degree polynomial should provide sufficient accuracy
[Froissart 91}:
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4
s(u) = z G ut [13.103]
i=0
Then, the algorithm can be as follows:
—~ compute a path P(u);
— compute the curvilinear abscissa s(u) along the path;
~ compute the time history s(t);
—~ compute u(t);
~ compute the trajectory P(t).

The time history can be computed as indicated previously for the curvilinear
abscissa s. Another method has been proposed in [Sgarbi 92]: it consists of
accelerating until the desired velocity is reached (or velocity and acceleration
bounds are attained), maintaining this value, and finally decelerating to finish at zero
velocity at the end of the path. Thus, the velocity tracks a trapeze profile. Let § be
the current curvilinear velocity, $ be the desired one, T, be the sampling period, and
L(i) be the distance between the current point and the final point. The algorithm is as
follows:

if {abs Tlc [8Gi—1) ~ 89(i)]} > Smax, then:

8(i) = 8(i— 1) + Smax Te signl39G) - 3G~ 1))
else §(i) = §4(i)

40 2
if L(i) < I§S.‘)]_, then begin deceleration phase.

28 max

An immediate extension of this algorithm would be to generate a continuous
curvilinear acceleration by implementing a trapeze acceleration profile.

13.6. Conclusion

In this chapter, we have presented several methods of trajectory generation that
are commonly used in robotics. We have first dealt with point-to-point trajectories:
different interpolation functions have been studied, namely the trapeze velocity
profile, which is implemented in most of the industrial controllers. For each
function, we computed the minimum traveling time, from which it is possible to
synchronize the joints so that they reach the final point simultaneously. We have also
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presented three methods of trajectory generation with via points. In the first method,
straight line segments joining the via points are blended together by continuous
acceleration phases. In the second method, the path passes through the via points,
the trajectory being described by a sequence of cubic spline functions. In the third
method, the trajectory is computed on a predefined continuous path.

These methods apply for both joint space and task space. The choice of a space
depends on the trajectory specification and on the task description.

The interested reader will find in [Shin 85), [Fourquet 90}, [Shiller 94], other
techniques using the dynamic model which allows replacement of the constraints of
acceleration by those more realistic of actuator torques. Likewise, in [Pledel 96], an
approach using an exact model of actuators is considered. However, instead of
implementing these techniques, an a posteriori verification of the constraint validity
and scaling the traveling time may be satisfactory [Hollerbach 84a).



Chapter 14

Motion control

14.1. Introduction

The problem of controlling robots has been extensively addressed in the
literature. A great variety of control approaches have been proposed. The most
common in use with present industrial robots is a decentralized "proportional,
integral, derivative” (PID) control for each degree of freedom. More sophisticated
nonlinear control schemes have been developed. such as so-called computed torque
control, termed inverse dynamic control, which linearizes and decouples the
equation of motion of the robot. Owing to the modeling uncertainties, nonlinear
adaptive techniques have been considered in order to identify on-line the dynamic
parameters. More recently, properties of the dynamic model have led Lyapunov-
based and passivity-based controls to be proposed.

In this chapter, we first study the classical PID control, then the nonlinear
linearizing and decoupling control, which is considered to be the best theoretical
solution for the control of robots. Finally, we present some advanced methods related
to passivity-based and adaptive controls. Detailed surveys on robot control can be
found in [Spong 89], [Samson 91}, [Lewis 93], [Zodiac 96).

For simplicity, we will only consider serial robots. The methods presented can
easily be generalized to robots with complex structures by employing the results of
Chapter 10.

14.2. Equations of motion
In order to understand the basic problem of robot control, it is useful to recall the

dynamic model (Chapter 9) whose general form for a robot with n degrees of
freedom is the following:
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T = A(qQ) G+ C(q, 9) q + Q(q) + diag(q) F, + diag(sign(q)) F [14.1]

or, in a more compact form:

F=A(Q4+H@q ¢ (14.2]

and, since the model is linear in the dynamic parameters (equation [12.18]), we can
write:

I'=®q4q9x [14.3]

where I is the (nx1) vector of joint torques; A(q) is the (nxn) inertia matrix of the
robot; C(q, @) q is the (nx1) vector of Coriolis and centrifugal torques; Q(q) is the
vector of gravity torques; F, and F, are the vectors of the viscous friction and
Coulomb friction parameters respectively; ¥ is the vector of the dynamic parameters
(inertial parameters and friction parameters).

The torque transmitted to joint j by a current-driven electrical actuator
(continuous or synchronous), assuming that the transmissions introduce neither
backlash nor flexibility, is expressed by (equation [12.17]):

I‘j = Nj Ky KTJ‘ Y {14.4]

where N; is the gear transmission ratio, K,; is the current amplifier gain, Kyj is the
torque constant of actuator j, and u; is the control input of the amplifier.

The design of the control consists of computing the joint actuator torques (I'j,
then u;) in order to track a desired trajectory or to reach a given position.

14.3. PID control
14.3.1. PID control in the joint space

The dynamic model is described by a system of n coupled nonlinear second order
differential equations, n being the number of joints. However, for most of today's
industrial robots, a local decentralized "proportional, integral, derivative" (PID)
control with constant gains is implemented for each joint. The advantages of such a
technique are the simplicity of implementation and the low computational cost. The
drawbacks are that the dynamic performance of the robot varies according to its
configuration, and poor dynamic accuracy when tracking a high velocity trajectory.
In many applications, these drawbacks are not of much significance.
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Practically, the block diagrams of such a control scheme in the joint space is
shown in Figure 14.1. The control law is given by:

t

T = Kp (@' -9+ Ke (@ - + Ki f(q* - gdr [14.5]
10

where qd(t) and q%(t) denote the desired joint positions and velocities, and where Ko,

K4 and K are (nxn) positive definite diagonal matrices whose generic elements are
the proportional Kp;, derivative Ky; and integral Ky; gains respectively.

Robot

-l |

Figure 14.1. Block diagram of a PID control scheme in the joint space

The computation of Kpj, Ky; and Ky is carried out by considering that joint j is
modeled by a linear second order differential equation such that:

Tj = i+ Fy g+ (14.6]

where a; = Ay is the maximum magnitude of the A;; element of the inertia matrix
of the robot and y; represents a disturbance torque.

Hence, assuming ¥; = 0, the closed-loop transfer function is given by:

qi(s) - Kgj s+ Kyis+ Ky
q}i(s) 3 s+ (de + ij) s24 Kpj s+ Klj

[14.7]

and the characteristic equation is:
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A(s) = ajs + (Kgj + Fyj) s? + K s + K [14.8]

The most common solution in robotics consists of adjusting the gains in order to
obtain a negative real triple pole. This yields the fastest possible response without
overshoot. Thus, the characteristic equation is written as:

A(s) = aj(s + ay)’ (14.9]
with ;> 0, and after solution, we obtain:

Kpj=3 357
Kgj+ Fyj=3 20y [14.10]
Ky = 3y

NOTES .-

- high gains Kp, and Ky decrease the tracking error but bring the system to the
neighborhood of the instability domain. Thus, the frequency w; should not be
greater than the structural resonance frequency ay;. A reasonable trade-off is
that @ = @/ 2;

— in the absence of integral action, a static error due to gravity may affect the
final position. Practically, the integral action can be deactivated when the
position error is very large, since the proportional action is sufficient. It should
also be deactivated if the position error becomes too small in order to avoid
oscillations that could be caused by Coulomb frictions;

- the predictive action Kq q® of equation [14.5] reduces significantly the
tracking errors. In classical control engineering, this action is not often used;

~ the gain K4 is generally integrated within the servo amplifier, whereas gain K,
is numerically implemented;

— the performance of a robot controlled in this way is acceptable if high-gear
transmission ratios are used (scaling down the time-varying inertias and the
coupling torques), if the robot is moving at low velocity, and if high position
gains are assigned [Samson 83].

14.3.2. Stability analysis

If gravity effects are compensated by an appropriate mechanical design as for the
SCARA robot, or by the control software, it can be shown that a PD control law is
asymptotically stable for the regulation control problem [Arimoto 84]. The
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demonstration is based on the definition of the following Lyapunov function
candidate (Appendix 9):

1. .1
V=754TA@a+5¢TKpe (14.11]

where e = q4 — q is the position error, and where g4 is the desired joint position.

Since q¢ is constant, the PD control law is given by:

I = Kye-Kq§+Q@ [14.12]

From equations [14.1] and [14.12], and in the absence of friction, we obtain the
following closed-loop equation:

Kye-Kgq = A§+Cq (14.13]

Differentiating the Lyapunov function {14.11] with respect to time yields:

’ l . Y Y . .

V=354"Aq+qTAG-eTKp g (14.14)
and substituting A { from equation [14.13] yields:

V= %:.T<A-2C)q-«‘|Txd«'| (14.15)

Since the matrix [A -2 C] is skew-symmetric [Koditschek 84}, [Arimoto 84]
(§ 9.3.3.3), the term q¥ (A - 2 C] q is zero, giving:

V=-4"Kgg<0 (14.16)

This result shows that V is negative semi-definite, which is not sufficient to
demonstrate that the equilibrium point (e = 0, @ = 0) is asymptotically stable
(Appendix 9). We have now to prove that as q = 0, the robot does not reach a
configuration q # q4. This can be done, thanks to the La Salle invariant set theorem
[Hahn 67) (Appendix 9). The set R of points in the neighborhood of the equilibrium
that satisfies V = 0 is such that ¢ = 0 and thus § = 0. From equation [14.13), we
conclude that necessarily e = 0. Consequently, the equilibrium point (¢ = 0, = 0) is
the only possible equilibrium for the system and is also the largest invariant set in R.
Therefore, the equilibrium point is asymptotically stable.
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Furthermore, it has been demonstrated that the system is asymptotically stable if
in equation [14.12] we replace Q(q) by the constant term Q(qd), corresponding to
gravity torque at the desired position qd. The stability is also proven if one takes
K;; > 10Q(q)/aq]l, which represents the 2-norm of the Jacobian matrix of gravity
torques with respect to the joint variables [Korrami 88], {Tomei 91]. For more
details on the computation of the gains when considering the robot dynamics,
interested readers should refer to [Qu 91], [Kelly 95}, [Rocco 96], [Freidovich 97).

14.3.3. PID control in the task space

When the motion is specified in the task space, one of the following schemes can
be used to control the system:
~ the control law is designed in the task space;

— the specified trajectory in the task space is transformed into a trajectory in the
joint space, then a control in the joint space is performed.

For PID control in the task space, the control law is obtained by replacing q by X
in equation [14.5] and by transforming the task space error signal into the joint space
by multiplying it by JT(Figure 14.2):

[ - '
r=J7 [KP(Xd—X)+Kd(Xd—X)+K|f(Xd-X) dt) (14.17]
t0
X=1(q) ¢
> q
> 5T H{ Robot
+ q
. ‘
X=Jgq <

Figure 14.2. Block diagram of a PID control scheme in the task space
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Two solutions are possible to transform the desired task space trajectory into the
joint space: either we use the IGM to compute the joint positions then we compute
the velocities and accelerations by differentiating the positions; or we compute the
joint positions, velocities and accelerations as indicated below:

i) using the IGM (Chapter 4) to compute the joint positions:

qd = g(X9) [14.18]
ii) using the IKM (Chapter 6) to compute the joint velocities. In the regular
positions:

q¢ = Jgd! x¢ [14.19]

In singular positions or for redundant robots, the matrix J-! should be replaced by
a generalized inverse as described in Chapter 6;

tif) using the second order IKM (§ 5.10) to compute the joint accelerations (if
desired):

G4 = J1Xe- g9 (14.20]
with:
Jgh ¢ = d%.l(q“) (14.21]

14.4. Linearizing and decoupling control
14.4.1. Introduction

When the task requires fast motion of the robot and high dynamic accuracy, it is
necessary to improve the performance of the control by taking into account, partially
ot totally, the dynamic interaction torques. Linearizing and decoupling control is
based on canceling the nonlinearities in the robot dynamics [Khalil 78], [Zabala 78],
[Raibert 78], [Khatib 80], [Luh 80a], [Freund 82], [Bejczy 85]... Such a control is
known as computed torque control ot inverse dynamic control since it is based on
the utilization of the dynamic model. Theoretically, it ensures the linearization and
the decoupling of the equations of the model, providing a uniform behavior whatever
the configuration of the robot.

Implementing this method requires on-line computation of the inverse dynamic
model, as well as knowledge of the numerical values of the inertial parameters and
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friction parameters. Efficient modeling approaches to minimize the computational
burden have been presented in § 9.6. With current computer performance, the
computation can be handled on-line at a sufficiently high rate and is not anymore a
limiting problem. The inertial parameters can be determined off-line with good
accuracy by identification techniques as described in Chapter 12.

The linearizing and decoupling techniques consist of transforming a nonlinear
control problem into a linear one by using an appropriate feedback law. In the case
of rigid robot manipulators, the design of a linearizing and decoupling control law is
facilitated by the fact that the number of actuators is equal to the number of joint
variables, and that the inverse dynamic model giving the control input I" of the
system as a function of the state vector (q, q) and of { is naturally obtained. These
features ensure that the equations of the robot define a so-called flar system whose
flat outputs are the joint variables q [Fliess 95]. Since the control law only involves
the state variables q and q, it is termed a static decoupling control law. In the
following, we describe this method both in the joint space and in the task space.

14.4.2. Computed torque control in the joint space
14.4.2.1. Principle of the control

Let us assume that joint pgsitions and velocities are measurable and that
measurements are noiseless. Let A and fl be the estimates of A and H respectively.
Hence, from equation [14.2], if we define a control law I such that [Khalil 79]:

T = Al@w® + A@q. @ [14.22]

then, after substituting {14.22] into {14.2], we deduce that in the ideal case of perfect
modeling and in the absence of disturbances, the problem reduces to that of the
linear control of n decoupled double-integrators:

4= w0 (14.23]

w(t) is the new input control vector. In order to define w(t), we study in the
following sections two schemes: the first one is suited for tracking control when the
trajectory is fully specified, the second one is suited for position (regulation} control
when just the final point is specified.
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14.4.2.2. Tracking control scheme

Let §%(t), ¢4(t) and qd(t) be the desired acceleration, velocity and position in the
joint space. If we define w(t) according to the following equation!:

w(t) = §9+Ke (@ -9+ Kp(qi-9) [14.24]

where K and Ky are (nxn) positive definite diagonal matrices; hence, referring to
equation [14.23], the closed-loop system response is determined by the following
decoupled linear error equation:

3+Kdé+er =0 [14.25])
wheree=qd - q.

The solution e(t) of the error equation is globally exponentially stable. The gains
Kpj and Kg; are adjusted to provide the axis j, over the whole set of configurations of
the robot, the desired dynamics with a given damping coefficient &;, and a given
control bandwidth fixed by a frequency w;:

Kop; = 032
{ P (14.26]
Kgj=28& oy
Generally, one seeks a critically damped system (§; = 1) to obtain the fastest
response without overshoot. The block diagram of this control scheme is represented
in Figure 14.3. The control input torque to the actuators includes three components:
the first compensates for Coriolis, centrifugal, gravity, and fnctnon effects; the
second is a proportional and derivative control with variable gains A Kp and A Ky
respecnvely, and the third provides a predictive action of the desired acceleration
torques Ai qd.
In the presence of modeling errors, the closed loop equation corresponding to
Figure 14.3 is obtained by combining equations [14.22] and [14.2):

A+Kyé+Kpe)+f = AG+H [14.27]
yielding:
é+Kqé+Kpe = A[A-A)§+H-A) [14.28]

1 An integral action on w(t) can also be added.
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In this equation, the modeling errors constitute an excitation for the error
equation. When these errors are too large, it is necessary to increase the proportional
and derivative gains, but their magnitudes are limited by the stability of the system.
The robustness and the stability of this control are addressed by Samson et al.
[Samson 87]. It is shown namely that the matrix A must be positive definite. It is
shown as well that the errors e and & decrease while the gains increase.

qd .+ e
Q! r af
. - A PO Robor [ 4
- +
q q
A . ‘--—d
Newton-Euler H(q, g
algorithm

Figure 14.3. Computed torque: block diagram of the tracking control scheme
in the joint space

14.4.2.3. Position control scheme

Let q¢ be the desired position. A possible choice for w(t) is as follows (Figure
14.4):

w(O) = Kp(@'-9)-Ka§ | [14.29]

From equations {14.23] and [14.29], we obtain the closed-loop equation of the
system:

§+K44+Kyq = K ¢¢ (14.30]

which describes a decoupled linear system of second order differential equations.
The solution q(t) is globally exponentially stable by properly choosing Ky and Kg.
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Figure 14.4. Computed torque: block diagram of the position control scheme
in the joint space

14.4.2.4. Predictive dynamic control

Another scheme has been proposed by [Khalil 78} based on a predictive dynamic
control: the estimates A and H are no longer computed with the current values of q
and @, but rather with the desired values q and ¢d. Thus, the control law is written
as:

r = A@)wo+A@ g (1431]
where w(t) is given by equation [14.24] or [14.29] according to the desired scheme.

In the case of exact modeling, we can assume that A(q) = .ﬁ(qd) and ﬂ(q. q) =
ﬁ(q @%). The control law [14.31] linearizes and decouples the equations of the
system as in the previous case. The main advantage of this scheme is that the
computation of A(q?) and fl(qd, §%) is not corrupted by noisy variables.

14.4.2.5. Practical computation of the computed torque control laws

The control laws [14.22] and [14.31] can be computed by the inverse dynamic
Newton-Euler algorithm (§ 9.5) without requiring explicit knowledge of A and H.
The algorithm provides the joint torques as a function of three arguments, namely the
vectors of joint positions, velocities and accelerations. By comparing equations
(14.2] and [14.22], we can conclude that:
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— to compute the control law [14.22] (Figures 14.3 and 14.4), the input
arguments of the Newton-Euler algorithm should be:

- the joint position is equal to the current joint position q;
- the joint velocity is equal to the current joint velocity q;
- the joint acceleration is equal to w(t);

~ to compute the control law [14.31], the input arguments of the Newton-Euler
algorithm should be:

- the joint position is equal to the desired joint position q9;
- the joint velocity is equal to the desired joint velocity ¢%;
- the joint acceleration is equal to w(t).

The computational cost of the computed torque control in the joint space is
therefore more or less equal to the number of operations of the inverse dynamic
model. As we stated in Chapter 9, the problem of on-line computation of this model
at a sufficient rate is now considered solved (Chapter 9). Some industrial robot
controllers offer a partial implementation of the computed torque control algorithm.

14.4.3. Computed torque control in the task space

The dynamic control in the task space is also known as resolved acceleration
control [Luh 80a]. The dynamic behavior of the robot in the task space is described
by the following equation, obtained after substituting ¢ from equation [5.44] into
equation [14.2]:

r=AJ'X-jgp+H (14.32]

As in the case of the joint space decoupling control, a control law that linearizes
and decouples the equations in the task space is formulated as:

F=AJwo-jg+8 (14.33]

Assuming an exact model, the system is governed by the following equation of a
double integrator in the task space:

X = w() (14.34]

Several schemes may be considered for defining w [Chevallereau 88]. For a
tracking control scheme with a PD controller, the control law has the form:
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w(t) = X9+ Ky(X9-X) + K, (X9-X) (14.35)

The closed-loop behavior of the robot is described by the following error
equation:

G+ Kaé+Kpe = 0 (14.36]
with:
e = X4-X [14.37]

The corresponding block diagram is represented in Figure 14.5. The control input
I' can be computed by the inverse dynamic algorithm of Newton-Euler with the
following arguments:

— the joint position is equal to the current joint position q;
- the joint velocity is equal to the current joint velocity q;
—~ the joint acceleration is equal to J™! (w(t) - J @)

).(=J¢']

A + r aj}.
A(Q) Robot [_]9

fiq, @ [

Newton-Euler
‘g.lgon'lhm

Jq

Figure 14.5. Computed torque control in the task space

In Appendix 10, we present an efficient algorithm to implement the computed
torque control in the task space [Khalil 87a], [Chevallereau 88). The proposed
inverse dynamic algorithm uses many variables that must also be computed for the
kinematic models. The computation of J q is achieved with a recursive algorithm
without differentiating J. In the case of the Stiubli RX-90 robot, the computational
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cost of such an algorithm is 316 multiplications and 237 additions if we use the
simplified base inertial parameters of Table 9.4.

NOTE.~ If the robot is redundant, we replace the matrix J-! in equation [14.33] by a
generalized inverse. It can be shown that the robot is also governed by equation
[14.36] in non-singular configurations. The homogeneous term of the generalized
inverse must be chosen appropriately in order to avoid self joint motions in the null
space of J [Hsu 88], [de Luca 91a], [Ait Mohamed 95].

14.5. Passivity-based control
14.5.1. Introduction

In the previous section, it is shown that the computed torque control exploits the
inverse dynamic model to cancel the nonlinearities in the robot dynamics. In this
section, we investigate another approach that uses the property of passivity of the
robot (system that dissipates energy). Such control laws modify the natural energy of
the robot so that it satisfies the desired objectives (position control or tracking
control). In what follows, we first describe the robot dynamics with the Hamiltonian
formalism, then we introduce the concept of passivity in the case of regulation
control (fixed desired point). Finally, we show how to design a tracking controller
by using properties of the passive feedback systems (Appendix 11). This section is
largely based on the work of {Berguis 93] and {Landau 88).

14.5.2. Hamiltonian formulation of the robot dynamics

The Hamiltonian gives the total energy of the robot:

H=E+U (14.38]

where:
. L 1. .
* E(q, §) is the kinetic energy of the robot equal to 7 qTAQ)
+ U(q) is the potential energy of the robot;
¢ A(q) is the inertia matrix of the robot.

The (nx1) vector of generalized momenta is defined as:

P=A@3 [14.39]
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Therefore, equation [14.38] becomes:

H=plq-L(q @ [14.40)

where L =E - U is the Lagrangian of the robot. From equation [14.39], it also
follows that:

1
E(p.q = 5pTA'p (14.41)

Defining the state variables by the vectors q and p, we obtain the Hamiltonian
equations of motion in state space form as:

. oHp.q) _ZE(p,q
' afip , 8 g e
p= -—-g"-l'-gh = __E(a%_qz__l‘_;gqu” (14.43]

Equation [14.43] is obtained from the Lagrangian equation {9.4], noting that:

oE(p.q) _ 2E@Q.4)
oq -~ oq

The time derivative of H is such that:

. dH

i = 4(%31 - __(2,_92]1- +[__$E._‘ll]1'p = 4T [14.44)
which yields:

t!

f qT() I(®) de = H(p(t1), q(t1)] - H{p(0), q(0)] (14.45]

0

A rigid robot is defined as passive from the input T to the output ¢ when there
exists a constant 0 < f§ < o such that:

ti

f QT T dt > B
0
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which is true, from equation [14.45], when B = H{p(0), q(0)). This means that the
total energy has a bounded minimum.

14.5.3. Passivity-based position control

Let us assume that we want to drive the robot to a desired position qd. Intuitively,
this can be achieved by shifting the open-loop energy minimum from (4 = 0, q = 0)
towards (q = 0, e = 0) for the closed-loop system, where e = q¢ — q is the position
error. This shifting can be obtained by reshaping the potential energy of the system
such that it attains the desired minimum at e = 0. To this end, let U*(q) be an
arbitrary function of the desired potential energy for the closed-loop system. Let us
define the following control law:

= _6_Ua4qu+a_ua_‘glg1+v [14.46]

where v is the (nx1) new input control vector [Takegaki 81b]. The Hamiltonian
equations become:

§ ==L (14.47)
p--Zow T, , [14.48)

Hence, by using the control law [14.46], the initial Hamiltonian H(p, q) is
modified into the desired one H*(p, q) such that:

H' = E+U" {14.49]

and we can verify that:

H =4qTv {14.50]

This implies that the robot is passive from the new input v to the output q. To
asymptotically stabilize the system, we add a damping in the loop such that:

v =-Kqd [14.51)

where K4 > 0 is a diagonal matrix. Equation [14.50] becomes:
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0= - qTKyq [14.52]

This expression is negative semi-definite. However, it can be verified that the
equilibrium point (e = 0, q = 0) is the largest invariant set within the set H*(q, p) =
0. Hence, using the La Salle invariance theorem [Hahn 67], the asymptotic stability
of the equilibrium can be proven.

Various choices are possible for the desired potential energy function U*(q, p)
{Wen 88]. An obvious one that satisfies the constraint of a strict minimum ate = 0
is:

U= %eT Kpe : [14.53)
For this choice, the control law [14.46] becomes:

I'=Kpe-Kiq+Q@ [14.54]

which represents gravity compensation and a linear state-feedback loop
[Takegaki 81b], as the one presented in § 14.3.

The following choice for U*(q, p), under the condition that K is large enough, is
also minimum when e = 0 [Takegaki 81b}:

Ut = %eT Kp e + U(g) - U(q®) + €T Q(g?) [14.55]
Hence, the control law is:

[ = Kpe-Kqd+ Q@) [14.56)

14.5.4. Passivity-based tracking control

For a tracking task, it is necessary to modify the control law so that the strict
energy minimum (q = 0, q = 0) of the open-loop system is shifted towards (e = 0,
¢ = 0) for the closed-loop. This can be achieved by modifying both the kinetic
energy and the potential energy.

In this section, we analyze the passivity-based control laws of [Paden 88] and
[Slotine 87] using the passive system feedback approach proposed by [Landau 88]
(Appendix 11). Consider the following control law [Paden 88]:
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T = A@ 49+ C@q, 9 ¢?+ Q@) + Kpe + Kqé [14.57)

In the absence of friction, equations [14.57] and [14.1] lead to the closed-loop
equation:

Kpe+Kgé = 1 (14.58]

with :
= -A(Q)€-C(q. ¢ & (14.59]
Equation [14.58] represents a system of two interconnected feedback blocks

(Figure 14.6):

— a linear block B1 in the feedforward chain whose input and output are & and ©
respectively;

— a nonlinear block B2 in the feedback chain whose input and output are T and
—& respectively.

In order to prove that the nonlinear block is passive, let us consider the integral
of the input-output dot product:

tl tl

ST v dt = J[6TAQ) &+ €T C(q, §) é] dt [14.60)

] 0

Since:

T . ‘1_2 T . l T H .

e A(q)e = 2dt fe" A(q) e] -2¢ A(Qe {14.61}
then:

tl

tl
Je0wa = [GETa@e-;eTA@e+TC@ il 1462
0

0

Since [A(q) -2 C(q, §)] is skew-symmetric, then &T [A(q) -2 C(q, @)} & is zero,
which reduces equation [14.62] to:
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tl tl
{ Food = [FEEA@E
0
= 367 Acq(th)) ét1) - €T(0) A((0)) é(0)] (14.63]
and finally:

tl
St a > <02 = -5670) Aq) é0) (14.64]
0

and, since Y02 < o, it follows that the block B2 is passive.

"l"'e—"Kp

] K, |

+
+
| Nonlinear passive T ‘
system

Figure 14.6. Equivalent feedback representation of the closed-loop equation [14.58]
(from [Landau 88])

The linear block of the feedforward chain is characterized by a positive real
transfer matrix:

H(s) = K4+ ':; Kp [14.65]

which proves (Appendix 11) that the system represented by equation [14.58] is
stable, and more precisely that the error e of the linear system is bounded.
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In order to ensure that e = 0 as t — oo, the control law should be modified so
that the transfer function of the feedforward chain be strictly positive real?. This can
be done by removing the pole from the origin, choosing for example H(s) such that:

H(s) = Kg+ K [sI +A]"! [14.66]
where A is a positive definite matrix. Modifying the control law accordingly yields:

T = A(g) iid+C(q,¢'1)qd+Q(q)+Kp'E+Kdé [14.67]
withd%'é' =—Ae+eé

The closed-loop equation becomes:

Kp'é'+Kdé =1 [14.68]

The corresponding system is shown in Figure 14.7. As the transfer function of
the feedforward chain is strictly positive definite, we can conclude that €(t) — 0 as
t — o and &€ > 0 as t — o, but unfortunately we cannot conclude that e —» 0.

— [sI+A]! C K,

L K, |

+
+
Nonlinear passive T ‘
system

Figure 14.7. Equivalent feedback representation of the closed-loop equation [14.68]
(from [Landau 88])

In order to ensure that e — 0 as t — o, e should be a state of the feedforward
chain, This is achieved with the following control law:

2 We can find in [Paden 88] another demonstration proving that this law is asymptotically stable, i.e.
that (e = 0, & = 0) for arbitrary values Kp = Ky" > 0 and Kg = Kq" >0.



Motion control 367

F=AQ§+CqPa+QUa+Kye+Kyé; [14.69]
with:
*e=ql-q

s g=é+Ae=§-q
s '=¢d+Ae
s A=AT>0

which implies that e and &, are related through the transfer function [sI + A}l. The
" vector is called the reference velocity.

Combining equations [14.69] and [14.1], and assuming for convenience that
friction torques are either compensated or neglected, leads to the following closed-
loop equation:

Kpe+ Kgé = -A(Q) &-Cq, & = [14.70]

The corresponding system is shown in Figure 14.8. Note that, in this case, e(t) is
the state of the feedforward chain that is strictly positive real. Thus, the system is
globally asymptotically stable.

The tracking control law [14.69] presents several interesting analogies with the
position control law [14.54]. First, the terms Q(q) and K, e modify the potential
energy as in the control law [14.54]. Then, the compensations for A(q) and C(q, §)

modify the kinetic energy in the desired sense. Finally, the term K, &, introduces a
damping that contributes to satisfy the tracking objective.

> s+ AL —» K,

el K, |

Nonlinear passive ¢ T ‘
system

Figure 14.8. Equivalent feedback representation of the closed-loop equation [14.70]
(from [Landau 88]})
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NOTE.— The computation of the passivity-based control law [14.69]) cannot be
achieved by the Newton-Euler inverse dynamic model due to the presence of both q
and q in the expressions of the Coriolis and centrifugal forces. [Kawasaki 96)
proposes an efficient algorithm for its computation.

14.5.5. Lyapunov-based method

In [Wen 88], we can find the demonstration of the stability of all the control laws
presented in the previous sections with the definition of a suitable Lyapunov
function. The exponential stability demonstrations of the following laws are also
given:

v va g OU" \
I = A(@ §4+C(q, 4% q"—g—aﬁm+ Qq) +Kyé [14.71)
I = A(@ §¢+ C(q, é)d—@gq@+ Q(q) + Kgeé (14.72]
T = A(qY §4 + C(qd, ¢9) ¢¢ —QU?‘@ +Q(gd) + Kqé (14.73)

*

1
Choosing U* = 3 el K, e results in an"égl = -K e, but other choices are also

possible. Note that equations {14.71] and [14.72] can be computed by the inverse
dynamic algorithm of Newton Euler.

14.6. Adaptive control

14.6.1. Introduction

Since the dynamic model is often not exactly known (inaccuracies in the dynamic
parameters of the robot, of the payload, high-frequency unmodeled dynamics...), the
adaptive control theory has been investigated extensively as an interesting approach
to estimate or adjust on-line the dynamic parameter values used in the control. The
nonlinear adaptive control of rigid robot manipulators can be considered today to be
mature, as is indicated by the large number of methods published over the last two
decades [Bayard 88}, [Ortega 89]. The different approaches of adaptive control can
be classified as:

i) simplification of the dynamic model [Dubowsky 79], [Takegaki 81a];

i) application of the adaptive techniques, which were developed for linear
systems [Horowitz 80}, [Nicosia 84], [Hsia 86];
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iii) formulation of a nonlinear decoupling and linearizing adaptive control
[Craig 86b];

iv) formulation of a nonlinear adaptive control based on the passivity property of
the robot [Slotine 87], [Sadegh 87], [Landau 88], [Kelly 88};

v) formulation of parameter adaptation mechanisms that avoid joint acceleration

computation as the filtered dynamic model [Middleton 88], {Li 89] or the
energy-based model [El Serafi 91a}.

The control laws proposed in the first two strategies are only valid for slow
motion and do not take into account the full dynamics of the robot. The nonlinear
adaptive control law of Craig requires joint accelerations and assumes that the
estimated inertia matrix is invertible. The fourth and fifth schemes avoid the joint
acceleration estimation and are, at least from a theoretical viewpoint, the most
interesting.

In the next sections, we present the principles of the nonlinear linearizing
adaptive control and of the passivity-based adaptive control.

14.6.2, Adaptive feedback linearizing control
The first version of an adaptive dynamic control has been formulated by Craig et
al. [Craig 86b]). The control law has the same structure as the computed torque

control law of equation [14.22], and can be written in the following form (Figure
14.9):

T = A(q, 0 w(t) + H(g, 4, ) [14.74)
where Q is the vector of the estimated base dynamic parameters, and:
wit) = @+ Kgé+Kpe [14.75)

The control law [14.74] is associated with an on-line identification law, which
provides %(t). For brevity, the control law will be noted:

I = A(@) w(t) + f(q. @) [14.76)

Combining equations [14.2], [14.3] and [14.76], leads to the closed-loop error
equation (see equation [14.28]):
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¢+Kgé+Kpe = A(Q) [0 4. - D@4 D1 = A 00,4 9%

{1477}
with:
i =% _Q [14.78]
Let us rewrite equation {14.77] under the state space form:
x=ax+bAl@Q@@qdd% [14.79]

e 0, I On
x=[é:‘,a=[_xp _Kd],br-[ In] {14.80]

where 0, and I, are the (nxn) null matrix and identity matrix respectively.

Let us consider the following Lyapunov function candidate:

V=x"Px+{ AY (14.81]
where A = diag(A4, A, ..., Ap) is a positive definite adaptation gain matrix.

P is the unique positive definite matrix, which is the solution of the Lyapunov
equation such that:

aTP+Pa=-F [14.82]
Differentiating V with respect to time leads to:

V=-xTFx+2%T[0%q 4 DA @bTPx+AX] (14.83)
Assuming the following adaptation law:

% = -A1 074§ AN@BTPx = - (14.84]

the expression of V becomes:
V=-x"Fx<0 (14.85]
Therefore, the vector x is bounded and x — 0 as t — . Since x is composed of e

and e, then e — 0 and & —» 0. The adaptive dynamic control algorithm given by
equations [14.76] and {14.84] is thus globally asymptoticaily stable.
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This method has two major limitations: the first is that the joint accelerations are
required for implementation; the second is that the inverse of the estimated inertia
matrix has to be bounded. Craig et al. [Craig 86b] suggested projection of the
estimated parameters in a bounded region of the parameter space. However, this
projection does not guarantee that the inverse of the inertia matrix exists.

Spong and Ortega [Spong 90] proposed a new version of this algorithm in which
the condition of the invertibility of the matrix Ais relaxed, but the joint accelerations
are still required.

L) q 13
L % (SO Robor [ 4
+ + / +
Ky K, figla) [
3
———3»4 Adaptation
P law
Y
ot -
('Id
+ -

Figure 14.9. Nonlinear adaptive control (from [Craig 86b})

14.6.3. Adaptive passivity-based control

In order to develop an adaptive algorithm based on the full dynamic model,
Slotine and Li [Slotine 87] exploited the property of skew-symmetry of the matrix
[A -2 C). This property is a consequence of the passivity of the robot.

The control law is derived from equation [14.69) with Kp 0:

T =A@ i +C@a a0 &+ Qa0 +Kaé [14.86)

rewritten as:

T=A@i§+Cqai+Qo+Koé [14.87)



372 Modeling, identification and control of robots

with:
« e=ql-q
v é,=¢ +Ae
s IF=q+é=q%+Ae
€, may be regarded as a sliding surface in the state space plane defined by e and

. To design the adaptation law, let us consider the following Lyapunov function
candidate:

V=3TAG+{TFY) [14.88]
with:
- A
* A=A-X

A . .
» : vector of the estimated base dynamic parameters;
¢ F: positive definite gain adaptation matrix.

The differentiation of V with respect to time leads to:

TS PP S RNTT U I Jr- P N
V= .2-erTA &+&TAE+YTFY = erT[-z'Aer“"A(qr"I)]*xTFx
[14.89]

and after substitution of A @, using equation [14.1] while assuming no friction for
sake of brevity, it becomes:

T I " NPT ~—r L
V=§4TEA&G+AT-T+CQ 9@ -&)+ Q@I +XTF X [14.90)

Since [A ~ 2C} is skew-symmetric [Koditschek 84] (§ 9.3.3.3), we obtain:

Ve=eTA§F-T+CqO &+ QI +XTFX [14.91)

Substituting the control law [14.87] in equation [14.91] yields:

Vo= eTA§+Cqdq+Qq-Keéd+XTF X [14.92)
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where:
A=A-A,C=C-8,3=0-0 [14.93)

Since A, C and Q are linear in the dynamic parameters, we can write that:

AG+CQ9d+Qqe = e 4.4 8% (14.94)

By combining equations [14.94) and [14.92], it follows that:

Vo= —6TKgé + 4T F %+ 0T(q, 4 ¢ §)&) [14.95)
Let us choose the adaptation law:
%= -Flo%qqq i =-% (14.96]

where the matrix F-1 is the adaptation gain. Equation [14.95] becomes:

V=-6TKyé <0 (14.97]

From equation [14.97], we conclude that the control law [14.87] associated with
the adaptation law [14.96] is stable.

Since V is only negative semi-definite, we cannot conclude on the asymptotic
stability of the closed-loop system. Unfortunately, the La Salle invariance theorem
cannot be applied to non-autonomous systems, which is the case in tracking tasks.
To complete the proof of asymptotic stability, the Barbalat lemma can be used
(Appendix 9).

It is worth noting that adding a proportional gain Kp e to the control law {14.87]
makes it possible to use the results on passivity of § 14.5.4. and to prove asymptotic
stability with a Lyapunov function. Let us consider the following law [Landau 88):

I=A@i+Cada+Q@+Ke+Kqe [14.98]

which can be rewritten as:
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F=A@Yi+Ce4q0q+Qq 1 +Ke+Kyé
-AQVE-Ce.40F-Qq0 (1499
the adaptation law being given by equation [14.96].

From equations [14.1] and [14.99], in the absence of friction, we can represent
the system by the three interconnected blocks of Figure 14.10. Blocks Bl and B2
represent the system of Figure 14.8 whose passivity has been demonstrated in §
14.5. To demonstrate the passivity of the block B3, we must verify that;

t

f ~& () ®xdt > —y0? withyol< o [14.100)
0
-, o
T Adal;;t\:tion
By

Figure 14.10. Equivalent feedback representation of the closed-loop equation for the
passivity-based adaptive control (from [Landau 88])

From equation {14.96}, and since F is symmetric, it follows that:

6T ® = X'F (14.101)
and using equation [14.100], we obtain:

1l u 1
f—é,'r(t)oidt=f§TFidt=J%%[iTFi]dtz—%iT(O)Fi(O) {14.102)
0 0 0



Motion control 375

Since F is positive definite, equation [14.100] is verified and the block B3 is
passive, which demonstrates the asymptotic stability since the block B1 is strictly
positive real.

To demonstrate the stability of the control law [14.98] with the adaptation law
[14.96] using a Lyapunov analysis, let us choose the following Lyapunov function
candidate {Sadegh 90]:

V= XTF Y [14.103]

-

T
e Kye+

N o=

&TAé+

[

Unlike the function {14.88), equation [14.103] is a function of the transformed
state vector [eT & ,T]T. It can be verified that:

V=-8TKsé~-eTAK e <0 [14.104]

Since V is a function of ¢, and e, we can conclude that the closed-loop system is
globally asymptotically stable. Note that the two control laws {14.87] and [14.98]
are similar, but the second one is more practical for tuning since there is an
additional gain Kp.

The passivity-based adaptive control law does not require joint acceleration
estimations. However, its drawback is that the inverse dynamics cannot be directly
computed by the Newton-Euler algorithm, due to the presence of both ¢ and 7 in the
expressions of the Coriolis and centrifugal forces. Kawasaki [Kawasaki 96] proposes
an efficient algorithm for its computation.

To avoid this computational problem, Sadegh and Horowitz [Sadegh 90)
proposed to calculate both the control and adaptation laws in terms of the desired
position, velocity and acceleration:

I = A(gh) 4+ A(q?, 49 + Kaé + Kpe + Ky | e [ & (14.105)
2 = F1oTq, ¢, §4) é (14.106]

where K, || e || & is an additional nonlinear feedback component to compensate for
the errors introduced by the modification of the original adaptive control law.

The control law [14.105] can be computed by the Newton-Euler algorithm. The
adaptation law [14.106] requires the computation of the elements of @ related to the
dynamic parameters that have to be adapted. The corresponding computational cost
of both laws for a six degree-of-freedom robot such as the Stiubli RX-90 is about
700 additions and 950 multiplications. These figures can considerably be reduced if
only the parameters of the payload are adapted (El Serafi 91b].
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14.7. Conclusion

Although the controllers of most present day industrial robots are merely
designed from linear control theory, more advanced methods must be developed to
cope with the nonlinear nature of the articulated structures, namely for applications
requiring high dynamic performances (cycle time, dynamic accuracy...).

We presented in this chapter three methods achieving this objective: computed-
torque or dynamic control, passivity-based control and adaptive control. The
implementation of such controls requires on-line computation of the inverse dynamic
model, which can be carried out according to the algorithms proposed in Chapter 9.
In order to estimate the dynamic parameters, we make use of the techniques
described in Chapter 12.

We assumed that the system and the controller are continuous. In practice, the
control is achieved by a computer, which introduces time delays due to data
acquisition and control law computation. The effect of these delays on the process
performance is an issue of the sampling control theory and is out of the scope of this
book. However, from an implementation viewpoint, the sampling period should be
small enough with respect to the bandwidth of the mechanical system. Typically, a
frequency close to 1000 Hz has been used for the controller of the Acma SR400
robot [Restrepo 96]. Note that the use of a high frequency allows us to increase the
value of the feedback gains and results in a more robust control [Samson 87].

All the control laws presented in this chapter rely on the availability of joint
positions and velocities. All the robots are equipped with high precision sensors for
joint position measurements. On the other hand, the tachometers used for joint
velocity measurements provide noisy signals. Therefore, it is better to generate the
velocity signal by numerical differentiation of the position measurements. Other
sophisticated techniques consist of designing a velocity observer from the input
torque and the joint position data [Nicosia 90], [Canudas de Wit 92], [Berguis 93},
[Khelfi 95}, [Cherki 96].

In this chapter, we only considered rigid robots. For further reading about the
control of robots with flexible joints, refer for example to [Benallegue 91},
[Brogliato 91}, [Zodiac 96].



Chapter 15

Compliant motion control

15.1. Introduction

Many industrial applications require the contact of the robot end-effector with an
uncertain environment. A long list of such applications could be given, including
contour following, pushing, polishing, twisting, deburring, grinding, assembling, etc.
Implementation of all these tasks intrinsically necessitates that the robot follows the
desired path while providing the force necessary either to overcome the resistance
from the environment or to comply with it. In order to control force with purely
position-based systems, a precise model of the mechanism and knowledge of the
exact location and stiffness of the environment are required. High precision robots
can be manufactured only at the expense of size, weight and cost. The ability to
control the contact forces generated on the end-effector offers an alternative for
extending effective precision. A classification of robot force control algorithms
includes:

~ methods involving the relation between position and applied force: passive

stiffness control, active stiffness control;

- methods using the relation between velocity and applied force: impedance
control or accommodation control;

- methods using position and force feedback: parallel hybrid position/force
control and external hybrid control;

- methods using force feedback: explicit force control;
~ methods based on passivity.

In this chapter we will develop the first three methods that constitute the most
commonly used. For more details, the reader can refer to {Siciliano 00).
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15.2. Description of a compliant motion

In pure position control, the user has to completely specify the end-effector
position and orientation. This implies that the robot moves in free space. The
absence of any contact prevents the exertion of forces. On the other hand, in pure
force control the manipulator end-effector is constrained by the environment in all
directions; hence, there is no motion at all.

Between the extremes of free space and totally constrained space is the
workspace with constraint surfaces, termed C-surfaces [Mason 82]. In this case,
motion is possible along the C-surface tangents, while force can be exerted along the
C-surface normals. Thus, position control and force control exclude themselves
mutually: we cannot control a force and a position along the same direction
simultaneously. Consequently, compliant tasks require control of the end-effector
forces along some directions and its motion along others.

Practically, a compliant task is defined in a frame, called a compliance frame,
providing six degrees of freedom along and around the frame axes. For every degree
of freedom, we specify either a position or a force. According to the task, this frame
can be attached to the end-effector, to the environment or to the manipulated object
(Figure 15.1).

a) b) c)
Figure 15.1. Choice of compliance frame according to the task
(from [Mason 82})

15.3. Passive stiffness control

Passive stiffness control or passive compliance is a simple solution to reduce the
contact forces between the robot and its environment. It consists of interposing
between the manipulated part and the robot a mechanical device able to change its
configuration under the effect of contact forces, thus adding to the structure an
elastic behavior that compensates for positioning errors [Drake 77], [Whitney 79].
Figure 15.2 shows the principle of such a device, the so-called RCC (Remote



Compliant motion control 379

Compliance Center) [Nevins 77], that is typically used to handle peg-in-hole
assembly problems. The basic compliance formulation follows from a generalization
of the linear spring equation and is given by:

dX = cf {15.1]

where Cis the (6x6) compliance matrix, £ = [ fT mT ]T represents the wrench that
is composed of a force f and a moment m (§ 2.6). The differential displacement
vector dX = [ dPT 8T )T is composed of the differential translation vector dP and
the differential orientation vector & (§ 2.5).

The compliance matrix Cis diagonal with respect to the compliance frame whose
origin O is called the compliance center: the application of a force at O, along 2
given direction causes a pure translation in this direction; the application of a
moment causes a pure rotation around an axis passing through O,.

Robot/RCC
g interface
=
Flexible links for
lateral motion
\ / Flexible links for
[y [} N
Compliance angular rotation
center 0.

Figure 15.2. Principle of the RCC device (from [Nevins 77))

Passive compliance offers some advantages such as fast and accurate insertions
of parts without requiring complex strategy (typically, less than 0.2 sec. for tolerance
of the order of 1/100 mm). It has achieved success in specific assembly tasks, for
example inserting a peg in a hole. The limitation is that each compliant device is
devoted to a given task and to a given workpiece.

15.4. Active stiffness control

This method actively controls the apparent stiffness of the robot end-effector and
allows simultaneous position and force control. The user can specify the three
translational and three rotational stiffnesses of a desired compliance frame. Stiffness
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may be changed under program control to match varying task requirements
[Salisbury 80]. High gain is assigned to the directions that have to be position
controlled, while low gain is assigned to the force controlled directions. The basic
stiffness formulation is given by:

°f, = K, dX, [15.2]

where K, is the desired (6x6) stiffness matrix, which is diagonal in frame R.. The
wrench °f, and the differential displacement °dX are expressed in frame R, and
will be simply denoted by { and dX respectively. Assuming that the friction and
dynamic forces are compensated or are small enough to be neglected, equation
[5.43] gives the joint torque I necessary to apply a wrench f:

r=Jr¢ [15.3]
Let us recall the differential model {5.2):
dX = Jdq (15.4)

where J is the Jacobian matrix of the robot describing the differential translational
and rotational vectors of the compliance frame as a function of the differential
variations of joint positions dq. It should be noted that the Jacobian may be

computed for any point fixed in the end-effector frame. Combining equations [15.2],
{15.3] and {15.4], we obtain:

I =J)TK Jdq = Kgdgq (15.5]

The matrix Kq is called the joint stiffness matrix and is not diagonal but
symmetric. It determines the proportional gains of the servo loops in the joint space.
It presents the same singular positions as the Jacobian matrix of the kinematic
model, which means that, for these configurations, we cannot get the desired
stiffness along or about all the degrees of freedom of the compliance frame. The
principle of this control scheme is shown in Figure 15.3. The joint torque vector is
given by:

I=Kiq'-9+Kg(@-9+Q [15.6]

where Q represents gravity torque compensation, and Ky can be interpreted as a
damping matrix. A feedforward force term can be added if pure force control is
desired in some direction. It is computed using equation [15.3].
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The advantage of such an active stiffness control scheme is that it is relatively
simple to implement. The stiffness matrix can be changed on-line to adapt the robot
behavior to various task constraints.

Robot

a-l |e

Flgure 18.3. Principle of the active stiffness control scheme

15.5. Impedance control

According to Hogan [Hogan 85], [Hogan 87], the basic idea of impedance
control is to assign a prescribed dynamic behaviour for the robot while its effector is
interacting with the environment. The desired performance is specified by a
generalized dynamic impedance representing a mass-spring-damper system.

The end-effector velocity X and the applied force are related by a mechanical
impedance Z. In the frequency domain, this is represented by:

F(s) = Zs) X(s) [15.7a)
In terms of position X(s), we can write:

F(s) = s Z(s) X(s) {15.7b}

The robot should behave like a mechanical system whose impedance Z is
variable according to the different phases of the task. In general, we suppose that the
robot is equivalent to a mass-spring-damper second order system, whose transfer
function is:

sZs) = As2+Bs+K [15.8])
where A, B and K represent the desired inertia, damping and stiffness matrices

respectively. The values of these matrices are chosen to obtain the desired
performance:
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— high values are given to A in the directions where a contact is expected in
order to limit the dynamics of the robot;

— high values are given to B in the directions where it is necessary to dissipate
the kinetic energy and therefore to damp the response;

— the stiffness K affects the accuracy of the position control: along the force
controlled directions, the stiffness should be small enough to limit the contact
forces; conversely, along the position controlled directions, the user should set
a high stiffness to obtain an accurate positioning of the end-effector.

Two families of control schemes can be implemented depending on whether or
not a force sensor is available (Figures 15.4 and 15.5).

r
A2+Bs+K =9 JT = Robot

X=f(q) |

Figure 15.4. Impedance control scheme without force feedback

PCL ——»1 Robot

As2+Bs+K <

PCL: Position Control Law

Figure 15.5. Impedance control scheme with force feedback

Figure 15.6 shows an implementation of the impedance control scheme of the
first family. The dynamics of the robot is neglected. The control law is given by:

r=JTBXI-X)+KX{-X)]+Q (15.9]

The K and B matrices contain the proportional and derivative gains in the task
space, which can be interpreted as the stiffness matrix and the damping matrix of the
robot respectively. As previously, the vector Q represents gravity torque
compensation. This control scheme places the compliance center at the desired point
X4, It is equivalent to the PD control in the task space (§ 14.3.3).
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& X
d
X< + K 0
+ + q
B |» JT To| Robot

Figure 15.6. Impedance control scheme without force sensor feedback and
with a PD control law in the task space

In the following, we present two forms of impedance control representative of
the second family, using the dynamic model of the robot in the joint space, then in
the task space.

Let us note that the dynamic model of a robot exerting a wrench f on its
environment is written as (Chapter 9):

F'=A@{§+Caq+Qq+JT¢ (15.10]

The desired behavior is deduced from equation [15.7b] as:

f = AXI-X)+BXI-X)+K (X4-X) {15.11]

which leads to:

Xt) = X4+ AT BXI-X)+ K (XI-X) -1 (15.12]
where X4(t) is the desired trajectory.

To achieve this impedance control scheme, let us consider the decoupling
nonlinear control law in the task space of equation [14.33) (resolved acceleration
control law) in which w(t) is replaced by equation [15.12], and the external wrench
exerted by the robot on the environment JT £ is taken into account:



384 Modeling, identification and control of robots

I = AJFYXd+ A BXI-X) + KX4~X)- -] q) + Aq, @ + ITT
[15.13]

Another formulation of this control law can be derived from the dynamic model
in the task space [Zodiac 96]. Combining the first and second order kinematic
models (§ 5.10) with the dynamic equation [15.10], yields:

JTT = Aq@ X+ C(q, @ X+ Qu(q) + 1 [15.14]

where:
¢ JTis the inverse of JT;
* A(q) is the inertia matrix in the task space! equal to J'T A(q) J-;

* Cx(q, §) is the vector of Coriolis and centrifugal torques in the task space. It is
equal to [JTC(q, @ J' - Ax(q@) J J';
* Qu(q) = T Q(q) is the vector of gravity torques in the task space.

We obtain the decoupled control law as indicated in § 14.4:

T = JTA @ w)+Cq X+ Q@)+ (15.15a]

Replacing w(t) by X, as given by equation [15.12], leads to:

T = JTA(q (X9 + A BXI-X) + K(XI-X)]} +
T8q @ X+ Q@)+ 1-A @A D (15.15b]

This control scheme is represented in Figure 15.7. It is equivalent to the control
scheme [15.13), which is easier to implement when the complete control law must
be computed. The algorithm is similar to that presented in Appendix 10. The control
scheme [15.15] is preferred in quasi-static cases, where the inertia matrix and the
Jacobian matrix are roughly constant [Kazerooni 86). Thus, J and éx(q, Q) X are
considered to be equal to zero, and equation [15.15b] becomes:

F=JTAANAX+BXI-X) + KXI-X) -0 + Q@) +JTE  [15.16)

! The reader can find in [Lilly 90] an efficient algorithm for computing Ax without computing the
inertia matrix.
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Note that the wrench f appears twice in this equation: once with the term JT  that
compensates for the external wrench exerted by the robot and once with the term
~JTA, Al £, which represents a force feedback whose gain is -JT A, A°!. Besides,
note that if A = A,(q), the terms containing  vanish, which yields to the decoupled
control law shown in Figure 15.7:

T = A(q) J'Xd+ AYBXI-X) + KX9-X)} -3 4] + (g, § (15.17)

NOTES.-

— a long time before the formulation of the impedance control by Hogan,
particular cases of this control had been proposed in the literature such as
those based on a stiffness matrix or on a damping matrix [Whitney 85]. In the
former, A =0 and B = 0; in the latter, A=0and K= 0,

~ the active stiffness control proposed by Salisbury (§ 15.2.2) is also a particular
case of impedance control where A=0and B =0;

- impedance control is similar to resolved acceleration control with the only
difference being the inclusion of the desired inertia in the force gain.

<

A R
Cq@X

:X=f(q)|*

Figure 15.7. Nonlinear decoupling impedance control without force feedback

15.6. Hybrid position/force control

Using the previous methods, we can specify a desired dynamic behavior of the
robot but we cannot prescribe a desired wrench. In the following, we address some
methods where both position and force can be specified. Much work has been
carried out on this topic such as that of [Nevins 73], [Reboulet 85], [Merlet 86},
[Robert 86}, [Perdereau 91}, [Dégoulange 93], [Morel 94), etc. Two families of
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control schemes with force control loops are introduced: parallel hybrid
position/force control and external hybrid control.

15.6.1. Parallel hybrid position/force control

The parallel hybrid position/force control finds its roots in the work of Raibert
and Craig [Raibert 81]. It satisfies simultaneously the desired position and force
constraints of the task. Positions and forces are specified according to the Mason
formulation: directions that are constrained in position are force controlled, while
those that are constrained in force (zero force) are position or velocity controlled.
Duffy [Duffy 90] has shown that it is not correct to consider the velocity subspace
and the force subspace as orthogonal as suggested in [Raibert 81]. Rather, it is the
position or velocity controlled directions and the force controlled directions that
have to be orthogonal in the compliance frame.

In the parallel hybrid control method, the robot is controlled by two
complementary feedback loops, one for the position, the other for the force. Each
has its own sensory system and control law. The control laws of both loops are
added before being sent to the actuator as a global control signal G (Figure 15.8).
Each degree of freedom of the compliant frame is controlled by the position or force
loop through the use of a compliance selection matrix S, which is diagonal such that:

S = diag(sy, 52, ..., S¢) [15.18)

where s; = 1 if the jth degree of freedom of the compliance frame is position
controlled or s; = 0 if it is force controlled.

| X=1(q) e}
- ¥X
xd + G r _‘!..
S 91 PCL G- T B Robot |
+ + 4
d +
1-8 FCL |
At

PCL: Position Control Law,; FCL: Force Control Law

Figure 15.8. Principle of the hybrid positionfforce control



Compliant motion control 387

Since both loops act cooperatively, each joint contributes to the realization of
both the position control and the force control.

Three forms of hybrid control schemes can be distinguished according to the
type of the global control signal G:

* G is equivalent to joint torques (Figure 15.9);

« G is equivalent to displacements or velocities in the task space and has to be
muitiplied by the robot inverse Jacobian to obtain joint positions (Figure
15.10);

* G is equivalent to forces in the task space and has to be multiplied by the
transpose of the Jacobian matrix (Figure 15.11),

X=f(q)l'

e

Robot

PCLIJ: Position Control Law in the Joint space; FCL: Force Control Law

Figure 15.9. Hybrid force-position control scheme with addition of joint torques
(from [Raibert1 81])

X=Ng

e 1-sHq rcL iR,

PCLIJ: Position Control Law in the Joint space; FCL: Force Control Law
ﬁe'ls estimate of the stiffness matrix of the environment

Figure 15.10. Hybrid force-position control scheme with addition of velocities
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PCLT: Position Control Law in the Task space; FCL: Force Control Law

Figure 15.11. Hybrid force-position control scheme with addition of task forces

In these figures, the frame transformation computations for velocities, forces and
for the Jacobian matrix are not indicated. Practically, the matrices S and (1-S) are
applied to signals expressed in the compliance frame. For position control in the
joint space (Figures 15.9 and 15.10), we can use one of the laws presented in
Chapter 14, for example the PID controller of equation [14.5], which is:

t
T'=Kp(ql-@+Kg(@-9+K; f(q"—q) dt [15.19]
t0

whereas for a PID control in the task space (Figure 15.11), we have (equation
[14.17)):

I = JT[K, (X4~ X) + Kg(X4-X) + Klj‘(Xd -X) dr) (15.20)
t0

Normally, the force control law is chosen as:

= JT[ﬂd+Kf(ﬂd—ﬂ)—de)'(+Kﬂ}(ﬂd—ﬂ)dﬂ [15.21]
10

Note that, due to the noise of force sensors, the velocity in the task space is used
with the derivative gain rather than the derivative of the force.

In these schemes, we can also include feedforward compensation for the
nonlinear dynamics of the robot. For example, the position loop of the hybrid
contro! of Figure 15.11 may be realized by the nonlinear decoupling control law in
the task space described in § 14.4.3. The corresponding block diagram is given in
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Figure 15.12 [Khatib 87]. The computation of the control vector I" can be achieved
with the Newton-Euler algorithm in a similar way to that described in Appendix 10,
with the following arguments:

~ the joint position is equal to the current joint position q;

the joint velocity is equal to the current joint velocity g;

the joint acceleration is equal to:

§ = 31 S [Xd+ Ky (X9-%) + K, (X4-X) - J §) [15.22)

=

the force exerted by the terminal link on the environment can be taken to be
equal to:

fn = I-S) M+ KM -D-Keg X + Kﬂj'(ﬂd—ﬂ)dt] [15.23]
t0

where all terms are computed in the compliance frame R.

Figure 15.12. Implementation of the dynamic hybrid position-force control scheme

An and Hollerbach [An 87] showed that the control schemes of Figures 15.9 and
15.10, which require the inverse of the Jacobian matrix, have an unstable behavior
when implemented on a robot with revolute joints, even in non-singular
configurations. They assigned this instability to an interaction between the inertia
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matrix and the inverse kinematic model J-!, whereas the scheme using JT
(Figure 15.11) always produces stable results. Fisher and Mutjaba {Fisher 92]
showed that this instability comes from the formulation of the inverse kinematic
model in the position loop of the hybrid scheme. Using the selection matrix S to
separate position and force requirements in the task space is conceptually
straightforward. Geometrically, the selection matrix is a projection that reduces the
task space to a desired subspace of interest. Problems may arise when this selected
task subspace is mapped onto the joint space using the robot Jacobian matrix. From
the classical scheme of Figure 15.9 and equation [5.2], we can write that:

SdX = (SJ)dq [15.24]

From this equation, it can be seen that the selection matrix S reduces the task
space of the robot, which becomes redundant with respect to the displacement task.
Thus, instabilities of the hybrid control scheme of Craig and Raibert are the
consequence of an erroneous formulation of the projection of the task error vector
into the joint space. In fact, knowing that (SJ)* S = (S8J)*, the general solution of
[15.24] is:

dq = (SH*dX+[I-SH* S Z [15.25]
Fisher and Mutjaba [Fisher 92] showed that choosing Z = J! S dX as the
optimization term in equation [15.25] is equivalent to the inverse kinematic relation
dq = J! S dX. This choice of Z does not ensure stability and explains the
instabilities that can appear with the hybrid control scheme. Indeed, they showed
that the first term of equation [15.25], which is the minimal norm solution, is always

stable. Consequently, as indicated in Figure 15.13, the position loop reference input
should be:

dq = S))*dX [15.26a]

In a similar manner, they showed that the force loop reference input could remain
as the original one:

dy = [A-S) T @®@-0 (15.26b]
More general solutions with optimization terms are:
dq = SH*dX +[1-J*J1Z, [15.27a]

dy = [A-S)NT@®@-H+T-J* I Z [15.27b}
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where Z, and Z; are arbitrary position and force vectors in the joint space
respectively.

X=1(q) [
dq + r 9
(SHt —+1 pCLI Robot | __
+ f
fd + dy
[a-sy3T FCL |

PCLJ: Position Control Law in the Joint space; FCL: Force Control Law

Figure 18.13. Hybrid force-position control scheme (from [Fisher 92])

15.6.2. External hybrid control scheme

The external hybrid control scheme is composed of two embedded control loops
[De Schutter 88}, [Perdereau 91]; the outer loop controls force while the inner one
controls position (Figure 15.14). The output of the outer loop is transformed into a
desired position input for the inner loop. The resulting displacement of the robot
permits exertion of the desired contact force on the environment. The external
hybrid control scheme is relatively easy to implement and requires a rather small
amount of computation. It can be implemented in industrial robots while keeping
their conventional controllers [Thérond 96].

The position control loop can be achieved either in the task space or in the joint
space by implementing one of the methods presented in Chapter 14.

The additional displacement reference signal is given by:

t
daX; = R [+ K (@-D+Kq f(ﬂd—fr) &) [15.28]
0
where ﬁ, is an estimate of the stiffness of the environment.

Thanks to the integral force action, the wrench error ({4 ~ ff) is allowed to prevail
over the position error (X4 - X) at steady state [Pujas 95)].
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Figure 15.14. Principle of the external hybrid control scheme

This control can be applied with a nonlinear decoupling impedance control in the
task space [Chiaverini 93] by setting w(t) as the sum of two terms, wx(t) and wg(t),
which are the contributions of the position loop and the force loop respectively:

w(t) = wx(t) + wg(t) [15.29])

wx(t) = X4+ A 1Ky (X?-X) + Kp (X4 - X)) [15.30)
t

wit) = AYKe(M-0+ Kﬂf(rrd—xr)dﬂ [15.31]
10

Note that wi(t) is obtained by multiplying the force signal by A-! because it is
equivalent to an acceleration. The decoupled control law is obtained from equation
{15.15] as:

T = JT A (wx + wp + &(q, D X+ Qo + [15.32]

If the robot dynamic model is perfectly known, combining equations [15.30},
[15.31} and [15.32] yields:

A(id-i)+xd(Xd-X)+Kp(xd—X)+Kr(trd-m+Ka}(ﬂ“—Ddt =0
0

[15.33]
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When K¢ = 0 and Kg = 0, the control law [15.32] becomes equivalent to the
impedance control (Figure 15.7). Besides, if A = I, it reduces to the decoupling
nonlinear control in the task space such as that shown in Figure 14.5.

15.7. Conclusion

In this chapter, we have presented the most popular position/force control
approaches. For other methods, the reader should refer to [Brogliato 91},
[Siciliano 96a], for the passive force control, to [Siciliano 93], [Colbaugh 93],
[Arimoto 93], [Siciliano 96b] for the adaptive force control or to [Volpe 93],
[Volpe 95] for explicit force control.

We did not address the stability problem of force control and the interested
reader should refer to [Wen 91], [Yabuta 92}, [Wang 93], [Zodiac 96],
[Siciliano 00].

The problem of exerting a force on a moving target, thus of controlling
simultaneously force and velocity along the same direction, is addressed in the work
of {de Luca 91b].

Among the yet open problems, we have to mention the control of impact when
the robot and the environment enter in contact. Another class of problem concerns
the programming of compliant tasks: the choice of the axes of the compliance frame
and their roles requires from the user a lot of experience and is much more difficult,
in terms of abstraction capabilities, than programming displacements. Besides, some
physical parameters, like the stiffness of the robot and the environment, are not easy
to quantify, which results in instability problems.



Appendix 1

Solution of the inverse geometric model
equations (Table 4.1)

All, Type2
The equation to be solved is:
XS86;+YC6 =2 [AL1]
Four cases are possible:

i)if X = 0 and Y # 0, we can write that:

co; = %— [A12)

yielding:
0; = atan2( \/1 - (C8;)%, CO)) [A1.3]
ii)if Y = 0 and X # 0, we obtain:

S6; = '52(' [Al1.4]
yielding:

8; = atan2(S6;, 24J1 - (569 [ALS)
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iii) if X and Y are not zero, and Z = 0:

{ei = atan2(-Y, X)

6'=6+m (AL6]
(if X =Y =0, the robot is in a singular configuration);
iv) if X, Y and Z are not zero, we can write that [Gorla 84):
YCo; = Z-XS6; [AL.T7]
Squaring the equation leads to:
Y2C2%; = Y2(1-520;) = Z2-2Z X $6; + X2 5%, [A1.8]

Therefore, we have to solve a second degree equation in S8;. Likewise, we can write an
equation in C6;. Finally, we obtain:

2,v2.72
Sei=XZ+eY X‘+Y°-Z7

X2+Y2 (AL9)
YZ-eX\X?+Y2-22 '
Coi= X2+ Y2

with € = £ 1 (it is straightforward to verify that two combinations of $8; and C6; can only
satisfy the original equation). If X2 + Y2 < Z2, there is no solution. Otherwise, the solution is
given by:

8; = atan2(S6;, CO;) [A1.10)

Al.2. Type3
The system of equations to be solved is the following:

X186; + Y1Ce;=Z1
[ALL1]
X286; + Y2CO; =22

Multiplying the first equation by Y2 and the second by Y1, under the condition that
X1Y2 - X2Y1 #0, yields:

Z1Y2-72 Y1
88 = Xi1Y2-X2 Y1 {A1.12)
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then, multiplying the first equation by X2 and the second by X1, yields:

Z2 X1-21X2

Coi = X1v2-x2 YI (AL13)
Thus:
8; = atan2(S6;, C6;) [Al.14}

The condition X1Y2 ~ X2Y1 # O means that the two equations of [Al.11] are
independent. If it is not the case, we solve one of these equations as a type-2 equation.
In the frequent case where Y1 and X2 are zero, the system [A1.11] reduces to:

X188;=21
[AL15]

Y2CO;=72
whose solution is straightforward:
6 = atan2(%. %‘%) [Al.16]
Al3. Typed
The system of equations to be solved is given by:

X1186;=Y1
[A1.17}

X2 1; C; = Y2

We first compute r; by squaring both equations and adding them; then, we obtain 6; by
solving a type-3 system of equations:

f =+ V(YUX1)? + (Y2IX2)?2

YI_ Y2 (AL18]
8 = atan2(x e X2 1)

Al4. Type$

The system of equations to be solved is as follows:
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X186;=Yl +Z1 T
X2C8j=Y2+ 22 [AL.19]

Let us normalize the equations such that:

S8;=VI+Wlr,
COi= V2 + W2r; [A1.20]

After squaring both equations and adding them, we obtain a second degree equation in rj,
which can be solved if:

WiZ+ W22 (VIW2-V2WI1)2] > 0 [Al1.21]

Then, we obtain 6; by solving a type-3 system of equation.

AlS. Type 6
The system of equations is given by:

W S8 =X C8; + Y 56; + ZI
(A1.22]
W CO; =X S8; - Y CO; + 22

with Z1 # 0 and/or Z2 # 0. By squaring both equations and adding them, we obtain a type-2
equation in 9,-:

B1 S6; + B2C6; = B3 [A1.23)
with:

Bl =2@Z1Y+Z2X)

B2 = 2(Z1 X ~Z2Y)

B3 = W2-x2_-Yv2_712_272

Knowing 8;, we obtain 6; by solving a type-3 system of equation.

Al.6. Type7
The system of equations is the following:

W1C8; + W2 56; = X C6; + Y 56; + ZI
A1.24]
W156;~ W2 C6j= X $6; - Y C8; + Z2 {
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It is a generalized form of a type-6 system. Squaring both equations and adding them
gives a type-2 equation in 8;:

B1S6;+ B2C6; = B3 [A1.25]

where B3 = W12 + W22 - X2~ Y2~ 712 _ 722, The terms B1 and B2 are identical to those
of equation [A1.23].

After solving for 8;, we compute 6; as a solution of a type-3 system of equation.

AL7. Type8
The system of equations is the following:

XCoi+YC®O+6)=21
[A1.26)

X S86;+ Y S(8; + 91) =22
By squaring both equations and adding them, 6; vanishes, yielding:

Z12+7222-x2-y?
Co; = 2XY

[A1.27]

hence:

8; = atan2(x\/1 - (C6j)2, C8j) [A1.28]

Then, {A1.26] reduces to a system of two equations in 8; such that:

B1Z2 -B2Z1
S8i="g12+ B22
Bl1Z1 + B2Z2

B12+ B22

{A1.29)
C8; =

with Bl = X + Y C8j and B2 = Y S6;. Finally:

8 = atan2(S;, C8;) [A1.30]



Appendix 2

The inverse robot

The n degree-of-freedom robot whose set of geometric parameters are (0;', 05, dj', ;' 1})
is defined as the inverse of the robot (cj. o, dj. Oj. rj) if the transformation matrix °Tn(oj‘, aj'.
dj, 85’ 1j) is equal to °Ty"\ (o), &, d;, 8, ry).

Table A2.1 gives the geometric parameters of a general six degree-of-freedom robot.
Table A2.2 gives those of the corresponding inverse robot. Indeed, let us write the
transformation matrix T under the following form:

074 = Rot(z,8;) Trans(z,r;) Rot(x,0;) Trans(x,d;) Trans(z,r;) Rot(z.8,) ... Rot(x,0¢)
Trans(x,dg) Trans(z,rg) Rot(z,8¢) [A2.1}

Table A2.1. Geometric parameters of a general six degree-of-freedom robot

il 9 % 4i | I
1 o 0 0 0 r,
2 oy o) dy 7] 19)
3 o3 o3 ds 03 r3
4 o4 o4 dg 84 T4

o5 as ds Os rs
6 06 a6 dg B 16

The inverse transformation matrix 9Tg can be written as:

6T = Rot(z,-8¢) Trans(z,-rg) Trans(x,~dg) Rot(x,~0tg) Rot(z,~05)
Trans(z,-15) ... Trans(x,~d3) Rot(x,~0y) Rot(z,—0;) Trans(z.~r;) [A2.2]
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The parameters of Table A2.2 result from comparing equations [A2.1] and [A2.2]. The
corresponding elementary transformation matrices are denoted by J"Tj' such that:

O1¢ = 01 ITy ... 5T¢ = O1¢! {A2.3]

Table A2.2. Geometric parameters of the six degree-of-freedom inverse robot

) o 4 8 il

1 [ o 0 0 iy 6
2 os —06 ~d¢ -0s =15
3 C4 05 ~ds B4 T4
4 03 -0y —d4 -3 -r3
5 (47 -03 —d3 -8, -
6 o] -0 ~d; -0 -




Appendix 3

Dyalitic elimination

Let us consider the following system of equations in the two unknowns x, y:

2,2
ax +bxy=cy+d
{ y y=cy [A3.1]

ex2y+fxy+g=0

where the coefficients a, b, ..., g are constants with arbitrary values. The so-called dyalitic
elimination technique [Salmon 1885] consists of:

i) transforming the system [A3.1] as a linear system such that:

a? bx< a7 ¥
y =0 [A3.2}
ex2 fx g 1

where y2, y and 1 are termed power products;

ii) increasing the number of equations: by multiplying both equations by y, we obtain two
new equations that form, together with those of [A3.2), a homogeneous system consisting of
four equations in four unknowns (power products):

MY =0 [A3.3]

where M is a function of x:



404 Modeling, identification and control of robots

0 a2 bx<c —d

0 ex? fx g
ax? bxc —d 0
ex2 fx g O

M= andY = [y3 y2 y 117

Since one of the elements of Y is 1, the system [A3.3] is compatible if, and only if, it is
singular, which implies that the determinant of M is zero. Applying this condition to the
example leads to a fourth degree equation in x. For each of the four roots, we obtain a
different matrix M. By choosing three equations out of the system [A3.3), we obtain a system
of three linear equations of type A Y= B where Y'=[ y3 y2 y ]T. Doing that, each value of
x provides a single value of y.

To summarize, the method requires four steps:

construct the power product equation in order to minimize the number of unknowns:
add equations to obtain a homogeneous system;

from this system, compute a polynomial in a single unknown using the fact that the
system is necessarily singular;

compute the other variables by solving a system of linear equations.



Appendix 4

Solution of systems of linear equations

A4.1, Problem statement
Let us consider the following system of m linear equations in n unknowns:
Y=W{ [A4.1]

where W is an (mxn) known matrix, Y is an (mx1) known vector and { is the unknown (nx1)
vector.

Let W, be the augmented matrix defined by:
W, =[W : Y]

Let r and ry denote the ranks of W and W, respectively. The relation between r and r, can
be used to analyze the existence of solutions:

a) if t = 1y, the system has at least one solution:
- if r=r4 =n, there is a unique solution;

- if r = ra < n, the number of solutions is infinite; the system is redundant. For
example, this case is encountered with the inverse kinematic model (Chapter 6).

b) if 1 # r,, the system [Ad.1] is not compatible, meaning that it has no exact solution; it
will be written as:

Y =W(+p (A4.2)
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where p is the residual vector or error vector. This case occurs when identifying the geometric
and dynamic parameters (Chapters 11 and 12 respectively) or when solving the inverse
kinematic model in the vicinity of singular configurations.
A4.2. Resolution based on the generalized inverse
Ad4.2.1. Definitions

The matrix WD s a generalized inverse of W if:

WWEDwW = w (A4.3)

If W is square and regular, then W(1) = W-1, In addition, W) is said to be a left
inverse or a right inverse respectively if:

WEDW = Torww(D = | [A4.4)

It can be shown that W has an infinite number of generalized inverses unless it is of
dimension (nxn) and of rank n. A solution of the system [A4.1}, when it is compatible, is
given by:

{=why (A4.5)

All the solutions are given by the general equation:

= WY+ 1-w-Dwyz [A4.6]
where Z is an arbitrary (nx1) vector. Note that:

wWa-wtbwyz =0 (A4.7)

Therefore, the term (I - W-1) W) Z is a projection of Z on the null space of W.

A4.2.2, Computation of a generalized inverse

The matrix W is partitioned in the following manner:

W [Wn le] (Ad8]
T LW Wy '
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where W) is a regular (rxr) matrix, and r is the rank of W. Then, it can be verified that:

-
weD = [ Wi o] [A4.9]
6 o

This method gives the solution as a function of r components of Y. Thus, the accuracy of
the result may depend on the isolated minor. We will see in the next section that the
pseudoinverse method allows us to avoid this limitation.

NOTE.~ If the (r,r) matrix W}; built up with the first r rows and the first r columns is not
regular, it is always possible to define a matrix W'* such that:

Wy Wy ]

, . (A4.10]
Wit Wip

W' = RWC = [
where W'}, is a regular (rxr) matrix. The orthogonal matrices R and C permute the rows and

columns of W respectively. The generalized inverse of W is derived from that of W' as:

wD = ¢ (WHCDR [A4.11)

A4.3. Resolution based on the pseudoinverse
A4.3.1. Definition

The pseudoinverse of the matrix W is the generalized inverse W* that satisfies
[Penrose 55):

WWHw=W
WHW W= wt
W*W)T=w+w
(ww+)T=ww+

(A4.12)

It can be shown that the pseudoinverse always exists and is unique. All the solutions of
the system [A4.1] are given by:

L=WY+I-WWZ ' [A4.13]
The first term W* Y is the solution minimizing the Euclidean norm J § || The second

term (1 - W* W) Z, also called optimization term or homogeneous solution, is the projection
of an arbitrary vector Z of R on A{W), the null space of W, and therefore, does not change
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the value of Y. It can be shown that (I - W+ W) is of rank (n ~r). Consequently, when the
robot is redundant, this term may be used to optimize additional criteria satisfying the
primary task. This property is illustrated by examples in Chapter 6.

When the system [A4.1] is not compatible, it can be shown that the solution W* Y gives
the least-squares solution minimizing the error W { - Y||2 = [jp|}2.

Ad4.3.2. Pseudoinverse computation methods

A4.3.2.1. Method requiring explicit computation of the rank [Gorla 84]

Let the matrix W be partitioned as indicated in equation {A4.8] such that Wy is of full
rank r. Using the following notations:

Wi
W, = and Wy = [ Wi1 Wiz ]
Wai

it can be shown that:
wt = W T (w,Tww,Ty1w,T {A4.14)

When W is of full rank, this equation may be simplified as follows:

- ifm>n: W=W; o W*=(WT W)l WT, (W+ is then the left inverse of W);
~ ifm<n: W=W; - W+=WT (W WT)-l (W s then the right inverse of W);
- ifm=nW=W; =W, 5> Wt=W-1,

If Wy is not of rank r, the orthogonal permutation matrices R and C of equation [A4.10]
should be used, yielding:

Wt = C(WHY'R [A4.15]

A4.3.2.2. Greville method [Greville 60), [Fournier 80)

This recursive algorithm is based on the pseudoinverse properties of a partitioned matrix.
It does not require the explicit computation of the rank of W. Let W be a partitioned matrix
such that:

wW=[U: V] [A4.16]

Its pseudoinverse W+ can be written as [Boullion 71]:
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[ Ut - U*VCt - UtV(I - C*C) M VI(UHTU* (1 - VC*) ]
W= [A4.17]
ct+d-ctoMvIuHTu+a -veh
with:
C=(01-UuYHV

M=l +d-CtC)VTuhTutva -c+oy !
If the matrix V reduces to a single column, a recursive algorithm that does not require any
matrix inversion may be employed.

Let W), contain the first k columns of W. If Wy, is partitioned such that the first (k - 1)
columns are denoted by Wy._; and the k™ column is wy, then:

Wi = [ W1 @ owi ] [A4.18]

The pseudoinverse W; is derived from W:_l and from the k' column of W:

+
w! - [wk-l “’k"k:' (A4.19]
bx
where:
di = Wy wy (A4.20]

In order to evaluate by, we define:

cx = Wi~ Wy dg [{A4.21)
then, we compute:

by = c: = (T ) T ifcx#0
= 1+ Tdy ' g TW,, ifey=0 [Ad.22)

This recursive algorithm is initialized by calculating W: using equation [A4.14):
W; = w? = (wyTwy)lwT (if wy = 0, then WT =0T). [A4.23)

The pseudoinverse of W can also be calculated by handling recursively rows instead of
columns: physically, it comes to consider the equations sequentially.
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* Example A4.1. Computation of the pseudoinverse using the Greville method. Let us
consider the following matrix:

w[lZB]
L2134

i) first iteration (initialization):
+
W, = [ 1/5 2/5]

ii) second iteration:

215 L, -3 2
d2=8/5,c2= 1S b2=[2 —l],w2= 2 1

iii) third iteration:

d3=[_21 ],c3=[g],b3=[716 -3}

Finally, the pseudoinverse is:
-11/6 43
wt=| -173 113
76 =23

A4.3.2.3. Method based on the singular value decomposition of W
The singular value decomposition theory [Lawson 74), [Dongarra 79], [Klema 80] states

that for an (mxn) matrix W of rank r, there exist orthogonal matrices U and V of dimensions
(mxm) and (nxn) respectively, such that:

W=UzZVT [A4.24]

The (mxn) matrix X is diagonal and contains the singular values 9; of W. They are
arranged in a decreasing order such that 0y > 67 > ... 26;. Z has the following form:

stxr 01')((n~r)
z= [A4.25]
0(m—r)xr ”(m—r)x(n-r)
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where § is a diagonal (rxr) matrix of rank r, formed by the non-zero singular values o; of W.

The singular values of W are the square roots of the eigenvalues of the matrices WT W or
W WT depending on whether n < mor n > m respectively.

The columns of V are the eigenvectors of WT W and are called right singular vectors or
input singular vectors. The columns of U are the eigenvectors of W WT and are called left
singular vectors or output singular vectors.

The pseudoinverse is then written as:

wt = veryT [A4.26)
with:
-1
* = [ sto }
0 0
This method, known as Singular Value Decomposition (SVD) [Maciejewski 89), is often

implemented for rank determination and pseudoinverse computation in scientific software

packages.

The SVD decomposition of W makes it possible to evaluate the 2-norm condition
number, which can be used to investigate the sensitivity of the linear system to data variations
on Y and W, Indeed, if W is a square matrix, and assuming uncertainties § + d{, the system
[A4.1] may be written as:

Y+dY = [W+dW]({+dQ [A4.27]

The relative error of the solution may be bounded such that:

b Vip
ultliﬁclllgl) < condp(W) ITYII‘;) [A4.28a]
b Wi,
IICIEC!CH,, s condp(W) "|(|lwulp {A4.28b]

condp(W) is the condition number of W with respect to the p-norm such that:
condp(W) = liWIIp HW*llp [A4.29)
where ||*l, denotes a vector p-norm or a matrix p-norm.

The 2-norm condition number of a matrix W is given by:
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o
condy(W) = = [A4.30]
Omin
Notice that the condition number is such that:
condy(W) 2 1 [A4.31]
NOTES .-
— the p-norm of a vector § is defined by:
n
IGh = QKPP forp>1 [A4.32]
i=]
- the p-norm of a matrix W is defined by:
W Sl
IWip = max{ K C#0,,} = max{§W Ll : IGhp=1} [A4.33]

— the 2-norm of a matrix is the largest singular value of W, It is given by:

Wh2 = Omax

- equations similar to [A4.28] can be derived for over determined linear systems.

« Example A4.2. Computation of the pseudoinverse with the SVD method. Consider the
same matrix as in Example A4.1:

W [l 2 3]
L2134
It can be shown that:

0338 0.848 -0.408
3 655 0 0] [0.57 -0.822]

V= 0551 0174 0816 E.—.[ \
0 0374 0 0822 0.57
0.763 -0.501 -0.408 .

The pseudoinverse is obtained by applying equation {A4.26):
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-1.83 133
Wt =| -0333 0333
1.17 -0.667

Ad4.4. Resolution based on the QR decomposition

Given the system of equations [A4.1], two cases are to be considered depending on
whether W is of full rank or not.

A4.4.1. Full rank system

Let us assume that W is of full rank. The QR decomposition of W consists of writing that
[Golub 83):

QT W= [ form>n,r=n [A4.34]

o(m-r),n ]
QTW=[R Oppr] forn>mr=m [A4.35]

where R is a regular and upper-triangular {rxr) matrix and where Q is an orthogonal (mxm)
matrix.

For sake of brevity, let us only consider the case m > n, which typically occurs when
identifying the geometric and dynamic parameters (Chapters 11 and 12 respectively). The
case n > m can be similarly handled. The matrix Q is partitioned as follows:

Q=[Q @] [A4.36]
where the dimensions of Q1 and Q2 are (mxr) and mx(m-~r) respectively.

Let us define:

T QiTy G1
G=QTY=| o]t [ m] (A4:37)

Since the matrix Q is orthogonal, it follows that [Golub 83):

I-WOR = 1T Y- QTW P = I61-RE 2+ G2 = P (a¢38]
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From equation [A4.38], { is the unique solution of the system:
R{ = Gl {A4.39])

Since R is a regular and upper-triangular (rxr) matrix, the system [A4.39] can be easily
solved with a backward recursion technique (compute sequentially ;, {1, ...). The norm of
the residual for the optimal solution is derived as:

Iollmin = IG2] = §Q2T Y} [A4.40]

This solution (when m > n and r = n) is identical to that obtained by the pseudoinverse. In
order to speed up the computations for systems of high dimensions (for example, this is the
case for the identification of the dynamic parameters), we can partition the system [A4.1] into
k sub-systems such that:

Y@ = Wi § fori=1,...k [Ad.41}]
Let Q(i) = [Q1(i) Q2(i)] and R(i) be the matrices obtained after a QR decomposition of

the matrix W(i). The global system reduces to the following system of (nxk) equations in n
unknowns:

[Ty | [ aTmyw)
= C
L Q1ToYm J L @1Thowk
[ 1Tyyay 7 [ R
= |8 (A4.42)
L Q1TyYky ] L Rk

A4.4.2. Rank deficient system

Again, let us assume that m > n but in this case r < n. We permute the columns of W in
such a way that the first columns are independent (the independent columns correspond to
the diagonal non-zero elements of the matrix R obtained after QR decomposition of W). We
proceed by a QR decomposition of the permutation matrix and we obtain :

R1 R2
ovr [ ]

[A4.43)
0(m-r),r 0(m—r),(n-r)
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where P is a permutation matrix obtained by permuting the columns of an identity matrix, Q
is an orthogonal (mxm) matrix, and R1 is a regular and upper-triangular (rxr) matrix.

Let:

e8]

From equation {A4.37], we obtain:

Iol? = Y -W P = QT Y-QTWPPT {2

617 [RIGI+R2Q2 T
= I[ G2 ]_[ 0a-1),1 ]"

= [IG1 - [R1 {1 + R2 Q2] + G2 [Ad.44)
{1 is the unigue solution of the system:
R1{1 = G1-R2{2 [A4.45]

Then, we obtain a family of optimal solutions parameterized by the matrices P and {2:

c-p[c'] [Ad.46]
-7 .

All solutions provide the minimum norm residual given by equation [A4.40). We obtain a
base solution for {2 = 0y, 1. Recall that the pseudoinverse solution provides the minimum
norm residual together with the minimum norm || { |2,



Appendix 5

Numerical computation of the base
parameters

AS.1. Introduction

The base parameters constitute the minimum set of parameters that characterize
completely a given system. They also represent the identifiable parameters of the system.
They are obtained from the standard parameters by eliminating those that have no effect on
the model and by grouping some others in linear combinations. The determination of the base
inertial parameters has been carried out in Chapters 9 and 10 by the use of straightforward
symbolic methods for serial and tree structured robots. However, the symbolic approach
cannot give all the base parameters for robots containing closed loops. This problem can be
solved by the use of the numerical method presented in this appendix. In addition, the
numerical method can also be applied to determine the base parameters for the geometric
calibration of robots.

The symbolic approach of computing the base parameters is based on determining the
independent elements of the energy functions represented by the row vector h (equation
(9.41]), or by determining the independent columns of the D matrix of the dynamic model
(equation [9.36]). Numerically this problem is equivalent to the study of the space span by
the columns of a matrix W formed from h (or D) using r random values of q, g (or q, . §).
This study can be carried out using the singular value decomposition (SVD) or the QR
decomposition of W [Gautier 91). In this appendix, we develop the numerical method that is
based on the QR decomposition of a matrix W, which is derived from the energy functions.
Both cases of tree structured robots and closed loop robots are treated.
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AS.2. Base inertial parameters of serial and tree structured robots

The total energy of the system H is linear in terms of the standard inertial parameters. It is
given by the following equation:

H=hK [AS.1]

where:

—~ K represents the (11nx1) vector of the standard inertial parameters of the links and of
the rotors of actuators;

- h(q, q) is the (1x11n) row vector composed of the cnergy functions;
- qand q are the (nx1) joint position and joint velocity vectors respectively.

To determine the base parameters, we construct a matrix W by calculating the energy row
h for r random values of joint positions and velocities such that:

h(1)
h(Q2
W= @ [AS.2]

h(r)
with h(i) = h[q(), q(i)).i=1, ...r,and r>> 11n.

An inertial parameter has no effect on the dynamic model if the elements of its
corresponding column in W have the same value, i.e. its function in h is constant and
independent of q(i), q(i). By eliminating such parameters and the corresponding columns, the
matrix W is reduced to ¢ columns and r rows.

We note that:

- the number of the base inertial parameters b is equal to the rank of W,
- the base parameters are those corresponding to b independent columns of W;

- the grouping equations are obtained by calculating the relationship between the
independent columns and the dependent columns of W.

The application of the foregoing statements can be achieved by the use of the QR
decomposition of W (§ Ad.4), which is given by:

R
QTW = [0 ] [A5.3]
(r-C)XC
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where Q is an (rxr) orthogonal matrix, R is a (cxc) upper-triangular matrix, and Ojy; is the
(ixj) matrix of zeros.

Theoretically, the non-identifiable parameters are those whose corresponding elements on
the diagonal of the matrix R are zero [Forsythe 77}, [Golub 83). Let t be the numerical zero:

T = r e max([R;i]) [A5.4]
1

where [R;il is the absolute value of Ry;, and ¢ is the computer precision.

Thus, if [Rj;] < T, then the i parameter is not identifiable. On the contrary, if [R;i| > 1.
then the corresponding column in W is independent and constitutes a base of the space span
by W. Let the b independent columns be collected in the matrix W1, and the corresponding
parameters be collected in the vector K1. The other columns and parameters are represented
by W2 and K2 respectively, such that:

K1
WK = [W1 W2 ][xz} [AS.5)

The matrix W2 can be written in terms of W1 as follows:

W2 = WIB [AS.6]
Consequently:

Kp
WK = [ W1 wz][o]=w1x3 [AS.7]

where the base parameter vector Kp is given by:
Kp = K1 +BK2 [AS5.8]

Thus, the matrix P allows us to obtain the grouping equations of the parameters K2 with
K1. In order to determine B, we compute the QR decomposition of the matrix [ W1 W2 ],
which is written as:

R2

= [ QIR1 QIR2 AS.9
O¢r-b)xb o(r-b)x(c-b)] [ 1 tasa)

[w1 w2]=[at oz][

where R1 is an (rxr) regular upper-triangular matrix, and R2 is a (bx(c-b)) matrix.
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From equation [A5.9], we obtain:

Q1 = WiRl'! [A5.10)
W2 = Q1R2 = WIRI'IR2 [AS.11)

and finally, using equation [A5.6}:

B = RI'1R2 (A5.12]

AS.3. Base inertial parameters of closed loop robots

The geometric description of closed loop robots is given in Chapter 7. The joint position
vector of the equivalent tree structure is given by:

Q,
Qs = [ ] {AS5.13]
%

where q, is the (Nx1) vector of the active joint variables, and % is the ((n - N)x1) vector of
the passive joint variables.

The energy functions of the inertial parameters of the closed loop structure are the same
as those of the equivalent tree structure. This means that we can apply the algorithm of the
tree structured robots to the closed loop structures with the difference that the matrix W is
calculated using random values for the independent active variables g,(i) and ('h(i) for
i=1, .., r. The cotresponding passive variables qp and (']p are evaluated from the constraint
equations of the loops.

AS5.4. Generality of the numerical method

The numerical method can be used for the determination of the minimum parameters of
other applications such as:

-~ determination of the identifiable parameters for the geometric calibration of the
parameters (Chapter 11) [Khalil 91a];

- calculation of the minimum parameters of flexible structures [Pham 91a).

This numerical method is easy to implement, thanks to a software package such as
SYMORO+ [Khalil 97] for the automatic computation of the symbolic expressions of the
energy functions (to determine the elements of h) and thanks to scientific software packages
of matrix computation such as Matlab and Mathematica.



Appendix 6

Recursive equations between the energy
functions

In this appendix, we establish the recursive equation between the energy functions of the
inertial parameters of two consecutive links in an open loop structure (serial or tree structured
robots).

A6.1. Recursive equation between the kinetic energy functions of serial robots

The kinetic energy of link j can be written using equation [9.19] as:

1. T.. .
Ej = fjvj ijj [A6.1]
with:
and:
) Mjl3 —jﬁSj
JJIJ = [A6.3]

iMs;
MS; Jj
The recursive equation of the kinematic screw is written using equation (9.22] as:

jVj = j'ﬂ'j-] j']Vj.l + ‘.lj jmj [A6.4}
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where jaxj is defined by equation [9.23a].

The kinetic energy of link j is linear in the inertial parameters of link j. Consequently, it
can be written as:

Ej = ¢ Kj [A6.5])

where ¢; is the (1x10) row matrix containing the energy functions of the inertial parameters of
link j. The parameters of link j are given by:

= [ XXj XY; XZ; YYj YZ; ZZ; MX; MY; MZ; M; ]T [A6.6)
By substituting for iV; from equation [A6.4] into equation [A6.1], we obtain:
]
Ej = 5 0T;.1 71Vj) + & 0T 305 6T, F1V;.1 + Gy ) (A6.7]

Developing equation [A6.7] gives:

] - . . : T 1

Let us set:

g = J"n'T 3g: i [A6.9]
£ B § 451 :

QJ ﬂJJK) = Jm J,BJJVJ ;E‘] .lg] J,UJ ij {A6.10]

where the row vector v); is given by:

_ 1.
=00 0 w; 0 wy (@;-3¢ V23 -Vij 0 0]+
1.
o; o 0 0 0 0 O -y O 0 (V3J-'2'qj)] [A6.11]
with:
Wiy =1(Vy; Vay V3,j]T
Joj = forj oy o357

Equation [A6.9] transforms the inertial parameters of link j from frame R; into frame
R;.1. It can be written as:
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FIK; = Iy K [A6.12)
The expression of J-!A; is obtained by comparing equations [A6.9] and [A6.12]. It is
given in Table 9.1 for serial robots.

Using equations [A6.5}, [A6.9], [A6.10] and [A6.12], we rewrite equation [A6.8] as
follows:

Ej = (¢ 7 1A+gin) K; [A6.13]
Finally, from equations [A6.5] and [A6.13), we deduce that:
g = ej_l j"kj + (.]J 'f|j [A6.14]

with eg = 0yx10.

A6.2. Recursive equation between the potential energy functions of serial robots

The potential energy of link j is written as (equation [9.25b]):

Uj = 9T (OP; M; + 0 iMS;) [A6.15)
whereOg = [ 81 82 23 ] indicates the acceleration due to gravity.

This expression is linear in the inertial parameters. It can be written as:

Uj = yK; [A6.16)

Using equations [A6.15] and [A6.12], we can write that:

Uj = 8 %% K; [A6.17)
where:
gu = [ O1x6 %87 0) (A6.18)

From equation [A6.17], we deduce that:
uj = g, % [A6.19])

Since OA; = ol.'-l j"}.j. we obtain the following recursive equation for the potential
energy functions:
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u = gy [A6.20]

with ug = g,.

A6.3. Recursive equation between the total energy functions of serial robots

The total energy of link j is written as:

Hj = Ej+Uj = (ej+IIj-) Kj = hj Kj {A6.21)
with:
hj = ¢+y (A6.22]

From equations [A6.14] and [A6.20], we obtain the following recursive equation:

by = by 0+ a5, [A6.23]

with hg = g,,.

A6.4. Expression of 20)); in the case of the tree structured robot
In the case of the tree structured robot, equation [A6.23] is valid after replacing j~ 1 by

i=a(j). The (10x10) matrix ikj represents the matrix transforming the inertial parameters Kj
from frame R; to frame R; and can be obtained by developing the following equation:

iy = IT] igiT, [A6.24]
which is equivalent to:

iK; = K [A6.25)

By comparing equations [A6.24] and [A6.25], we obtain the expressions of the elements
of ilj in terms of the elements of the matrix ‘Tj, which are functions of the geometric
parameters (yj, bj, o, dj, Bj, rj) defining frame Rj relative to frame R; (Chapter 7), as follows:

All AI2 A13
= 06 'Aj P [A6.26]
O1x6 01x3 1
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The dimensions of the matrices A11, A12 and A13 are (6x6), (6x3) and (6x1) respectively.
To simplify the writing, let:

iAj=[s n a]

in

Thus:

[ SxSx
SxSy

Sz8x
All =

SysZ

— 5752

Al2 =

A3 = [ PiP#PyPy ~PyPy ~PyP; PPy#PyPy —PPy PyPx+PyPy ] T

[Px Py P JT

2sxny
SyNx+Sxhy
S NSy,

2nysy
Shy+syn,

20,8,

= 2(szPy+syPy)
~syPx-sxPy
~$,Px=sxP;
2(s;Pz+sxPyx)
~5;Py-syP;
- 2(syPy+syPy)

2848y
Sydx+Syay
$,25 4858,

2syay
ayS;¥Syl,

25,2,

2(n Pz +nyPy)
-nyPx-nyPy
~n,Px~nyP,

2(n,Pp+nyPy)
-ngPy-nyP,

2(nyPy+nxPx)

Ry
Ny
fxh,
Ryhy
nyn,

Nany

2nyay
Nyay+ngdy
Ngay+Nydy

2nyay
Npay+hya,

2n;a,

2(a P +ayPy)

'ayp x‘axp y

-2,Px-axP;

2(a,Py+a,Py)

2(ayPy+agPy)

"azpy-aypz

axay 7]
ayay
a2y
aydy
aya,

237

[A6.27]
[(A6.28]

{A6.29]

{A6.30)

[A6.31}



Appendix 7

Dynamic model of the Stidubli RX-90 robot

In this appendix, we present the simplified Newton-Euler inverse dynamic model of the
Stidubli RX-90 robot. This model is obtained automatically using the software package
SYMORO+ [Khalil 97]. The inertial parameters correspond to the case of symmetric links,
which are given in Table 9.4. The components of the force and moments exerted by the end-
effector on the environment are denoted by FX6, FY®6, FZ6, CX6, CY6, and CZ6. The joint
friction forces are neglected. The velocity, acceleration and torque of joint j are denoted by
QPj, QDPj and GAM; respectively. The acceleration of gravity is denoted by G3. As already
mentioned, Sj and Cj denote sin(6;) and cos(8;) respectively.

Noting that the equations with an asterisk (*) on their left are constants and can be
evaluated off-line, the computational cost of this model is 160 multiplications and 113
additions.

No31=QDP1*ZZ{R
WI12=QP1*S2

WI22=C2*QPI
WP12=QDP1*S2 + QP2*WI22
WP22=C2*QDP1 ~ QP2*WI12
DV222=-WI22+*2
DV332=-QP2**2
DV122=WI12*W22
DV132=QP2*WI12
DV232=QP2*WI22
U112=DV222 + DV332
U212=DV122 + QDP2
U312=DV132 - WP22
VP12=-G3*S2

VP22=- C2*G3

PIS22=XXR2 - ZZR2
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Nol12=WPi2*XXR2 + DV232*ZZR2
No22=DV132*PIS22
No32=-DV122*XXR2 + QDP2*ZZR2
WI13=C3*WI12 + S3*WI22
WE3=-83*W112 + C3*WI22
W33=QP2 + QP3

WP13=QP3*WI23 + C3*WP12 + S3*WP22
WP23=—QP3*WI13 - S3*WP12 + C3*WP22
WP33=QDP2 + QDP3
DV113=-WI13*+2

DV333=-W33#+2
DVI123=WII3*WI23
DV133=W33*WI13
DV233=W33*WI23

U123=DV123 - WP33

U223=DV113 + DV333

U323=DV233 + WP13
VSP13=d3*U112 + VP12
VSP23=d3*U212 + VP22
VSP33=43*U312

VP13=C3*VSP13 + S3*VSP23
VP23=-S3*VSP13 + C3*VSP23
F13=MYR3*U123

F23=MYR3*U223

F33=MYR3*U323

*PIS23=XXR3 - ZZR3
Nol3=WPI13*XXR3 + DV233*ZZR3
No23=DV133*PIS23
N033=—DV123*XXR3 + WP33*ZZR3
Wil4=-S4*W33 + C4*WI13
WL24=-C4*W33 — S4*WI13
W34=QP4 + WI23

WP14=QP4*WD24 + C4*WP13 - S4*WP33
WP24=-QP4*WI14 — S4*WP13 - C4*WP33
WP34=QDP4 + WP23
DVI124=WI14*W24
DV134=W34*WIi4
DV234=W34*WI24
VSP14=RL4*U123 + VPI3
VSP24=RLA*U223 + VP23
VSP34=RL4*U323 + VSP33
VP14=C4*VSP14 ~ S4*VSP34
VP24=-S4*VSP14 - C4*VSP34
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*PIS24=XXR4 - ZZR4
Nol4=WP14*XXR4 + DV234*ZZR4
No24=DV134*PIS24
No034=-DV124*XXR4 + WP34*ZZR4
WI15=S5*W34 + C5*WI4
WI25=C5*W34 - S5*WIi4
W35=QPS - Wi24

WPI15=QPS*WI25 + C5*WP14 + S5*WP34
WP25=-QP5*W115 - S5*WP14 + C5*WP34
WP35=QDPS - WP24
DV115=-WI15**2

DV335=-W35**2
DV125=WI15*Wi25
DV135=W35*WI15
DV235=W35*WI25

U125=DV125 - WP35

U225=DV115 + DV335
U325=DV235 + WP15
VP15=C5*VP14 + S5*VSP24
F15=MYRS*U125

F25=MYRS5*U225

F35=MYRS5*U325

*PIS25=XXRS5 - ZZRS5
Nol5=WP15*XXRS + DV235*ZZRS
No25=DV135*PIS25
No35=-DV125*XXRS + WP35*ZZRS5
WIl6=-S6*W3S + C6*WI1$
Wi26=—-C6*W35 - S6*WI15
W36=QP6 + WI2§

WP16=QP6*W126 + C6*WP15 - S6*WP35
WP36=QDP6 + WP25
DV126=WI116*WI26
DV136=W36*WI16
DV236=W36*WI26

*PIS26=XXR6 - ZZ6
Nol6=WP16*XXR6 + DV236*226
No26=DV136*PIS26
No036=-DV126*XXR6 + WP36*226
N16=CX6 + Nol6

N26=CY6 + No26

N36=CZ6 + No36

FDI16=C6*FX6 -~ FY6*S6
FDI36=-C6*FY6 - FX6*S6

429
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E15=F15 + FDI16

E25=F25 + FZ6

E35=F35 + FDI36

N15=C6*N16 + Nol5 — N26*S6 - MYR5*VP24

N25=N36 + No25

N35=—(C6*N26) + No35 —- N16*S6 - MYRS*VPIS
FDI15=CS*E15 — E25*S5

FDI3S=CS*E25 + E15*S$

N14=C5*N15 + Nol4 - N25*S5

N24=-N35 + No24

N34=C5*N25 + No34 + N15*S5

FD114=C4*FDI1$ + E35*S4

FDI34=C4*E35 - FDI15*S4

E13=F13 + FDh4

E23=F23 + FDI35

E33=F33 + FDI34

N13=C4*N14 + Nol3 + FDI34*RL4 — N24*S4 + MYR3*VSP33
N23=N34 + No23

N33=—(C4*N24) + No33 - FDII4*RLA - N14*S4 - MYR3*VPI3
FDI23=C3*E23 + E13*S3

N12=C3*N13 + No12 - N23*$3

N22=—d3*E33) + C3*N23 + No22 + N13*S§3
N32=d3*FDI23 + N33 + No32 - MY2*VP12 + MXR2*VP22
N31=C2*N22 + No31 + N12*S2

GAM1=N3{

GAM2=N32

GAM3=N33 + IA3*QDP3

GAM4=N34 + IA4*QDP4

GAMS=N35 + IAS*QDPS

GAMG6=N36 + IA6*QDP6



Appendix 8

Computation of the inertia matrix of tree
structured robots

In this appendix, we develop a method to compute efficiently the inertia matrix of tree
structured robots. Note that a serial robot is a special case of the tree structured robot. This
method is based on the utilization of a simplified special case of Newton-Euler algorithm and
on the concept of composite links {Khalil 90b].

A8.1, Inertial parameters of a composite link
The composite link j* is composed of link j and of the links supported by link j (Figure
AB.1). The inertial parameters of the composite link j* can be calculated in terms of the
standard parameters (or base parameters) of its links using the following recursive algorithm:
i) initialization. Forj = 1, ..., n:
PRI S . + +
JJ’ =JJj’ JMSJ =JMSJ' Mj = MJ
We recall that a(j) indicates the link that is antecedent to link j;
ii)forj=n, .., 2anda(j)+0:
oo oo . P oA oo A e oA . A4
‘(J)Ja(j) = a0)1a0)+ 204, ij; JAg(j) - (BOP; a(J)MSj + (0P 20) MS; M
wA WA
+30B ;30BT M; (A8.1a)
o rat P PRI +
WMS,;) = 20MS, ;) + *OMS; + 20P; M; [A8.1b]
+ + +
Mag) = Magy +M; [A8.1¢]
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with:
- 0MS] = 20A;iMS;];
- % (3x3) skew-symmetric matrix of the components of the vector v;
ap; 20
- a(.l)T j =
03, 1

- J'J;': inertia tensor of the composite link j* referred to frame R;;

]

- jMS;': first moments of the composite link j* referred to frame R;:
- M;: mass of the composite link j*.

We note that equations [A8.1] are equivalent to the following:
. + . + . IR 3
WK, = 20K, + 20, K, [A8.2]
where ‘(j)kj and-in are defined in Chapters 9 and 10 and Appendix 7.

NOTE.- The relationship between the concept of composite link parameters and base inertial
parameters is considered in [Khalil 90a].

Figure A8.1. Composite link j*
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A8.2. Computation of the inertia matrix

We have seen in § 9.7.1 that the j column of the inertia matrix A can be computed by
the Newton-Euler inverse dynamic algorithm by setting:

ii=uj‘,(']=0,g=0. Fo=0(f;=0,m=0 fori=1,.,n)
where uj is an (nx1) vector with a 1 in the j™ row and zeros elsewhere.

Under these conditions, the forward recursive equations of the Newton-Euler inverse
dynamic (Chapter 9) are only applied to link j*:

ko = 0,5y = 0,XV, = 0,kF, = 0,XMy = 0 fork<;j [A8.3]
joj = 0 [A8.4]
j\'rj = o;la; [AB.6)
. + e I . +

imj = J'Jj* S +jmsj* xiv; [A8.8]
We deduce that:

- if joint j is prismatic (dy; = 0,iM;=0and iV;=[ 0 0 1 ), then:

K=0 o M [A89]
; + + T
My = (MY]  -MX] 0] [A8.10]

- if joint j is revolute (J'\",-=0andid)j=[ 0 0 1]7), then:

IFj = [-MY; Mx; o [A8.11]
M = 1xz]  vz; 2z [A8.12)

The recursive backward computation starts by link j and ends with link s, where a(s) = 0.
The algorithm is given by the following equations:

- if joint j is prismatic, then:

i =iF=10 o M (A8.13)
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im; = M = MY? -mx] ofT [A8.14]
J 3 ] 3
+
Ajj = Mj +laj [A8.15]

~ if joint j is revolute, then:

iy = IFj = [-MY] ij?‘ o7 [A8.16]
im; = iM; = [xzj* YZ;' zzj?‘lT [A8.17]
Ajj = sz“aj [A8.18)

Then, the following equations are computed for k =j, a(j), a(ag), ..., s, where a(s)=0:

MWy = 2W0A My [A8.19]
MMm, gy = 3WAY kmy + @RIP x 20)f, ) (A8.20}
Tagy = Aayj = Gag Tag) + 0 agom aky) T *®a i [A8.21]
NOTES.-
~ the element A;; of the inertia matrix is set to zero if link i does not belong to the path
between the base and link j;

- this algorithm provides the elements of the lower part of the inertia matrix. The other
elements are deduced using the fact that the inertia matrix A is symmetric.



Appendix 9

Stability analysis using Lyapunov theory

In this appendix, we present some results about the stability analysis of nonlinear systems
using Lyapunov theory. It is largely based on [Slotine 91] and [Zodiac 96).

A9.1. Autonomous systems

Let us consider the autonomous system (i.e. time-invariant) represented by the following
state equation:

x = f(x) {AS.1]

A9.1.1. Definition of stability

An equilibrium point x = 0 such that f(x) = 0 is said to be:

a) stable if for any € > 0, there exists R > 0 such that if [x(0)|| < &, then |ix(t)} <R;

b) asymptotically stable if for any € > 0 and if [[x(0)|| <&, then [x(t)|| = 0 as t —» o0;

c) exponentially stable if there exist two strictly positive numbers o and A such that:
lIx(®ll < o exp (=2 t) lIx(O)j}

d) an equilibrium point is globally asymptotically (exponentially) stable if it is
asymptotically (exponentially) stable for any initial value x(0). A linear system is
always globally exponentially stable or unstable.

Some of these definitions are illustrated in Figure A9.1.
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PN

1: stable

2: asymptotically stable
3: unstable

Figure A9.1. Stability definition

A9.1.2. Positive definite and positive semi-definite functions

The real function V(x) is positive definite (PD) in a ball B at the equilibrium point x = 0
if V(x) > 0 and V(0) = 0. The function V(x) should have continuous partial derivatives.
Moreover, for some € > 0, V(x) should be less than € in a finite region at the origin.

If V(x) > 0, then the function is positive semi-definite (PSD).

A9.1.3. Lyapunov direct theorem (sufficient conditions)

If there exists V(x) PD in a ball B around the equilibrium point x = 0 and if:

- \./(x) is negative semi-definite (NSD), then 0 is a stable equilibrium point;
- \.’(x) is negative definite (ND), then 0 is asymptotically stable;

- \"(x) is NSD and # 0 along all the trajectory, then 0 is asymptotically stable.

Moreover, if V(x) is PD al! over the state space Vx # 0, V(x) = 0 as x — 0,
lim V(x) — oo as Jx|| o oo and if V(x) is ND, then 0 is globally asymptotically stable.
A Lyapunov function can be interpreted as an energy function.
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A9.1.4. La Salle theorem and invariant set principle

If \"(x) is only NSD, it is yet possible to prove that the system is asymptotically stable,
thanks to La Salle theorem {Hahn 67].

Definition. The set G is invariant for a dynamic system if every trajectory starting in G
remains in G Vt.

Theorem. Let R be the set of all points where V =0 and M be the largest invariant set of R;
then every solution originating from R tends to M as t — oo,

A9.2. Non-autonomous systems

Let us consider the non-autonomous system (i.e. time-varying) represented by the
following state equation:

x = f(x, 1) [A9.2)

A9.2.1. Definition of stability

The equilibrium point x = 0 such that f(x, 0) = 0 Vt 2 ;) is said to be:

a) stable at t = ty, if for any € > O there exists R(g, to) > 0 such that if [x(tp)}] < € then
Ix®f <R Vit

b) asymptotically stable at t = tg, if it is stable and if there exists R(tg) > O such that
lIxto)}l < R(tp) = x(t) > 0 ast —» oo}

c) exponentially stable, if there exist two positive numbers ¢ and A such that:
IIx(®))] < o exp (~A (t-tg)) lIx(to)ll, Yt = tg for x(tp) sufficiently small;

d) globally asymptotically stable, if it is stable and if x(t) — 0 as t = o0, Vx(lg):

¢) uniformly stable, if R = R(g) can be chosen independently of t;.

A9.2.2, Lyapunoy direct method

Definition 1 (Function of class K)

A continuous function @ : R* — R* is of class K if a(0) = 0, o(6) > 0 Vo > 0, and atis
non-decreasing.
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Definition 2 (PD function)

A function V(x, t) is locally (globally) PD if and only if there exists a function a of class
K such that V(0, t) = 0, V(x, t) 2 a(fix|p, ¥t > 0 and Vx in a ball B.

Definition 3 (Decreasing function)

A function V(x, t) is locally (globally) decreasing if there exists a function « of class K
such that V(0, t) = 0 and V(x, t) < a(fix]D, ¥t > 0 and Vx in a ball B.

Lyapunov theorem

Let us assume that in a ball B around the equilibrium point x = 0:
— there exists a Lyapunov function V(x, t) whose first derivatives are continuous;

~ there exist functions a, B, y of class K;

then, the equilibrium point is:
a) stable if V(x, t) > a(jjx]), V(x, 1) <0;
b) uniformly stable if a(jxf) < V(x, ) < B, V(x, ) <0;
¢) uniformly asymptotically stable if:
oixl) < V(x, 1) < Blixl, Vex, 1) < -y(lxf) < 0;
d) globally uniformly asymptotically stable if:
afflx < Vx, 1) < BAxiD, Vex, & <~y < 0, aixih — o as x — oo.

Barbalat lemma. If i‘(t) is a uniformly continuous function such that lim f(t) is bounded as
t-—)eo.theni(t)—»Oast—-)ee.

Barbalat theorem. If V(x, 1) has a lower bound such that V(x, t) > ofix|D and if \./(x. t) <0,
then V(x, t) — 0 as t — oo if V(x, t) is uniformly continuous with respect to time.
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Computation of the dynamic control law in
the task space

In this appendix, we present the computation of the decoupling nonlinear control in the
task space [Khalil 87a]. The dynamic model is computed by a specialized Newton-Euler
algorithm, which takes into account many variables that are evaluated for the kinematic
models.

The number of operations of this control law for the Stiubli RX-90 robot, assuming
symmetrical links whose inertial parameters are given in Table 9.4, is 316 multiplications and
237 additions.

A10.1. Calculation of the location error ex

The current location of the terminal link is given by the homogeneous transformation
matrix OT,, which can be obtained using a customized symbolic algorithm (Chapter 3):

s, On, Oa, °Pn]

0 0 o0 1

0T, = o1y 11, .. I, = [ [A10.1]

Let the desired position and orientation be given by OP: and [°s: On: °a:] respectively.
The location error, denoted by ey, is given by: :

e = [ d’ﬁf X! 17 (A10.2)

where dX,, and dX; indicate the position error and orientation error respectively.
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The position error is obtained by:

dX, = dP = Opi_0p, [A103]

The orientation error is given by [Luh 80a}:

dX; = %ua {A10.4]
where Ou and o are obtained by solving rot(u,o) OAn = OAg.

Let us assume that:

0ad0AT = [s n a] (A10.5]

If o is small, the orientation error dX; can be considered to be equal to u sin(a) or equal
to 98, (§ 2.5). Using equation [2.35], we obtain:

n,—ay

dX; = usin(a) = % A =8z [A10.6]
Sy =g
Using equation [5.59), we obtain:
d
Osn_Osn
0 + 1 o9 0
dx,- = sn = QCD nn-' nn IA]07]

d
0300y,

dX; = % (Osq x Os: +Ony x O“ﬁ +Oag x 0’:] (A108]

A10.2. Calculation of the velocity of the terminal link X

The terminal link velocity is composed of the linear velocity OV, and of the angular
velocity Oay:

. ["Va
X=i, [A10.9)
N
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Oy, and Ow, are calculated using the following recursive equations, which are developed
in Chapter 9:

Forj=1, .. n:
Wi =A@ Vi Pl xR 4054 g [A10.10]
Jojy = 1A ey [A10.11)
aj = Juwj.1 +6 G Ja; [A10.12]

The vectors OV, and Oy, are obtained by OV, = 0A, "V, and %w, = A, Pw,. We note
that Loy, ..., Py, are also required for the inverse dynamic algorithm.

A10.3. Calculation ofj q

The calculation of this vector by differentiating the Jacobian matrix with respect to time
and the multiplication of the result by ¢ would need a prohibitive number of operations. We
propose to use an efficient recursive algorithm derived from the second order kinematic
model. Many intermediate variables of this algorithm are used for the computation of the
inverse dynamic model. The second order kinematic model is given by:

bl & . . .
Xy = | = J@) q+Jq Qq {A10.13]

Oy

From equation [A10.13], we deduce that J(q, §) q is equal to in when setting q = 0.

. | Va@=0]| [
Ja.9)q = = ¥ [A10.14]
@ @=0) n

Consequently, b g can be computed using equations [9.86), [9.87] and [9.90] after setting
q = 0. The algorithm is given as follows:

Forj=1, .., n:
J:w,; = jfti" J"lwk, +3 0oy x g ay) [A10.15]
iy = ¥+ o) o [A10.16]
iy = JAj1 0y + 3107 1) + 2 05y x G (A10.17]

The initial values are: % = 0 and O¢q = 0.
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A10.4. Calculation of J(¢)'! y
The vector y indicates the term (w(t) —j Q) as given in equation [14.33}. This problem is

treated in Chapter 6. The solution for the regular case of the Stiubli RX-90 robot is
developed in Example 6.1.

A10.5. Modified dynamic model

We modify the inverse dynamic model developed in Chapter 9 to take into account the
availability of ®; and 'P;. Equations [9.86) and [9.87], giving (:)J and Vj, are replaced by:

iy = ij +Jgj [{A10.18]
j\'rj = j¢j + jbj [A10.19]

where jej and jbj represent i jand j\.’j respectively, when q = 0

Yej = JAj. T lej s + 6 jlay [A10.20]
Ibj = JA;. 0 by g + 31811 5 1P)) + o0; Gj Iny [A10.21]

with the initial values %y =0and ®bg=- g

The matrix jUj, defined in equation [9.90], is computed using ju; (equation {A10.16])
and Jej (equation [A10.20]) such that:

. . # A

W = .lUj +Jgj [A10.22]

Taking into account that the angular velocities have been evaluated while computing )'(,
the modified dynamic model needs 110 multiplications and 82 additions instead of 160
multiplications and 113 additions.



Appendix 11

Stability of passive systems

In this appendix, we present some useful results for the analysis and the design of passive
and adaptive control laws [Landau 88). For more details, the reader is referred to [Popov 73},
(Desoer 75]), {Landau 79].

All.1. Definitions

Definition 1: positive real function

A rational function h(s) of the complex variable s = ¢ + jw is positive real if:

a) h(s) is real when s is real;

b) h(s) has no poles in the Laplace right half plane Re(s) > 0 (Re denotes the real part of
)

c) the possible poles of h(s) along the axis Re(s) = 0 (when s = jw) are separate and the
corresponding residuals are positive real or zero;

d) for any o for which s = jo is not a pole of h(s), then Re(h(s)) > 0.

Definition 2: strictly positive real function

A rational function h(s) of the complex variable s = o + jw is strictly positive real if:
a) h(s) is real when s is real;

b) h(s) has no poles in the Laplace right half plane Re(s) > 0;

¢) Re[h(j ®)] > O for any real value of @, — e < < ¢o,
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Definition 3: Hermitian matrix

A matrix H(s) of rational real functions in the complex variable s = ¢ + jo is Hermitian if:
His) = HT(s" [A11.1]
where s” is the conjugate of s.

Definition 4: positive real matrix of functions

An (mxm) transfer matrix H(s) of rational real functions is positive real if:
a) no poles of the elements of H(s) are in the Laplace right half plane Re(s) > 0;

b) the possible poles of H(s) along the axis Re(s) = 0 are distinct and the corresponding
matrix of residuals is Hermitian positive semi-definite;

¢) the matrix H(jo) + HT(—j(n) is Hermitian positive semi-definite for any real value w
that is not a pole of any element of H(s).

Definition 5: strictly positive real matrix of functions

An (mxm) transfer matrix H(s) of rational real functions is strictly positive real if:
a) no poles of the elements of H(s) are in the Laplace right haif plane Re(s) > 0;
b) the matrix H(jw) + HT(—jw) is Hermitian positive definite for any real value of .

A11.2. Stability analysis of closed-loop positive feedback

Let us consider the closed-loop system of Figure All.1, where the linear and time-
invariant feed-forward block is described by the following state equations {Landau 88]:

{i:Ax+Bu|=Ax—By2 [A11.2]

¥1 = Cx + Du; = Cx - Dy;

in which (A, B) and (A, C) are controllable and observable respectively. The system is
characterized by the transfer matrix H(s) defined by:

H(s) = D+C[sI-A}!B (A11.3]
The nonlinear time-varying feedback block is such that:
y2 = f(uy, t, t) witht<t {A11.4]

and satisfies the Popov inequality (proving the block passivity):
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ul y
H(s) !
y i U2
2_| Nonlinear <
system

Figure A11.1. Closed-loop positive feedback system

t
f Y2T() up®y dt > —yp2  withyg? <o, forty 2 g {A11.5]
to

Theorem 1 (hyperstability)

For the closed-loop system of Figure Al11.1 described by equations [A11.2], {A11.3] and
[A11.4], and for any feedback block satisfying the inequality [A11.5], all solutions x(x(0), t)
satisfy the inequality:

Ix®f < 3{lx@}+ap] ford>0,09>0,t20 [A11.6]

if, and only if, H(s) is a positive real transfer matrix.

Theorem 2 {asymptotic hyperstability)

For the closed-loop system of Figure A1l.1 described by equations [A11.2], [A11.3] and
[A11.4}, and for any feedback block satisfying the inequality [A11.6], all solutions x(x(0), t)
satisfy both the inequality [A11.6] and lim x(t) — 0 as t — o for any bounded input u(t) if,
and only if, H(s) is a strictly positive real transfer matrix.

NOTE.- Theorems | and 2 provide sufficient conditions to prove the stability and asymptotic
stability respectively in the case where the Popov inequality is satisfied by the feedback
block.

A11.3. Stability properties of passive systems

Lemma |

A feedback combination of two strictly passive (positive) systems is always
asymptotically stable.
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Lemma 2

Any system obtained by a parallel combination of two passive (positive) blocks is itself a
passive (positive) system.

Lemma 3

Any system obtained by a feedback combination of two passive (positive) blocks is itself
a passive (positive) system.
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