
Trajectory Planning for Automatic Machines and Robots

Luigi Biagiotti · Claudio Melchiorri

Trajectory Planning for
Automatic Machines
and Robots

123

Dr. Luigi Biagiotti
DII, University of Modena
and Reggio Emilia
Via Vignolese 905
41100 Modena
Italy
luigi.biagiotti@unimore.it

Prof. Claudio Melchiorri
DEIS, University of Bologna
Via Risorgimento 2
40136 Bologna
Italy
cmelchiorri@deis.unibo.it

ISBN: 978-3-540-85628-3 e-ISBN: 978-3-540-85629-0

Library of Congress Control Number: 2008934462

c© Springer-Verlag Berlin Heidelberg 2008

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations are
liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Cover design: Erich Kirchner, Heidelberg, Germany

Printed on acid-free paper

9 8 7 6 5 4 3 2 1

springer.com

To Francesca and Morena

Preface

This book deals with the problems related to planning motion laws and tra-
jectories for the actuation system of automatic machines, in particular for
those based on electric drives, and robots. The problem of planning suitable
trajectories is relevant not only for the proper use of these machines, in order
to avoid undesired effects such as vibrations or even damages on the mechan-
ical structure, but also in some phases of their design and in the choice and
sizing of the actuators. This is particularly true now that the concept of “elec-
tronic cams” has replaced, in the design of automatic machines, the classical
approach based on “mechanical cams”.

The choice of a particular trajectory has direct and relevant implications
on several aspects of the design and use of an automatic machine, like the
dimensioning of the actuators and of the reduction gears, the vibrations and
efforts generated on the machine and on the load, the tracking errors during
the motion execution.

For these reasons, in order to understand and appreciate the peculiarities
of the different techniques available for trajectory planning, besides the math-
ematical aspects of their implementation also a detailed analysis in the time
and frequency domains, a comparison of their main properties under different
points of view, and general considerations related to their practical use are
reported.

For these reasons, we believe that the contents of this book can be of
interest, besides for students of Electrical and Mechanical Engineering courses,
also for engineers and technicians involved in the design and use of electric
drives for automatic machines.

We would like to thank all the persons and colleagues which have con-
tributed to this book. In particular, we would like to thank Claudio Bonivento,
for the initial suggestions and motivations, and Alberto Tonielli for the dis-
cussions on electric drives and their use. The colleagues and friends Roberto
Zanasi, Cesare Fantuzzi, and Alessandro De Luca have contributed not only
with several constructive comments, but also with the development of some
of the algorithms presented in this book.

VIII Preface

Finally, the help of all the students that have worked on these arguments
developing software and executing experimental activities, as well as the co-
operations and discussions with technicians and engineers of several industries
with their problems related to the design, control, and trajectory planning for
automatic machines, are gratefully acknowledged.

Bologna, Luigi Biagiotti
June 2008 Claudio Melchiorri

Contents

1 Trajectory Planning . 1
1.1 A General Overview on Trajectory Planning 1
1.2 One-dimensional Trajectories . 3
1.3 Mechanical Cams and Electronic Cams . 4
1.4 Multi-dimensional Trajectories . 6
1.5 Contents and Structure of this Book . 8
1.6 Notation . 10

Part I Basic Motion Profiles

2 Analytic Expressions of Elementary Trajectories 15
2.1 Polynomial Trajectories . 15

2.1.1 Linear trajectory (constant velocity) 17
2.1.2 Parabolic trajectory (constant acceleration) 18
2.1.3 Trajectory with asymmetric constant acceleration 21
2.1.4 Cubic trajectory . 23
2.1.5 Polynomial of degree five . 26
2.1.6 Polynomial of degree seven . 28
2.1.7 Polynomials of higher degree . 30

2.2 Trigonometric Trajectories . 42
2.2.1 Harmonic trajectory . 42
2.2.2 Cycloidal trajectory . 43
2.2.3 Elliptic trajectory . 45

2.3 Exponential Trajectories . 47
2.4 Trajectories Based on the Fourier Series Expansion 51

2.4.1 Gutman 1-3 . 53
2.4.2 Freudenstein 1-3 . 54
2.4.3 Freudenstein 1-3-5 . 55

X Contents

3 Composition of Elementary Trajectories 59
3.1 Linear Trajectory with Circular Blends . 59
3.2 Linear Trajectory with Parabolic Blends (Trapezoidal) 62

3.2.1 Trajectory with preassigned acceleration 65
3.2.2 Trajectory with preassigned acceleration and velocity . . 65
3.2.3 Synchronization of several trapezoidal trajectories 66
3.2.4 Trajectory through a sequence of points 67
3.2.5 Displacement time of a trapezoidal trajectory 69
3.2.6 Trajectory with assigned durations T and Ta 69
3.2.7 Trajectory with non-null initial and final velocities 70

3.3 Linear Trajectory with Polynomial Blends 76
3.4 Trajectory with Double S Velocity Profile 79

3.4.1 Computation of the trajectory for q1 > q0 88
3.4.2 Computation of the trajectory for q1 < q0 90
3.4.3 Double S with null initial and final velocities 90
3.4.4 On-line computation of the double S trajectory 93
3.4.5 Displacement time of a double S trajectory 101
3.4.6 Double S trajectory with assigned duration of the

different phases . 102
3.5 Fifteen Segments Trajectory . 107
3.6 Piecewise Polynomial Trajectory . 117
3.7 Modified Trapezoidal Trajectory . 119
3.8 Modified Sinusoidal Trajectory . 124
3.9 Modified Cycloidal Trajectory . 127
3.10 Constant Velocity/Acceleration Trajectories with Cycloidal

or Harmonic Blends . 133
3.10.1 Constraints on the velocity profile 133
3.10.2 Constraints on the acceleration profile 135
3.10.3 Minimum-time trajectories . 140

3.11 Trajectories with Constant Acceleration and Cycloidal/Cubic
Blends . 144

4 Multipoint Trajectories . 151
4.1 Interpolation by Polynomial Functions . 151
4.2 Orthogonal Polynomials . 155
4.3 Trigonometric Polynomials . 164
4.4 Cubic Splines . 166

4.4.1 Computation of the coefficients for assigned initial
and final velocities . 169

4.4.2 Periodic cubic splines . 172
4.4.3 Cubic splines with assigned initial and final velocities:

computation based on the accelerations 175
4.4.4 Cubic splines with assigned initial and final velocities

and accelerations . 177
4.4.5 Smoothing cubic splines . 180

Contents XI

4.4.6 Choice of the time instants and optimization of cubic
splines . 188

4.5 B-spline Functions for Trajectories with High Degree of
Continuity . 194

4.6 Nonlinear Filters for Optimal Trajectory Planning 208
4.6.1 Online trajectory planner with velocity, acceleration

and jerk constraints . 209
4.6.2 Online trajectory planner with velocity and

acceleration constraints . 216

Part II Elaboration and Analysis of Trajectories

5 Operations on Trajectories . 223
5.1 Geometric Modification of a Trajectory . 223
5.2 Scaling in Time . 228

5.2.1 Kinematic scaling . 230
5.2.2 Dynamic Scaling . 236

5.3 Synchronization of Trajectories . 241

6 Trajectories and Actuators . 245
6.1 Trajectories and Electric Motors . 245

6.1.1 Trajectories and choice of the actuator 247
6.2 Characteristics of the Motion Profiles . 250

6.2.1 Comparison between trapezoidal and double S
trajectories . 256

7 Dynamic Analysis of Trajectories . 265
7.1 Models for Analysis of Vibrations . 265

7.1.1 Linear model with one degree of freedom 266
7.1.2 Linear model with n degrees of freedom 267
7.1.3 Nonlinear model with one degree of freedom 269
7.1.4 Nonlinear model with n degrees of freedom 270

7.2 Analysis of the Trajectories in the Time Domain 271
7.3 Analysis of the Trajectories in the Frequency Domain 285

7.3.1 Frequency spectrum of some elementary trajectories . . . 287
7.3.2 Numerical computation of the frequency spectrum of

generic trajectories . 294
7.3.3 Harmonic content of periodic trajectories 299
7.3.4 Scaling and frequency properties of a trajectory 303

7.4 Frequency Modifications of Trajectories . 304
7.4.1 Polydyne and splinedyne functions 305
7.4.2 Input filtering and shaping . 318
7.4.3 Feedforward based on the inversion of the plant

dynamics . 330

XII Contents

Part III Trajectories in the Operational Space

8 Multidimensional Trajectories and Geometric Path
Planning . 341
8.1 Introduction . 341

8.1.1 Continuity of the geometric path and continuity of the
trajectory . 343

8.1.2 Global and local interpolation/approximation 346
8.2 Orientation of the Tool . 347

8.2.1 Case of independent position and orientation 347
8.2.2 Case of position and orientation coupled 353

8.3 Definition of the Geometric Path Through Motion Primitives . 356
8.4 Global Interpolation . 359

8.4.1 Definition of the set {ūk} . 359
8.4.2 Cubic B-spline interpolation . 360

8.5 Global Approximation . 364
8.5.1 Knots choice . 366

8.6 A Mixed Interpolation/Approximation Technique 368
8.7 Smoothing Cubic B-splines . 371

8.7.1 Smoothing B-splines with assigned start/end points
and directions . 373

8.8 B-spline Functions for Trajectories with High Degree of
Continuity . 376

8.9 Use of Nurbs for Trajectory Generation . 391
8.10 Local Interpolation with Bézier Curves . 393

8.10.1 Computation of the tangent and curvature vectors 394
8.10.2 Cubic Bézier curves interpolation . 395
8.10.3 Quintic Bézier curves interpolation 400

8.11 Linear Interpolation with Polynomial Blends 406

9 From Geometric Paths to Trajectories . 415
9.1 Introduction . 415
9.2 Constant Scaling . 416
9.3 Generic Motion Law . 418
9.4 Constant Feed Rate . 421
9.5 Generic Feed Rate Profile . 424
9.6 Integration of Geometric Path and Motion Law for Complex

3D Tasks . 429
9.6.1 Linear trajectory with polynomial blends 429
9.6.2 B-spline trajectory . 440
9.6.3 Smoothing B-spline trajectory . 445
9.6.4 B-spline approximation of a trajectory based on

motion primitives . 449

Contents XIII

Part IV Appendices

A Numerical Issues . 457
A.1 Parameters of normalized polynomials qN(τ) 457
A.2 Parameters of the Trajectory ‘4-3-4’ . 461
A.3 Solution of the Equation M k = q . 461
A.4 Efficient Evaluation of Polynomial Functions 463
A.5 Numerical Solution of Tridiagonal Systems 464

A.5.1 Tridiagonal systems . 464
A.5.2 Cyclic tridiagonal systems . 465

B B-spline, Nurbs and Bézier curves . 467
B.1 B-spline Functions . 467

B.1.1 B-spline basis functions . 467
B.1.2 Definition and properties of B-splines 471
B.1.3 Evaluation of a B-spline curve . 474
B.1.4 Derivative of a B-spline curve . 475
B.1.5 Conversion from B-form to Piecewise Polynomial form

(pp-form) . 479
B.2 Definition and Properties of Nurbs . 481
B.3 Definition and Properties of Bézier Curves 483

B.3.1 Evaluation of a Bézier curve . 484
B.3.2 Derivatives of a Bézier curve . 486

C Representation of the Orientation . 489
C.1 Rotation Matrices . 489

C.1.1 Elementary rotation matrices . 490
C.2 Angle-Axis Representation . 490
C.3 Euler Angles . 491
C.4 Roll-Pitch-Yaw Angles . 493

D Spectral Analysis and Fourier Transform 495
D.1 Fourier Transform of a Continuous Time Function 495

D.1.1 Main properties of the Fourier transform 496
D.2 Fourier Series of a Periodic Continuous Function 497
D.3 Fourier Transform of a Discrete Time Function 498

D.3.1 Discrete Fourier transform . 499
D.4 Fourier Analysis of Signals Using DFT (and FFT) 500

References . 503

Index . 509

1

Trajectory Planning

This book deals with the problem of trajectory planning, i.e. of the
computation of desired motion profiles for the actuation system of au-
tomatic machines. Because of their wide use, only electric drives are
considered here, and their motion is defined in the context of the real-
time control of automatic machines with one or more actuators, such
as packaging machines, machine-tools, assembly machines, industrial
robots, and so on. In general, for the solution of this problem some
specific knowledge about the machine and its actuation system is also
required, such as the kinematic model (direct and inverse) (usually
the desired movement is specified in the operational space, while the
motion is executed in the actuation space and often these domains
are different) and the dynamic model of the system (in order to plan
suitable motion laws that allow to execute the desired movement with
proper loads and efforts on the mechanical structure). Moreover, for
the real-time execution of the planned motion, it is necessary to de-
fine proper position/velocity control algorithms, in order to optimize
the performances of the system and to compensate for disturbances
and errors during the movements, such as saturations of the actua-
tion system. Several techniques are available for planning the desired
movement, each of them with peculiar characteristics that must be well
known and understood. In this book, the most significant and com-
monly adopted techniques for trajectory planning are illustrated and
analyzed in details, taking into account the above mentioned prob-
lems.

1.1 A General Overview on Trajectory Planning

Basically, the trajectory planning problem consists in finding a relationship
between two elements belonging to different domains: time and space. Accord-
ingly, the trajectory is usually expressed as a parametric function of the time,

2 1 Trajectory Planning

Trajectory

One-dimensional Multi-dimensional

Point-to-pointPoint-to-point MultipointMultipoint

InterpolationInterpolation ApproximationApproximation

Fig. 1.1. Main trajectory categories.

which provides at each instant the corresponding desired position. Obviously,
after having defined this function, also other aspects related to its implemen-
tation must be considered, such as time discretization (automatic machines
are controlled by digital control systems), saturation of the actuation system,
vibrations induced on the load, and so on.

As shown in Fig. 1.1, the main distinction among the various categories of
trajectories consists in the fact that they can be one- or multi-dimensional. In
the first case they define a position for a one degree-of-freedom (dof) system,
while in the latter case a multidimensional working space is considered. From
a formal point of view, the difference between these two classes of trajectories
consists in the fact that they are defined by a scalar (q = q(t)) or a vecto-
rial (p = p(t)) function. However, the differences are deeper if one considers
the approaches and the tools used in the two cases for their computation.
Between one- and multi-dimensional trajectories, there is a class of trajecto-
ries with intermediate characteristics, namely single-axis motion laws applied
to a multi-axis system, composed by several actuators arranged in a so-called
master-slave configuration. In this case the motions of the single actuators, al-
though one-dimensional, cannot be designed separately but must be properly
coordinated/synchronized1.

In this book, the design of one-dimensional trajectories is firstly considered.
Then, the problem of their coordination/synchronization is addressed and,
finally, the planning of motions in the three-dimensional space is taken into
account.

The techniques reported in this book, both for one-dimensional and multi-
dimensional trajectories, are also classified depending on the fact that the
desired motion is defined by assuming initial and final points only (point-
to-point trajectories) or by considering also a set of intermediate via-points
which must properly interpolated/approximated (multipoint trajectories). In

1 In the literature, the two terms “coordination” and “synchronization” are used
as synonyms [1]

1.2 One-dimensional Trajectories 3

(a) (b)

Fig. 1.2. Interpolation (a) and approximation (b) of a set of data points.

the former case, a complex motion is obtained by joining several2 point-to-
point trajectories which are individually optimized by considering for each
of them the initial and final boundary conditions on velocity, acceleration,
etc., and the constraints on their maximum values. Conversely, in the case of
multipoint trajectories), by specifying the intermediate points it is possible to
define arbitrarily complex motions and the trajectory is found as the solution
of a global optimization problem which depends on the conditions imposed
on each via-point and on the overall profile. Moreover, it is possible to adopt
different criteria for the definition of the motion profile on the basis of the given
via-points, which are not necessarily crossed by the trajectory. In particular,
two types of fitting can be distinguished:

• Interpolation: the curve crosses the given points for some values of the
time, Fig. 1.2(a).

• Approximation: the curve does not pass exactly through the points, but
there is an error that may be assigned by specifying a prescribed tolerance,
Fig. 1.2(b).

The latter approach can be useful when, especially in multi-dimensional tra-
jectories, a reduction of the speed/acceleration values along the curve is de-
sirable, at the expense of a lower precision.

1.2 One-dimensional Trajectories

Nowadays the design of high speed automatic machines, whose actuation sys-
tems is mainly based on electric drives, generally involves the use of several
actuators distributed in the machine and of relatively simple mechanisms, see
for example Fig. 1.3, where the sketch of a packaging machine is reported.
About twenty motion axes are present in a machine of this type. The so-
called electronic cams and electronic gears are employed for the generation
2 At least two (three) segments are necessary for a typical periodic motion com-

posed by a rise and a return phase (and, in case, by a dwell phase).

4 1 Trajectory Planning

Fig. 1.3. Sketch of an automatic machine for tea packaging (courtesy IMA).

of motion where needed, in place of a single or few actuators and complex
kinematic chains. In this manner, more flexible machines can be obtained,
able to cope with the different production needs required from the market,
[2]. In this context, the problem of trajectory planning has assumed more and
more importance [3] since, once the displacement and its duration have been
defined, the choice of the modality of motion from the initial to the final point
has important implications with respect to the sizing of the actuators, the ef-
forts generated on the structure, and the tracking capabilities of the specified
motion (tracking error). Therefore, it is necessary to carefully consider the
different types of point-to-point trajectories which could be employed with a
specific system (actuation and load). As a matter of fact, for given boundary
conditions (initial and final positions, velocities, accelerations, etc.) and dura-
tion, the typology of the trajectory has a strong influence on the peak values
of the velocity and acceleration in the intermediate points, as well as on the
spectral content of the resulting profile. For this reason, in the first part of the
book the most common families of trajectories used in the industrial practice
are described, providing their analytical expression. Then, these trajectories
are analyzed and compared, by taking into account both the frequency aspects
and the achievable performances for the overall machine.

1.3 Mechanical Cams and Electronic Cams

Mechanical cams have a very long history. Although some authors trace back
their origin even to the Paleolithic age, as referred in [4], certainly Leonardo
da Vinci can be considered as one of the first pioneers of the ’modern’ de-

1.3 Mechanical Cams and Electronic Cams 5

Fig. 1.4. A mechanical cam designed by Leonardo da Vinci.

sign of cam mechanisms, with his design of some machines based on these
mechanisms, Fig. 1.4.

In the last decades, mechanical cams have been widely used in automatic
machines for transferring, coordinating and changing the type of motion from
a master device to one or more slave systems, Fig. 1.5. With reference to
Fig. 1.6 the body C, the cam, is supposed to move at a constant rotational
velocity, and therefore its angular position θ is a linear function of time. The
body F, the follower, has an alternative motion q(θ) defined by the profile of
the cam. The design of mechanical cams, especially for planar mechanisms, has
been extensively and carefully investigated, and a wide literature is available
on this topic, see for example [4, 5, 6, 7, 8, 9].

As already mentioned, mechanical cams are nowadays substituted more
and more often by the so-called electronic cams. The goal is to obtain more

(a) (b)

Fig. 1.5. Mechanical cams, part of an automatic machine (courtesy IMA).

6 1 Trajectory Planning

(a)

C

F

q(θ)

θ(t)

(b)

Fig. 1.6. (a) A mechanical cam; (b) working principle of a simple mechanical cam
(C) with the follower (F).

flexible machines, with improved performances, easy to be re-programmed,
and possibly at lower costs. With electronic cams, the motion q(t) is directly
obtained by means of an electric actuator, properly programmed and con-
trolled to generate the desired motion profile. Therefore, the need of designing
cams to obtain the desired movement has been progressively replaced by the
necessity of planning proper trajectories for electric motors.

In multi-axis machines based on mechanical cams, the synchronization of
the different axes of motion is simply achieved by connecting the slaves to a
single master (the coordination is performed at the mechanical level), while
in case of electronic cams the problem must be considered in the design of the
motion profiles for the different actuators (the synchronization is performed
at the software level, see Fig. 1.7). A common solution is to obtain the syn-
chronization of the motors by defining a master motion, that can be either
virtual (generated by software) or real (the position of an actuator of the ma-
chine), and then by using this master position as “time” (i.e. the variable θ(t)
in Fig. 1.6(b)) for the other axes.

1.4 Multi-dimensional Trajectories

Properly speaking, the term trajectory denotes a path in the three-dimensional
space. For example, the Merriam-Webster dictionary defines the trajectory as
“the curve that a body describes in space”, [10].

Although in the case of a machine composed by several motors each of
them can be independently programmed and controlled (control in the joint
space), many applications require a coordination among the different axes of
motion with the purpose of obtaining a desired multi-dimensional trajectory
in the operational space of the machine. This is the case of tool machines
used to cut, mill, drill, grind, or polish a given workpiece, or of robots which

1.4 Multi-dimensional Trajectories 7

Control unit

Power
converter

Motor Kinematic chain

Field
bus

Fig. 1.7. Structure of a multi-axis system based on electronic cams.

must perform tasks in the three-dimensional space, such as spot welding, arc
welding, handling, gluing, etc.

In these applications, it is necessary to specify

1. The geometric path p = p(u) to be followed, including also the orientation
along the curve.

2. The modality by means of which the geometric path must be tracked, that
is the motion law u = u(t).

The curve followed by the end effector must be designed on the basis of the
constraints imposed by the task (e.g. the interpolation of a given set of via-
points), while the determination of the motion law descends from other con-
straints, such as the imposition of the conditions on the maximum velocities,
accelerations, and torques that the actuation system is able to provide.

From the composition of the geometric path and of the motion law the
complete trajectory is obtained

p̃(t) = p(u(t))

as shown in Fig. 1.8. Once the desired movement is specified, the inverse kine-
matics3 of the mechanism is employed to obtain the corresponding trajectory
in the actuation (joint) space, where the motion is generated and controlled.
3 The direct kinematics of a mechanical device is a (nonlinear) function q → p =

f (q) mapping the joint positions q = [q1, q2, . . . , qn]T (i.e. the actuators’ po-
sitions) to the corresponding position/orientation p of a specific point of the

8 1 Trajectory Planning

umin umax

tmin tmax

p = p(u)

p̃(t) = p(u(t))

u = u(t)

x
y

z

Fig. 1.8. A multi-dimensional trajectory defined in the working space of an indus-
trial robot (courtesy COMAU).

1.5 Contents and Structure of this Book

A relevant, detailed bibliography is available for the problem of moving parts
of automatic machines by means of mechanical cams, and in particular for the
problem of the determination of the best cam profile in order to obtain the
desired motion at the load. As already mentioned, among the numerous and
good reference books, one can refer for example to [4, 5, 6, 7, 8, 9]. On the other
hand, a similar bibliography concerning the solution of the same problems
by means of electric actuators is not currently available. These problems,
although in a rather simplified fashion, are partially faced in robotics [11, 12,
13], but limited to the illustration of simple motion profiles and planning of
operational space trajectories.

In this book, the main problems related to the planning of trajectories in
the joint space are discussed, with particular reference to electric actuators for
automatic machines. The case of trajectories defined in the operational space
is also considered, discussing the interpolation and approximation techniques
for planning motions in the 3D space.

Specifically, the following topics are illustrated:

Part 1 Basic motion profiles

- Chapter 2. The basic functions for defining simple trajectories are illus-
trated: polynomial, trigonometric, exponential and based on the Fourier

machine in the operational space. The inverse kinematics is the inverse function
p → q = f−1(p) = g(p).

1.5 Contents and Structure of this Book 9

series expansion. The main properties of these basic functions are pre-
sented and discussed.

- Chapter 3. More complex trajectories are presented, defined in order to
obtain specific characteristics in terms of motion, velocity, acceleration,
such as the trapezoidal or the double S.

- Chapter 4. Trajectories interpolating a set of via-points are presented. In
particular, the interpolation by means of polynomial functions, the cubic
splines, the B-splines, and techniques for the definition of “optimal” (i.e.
minimum time) trajectories are illustrated.

Part 2 Elaboration and analysis of trajectories

- Chapter 5. The problems of kinematic and dynamic “scaling” of a trajec-
tory are discussed. Comments on the synchronization of several motion
axes are given.

- Chapter 6. The trajectories are analyzed and compared by taking into
account the effects produced on the actuation system. For this purpose,
the maximum and the root mean square values of the velocities and ac-
celerations, consequence of the different motion profiles, are taken into
account.

- Chapter 7. The trajectories are analyzed by considering their frequency
properties and their influence on possible vibration phenomena in the me-
chanical system.

Part 3 Trajectories in the operational space

- Chapter 8. The problem of trajectory planning for automatic machines,
and in particular for robot manipulators, is considered in the operational
space. The basic tools to solve this problem are illustrated, along with
some examples.

- Chapter 9. The problem of the analytical composition of the geometric
path with the motion law is considered in detail. The goal is to define
parametric functions of time so that given constraints on velocities, accel-
erations, and so on, are satisfied.

Four appendices close the book, with details about some aspects related to the
computational issues for one-dimensional trajectories, namely efficient poly-
nomial evaluation, matrix inversion and so on (Appendix A), the B-spline,
Nurbs and Bézier definitions and properties (Appendix B), the tools for the
definition of the orientation in three-dimensional space (Appendix C), and the
spectral analysis of analog and digital signals (Appendix D).

10 1 Trajectory Planning

1.6 Notation

In this book, the following notation is adopted.
One-dimensional trajectories:

q(t) : position profile
t : independent variable, that can be either the “time” (as nor-

mally assumed in the book) or the angular position θ of the
master in a system based on electronic cams

q(1)(t), q̇(t) : time-derivative of the position (velocity profile)
q(2)(t), q̈(t) : time-derivative of the velocity (acceleration profile)
q(3)(t),

...
q (t) : time-derivative of the acceleration (jerk profile)

q(4)(t) : time-derivative of the jerk (snap, jounce or ping profile)
s(t) : spline function
qk(t) : k-th position segment (k = 0, . . . , n− 1) in multi-segment tra-

jectories
q̃(t′) : reparameterization of q(t) (scaling in time), q̃(t′) = q(t) with

t = σ(t′)
t0, t1 : initial and final time instants in point-to-point motions
T : total duration of a point-to-point trajectory (T = t1 − t0)
q0, q1 : initial and final via-points in point-to-point motions
h : total displacement (h = q1 − q0)
qk : k-th via-points (k = 0, . . . , n) in multipoint trajectories
tk : k-th time instant (k = 0, . . . , n) in multipoint trajectories
Tk : duration of the k-th segment (Tk = tk+1 − tk) in multi-segment

trajectories
v0, v1 : initial and final velocity in point-to-point motions
a0, a1 : initial and final acceleration in point-to-point motions
j0, j1 : initial and final jerk in point-to-point motions
v0, vn : initial and final velocity in multipoint motions
a0, an : initial and final acceleration in multipoint motions
j0, jn : initial and final jerk in multipoints motions
vmax : maximum speed value
amax : maximum acceleration value
jmax : maximum jerk value

1.6 Notation 11

Multi-dimensional trajectories:

p(u) : geometric path
px, py, pz : x−, y−, z− components of the curve p
u : independent variable for parametric functions describing a ge-

ometric path
u(t) : function of time defining the motion law
p(1)(u) : derivative of the position (tangent vector) with respect to u
p(2)(u) : derivative of the tangent vector (curvature vector) with respect

to u
p(i)(u) : i-th time-derivative of the geometric path p(u)
pk(u) : k-th curve segment (k = 0, . . . , n− 1) in multi-segment trajec-

tories
s(u) : B-spline function
n(u) : Nurbs function
b(u) : Bézier function
p̃(t) : position trajectory obtained by composing the geometric path

with the motion law, p̃(t) = p(u) ◦ u(t)
p̃x, p̃y, p̃z : x−, y−, z− components of the trajectory p̃ as a function of the

time t

p̃(i)(t) : i-th derivative of the trajectory (i = 1 velocity, i = 2 accelera-
tion, etc.)

p̃
(i)
x , p̃

(i)
y , p̃

(i)
z : x−, y−, z− components of p̃(i)

p̂(û) : parameterization of the function p(u), p̂(û) = p(u) ◦ u(û)
qk : k-th via-points (k = 0, . . . , n) in multipoints trajectories
Rk : rotation matrix defining the orientation at the k-th via-point
tk : tangent vector at the generic k-th via-point
ūk : k-th “time instant” (k = 0, . . . , n) in multipoints trajectories
t0, tn : tangent vectors at the initial and final points in multipoints

motions
n0, nn : curvature vectors at the initial and final points in multipoints

motions
Gh : class of functions with geometric continuity up to the order h

12 1 Trajectory Planning

IN : set of natural numbers
IR : set of real numbers
C : set of complex numbers
m : scalar number
|m| : absolute value
m : vector
|m| : vector norm
mT : transpose of the vector m

M : matrix
|M | : matrix norm
|M |F : Frobenius norm of matrix M

tr(M) : trace of matrix M

diag{m1, . . . ,mn−1} : diagonal matrix
ω : angular frequency
Ts : sampling time
Ch : class of functions continuous up to the h-th

derivative
floor(·) : integer part function
sign(·) : sign function
sat(·) : saturation function
m! : factorial operator

Sometimes, these symbols have different meanings. Where not explicitly indi-
cated, the new meaning is clear from the context.
For the sake of simplicity, the numerical values used in this book are considered
dimensionless. In this manner, the mathematical expressions can be applied
without changes to several practical cases, with different physical dimensions.
In particular, positions may refer to meters, degrees, radians, . . . ; velocities
may then refer to meters/second, degrees/second, . . . ; and so on.

Finally, it is worth noticing that, without loss of generality, the algorithms
for one-dimensional trajectories assume that q1 > q0, and therefore the de-
sired displacement h = q1 − q0 is always positive. If this is not the case, the
basic motion profiles are unchanged, while the motions based on composition
of elementary trajectories (described in Ch. 3) require the adoption of the
procedure reported in Sec. 3.4.2.

Part I

Basic Motion Profiles

2

Analytic Expressions of Elementary
Trajectories

The basic trajectories are illustrated, classified into three main cat-
egories: polynomial, trigonometric, and exponential. Trajectories ob-
tained on the basis of Fourier series expansion are also explained. More
complex trajectories, able to satisfy desired constraints on velocity, ac-
celeration and jerk, can be obtained by means of a suitable composition
of these elementary functions. The case of a single actuator, or axis
of motion, is specifically considered. The discussion is general, and it
is therefore valid to define both a trajectory in the joint space and a
motion law in the operational space, see Chapter 8 and Chapter 9.

2.1 Polynomial Trajectories

In the most simple case, a motion is defined by assigning the initial and final
time instant t0 and t1, and conditions on position, velocity and acceleration
at t0 and t1. From a mathematical point of view, the problem is then to find
a function

q = q(t), t ∈ [t0, t1]

such that the given conditions are satisfied. This problem can be easily solved
by considering a polynomial function

q(t) = a0 + a1t + a2t
2 + . . . + antn

where the n+1 coefficients ai are determined so that the initial and final con-
straints are satisfied. The degree n of the polynomial depends on the number
of conditions to be satisfied and on the desired “smoothness” of the resulting
motion. Since the number of boundary conditions is usually even, the degree
n of the polynomial function is odd, i.e. three, five, seven, and so on.

16 2 Analytic Expressions of Elementary Trajectories

0 2 4 6 8 10
−1

0

1

2

A
cc

el
er

at
io

n

0

0.5

1

1.5

2

V
el

oc
ity

10

12

14

16

18

20

P
os

iti
on

Fig. 2.1. Position, velocity and acceleration profiles of a polynomial trajectory
computed by assigning boundary and intermediate conditions (Example 2.1).

In general, besides initial and final conditions on the trajectory, other
conditions could be specified concerning its time derivatives (velocity, acceler-
ation, jerk, ...) at generic instants tj ∈ [t0, t1]. In other words, one could be in-
terested in determining a polynomial function q(t) whose k-th time-derivative
assumes a specific value q(k)(tj) at a given instant tj . Mathematically, these
conditions can be specified as

k! ak + (k + 1)! ak+1 tj + . . . +
n!

(n − k)!
an tn−k

j = q(k)(tj)

or, in matrix form, as
M a = b

where M is a known (n + 1) × (n + 1) matrix, b collects the given (n + 1)
conditions to be satisfied, and a = [a0, a1, . . . , an]T is the vector of the
unknown parameters to be computed. In principle this equation can be solved
simply as

a = M−1 b

although, for large values of n, this procedure may lead to numerical problems.
These considerations are analyzed in more details in Chapter 4.

2.1 Polynomial Trajectories 17

Example 2.1 Fig. 2.1 shows the position, velocity and acceleration profiles
of a polynomial trajectory computed by assigning the following conditions:

q0 = 10, q1 = 20, t0 = 0, t1 = 10,

v0 = 0, v1 = 0, v(t = 2) = 2, a(t = 8) = 0.

There are four boundary conditions (position and velocity at t0 and t1) and
two intermediate conditions (velocity at t = 2 and acceleration at t = 8).
Note that with six conditions it is necessary to adopt a polynomial at least of
degree five. In this case, the coefficients ai result

a0 = 10.0000, a1 = 0.0000, a2 = 1.1462,

a3 = −0.2806, a4 = 0.0267, a5 = −0.0009.

�

2.1.1 Linear trajectory (constant velocity)

The most simple trajectory to determine a motion from an initial point q0 to
a final point q1, is defined as

q(t) = a0 + a1(t − t0).

Once the initial and final instants t0, t1, and positions q0 and q1 are specified,
the parameters a0, a1 can be computed by solving the system{

q(t0) = q0 = a0

q(t1) = q1 = a0 + a1(t1 − t0)
=⇒

[
1 0
1 T

] [
a0

a1

]
=
[

q0

q1

]

where T = t1 − t0 is the time duration. Therefore⎧⎨
⎩

a0 = q0

a1 =
q1 − q0

t1 − t0
=

h

T

where h = q1−q0 is the displacement. The velocity is constant over the interval
[t0, t1] and its value is

q̇(t) =
h

T
(= a1).

Obviously, the acceleration is null in the interior of the trajectory and has an
impulsive behavior at the extremities.

Example 2.2 Fig. 2.2 reports the position, velocity and acceleration of the
linear trajectory with the conditions t0 = 0, t1 = 8, q0 = 0, q1 = 10. Note
that at t = t0, t1, the velocity is discontinuous and therefore the acceleration
is infinite in these points. For this reason the trajectory in this form is not
adopted in the industrial practice. �

18 2 Analytic Expressions of Elementary Trajectories

0 1 2 3 4 5 6 7 8
−1

−0.5

0

0.5

1

A
cc

el
er

at
io

n

0

0.5

1

1.5

2

2.5

V
el

oc
ity

0

2

4

6

8

10

P
os

iti
on

Fig. 2.2. Position, velocity and acceleration of a constant velocity trajectory, with
t0 = 0, t1 = 8, q0 = 0, q1 = 10.

2.1.2 Parabolic trajectory (constant acceleration)

This trajectory, also known as gravitational trajectory or with constant ac-
celeration, is characterized by an acceleration with a constant absolute value
and opposite sign in the acceleration/deceleration periods. Analytically, it is
the composition of two second degree polynomials, one from t0 to tf (the flex
point) and the second from tf to t1, see Fig. 2.3.
Let us consider now the case of a trajectory symmetric with respect to its
middle point, defined by tf = t0+t1

2 and q(tf) = qf = q0+q1
2 . Note that in this

case Ta = (tf − t0) = T/2, (qf − q0) = h/2.
In the first phase, the “acceleration” phase, the trajectory is defined by

qa(t) = a0 + a1 (t − t0) + a2 (t − t0)2, t ∈ [t0, tf].

The parameters a0, a1 and a2 can be computed by imposing the conditions
of the trajectory through the points q0, qf and the condition on the initial
velocity v0 ⎧⎪⎨

⎪⎩
qa(t0) = q0 = a0

qa(tf) = qf = a0 + a1 (tf − t0) + a2 (tf − t0)2

q̇a(t0) = v0 = a1.

2.1 Polynomial Trajectories 19

One obtains

a0 = q0, a1 = v0, a2 =
2

T 2
(h − v0T).

Therefore, for t ∈ [t0, tf], the trajectory is defined as⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

qa(t) = q0 + v0(t − t0) +
2

T 2
(h − v0T)(t − t0)2

q̇a(t) = v0 +
4

T 2
(h − v0T)(t − t0)

q̈a(t) =
4

T 2
(h − v0T) (constant).

The velocity at the flex point is

vmax = q̇a(tf) = 2
h

T
− v0.

Note that, if v0 = 0, the resulting maximum velocity has doubled with respect
to the case of the constant velocity trajectory. The jerk is always null except
at the flex point, when the acceleration changes its sign and it assumes an
infinite value.
In the second part, between the flex and the final point, the trajectory is
described by

qb(t) = a3 + a4 (t − tf) + a5 (t − tf)2 t ∈ [tf , t1].

If the final value of the velocity v1 is assigned, at t = t1, the parameters
a3, a4, a5 can be computed by means of the following equations⎧⎪⎪⎪⎨

⎪⎪⎪⎩
qb(tf) = qf = a3

qb(t1) = q1 = a3 + a4 (t1 − tf) + a5 (t1 − tf)2

q̇b(t1) = v1 = a4 + 2a5 (t1 − tf)

h1

h

T
Ta

q1

qf

q0

tt0 tf
t1

Fig. 2.3. Trajectory with constant acceleration.

20 2 Analytic Expressions of Elementary Trajectories

from which

a3 = qf =
q0 + q1

2
, a4 = 2

h

T
− v1, a5 =

2
T 2

(v1T − h).

The expression of the trajectory for t ∈ [tf , t1] is

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

qb(t) = qf + (2
h

T
− v1)(t − tf) +

2
T 2

(v1T − h)(t − tf)2

q̇b(t) = 2
h

T
− v1 +

4
T 2

(v1T − h)(t − tf)

q̈b(t) =
4

T 2
(v1T − h).

Note that, if v0 �= v1, the velocity profile of this trajectory is discontinuous at
t = tf .

Example 2.3 Fig. 2.4 reports the position, velocity and acceleration for this
trajectory. The conditions t0 = 0, t1 = 8, q0 = 0, q1 = 10, v0 = v1 = 0 have
been assigned. �

0 1 2 3 4 5 6 7 8

−0.5

0

0.5

A
cc

el
er

at
io

n

0

0.5

1

1.5

2

2.5

V
el

oc
ity

0

2

4

6

8

10

P
os

iti
on

Fig. 2.4. Position, velocity and acceleration of a trajectory with constant accelera-
tion, with t0 = 0, t1 = 8, q0 = 0, q1 = 10.

2.1 Polynomial Trajectories 21

If the constraint on the position at t = tf (i.e. q(tf) = qf = q0+q1
2) is not

assigned, the six parameters ai may be determined in order to have a contin-
uous velocity profile, i.e. q̇a(tf) = q̇b(tf).
As a matter of fact, by imposing the six conditions⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

qa(t0) = a0 = q0

q̇a(t0) = a1 = v0

qb(t1) = a3 + a4
T

2
+ a5

(
T

2

)2

= q1

q̇b(t1) = a4 + 2a5
T

2
= v1

qa(tf) = a0 + a1
T

2
+ a2

(
T

2

)2

= a3 = qb(tf)

q̇a(tf) = a1 + 2a2
T

2
= a4 = q̇b(tf)

where T/2 = (tf − t0) = (t1 − tf), one obtains⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a0 = q0

a1 = v0

a2 =
4h − T (3v0 + v1)

2T 2

a3 =
4(q0 + q1) + T (v0 − v1)

8

a4 =
4h − T (v0 + v1)

2T

a5 =
−4h + T (v0 + 3v1)

2T 2
.

Example 2.4 Fig. 2.5 reports the position, velocity and acceleration for this
trajectory. The conditions t0 = 0, t1 = 8, q0 = 0, q1 = 10, v0 = 0.1, v1 = −1
have been assigned. �

2.1.3 Trajectory with asymmetric constant acceleration

This trajectory is obtained from the previous one by considering the flex point
at a generic instant t0 < tf < t1, as shown in Fig. 2.3, and not necessarily at
t = (t1 + t0)/2. The trajectory is described by the two polynomials

qa(t) = a0 + a1 (t − t0) + a2 (t − t0)2, t0 ≤ t < tf

qb(t) = a3 + a4(t − tf) + a5(t − tf)2, tf ≤ t < t1

22 2 Analytic Expressions of Elementary Trajectories

0 1 2 3 4 5 6 7 8

−1

−0.5

0

0.5

A
cc

el
er

at
io

n

−1

0

1

2

3

V
el

oc
ity

0

2

4

6

8

10

P
os

iti
on

Fig. 2.5. Position, velocity and acceleration of a trajectory with constant acceler-
ation and continuous velocity, with t0 = 0, t1 = 8, q0 = 0, q1 = 10, v0 = 0.1,
v1 = −1.

where the parameters a0, a1, a2, a3, a4 and a5 are obtained by imposing the
four conditions on the position and velocity at t0, t1, and the two continuity
conditions (position and velocity) at tf :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

qa(t0) = a0 = q0

qb(t1) = a3 + a4(t1 − tf) + a5(t1 − tf)2 = q1

q̇a(t0) = a1 = v0

q̇b(t1) = a4 + 2a5(t1 − tf) = v1

qa(tf) = a0 + a1(tf − t0) + a2(tf − t0)2 = a3 (= qb(tf))

q̇a(tf) = a1 + 2a2(tf − t0) = a4 (= q̇b(tf)).

By defining Ta = (tf − t0) and Td = (t1 − tf), the resulting parameters are

2.1 Polynomial Trajectories 23⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a0 = q0

a1 = v0

a2 =
2h − v0(T + Ta) − v1Td

2TTa

a3 =
2q1Ta + Td(2q0 + Ta(v0 − v1))

2T

a4 =
2h − v0Ta − v1Td

T

a5 = −2h − v0Ta − v1(T + Td)
2TTd

.

Velocity and acceleration for t0 ≤ t < tf are

q̇a(t) = a1 + 2a2(t − t0) = v0 +
2h − v0(T + Ta) − v1Td

TTa
(t − t0)

q̈a(t) = 2a2 =
2h − v0(T + Ta) − v1Td

TTa

while for tf ≤ t < t1 they result

q̇b(t) =a4+2a5(t − tf) =
2h − v0Ta − v1Td

T
− 2h − v0Ta − v1(T + Td)

TTd
(t − tf)

q̈b(t) = 2a5 = −2h − v0Ta − v1(T + Td)
TTd

.

Note that, in case v0 = v1 = 0, the value of the maximum velocity is the same
as in the previous case (symmetric flex point):

vmax = q̇a(tf) = 2
h

T
.

Obviously, if tf = t0+t1
2 the previous trajectory is obtained.

Example 2.5 Fig. 2.6 shows the position, velocity and acceleration for this
trajectory with the same conditions as in the Example 2.3. �

2.1.4 Cubic trajectory

In case both position and velocity values are specified at t0 and t1 (q0, q1,
and v0, v1 respectively), there are four conditions to be satisfied. Therefore, a
third degree polynomial must be used

q(t) = a0 + a1(t − t0) + a2(t − t0)2 + a3(t − t0)3, t0 ≤ t ≤ t1 (2.1)

and, from the given conditions, the four parameters a0, a1, a2, a3 are

24 2 Analytic Expressions of Elementary Trajectories

0 1 2 3 4 5 6 7 8
−0.5

0

0.5

1

A
cc

el
er

at
io

n

0

0.5

1

1.5

2

2.5

V
el

oc
ity

0

2

4

6

8

10

P
os

iti
on

Fig. 2.6. Position, velocity and acceleration od a trajectory with asymmetric con-
stant acceleration and t0 = 0, t1 = 8, tf = 2, q0 = 0, q1 = 10.

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

a0 = q0

a1 = v0

a2 =
3h − (2v0 + v1)T

T 2

a3 =
−2h + (v0 + v1)T

T 3
.

(2.2)

By exploiting this result, it is very simple to compute a trajectory with contin-
uous velocity through a sequence of n points. The overall motion is subdivided
into n−1 segments. Each of these segments connects the points qk and qk+1 at
tk, tk+1 and has initial/final velocity vk, vk+1 respectively. Then, equations
(2.2) are used for each of these segments to define the 4(n − 1) parameters
a0k, a1k, a2k, a3k.

Example 2.6 Fig. 2.7(a) shows position, velocity and acceleration for this
trajectory with q0 = 0, q1 = 10, t0 = 0, t1 = 8 and null initial and final veloc-
ities. If these are not null, motion profiles such as those shown in Fig. 2.7(b)
are obtained, where the conditions v0 = −5, v1 = −10 have been assigned. �

2.1 Polynomial Trajectories 25

1 2 3 4 5 6 7 8

−1

−0.5

0

0.5

1

A
cc

el
er

at
io

n

0

0.5

1

1.5

2

V
el

oc
ity

0

2

4

6

8

10

P
os

iti
on

1 2 3 4 5 6 7 8

−5

0

5

A
cc

el
er

at
io

n

−10

−5

0

5

V
el

oc
ity

0

5

10

15

P
os

iti
on

(a) (b)

Fig. 2.7. Position, velocity and acceleration of a third degree polynomial trajectory
with the conditions q0 = 0, q1 = 10, t0 = 0, t1 = 8. In (a) the initial and final
velocities are null (v0 = v1 = 0), while in (b) the values v0 = −5, v1 = −10 have
been assigned.

Example 2.7 Fig. 2.8 reports the plots of position, velocity and acceleration
for a multipoint trajectory with

t0 = 0, t1 = 2, t2 = 4, t3 = 8, t4 = 10,
q0 = 10, q1 = 20, q2 = 0, q3 = 30, q4 = 40,
v0 = 0, v1 = −10, v2 = 10, v3 = 3, v4 = 0.

�

In defining a trajectory through a set of points q0, . . . , qn, not always the
velocities in the intermediate points are specified. In these cases, suitable
values for the intermediate velocities may be determined with heuristic rules
such as

v0 (assigned)

vk =

⎧⎨
⎩

0 sign(dk) �= sign(dk+1)

1
2 (dk + dk+1) sign(dk) = sign(dk+1)

vn (assigned)

(2.3)

where dk = (qk − qk−1)/(tk − tk−1) is the slope of the line segment between
the instants tk−1 and tk, and sign(·) is the sign function.

Example 2.8 The plots obtained with the same sequence of points as in Ex-
ample 2.7 are reported in Fig. 2.9. In this case, the intermediate velocities are
computed with (2.3). �

26 2 Analytic Expressions of Elementary Trajectories

0 2 4 6 8 10
−40

−20

0

20

40

A
cc

el
er

at
io

n

−15

−10

−5

0

5

10

V
el

oc
ity

0

10

20

30

40

P
os

iti
on

Fig. 2.8. Position, velocity and acceleration for a cubic polynomial through a se-
quence of points.

2.1.5 Polynomial of degree five

A trajectory through the points q0, . . . , qn, based on third degree polyno-
mials, is characterized by continuous position and velocity profiles, while in
general the acceleration is discontinuous, see the examples in Fig. 2.8 and
Fig. 2.9.
Although this trajectory is in general “smooth” enough, acceleration discon-
tinuities can generate in some applications undesired effects on the kinematic
chains and on the inertial loads. This happens in particular when the mini-
mization of time is of concern, and therefore high acceleration (and velocity)
values are assigned, or when relevant mechanical elasticities are present in the
actuation system. These aspects are discussed with more details in Chapter
7.
In order to obtain trajectories with continuous acceleration, besides condi-
tions on position and velocity it is also necessary to assign suitable initial and
final values for the acceleration. Therefore, since there are six boundary con-
ditions (position, velocity, and acceleration), a fifth degree polynomial must
be adopted:

q(t) = q0 +a1(t− t0)+a2(t− t0)2 +a3(t− t0)3 +a4(t− t0)4 +a5(t− t0)5 (2.4)

2.1 Polynomial Trajectories 27

0 2 4 6 8 10

−20

0

20

A
cc

el
er

at
io

n

−15

−10

−5

0

5

10

V
el

oc
ity

0

10

20

30

40

P
os

iti
on

Fig. 2.9. Position, velocity and acceleration of a cubic polynomial trajectory
through a sequence of points with the intermediate velocities computed according
to (2.3).

with the conditions

q(t0) = q0, q(t1) = q1

q̇(t0) = v0, q̇(t1) = v1

q̈(t0) = a0, q̈(t1) = a1.

In this case, by defining T = t1 − t0, the coefficients of the polynomial result⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a0 = q0

a1 = v0

a2 =
1
2
a0

a3 =
1

2T 3
[20h − (8v1 + 12v0)T − (3a0 − a1)T 2]

a4 =
1

2T 4
[−30h + (14v1 + 16v0)T + (3a0 − 2a1)T 2]

a5 =
1

2T 5
[12h − 6(v1 + v0)T + (a1 − a0)T 2].

(2.5)

28 2 Analytic Expressions of Elementary Trajectories

0 1 2 3 4 5 6 7 8
−1

−0.5

0

0.5

1

A
cc

el
er

at
io

n

0

0.5

1

1.5

2

2.5

V
el

oc
ity

0

2

4

6

8

10

P
os

iti
on

0 1 2 3 4 5 6 7 8

−5

0

5

A
cc

el
er

at
io

n

−10

−5

0

5

10

V
el

oc
ity

−5

0

5

10

15

20

P
os

iti
on

(a) (b)

Fig. 2.10. Position, velocity and acceleration of a fifth degree polynomial with q0 =
0, q1 = 10, v0 = v1 = 0, a0 = a1 = 0, t0 = 0, t1 = 8 (a), and v0 = −5, v1 = −10
(b).

Example 2.9 A fifth degree trajectory is shown in Fig. 2.10. The initial and
final conditions are q0 = 0, q1 = 10, v0 = v1 = 0, a0 = a1 = 0, t0 = 0, t1 = 8
in Fig. 2.10(a), and v0 = −5, v1 = −10, in Fig. 2.10(b). Compare these plots
with those in Fig. 2.7. Note that, by adopting a cubic polynomial it is not
possible to assign boundary values on the acceleration. �

For a motion through a sequence of points, the considerations illustrated for
a third degree polynomial can be applied in the same manner, see eq. (2.3).

Example 2.10 Fig. 2.11 reports a fifth degree polynomial, with automatic
computation of the intermediate velocities and null intermediate accelerations
(compare with Fig. 2.9). Notice the improved “smoothness” in this case. �

2.1.6 Polynomial of degree seven

In particular cases, it might be necessary to define higher degree polynomials
in order to obtain smoother profiles. With polynomials of degree seven such
as

q(t) = a0 + a1(t − t0) + a2(t − t0)2 + a3(t − t0)3 + a4(t − t0)4 +
+a5(t − t0)5 + a6(t − t0)6 + a7(t − t0)7 (2.6)

it is possible to specify eight boundary conditions

2.1 Polynomial Trajectories 29

0 2 4 6 8 10

−20

0

20

A
cc

el
er

at
io

n

−20

−10

0

10

V
el

oc
ity

0

10

20

30

40

P
os

iti
on

Fig. 2.11. Position, velocity and acceleration with a fifth degree polynomial through
a sequence of points (compare with Fig. 2.9).

q(t0) = q0, q̇(t0) = v0, q̈(t0) = a0, q(3)(t0) = j0,
q(t1) = q1, q̇(t1) = v1, q̈(t1) = a1, q(3)(t1) = j1.

By defining T = t1 − t0 and h = q1 − q0, the coefficients ai, i = 0, . . . , 7 are
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a0 = q0

a1 = v0

a2 =
a0

2

a3 =
j0

6

a4 =
210h − T [(30a0 − 15a1)T + (4j0 + j1)T

2 + 120v0 + 90v1]
6T 4

a5 =
−168h + T [(20a0 − 14a1)T + (2j0 + j1)T

2 + 90v0 + 78v1]
2T 5

a6 =
420h − T [(45a0 − 39a1)T + (4j0 + 3j1)T

2 + 216v0 + 204v1]
6T 6

a7 =
−120h + T [(12a0 − 12a1)T + (j0 + j1)T

2 + 60v0 + 60v1]
6T 7

.

30 2 Analytic Expressions of Elementary Trajectories

0 1 2 3 4 5 6 7 8

−1

−0.5

0

0.5

1

Je
rk

−1

−0.5

0

0.5

1

A
cc

el
er

at
io

n

0

1

2

3

V
el

oc
ity

0

2

4

6

8

10

P
os

iti
on

Fig. 2.12. Position, velocity, acceleration and jerk of a seventh degree polynomial
(compare with Fig. 2.7 and Fig. 2.10).

Example 2.11 A seventh degree polynomial trajectory is shown in Fig. 2.12,
obtained with the boundary conditions q0 = 0, q1 = 10, v0 = v1 = 0, a0 =
a1 = 0, j0 = 0, j1 = 0, t0 = 0, t1 = 8. �

Obviously, in case of a desired motion through a sequence of points, the
considerations illustrated for third and fifth degree polynomials can be ap-
plied.

2.1.7 Polynomials of higher degree

In particular applications it is necessary to adopt polynomials of high degree in
order to impose several constraints, such as boundary conditions on velocity,

2.1 Polynomial Trajectories 31

acceleration, jerk, snap and even higher order derivatives or conditions in
the intermediate points. In these cases, it may be convenient to express the
polynomial function of degree n in normalized form, i.e. as

qN(τ) = a0 + a1τ + a2τ
2 + a3τ

3 + . . . + anτn (2.7)

with unitary displacement h = q1 − q0 = 1 and duration T = τ1 − τ0 = 1 (for
the sake of simplicity it is also assumed τ0 = 0).

In order to determine the parameters ai, it is possible to define an equation
of the type

M a = b (2.8)

where a = [a0, a1, a2, . . . , an]T . The vector b, containing the boundary con-
ditions on position, velocity, acceleration and so on, is in the form1

b = [q0, v0, a0, j0, . . . , q1, v1, a1, j1, . . .]T .

Finally, matrix M can be easily defined by imposing the boundary conditions
on (2.7):

1. a0 = 0: polynomial trough the first point (qN(0) = 0).

2. a1 = v0, a2 = a0, a3 = j0, . . .: initial conditions on velocity, acceleration,
...; in general there are nci initial conditions on the derivatives of qN(τ).

3.
∑n

i=0 ai = 1: polynomial trough the last point (qN(1) = 1).

4.
∑n

i=1 iai = v1: final condition on velocity.

5.
∑n

i=2 i(i − 1)ai = a1: final condition on acceleration.

6.
∑n

i=3 i(i − 1)(i − 2)ai = j1: final condition on jerk.

7.
∑n

i=d
i!

(i−d)!ai = cd1: final condition on the d-th derivative of qN(τ) (with
ncf final conditions).

The polynomial qN(τ), of degree n, has n + 1 coefficients ai and therefore
matrix M has dimensions (n + 1)× (n + 1), where n + 1 = nci + ncf + 2. The
parameters a are determined from a = M−1b. Note that also for relatively
1 The values of the initial/final velocity, acceleration, . . . , (vNj , aNj , . . . , j = 1, 0)

are obtained by “normalizing” the corresponding boundary conditions vj , aj , . . .

as q
(k)
Nj

=
q
(k)
j

h/T k , being q
(k)
j the given constraint on the derivative of order k of the

desired trajectory q(t) from q0 to q1 (h = q1− q0) and of duration T . For the sake
of simplicity, also the normalized boundary conditions vN0 , vN1 , . . . are denoted
here as v0, v1, a0, a1,

32 2 Analytic Expressions of Elementary Trajectories

low values of n (e.g. n = 18, 19, . . .), the computation of M−1 may give
numerical problems due to bad conditioning.

For this reason, if necessary, it is possible to compute the coefficients ai

with other approaches, more robust from the computational point of view. As
a matter of fact, it is possible to exploit the so-called Bézier/Bernstein form
of polynomials, i.e.

qN(τ) =
n∑

i=0

(
n

i

)
τ i (1 − τ)n−ipi, 0 ≤ τ ≤ 1 (2.9)

where
(

n

i

)
are binomial coefficients defined as

(
n

i

)
=

n!
i! (n − i)!

,

(
n
i

)
τ i (1− τ)n−i are the Bernstein basis polynomials, and pi are scalar coeffi-

cients called control points, see also Sec. B.3. Obviously, the expressions (2.7)
and (2.9) are equivalent, and it is possible to express a polynomial in both
the forms. Accordingly, the relationship between the coefficients ai and the
parameters pi is:

aj =
n!

(n − j)!

j∑
i=0

(−1)i+j

i! (j − i)!
pi, j = 0, 1, . . . , n, (2.10)

see also (B.22). The parameters pi in (2.9) can be computed by imposing the
boundary conditions on qN(τ), i.e

qN(0) = 0, qN(1) = 1
q̇N(0) = v0, q̇N(1) = v1

q̈N(0) = a0, q̈N(1) = a1

...
...

(2.11)

An interesting property of the expression (2.9) is that it allows to solve
independently the two problems tied to the imposition of boundary conditions
at the initial and at the final points (these problems must be solved together
if eq. (2.8) is used). As a matter of fact, the derivatives of qN(τ) in (2.9) for
τ = 0 and τ = 1 are⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

q̇N(0) = n(−p0 + p1)

q̈N(0) = n(n − 1)(p0 − 2p1 + p2)
...

qN
(k)(0) =

n!
(n − k)!

k∑
i=0

(
k

i

)
(−1)k+ipi

(2.12)

2.1 Polynomial Trajectories 33

and ⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

q̇N(1) = n(pn − pn−1)

q̈N(1) = n(n − 1)(pn − 2pn−1 + pn−2)
...

qN
(k)(1) =

n!
(n − k)!

k∑
i=0

(
k

i

)
(−1)ipn−i.

(2.13)

As already pointed out, in order to meet all the conditions the degree n of
the polynomial must be at least equal to nci +ncf +1. Note that the problem
(2.12) depends only on the value of the first nci +1 control points pi. Likewise,
the problem (2.13) involves only the last ncf + 1 control points.
From (2.12) and the obvious condition qN(0) = q0 (in this case q0 = 0) it is
possible to define an equation of the type

M0 p0 = b0 (2.14)

with

M0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 . . . 0

−1 1 0 0 0 0 . . . 0

1 −2 1 0 0 0 . . . 0

−1 3 −3 1 0 0 . . . 0

1 −4 6 −4 1 0 . . . 0
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, b0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
v0
n

a0
n(n−1)

j0
n(n−1)(n−2)

s0
n(n−1)(n−2)(n−3)

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and the vector of the nci + 1 unknowns p0 = [p0, p1, p2, . . . , pnci
]T . Note

that matrix M0 has a triangular structure, and therefore the procedure for
its inversion, necessary to find the solution p0, results numerically robust.
The last ncf + 1 control points p1 = [pn, pn−1, pn−2, . . . , pn−ncf

]T are
the solution of a system of equations similar to (2.14) (in this case the first
equation is qN(1) = q1 = 1):

M1 p1 = b1 (2.15)

with

M1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 . . . 0

1 −1 0 0 0 0 . . . 0

1 −2 1 0 0 0 . . . 0

1 −3 3 −1 0 0 . . . 0

1 −4 6 −4 1 0 . . . 0
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, b1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
v1
n

a1
n(n−1)

j1
n(n−1)(n−2)

s1
n(n−1)(n−2)(n−3)

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

34 2 Analytic Expressions of Elementary Trajectories

Once all the control points p = [p0, p1, . . . , pnci
, pn−ncf

, . . . , pn−1, pn]T in
(2.9) are known, it is possible to determine the parameters ai in (2.7) accord-
ing to (2.10).

After the computation of the parameters which define the normalized poly-
nomial qN(τ) either in the form (2.7) or (2.9), the function describing the
motion between the two generic points (t0, q0) and (t1, q1) is

q(t) = q0 + qN(τ) h, with τ =
t − t0

T
(2.16)

and the velocity, acceleration, ... profiles are⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q̇(t) = q̇N(τ)
h

T

q̈(t) = q̈N(τ)
h

T 2

...
d qd(t)
d td

=
d qd

N(τ)
d τd

h

T d

(2.17)

see also Sec. 5.2.1.

Example 2.12 Let us define a polynomial function with the following con-
ditions

q0 = 10, v0 = 5, a0 = 0, j0 = 0, s0 = 0

q1 = 30, v1 = 0, a1 = 10, j1 = 0, s1 = 0

and t0 = 1, t1 = 5. In this case, the boundary conditions on the derivatives
of the polynomial are 4 at the initial point and 4 at the final point (nci =
ncf = 4). Therefore, the degree n of the polynomial function must be 9. In
order to find the coefficients pi which define the Bézier/Bernstein polynomial,
it is necessary to normalize the constraints. With h = q1 − q0 = 20 and
T = t1 − t0 = 4 the normalized boundary conditions result

q0 = 0, v0 = 1, a0 = 0, j0 = 0, s0 = 0

q1 = 1, v1 = 0, a1 = 8, j1 = 0, s1 = 0.

Therefore, the matrices M j and the vectors bj in (2.14) and (2.15) are re-
spectively

M0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0

−1 1 0 0 0

1 −2 1 0 0

−1 3 −3 1 0

1 −4 6 −4 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, b0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
9
0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

2.1 Polynomial Trajectories 35

and

M1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0

1 −1 0 0 0

1 −2 1 0 0

1 −3 3 −1 0

1 −4 6 −4 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, b1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

0

1
9
0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The control points are

p =
1
9

[0, 1, 2, 3, 4, 15, 12, 10, 9, 9]T

and the relative normalized trajectory is

qN(τ) = (1 − τ)8τ + 8(1 − τ)7τ2 + 28(1 − τ)6τ3 + 56(1 − τ)5τ4 +
+210(1 − τ)4τ5 + 112(1 − τ)3τ6 + 40(1 − τ)2τ7 + 9(1 − τ)τ8 + τ9.

By exploiting (2.10), this trajectory can be rewritten in the standard polyno-
mial form as

qN(τ) = τ + 140τ5 − 504τ6 + 684τ7 − 415τ8 + 95τ9.

The profiles of position, velocity and acceleration of qN(τ) are shown in
Fig. 2.13(a).

Finally, by adopting (2.16) and (2.17), the expression of the desired tra-
jectory with displacement h = 20 and duration T = 4 is obtained. The
corresponding profiles of position, velocity and acceleration are shown in
Fig. 2.13(b).

�

If the standard form (2.7) is assumed, the coefficients of the polynomial q(t)
and of its derivatives can be easily deduced from (2.16) and (2.17) as functions
of ai, T , and h. As a matter of fact, if we denote with bi,k the coefficients of
q(k)(t), i.e.

q(k)(t) =
n−k∑
i=0

bi,k (t − t0)i (2.18)

the expressions of the position, velocity, acceleration, ... profiles become

36 2 Analytic Expressions of Elementary Trajectories

0 0.2 0.4 0.6 0.8 1
−15

−10

−5

0

5

10

A
cc

el
er

at
io

n

−1

0

1

2

3

V
el

oc
ity

0

0.5

1

1.5

P
os

iti
on

1 1.5 2 2.5 3 3.5 4 4.5 5
−20

−10

0

10

20

A
cc

el
er

at
io

n

−5

0

5

10

15

V
el

oc
ity

10

15

20

25

30

35

P
os

iti
on

(a) (b)

Fig. 2.13. Normalized polynomial trajectory of degree 9 (a) and corresponding
trajectory from (t0, q0) to (t1, q1) (b), Example 2.12.

position: q(t) =
n∑

i=0

bi,0(t − t0)i → bi,0 =

⎧⎨
⎩

q0 + h a0, i = 0
h

T i
ai, i > 0

velocity: q̇(t) =
n−1∑
i=0

bi,1(t − t0)i → bi,1 = (i + 1)
h

T i+1
ai+1

acceleration: q̈(t) =
n−2∑
i=0

bi,2(t − t0)i → bi,2 = (i + 1)(i + 2)
h

T i+2
ai+2

...

d-th derivative: q(d)(t) =
n−d∑
i=0

bi,d(t − t0)i → bi,d =
(i + d)!

i!
h

T i+d
ai+d.

(2.19)
Of particular interest is the case of null boundary conditions:

v0 = 0, v1 = 0
a0 = 0, a1 = 0
j0 = 0, j1 = 0

...
...

Under this hypothesis the control points, which determine (2.9) and are solu-
tion of (2.14) and (2.15), are

p = [0, 0, 0, 0, . . . , 0︸ ︷︷ ︸
nci+1

, 1, 1, 1, 1, . . . , 1︸ ︷︷ ︸
ncf +1

]T .

2.1 Polynomial Trajectories 37

The corresponding expression of the coefficients ai in (2.7) can be determined
from p with (2.10). Their values, for polynomials qN(τ) up to degree 21, are
reported in Tab. 2.1.

3 5 7 9 11 13 15 17 19 21

a0 0 0 0 0 0 0 0 0 0 0

a1 0 0 0 0 0 0 0 0 0 0

a2 3 0 0 0 0 0 0 0 0 0

a3 -2 10 0 0 0 0 0 0 0 0

a4 - -15 35 0 0 0 0 0 0 0

a5 - 6 -84 126 0 0 0 0 0 0

a6 - - 70 -420 462 0 0 0 0 0

a7 - - -20 540 -1980 1716 0 0 0 0

a8 - - - -315 3465 -9009 6435 0 0 0

a9 - - - 70 -3080 20020 -40040 24310 0 0

a10 - - - - 1386 -24024 108108 -175032 92378 0

a11 - - - - -252 16380 -163800 556920 -755820 352716

a12 - - - - - -6006 150150 -1021020 2771340 -3233230

a13 - - - - - 924 -83160 1178100 -5969040 13430340

a14 - - - - - - 25740 -875160 8314020 -33256080

a15 - - - - - - -3432 408408 -7759752 54318264

a16 - - - - - - - -109395 4849845 -61108047

a17 - - - - - - - 12870 -1956240 47927880

a18 - - - - - - - - 461890 -25865840

a19 - - - - - - - - -48620 9189180

a20 - - - - - - - - - -1939938

a21 - - - - - - - - - 184756

Table 2.1. Per column: coefficients ai of the normalized polynomials qN(τ) with
degree n = 3, 5, . . . , 21, with null boundary conditions on their derivatives up to
order 10. The degree of the polynomials is n = 2nc + 1, being nc the number of null
initial (and final) conditions.

The polynomial functions obtained in this manner, i.e with null boundary
conditions and h = 1, T = 1, have some peculiar properties:

1. qN(τ) = 1 − qN(1 − τ).

2. a0 = a1 = . . . = anci
= 0.

38 2 Analytic Expressions of Elementary Trajectories

3. ai ∈ IN.

4. sign(anci+1) = 1, sign(anci+2) = −1, sign(anci+3) = 1, . . .

5.
∑n

i=0 ai = 1.

From the coefficients of Tab. 2.1 and the above equations (2.19) it is simple
to compute the coefficients of the polynomials of the normalized velocity,
acceleration, . . . , profiles (functions q̇N(τ), q̈N(τ), . . .) or of the polynomials
q(t), q̇(t), q̈(t), . . . for a generic displacement. The coefficients of q̇N(τ) and
q̈N(τ) are reported in Appendix A.1.
The position, velocity, acceleration and jerk profiles for these polynomials are
shown in Fig. 2.14. Note the increasing smoothness of the profiles, and the
corresponding higher values for the maximum velocity, acceleration and jerk,
whose numerical values are reported in Tab. 2.2, denoted with Cv, Ca, and
Cj respectively.

Example 2.13 Let us define a polynomial function with the following con-
ditions

q0 = 10, v0 = 0, a0 = 0, j0 = 0, s0 = 0
q1 = 30, v1 = 0, a1 = 0, j1 = 0, s1 = 0

and t0 = 1, t1 = 5. There are 10 conditions to be satisfied, and therefore
the polynomial must be at least of degree 9. The expression of the normal-
ized polynomial qN(τ) in the Bézier/Bernstein form (2.9) with null boundary
conditions is:

qN(τ) = 126(1 − τ)4τ5 + 84(1 − τ)3τ6 + 36(1 − τ)2τ7 + 9(1 − τ)τ8 + τ9.

n Cv Δ% Ca Δ% Cj Δ%

3 1.5 0 6 0 12 0

5 1.875 25 5.7735 -3.78 60 400

7 2.1875 45.83 7.5132 25.22 52.5 337.5

9 2.4609 64.06 9.372 56.2 78.75 556.25

11 2.707 80.47 11.2666 87.78 108.2813 802.34

13 2.9326 95.51 13.1767 119.61 140.7656 1073.05

15 3.1421 109.47 15.0949 151.58 175.957 1366.31

17 3.3385 122.56 17.018 183.63 213.6621 1680.52

19 3.5239 134.93 18.9441 215.73 253.7238 2014.36

21 3.7001 146.68 20.8723 247.87 296.011 2366.76

Table 2.2. Maximum values of velocity (Cv), acceleration (Ca) and jerk (Cj)
for normalized polynomials of degree 3 - 21: smoother (higher degree) polynomials
present higher velocity and acceleration values. The variations with respect to the
3-rd degree polynomial are also reported.

2.1 Polynomial Trajectories 39

0 0.2 0.4 0.6 0.8 1

−300

−200

−100

0

100

Je
rk

−20

−10

0

10

20

A
cc

el
er

at
io

n

0

1

2

3

4

V
el

oc
ity

0

0.2

0.4

0.6

0.8

1

P
os

iti
on

Fig. 2.14. Position, velocity, acceleration and jerk profiles for normalized polyno-
mial functions of degree 3 - 21 with null boundary conditions.

From Tab. 2.1, the coefficients a = [a0, a1, . . . , a9]T of the standard poly-
nomial form are:

a = [0, 0, 0, 0, 0, 126, −420, 540, −315, 70]T .

By using (2.16), the desired trajectory with displacement h = 20 and duration
T = 4 is computed as

q(t) = 10 + 20
(
126τ5 − 420τ6 + 540τ7 − 315τ8 + 70τ9

)
, with τ =

(
t − 1

4

)
.

Alternatively, from (2.19), one can directly write the expression of q(t) and
of its derivatives:

40 2 Analytic Expressions of Elementary Trajectories

1 1.5 2 2.5 3 3.5 4 4.5 5

−50

0

50

S
na

p

−20

−10

0

10

20

Je
rk

−10

−5

0

5

10

A
cc

el
er

at
io

n

0

5

10

V
el

oc
ity

10

15

20

25

30

P
os

iti
on

Fig. 2.15. Polynomial function of degree 9 of Example 2.13.

q(t) = 10 + 20
126

45
(t − 1)5 + 20

−420

46
(t − 1)6 + 20

540

47
(t − 1)7+

+20
−315

48
(t − 1)8 + 20

70

49
(t − 1)9

= 10 + 2.4609(t − 1)5 − 2.0508(t − 1)6 + 0.6592(t − 1)7+

−0.0961(t − 1)8 + 0.0053(t − 1)9

2.1 Polynomial Trajectories 41

q̇(t) = 5 · 20
126

45
(t − 1)4 + 6 · 20

−420

46
(t − 1)5 + 7 · 20

540

47
(t − 1)6+

+8 · 20
−315

48
(t − 1)7 + 9 · 20

70

49
(t − 1)8

= 12.3047(t − 1)4 − 12.3047(t − 1)5 + 4.6143(t − 1)6+

−0.7690(t − 1)7 + 0.0481(t − 1)8

q̈(t) = 5 · 4 · 20
126

45
(t − 1)3 + 6 · 5 · 20

−420

46
(t − 1)4 + 7 · 6 · 20

540

47
(t − 1)5+

+8 · 7 · 20
−315

48
(t − 1)6 + 9 · 8 · 20

70

49
(t − 1)7

= 49.2188(t − 1)3 − 61.5234(t − 1)4 + 27.6855(t − 1)5+

−5.3833(t − 1)6 + 0.3845(t − 1)7.

These functions are shown in Fig. 2.15. �

The maximum value of the velocity, acceleration, jerk, . . . , of a (normal-
ized) polynomial qN (τ) increases with the degree n, as illustrated in Fig. 2.14
and reported in Tab. 2.2. It is interesting to note, as illustrated in Fig. 2.16,
that the rates of growth of Cv, Ca and Cj are proportional to

√
n, n, and n2

respectively.
Although the determination of polynomials in the Bézier/Bernstein form

is quite robust from the numerical point of view, for large values of n (eg. 37,
39, . . .) the computation of polynomials is in any case affected by relevant
numerical errors, and therefore it is advisable to use other functions to define
smooth motion profiles, like trigonometric or exponential functions.

42 2 Analytic Expressions of Elementary Trajectories

0 5 10 15 20 25 30

50

100

150

200

250

300

Je
rk

10

20

30

A
cc

el
er

at
io

n

2

3

4

V
el

oc
ity

Degree n

Fig. 2.16. Maximum values of the velocity, acceleration and jerk profiles of normal-
ized polynomials of degree 3 - 33 with null boundary conditions, plotted as function
of n (x-marks); interpolation with functions depending respectively on

√
n, n, n2

(solid lines).

2.2 Trigonometric Trajectories

In this section, the analytical expressions of trajectories based on trigono-
metric functions are described. These trajectories present non-null continuous
derivatives for any order of derivation in the interval (t0, t1). However, these
derivatives may be discontinuous in t0 and t1.

2.2.1 Harmonic trajectory

An harmonic motion is characterized by an acceleration profile that is propor-
tional to the position profile, with opposite sign. The mathematical formula-
tion of the harmonic motion can be also deduced graphically, see Fig. 2.17.

Let the point q be the projection on the diameter of point p. If point p
moves on the circle with constant velocity, the motion of q, called harmonic,
is described by

s(θ) = R(1 − cos θ) (2.20)

2.2 Trigonometric Trajectories 43

θ

s

R

pq

h

0

Fig. 2.17. Geometric construction of the harmonic motion.

where R is the radius of the circle. In a more general form, the harmonic
trajectory can be defined as

q(t) =
h

2

(
1 − cos

π(t − t0)
T

)
+ q0 (2.21)

with h = q1 − q0 and T = t1 − t0, from which⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

q̇(t) =
πh

2T
sin

(
π(t − t0)

T

)

q̈(t) =
π2h

2T 2
cos

(
π(t − t0)

T

)

q(3)(t) = −π3h

2T 3
sin

(
π(t − t0)

T

)
.

Example 2.14 Fig. 2.18 reports the position, velocity, acceleration and jerk
of an harmonic trajectory with the conditions t0 = 0, t1 = 8, q0 = 0, q1 = 10.

�

2.2.2 Cycloidal trajectory

As shown in Fig. 2.18, the harmonic trajectory presents a discontinuous ac-
celeration and, therefore, infinite instantaneous jerk at t0, t1. As already dis-
cussed, a discontinuous acceleration profile may generate undesired effects
when flexible mechanisms are present. A continuous acceleration profile is ob-
tained with the cycloidal trajectory, described by a circle with circumference
h rolling along a line see Fig. 2.19,

q(t) = (q1 − q0)
(

t − t0
t1 − t0

− 1
2π

sin
2π(t − t0)

t1 − t0

)
+ q0

= h

(
t − t0

T
− 1

2π
sin

2π(t − t0)
T

)
+ q0 (2.22)

44 2 Analytic Expressions of Elementary Trajectories

0 1 2 3 4 5 6 7 8

−0.3

−0.2

−0.1

0

Je
rk

−0.5

0

0.5

A
cc

el
er

at
io

n

0

0.5

1

1.5

2

V
el

oc
ity

0

2

4

6

8

10

P
os

iti
on

Fig. 2.18. Position, velocity, acceleration and jerk of an harmonic trajectory when
t0 = 0, t1 = 8, q0 = 0, q1 = 10.

from which

q̇(t) =
h

T

(
1 − cos

2π(t − t0)
T

)

q̈(t) =
2πh

T 2
sin

2π(t − t0)
T

q(3)(t) =
4π2h

T 3
cos

2π(t − t0)
T

.

In this case, the acceleration is null in t = t0, t1, and therefore it presents a
continuous profile.

Example 2.15 Fig. 2.20 shows position, velocity, acceleration and jerk for
a cycloidal trajectory with the same conditions as in the previous example. �

2.2 Trigonometric Trajectories 45

s

R

p

h0

Fig. 2.19. Geometric construction of the cycloidal motion.

0 1 2 3 4 5 6 7 8

−5

0

5

Je
rk

−1

−0.5

0

0.5

1

A
cc

el
er

at
io

n

0

0.5

1

1.5

2

2.5

V
el

oc
ity

0

2

4

6

8

10

P
os

iti
on

Fig. 2.20. Position, velocity, acceleration and jerk of a cycloidal trajectory with
t0 = 0, t1 = 8, q0 = 0, q1 = 10.

2.2.3 Elliptic trajectory

As shown in Fig. 2.17, the harmonic motion can be obtained graphically by
projecting on the diameter a point moving on a circle. An elliptic motion is

46 2 Analytic Expressions of Elementary Trajectories

θ

s

pq

h

0

Fig. 2.21. Geometric construction of the elliptic motion.

obtained by projecting the motion of a point moving on an ellipse on the minor
axis, of length equal to the desired displacement h = q1 − q0, see Fig. 2.21.
The resulting equation is

q(t) =
h

2

⎛
⎝1 −

cos π(t−t0)
T√

1 − α sin2 π(t−t0)
T

⎞
⎠+ q0 (2.23)

where α = n2−1
n2 , and n is the ratio between the major and minor ellipse axes.

The velocity and the acceleration are

q̇(t) =
πh

2T

sin π(t−t0)
T

n2

√(
1 − α sin2 π(t−t0)

T

)3

q̈(t) =
π2h

2T 2
cos

(
π(t − t0)

T

)
1 + 2 α sin2 π(t−t0)

T

n2

√(
1 − α sin2 π(t−t0)

T

)5
.

Obviously, the harmonic trajectory is obtained by setting n = 1.

Example 2.16 Fig. 2.22 shows position, velocity, acceleration and jerk of
this trajectory. Fig. 2.23 reports the profiles of position, velocity and acceler-
ation with different choices of n. Note that the maximum values of velocity
and acceleration increase with n. �

2.3 Exponential Trajectories 47

0 1 2 3 4 5 6 7 8

−6

−4

−2

0

2

Je
rk

−2

−1

0

1

2

A
cc

el
er

at
io

n

0

1

2

3

4

V
el

oc
ity

0

2

4

6

8

10

P
os

iti
on

Fig. 2.22. Position, velocity, acceleration and jerk of an elliptic trajectory with
t0 = 0, t1 = 8, q0 = 0, q1 = 10, n = 2.

2.3 Exponential Trajectories

As discussed in Chapter 7, natural vibrations induced on the machine by the
actuation system should always be minimized.

This involves also the choice of proper motion profiles, since discontinu-
ities in the desired trajectory may generate vibrations in the machine due
to the induced discontinuities in the applied forces and the elastic effects of
the mechanical system itself. Therefore, it may be convenient to introduce
trajectories whose smoothness can be adjusted according to the needs, [14].

For this purpose, it is possible to consider an exponential function for the
velocity, as

q̇(τ) = vc e−σ f(τ,λ)

48 2 Analytic Expressions of Elementary Trajectories

0 1 2 3 4 5 6 7 8

−20

−10

0

Je
rk

−5

0

5

A
cc

el
er

at
io

n

0

2

4

6

V
el

oc
ity

0

2

4

6

8

10

P
os

iti
on

Fig. 2.23. Elliptic trajectories when: n = 1.2 (solid), n = 2 (dashed), n = 3
(dotted).

where σ and λ are free parameters. Possible choices for the function f(τ, λ)
are

fa(τ, λ) =
(2τ)2

|1 − (2τ)2|λ or fb(τ, λ) =
sin2 πτ

| cos πτ |λ .

If a normalized motion profile is considered, i.e. with unit displacement and
duration, and in particular with the conditions q0 = −0.5, q1 = 0.5, and
τ0 = −0.5, τ1 = 0.5, then the constant vc can be computed as

vc =
1

2
∫ 1

2

0

−σf(τ, λ)dτ

.

2.3 Exponential Trajectories 49

0
0.2

0.4
0.6

0.8
1

0

5

10

0

2

4

6

8

10

ν
a

σ λ

Fig. 2.24. Maximum values of the residual spectrum νa of the exponential trajec-
tory for different values of σ and λ.

At this point, the normalized motion qN(τ) is defined by the following equa-
tions ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

qN(τ) = vc

∫ τ

0

e−σ f(τ,λ)dτ

q̇N(τ) = vc e−σ f(τ,λ)

q̈N(τ) = −vc σ
f(τ, λ)

dτ
e−σ f(τ,λ).

(2.24)

The choice of the function fa(τ, λ) or fb(τ, λ) has only a little influence on the
actual motion profile and therefore, being fa simpler from a computational
point of view, it is adopted in the following discussion. More important is the
choice of σ and λ, whose values may be assigned in order to minimize the
maximum amplitude of the high frequency components of the acceleration
profile, responsible of vibrations induced in the machine. The maximum values
of the residual spectrum νa

2 of q̈N for frequencies greater than 5 Hz, obtained
for several values of the parameters σ, λ, are shown in Fig. 2.24.

In particular, the numerical values of νa obtained for some values of σ and
with the corresponding λ which minimizes the residual spectrum are reported
in Tab. 2.3. It is possible to show that the minimum value νa,min = 0.018 is
obtained for λ = 0.20, σ = 7.1, [14].

In case of a trajectory from an initial point q0 to a final one q1, with
h = q1 − q0, and time instants t0 and t1, with T = t1 − t0, the actual position
q(t), velocity q̇(t) and acceleration q̈(t) profiles may be obtained from (2.24)
2 The residual spectrum is defined here as the maximum amplitude of the frequency

spectrum of the acceleration profile for frequencies higher than a given threshold.

50 2 Analytic Expressions of Elementary Trajectories

σ 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5

λ 0.61 0.49 0.41 0.34 0.29 0.25 0.22 0.19 0.18 0.18 0.19 0.28

νa 4.364 2.736 1.697 1.034 0.625 0.370 0.217 0.125 0.071 0.039 0.019 0.043

Table 2.3. Parameters σ and λ for exponential trajectories and the related maxi-
mum amplitude of the frequency content of the acceleration profiles (> 5 Hz).

1 2 3 4 5 6 7 8

−2

−1

0

1

2

A
cc

el
er

at
io

n

0

1

2

3

4

V
el

oc
ity

0

2

4

6

8

10

P
os

iti
on

Fig. 2.25. Position, velocity, acceleration profiles of an exponential trajectory with
σ = 7.1 and λ = 0.2.

as

q(t) = q0 + h

(
1
2

+ qN(τ)
)

, q̇(t) =
h

T
q̇N(τ), q̈(t) =

h

T 2
q̈N(τ)

with τ =
(

t − t0
T

− 0.5
)

, see also Chapter 5.

Example 2.17 An exponential trajectory with the conditions

q0 = 0, q1 = 10, t0 = 0, t1 = 8, λ = 0.20, σ = 7.1

is shown in Fig. 2.25. �

2.4 Trajectories Based on the Fourier Series Expansion 51

Example 2.18 The exponential trajectories obtained with the conditions

q0 = 0, q1 = 10, t0 = 0, t1 = 8

and the parameters σ, λ as in Tab. 2.3 are shown in Fig. 2.26. �

A final comment concerns the computation of eq. (2.24), where an integral
function explicitly appears. If the computation of qN(τ) by using integrals,
with possibly variable upper bounds, is unsuitable for the online generation
of the motion profile, it is possible to adopt a series expansion of the function
qN(τ), truncated at a proper order r, as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

qN(τ) = a0 τ +
r∑

k=1

a2k sin (2kπτ)

q̇N(τ) = a0 + 2π
r∑

k=1

ka2k cos (2kπτ)

q̈N(τ) = −4π2
r∑

k=1

k2a2k sin (2kπτ)

where

a0 = 1, a2k =
2
πk

∫ 1
2

0

q̇(τ) cos (2kπτ) dτ.

2.4 Trajectories Based on the Fourier Series Expansion

Besides quite obvious conditions about continuity of the position profile and its
derivatives up to a given order, and the given boundary constraints, it might
be of interest to pursue also other goals. Among the different possibilities, it
could be desirable to minimize the amplitude of the acceleration profile, in
order to avoid efforts on the load due to inertial forces or vibrational effects
of the mechanical structure.

The minimization of the amplitude of the acceleration in general is in con-
trast with the continuity of the profile: a discontinuous acceleration profile
minimizes the peak of acceleration but, on the other hand, may generate os-
cillations and/or vibrations because of the related discontinuity of the inertial
forces. For example, the trapezoidal velocity trajectory (discussed in the fol-
lowing Chapter 3) presents, other conditions being equal, smaller values for the
acceleration but, at the same time, an higher harmonic content that usually
implies possible vibrations in the mechanical structure. On the contrary, the
cycloidal trajectory is characterized by a low harmonic content but presents
higher acceleration values. It is possible to define trajectories that represent a
compromise between these two opposite features. As an example, trajectories

52 2 Analytic Expressions of Elementary Trajectories

1 2 3 4 5 6 7 8

−2

−1

0

1

2

A
cc

el
er

at
io

n

0

1

2

3

4

V
el

oc
ity

0

2

4

6

8

10

P
os

iti
on

Fig. 2.26. Position, velocity, acceleration profiles of exponential trajectories with
σ and λ as in Tab. 2.3.

derived from a Fourier series expansion of the motion profiles illustrated in
the previous sections are now considered.

It is well known that a fundamental tool for the analysis in the frequency
domain ω of a signal x(t) defined in the time domain is the Fourier Transform
X(ω) = F{x(t)}, see Appendix D. On the other hand, it is worth noticing that
trajectories for high speed automatic machines are often a cyclic repetition of
a basic motion: therefore, the trajectory q(t) can be assumed to be periodic.
Under this hypothesis, q(t) can be analyzed by means of the Fourier series
expansion.

The Fourier series is a mathematical tool often used for analyzing periodic
functions by decomposing them into a weighted sum of sinusoidal compo-
nent functions, sometimes referred to as normal Fourier modes, or simply
modes. Given a piecewise continuous function x(t), periodic with period T ,
and square-integrable over the interval [−T/2, T/2], that is

∫ T/2

−T/2

|x(t)|2 dt < +∞,

2.4 Trajectories Based on the Fourier Series Expansion 53

the corresponding Fourier series expansion is

x(t) =
1
2
a0 +

∞∑
k=1

[ak cos(kω0t) + bk sin(kω0t)]

where ω0 = 2π/T is the fundamental frequency (rad/sec) of the function and,
for any non-negative integer k,

ak =
2
T

∫ T/2

−T/2

x(t) cos(kω0t) dt are the even Fourier coefficients of x(t)

bk =
2
T

∫ T/2

−T/2

x(t) sin(kω0t) dt are the odd Fourier coefficients of x(t).

An alternative expression of the Fourier series expansion is

x(t) = v0 +
∞∑

k=1

vk cos(kω0t − ϕk) (2.25)

where

v0 =
a0

2
, vk =

√
a2

k + b2
k, ϕk = arctan

(
bk

ak

)
.

Eq. (2.25) defines the signal as a linear combination of a constant term (v0)
and of an infinite number of sinusoidal functions (the harmonic functions) at
frequencies kω0; vk represents the weight of the k-th harmonic function on
x(t), and ϕk its phase. The maximum frequency of the signal corresponds to
the maximum k for which vk �= 0 from a practical point of view. On the basis
of the Fourier series expansion of a signal, it is then possible to understand
its properties in the frequency domain.

The basic idea of the techniques for planning the motion profiles illustrated
below is to compute a Fourier series expansion of a function q(t) defined by
one of the methods presented in the previous sections and, then, define a new
trajectory qf (t) by considering only the first N terms of the series. In this
manner, it is possible to obtain a function that presents specific properties in
the frequency domain, see also Sec. 7.3.

2.4.1 Gutman 1-3

This trajectory is obtained as Fourier series expansion of the parabolic profile,
Sec. 2.1.2, by taking into consideration only the first two elements, [15]:

54 2 Analytic Expressions of Elementary Trajectories⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q(t) = q0 + h

(
(t − t0)

T
− 15

32π
sin

2π(t − t0)
T

− 1
96π

sin
6π(t − t0)

T

)

q̇(t) =
h

T

(
1 − 15

16
cos

2π(t − t0)
T

− 1
16

cos
6π(t − t0)

T

)

q̈(t) =
hπ

8T 2

(
15 sin

2π(t − t0)
T

+ 3 sin
6π(t − t0)

T

)

q(3)(t) =
hπ2

4T 3

(
15 cos

2π(t − t0)
T

+ 9 cos
6π(t − t0)

T

)

where h is the displacement and T the time duration. The maximum acceler-
ation is 5.15h/T 2, i.e. 28.75% larger than the maximum acceleration of the
parabolic trajectory (4h/T 2) and, for example, 18.04% smaller than the max-
imum acceleration of the cycloidal trajectory (2πh/T 2). On the other hand,
the frequency content is lower with respect to the parabolic profile, and higher
than the cycloidal one, see Chapter 7.

Example 2.19 Fig. 2.27 reports the position, velocity, acceleration and jerk
for the Gutman 1-3 trajectory with h = 20 and T = 10 (q0 = 0, t0 = 0). �

2.4.2 Freudenstein 1-3

As in the previous case, only the first and the third terms of the Fourier series
expansion of the parabolic trajectory are considered, but the trajectory is
defined as [16]⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q(t) = q0 +
h(t − t0)

T
− h

2π

(
27
28

sin
2π(t − t0)

T
+

1
84

sin
6π(t − t0)

T

)

q̇(t) =
h

T

(
1 − 27

28
cos

2π(t − t0)
T

− 1
28

cos
6π(t − t0)

T

)

q̈(t) =
2πh

T 2

(
27
28

sin
2π(t − t0)

T
+

3
28

sin
6π(t − t0)

T

)

q(3)(t) =
4π2h

T 3

(
27
28

cos
2π(t − t0)

T
+

9
28

cos
6π(t − t0)

T

)
.

This trajectory has a maximum acceleration value equal to 5.39h/T 2, i.e
34.75% larger than the parabolic profile and 14.22% smaller than the cycloidal
trajectory.

Example 2.20 Fig. 2.28 shows the position, velocity, acceleration and jerk
for the Freudenstein 1-3 trajectory, with h = 20 and T = 10 (q0 = 0, t0 = 0).

�

2.4 Trajectories Based on the Fourier Series Expansion 55

0 2 4 6 8 10

−1

−0.5

0

0.5

1

Je
rk

−1

−0.5

0

0.5

1

A
cc

el
er

at
io

n

0

1

2

3

4

V
el

oc
ity

0

5

10

15

20

P
os

iti
on

Fig. 2.27. Position, velocity, acceleration and jerk of the Gutman 1-3 trajectory
with h = 20 and T = 10.

2.4.3 Freudenstein 1-3-5

This trajectory is defined as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q(t) = q0+
h(t−t0)

T
− h

2π
α

(
sin

2π(t−t0)

T
+

1

54
sin

6π(t−t0)

T
+

1

1250
sin

10π(t − t0)

T

)

q̇(t) =
h

T

[
1−α

(
cos

2π(t − t0)

T
+

1

18
cos

6π(t − t0)

T
+

1

250
cos

10π(t − t0)

T

)]

q̈(t) =
2πh

T 2
α

(
sin

2π(t − t0)

T
+

1

6
sin

6π(t − t0)

T
+

1

50
sin

10π(t − t0)

T

)

q(3)(t)=
4π2h

T 3
α

(
cos

2π(t − t0)

T
+

1

2
cos

6π(t − t0)

T
+

1

10
cos

10π(t − t0)

T

)

56 2 Analytic Expressions of Elementary Trajectories

0 2 4 6 8 10

−1

−0.5

0

0.5

1

Je
rk

−1

−0.5

0

0.5

1

A
cc

el
er

at
io

n

0

1

2

3

4

V
el

oc
ity

0

5

10

15

20

P
os

iti
on

Fig. 2.28. Position, velocity, acceleration and jerk of the Freudenstein 1-3 trajectory
with h = 20 and T = 10.

where α = 1125
1192 = 0.9438. This trajectory has a maximum acceleration value

equal to 5.06h/T 2, i.e. 26.5% larger than the parabolic motion, and 19.47%
smaller than the cycloidal profile.

Example 2.21 Fig. 2.29 shows the position, velocity, acceleration and jerk
for the Freudenstein 1-3-5 trajectory, with h = 20 and T = 10 (q0 = 0, t0 = 0).

�

If a larger number of terms of the Fourier series expansion is considered, pro-
files with lower acceleration values but higher frequency components are ob-
tained. As discussed in Chapter 7, this could generate undesired vibrations in
the mechanical structure. A compromise has then to be obtained between the
requirements of low acceleration values and frequency bandwidth of the cor-
responding signal. An empiric rule could be to limit the maximum frequency

2.4 Trajectories Based on the Fourier Series Expansion 57

0 2 4 6 8 10

−1

−0.5

0

0.5

1

Je
rk

−1

−0.5

0

0.5

1

A
cc

el
er

at
io

n

0

1

2

3

4

V
el

oc
ity

0

5

10

15

20

P
os

iti
on

Fig. 2.29. Position, velocity, acceleration and jerk of the Freudenstein 1-3-5 trajec-
tory with h = 20 and T = 10.

of the trajectory to ωr/10, being ωr the lower resonance frequency of the
mechanical structure under consideration. This can be obtained by truncat-
ing, for example, the Fourier series expansion to N , where N = floor

(
ωr/10

ω0

)
,

where ω0 = 2π/T , T is the period of the trajectory, and floor(x) is the function
which gives the largest integer less than or equal to x.

3

Composition of Elementary Trajectories

Often, useful motion profiles may be obtained as proper combinations
of the functions which define the elementary trajectories. In fact, one
may be interested in obtaining not only a continuous function with
continuous derivatives up to a given order, but also other features, for
example minimum values for the maximum acceleration or jerk. Tra-
jectories obtained by a proper composition of the functions illustrated
in Chapter 2 are now presented. Some of these are very common in the
industrial practice, such as the “trapezoidal velocity” or the “double
S” trajectories.

3.1 Linear Trajectory with Circular Blends

The trajectory with constant velocity, presented in Sec. 2.1.1, cannot be used
in practice since it presents discontinuous velocity and acceleration (impulses
with infinite amplitude at the beginning and at the end of the motion) profiles.
In order to obtain at least a continuous velocity profile, it may be modified
by adding circular arcs at the beginning and at the end of the trajectory, as
shown in Fig. 3.1. In this case, the circular arcs are characterized by radii
equal to the displacement h = q1 − q0, and centers located in (0, h), (T, 0)
respectively, with T = t1 − t0.

The trajectory is divided into three phases: acceleration, constant velocity,
and deceleration phase. The acceleration and deceleration phases have the
same duration Ta = h sin α (with α defined below), so that the circular arcs
are connected with the (tangent) linear segment. The trajectory is described
by the following equations:

1) t0 ≤ t < t0 + Ta

60 3 Composition of Elementary Trajectories

α
α

t0 + Tat0 t1

α

q1

q0

q

t

h

T

Fig. 3.1. Trajectory with constant velocity and circular blends.

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

qa(t) = h

(
1 −

√
1 − (t − t0)2

h2

)
+ q0

q̇a(t) =
t − t0√

h2 − (t − t0)2

q̈a(t) =
h2√

[h2 − (t − t0)2]3
.

2) t0 + Ta ≤ t < t1 − Ta⎧⎪⎪⎨
⎪⎪⎩

qb(t) = a0 + a1(t − t0)

q̇b(t) = a1

q̈b(t) = 0.

3) t1 − Ta ≤ t < t1⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

qc(t) = q0 +
√

h2 − (t1 − t)2

q̇c(t) =
t1 − t√

h2 − (t1 − t)2

q̈c(t) = − h2√
[h2 − (t1 − t)2]3

.

The parameters a0 and a1 are determined on the basis of the continuity con-
ditions of position and velocity at t = ta = t0 + Ta:{

qa(ta) = qb(ta)

q̇a(ta) = q̇b(ta)
ta = t0 + Ta.

3.1 Linear Trajectory with Circular Blends 61

2 3 4 5 6 7

−0.5

0

0.5

A
cc

el
er

at
io

n

0

0.2

0.4

0.6

0.8

V
el

oc
ity

5

6

7

8

P
os

iti
on

Fig. 3.2. Position, velocity and acceleration of a trajectory with constant velocity
and circular connections when t0 = 2, t1 = 8, q0 = 5, q1 = 8.

From the second condition, it follows

a1 =
h sin α√

h2 − h2sinα2
=

h sin α

h cos α
= tan α

while from the first one⎛
⎝1 −

√
1 − h2sin α2

h2

⎞
⎠+ q0 = a0 + h tan α sin α

and accordingly

a0 = h
cos α − 1

cos α
+ q0.

Finally, the parameter α can be determined with simple geometrical consid-
erations. From Fig. 3.1 one obtains

tan α =
h − 2h(1 − cos α)

T − 2h sin α

from which, by considering only the solution in [0, π/2]

62 3 Composition of Elementary Trajectories

α = arccos
2h2 + T

√
T 2 − 3h2

h2 + T 2
.

Note that, from the assumption on the radius of the circular arcs, equal to h,
the duration T must satisfy the constraint

T ≥
√

3 h =
√

3 (q1 − q0).

Example 3.1 Fig. 3.2 reports the position, velocity and acceleration for this
trajectory when t0 = 2, t1 = 8, q0 = 5, q1 = 8. �

3.2 Linear Trajectory with Parabolic Blends
(Trapezoidal)

A very common method to obtain trajectories with a continuous velocity
profile is to use linear motions with parabolic blends, characterized therefore
by the typical trapezoidal velocity profiles.

These trajectories are divided into three parts. Assuming a positive dis-
placement, i.e. q1 > q0

1, in the first part the acceleration is positive and con-
stant, and therefore the velocity is a linear function of time and the position
is a parabolic curve. In the second part the acceleration is null, the velocity
is constant and the position is a linear function of time. In the last part, a
constant negative acceleration is present, the velocity decreases linearly and
the position is again a polynomial function of degree two, see Fig. 3.3. For
these trajectories, the duration Ta of the acceleration phase is usually assumed
equal to the duration Td of the deceleration phase.

If t0 = 0, the trajectory is computed as follows:

1. Acceleration phase, t ∈ [0, Ta]. The position, velocity and acceleration
are expressed as ⎧⎪⎨

⎪⎩
q(t) = a0 + a1t + a2t

2

q̇(t) = a1 + 2a2t

q̈(t) = 2a2.

(3.1)

The three parameters a0, a1, and a2 are defined by the constraints on the
initial position q0 and velocity v0, and on the constant velocity vv desired
at the end of the acceleration phase. If the initial velocity is set to zero,
one obtains ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
a0 = q0

a1 = 0

a2 =
vv

2Ta
.

1 If q1 < q0, all the relations illustrated in this section hold with a proper change
of the signs for accelerations and velocities, see Sec. 3.4.2.

3.2 Linear Trajectory with Parabolic Blends (Trapezoidal) 63

0 0.5 1 1.5 2 2.5 3 3.5 4

−10

−5

0

5

10

A
cc

el
er

at
io

n

0

2

4

6

8

10

V
el

oc
ity

0

10

20

30

P
os

iti
on

Fig. 3.3. Position, velocity and acceleration of a linear trajectory with parabolic
blends.

In this phase, the acceleration is constant and its value is vv/Ta.

2. Constant velocity phase, t ∈ [Ta, t1 − Ta]. Position, velocity and
acceleration are now defined as⎧⎪⎨

⎪⎩
q(t) = b0 + b1t

q̇(t) = b1

q̈(t) = 0
(3.2)

where, for continuity reasons,

b1 = vv

and
q(Ta) = q0 +

vvTa

2
= b0 + vvTa

from which
b0 = q0 −

vvTa

2
.

3. Deceleration phase, t ∈ [t1−Ta, t1]. Position, velocity and acceleration
are

64 3 Composition of Elementary Trajectories⎧⎪⎨
⎪⎩

q(t) = c0 + c1t + c2t
2

q̇(t) = c1 + 2c2t

q̈(t) = 2c2.

(3.3)

The parameters are now defined with conditions on the final position q1

and velocity v1, and on the velocity vv at the beginning of the deceleration
phase. With a null final velocity one obtains⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

c0 = q1 −
vvt21
2Ta

c1 =
vvt1
Ta

c2 = − vv

2Ta
.

In conclusion, considering the general case t0 �= 0, the trajectory (in position)
is defined as

q(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

q0 +
vv

2Ta
(t − t0)2, t0 ≤ t < t0 + Ta

q0 + vv

(
t − t0 −

Ta

2

)
, t0 + Ta ≤ t < t1 − Ta

q1 −
vv

2Ta
(t1 − t)2, t1 − Ta ≤ t ≤ t1.

(3.4)

Example 3.2 Fig. 3.3 shows the position, velocity and acceleration of a typ-
ical trajectory with trapezoidal velocity, with the conditions q0 = 0, q1 =
30, t0 = 0, t1 = 4, Ta = 1, vv = 10. �

Note that some additional conditions must be specified in order to determine
univocally the trapezoidal trajectory. A typical condition concerns the time-
length of the acceleration and deceleration periods Ta, that must satisfy the
obvious condition Ta ≤ T/2 = (t1 − t0)/2. Moreover, there might be some
conditions on the maximum velocity and acceleration of the actuation system.
Obviously, these conditions affect the feasibility of the trajectory.

In any case, the given conditions must satisfy some geometric constraints.
In particular, from the velocity continuity condition in t = t0 +Ta one obtains

aaTa =
qm − qa

Tm − Ta
, where

⎧⎪⎨
⎪⎩

qa = q(t0 + Ta)
qm = (q1 + q0)/2 (= q0 + h/2)
Tm = (t1 − t0)/2 (= T/2)

where aa is the constant acceleration value in the first phase, and from (3.4)

qa = q0 +
1
2
aaT 2

a .

From these two equations, it is easy to obtain

3.2 Linear Trajectory with Parabolic Blends (Trapezoidal) 65

aaT 2
a − aa(t1 − t0)Ta + (q1 − q0) = 0. (3.5)

Moreover,

vv =
q1 − q0

t1 − t0 − Ta
=

h

T − Ta
.

Any couple (aa, Ta) satisfying (3.5) can be considered. For example, Ta can be
assigned and therefore the acceleration (and velocity) is computed accordingly.
If the value Ta = (t1 − t0)/3 is chosen, the following values are obtained

vv =
3(q1 − q0)
2(t1 − t0)

=
3h

2T
, aa =

9(q1 − q0)
2(t1 − t0)2

=
9h

2T 2
.

If the velocity obtained in this manner is too high for the actuation system,
i.e. vv > vmax, then the parameter Ta must be decreased (and aa is modi-
fied according to (3.5)), or T (the time duration of the trajectory) must be
increased. If the value of the acceleration is too high, i.e. aa > amax, then Ta

must be increased.

3.2.1 Trajectory with preassigned acceleration

Another method for defining this trajectory is to assign the maximum value
for the desired acceleration aa and then compute the acceleration/deceleration
period Ta. In fact, from (3.5), if aa is assigned, the acceleration period is

Ta =
aa(t1 − t0) −

√
a2

a(t1 − t0)2 − 4aa(q1 − q0)
2aa

. (3.6)

From this equation also the minimum value for the acceleration is obtained

aa ≥ 4(q1 − q0)
(t1 − t0)2

=
4h

T 2
. (3.7)

If the value aa = 4h/T 2 is chosen, then Ta = 1
2 (t1 − t0) and the parabolic

trajectory illustrated in Sec. 2.1.2 is obtained.

3.2.2 Trajectory with preassigned acceleration and velocity

A trajectory with desired values for the acceleration and velocity (e.g. aa =
amax, vv = vmax) can be achieved by setting

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Ta =
vmax

amax
, acceleration time

vmax(T − Ta) = q1 − q0 = h, displacement

T =
hamax + v2

max

amaxvmax
, total duration

(3.8)

66 3 Composition of Elementary Trajectories

and then (with t1 = t0 + T)

q(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

q0 +
1
2
amax(t − t0)2, t0 ≤ t ≤ t0 + Ta

q0 + amaxTa

(
t − t0 −

Ta

2

)
, t0 + Ta < t ≤ t1 − Ta

q1 −
1
2
amax(t1 − t)2, t1 − Ta < t ≤ t1.

(3.9)

In this case, the linear segment exists if and only if

h ≥ v2
max

amax
.

If this condition is not true, then⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Ta =
√

h

amax
, acceleration time

T = 2Ta, total time

vmax = amaxTa =
√
amaxh =

h

Ta
, maximum velocity

and (t1 = t0 + T)

q(t) =

⎧⎪⎨
⎪⎩

q0 +
1
2
amax(t − t0)2, t0 ≤ t ≤ t0 + Ta

q1 −
1
2
amax(t1 − t)2, t1 − Ta < t ≤ t1.

(3.10)

In this manner, the total duration T of the motion from q0 to q1 is not specified,
but is computed on the basis of the specified values for the acceleration and
the velocity.

3.2.3 Synchronization of several trapezoidal trajectories

If several actuators must be coordinated, all the movements must be the
defined according to the slowest one, or the one with the largest displacement.
For example, let us consider the case in which the motion of several actuators
must be planned with the same constraints, in terms of maximum acceleration
and velocities. In this case, the maximum acceleration amax is imposed for the
actuator with the largest displacement, and the acceleration period Ta and the
total duration T are computed with the above equations. Once these values
are determined, the acceleration and velocity of the remaining actuators are
computed given the relative displacements hi, see Sec. 3.2.6:

ai =
hi

Ta(T − Ta)
, vi =

hi

T − Ta
.

Then, (3.4) can be used for the computation of each trajectory.

3.2 Linear Trajectory with Parabolic Blends (Trapezoidal) 67

Example 3.3 Let us consider three actuators with maximum velocity and
acceleration values given by vmax = 20 and amax = 20. Three synchronized
displacements have to be defined, so that the duration T is minimized and
the acceleration/deceleration periods are the same for the three actuators.
The displacements are defined by:

a) q0,a = 0, q1,a = 50.

b) q0,b = 0, q1,b = −40.

c) q0,c = 0, q1,c = 20.

The actuator a has the largest displacement (ha = 50), and therefore the
duration T and the acceleration/deceleration intervals are imposed by this
actuator. Since ha > v2

max/amax, the linear segment exists and, from eq. (3.8)
and the values of vmax, amax, it results

Ta = 1, T = 3.5.

Then, the values of the minimum/maximum velocities and accelerations for
the other two actuators can be computed as:

b) ab =
hb

Ta(T − Ta)
= −16, vb =

hb

T − Ta
= −16.

c) ac =
hc

Ta(T − Ta)
= 8, vc =

hc

T − Ta
= 8.

Note that the actuator b has a negative displacement (hb < 0) and there-
fore the acceleration/deceleration intervals are switched. Moreover, because
of symmetry, it results amin = −amax and vmin = −vmax. The values for the
time intervals T, Ta, and the maximum acceleration/velocity of each actuator
can be used to plan the three trajectories. The result is shown in Fig. 3.4. �

3.2.4 Trajectory through a sequence of points

If a trajectory through a sequence of points is planned with the above tech-
nique, the resulting motion will present null velocities in the intermediate
points. Since this may be unacceptable, the generic intermediate motion be-
tween the points qk and qk+1 may be “anticipated” in such a way that it
starts before the motion between the points qk−1 and qk is concluded. This
is obtained by adding from the instant tk − T ′

ak the velocity and acceleration
profiles of the two segments qk−1 ÷ qk and qk ÷ qk+1.

Example 3.4 Fig. 3.5(a) shows the position, velocity and acceleration pro-
files of a trapezoidal trajectory through a sequence of points with null inter-
mediate velocities. Fig. 3.5(b) shows the same motion with non-null interme-
diate velocities. Note that in this latter case the duration T of the trajectory
is shorter. �

68 3 Composition of Elementary Trajectories

0 0.5 1 1.5 2 2.5 3 3.5

−10

0

10

20

A
cc

el
er

at
io

n

−10

0

10

20

V
el

oc
ity

−40

−20

0

20

40

P
os

iti
on

Fig. 3.4. Three synchonized trapezoidal trajectories.

0 2 4 6 8 10

−10

−5

0

5

10

A
cc

el
er

at
io

n

−20

−10

0

10

20

V
el

oc
ity

0

10

20

30

40

50

P
os

iti
on

1 2 3 4 5 6 7 8 9

−10

−5

0

5

10

A
cc

el
er

at
io

n

−20

−10

0

10

20

V
el

oc
ity

0

10

20

30

40

50

P
os

iti
on

(a) (b)

Fig. 3.5. Position, velocity and acceleration of a trapezoidal trajectory through a
sequence of points with null (a) and non-null (b) intermediate velocities.

3.2 Linear Trajectory with Parabolic Blends (Trapezoidal) 69

3.2.5 Displacement time of a trapezoidal trajectory

It may be of interest to consider the displacement time T of a trajectory with
trapezoidal velocity profile with null initial and final velocities.

In case the maximum velocity is not reached, a triangular velocity profile
is obtained, whose duration is

T = 2Ta = 2
√

h

amax
.

In this case, the peak value of the velocity is

vlim = 2
h

T
=

h

Ta
.

Conversely, if the maximum velocity is reached, the trajectory duration is

T =
h amax + v2

max

amax vmax
=

h

vmax
+ Ta (3.11)

where Ta is the duration of the acceleration period:

Ta =
vmax

amax
. (3.12)

3.2.6 Trajectory with assigned durations T and Ta

By solving the system composed by equations (3.11) and (3.12) with respect
to vmax and amax, it is possible to find the values of these variables which
guarantee given durations T and Ta of the overall trapezoidal trajectory and
of the acceleration phase. In particular, one obtains⎧⎪⎪⎨

⎪⎪⎩
vmax =

h

T − Ta

amax =
h

Ta(T − Ta)
.

If one assumes that the acceleration period is a fraction of the duration T

Ta = αT, 0 < α ≤ 1/2

the expressions of the maximum speed and acceleration become⎧⎪⎪⎨
⎪⎪⎩
vmax =

h

(1 − α)T

amax =
h

α(1 − α)T 2
.

By substituting these values in (3.9), the trajectory is completely defined.

70 3 Composition of Elementary Trajectories

0 1 2 3 4 5
−2

−1

0

1

2

A
cc

el
er

at
io

n

0

1

2

3

V
el

oc
ity

0

2

4

6

8

10

P
os

iti
on

Fig. 3.6. Trapezoidal trajectory with prescribed duration T , and with Ta = T/3.

Example 3.5 A trapezoidal trajectory with the boundary conditions

q0 = 0, q1 = 10, v0 = 0, v1 = 0,

is computed with the purpose of obtaining a total duration T = 5. Moreover,
it is imposed an acceleration period equal to Ta = T/3. As a consequence, the
values of the velocity and acceleration are

vmax = 3, amax = 1.8.

The trajectory reported in Fig. 3.6 is obtained. �

3.2.7 Trajectory with non-null initial and final velocities

The general expression of the trapezoidal trajectory, when non-null initial and
final velocities (v0 and v1) are considered, is

Acceleration phase, t ∈ [t0, t0 + Ta]

3.2 Linear Trajectory with Parabolic Blends (Trapezoidal) 71⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

q(t) = q0 + v0(t − t0) +
vv − v0

2Ta
(t − t0)2

q̇(t) = v0 +
vv − v0

Ta
(t − t0)

q̈(t) =
vv − v0

Ta
= aa.

(3.13a)

Constant velocity phase, t ∈ [t0 + Ta, t1 − Td]⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

q(t) = q0 + v0
Ta

2
+ vv

(
t − t0 −

Ta

2

)
q̇(t) = vv

q̈(t) = 0.

(3.13b)

Deceleration phase, t ∈ [t1 − Td, t1]⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

q(t) = q1 − v1(t1 − t) − vv − v1

2Td
(t1 − t)2

q̇(t) = v1 +
vv − v1

Td
(t1 − t)

q̈(t) = −vv − v1

Td
= −aa.

(3.13c)

These equations represent a generalization of (3.4). Note that in general the
duration Ta of the acceleration phase and the duration Td of the deceleration
phase may be different (the case q1 > q0 is considered).

Trajectory with preassigned duration and acceleration
As in case of a trapezoidal trajectory with null initial and final velocities, the
parameters in (3.13a)-(3.13c) are determined by imposing some additional
conditions. It is possible to assign the maximum value for the desired accel-
eration (aa = amax) and the desired duration of the trajectory (T = t1 − t0),
and then determine the acceleration/deceleration periods Ta/Td.
It is first necessary to check whether the trajectory is feasible or not under
the hypothesis q̈(t) ≤ amax. In case

amaxh <
|v2

0 − v2
1|

2
(3.14)

it is not possible to find a trapezoidal trajectory compliant with the given
constraints on initial and final velocities and maximum acceleration, since the
displacement h is too small with respect to v0 or v1. In this case, one should
increase the maximum value of the acceleration, or reduce v0 or v1. Obviously,
if the initial and final speeds are both null, the trajectory is always feasible.

72 3 Composition of Elementary Trajectories

If the trapezoidal trajectory exists, it is possible to compute the constant
velocity as

vv =
1

2

(
v0 + v1 + amaxT −

√
a2

maxT 2 − 4amaxh + 2amax(v0 + v1)T − (v0 − v1)2
)

and then the duration of the acceleration/deceleration tracts:

Ta =
vv − v0

amax
, Td =

vv − v1

amax
.

Obviously, the total duration of the trajectory must be greater than Ta + Td.
This can be assured by imposing

a2
maxT 2 − 4amaxh + 2amax(v0 + v1)T − (v0 − v1)2 > 0.

Therefore, the acceleration must be larger than a limit value:

amax ≥ alim =
2h − T (v0 + v1) +

√
4h2 − 4h(v0 + v1)T + 2(v2

0 + v2
1)T 2

T 2
.

(3.15)
In case amax = alim, the constant velocity tract is not present, and the accel-
eration phase is immediately followed by the deceleration segment.

Example 3.6 Figure 3.7 shows the position, velocity and acceleration of two
trapezoidal velocity trajectories with non-null initial and final speeds, com-
puted respectively with the constraints

T = 5, amax = 10

and
T = 5, amax = 1.

In both cases, initial and final conditions are

q0 = 0, q1 = 30

and
v0 = 5, v1 = 2.

Unfortunately, the constraint amax = 1 does not satisfy the condition (3.15)
and therefore, in the second trajectory, the maximum value of the acceleration
has been set to alim = 2.1662, and the constant velocity tract is not present.

The time intervals which determine the trajectory in the two cases are
respectively

Ta = 0.119, Td = 0.419

and
Ta = 1.8075, Td = 3.1925.

�

3.2 Linear Trajectory with Parabolic Blends (Trapezoidal) 73

0 1 2 3 4 5

−10

−5

0

5

10

A
cc

el
er

at
io

n

2

3

4

5

6

V
el

oc
ity

0

10

20

30

P
os

iti
on

0 1 2 3 4 5

−2

−1

0

1

2

A
cc

el
er

at
io

n

2

4

6

8

V
el

oc
ity

0

10

20

30

P
os

iti
on

(a) (b)

Fig. 3.7. Position, velocity and acceleration of a trapezoidal trajectory with non-
null initial and final velocities computed for a given duration T and a maximum
acceleration amax, when the constant speed tract is present (a) or not (b).

Trajectory with preassigned acceleration and velocity
In this case, the maximum values of the acceleration and the velocities are
assigned, therefore

aa = amax, vv ≤ vmax

while the total duration T of the trajectory is obtained as an output of the al-
gorithm for the determination of the trapezoidal trajectory. At the beginning,
it is necessary to check whether the trajectory is feasible or not by means of
(3.14). If the trajectory exists, two cases are possible according to the fact that
the maximum velocity vmax is reached or not; in this second case only the
acceleration and deceleration phases exist, and the constant velocity segment
is not present. If the condition

hamax > v2
max − v2

0 + v2
1

2

is true, vmax is actually reached and maintained during the constant velocity
phase (Case 1). Otherwise (Case 2), the maximum velocity of the trajectory
is

vlim =

√
hamax +

v2
0 + v2

1

2
< vmax.

In the two cases, the parameters defining the trajectory can be computed as:

Case 1: vv = vmax.

Ta =
vmax − v0

amax
, Td =

vmax − v1

amax
,

74 3 Composition of Elementary Trajectories

T =
h

vmax
+

vmax

2amax

(
1 − v0

vmax

)2

+
vmax

2amax

(
1 − v1

vmax

)2

.

Case 2: vv = vlim =
√

hamax + v20+v21
2 < vmax.

Ta =
vlim − v0

amax
, Td =

vlim − v1

amax
,

T = Ta + Td.

If h < 0, the trajectory can be computed with a method similar to the one
explained for double S trajectories in Sec. 3.4.2.

Example 3.7 In Fig. 3.8 the position, velocity and acceleration of a trape-
zoidal velocity trajectory with non-null initial and final speeds are shown. In
particular, two different situations are considered. In both cases, initial and
final conditions are

q0 = 0, q1 = 30

and
v0 = 5, v1 = 2

while the maximum acceleration is amax = 10. The difference between the
trajectories is the value of maximum speed, that in the case a) is vmax = 10
while in the case b) is vmax = 20. Because of this constraint, in the former
case the maximum speed is reached, and the time intervals which determine
the trajectory are

Ta = 0.5, Td = 0.8, T = 3.44.

Conversely, in the latter case vlim = 17.7 < vmax and only the acceleration
and deceleration phases are present:

Ta = 1.27, Td = 1.57, T = 2.84.

�

Trajectory through a sequence of points
In Sec. 3.2.4 a trajectory through a set of points qk with a trapezoidal veloc-
ity profile is obtained by superimposing contiguous trapezoidal trajectories,
computed by considering null velocities at the internal via-points. Obviously,
another possibility is to consider proper initial and final velocities for each
segment. In particular, under the hypothesis that in each segment the speed
vmax is reached, the velocities in the internal points can be computed as

3.2 Linear Trajectory with Parabolic Blends (Trapezoidal) 75

0 0.5 1 1.5 2 2.5 3

−10

−5

0

5

10

A
cc

el
er

at
io

n

2

4

6

8

10

V
el

oc
ity

0

10

20

30

P
os

iti
on

0 0.5 1 1.5 2 2.5

−10

−5

0

5

10

A
cc

el
er

at
io

n

5

10

15

V
el

oc
ity

0

10

20

30

P
os

iti
on

(a) (b)

Fig. 3.8. Position, velocity and acceleration of a trapezoidal trajectory with non-
null initial and final velocities when the maximum speed vmax is reached (a) or not
(b).

v0 (assigned)

vk =

⎧⎨
⎩

0 sign(hk) �= sign(hk+1)

sign(hk) vmax sign(hk) = sign(hk+1)

vn (assigned)

(3.16)

being hk = qk − qk−1.

Example 3.8 In Fig. 3.9 two trapezoidal trajectories passing through the
same set of points of Example 3.4 and with the constraints

vmax = 15, amax = 20

are compared when null and non-null intermediate velocities are considered.
Note that in this latter case the duration T of the trajectory is considerably
shorter, and that velocity and acceleration profiles are less oscillating. �

76 3 Composition of Elementary Trajectories

0 1 2 3 4 5 6 7 8

−20

−10

0

10

20

A
cc

el
er

at
io

n

−10

0

10

V
el

oc
ity

0

10

20

30

40

50

P
os

iti
on

0 1 2 3 4 5 6 7

−20

−10

0

10

20

A
cc

el
er

at
io

n

−10

0

10

V
el

oc
ity

0

10

20

30

40

50

P
os

iti
on

(a) (b)

Fig. 3.9. Position, velocity and acceleration of a trapezoidal trajectory through a
sequence of points with null (a) and non-null (b) intermediate velocities.

3.3 Linear Trajectory with Polynomial Blends

It is possible to define motions with profiles smoother than the trapezoidal
velocity trajectories by defining the blends among the linear segments by
means of polynomial functions with degree higher than two. Alternatively, it
is possible to adopt trajectories with a double S velocity profile, quite common
in the industrial practice, see Sec. 3.4.
In order to plan a linear trajectory with polynomial blends of degree n, the
following general procedure can be adopted.

q0

q1

qa

qb

t0
t0 + Ts

t0 + Ta t1 − Ta

t1 − Ts

t1 t

q(t)

Fig. 3.10. Linear trajectory with polynomial blends.

3.3 Linear Trajectory with Polynomial Blends 77

0 0.5 1 1.5 2 2.5 3 3.5 4

−40

−20

0

20

40

Je
rk

−10

−5

0

5

10

A
cc

el
er

at
io

n

0

2

4

6

V
el

oc
ity

10

15

20

25

30

P
os

iti
on

Fig. 3.11. Linear trajectory with fifth degree polynomials blends.

Let us define the points q0, q1, the acceleration/deceleration period Ta = 2Ts

and the total displacement time T = t1 − t0. With reference to Fig. 3.10:

1. Compute the expression qr(t) of the line joining the points (t0 + Ts, q0)
and (t1 − Ts, q1).

2. On this line, compute the values qa = qr(t0 + Ta) and qb = qr(t1 − Ta).
3. Assign the values q̇(t0) = q̇(t1) = 0, q̈(t0) = q̈(t1) = 0 and q̈(t0 + Ta) =

q̈(t1 − Ta) = 0.
4. Compute the velocity in the segment (t0 + Ta) ÷ (t1 − Ta) as vc = (qb −

qa)/(t1 − t0 − 2Ta).

Then, the trajectory can be computed in the two acceleration/deceleration
phases by using the expressions already defined for the polynomials of degree
n (for example, if n = 5, eq. (2.4)-(2.5)), and in the constant velocity segment
with

78 3 Composition of Elementary Trajectories⎧⎪⎪⎨
⎪⎪⎩

q(t) = vct + qa

q̇(t) = vc

q̈(t) = 0.

See the profiles shown in Fig. 3.11. With minor modifications, this method
can be applied also to trajectories through a sequence of points, and also in
the case of via-points not exactly crossed by the trajectory. In this case, in the
blend segment relative to the generic point qk (with exclusion of the first and
last ones), the acceleration and the velocity are computed so that the point
(t, q(t)), at the end of the period Ta, lies on the linear segment connecting
(tk, qk) to (tk+1, qk+1). See for example Fig. 3.12, in which the two via-points
in t = 1, 2 are not crossed by the trajectory.

0 0.5 1 1.5 2 2.5 3

−2000

0

2000

Je
rk

−400

−200

0

200

400

A
cc

el
er

at
io

n

−50

0

50

V
el

oc
ity

−20

0

20

40

P
os

iti
on

Fig. 3.12. Linear trajectory with via-points approximated by fifth degree polyno-
mials.

3.4 Trajectory with Double S Velocity Profile 79

3.4 Trajectory with Double S Velocity Profile

A trapezoidal (or triangular) velocity motion profile presents a discontinuous
acceleration. For this reason, this trajectory may generate efforts and stresses
on the mechanical system that may result detrimental or generate undesired
vibrational effects (see Chapter 7 for a more detailed discussion on these
aspects). Therefore, a smoother motion profile must be defined, for example
by adopting a continuous, linear piece-wise, acceleration profile as shown in
Fig. 3.13. In this manner, the resulting velocity is composed by linear segments
connected by parabolic blends. The shape of the velocity profile is the reason
of the name double S for this trajectory, known also as bell trajectory or
seven segments trajectory, because it is composed by seven different tracts
with constant jerk. Since the jerk is characterized by a step profile, the stress
and the vibrational effects generated on the transmission chain and on the
load by this motion profile are reduced with respect to trapezoidal velocity
trajectories, characterized by an impulsive jerk profile.
Let us assume that

jmin = −jmax, amin = −amax, vmin = −vmax

where jmin and jmax are the minimum and maximum value of the jerk,
respectively. With these conditions, it is desired to plan a trajectory that, when
possible, reaches the maximum (minimum) values for jerk, acceleration and
velocity so that the total duration T is minimized (minimum time trajectory).
Only the case q1 > q0 is now considered. The case q1 < q0 is addressed in the
following Sec. 3.4.2. Moreover, for the sake of simplicity, the value t0 = 0 is
assumed. The boundary conditions are:

• Generic initial and final values of velocity v0, v1.
• Initial and final accelerations a0, a1 set to zero.

Three phases can be distinguished:

1. Acceleration phase, t ∈ [0, Ta], where the acceleration has a linear profile
from the initial value (zero) to the maximum and then back to zero.

2. Maximum velocity phase, t ∈ [Ta, Ta + Tv], with a constant velocity.

3. Deceleration phase, t ∈ [Ta +Tv, T], being T = Ta +Tv +Td, with profiles
opposite with respect to the acceleration phase.

Given the constraints on the maximum values of jerk, acceleration and veloc-
ity, and given the desired displacement h = q1−q0, the trajectory is computed
by using (3.30a)-(3.30g). However, it is first necessary to verify whether a tra-
jectory can be actually performed or not. As a matter of fact, there are several
cases in which a trajectory cannot be computed with the given constraints.
For example, if the desired displacement h is small with respect to the differ-
ence between the initial and final velocities v0 and v1, it might be not possible

80 3 Composition of Elementary Trajectories

q1

q0

v1

v0

vmax

amax

amin

jmax

jmin

Ta Tv Td

Tj1 Tj1 Tj2Tj2

Fig. 3.13. Typical profiles for position, velocity, acceleration and jerk for the double
S trajectory.

to change the velocity (with the given limits on jerk and acceleration), while
accomplishing the displacement h.
The limit case is represented by a single acceleration (if v0 < v1) or decelera-
tion (if v0 > v1) phase. Therefore, it is first necessary to check if it is possible
to perform the trajectory with a double jerk impulse (one positive and one
negative) only. For this purpose, let us define

T �
j = min

{√
|v1 − v0|
jmax

,
amax

jmax

}
. (3.17)

If T �
j = amax/jmax, the acceleration reaches its maximum value and a segment

with zero jerk may exist.
Then, the trajectory is feasible if

3.4 Trajectory with Double S Velocity Profile 81

q1 − q0 >

⎧⎪⎪⎨
⎪⎪⎩

T �
j (v0 + v1), if T �

j <
amax

jmax

1
2

(v0 + v1)
[
T �

j +
|v1 − v0|
amax

]
, if T �

j =
amax

jmax

.

(3.18)

If this inequality holds, it is possible to compute the trajectory parameters.
In this case, by defining the maximum value of the velocity during the motion
as vlim = max(q̇(t)), there are two possibilities:

Case 1: vlim = vmax.
Case 2: vlim < vmax.

In the latter case, that can be verified only after the computation of the tra-
jectory’s parameters,the maximum velocity is not reached, and there is only
an acceleration and a deceleration phase (no segment with constant velocity).

In both Case 1 and Case 2, it is possible that the maximum acceleration
(positive or negative) is not reached. This may happen if the displacement
is small, if the maximum allowed acceleration amax is high (“high dynamic”
case), or if the initial (final) velocity is close enough to the maximum allowed
speed. In these cases, the constant acceleration segment is not present. In
particular, it is worth to notice that, because the different values of the initial
and final velocities v0, v1, the amounts of time necessary to accelerate (from
v0 to vlim) and to decelerate (from vlim to v1) are in general different, and
it may happen that the maximum acceleration amax is reached only in one of
these phases, while in the other one the maximum acceleration is alim < amax.
Let us define:

Tj1 : time-interval in which the jerk is constant (jmax or jmin) during the
acceleration phase;

Tj2 : time-interval in which the jerk is constant (jmax or jmin) during the
deceleration phase;

Ta : acceleration period;
Tv : constant velocity period;
Td : deceleration period;
T : total duration of the trajectory (= Ta + Tv + Td).

Case 1: vlim = vmax.
In this case, it is possible to verify if the maximum acceleration (amax or
amin = −amax) is reached by means of the following conditions:

if (vmax − v0)jmax < a2
max =⇒ amax is not reached; (3.19)

if (vmax − v1)jmax < a2
max =⇒ amin is not reached. (3.20)

Then, the time intervals of the acceleration segment can be computed if (3.19)
holds as

Tj1 =

√
vmax − v0

jmax

, Ta = 2Tj1, (3.21)

82 3 Composition of Elementary Trajectories

otherwise as
Tj1 =

amax

jmax

, Ta = Tj1 +
vmax − v0

amax
. (3.22)

The time intervals of the deceleration segment can be computed if (3.20) holds
as

Tj2 =

√
vmax − v1

jmax

, Td = 2Tj2, (3.23)

otherwise as
Tj2 =

amax

jmax

, Td = Tj2 +
vmax − v1

amax
. (3.24)

Finally, it is possible to determine the time duration of the constant velocity
segment as

Tv =
q1 − q0

vmax
− Ta

2

(
1 +

v0

vmax

)
− Td

2

(
1 +

v1

vmax

)
. (3.25)

If Tv > 0, then the maximum velocity is actually reached and the values ob-
tained by (3.21)-(3.25) can be used to compute the trajectory.
The condition Tv < 0 simply means that the maximum velocity vlim is smaller
than vmax and, therefore, the following Case 2 must be considered.

Example 3.9 Fig. 3.14 reports the position, velocity, acceleration and jerk
for a double S trajectory when the constant velocity phase is present. The
boundary conditions are

q0 = 0, q1 = 10, v0 = 1, v1 = 0,

while the constraints are

vmax = 5, amax = 10, jmax = 30.

The resulting time intervals are

Ta = 0.7333, Tv = 1.1433, Td = 0.8333, Tj1 = 0.3333, Tj2 = 0.3333.

�

Case 2: vlim < vmax.
In this case, the constant velocity segment is not present (Tv = 0), and the
duration of the acceleration and deceleration segments can be easily computed
if the maximum/minimum accelerations are reached in both segments. In this
case

Tj1 = Tj2 = Tj =
amax

jmax

(3.26a)

and

3.4 Trajectory with Double S Velocity Profile 83

0 0.5 1 1.5 2 2.5

−20

0

20

Je
rk

−10

−5

0

5

10

A
cc

el
er

at
io

n

−5

0

5

V
el

oc
ity

0

2

4

6

8

10

P
os

iti
on

vmax

vmin

amax

amin

jmax

jmin

Fig. 3.14. Double S trajectory profiles (position, velocity, acceleration and jerk)
including a constant velocity phase.

Ta =

a2
max

jmax

− 2v0 +
√

Δ

2amax
(3.26b)

Td =

a2
max

jmax

− 2v1 +
√

Δ

2amax
(3.26c)

where

Δ =
a4

max

j2
max

+ 2(v2
0 + v2

1) + amax

(
4(q1 − q0) − 2

amax

jmax

(v0 + v1)
)

. (3.27)

Example 3.10 Fig. 3.15 reports the position, velocity, acceleration and jerk
for a double S trajectory when the constant velocity phase is not present. The

84 3 Composition of Elementary Trajectories

boundary conditions are

q0 = 0, q1 = 10, v0 = 1, v1 = 0,

with constraints

vmax = 10, amax = 10, jmax = 30.

The resulting time intervals are

Ta = 1.0747, Tv = 0, Td = 1.1747, Tj1 = 0.3333, Tj2 = 0.3333.

and the maximum speed is vlim = 8.4136. �

If Ta < 2Tj or Td < 2Tj , then the maximum (minimum) acceleration is not
reached in at least one of the two segments, and therefore it is not possi-
ble to use eq. (3.26a), (3.26b), (3.26c). In this case (indeed rather unusual),
the determination of parameters is quite difficult, and it may be more con-
venient to find an approximated solution that, although not optimal, results
acceptable from a computational point of view. A possible way to determine
this solution is to progressively decrease the value of amax (e.g. by assuming
amax = γamax, with 0 < γ < 1) and compute the durations of the segments by
means of (3.26a), (3.26b), (3.26c), until the conditions Ta > 2Tj and Td > 2Tj

are both true.

Example 3.11 Fig. 3.16 reports the position, velocity, acceleration and jerk
of a double S trajectory when the constant velocity segment is not present.
In this case, also the maximum acceleration is not reached and the above
recursive algorithm is adopted. The boundary conditions are

q0 = 0, q1 = 10, v0 = 7, v1 = 0,

while the constraints are

vmax = 10, amax = 10, jmax = 30.

The time intervals defining the double S trajectory result

Ta = 0.4666, Tv = 0, Td = 1.4718, Tj1 = 0.2321, Tj2 = 0.2321.

The maximum speed is vlim = 8.6329, and the limit values of the ac-
celeration during the acceleration and deceleration period are respectively
alima

= 6.9641 and alimd
= −6.9641. �

During this recursive computation, it may happen that Ta or Td becomes
negative. In this case, only one of the acceleration or deceleration phase is
necessary, depending on the values of the initial and final velocities. If Ta < 0

3.4 Trajectory with Double S Velocity Profile 85

0 0.5 1 1.5 2

−20

0

20

Je
rk

−10

−5

0

5

10

A
cc

el
er

at
io

n

−10

−5

0

5

10

V
el

oc
ity

0

2

4

6

8

10

P
os

iti
on

vmax

vmin

amax

amin

jmax

jmin

Fig. 3.15. Double S trajectory profiles (position, velocity, acceleration and jerk)
without a constant velocity phase.

(note that in this case necessarily v0 > v1), the acceleration phase is not
present. Then, Ta is set to 0 and the duration of the deceleration segment can
be computed according to

Td = 2
q1 − q0

v1 + v0
(3.28a)

Tj2 =
jmax(q1 − q0) −

√
jmax(jmax(q1 − q0)2 + (v1 + v0)2(v1 − v0))

jmax(v1 + v0)
.

(3.28b)

Example 3.12 Fig. 3.17 reports position, velocity, acceleration and jerk of a
double S trajectory composed only by the deceleration phase. The boundary
conditions are

q0 = 0, q1 = 10, v0 = 7.5, v1 = 0,

86 3 Composition of Elementary Trajectories

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

−20

0

20

Je
rk

−10

−5

0

5

10

A
cc

el
er

at
io

n

−10

−5

0

5

10

V
el

oc
ity

0

2

4

6

8

10

P
os

iti
on

vmax

vmin

amax

amin

jmax

jmin

Fig. 3.16. Double S trajectory profiles (position, velocity, acceleration and jerk)
without the constant velocity phase and with limit acceleration lower than the max-
imum value.

with constraints

vmax = 10, amax = 10, jmax = 30.

The resulting time intervals are

Ta = 0, Tv = 0, Td = 2.6667, Tj1 = 0, Tj2 = 0.0973.

The maximum velocity is vlim = 7.5, and the limit values of the acceleration
during the acceleration and deceleration periods are respectively alima

= 0
and alimd

= −2.9190. �

In the dual case, i.e. when Td < 0 (this case is possible when v1 > v0),
the deceleration phase is not necessary (Td = 0) and the duration of the

3.4 Trajectory with Double S Velocity Profile 87

0 0.5 1 1.5 2 2.5

−20

0

20

Je
rk

−10

−5

0

5

10

A
cc

el
er

at
io

n

−10

−5

0

5

10

V
el

oc
ity

0

2

4

6

8

10

P
os

iti
on

vmax

vmin

amax

amin

jmax

jmin

Fig. 3.17. Double S trajectory profiles (position, velocity, acceleration and jerk)
composed by only a deceleration phase.

acceleration period must be computed as

Ta = 2
q1 − q0

v1 + v0
(3.29a)

Tj1 =
jmax(q1 − q0) −

√
jmax(jmax(q1 − q0)2 − (v1 + v0)2(v1 − v0))

jmax(v1 + v0)
.

(3.29b)
After the duration of each segment of the trajectory has been defined, it is
possible to compute the values of the maximum/minimum accelerations (alima

and alimd
) and of the maximum velocity (vlim) of the trajectory:

alima
= jmaxTj1, alimd

= −jmaxTj2

vlim = v0 + (Ta − Tj1)alima
= v1 − (Td − Tj2)alimd

.

88 3 Composition of Elementary Trajectories

3.4.1 Computation of the trajectory for q1 > q0

Once the time lengths and the other parameters have been defined, the double
S trajectory is computed by means of the following equations (one for each
segment defined in Fig. 3.13). The case t0 = 0 is assumed, otherwise a trans-
lation in time has to be applied, see Sec. 5.1.

Acceleration phase

a) t ∈ [0, Tj1]⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

q(t) = q0 + v0t + jmax

t3

6

q̇(t) = v0 + jmax

t2

2
q̈(t) = jmaxt

q(3)(t) = jmax

(3.30a)

b) t ∈ [Tj1, Ta − Tj1]⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

q(t) = q0 + v0t +
alima

6
(3t2 − 3Tj1t + T 2

j1)

q̇(t) = v0 + alima

(
t − Tj1

2

)
q̈(t) = jmaxTj1 = alima

q(3)(t) = 0

(3.30b)

c) t ∈ [Ta − Tj1, Ta]⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

q(t) = q0 + (vlim + v0)
Ta

2
− vlim(Ta − t) − jmin

(Ta − t)3

6

q̇(t) = vlim + jmin

(Ta − t)2

2
q̈(t) = −jmin(Ta − t)

q(3)(t) = jmin = −jmax

(3.30c)

Constant velocity phase

a) t ∈ [Ta, Ta + Tv]

3.4 Trajectory with Double S Velocity Profile 89⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

q(t) = q0 + (vlim + v0)
Ta

2
+ vlim(t − Ta)

q̇(t) = vlim

q̈(t) = 0

q(3)(t) = 0

(3.30d)

Deceleration phase

a) t ∈ [T − Td, T − Td + Tj2]⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

q(t) = q1 − (vlim + v1)
Td

2
+ vlim(t − T + Td) − jmax

(t − T + Td)3

6

q̇(t) = vlim − jmax

(t − T + Td)2

2
q̈(t) = −jmax(t − T + Td)

q(3)(t) = jmin = −jmax

(3.30e)

b) t ∈ [T − Td + Tj2, T − Tj2]⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q(t) = q1 − (vlim + v1)
Td

2
+ vlim(t − T + Td)+

+
alimd

6

(
3(t − T + Td)2 − 3Tj2(t − T + Td) + T 2

j2

)

q̇(t) = vlim + alimd

(
t − T + Td − Tj2

2

)
q̈(t) = −jmaxTj2 = alimd

q(3)(t) = 0

(3.30f)

c) t ∈ [T − Tj2, T]⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q(t) = q1 − v1(T − t) − jmax

(T − t)3

6

q̇(t) = v1 + jmax

(T − t)2

2
q̈(t) = −jmax(T − t)

q(3)(t) = jmax

(3.30g)

90 3 Composition of Elementary Trajectories

3.4.2 Computation of the trajectory for q1 < q0

In case q1 < q0, the parameters of the trajectory can be computed according
to the same procedure reported above. It is necessary to consider the initial
and final positions/velocities with opposite signs, and, after the computation,
to invert the resulting profiles of position, velocity, acceleration, and jerk.

More generally, given any initial and final values for position and velocity
(q̂0, q̂1, v̂0, v̂1), in order to compute the trajectory it is necessary to transform
these values as

q0 = σ q̂0, q1 = σ q̂1, v0 = σ v̂0, v1 = σ v̂1 (3.31)

where σ = sign(q̂0 − q̂1). Similarly, also the constraints on maximum and
minimum velocity, acceleration and jerk (v̂max, v̂min, âmax, âmin, ĵmax, ĵmin)
must be transformed:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vmax =
(σ + 1)

2
v̂max +

(σ − 1)
2

v̂min

vmin =
(σ + 1)

2
v̂min +

(σ − 1)
2

v̂max

amax =
(σ + 1)

2
âmax +

(σ − 1)
2

âmin

amin =
(σ + 1)

2
âmin +

(σ − 1)
2

âmax

jmax =
(σ + 1)

2
ĵmax +

(σ − 1)
2

ĵmin

jmin =
(σ + 1)

2
ĵmin +

(σ − 1)
2

ĵmax.

(3.32)

Finally, the computed profiles (i.e. q(t), q̇(t), q̈(t), q(3)(t)) must be transformed
again as ⎧⎪⎪⎪⎨

⎪⎪⎪⎩

q̂(t) = σ q(t)
˙̂q(t) = σ q̇(t)
¨̂q(t) = σ q̈(t)

q̂(3)(t) = σ q(3)(t).

(3.33)

Flux diagram for the double S computation
Since the synthesis of the double S trajectory is quite articulated, a scheme
summarizing the algorithm to determine the trajectory in all possible condi-
tions is shown in Fig. 3.18.

3.4.3 Double S with null initial and final velocities

When the initial and final velocities v0 and v1 are null, the computation of
the double S trajectory is much simpler, in particular when the constraints
are symmetric (jmin = −jmax, amin = −amax, vmin = −vmax).

3.4 Trajectory with Double S Velocity Profile 91

Given the initial cond.
(q̂0, q̂1, v̂0, v̂1)

compute q0, q1, v0, v1
according to (3.31)

Assuming that vmax
and amax are reached

compute the time intervals
according to (3.21)-(3.25)

Tv > 0?

Compute the trajectory
according to (3.30a)-(3.30g)

and (3.33)

vmax, amax
vmin, amin

q0, q1, v0, v1

Ta > 2Tj
and

Td > 2Tj?

Ta < 0
or

Td < 0?

Compute the trajectory
parameters according to

(3.26a), (3.26b) and (3.26b)

Compute the traj.
param. with (3.29a),
(3.29b) (if Td < 0)

or with (3.28a),
(3.28b) (if Ta < 0)

yes,
Ta = 0
or Td = 0

yes

no

yes, vmax reached

no, vmax not reached

no

Ta, Td, Tj

Ta, Tv , Td, Tj1, Tj2

Ta (or Td), Tj

Ta, Tv , Td,
Tj1, Tj2

Ta, Td, Tj

amax = γ amax
(amin = γ amin)

Fig. 3.18. Flux diagram for the double S trajectory computation.

As a matter of fact, in this case the acceleration and deceleration segments
are symmetric, and then Ta = Td and Tj1 = Tj2 = Tj . Moreover, it is always
possible to find a trajectory joining the initial and the final position, which
meets the constraints on velocity, acceleration and jerk.

92 3 Composition of Elementary Trajectories

Let us assume q1 > q0 (otherwise consider Sec. 3.4.2). Four situations are
possible:

1. vlim = vmax:

1.a. alim = amax

1.b. alim < amax

2. vlim < vmax:

2.a. alim = amax

2.b. alim < amax

where vlim and alim are the maximum values of velocity and acceleration
actually reached during the trajectory, i.e. vlim = maxt(q̇(t)) and alim =
maxt(q̈(t)).

Case 1. vlim = vmax.
In this case, it is necessary to check if the maximum acceleration amax is
reached or not, and then compute Tj and Ta(= Td)

a. if vmaxjmax ≥ a2
max ⇒ Tj =

amax

jmax

Ta = Tj +
vmax

amax

b. if vmaxjmax < a2
max ⇒ Tj =

√
vmax

jmax

Ta = 2Tj .

Then, the duration of the constant velocity segment can be computed as

Tv =
q1 − q0

vmax
− Ta.

If Tv is positive, the maximum velocity is reached, otherwise it is necessary
to consider Case 2 (and Tv = 0).

Case 2. vlim < vmax.
Again, two sub-cases are possible, depending wether the maximum accelera-
tion amax is reached or not. Also in this case the solution can be found in a
closed form, as

3.4 Trajectory with Double S Velocity Profile 93

a. if (q1 − q0) ≥ 2
a3

max

j2
max

⇒ Tj =
amax

jmax

Ta =
Tj

2
+

√(
Tj

2

)2

+
q1 − q0

amax
.

b. if (q1 − q0) < 2
a3

max

j2
max

⇒ Tj = 3

√
q1 − q0

2jmax

Ta = 2Tj .

Once Tj , Ta (and Td), Tv are available, the trajectory can be evaluated ac-
cording to (3.30a)-(3.30g), with

alim = jmaxTj = alima
= −alimd

vlim = (Ta − Tj)alim.

Example 3.13 Fig. 3.19 shows the position, velocity, acceleration and jerk
for a double S trajectory with zero initial and final velocities when the constant
velocity phase is not present. In this case, also the maximum acceleration is
not reached, however the trajectory parameters are computed in closed form.
The boundary conditions are

q0 = 0, q1 = 10, v0 = 0, v1 = 0,

while the constraints are

vmax = 10, amax = 20, jmax = 30.

The resulting time intervals are

Tj = 0.5503, Ta = 1.1006, Tv = 0.

The maximum velocity is vlim = 8.6329, and the limit values of the ac-
celeration during the acceleration and deceleration period are respectively
alima

= 6.9641 and alimd
= −6.9641. �

3.4.4 On-line computation of the double S trajectory

A simplified approach for the computation of the double S profile is based on
a discrete time formulation of the trajectory. This method is suitable when
it is necessary to define complex trajectories, composed by several double S
segments, and is appropriate for CNC machines, where the trajectory profiles
are computed in discrete time.
Let us define

94 3 Composition of Elementary Trajectories

0 0.5 1 1.5 2

−20

0

20

Je
rk

−20

−10

0

10

20

A
cc

el
er

at
io

n

−10

−5

0

5

10

V
el

oc
ity

0

2

4

6

8

10

P
os

iti
on

vmax

vmin

amax

amin

jmax

jmin

Fig. 3.19. Double S trajectory profiles with zero initial and final velocities, without
a constant velocity phase and with limit acceleration lower than the maximum value.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

q(t = kTs) = qk

q̇(t = kTs) = q̇k

q̈(t = kTs) = q̈k

q(3)(t = kTs) = q
(3)
k

the values of position, velocity, acceleration and jerk at the k-th time in-
stant, being Ts the sampling period. The structure of the trajectory planner
is shown in Fig. 3.20. Given the initial and final values of position, velocity
and acceleration and the constraints2 (vmax, vmin, amax, amin, jmax, jmin),
the jerk profile is computed as detailed below and then it is integrated three
2 It is worth noticing that in this case the constraints can be freely chosen and it

is not necessary to consider symmetric conditions, such as jmin = −jmax, etc.

3.4 Trajectory with Double S Velocity Profile 95

Jerk
generator

q0, q1

v0, v1

a0, a1

Ts

2

1 + z−1

1 − z−1

Ts

2

1 + z−1

1 − z−1

Ts

2

1 + z−1

1 − z−1

qkq̇kq̈kq
(3)
k

j
m

a
x
,
j

m
in

a
m

a
x
,
a

m
in

v
m

a
x
,
v

m
in

Fig. 3.20. Block diagram of the trajectory planner for online computation of the
double S trajectory.

times to obtain acceleration, velocity and position, respectively. In particular,
the trapezoidal integration3 is adopted, and accordingly the relations between
jerk, acceleration, velocity and position are

q̈k = q̈k−1 +
Ts

2
(q(3)

k−1 + q
(3)
k)

q̇k = q̇k−1 +
Ts

2
(q̈k−1 + q̈k)

qk = qk−1 +
Ts

2
(q̇k−1 + q̇k).

(3.34)

The basic idea of this trajectory planner is to perform, with acceleration
and jerk compliant with the desired constraints, the acceleration phase and
then the constant velocity segment until it is necessary to decelerate in order to
reach the final position q1 with the desired values of velocity and acceleration
v1 and a1. Therefore, the computation of the trajectory is composed by two
phases, see Fig. 3.21:

1. An acceleration profile is computed with the classical trapezoidal acceler-
ation, possibly followed by a constant velocity phase (= vmax).

2. During the motion, at each time instant kTs it is checked whether it is
possible to decelerate from the current velocity q̇k to the final one v1, with
the constraints on q̈k and q

(3)
k , and with the goal to reach exactly q1.

Phase 1: Acceleration and constant velocity phase
In order to perform a double S trajectory from q0 to q1 (> q0), the jerk is
kept at its maximum value until q̈k < amax. Then, the jerk is set to zero
(q(3)

k = 0), and therefore the acceleration is constant (amax). Finally, the jerk
is set to the minimum value (q(3)

k = jmin) in order to have a null acceleration
when the maximum velocity is reached. At this point, the maximum velocity
is maintained until the deceleration phase starts.
Mathematically, this can be described by

3 The discrete time transfer function of an integrator is GI(z
−1) =

Ts

2

1 + z−1

1 − z−1
.

96 3 Composition of Elementary Trajectories

q1

q0

v1v0

qk

q̇k

q̈ka0
a1

Fig. 3.21. Online computation of the double S trajectory.

q
(3)
k =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

jmax, if q̇k − q̈2
k

2jmin

< vmax and q̈k < amax

0, if q̇k − q̈2
k

2jmin

< vmax and q̈k ≥ amax

jmin, if q̇k − q̈2
k

2jmin

≥ vmax and q̈k > 0

0, if q̇k − q̈2
k

2jmin

≥ vmax and q̈k ≤ 0.

(3.35)

The conditions q̇k − q̈2
k

2jmin
≥ vmax, q̈k ≥ amax and q̈k ≤ 0 are considered in

lieu of q̇k− q̈2
k

2jmin
= vmax, q̈k = amax and q̈k = 0, since usually small numerical

errors affect the computations.

Phase 2: Deceleration phase
At each sampling time4, one must compute the time intervals Td, Tj2a and
Tj2b (refer to Fig. 3.22), necessary to change the acceleration and the velocity
from the current values (q̇k and q̈k) to the final ones (v1 and a1) according to a
trapezoidal deceleration profile, subject to constraints on maximum/minimim
acceleration and jerk. From the expressions of velocity and acceleration varia-

4 Being this a deceleration phase, it is expected that q̇k >= v1. Otherwise, the
equations are not valid.

3.4 Trajectory with Double S Velocity Profile 97

Je
rk

A
cc
el
er
at
io
n

V
el
oc
ity

P
os
iti
on

q1

q0

v1
v0

vmax

amax

amin

a0

a1

jmax

jmin

Ta Tv Td
Tj1a Tj2aTj1b Tj2b

Phase 1 Phase 2

Fig. 3.22. Typical profiles for position, velocity, acceleration and jerk for the double
S trajectory, with initial and final velocities and accelerations �= 0.

tions, in the case that the minimum acceleration amin is reached (accordingly
Td ≥ Tj2a + Tj2b), one obtains⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Tj2a =
amin − q̈k

jmin

Tj2b =
a0 − amin

jmax

Td =
v1 − q̇k

amin
+ Tj2a

amin − q̈k

2amin
+ Tj2b

amin − a1

2amin
.

(3.36)

Otherwise,

98 3 Composition of Elementary Trajectories⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Tj2a = − q̈k

jmin

+

√
(jmax − jmin)(q̈2

kjmax − jmin(a2
1 + 2jmax(q̇k − v1)))

jmin(jmin − jmax)

Tj2b =
a1

jmax

+

√
(jmax − jmin)(q̈2

kjmax − jmin(a2
1 + 2jmax(q̇k − v1)))

jmax(jmax − jmin)

Td = Tj2a + Tj2b.
(3.37)

Note that the periods with maximum and minimum jerk (Tj2b and Tj2a) may
be different since the initial and final accelerations of the deceleration phase,
q̈k and a1 respectively, are in general not equal (and in particular are not
null).
At this point, it is necessary to compute the position displacement produced
by the acceleration and velocity profiles obtained from (3.36) or (3.37)

hk =
1
2
q̈kT 2

d +
1
6
(jminTj2a(3T 2

d − 3TdTj2a + T 2
j2a) + jmaxT 3

j2b) + Tdq̇k

and check if hk < q1 − qk. If this condition holds, it is necessary to continue
the trajectory computation according to Case 1 (iterating the calculation of
the deceleration parameters with the new values of qk, q̇k and q̈k), otherwise
the deceleration phase must start and the jerk is computed as

q
(3)
k =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

jmin, if (k − k̄) ∈
[
0,

Tj2a

Ts

]
0, if (k − k̄) ∈

[
Tj2a

Ts
,

Td−Tj2b

Ts

]
jmax, if (k − k̄) ∈

[
Td−Tj2b

Ts
, Td

Ts

] (3.38)

where k̄ is the time instant in which Phase 2 starts.

Example 3.14 Fig. 3.23 reports the position, velocity, acceleration and jerk
for a double S trajectory computed online. In this case, it is simple to consider
non-null initial and final values of velocity and acceleration, and asymmetric
constraints on the maximum values of velocity, acceleration and jerk. In par-
ticular, the boundary conditions are

q0 = 0, q1 = 10, v0 = 1, v1 = 0, a0 = 1, a1 = 0

while the constraints are

vmax = 5, amax = 10, jmax = 30,
vmin = −5, amin = −8, jmin = −40.

The sampling period is Ts = 0.001s. �

As already mentioned, this algorithm is affected by numerical errors which
depend on the sampling period: the larger Ts is, the larger the errors are on

3.4 Trajectory with Double S Velocity Profile 99

0 0.5 1 1.5 2 2.5

−40

−20

0

20

Je
rk

−10

−5

0

5

10

A
cc

el
er

at
io

n

−5

0

5

V
el

oc
ity

0

2

4

6

8

10

P
os

iti
on

vmax

vmin

amax

amin

jmax

jmin

Fig. 3.23. Double S trajectory profiles (position, velocity, acceleration and jerk)
computed online.

acceleration, velocity and position. However, if it is necessary for some reasons
to have a large value for Ts, it is possible to assume, only for the computation
of the trajectory, a sampling period N times smaller, e.g. T �

s = Ts

N , and then
under-sample the data points so obtained.

Example 3.15 Fig. 3.24 reports the position, velocity, acceleration and jerk
for a double S trajectory computed online, with Ts = 0.02s. The same values
of boundary and peak conditions of the previous example are considered. The
dashed lines have been obtained with Ts = 0.02s, while the solid lines have
been computed with T �

s = Ts/200 = 0.0001s, and then under-sampling the
profiles by considering a point every two hundred samples. Note the errors
that affect the dashed curves. �

100 3 Composition of Elementary Trajectories

0 0.5 1 1.5 2 2.5

−40

−20

0

20

Je
rk

Je
rk

−10

−5

0

5

10

A
cc

el
er

at
io

n
A

cc
el

er
at

io
n

−5

0

5

V
el

oc
ity

V
el

oc
ity

0

2

4

6

8

10

P
os

iti
on

P
os

iti
on

vmaxvmax

vminvmin

amaxamax

aminamin

jmaxjmax

jminjmin

Fig. 3.24. Double S trajectory profiles (position, velocity, acceleration and jerk)
computed online, with Ts = 0.0001s (solid) and with Ts = 0.02s (dashed).

If q1 < q0 it is possible to adopt the method described in Sec. 3.4.2.

Example 3.16 Fig. 3.25 reports the position, velocity, acceleration and jerk
for a double S trajectory computed online for q1 < q0. In particular, the
boundary conditions are

q0 = 0, q1 = −10, v0 = 1, v1 = 0, a0 = 1, a1 = 0

with the constraints

vmax = 5, amax = 10, jmax = 30,
vmin = −5, amin = −8, jmin = −40.

The sampling period is Ts = 0.001s. �

3.4 Trajectory with Double S Velocity Profile 101

0 0.5 1 1.5 2 2.5

−40

−20

0

20

Je
rk

−10

−5

0

5

10

A
cc

el
er

at
io

n

−5

0

5

V
el

oc
ity

−10

−8

−6

−4

−2

0

P
os

iti
on

vmax

vmin

amax

amin

jmax

jmin

Fig. 3.25. Double S trajectory profiles (position, velocity, acceleration and jerk)
computed online with q1 < q0.

3.4.5 Displacement time of a double S trajectory

The computation of the displacement time of a double S trajectory is rather
complex, because of the large number of different possible cases. For this rea-
son, only some specific, but common, situations are considered here.
In particular, assuming h = q1 − q0 > 0, symmetric constraints vmin =
−vmax, amin = −amax, jmin = −jmax, and that the maximum values of
both acceleration and speed (amax and vmax) are reached, the total duration
of the trajectory can be easily obtained as

T =
h

vmax
+

Ta

2

(
1 − v0

vmax

)
+

Td

2

(
1 − v1

vmax

)
(3.39)

102 3 Composition of Elementary Trajectories

with

Ta =
amax

jmax

+
vmax − v0

amax
, Td =

amax

jmax

+
vmax − v1

amax
.

If both initial and final speeds are zero, (3.39) becomes

T =
h

vmax
+

vmax

amax
+

amax

jmax

. (3.40)

From eq. (3.40), it is straightforward to verify that the time length of the
trajectory can be easily modified by properly scaling the values of vmax, amax,
jmax. As a matter of fact, if the new constraints

v′max = λvmax, a′max = λ2amax, j′max = λ3jmax

are considered, the duration T ′ becomes

T ′ =
T

λ

and therefore it is possible to compute the value of λ which leads to a desired
duration T ′ = TD:

λ =
T

TD
.

The same considerations are valid also if the initial and final velocities are not
null, but in this case it is necessary to scale also v0 and v1 (see eq. (3.39)):

v′0 = λv0, v′1 = λv1.

For other considerations about the scaling in time of trajectories, see Chap-
ter 5.

Example 3.17 In Fig. 3.26 the position, velocity, acceleration and jerk of a
double S trajectory with a total duration TD = 5 s are shown. The boundary
conditions and the constraints are the same of Example 3.9, which lead to
the time length T = 2.71 s. In order to modify the duration of the trajectory
and to obtain the desired value TD, the constraints and the initial and final
velocities are scaled by λ = 0.542. �

3.4.6 Double S trajectory with assigned duration of the different
phases

A general approach for planning a double S trajectory, with a given time length
T and with specified durations of the acceleration and of the constant jerk
phases, consists in defining the values of vmax, amax, and jmax as a function

3.4 Trajectory with Double S Velocity Profile 103

0 1 2 3 4 5

−5

0

5

Je
rk

−2

0

2

A
cc

el
er

at
io

n

−2

0

2

V
el

oc
ity

0

2

4

6

8

10

P
os

iti
on

v′max

v′min

a′max

a′min

j′max

j′min

Fig. 3.26. Double S trajectory profiles (position, velocity, acceleration and jerk)
properly scaled to impose a desired duration (TD = 5 s).

of the desired T , Ta, Td, Tj . In particular, the symmetric case with vmin =
−vmax, amin = −amax, jmin = −jmax is considered, and the initial and final
velocities v0, v1 are both assumed to be zero (therefore Td = Ta). Moreover, it
is supposed that both the maximum speed and the maximum acceleration are
reached. Therefore, with reference to equations (3.30a)-(3.30g) which define
the trajectory profiles, it results

vlim = vmax, alima
= alimd

= amax.

From the expressions of the total duration, of the time length of accelera-
tion phase and of the constant jerk segment, i.e.

104 3 Composition of Elementary Trajectories

Je
rk

A
cc

el
er

at
io

n
V

el
oc

ity
P

os
iti

on

q1

q0

vmax

amax

amin

jmax

jmin

h

T

βTaβTaβTaβTa

Ta = αTTa = αT

Fig. 3.27. Double S trajectory profiles with zero initial and final velocities, and
with desired durations of the single tracts.

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

T =
h

vmax
+ Ta

Ta =
vmax

amax
+ Tj

Tj =
amax

jmax

(3.41)

it is possible to deduce the corresponding values of vmax, amax, jmax:

3.4 Trajectory with Double S Velocity Profile 105⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

vmax =
h

T − Ta

amax =
h

(T − Ta)(Ta − Tj)

jmax =
h

(T − Ta)(Ta − Tj)Tj
.

If one assumes that the acceleration period is a fraction of the entire trajectory
duration:

Ta = αT, 0 < α ≤ 1/2

and, in a similar manner, that the time length of the constant jerk phase is a
fraction of the acceleration period:

Tj = βTa, 0 < β ≤ 1/2

then the values of the maximum speed, acceleration and jerk of the double S
trajectory q(t) are obtained as:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

vmax =
h

(1 − α)T

amax =
h

α(1 − α)(1 − β)T 2

jmax =
h

α2β(1 − α)(1 − β)T 3
.

(3.42)

By substituting these values in (3.30a)-(3.30g), the trajectory with the given
durations is defined.

Example 3.18 A double S trajectory with the boundary conditions

q0 = 0, q1 = 10, v0 = 0, v1 = 0,

is computed with the purpose of obtaining a total duration T = 5. The values

α = 1/3, β = 1/5

are considered, or equivalently

Ta = 1.6666, Tj = 0.3333.

The resulting values of the velocity, acceleration and jerk are

vmax = 3.14, amax = 2.25, jmax = 6.75.

They produce the trajectory reported in Fig. 3.28. �

106 3 Composition of Elementary Trajectories

0 1 2 3 4 5

−5

0

5

Je
rk

−2

−1

0

1

2

A
cc

el
er

at
io

n

−2

0

2

V
el

oc
ity

0

2

4

6

8

10

P
os

iti
on

vmax

vmin

amax

amin

jmax

jmin

Fig. 3.28. Double S trajectory profiles with prescribed duration T, and with the
conditions Ta = T/3 and Tj = Ta/5.

Obviously, the equations (3.41) which relate the variables of the double S
trajectory (vmax, amax, jmax, h, T , Ta, Tj) can also be solved with respect
to other sets of variables, e.g. (vmax, amax, Tj), or (vmax, Ta, Tj), and so on,
if the other terms are known. For instance, if one desires a trajectory with
a total duration T and with a given maximum acceleration and jerk values
amax, jmax, it is possible to obtain the remaining coefficients as

3.5 Fifteen Segments Trajectory 107⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

vmax=
−a2

max + amaxjmaxT −
√
amax(−4hj2

max + amax(amax − jmaxT)2)
2jmax

Ta =
a2

max + amaxjmaxT −
√
amax(−4hj2

max + amax(amax − jmaxT)2)
2amaxjmax

Tj =
amax

jmax

.

Example 3.19 A double S trajectory with the boundary conditions

q0 = 0, q1 = 10, v0 = 0, v1 = 0,

is computed with the purpose of obtaining a total duration T = 5. Moreover,
the constraints

amax = 2, jmax = 8

are considered. The resulting values of the velocity, and of duration of the
constant acceleration and jerk phases are

vmax = 3, Ta = 1.82, Tj = 0.25.

They define the trajectory reported in Fig. 3.29. �

3.5 Fifteen Segments Trajectory

In some applications, it is necessary to adopt a trajectory with a continuous
jerk. In this case, a variation of the double S trajectory can be used, character-
ized by a trapezoidal profile for the jerk. The overall trajectory is composed of
fifteen segments (instead of the usual seven of the double S profile), in which
the jerk increases or decreases linearly, or is constant. It is necessary to define
the maximum rate of variation of the jerk by assuming a bound on its first
derivative, called jounce, ping, or snap5, see Fig. 3.30.

In the standard case (with the conditions q1 > q0 and smin = −smax,
jmin = −jmax, amin = −amax, vmin = −vmax), in which the peak values
of jerk, acceleration, velocity are reached, the trajectory is determined by
defining the time length of the different segments, according to

5 There is not an official terminology yet; the term snap is used here.

108 3 Composition of Elementary Trajectories

0 1 2 3 4 5

−5

0

5

Je
rk

−2

−1

0

1

2

A
cc

el
er

at
io

n

−2

0

2

V
el

oc
ity

0

2

4

6

8

10

P
os

iti
on

vmax

vmin

amax

amin

jmax

jmin

Fig. 3.29. Double S trajectory profiles with prescribed duration T , and with con-
ditions on amax and jmax.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ts =
jmax

smax

Tj =
amax

jmax

+ Ts

Ta = Tj +
vmax − v1

amax

Td = Tj +
vmax − v0

amax

Tv =
q1 − q0

vmax
− Ta

2

(
1 +

v0

vmax

)
− Td

2

(
1 +

v1

vmax

)

(3.43)

3.5 Fifteen Segments Trajectory 109

J
er

k
S
n
a
p

jmax

−jmax

smax

−smax

Tj

Ts Ts

Fig. 3.30. Continuous jerk profile in a 15-segments “double S” trajectory.

where smax, jmax, amax, vmax are the maximum values of snap, jerk, acceler-
ation, and velocity, q0, v0 and q1, v1 are the initial and final values of position
and velocity, while the meaning of Ts, Tj , Ta, Td, Tv is shown in Fig. 3.30 and
Fig. 3.13. The expressions in eq. (3.43) are valid if the following inequalities
hold:

Tj ≥ 2Ts ⇔ amax ≥ j2
max

smax
(3.44)

Ta ≥ 2Tj ⇔ (vmax − v0) ≥
a2

max

jmax

+
amaxjmax

smax
(3.45)

Td ≥ 2Tj ⇔ (vmax − v1) ≥
a2

max

jmax

+
amaxjmax

smax
(3.46)

Tv ≥ 0 ⇔ q1 − q0

vmax
− Ta

2

(
1 +

v0

vmax

)
− Td

2

(
1 +

v1

vmax

)
≥ 0 (3.47)

If eq. (3.44) does not hold, the maximum jerk is not reached; when (3.45) or
(3.46) are not true, the acceleration (during the acceleration or deceleration
phase) is smaller than the maximum allowed value; finally, Tv < 0 means that
the maximum velocity vmax is not reached.

If the durations Ts, Tj , Ta, Td, Tv meet the conditions (3.44-3.47) (this
means that all the tracts of the fifteen segments trajectory are present) and
under the hypothesis that q1 > q0 (otherwise the approach of Sec. 3.4.2 must
be used), the trajectory can be evaluated according to the following system
of equations, which defines for each tract the corresponding position, velocity,

110 3 Composition of Elementary Trajectories

acceleration, jerk and snap.

Acceleration phase

1) t ∈ [0, Ts]⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q(4)(t) = smax

q(3)(t) = smax t

q̈(t) =
smax

2
t2

q̇(t) =
smax

6
t3 + v0

q(t) =
smax

24
t4 + v0t + q0.

(3.48a)

2) t ∈ [Ts, Tj − Ts]⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q(4)(t) = 0

q(3)(t) = jmax

q̈(t) = jmax t − 1
2
jmax Ts

q̇(t) =
jmax

6
T 2

s +
1
2
jmax t (t − Ts) + v0

q(t) =
jmax

24
(2 t − Ts)

(
2 t (t − Ts) + T 2

s

)
+ v0t + q0.

(3.48b)

3) t ∈ [Tj − Ts, Tj]⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q(4)(t) = −smax

q(3)(t) = −smax (t − Tj)

q̈(t) = −smax

2
(t − Tj)2 + amax

q̇(t) =
smax

6
(
7T 3

s − 9T 2
s (t + Ts) + 3Ts (t + Ts)2− (t − Tj + Ts)3

)
+ v0

q(t) =
smax

24
(
− 15T 4

s + 28T 3
s (t + Ts) − 18T 2

s (t + Ts)2+ 4Ts (t + Ts)3−
−(t − Tj + Ts)4

)
+ v0 t + q0.

(3.48c)

3.5 Fifteen Segments Trajectory 111

4) t ∈ [Tj , Ta − Tj]⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q(4)(t) = 0

q(3)(t) = 0

q̈(t) = amax

q̇(t) =
amax

2
(2 t − Tj) + v0

q(t) =
amax

12
(6 t2 − 6 t Tj + 2T 2

j − Tj Ts + T 2
s) + v0 t + q0.

(3.48d)

5) t ∈ [Ta − Tj , Ta − Tj + Ts]⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q(4)(t) = −smax

q(3)(t) = −smax (t − Ta + Tj)

q̈(t) = amax − smax

2
(t − Ta + Tj)2

q̇(t) = −smax

6
(t − Ta + Tj)3 +

amax

2
(2 t − Tj) + v0

q(t) = −smax

24
(t − Ta + Tj)4 +

amax

12
(6 t2 − 6 t Tj + 2T 2

j − Tj Ts + T 2
s)+

+v0 t + q0.

(3.48e)

6) t ∈ [Ta − Tj + Ts, Ta − Ts]⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q(4)(t) = 0

q(3)(t) = −jmax

q̈(t) = −jmax

2
(2 t − 2Ta + Ts)

q̇(t) =−jmax

6
(
3 (t − Ta)2− 6Ta Tj + 6T 2

j +3 (t + Ta− 2Tj)Ts + T 2
s

)
+v0

q(t) = −jmax

24

(
4 (t − Ta)3 − 12 (2 t − Ta)Ta Tj + 12 (2 t − Ta)T 2

j +

+6
(
t2 + 2 t (Ta − 2Tj) − Ta (Ta − 2Tj)

)
Ts + 4 (t − Ta)T 2

s + T 3
s

)
+

+v0 t + q0.

(3.48f)

112 3 Composition of Elementary Trajectories

7) t ∈ [Ta − Ts, Ta]⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q(4)(t) = smax

q(3)(t) = smax (t − Ta)

q̈(t) =
smax

2
(t − Ta)2

q̇(t) =
smax

6
(t − Ta)3 + amax (Ta − Tj) + v0

q(t) =
smax

24
(t − Ta)4 +

amax

2
(2 t − Ta) (Ta − Tj) + v0 t + q0.

(3.48g)

Constant velocity phase

8) t ∈ [Ta, Ta + Tv]⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q(4)(t) = 0

q(3)(t) = 0

q̈(t) = 0

q̇(t) = vmax

q(t) =
(vmax − v0)

2
(2 t − Ta) + v0 t + q0.

(3.48h)

Deceleration phase

9) t ∈ [Ta + Tv, Ta + Tv + Ts]⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q(4)(t) = −smax

q(3)(t) = smax

(
(T − t) − Td

)
q̈(t) = −smax

2
(
(T − t) − Td

)2
q̇(t) =

smax

6
(
(T − t) − Td

)3 + amax (Td − Tj) + v1

q(t) = −smax

24
(
(T − t) − Td

)4 − amax

2
(
2 (T − t) − Td

)
(Td − Tj)−

−v1 (T − t) + q1.

(3.48i)

3.5 Fifteen Segments Trajectory 113

10) t ∈ [Ta + Tv + Ts, Ta + Tv + Tj − Ts]⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q(4)(t) = 0

q(3)(t) = −jmax

q̈(t) =
jmax

2
(
2 (T − t) − 2Td + Ts

)
q̇(t) = −jmax

6

(
3
(
(T − t) − Td

)2 − 6Td Tj + 6T 2
j +

+3
(
(T − t) + Td − 2Tj

)
Ts + T 2

s

)
+ v1

q(t) =
jmax

24

(
4
(
(T − t) − Td

)3 − 12
(
2 (T − t) − Td

)
Td Tj+

+12
(
2 (T − t) − Td

)
T 2

j + 6
(
(T − t)2 + 2 (T − t) (Td − 2Tj)−

−Td (Td − 2Tj)
)
Ts + 4

(
(T − t) − Td

)
T 2

s + T 3
s

)
− v1 (T − t) + q1.

(3.48j)
11) t ∈ [Ta + Tv + Tj − Ts, Ta + Tv + Tj]⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q(4)(t) = smax

q(3)(t) = −smax

(
(T − t) − Td + Tj

)
q̈(t) = −amax +

smax

2
(
(T − t) − Td + Tj

)2
q̇(t) = −smax

6
(
(T − t) − Td + Tj

)3 +
amax

2
(
2 (T − t) − Tj

)
+ v1

q(t) =
smax

24
(
(T − t) − Td + Tj

)4 − amax

12
(
6 (T − t)2 − 6 (T − t)Tj+

2T 2
j − Tj Ts + T 2

s

)
− v1 (T − t) + q1.

(3.48k)
12) t ∈ [Ta + Tv + Tj , T − Tj]⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q(4)(t) = 0

q(3)(t) = 0

q̈(t) = −amax

q̇(t) =
amax

2
(
2 (T − t) − Tj

)
+ v1

q(t) = −amax

12
(
6 (T − t)2 − 6 (T − t)Tj + 2T 2

j − Tj Ts + T 2
s

)
−

−v1 (T − t) + q1.

(3.48l)

114 3 Composition of Elementary Trajectories

13) t ∈ [T − Tj , T − Tj + Ts]⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q(4)(t) = smax

q(3)(t) = −smax

(
(T − t) − Tj

)
q̈(t) =

smax

2
(
(T − t) − Tj

)2 − amax

q̇(t) =
smax

6

(
7T 3

s − 9T 2
s

(
(T − t) + Ts

)
+ 3Ts

(
(T − t) + Ts

)2−
−
(
(T − t) − Tj + Ts

)3)+ v1

q(t) = −smax

24

(
−15T 4

s + 28T 3
s

(
(T − t) + Ts

)
− 18T 2

s

(
(T − t) + Ts

)2+
+4Ts

(
(T − t) + Ts

)3 − (
(T − t) − Tj + Ts

)4)− v1 (T − t) + q1.

(3.48m)

14) t ∈ [T − Tj + Ts, T − Ts]⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q(4)(t) = 0

q(3)(t) = jmax

q̈(t) = −jmax (T − t) +
jmax

2
Ts

q̇(t) =
jmax

6
T 2

s +
jmax

2
(T − t) ((T − t) − Ts) + v1

q(t) = −jmax

24
(2 (T − t) − Ts) (2 (T − t) ((T − t) − Ts) + T 2

s)

−v1 (T − t) + q1.

(3.48n)

15) t ∈ [T − Ts, T]⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q(4)(t) = −smax

q(3)(t) = smax (T − t)

q̈(t) = −smax

2
(T − t)2

q̇(t) =
smax

6
(T − t)3 + v1

q(t) = −smax

24
(T − t)4 − v1 (T − t) + q1.

(3.48o)

3.5 Fifteen Segments Trajectory 115

Snap profile
generator

q0, q1

v0, v1

s
m

a
x

Ts

2

1 + z−1

1 − z−1

Ts

2

1 + z−1

1 − z−1

Ts

2

1 + z−1

1 − z−1

Ts

2

1 + z−1

1 − z−1

qkq
(4)
k q̇kq̈kq

(3)
k

j
m

a
x

a
m

a
x

v
m

a
x

Fig. 3.31. Conceptual scheme for the computation of jerk, acceleration, velocity
and position profiles of the fifteen segments trajectory starting from the jerk profile.

Alternatively, in order to obtain the profiles of jerk, acceleration, velocity and
position one can numerically integrate the snap profiles, whose expression is
particularly simple, i.e.

q(4)(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

+smax if t ∈ [0, Ts]

0 if t ∈ [Ts, Tj − Ts]

−smax if t ∈ [Tj − Ts, Tj]

0 if t ∈ [Tj , Ta − Tj]

−smax if t ∈ [Ta − Tj , Ta − Tj + Ts]

0 if t ∈ [Ta − Tj + Ts, Ta − Ts]

+smax if t ∈ [Ta − Ts, Ta]

0 if t ∈ [Ta, Ta + Tv]

−smax if t ∈ [Ta + Tv, Ta + Tv + Ts]

0 if t ∈ [Ta + Tv + Ts, Ta + Tv + Tj − Ts]

+smax if t ∈ [Ta + Tv + Tj − Ts, Ta + Tv + Tj]

0 if t ∈ [Ta + Tv + Tj , T − Tj]

+smax if t ∈ [T − Tj , T − Tj + Ts]

0 if t ∈ [T − Tj + Ts, T − Ts]

−smax if t ∈ [T − Ts, T]

where T is the total duration of the trajectory. Unfortunately this approach,
although conceptually quite simple (see Fig. 3.31), may generate numerical
problems and acceleration/velocity/position drifts.

Example 3.20 Fig. 3.32 reports the position, velocity, acceleration, jerk and
snap profiles of a fifteen segments trajectory with the same constraints and
boundary conditions as in Example 3.9, concerning a double S motion: vmax =
5, amax = 10, jmax = 30, smax = 500, q0 = 0, q1 = 10, v0 = 1, v1 = 0.
The resulting time intervals are

Ta = 0.7933, Tv = 1.0773, Td = 0.8933, Tj = 0.3933, Ts = 0.0600

116 3 Composition of Elementary Trajectories

and the total duration results T = 2.7640, that is 2% more than the duration
of the equivalent double S trajectory. �

0 0.5 1 1.5 2 2.5

−500

0

500

S
na

p

−20

0

20

Je
rk

−10

−5

0

5

10

A
cc

el
er

at
io

n

−5

0

5

V
el

oc
ity

0

2

4

6

8

10

P
os

iti
on

vmax

vmin

amax

amin

jmax

jmin

smax

smin

Fig. 3.32. Fifteen segments trajectory (position, velocity, acceleration, jerk and
snap).

3.6 Piecewise Polynomial Trajectory 117

3.6 Piecewise Polynomial Trajectory

In particular applications, it may be convenient to define a trajectory as a
composition of polynomial segments [17]. In these cases, in order to compute
the trajectory it is necessary to define an adequate number of conditions
(boundary conditions, point crossing, continuity of velocity, acceleration, ...).
This type of approach has been already used in Sec. 3.2 and Sec. 3.3 for the
computation of linear trajectories (first degree polynomials) with second or
higher degree polynomials blends, and in Sec. 3.4 for double S trajectories.

For example, in pick-and-place operations by an industrial robot it may
be of interest to have motions with very smooth initial and final phases. In
such a case, one can use a motion profile obtained as the connection of three
polynomials ql(t), qt(t), qs(t) (i.e. lift-off, travel, set-down) with (for example):

ql(t) =⇒ 4-th degree polynomial
qt(t) =⇒ 3-rd degree polynomial
qs(t) =⇒ 4-th degree polynomial

0 1 2 3 4 5 6 7 8

−2

0

2

A
cc

el
er

at
io

n

0

1

2

3

4

V
el

oc
ity

0

2

4

6

8

10

P
os

iti
on

Fig. 3.33. Position, velocity and acceleration profiles for a ‘4-3-4’ trajectory; the
circles in the position diagram refer to the inner points (ta, qa), (tb, qb).

118 3 Composition of Elementary Trajectories

This trajectory, known as trajectory 4-3-4 (see Fig. 3.33), is computed by
assigning 5 + 4 + 5 = 14 parameters, and therefore 14 conditions must be
defined. If t0, t1 are the initial and final instants, ta, tb the “switching” instants
between the polynomial segments, and q0, qa, qb, q1 the relative position
values, the conditions necessary to compute the parameters are

ql(t0) = q0, ql(ta) = qt(ta) = qa

qt(tb) = qs(tb) = qb, qs(t1) = q1

}
6 crossing conditions

q̇l(t0) = q̇s(t1) = 0, q̈l(t0) = q̈s(t1) = 0 4 initial and final conditions

q̇l(ta) = q̇t(ta), q̈l(ta) = q̈t(ta)

q̇t(tb) = q̇s(tb), q̈t(tb) = q̈s(tb)

}
4 continuity conditions for
velocity and acceleration

It is convenient to express each segment of the trajectory in parametric form
as a function of a normalized variable τ :

ql(t) = q̃l(τ)∣∣
τ = t−t0

Tl

, qt(t) = q̃t(τ)∣∣
τ = t−ta

Tt

, qs(t) = q̃s(τ)∣∣
τ = t−tb

Ts

where
Tl = ta − t0, Tt = tb − ta, Ts = t1 − tb.

Therefore, the trajectory is defined by⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

q̃l(τ) = a4lτ
4 + a3lτ

3 + a2lτ
2 + a1lτ + a0l, τ =

t − t0
Tl

q̃t(τ) = a3tτ
3 + a2tτ

2 + a1tτ + a0t, τ =
t − ta

Tt

q̃s(τ) = a4s(τ − 1)4 + a3s(τ − 1)3 + a2s(τ − 1)2 + a1s(τ − 1) + a0s, τ =
t − tb

Ts
.

From the conditions on initial and final positions, velocities and accelerations,
one obtains the 7 parameters

a0l = q0, a1l = 0, a2l = 0
a0t = qa

a0s = q1, a1s = 0, a2s = 0.

From the continuity conditions on position, velocity and acceleration, one
obtains

3.7 Modified Trapezoidal Trajectory 119

a4l + a3l = (qa − q0)

a3t + a2t + a1t = (qb − qa)

−a4s + a3s = (q1 − qb)

(4a4l + 3a3l)/Tl = a1t/Tt

(12a4l + 6a3l)/T 2
l = 2a2t/T 2

t

(3a3t + 2a2t + a1t)/Tt = (−4a4s + 3a3s)/Ts

(6a3t + 2a2t)/T 2
t = (12a4s − 6a3s)/T 2

s .

The remaining parameters can be computed from these 7 equations. Their
analytical expressions are reported in Appendix A.
Note that besides the initial and final points, also the intermediate points (and
the relative time instants) must be specified. Obviously, this technique can be
applied also in case of non-null initial and final velocities and accelerations.

This method can be considered as an example of computation of piecewise
polynomial trajectories. In case of a motion with m segments, each one defined
by a polynomial function of degree pk, k = 1, . . . ,m, a total of m +

∑m
k=1 pk

conditions must be assigned for the computation of the unknown parameters
ajk. Further considerations concerning the composition of trajectories will be
given in Sec. 5.1, showing that in simple cases trajectories can be defined on
the basis of elementary functions and simple geometrical operations.

3.7 Modified Trapezoidal Trajectory

This trajectory, based on the cycloidal trajectory, Sec. 2.2.2, and generating
profiles similar to the double S, Sec. 3.4, can be considered an improvement of
the trapezoidal velocity trajectory presented in Sec. 3.2 because of the conti-
nuity of the acceleration profile. In this case, see Fig. 3.34(a), the trajectory is
subdivided into six parts: the second and the fifth segments are defined by sec-
ond degree polynomials, while the remaining ones are expressed by cycloidal
functions.

In the segment between point A = (ta, qa) and point B = (tb, qb) the
acceleration has a sinusoidal profile, between point B and point C = (tc, qc)
the acceleration is constant, while between point C and point D = (td, qd)
the acceleration decreases sinusoidally to zero. After point D, a deceleration
phase similar to the acceleration one takes place with a specular profile.
Let us define T = t1−t0 and h = q1−q0, considering for the sake of simplicity
t0 = 0 and q0 = 0 and the temporal length of each segment as shown in
Fig. 3.34(b). The trajectory between points A and B is described by a cycloidal
function, see eq. (2.22),

120 3 Composition of Elementary Trajectories⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

q(t) = h′
(

2t

T
− 1

2π
sin

4πt

T

)

q̇(t) =
h′

T

(
2 − 2 cos

4πt

T

)

q̈(t) =
8πh′

T 2
sin

4πt

T

(3.49)

with the displacement h′ defined below and duration T/2, see Fig. 3.34(a).
The position qb is reached at tb = T

8 . By substituting this value in (3.49), the
position, velocity and acceleration in B are⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

qb = h′
(

1
4
− 1

2π

)

q̇b =
2h′

T

q̈b =
8πh′

T 2
.

The expression of the trajectory between B and C is⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

q(t) = qb + vc

(
t − T

8

)
+

1
2
ac

(
t − T

8

)2

q̇(t) = vc + ac

(
t − T

8

)
q̈(t) = ac.

T/2

T/8

A′ B′ h′

t

q(t)

T

T/8 T/4 T/8

A
B

D

C

h

(a) (b)

Fig. 3.34. Acceleration and position profiles for a cycloidal trajectory (a) and a
modified trapezoidal trajectory (b).

3.7 Modified Trapezoidal Trajectory 121

For continuity reasons in point B

vc =
2h′

T
, ac =

8πh′

T 2
.

Then, the expression of the trajectory between points B and C is⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

q(t) = h′
(

1
4
− 1

2π

)
+

2h′

T

(
t − T

8

)
+

4πh′

T 2

(
t − T

8

)2

q̇(t) =
2h′

T
+

8πh′

T 2

(
t − T

8

)

q̈(t) =
8πh′

T 2
.

(3.50)

The position qc is reached at tc = 3
8T . By using this value in (3.50) one gets

qc = h′
(

3
4

+
π

4
− 1

2π

)
.

The trajectory between C and D is given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q(t) = qc + c1 + c2

t − 3
8T

T
+ c3 sin

(
4π

t − T
4

T

)

q̇(t) =
c2

T
+ c3

4π

T
cos

(
4π

t − T
4

T

)

q̈(t) = −c3
16π2

T 2
sin

(
4π

t − T
4

T

)
.

(3.51)

The parameters c1, c2, and c3 can be computed by using the continuity con-
ditions for position, velocity and acceleration in point C, i.e. at t = 3

8T . From
the continuity condition for the acceleration, one obtains

8πh′

T 2
=

[
−c3

16π2

T 2
sin

(
4π

t − T
4

T

)]
t= 3

8 T

and then

c3 = − h′

2π
.

For the velocity

[
2h′

T
+

8πh′

T 2

(
t − T

8

)]
t= 3

8 T

=

[
c2

T
− h′

2π

4π

T
cos

(
4π

t − T
4

T

)]
t= 3

8 T

from which
c2 = 2h′(1 + π).

122 3 Composition of Elementary Trajectories

Finally, by assigning the position value in C, i.e. q
(

3
8T

)
= qc, one obtains[

c1 + 2h′(1 + π)
t − 3

8T

T
− h′

2π
sin

(
4π

t − T
4

T

)]
t= 3

8 T

= 0

that yields

c1 =
h′

2π
.

By using these values of c1, c2, c3 in eq. (3.51) one obtains

q(t) = h′

[
−π

2
+ 2(1 + π)

t

T
− 1

2π
sin

(
4π

t − T
4

T

)]
.

In point D (at t = T
2) the position is

qd = h′
(
1 +

π

2

)
.

Finally, from the condition qd =
h

2
the relation between h and h′ is determined

h′ =
h

2 + π
.

Summarizing the above results, the trajectory is defined as

q(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

h

2 + π

[
2t

T
− 1

2π
sin

(
4πt

T

)]
, 0 ≤ t < T

8

h

2 + π

[
1
4
− 1

2π
+

2
T

(
t − T

8

)
+

4π

T 2

(
t − T

8

)2
]

, T
8 ≤ t < 3

8T

h

2 + π

[
−π

2
+ 2(1 + π)

t

T
− 1

2π
sin

(
4π

T

(
t − T

4

))]
, 3

8T ≤ t ≤ T
2 .

The second part of the trajectory (from T/2 to T) can be easily deduced
by exploiting its symmetry and the rules concerning translation and reflection
operations reported in Sec. 5.1. In particular, see Example 5.1, the following
expression is obtained

q(t)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

h +
h

2 + π

[
π

2
+ 2(1+π)

t − T

T
− 1

2π
sin

(
4π

T

(
t − 3T

4

))]
, 1

2T ≤ t < 5
8T

h +
h

2 + π

[
−1

4
+

1
2π

+
2
T

(
t − 7T

8

)
− 4π

T 2

(
t − 7T

8

)2
]
, 5

8T ≤ t < 7
8T

h +
h

2 + π

[
2(t − T)

T
− 1

2π
sin

(
4π

T
(t − T)

)]
, 7

8T ≤ t ≤ T.

3.7 Modified Trapezoidal Trajectory 123

If q0 �= 0, t0 �= 0, the value q0 must be added to the above equations, and
(t − t0) must be used in place of t.

The maximum values of velocity, acceleration and jerk for the modified trape-
zoidal trajectory are

q̇max = 2
h

T
, q̈max = 4.888

h

T 2
, q(3)

max = 61.43
h

T 3
.

Example 3.21 Fig. 3.35 reports the profiles for position, velocity, accelera-
tion and jerk for this trajectory when h = 20, T = 10. �

0 2 4 6 8 10

−1

−0.5

0

0.5

1

Je
rk

−1

−0.5

0

0.5

1

A
cc

el
er

at
io

n

0

1

2

3

4

V
el

oc
ity

0

5

10

15

20

P
os

iti
on

Fig. 3.35. Position, velocity, acceleration and jerk of a modified trapezoidal tra-
jectory with h = 20, T = 10.

124 3 Composition of Elementary Trajectories

t

q(t)

t

q̈(t)

T1 T2

T/2 T/2

T

a1

asim

a2

−asim

h

h/2
h1

h2

Fig. 3.36. Modified trapezoidal trajectory with different acceleration and deceler-
ation periods.

It is possible to define a modified trapezoidal trajectory with different deceler-
ation/acceleration periods, see Fig. 3.36. This is obtained by using the above
method with proper boundary conditions. This type of trajectory can be very
convenient when it is required to have given values for the velocity and the
acceleration in specific points of the motion.

3.8 Modified Sinusoidal Trajectory

This trajectory is the combination of a cycloidal and of an harmonic trajectory,
see Fig. 3.37 where a modified sinusoidal trajectory has been obtained from a
cycloidal profile.

The first half of the trajectory is divided into two parts: between A and
B (from t0 = ta = 0 to tb = T

8) the acceleration has a sinusoidal profile (with
duration of a quarter of period); then, it decreases to zero between B and C
(from tb = T

8 to tc = T
2) with a specular sinusoidal profile.

3.8 Modified Sinusoidal Trajectory 125

T/2

T/8

A′ B′ h′

t

q(t)

T

T/8 T/83/4 T

A
B

C h

Fig. 3.37. Modified sinusoidal trajectory.

The expression of the cycloidal trajectory from A to B is⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

q(t) = h′
(

2t

T
− 1

2π
sin

4πt

T

)

q̇(t) =
h′

T

(
2 − 2 cos

4πt

T

)

q̈(t) =
8πh′

T 2
sin

4πt

T
.

At tb = T
8 one obtains the following values⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

q(tb) = h′
(

1
4
− 1

2π

)
= qb

q̇(tb) =
2h′

T

q̈(tb) =
8πh′

T 2
.

The general expression of the sinusoidal trajectory from B to C is⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

q(t) = qb + c1 + c2

t − T
8

T
+ c3 sin

(
4πt

3T
+

π

3

)

q̇(t) =
c2

T
+ c3

4π

3T
cos

(
4πt

3T
+

π

3

)

q̈(t) = −c3
16π2

9T 2
sin

(
4πt

3T
+

π

3

)

where the coefficients c1, c2, and c3 can be determined by means of the con-
tinuity conditions in point B. In particular, for the acceleration in B

126 3 Composition of Elementary Trajectories

8πh′

T 2
=
[
−c3

16π2

9T 2
sin

(
4πt

3T
+

π

3

)]
t= T

8

from which

c3 = −9h′

2π

and for the velocity

2h′

T
=
[
c2

T
− 9h′

2π
cos

(
4πt

3T
+

π

3

)]
t= T

8

from which
c2 = 2h′.

Finally, at t = T
8 the position is q(t) = qb, and therefore[
c1 + 2h′ t − T

8

T
− 9h′

2π
sin

(
4πt

3T
+

π

3

)]
t= T

8

= 0

then

c1 =
9h′

2π
.

In conclusion, between B and C

q(t) =
(

h′

4
− h′

2π

)
+

9h′

2π
+ 2h′ t − T

8

T
− 9h′

2π
sin

(
4πt

3T
+

π

3

)

= h′
[

4
π

+ 2
t

T
− 9

2π
sin

(
4πt

3T
+

π

3

)]
.

The position at t = T
2 is

qc = h′
(

1 +
4
π

)
.

From the condition qc = h/2 one obtains

h′ =
π

2(π + 4)
h.

Summarizing, the equations defining the modified sinusoidal trajectory are

q(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

h

[
πt

T (4 + π)
− 1

4(4 + π)
sin

4πt

T

]
, 0 ≤ t < T

8

h

[
2

4 + π
+

πt

T (4 + π)
− 9

4(4 + π)
sin

(
4πt

3T
+

π

3

)]
, T

8 ≤ t < 7
8T

h

[
4

4 + π
+

πt

T (4 + π)
− 1

4(4 + π)
sin

4πt

T

]
, 7

8T ≤ t ≤ T.

3.9 Modified Cycloidal Trajectory 127

0 2 4 6 8 10

−0.5

0

0.5

1

1.5

Je
rk

−1

−0.5

0

0.5

1

A
cc

el
er

at
io

n

0

1

2

3

V
el

oc
ity

0

5

10

15

20

P
os

iti
on

Fig. 3.38. Profiles of position, velocity, acceleration and jerk of a modified sinu-
soidal trajectory when h = 20, T = 10.

The maximum values for velocity, acceleration and jerk are

q̇max = 1.76
h

T
, q̈max = 5.528

h

T 2
, q(3)

max = 69.47
h

T 3
.

Example 3.22 Fig. 3.38 shows the position, velocity, acceleration and jerk
for this trajectory with h = 20 and T = 10. �

3.9 Modified Cycloidal Trajectory

A cycloidal trajectory, defined by eq. (2.22), can be interpreted as the sum of a
sinusoidal trajectory and of a constant velocity trajectory, with slope opposite

128 3 Composition of Elementary Trajectories

(and equal in amplitude) to the final slope of the sinusoidal profile, as shown
in Fig. 3.39(a). In the figure, A and B are the initial and final points, P is
the intermediate transition point, APB is the line of the constant velocity
motion, M the intermediate point between A and P. The amplitude of the
sinusoidal profile, in the cycloidal motion, must be added to the constant
velocity trajectory in the direction perpendicular to the axis t.

A possible modification of the cycloidal trajectory is obtained by adding
the sinusoidal profile in a direction perpendicular to the constant velocity
profile, as shown in Fig. 3.39(b). This is the so-called “Alt modification”,
after Herman Alt, a German kinematician who first proposed it, [7]. This
modification allows to obtain a smoother profile, but implies an higher value
of the maximum acceleration.

Another modification, which aims at reducing the maximum acceleration
value, is shown in Fig. 3.40(a), known as the “Wildt modification” (after Paul
Wildt, [7]). Point D is located at a distance equal to 0.57T

2 from T
2 , and then

connected to M. The segment DM defines the direction along which the sinu-
soidal profile is added to the constant velocity trajectory. In this manner, the
maximum acceleration is 5.88 h

T 2 , similar to the modified trapezoidal trajec-
tory, whereas the standard cycloidal trajectory has a maximum acceleration
of 6.28 h

T 2 . Therefore, a reduction of 6.8% of the maximum acceleration value
is achieved. In Fig. 3.41 the three acceleration profiles for the cycloidal tra-
jectory and the two modified profiles are shown. Further details can be found
in [6] and [7].
The general expression of the modified cycloidal trajectory, where the base
sinusoidal motion is projected along a direction specified by a generic angle γ
(see Fig. 3.40(b)), is

q(tm) = h

[
tm
T

− 1
2π

sin
2πtm

T

]
(3.52)

where tm is defined by

t = tm − κ
T

2π
sin

2πtm
T

(3.53)

A

B

M

P

q

t
A

B

M

P

q

t

(a) (b)

Fig. 3.39. Geometrical construction of the cycloidal (a) and modified cycloidal
trajectory with the Alt method (b).

3.9 Modified Cycloidal Trajectory 129

A

B

M

P

D

T
2

0.57T
2

q

t
T
2

T

q

t

t
tm

γ
δ

h

y

(a) (b)

Fig. 3.40. Geometrical construction of the modified cycloidal trajectory with the
Wildt method.

with
κ =

tan δ

tan γ
and tan δ =

h

T
.

The angle γ determines the direction of the basis of the sinusoidal trajectory
(γ is sometimes called the “distortion” angle) . For example, for a pure cy-
cloidal trajectory γ = π/2 (as shown in Fig. 3.39(a)). The velocity and the
acceleration of the trajectory can be computed by differentiating q(t) with
respect to the time6 t:

q̇(t) =
h

T

1 − cos 2πt
T

1 − κ cos 2πt
T

q̈(t) =
h

T 2

2π(1 − κ) sin 2πt
T[

1 − κ cos 2πt
T

]3 .

The minimum value of the maximum acceleration is obtained for κ = 1−
√

3
2 =

0.134, case in which the acceleration is q̈max = 5.88 h
T 2 .

The Alt modification is obtained for γ = π/2 + atan(h/T).
The velocity value at t = T/2 (note that, in this case, tm = T/2) can be

simply computed as

q̇

(
T

2

)
=

2h

T
(1 − κ). (3.54)

If κ = 0 (i.e. γ = π/2), the standard cycloidal motion is obtained with
q̇(T/2) = 2h/T , while the velocity at t = T/2 is null for κ = 1. Note that
6 The velocity and acceleration are obtained as

q̇ =
dq

dtm
/

dt

dtm
, q̈ =

dq̇

dtm
/

dt

dtm
.

130 3 Composition of Elementary Trajectories

0 5 10 15 20

−0.2

−0.1

0

0.1

0.2

A
cc

el
er

at
io

n

0

0.5

1

V
el

oc
ity

0

2

4

6

8

10

P
os

iti
on

Cycloidal
Alt
Wildt

Fig. 3.41. Cycloidal and modified cycloidal trajectories (position, velocity, acceler-
ation).

(3.54) can be used to compute the value of κ, and then of the distortion angle
γ, necessary to obtain a specific value of the velocity at t = T/2.

Example 3.23 Fig. 3.42 shows the profiles of position, velocity and accel-
eration for the modified cycloidal trajectory (Wildt method) with h = 20,
T = 10 and κ = 0.134. In Fig. 3.43 the relation between the time t and tm is
reported. �

The practical implementation of the modified cycloidal expressed by (3.52)
requires the inversion of (3.53) in order to find the function tm(t). This is
obtained by solving numerically eq. (3.53) or by approximating in some way
this function. For example, a simple 5-th degree polynomial σ(t) computed
with the following boundary conditions

3.9 Modified Cycloidal Trajectory 131

0 2 4 6 8 10
−2

−1

0

1

2

time

A
cc

el
er

at
io

n

0

1

2

3

4

V
el

oc
ity

0

5

10

15

20

P
os

iti
on

Fig. 3.42. Position, velocity and acceleration profiles for a modified cycloidal tra-
jectory when h = 20, T = 10, κ = 0.134.

σ0 = 0, σ1 = T,

v0 =
1

1 − κ
, v1 =

1
1 − κ

,

a0 = 0, a1 = 0,

provides a good approximation of tm(t) and the resulting trajectory is almost
coincident with the ideal one (see Fig. 3.44, where the trajectory computed
by approximating the function tm(t) with a polynomial is compared with the
theoretical one).

132 3 Composition of Elementary Trajectories

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

t

t m

Fig. 3.43. Relation between t and tm for the modified cycloidal trajectory of
Fig. 3.42.

0 2 4 6 8 10
−2

−1

0

1

2

time

A
cc

el
er

at
io

n

0

1

2

3

4

V
el

oc
ity

0

5

10

15

20

P
os

iti
on

Fig. 3.44. Position, velocity and acceleration profiles for a modified cycloidal tra-
jectory with h = 20, T = 10, κ = 0.134 (solid), and same trajectory computed with
a polynomial function of degree five approximating tm(t) (dashed).

3.10 Trajectories with constant velocity/acceleration 133

3.10 Constant Velocity/Acceleration Trajectories with
Cycloidal or Harmonic Blends

In some applications, it may be of interest to plan trajectories by directly
specifying the velocity (or acceleration) profile as a composition of constant
segments connected by sinusoidal profiles. Then, the position, jerk, and so on,
are simply obtained by means of integration or derivation operations.

In the following sections, some methods for planning trajectories with this
approach are illustrated. In particular, constraints on the velocity or acceler-
ation profile are considered with the goal of defining minimum-time motions.

3.10.1 Constraints on the velocity profile

In this case, the velocity profile is directly assigned by specifying the values
of the velocity in the segments where it is constant, the duration of these seg-
ments and of the connecting blends, that are defined by sinusoidal functions. If
these parameters are known, the trajectory is completely specified by comput-
ing the velocity and then the position by integration and the acceleration/jerk
by derivation.

Note that the trajectory is subdivided into n segments, alternatively with
sinusoidal velocity profile (odd) or with constant velocity (even), as shown in
Fig. 3.45. The velocity in each segment is expressed by a function as

q̇k(t) = Vk sin (ωk(t − tk−1) + φk) + Kk, k = 1, . . . , n (3.55)

where Vk, ωk, φk, and Kk are parameters to be defined in order to satisfy the
given constraints, and tk are the transition instants between two consecutive
segments. In a segment with constant velocity, it is necessary to define only the
parameter Kk. Once the velocity profile is computed, the position is simply
obtained by integration, i.e.

q(t) = q0 +
∫ t

t0

q̇(τ)dτ

while the acceleration and jerk are obtained by derivation{
q̈k(t) = Vk ωk cos (ωk(t − tk−1) + φk)

q
(3)
k (t) = −Vk ω2

k sin (ωk(t − tk−1) + φk)
k = 1, . . . , n.

Note that for this trajectory the acceleration profile is continuous, composed
by sinusoidal or null segments, while the jerk has a discontinuous profile.
The parameters in eq. (3.55) are defined as follows. With reference to Fig. 3.45,
let t0, t1, t2, . . . , tn be the transition instants between two consecutive seg-
ments, v0, vn the initial and final velocity respectively, and v2, v4, v6, . . .
the constant velocity values in the intermediate segments. The parameters
Vk, Kk, ωk, φk, are

134 3 Composition of Elementary Trajectories

0 2 4 6 8 10 12
−3

−2

−1

0

1

2

3

1 2 3 4 5 6 7 8

Time (s)

V
el

oc
ity

Fig. 3.45. Subdivision of a velocity profile.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Vk =
vk+1 − vk−1

2

Kk =
vk+1 + vk−1

2
ωk =

π

tk − tk−1

φk =
3π

2

k = 1, 3, 5, ... (odd segments)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Vk = 0
Kk = vk

ωk = 0
φk = 0

k = 2, 4, 6, ... (even segments).

Note that with this choice of the parameters, and in particular of the phase
φk, the expression of the segments composing the trajectory is⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

qk(t) = −Vk

ωk
sin

(
ωk(t − tk−1)

)
+ Kk (t − tk−1) + qk−1

q̇k(t) = −Vk cos
(
ωk(t − tk−1)

)
+ Kk

q̈k(t) = Vk ωk sin
(
ωk(t − tk−1)

)
q
(3)
k (t) = Vk ω2

k cos
(
ωk(t − tk−1)

)
k = 1, . . . , n.

3.10 Trajectories with constant velocity/acceleration 135

where qk−1 is the position at time tk−1.

Example 3.24 Fig. 3.46 and Fig. 3.47 show the jerk, acceleration, velocity
and position profiles of trajectories obtained with the following conditions:

a) [t0, t1, . . . , t8] = [0, 1, 2, 3, 4, 6, 7, 8, 12],
[v0, v2, v4, v6, v8] = [0, 1, 2, −3, 0].

b) [t0, t1, t2, t3] = [0, 1, 2, 3],
[v0, v2, v4] = [0, 1, 0].

c) [t0, t1, . . . , t7] = [0, 1, 2, 3, 4, 5, 6, 7],
[v0, v2, v4, v6, v8] = [0, 1, 0, −1, 0].

�

From the above examples, it is possible to appreciate the flexibility of these
functions. In particular, the trajectory described in the last example can be
considered as a modified trapezoidal velocity trajectory with a continuous
acceleration profile. Finally, notice that the profiles in each segment are com-
puted independently from each other. For this reason, some of these segments,
in particular those with constant velocity, may be not present.

3.10.2 Constraints on the acceleration profile

An alternative way to plan this type of trajectory is to assign constraints not
on the velocity but on the acceleration profile. As in the previous case, also
in this manner very flexible functions are obtained. The resulting trajectory
can be considered as a generalization of the modified trapezoidal function
illustrated in Sec. 3.7.

In Fig. 3.48 a generic acceleration profile composed by seven segment is
shown. The odd segments (k = 1, 3, 5, 7) are characterized by a sinusoidal
profile, while the even ones (k = 2, 4, 6) have a constant value a2, a4(=
0) and a6 respectively. T1, T2, . . . , T7 are the time lengths of each segment,
t0, t1, t2, . . . , t7 = tf are the transition instants between two consecutive
segments and v0 = q̇(t0), . . . , v7 = q̇(t7), a0 = q̈(t0), . . . , a7 = q̈(t7) are the
corresponding velocity and acceleration values.
The following boundary conditions are considered at t = t0 and t = t7

q(t0) = q0 = 0, q̇(t0) = v0 = 0, q̈(t0) = a0 = 0,

q(t7) = q7 = qf , q̇(t7) = v7 = 0, q̈(t7) = a7 = 0.

Moreover, for the sake of simplicity, a normalized expression of the trajectory
is now considered, i.e. t0 = 0, tf = 1 (T = 1) and q0 = 0, qf = 1 (h = 1).

136 3 Composition of Elementary Trajectories

0 2 4 6 8 10 12

−10

−5

0

5

10

Je
rk

−4

−2

0

2

4

A
cc

el
er

at
io

n

−2

−1

0

1

2

V
el

oc
ity

0

2

4

6

P
os

iti
on

Fig. 3.46. Position, velocity, acceleration and jerk of Example 3.24.a.

Therefore, if a generic motion has to be computed, the consideration reported
in Chapter 5 can be applied.
The value of the accelerations a2 and a6 are firstly computed by imposing the
conditions q7 = 1, v7 = 0. One obtains⎧⎪⎪⎨

⎪⎪⎩
a2 =

−c2

c1 c4 − c2 c3

a6 =
c1

c1 c4 − c2 c3

where the constant ck are

c1 =
2T1

π
+ T2 +

2T3

π

c2 = −2T5

π
− T6 −

2T7

π

3.10 Trajectories with constant velocity/acceleration 137

0 0.5 1 1.5 2 2.5 3

−5

0

5

Je
rk

−1

0

1

A
cc

el
er

at
io

n

0

0.2

0.4

0.6

0.8

1

V
el

oc
ity

0

0.5

1

1.5

2

P
os

iti
on

0 1 2 3 4 5 6 7

−5

0

5
Je

rk

−1

0

1

A
cc

el
er

at
io

n

−1

−0.5

0

0.5

1

V
el

oc
ity

0

0.5

1

1.5

2

P
os

iti
on

(a) (b)

Fig. 3.47. Position, velocity, acceleration and jerk of Example 3.24.b (a), and
Example 3.24.c (b).

c3 =
2T1

π

(
π − 2

π
T1 +

T2

2

)
+
(

2T1

π
+ T2

)(
T2

2
+

π − 2
π

T3

)
+

+
(

2T1

π
+ T2 +

2T3

π

)(
2T3

π
+ T4 +

2T5

π

)

c4 =
(

2T7

π
+ T6

)(
π − 2

π
T5 +

T6

2

)
+

2T7

π

(
T6

2
+

π − 2
π

T7

)
.

Once a2 and a6 have been defined, the trajectory is computed according to
the following scheme:

1st segment t0 ≤ t ≤ t1⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

q̈(t) = a2 sin
(t − t0)π

2T1

q̇(t) = a2
2T1

π

(
1 − cos

(t − t0)π
2T1

)

q(t) = a2
2T1

π

(
t − 2T1

π
sin

(t − t0)π
2T1

)

with

138 3 Composition of Elementary Trajectories

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−6

−4

−2

0

2

4

6

A
cc

el
er

at
io

n

1 2 3 4 5 6 7

Fig. 3.48. Generic acceleration profile with sinusoidal blends.

q0 = 0, v0 = 0.

2nd segment t1 ≤ t ≤ t2⎧⎪⎪⎪⎨
⎪⎪⎪⎩

q̈(t) = a2

q̇(t) = v1 + a2(t − t1)

q(t) = q1 + v1(t − t1) + a2
(t − t1)2

2

with

q1 = a2
2T 2

1

π

(
1 − 2

π

)
, v1 = a2

2T1

π
.

3rd segment t2 ≤ t ≤ t3⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

q̈(t) = a2 cos
(t − t2)π

2T3

q̇(t) = v2 + a2
2T3

π
sin

(t − t2)π
2T3

q(t) = q2 + v2(t − t2) + a2

(
2T3

π

)2 (
1 − cos

(t − t2)π
2T3

)

with

q2 = q1 + a2T2

(
2T1

π
+

T2

2

)
, v2 = v1 + a2T2.

3.10 Trajectories with constant velocity/acceleration 139

4th segment t3 ≤ t ≤ t4⎧⎪⎪⎨
⎪⎪⎩

q̈(t) = 0

q̇(t) = v3

q(t) = q3 + v3(t − t3)

with

q3 = q2 + a2T3

(
2T1

π
+ T2 +

4T3

π2

)
, v3 = v2 + a2

2T3

π

5th segment t4 ≤ t ≤ t5⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

q̈(t) = −a6 sin
(t − t4)π

2T5

q̇(t) = v4 − a6
2T5

π

(
1 − cos

(t − t4)π
2T5

)

q(t) = q4 + v4(t − t4) − a6
2T5

π

(
t − t4 −

2T5

π
sin

(t − t4)π
2T5

)

with

q4 = q3 + a2T4

(
2T1

π
+ T2 +

2T3

π

)
, v4 = v3.

6th segment t5 ≤ t ≤ t6⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

q̈(t) = −a6

q̇(t) = v5 − a6(t − t5)

q(t) = q5 + v5(t − t5) − a6
(t − t5)2

2

with

q5 = q4 + a2T5

(
2T1

π
+ T2 +

2T3

π

)
− a6

2T 2
5

π

(
1 − 2

π

)
, v5 = v4 − a6

2T5

π
.

7th segment t6 ≤ t ≤ t7⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

q̈(t) = −a6 cos
(t − t6)π

2T7

q̇(t) = v6 − a6
2T7

π
sin

(t − t6)π
2T7

q(t) = q6 + v6(t − t6) − a6

(
2T7

π

)2 (
1 − cos

(t − t6)π
2T7

)

with

q6 = q5 + v5T6 − a6
T 2

6

2
, v6 = v5 − a6T6.

140 3 Composition of Elementary Trajectories

The acceleration profile is then defined once the values of t1, t2, . . . , t7 are
assigned. As a matter of fact, the parameters a2, a6, v1, . . . , v6, q1, . . . , q6

depend only on the time instants tk and may be computed in advance. Note
that some of the time instants tk may be coincident, and therefore the corre-
sponding periods Tk are null. As a consequence, the relative segment is not
present.

By properly assigning the values of t1, t2, . . . , t7 ∈ [0, 1] one may obtain
a rich set of trajectories, able to satisfy a number of requirements that can be
assigned on the motion law.

Example 3.25 The trajectories reported in Fig. 3.49 have been obtained
with the two sets of periods Tk [0.125, 0.25, 0.125, 0, 0.125, 0.25, 0.125] and
[0.125, 0.25, 0.25, 0, 0.125, 0.25, 0] respectively. �

0 0.2 0.4 0.6 0.8 1

−50

0

50

Je
rk

−5

0

5

A
cc

el
er

at
io

n

0

0.5

1

1.5

2

V
el

oc
ity

0

0.2

0.4

0.6

0.8

1

P
os

iti
on

0 0.2 0.4 0.6 0.8 1

−50

0

50

Je
rk

−6

−4

−2

0

2

4

A
cc

el
er

at
io

n

0

0.5

1

1.5

2

V
el

oc
ity

0

0.2

0.4

0.6

0.8

1

P
os

iti
on

Fig. 3.49. Trajectories obtained with different choices of the parameters Tk: posi-
tion, velocity, acceleration, and jerk.

3.10.3 Minimum-time trajectories

A third way to compute this type of trajectories is to specify initial and
final position values q0 and q1, and then compute the trajectory in order to
minimize its duration. This is equivalent to impose in each segment of the

3.10 Trajectories with constant velocity/acceleration 141

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

−2000

−1000

0

1000

2000

Je
rk

−100

−50

0

50

100

A
cc

el
er

at
io

n

0

2

4

6

8

10

V
el

oc
ity

0

0.5

1

1.5

2

P
os

iti
on

Fig. 3.50. Minimum-time trajectory composed by trigonometric and polynomial
segments.

trajectory the maximum value allowed for the velocity or the acceleration,
similarly to what illustrated for the trapezoidal velocity trajectory in Sec. 3.2.
For this purpose, we refer to the expression reported in eq. (3.55), that is

q̇k(t) = Vk sin (ωk(t − tk−1) + φk) + Kk, k = 1, . . . , n

and to the profile shown in Fig. 3.50, composed by an acceleration segment
(with duration T1), a constant velocity tract (T2), and a deceleration segment
(with T3 = T1 because of symmetry).

For the sake of simplicity, only the case q1 > q0, with q0 = 0, is now
considered, with vmin = −vmax, amin = −amax, being vmax, amax the velocity
and acceleration limits.
One obtains

142 3 Composition of Elementary Trajectories⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T1 =
π

2
vmax

amax
, acceleration time

T2 =
h

vmax
− T1, duration of the const. vel. segment

T3 = T1, deceleration time

T = 2T1 + T2 =
2hamax + πv2

max

2amaxvmax
, total duration.

The four parameters Ak, ωk, φk, Kk in (3.55) are

1st segment t ∈ [0, T1]

V1 =
vmax

2
, K1 =

vmax

2
, ω1 =

π

T1
, φ1 =

3π

2
.

2nd segment t ∈ [0, T2]

V2 = 0, K2 = vmax, ω2 = 0, φ2 = 0.

3rd segment t ∈ [0, T3]

V3 =
vmax

2
, K3 =

vmax

2
, ω3 =

π

T3
, φ3 =

π

2
.

Once these parameters are known, the jerk, acceleration, velocity and position
profiles can be computed as⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

q
(3)
k (t) = −Vkω2

k sin
(
ωk(t − tk−1) + φk

)
q̈k(t) = Vkωk cos

(
ωk(t − tk−1) + φk

)
q̇k(t) = Vk sin

(
ωk(t − tk−1) + φk

)
+ Kk

qk(t) = qk−1 −
Ak

ωk
cos

(
ωk(t − tk−1) + φk

)
+ Kk (t − tk−1)

k = 1, 2, 3.

Notice that the constant velocity segment exists if and only if the following
condition holds

h ≥ π

4
v2

max

amax

otherwise ⎧⎪⎨
⎪⎩

T1 =
√

h π

2 amax
, acceleration time

T = 2T1, total time

and the maximum velocity vlim actually reached by the trajectory is

vlim =

√
2 h amax

π
.

3.10 Trajectories with constant velocity/acceleration 143

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
−2000

−1000

0

1000

2000

Je
rk

−100

−50

0

50

100

A
cc

el
er

at
io

n

0

5

10

V
el

oc
ity

0

0.5

1

1.5

2

P
os

iti
on

Fig. 3.51. Minimum-time cycloidal trajectory without constant velocity segment.

Given these two new parameters T1, vlim, the above equations can be used for
the computation of the trajectory. An example of this trajectory is reported
in Fig. 3.51.

144 3 Composition of Elementary Trajectories

3.11 Trajectories with Constant Acceleration and
Cycloidal/Cubic Blends

The procedures illustrated above allow to define a trajectory composed by
constant velocity/acceleration segments connected by trigonometric blends.
A more general approach allows to define a trajectory made of constant accel-
eration segments connected by either trigonometric or polynomial functions.
The total displacement is subdivided into seven parts, as shown in Fig. 3.52,
where t0, t1, t2, . . . , t7 = tf are the time instants of transition between
two consecutive segments. Each tract is characterized by a different motion
law. The even segments (2, 4, 6) have a constant acceleration, and therefore a
parabolic position profile, while in the odd segments (1, 3, 5, 7) it is possible
to define either trigonometric or linear acceleration profiles.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−6

−4

−2

0

2

4

6

A
cc

el
er

at
io

n

1 2 3 4 5 6 7t
0

t
1

t
2

t
3

t
4

t
5

t
6

t
7

Fig. 3.52. Acceleration of a generic trajectory: the profiles in the odd segments
may be defined either by linear or trigonometric functions.

3.11 Trajectories with Constant Acceleration 145

By assuming Tk = tk − tk−1, the trajectory is defined as follows:

1st segment (cycloidal or cubic) t0 ≤ t ≤ t1

Cycloidal:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

q̈1(t) = a1 sin
(

π(t − t0)
2T1

)

q̇1(t) = −a1T1
2
π

cos
(

π(t − t0)
2T1

)
+ k11

q1(t) = −a1

(
T1

2
π

)2

sin
(

π(t − t0)
2T1

)
+ k11(t − t0) + k12

Cubic:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

q̈1(t) = a1

(
t − t0

T1

)
q̇1(t) =

a1

2T1
(t − t0)2 + k11

q1(t) =
a1

6T1
(t − t0)3 + k11(t − t0) + k12

2nd segment (parabolic) t1 ≤ t ≤ t2

Parabolic:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

q̈2(t) = a1

q̇2(t) = a1(t − t1) + k21

q2(t) =
a1

2
(t − t1)2 + k21(t − t1) + k22

3rd segment (cycloidal or cubic) t2 ≤ t ≤ t3

Cycloidal:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

q̈3(t) = a1 cos
(

π(t − t2)
2T3

)

q̇3(t) = a1T3
2
π

sin
(

π(t − t2)
2T3

)
+ k31

q3(t) = −a1

(
T3

2
π

)2

cos
(

π(t − t2)
2T3

)
+ k31(t − t2) + k32

Cubic:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

q̈3(t) = a1

(
1 − t − t2

T3

)
q̇3(t) = − a1

2T3
(t − t2)2 + a1(t − t2) + k31

q3(t) = − a1

6T3
(t − t2)3 +

a1

2
(t − t2)2 + k31(t − t2) + k32

4th segment (constant velocity) t3 ≤ t ≤ t4

Constant
velocity:

⎧⎪⎪⎨
⎪⎪⎩

q̈4(t) = 0

q̇4(t) = k41

q4(t) = k41(t − t3) + k42

146 3 Composition of Elementary Trajectories

5th segment (cycloidal or cubic) t4 ≤ t ≤ t5

Cycloidal:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

q̈5(t) = a2 sin
(

π(t − t4)
2T5

)

q̇5(t) = −a2T5
2
π

cos
(

π(t − t4)
2T5

)
+ k51

q5(t) = −a2

(
T5

2
π

)2

sin
(

π(t − t4)
2T5

)
+ k51(t − t4) + k52

Cubic:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

q̈5(t) = a2

(
t − t4

T5

)
q̇5(t) =

a2

2T5
(t − t4)2 + k51

q5(t) =
a2

6T5
(t − t4)3 + k51(t − t4) + k52

6th segment (parabolic) t5 ≤ t ≤ t6

Parabolic:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

q̈6(t) = a2

q̇6(t) = a2(t − t5) + k61

q6(t) =
a2

2
(t − t5)2 + k61(t − t5) + k62

7th segment (cycloidal or cubic) t6 ≤ t ≤ t7

Cycloidal:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

q̈7(t) = a2 cos
(

π(t − t6)
2T7

)

q̇7(t) = a2T7
2
π

sin
(

π(t − t6)
2T7

)
+ k71

q7(t) = −a2

(
T7

2
π

)2

cos
(

π(t − t6)
2T7

)
+ k71(t − t6) + k72

Cubic:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

q̈7(t) = a2

(
1 − t − t6

T7

)
q̇7(t) = − a2

2T7
(t − t6)2 + a2(t − t6) + k71

q7(t) = − a2

6T7
(t − t6)3 +

a2

2
(t − t6)2 + k71(t − t6) + k72.

The parameters a1 and a2 represent the maximum and minimum acceleration
value, respectively with positive and negative sign, see Fig. 3.52. The param-
eters kij are defined by imposing the boundary conditions and the constraints
on the continuity of position and velocity in the intermediate points. One ob-
tains a linear system of sixteen equations in the sixteen unknowns a1, a2, kij :

3.11 Trajectories with Constant Acceleration 147

q̇1(t0) = v0,

q̇1(t1) = q̇2(t1),
q̇2(t2) = q̇3(t2),
. . .

q̇7(t7) = v7,

q1(t0) = q0

q1(t1) = q2(t1)
q2(t2) = q3(t2)
. . .

q7(t7) = q7

where q0, q7 and v0, v7 are the initial and final positions and velocities re-
spectively. In matrix form⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m1,1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
m2,1 0 1−1 0 0 0 0 0 0 0 0 0 0 0 0
m3,1 0 0 1−1 0 0 0 0 0 0 0 0 0 0 0
m4,1 0 0 0 1−1 0 0 0 0 0 0 0 0 0 0

0 m5,2 0 0 0 1−1 0 0 0 0 0 0 0 0 0
0 m6,2 0 0 0 0 1−1 0 0 0 0 0 0 0 0
0 m7,2 0 0 0 0 0 1−1 0 0 0 0 0 0 0
0 m8,2 0 0 0 0 0 0 1 0 0 0 0 0 0 0

m9,1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
m10,1 0 T1 0 0 0 0 0 0 1−1 0 0 0 0 0
m11,1 0 0 T2 0 0 0 0 0 0 1−1 0 0 0 0
m12,1 0 0 0 T3 0 0 0 0 0 0 1−1 0 0 0

0 m13,2 0 0 0 T4 0 0 0 0 0 0 1−1 0 0
0 m14,2 0 0 0 0 T5 0 0 0 0 0 0 1−1 0
0 m15,2 0 0 0 0 0 T6 0 0 0 0 0 0 1−1
0 m16,2 0 0 0 0 0 0 T7 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1

a2

k11

k21

k31

k41

k51

k61

k71

k12

k22

k32

k42

k52

k62

k72

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v0

0
0
0
0
0
0
v7

q0

0
0
0
0
0
0
q7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

or
M k = q. (3.56)

By solving this system, the unknowns a1, a2, kij which define the trajectory
are obtained. Notice that the vector q and the structure of the matrix M are
fixed and do not depend on the functions adopted for each segment. On the
other hand, the coefficients mi,j in the first two columns of M depend on the
choice of the function in the odd segments.
As a matter of fact, one obtains

1st segment

Cycloidal: m1,1 = −2T1

π
, m2,1 = 0, m9,1 = 0, m10,1 = −

(
2T1

π

)2

,

Cubic: m1,1 = 0, m2,1 =
T1

2
, m9,1 = 0, m10,1 =

T 2
1

6
.

148 3 Composition of Elementary Trajectories

3rd segment

Cycloidal: m3,1 = T2, m4,1 =
2T3

π
, m11,1 =

T 2
2

2
+
(

2T3

π

)2

, m12,1 = 0,

Cubic: m3,1 = T2, m4,1 =
T3

2
, m11,1 =

T 2
2

2
, m12,1 =

T 2
3

3
.

5th segment

Cycloidal: m5,2 =
2T5

π
, m6,2 = 0, m13,2 = 0, m14,2 = −

(
2T5

π

)2

,

Cubic: m5,2 = 0, m6,2 =
T5

2
, m13,2 = 0, m14,2 =

T 2
5

6
.

7th segment

Cycloidal: m7,2 = T6, m8,2 =
2T7

π
, m15,2 =

T 2
6

2
+
(

2T7

π

)2

, m16,2 = 0,

Cubic: m7,2 = T6, m8,2 =
T7

2
, m15,2 =

T 2
6

2
, m16,2 =

T 2
7

3
.

Once these expressions are substituted in the above system, the parameters
a1, a2 and kij may be found and the trajectory q(t) is completely defined. The
general expressions of the parameters a1, a2, kij as functions of the variables
mi,j , q0, q7 are reported in Appendix A.

Note that several of the elementary and modified profiles described in pre-
vious sections can be obtained from the above equations. In order to compose
more trajectories, it is sufficient to impose, besides the initial and final time
instants, the initial and final position values and the temporal lengths of the
intermediate segments, with the possibility of setting some of them to zero.

Example 3.26 With reference to Fig. 3.52, a parabolic trajectory is obtained
by setting to zero the duration of segments 1, 3, 4, 5, 7, i.e. by assigning
t1 = t0, t5 = t4 = t3 = t2, t7 = t6; a cycloidal trajectory is obtained if the
durations of segments 2, 4, and 6 are zero (see Fig. 3.53), while a trajectory
with (modified) trapezoidal acceleration profile is obtained by neglecting the
fourth segment, Fig. 3.54. Obviously, the proper motion law (cycloidal or cu-
bic) must be defined in each one of the remaining segments. �

Example 3.27 A further example is shown in Fig. 3.55, where two trajecto-
ries composed by several profiles are reported. The trajectory in Fig. 3.55(a)
has a parabolic-cubic-constant-cycloidal profile, with T2 = 0.5, T3 = 1.5, T4 =
1, T6 = 2, T7 = 1 and v0 = v7 = 0, while the first and fifth segments are
not present (T1 = T5 = 0). The trajectory in Fig. 3.55(b) is a composition
of cycloidal, cubic, cycloidal and parabolic profiles with T2 = T4 = T7 = 0. �

3.11 Trajectories with Constant Acceleration 149

0 0.5 1 1.5 2

−20

−10

0

10

20

A
cc

el
er

at
io

n

0

5

10

15

20

V
el

oc
ity

0

5

10

15

20

P
os

iti
on

0 0.5 1 1.5 2

−20

0

20

A
cc

el
er

at
io

n

0

5

10

15

20

V
el

oc
ity

0

5

10

15

20

P
os

iti
on

(a) (b)

Fig. 3.53. Trajectory with constant (a) and cycloidal (b) acceleration.

0 1 2 3 4 5 6
−4

−2

0

2

4

A
cc

el
er

at
io

n

0

2

4

6

V
el

oc
ity

0

5

10

15

20

P
os

iti
on

0 1 2 3 4 5 6

−2

0

2

A
cc

el
er

at
io

n

0

2

4

6

V
el

oc
ity

0

5

10

15

20

P
os

iti
on

(a) (b)

Fig. 3.54. Trajectory with a trapezoidal (a) and modified trapezoidal (b) acceler-
ation profile.

150 3 Composition of Elementary Trajectories

0 1 2 3 4 5 6

−2

0

2

4

A
cc

el
er

at
io

n

0

2

4

6

V
el

oc
ity

0

5

10

15

20

P
os

iti
on

0 0.5 1 1.5 2 2.5 3 3.5 4

−5

0

5

A
cc

el
er

at
io

n

0

2

4

6

8

V
el

oc
ity

0

5

10

15

20

P
os

iti
on

(a) (b)

Fig. 3.55. Composition of elementary trajectories: parabolic-cubic-constant-
cycloidal (a); cycloidal-cubic-cycloidal-parabolic (b).

4

Multipoint Trajectories

In this chapter, the problem of the definition of multipoint trajectories
is addressed, i.e. of functions suitable for the interpolation or approxi-
mation of a set of given points (tk, qk), k = 0, . . . , n. In particular, the
problem is discussed in the case of a single axis of motion: the more
general problem related to 3D space is addressed in Chapter 8. Differ-
ent approaches are presented: polynomial functions of proper degree,
orthogonal and trigonometric polynomials, spline functions, and non-
linear filters able to generate in real time optimal trajectories satisfying
given constraints on maximum velocity, acceleration, and jerk.

4.1 Interpolation by Polynomial Functions

The problem of computing a trajectory through n+1 points can be solved by
means of a polynomial function of degree n:

q(t) = a0 + a1t + · · · + antn. (4.1)

As a matter of fact, given two points it is easy to determine the unique
line joining them; similarly, it is possible to define a unique quadratic func-
tion through three points and, more generally, given the points (tk, qk), k =
0, . . . , n it exists a unique interpolating polynomial q(t) of degree n.

From a mathematical point of view, the solution of the interpolation prob-
lem of n + 1 points can be obtained by solving a linear system of n + 1
equations in n + 1 unknowns (the coefficients ak of the interpolating poly-
nomial (4.1)). This method is based on the following algorithm. Given the
points (tk, qk), k = 0, . . . , n, it is possible to build the vectors q, a, and the
so-called Vandermonde matrix T as

152 4 Multipoint Trajectories

q =

⎡
⎢⎢⎢⎢⎢⎣

q0

q1

...
qn−1

qn

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

1 t0 · · · tn0
1 t1 · · · tn1

...
1 tn−1 · · · tnn−1

1 tn · · · tnn

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

a0

a1

...
an−1

an

⎤
⎥⎥⎥⎥⎥⎦ = T a. (4.2)

If tk+1 > tk, k = 0, . . . , n−1, the matrix T is always invertible and, therefore,
the coefficients ak can be computed as

a = T−1q.

The advantages of using polynomial functions as (4.1) for the interpolation of
n + 1 points are that:

1. The trajectory defined in this way crosses all the given points.
2. The interpolating function can be easily described since only n + 1 coef-

ficients are needed.
3. The derivatives (of any order) of the function q(t) defined in this manner

are continuous in the range [t0, tn]; in particular, the n-th derivative is
constant and therefore all the higher order derivatives are null.

4. The interpolating trajectory q(t) is unique.

On the other hand this method, conceptually simple, is rather inefficient from
the computational point of view and may produce numerical errors for large
values of n. As a matter of fact, the numerical solution of the system (4.2)
suffers from an error which is approximatively equal to the error affecting the
representation of the data (truncation errors, accuracy errors, etc.) multiplied
by the condition number1 κ of the Vandermonde matrix of the system. The
value of κ is proportional to n, and therefore for relatively large numbers of
1 The condition number of a matrix A is by definition the ratio of the maximum and

the minimum singular value of the matrix itself: κ = σmax
σmin

, [18]. It is equivalent
to the quantity

|A| |A−1|
which provides an estimation of the accuracy of the result obtained from the
matrix inversion. As a matter of fact, given a linear system expressed in matrix
form as

Ax = c

where x is the vector of the unknowns, it is possible to show that a perturbation
ΔA produces an error Δx, such that

Δx

x + Δx
≤ |A| |A−1| ΔA

A
= κ

ΔA

A

that is the relative error in the solution vector is bounded by the relative error
on the given matrix A multiplied the condition number κ. As a consequence, in
a computer with m decimal digits of accuracy, the quantity

m − log10(κ)

4.1 Interpolation by Polynomial Functions 153

points the error in computing the parameters of the trajectory may result too
large.

Example 4.1 In order to compute the coefficients ak of the polynomial of
degree n interpolating the points (tk, qk) with

tk =
k

n
, k = 0, . . . , n

it is necessary to define the matrix T . For n = 3, it results

T =

⎡
⎢⎢⎢⎣

1 0 0 0
1 1

3
1
9

1
27

1 2
3

4
9

8
27

1 1 1 1

⎤
⎥⎥⎥⎦ , κ =

σmax

σmin
=

2.5957
0.02625

� 99.

If n = 5, we have

T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
1 1

5
1
25

1
125

1
625

1
3125

1 2
5

4
25

8
125

16
625

32
3125

1 3
5

9
25

27
125

81
625

243
3125

1 4
5

16
25

64
125

256
625

1024
3125

1 1 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, κ =
σmax

σmin
=

3.339263
0.0006781

� 4924.

The condition number of T , for different values of n, is reported in the fol-
lowing table.

n 2 3 4 5 10 15 20
κ 15.1 98.87 686.43 4924.37 1.156 · 108 3.122 · 1012 9.082 · 1016

As shown in the table, the condition number increases with n and, as a conse-
quence, numerical problems (inaccuracy of the solution) tied to this technique
arise. For instance, in the Matlab environment (where a double precision rep-
resentation of the numbers is adopted), in case n = 10, and with the vector
of via-points

q = [1, 0.943, 1.394, 2.401, 4.052, 6.507, 10.074, 15.359, 23.594, 37.231, 61]T

indicates the number of decimal places we can expect to be correct in the result
of a linear system, because of the matrix inversion. For instance, in the IEEE
standard double precision representation, the numbers have about 16 decimal
digits of accuracy (with 53 bits for the fraction), so if a matrix has a condition
number of 1010 only six digits will be correct in the result.

154 4 Multipoint Trajectories

the maximum difference between the true values of the coefficients

a = [1, −3, 24, 3, 5, 6, 7, −3, 5, 12, 4]T

and the ones computed by inverting T (a′ = T−1q) is

Δamax = 2.887 · 10−8 (≈ κ · 10−16)

being 10−16 the accuracy of the Matlab number representation. If n = 20, and
the vector q has elements of the same order of magnitude of the previous ones,
the maximum error is Δamax = 25 (note that in this case κ = 9.082·1016). �

A different way for computing the coefficients of the interpolating polynomial
q(t) is based on the well-known Lagrange formula:

q(t) =
(t − t1)(t − t2) · · · (t − tn)

(t0 − t1)(t0 − t2) · · · (t0 − tn)
q0 +

(t − t0)(t − t2) · · · (t − tn)
(t1 − t0)(t1 − t2) · · · (t1 − tn)

q1 +

+ · · · + (t − t0) · · · (t − tn−1)
(tn − t0)(tn − t1) · · · (tn − tn−1)

qn.

It is also possible to define recursive formulations, that allow a more efficient
computation of the polynomial q(t), such as the Neville algorithm, see [19]
or [20]. Unfortunately also these techniques, although more efficient from a
computational point of view, are affected by numerical problems for high
values of n.
In addition to numerical problems, the use of a polynomial of degree n for
interpolating n + 1 points has a number of other drawbacks, since:

1. The degree of the polynomial depends on the number of points and, for
large values of n, the amount of calculations may be remarkable.

2. The variation of a single point (tk, qk) implies that all the coefficients of
the polynomial must be recomputed.

3. The insertion of an additional point (tn+1, qn+1) implies the adoption
of a polynomial of higher degree (n + 1) and the calculation of all the
coefficients.

4. The resulting trajectories are usually characterized by pronounced ‘oscil-
lations’, that are unacceptable in motion profiles for automatic machines.

Moreover, standard techniques for polynomial interpolation do not take into
account further conditions on initial, final or intermediate velocities and ac-
celerations. In this case, it is necessary to assume an higher order polynomial
function and consider additional constraints on the polynomial coefficients.
For example, in order to assign initial/final velocities and accelerations (i.e.
4 additional constraints) on a trajectory interpolating n + 1 given points, the
polynomial must be of degree n + 4, and the equation system providing the
coefficients ak becomes

4.2 Orthogonal Polynomials 155

q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q0

q1

...
qn−1

qn

v0

a0

vn

an

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 t0 · · · tn+4
0

1 t1 · · · tn+4
1

...
1 tn−1 · · · tn+4

n−1

1 tn · · · tn+4
n

0 1 2t0 · · · (n + 4)tn+3
0

0 0 2 6t0 · · · (n + 4)(n + 3)tn+2
0

0 1 2tn · · · (n + 4)tn+3
n

0 0 2 6tn · · · (n + 4)(n + 3)tn+2
n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0

a1

...
an−1

an

an+1

an+2

an+3

an+4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= T a.

Obviously, also in this case the coefficients ak can be computed as

a = T−1q.

In order to cope with the problems related to the interpolation by polyno-
mials (bad numerical conditioning and oscillating behavior), other techniques
can be adopted. In particular valid alternatives are the orthogonal polynomials
and the spline functions, described in the following sections.

4.2 Orthogonal Polynomials

An orthogonal polynomial of degree m is defined as

q(t) = a0p0(t) + a1p1(t) + · · · + ampm(t) (4.3)

where a0, a1, . . . , am are constant parameters and p0(t), p1(t), . . . , pm(t) are
polynomials of proper degree. The polynomials p0(t), . . . , pm(t) are called or-
thogonal because they enjoy the following properties

γji =
n∑

k=0

pj(tk)pi(tk) = 0, ∀j, i : j �= i

γii =
n∑

k=0

[pi(tk)]2 �= 0
(4.4)

where t0, t1, . . . , tn are the instants in which the polynomials are orthogonal
(i.e. satisfy these conditions). For example, if there are five points to be inter-
polated with a second degree orthogonal polynomial (m = 2), one obtains

4∑
k=0

p0(tk)p1(tk) =
4∑

k=0

p0(tk)p2(tk) =
4∑

k=0

p1(tk)p2(tk) = 0

4∑
k=0

[p0(tk)]2 �= 0,
4∑

k=0

[p1(tk)]2 �= 0,
4∑

k=0

[p2(tk)]2 �= 0.

156 4 Multipoint Trajectories

With orthogonal polynomials, it is possible to interpolate, or approximate
with a prescribed tolerance, n + 1 given points.

For the computation of the approximating polynomial, a “least squares”
technique is adopted. For each point qk, the error εk is defined as

εk =

⎛
⎝qk −

m∑
j=0

ajpj(tk)

⎞
⎠ , k = 0, . . . , n

and then the total square error results

E2 =
n∑

k=0

ε2k.

The parameters aj are determined in order to minimize E2. Obviously, if
E2 = 0, the interpolation by means of orthogonal polynomials is exact. Let us
define

δi =
n∑

k=0

qkpi(tk), i ∈ [0, . . . , m]

γji =
n∑

k=0

pj(tk)pi(tk), j, i ∈ [0, . . . , m].

From the minimization condition on E2 one obtains

∂E2

∂ai
= 0, i = 0, 1, . . . ,m

that is

∂

∂ai

[
n∑

k=0

(
qk −

m∑
j=0

ajpj(tk)

)2]
=

∂

∂ai

n∑
k=0

(
m∑

j=0

ajpj(tk)

)2

+

−2
∂

∂ai

n∑
k=0

(
qk

m∑
j=0

ajpj(tk)

)

= 2
n∑

k=0

m∑
j=0

ajpj(tk)pi(tk) − 2
n∑

k=0

qkpi(tk) = 0

from which

δi =
m∑

j=0

ajγji, i = 0, 1, . . . ,m

and ⎧⎪⎪⎨
⎪⎪⎩

δ0 = γ00 a0 + γ01 a1 + · · · + γ0m am

δ1 = γ10 a0 + γ11 a1 + · · · + γ1m am

. . .
δm = γm0 a0 + γm1 a1 + · · · + γmm am.

4.2 Orthogonal Polynomials 157

This is a system of m + 1 equations in the m + 1 unknowns a0, a1, . . . , am.
From the orthogonality conditions (4.4) one gets⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

δ0 = γ00 a0

δ1 = γ11 a1

δ2 = γ22 a2

. . .
δm = γmm am

that is
aj =

δj

γjj
.

The next problem is to define the orthogonal polynomials pj(t) in order to
satisfy additional criteria. For this purpose, several techniques have been de-
veloped, such as those proposed by G. E. Forsythe, [21], and by C. W. Clen-
shaw and J. G. Hayes, [22].

With the first technique, [21], the polynomials p0(t), . . . , pm(t) are computed
by the following recursive equation

pj(t) = (t − αj)pj−1(t) − βj−1pj−2(t), j = 1, . . . ,m

where αj and βj−1 are proper constants, and j is the degree of the polynomial.
By choosing p0(t) = 1 one obtains⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

p0(t) = 1

p1(t) = t p0(t) − α1p0(t)

p2(t) = t p1(t) − α2p1(t) − β1p0(t)
...

pj(t) = t pj−1(t) − αjpj−1(t) − βj−1pj−2(t).

The parameters αj and βj must be selected in order to satisfy the orthogo-
nality conditions:

n∑
k=0

pj(tk)pi(tk) = 0, j �= i.

In particular, αj is computed by multiplying the expressions of pj and pj−1

and summing them for the n + 1 points:

n∑
k=0

pj(tk)pj−1(tk) =
n∑

k=0

tk[pj−1(tk)]2 − αj

n∑
k=0

[pj−1(tk)]2 +

−βj−1

n∑
k=0

pj−1(tk)pj−2(tk).

158 4 Multipoint Trajectories

Since the pairs (pj , pj−1) and (pj−1, pj−2) must be reciprocally orthogonal,
the following equations descend

αj =

n∑
k=0

tk[pj−1(tk)]2

n∑
k=0

[pj−1(tk)]2
, βj =

n∑
k=0

[pj(tk)]2

n∑
k=0

[pj−1(tk)]2
.

Finally, the coefficients a0, a1, . . . , am are computed as

aj =

n∑
k=0

qkpj(tk)

n∑
k=0

[pj(tk)]2
.

Example 4.2 Fig. 4.1 shows the behavior of a trajectory obtained with or-
thogonal polynomials of degree four (m = 4) with the conditions

t0 = 0, t1 = 1, t2 = 3, t3 = 7, t4 = 8, t5 = 10,
q0 = 2, q1 = 3, q2 = 5, q3 = 6, q4 = 8, q5 = 9.

In this case, the following polynomials are obtained⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

p0(t) = 1

p1(t) = −4.833 + t

p2(t) = 9.8149 − 9.7203t + t2

p3(t) = −28.5693 + 59.3370t − 15.3917t2 + t3

p4(t) = 38.9880 − 212.9051t + 121.8979t2 − 20.0860t3 + t4

with coefficients

a0 = 5.5, a1 = 0.6579, a2 = −0.049, a3 = 0.0112, a4 = −0.0033.

Note that in this case the trajectory does not pass through the specified points.
�

Often, in practice, it is necessary that the trajectory satisfies proper boundary
conditions in terms of position, velocity and acceleration. In general, these
conditions are not satisfied with the previous technique for the computation
of the polynomials pj(t), as shown in Fig. 4.1, and velocity and acceleration
discontinuities may be present at the initial and final points. The reason is
that the given points are approximated, and the velocity and acceleration
values are not specified. To solve this problem, different techniques can be

4.2 Orthogonal Polynomials 159

0 2 4 6 8 10

−1

−0.5

0

A
cc

el
er

at
io

n

0.5

1

1.5

2

V
el

oc
ity

2

4

6

8

P
os

iti
on

Fig. 4.1. Trajectory approximating 6 points with fourth degree orthogonal polyno-
mials.

adopted, as the method illustrated below and based on a different choice of the
initial polynomials, [22]. In order to interpolate a set of points with orthogonal
polynomials so that the resulting trajectory crosses the initial and final points
A = (ta, qa) and B = (tb, qb), a normalized variable τ is considered

τ =
t − ta
tb − ta

, τ ∈ [0, 1]

and the trajectory q(t) is transformed according to

q̃(τ) = q(t) − qa(1 − τ) − qbτ.

In this manner, the conditions at the points A and B result

at t = ta (τ = 0), q̃(0) = q(ta) − qa, → q(ta) = qa + q̃(0)

at t = tb (τ = 1), q̃(1) = q(tb) − qb, → q(tb) = qb + q̃(1).

These conditions are satisfied by imposing q̃ = 0 at t = ta, tb (τ = 0, 1). For
this purpose, one can incorporate the term τ(1 − τ) in the function q̃.
By considering the orthogonal polynomial

q̃(τ) = a0p0(τ) + a1p1(τ) + · · · + ampm(τ)

160 4 Multipoint Trajectories

the simplest manner to include the term τ(1 − τ) is to compute pj(τ) as⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

p0(τ) = τ (1 − τ)

p1(τ) = τ p0(τ) − α1p0(τ)

p2(τ) = τ p1(τ) − α2p1(τ) − β1p0(τ)
. . .

pm(τ) = τ pm−1(τ) − αmpm−1(τ) − βm−1pm−2(τ).

Similarly, if a null velocity is required in A, the transformation

q̃(τ) = q(t) − qa(1 − τ2) − qbτ
2

is used and the initial polynomial is chosen as p0(τ) = τ2(1 − τ). If a null
acceleration is specified in A, one defines

q̃(τ) = q(t) − qa(1 − τ3) − qbτ
3

and the first polynomial p0(τ) = τ3(1 − τ).

Example 4.3 Fig. 4.2 reports the position, velocity and acceleration of an
orthogonal polynomials trajectory with crossing conditions for the initial and
final points. The points are the same as in the previous example. In this case,
the orthogonal polynomials result⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

p0(τ) = τ − τ2

p1(τ) = −0.5364τ + 1.5364τ2 − τ3

p2(τ) = 0.1848τ − 1.1724τ2 + 1.9875τ3 − τ4

p3(τ) = −0.0520τ + 0.5513τ2 − 1.8255τ3 + 2.3261τ4 − τ5

p4(τ) = 0.0168τ − 0.2858τ2 + 1.4590τ3 − 3.0900τ4 + 2.9000τ5 − τ6

with coefficients

a0 = 0.7465, a1 = −10.1223, a2 = 28.1252, a3 = 317.4603, a4 = 0.

�

Example 4.4 Fig. 4.3 shows the position, velocity and acceleration of a tra-
jectory with null initial velocity. The points are the same as in the previous
examples, but in this case the orthogonal polynomials are⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

p0(τ) = τ2 − τ3

p1(τ) = −0.7001τ2 + 1.7001τ3 − τ4

p2(τ) = 0.2546τ2 − 1.3464τ3 + 2.0918τ4 − τ5

p3(τ) = −0.1501τ2 + 1.0937τ3 − 2.6874τ4 + 2.7438τ5 − τ6

p4(τ) = 0.0168τ2 − 0.2858τ3 + 1.4590τ4 − 3.0900τ5 + 2.9000τ6 − τ7

4.2 Orthogonal Polynomials 161

0 2 4 6 8 10

−6

−4

−2

0

2

A
cc

el
er

at
io

n

−3

−2

−1

0

1

2

V
el

oc
ity

2

4

6

8

10

P
os

iti
on

Fig. 4.2. Position, velocity and acceleration of an orthogonal polynomials trajectory
(m = 4) with the crossing condition for the initial and final points.

with coefficients

a0 = 10.3710, a1 = −54.7230, a2 = 334.9531, a3 = −111.9615, a4 = 0.

�

Example 4.5 Fig. 4.4 shows position, velocity and acceleration of an orthog-
onal polynomials trajectory with null initial acceleration. The points are the
same as in the previous examples. The orthogonal polynomials are⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

p0(τ) = τ3 − τ4

p1(τ) = −0.7422τ3 + 1.7422τ4 − τ5

p2(τ) = 0.3663τ3 − 1.6099τ4 + 2.2436τ5 − τ6

p3(τ) = −0.1667τ3 + 1.1728τ4 − 2.8033τ5 + 2.7972τ6 − τ7

p4(τ) = 0.0168τ3 − 0.2858τ4 + 1.4590τ5 − 3.0900τ6 + 2.9000τ7 − τ8

and the coefficients

a0 = 21.7, a1 = −134.8, a2 = 853.7, a3 = −9390, a4 = 0.

162 4 Multipoint Trajectories

0 2 4 6 8 10
−6

−4

−2

0

2

4

A
cc

el
er

at
io

n

−3

−2

−1

0

1

2

V
el

oc
ity

2

4

6

8

10

P
os

iti
on

Fig. 4.3. Position, velocity and acceleration of an orthogonal polynomials trajectory
(m = 4) with null initial velocity.

�

From the above example, one can notice that the coefficient a4 is always null.
Therefore, in these cases the most appropriate degree for the polynomial sat-
isfying the given conditions is three (m = 3).

Another important class of orthogonal polynomials consists of the Chebyshev
polynomials [23, 24], defined by

rj(t) = cos (jφ), φ = cos−1 (t), −1 ≤ t ≤ 1

for j = 0, 1, 2, . . . , m. For example, if m = 4, one obtains

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

r0(t) = 1

r1(t) = t

r2(t) = 2t2 − 1

r3(t) = 4t3 − 3t

r4(t) = 8t4 − 8t2 + 1.

4.2 Orthogonal Polynomials 163

0 2 4 6 8 10

0

20

40

60

80

A
cc

el
er

at
io

n

−10

0

10

20

30

V
el

oc
ity

0

2

4

6

8

P
os

iti
on

Fig. 4.4. Position, velocity and acceleration of an orthogonal polynomials trajectory
(m = 4) with null initial acceleration.

These polynomials have some important properties:

1. They can be computed recursively as

r0(t) = 1, r1(t) = t, rj+1 = 2 t rj(t) − rj−1(t), j ≥ 1.

2. They are symmetric, i.e. rj(−t) = (−1)jrj(t).
3. The coefficient of the term with the highest degree is null for j = 0 and

equal to 2j−1 for j ≥ 1.
4. The polynomial rj(t) has j roots in [−1, 1] given by

tk = cos
(

π

2
2k + 1

j

)
, k = 0, 1, 2, . . . , j − 1.

Moreover, rj(t) has j + 1 maximum/minimum points, given by

tmk = cos
kπ

j
, rj(tmk) = (−1)k, k = 0, 1, 2, . . . , j.

5. The polynomials are orthogonal, i.e. given two functions f and g and
defined the product as

164 4 Multipoint Trajectories

(f, g) =
m∑

k=0

f(tk)g(tk)

where tk are the roots of rm+1(t), then for 0 ≤ i ≤ m, 0 ≤ l ≤ m one
gets

(ri, rj) =

⎧⎨
⎩

0, i �= l
(m + 1)/2, i = l �= 0
m + 1, i = l = 0.

6. Among all the monic j-th degree polynomials, the polynomial 21−jrj has
the smallest maximum norm in [−1, 1], given by 21−j (minimax property).

In conclusion, orthogonal polynomials provide a very flexible tool, based on
the least squares approach, for the definition of a trajectory interpolating a
sequence of points. On the other hand, the formulation of the polynomials
obtained in this manner is not very efficient from the computational point of
view. However, once the coefficients ai and the polynomials pj(t) have been
determined, it is very simple to convert the expression (4.3) to the standard
form

q(t) = a0 + a1t + a2t
2 + . . . + amtm.

4.3 Trigonometric Polynomials

When the trajectory represents a periodic motion (and consequently q(t+T) =
q(t)), it may be convenient to adopt the so called trigonometric polynomials
[25, 26], i.e.

q(t) = a0 +
m∑

k=1

ak cos
(

k
2πt

T

)
+

m∑
k=1

bk sin
(

k
2πt

T

)

whose coefficients are determined by imposing interpolation conditions on the
via-points. Therefore, given a set of points qk, k = 0, . . . , n (with q0 = qn) to
be interpolated at time instants tk, k = 0, . . . , n (without loss of generality it
is assumed t0 = 0), the degree m of the trigonometric polynomial is chosen in
a such way that 2m + 1 = n (an even number of points is therefore required),
and it is assumed T = tn. Then, the following system of 2m + 1 equations in
the unknowns ak, bk is set up

⎡
⎢⎢⎢⎢⎢⎣

q0

q1

...
qn−2

qn−1

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

1 c1(t0) s1(t0) · · · cm(t0) sm(t0)
1 c1(t1) s1(t1) · · · cm(t1) sm(t1)
...

...
...

...
...

...
1 c1(tn−2) s1(tn−2) · · · cm(tn−2) sm(tn−2)
1 c1(tn−1) s1(tn−1) · · · cm(tn−1) sm(tn−1)

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

a0

a1

b1

...
am

bm

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(4.5)

4.3 Trigonometric Polynomials 165

where

ck(t) = cos
(

k
2πt

T

)
, sk(t) = sin

(
k

2πt

T

)
.

The coefficients of the polynomial are computed by solving (4.5). It is worth
noticing that the trajectory is periodic by construction, and it is not necessary
to impose the continuity of the trajectory derivatives (velocity, acceleration,
jerk, etc.) at the boundaries (the so-called cyclic conditions). In particular the
trajectory will be C∞ continuous, that is continuous for any order of deriva-
tive.
The same trajectory can be written in a form similar to the Lagrange for-
mula for polynomial interpolation, which does not require the inversion of the
matrix in (4.5)

q(t) =
n∑

k=0

⎛
⎝qk

n∏
j=0,j �=k

sin(π
T (t − tj))

sin(π
T (tk − tj))

⎞
⎠ . (4.6)

Example 4.6 The trigonometric polynomial trajectory passing through the
points

t0 = 0, t1 = 4, t2 = 6, t3 = 8, t4 = 9, t5 = 11, t6 = 15, t7 = 17, t8 = 19, t9 = 20,
q0 = 2, q1 = 3, q2 = 3, q3 = 2, q4 = 2, q5 = 2, q6 = 3, t7 = 4, t8 = 5, t9 = 2,

is shown in Fig. 4.5. The resulting parameters are

a0 = 2.53, a1 = −0.21, a2 = −0.73, a3 = 0.30, a4 = 0.11,
b1 = −1.08, b2 = −1.03, b3 = −1.47, b4 = −0.96.

�

If compared with an algebraic spline trajectory (see the following Section
4.4), the trigonometric polynomial shows more pronounced oscillations, with
larger speeds and accelerations, but on the other hand all the derivatives are
continuous also between the last and the first via-point (periodic conditions).

Similarly to algebraic splines, it is possible to define trigonometric splines,
obtained by joining n trigonometric polynomial segments of proper degree,
and by guaranteeing that their derivatives, up to a desired order, agree where
the segments abut [27, 28, 29]. However, practical applications have demon-
strated that in general algebraic splines are superior to trigonometric splines
because accelerations and jerks result smaller, see Fig. 4.5, [30].

166 4 Multipoint Trajectories

0 5 10 15 20
−5

0

5

10

time

je
rk

−6

−4

−2

0

2

4

A
cc

el
er

at
io

n

−4

−2

0

2

4

V
el

oc
ity

−2

0

2

4

6

P
os

iti
on

Fig. 4.5. Interpolation of a set of via-points by means of a trigonometric polynomial
(solid) compared with a standard cubic spline (dashed).

4.4 Cubic Splines

When n + 1 points are given, in lieu of a unique interpolating polynomial of
degree n it is possible to use n polynomials of degree p (usually lower), each
one defining a segment of the trajectory. The overall function s(t) defined in
this manner is called spline2 of degree p. The value of p is chosen according to
the desired degree of continuity of the spline. For instance, in order to obtain
the continuity of velocities and accelerations at the time instants tk, where the
transition between two consecutive segments occurs, it is possible to assume
a polynomial of degree p = 3 (cubic polynomial)

2 Spline: the term has been introduced by I.J. Schoenberg, who exploited cubic
splines to approximate the French curve used by designers to trace curves [31].

4.4 Cubic Splines 167

s(t)

t

v0

vn

q0

q1

q2

qk
qk+1

qn−2

qn−1

qn

t0 t1 t2 tk tk+1 tn−2 tn−1 tnTk

... ...

Fig. 4.6. A spline trajectory through n + 1 points.

q(t) = a0 + a1t + a2t
2 + a3t

3.

The overall function is given by

s(t) = {qk(t), t ∈ [tk, tk+1], k = 0, . . . , n − 1},
qk(t) = ak0 + ak1(t − tk) + ak2(t − tk)2 + ak3(t − tk)3.

In this way, it is necessary to compute 4 coefficients for each polynomial. Since
n polynomials are necessary for the definition of a trajectory through n + 1
points, the total number of coefficients to be determined is 4n. In order to
solve this problem, the following conditions must be considered:

- 2n conditions for the interpolation of the given points, since each cubic
function must cross the points at its extremities.

- n−1 conditions for the continuity of the velocities at the transition points.
- n − 1 conditions for the continuity of the accelerations at the transition

points.

In this way, there are 2n + 2(n − 1), conditions and therefore the remaining
degrees of freedom are 4n−2n−2(n−1) = 2. Then, two additional constraints
must be imposed in order to compute the spline. Among the possible choices,
one can assign:

1. The initial and final velocity ṡ(t0) = v0, ṡ(tn) = vn, see Fig. 4.6.
2. The initial and final acceleration s̈(t0), s̈(tn) (these conditions are gener-

ally referred to as natural).
3. The conditions ṡ(t0) = ṡ(tn), s̈(t0) = s̈(tn); these conditions are usually

called cyclic and are used when it is necessary to define a periodic spline,
with period T = tn − t0.

4. The continuity of the jerk at time instants t1, tn−1:

d3s(t)
d t3

∣∣∣∣
t=t−1

=
d3s(t)
d t3

∣∣∣∣
t=t+1

,
d3s(t)
d t3

∣∣∣∣
t=t−n−1

=
d3s(t)
d t3

∣∣∣∣
t=t+n−1

.

168 4 Multipoint Trajectories

In general, a spline is characterized by the following properties:

1. [n(p + 1)] parameters are sufficient for the definition of a trajectory s(t)
of degree p, interpolating the given points (tk, qk), k = 0, . . . , n.

2. Given n + 1 points, and given the boundary conditions, the interpolating
spline s(t) of degree p is univocally determined.

3. The degree p of the polynomials used to construct the spline does not
depend on the number of data points.

4. The function s(t) has continuous derivatives up to the order (p − 1).
5. By assuming the conditions s̈(t0) = s̈(tn) = 0, the cubic spline is, among

all the functions f(t) interpolating the given points and with continuous
first and second derivatives, the function which minimizes the functional

J =
∫ tn

t0

(
d2 f(t)

dt2

)2

dt

that can be interpreted as a sort of deformation energy, proportional to
the curvature of f(t).
In fact, let s(t) be a cubic spline and f(t) ∈ C2[t0, tn] a generic function,
continuous with continuous first and second derivatives over [t0, tn]. The
function

E =
∫ tn

t0

(
f (2)(t) − s(2)(t)

)2

d t

is clearly always positive or null, i.e. E ≥ 0. Then

E =
∫ tn

t0

(
f (2)(t) − s(2)(t)

)2

d t

=
∫ tn

t0

(
f (2)(t)

)2

d t − 2
∫ tn

t0

f (2)(t) s(2)(t)d t +
∫ tn

t0

(
s(2)(t)

)2

d t

=
∫ tn

t0

(
f (2)(t)

)2

d t −
∫ tn

t0

(
s(2)(t)

)2

d t + 2
∫ tn

t0

s(2)(t)
(
s(2)(t) − f (2)(t)

)
d t.

By assigning null initial and final accelerations s(2)(t0) = s(2)(tn) = 0,
and by considering the condition that the functions s(t) and f(t) must
interpolate the given points, that is s(tk) = f(tk), k = 0, . . . , n, and the
fact that the jerk s(3)(t) of the cubic spline is piecewise constant, one
obtains

4.4 Cubic Splines 169

E = 2
∫ tn

t0

s(2)(t)
(
s(2)(t) − f (2)(t)

)
d t

=
[
s(2)(t)

(
s(1)(t) − f (1)(t)

)]tn

t0
−
∫ tn

t0

s(3)(t)
(
s(1)(t) − f (1)(t)

)
d t

= −
n−1∑
k=0

s(3)(tk)
∫ tk+1

tk

(
s(1)(t) − f (1)(t)

)
d t

= −
n−1∑
k=0

s(3)(tk)
[
s(t) − f(t)

]tk+1

tk

= 0.

Therefore

E =
∫ tn

t0

(
f (2)(t)

)2

d t −
∫ tn

t0

(
s(2)(t)

)2

d t ≥ 0

and then ∫ tn

t0

(
f (2)(t)

)2

d t ≥
∫ tn

t0

(
s(2)(t)

)2

d t.

Therefore, the function f(t) which minimizes the functional J (and for
which E = 0, i.e. f(t) = s(t)) is the cubic spline with zero conditions
on the initial and final acceleration. With these conditions, the spline is
called natural spline.

4.4.1 Computation of the coefficients for assigned initial and final
velocities

For the definition of a trajectory for an automatic machine, the condition
on the continuity of the velocity profile is of fundamental importance. For
this reason, a typical choice for the computation of the spline is to assign
the initial and final velocities v0 and vn. Therefore, given the points (tk, qk),
k = 0, . . . , n and the boundary conditions on the velocity v0, vn, the goal is
to determine the function

s(t) = {qk(t), t ∈ [tk, tk+1], k = 0, . . . , n − 1},
qk(t) = ak0 + ak1(t − tk) + ak2(t − tk)2 + ak3(t − tk)3

with the conditions

qk(tk) = qk, qk(tk+1) = qk+1, k = 0, . . . , n − 1

q̇k(tk+1) = q̇k+1(tk+1) = vk+1, k = 0, . . . , n − 2

q̈k(tk+1) = q̈k+1(tk+1), k = 0, . . . , n − 2

q̇0(t0) = v0, q̇n−1(tn) = vn.

170 4 Multipoint Trajectories

The coefficients ak,i can be computed with the following algorithm.

If the velocities vk, k = 1, . . . , n − 1, in the intermediate points were known,
for each cubic polynomial it would be possible to write⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

qk(tk) = ak0 = qk

q̇k(tk) = ak1 = vk

qk(tk+1) = ak0 + ak1Tk + ak2T
2
k + ak3T

3
k = qk+1

q̇k(tk+1) = ak1 + 2ak2Tk + 3ak3T
2
k = vk+1

(4.7)

being Tk = tk+1 − tk. By solving this system one would obtain the following
coefficients ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ak,0 = qk

ak,1 = vk

ak,2 = 1
Tk

[
3(qk+1 − qk)

Tk
− 2vk − vk+1

]

ak,3 = 1
T 2

k

[
2(qk − qk+1)

Tk
+ vk + vk+1

]
.

(4.8)

On the other hand, the velocities v1, . . . , vn−1 in the intermediate points are
not known, and therefore they must be computed. For this purpose, the conti-
nuity conditions on the acceleration in the intermediate points are considered:

q̈k(tk+1) = 2ak,2 + 6ak,3 Tk = 2ak+1,2 = q̈k+1(tk+1), k = 0, . . . , n − 2.

From these conditions, by taking into account the expression of the parameters
ak,2, ak,3, ak+1,2 and multiplying by (Tk Tk+1)/2, after simple manipulations
one gets

Tk+1vk +2(Tk+1+Tk)vk+1+Tkvk+2 =
3

TkTk+1

[
T 2

k (qk+2 − qk+1) + T 2
k+1(qk+1 − qk)

]
(4.9)

for k = 0, . . . , n − 2.

These relations can be rewritten in matrix form as A′v′ = c′, with

A′=

⎡
⎢⎢⎢⎢⎢⎢⎣

T1 2(T0 + T1) T0 0 · · · 0

0 T2 2(T1 + T2) T1

...
...

. . .

Tn−2 2(Tn−3 + Tn−2) Tn−3 0
0 · · · 0 Tn−1 2(Tn−2 + Tn−1) Tn−2

⎤
⎥⎥⎥⎥⎥⎥⎦

v′ = [v0, v1, . . . , vn−1, vn]T , c′ = [c0, c1, . . . , cn−3, cn−2]
T

4.4 Cubic Splines 171

where the constant terms ck depend only on the intermediate positions and on
the time duration Tk of the spline segments, which are known. Since the ve-
locities v0 and vn are also known, it is possible to eliminate the corresponding
columns of matrix A′ and obtain⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2(T0 + T1) T0 0 · · · 0

T2 2(T1 + T2) T1 0
...

0
. . . 0

... Tn−2 2(Tn−3 + Tn−2) Tn−3

0 · · · 0 Tn−1 2(Tn−2 + Tn−1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

v1

v2

...
vn−2

vn−1

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3
T0T1

[
T 2

0 (q2 − q1) + T 2
1 (q1 − q0)

]
− T1v0

3
T1T2

[
T 2

1 (q3 − q2) + T 2
2 (q2 − q1)

]
...

3
Tn−3Tn−2

[
T 2

n−3(qn−1 − qn−2) + T 2
n−2(qn−2 − qn−3)

]
3

Tn−2Tn−1

[
T 2

n−2(qn − qn−1) + T 2
n−1(qn−1 − qn−2)

]
− Tn−2vn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.10)

that is
A(T) v = c(T ,q, v0, vn) (4.11)

where T = [T0, T1, . . . , Tn−1]T , q = [q0, q1, . . . , qn]T .
The (n − 1) × (n − 1) matrix A has a diagonal dominant structure, and
therefore it is always invertible if Tk > 0 (|akk| >

∑
j �=k |akj |). Moreover,

being A tridiagonal, computationally efficient techniques are available for its
inversion, see Appendix A.5. Once the inverse of A has been computed, the
velocities v1, . . . , vn−1 can be calculated from v = A−1c and therefore the
problem is solved: the spline coefficients are obtained with (4.8).

Example 4.7 Fig. 4.7 shows a spline computed according to the above algo-
rithm. The trajectory is defined by the following points

t0 = 0, t1 = 5, t2 = 7, t3 = 8, t4 = 10, t5 = 15, t6 = 18,
q0 = 3, q1 = −2, q2 = −5, q3 = 0, q4 = 6, q5 = 12, q6 = 8,

with initial velocity v0 = 2 and final velocity v6 = −3. The resulting matrix
A and vector c are

A =

⎡
⎢⎢⎢⎢⎣

14 5 0 0 0
1 6 2 0 0
0 2 6 1 0
0 0 5 14 2
0 0 0 3 16

⎤
⎥⎥⎥⎥⎦

c =
[
−32.5, 25.5, 39, 52.2, 5.8

]T
.

172 4 Multipoint Trajectories

0 2 4 6 8 10 12 14 16 18
−4

−2

0

2

4

6

8

A
cc

el
er

at
io

n

−4

−2

0

2

4

6

V
el

oc
ity

−5

0

5

10

P
os

iti
on

Fig. 4.7. Spline trajectory with constraints on initial and final velocities.

The velocities in the intermediate points result

v =
[
−3.43, 3.10, 5.10, 1.88, 0.008

]T
.

The expression of the spline is therefore

s(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

3 + 2 t − 0.71 t2 + 0.02 t3, if 0 ≤ t < 5

−2 − 3.4 (t − 5) − 0.37 (t − 5)2 + 0.66 (t − 5)3, if 5 ≤ t < 7

−5 + 3.1 (t − 7) + 3.64 (t − 7)2 − 1.74 (t − 7)3, if 7 ≤ t < 8

5.15 (t − 8) − 1.59 (t − 8)2 + 0.25 (t − 8)3, if 8 ≤ t < 10

6 + 1.88 (t − 10) − 0.03 (t − 10)2 − 0.02 (t − 10)3, if 10 ≤ t < 15

12 + 0.008 (t − 15) − 0.34 (t − 15)2 − 0.03 (t − 15)3, if 15 ≤ t < 18.

�

4.4.2 Periodic cubic splines

In many applications, the motion to be performed is periodic, i.e. initial and
final positions are the same. In this case, the last two degrees of freedom to be
assigned for the computation of the spline are exploited in order to impose the

4.4 Cubic Splines 173

continuity of initial and final velocities and accelerations. As a consequence,
the method for the calculation of the coefficients is slightly different from what
previously reported. As a matter of fact, in lieu of the conditions on the initial
and final velocities v0 and vn which were arbitrarily chosen, in this case one
must consider

v0 = q̇0(t0) = q̇n−1(tn) = vn

q̈0(t0) = q̈n−1(tn).

This last equation can be written as

q̈0(t0) = 2a0,2 = 2an−1,2 + 6an−1,3Tn−1 = q̈n−1(tn) (4.12)

and, after the substitution of the coefficients expressions, from (4.8) one ob-
tains

T0vn−1+2(Tn−1+T0)v0+Tn−1v1 =
3

Tn−1T0

[
T 2

n−1(q1 − q0) + T 2
0 (qn − qn−1)

]
.

(4.13)
By adding this equation to the system (4.10), and by tacking into account
that, in this case, the velocity vn is equal to v0 but unknown (and therefore
in (4.10) the terms Tn−2vn and T1v0 must be moved at the left-hand side),
the linear system for the computation of the velocities becomes
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2(Tn−1 + T0) Tn−1 0 · · · 0 T0

T1 2(T0 + T1) T0 0

0
. . .

...
... 0
0 Tn−2 2(Tn−3 + Tn−2) Tn−3

Tn−1 0 · · · 0 Tn−1 2(Tn−2 + Tn−1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

v0

v1

...
vn−2

vn−1

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3

Tn−1T0

[
T 2

n−1(q1 − q0) + T 2
0 (q0 − qn)

]
3

T0T1

[
T 2

0 (q2 − q1) + T 2
1 (q1 − q0)

]
3

T1T2

[
T 2

1 (q3 − q2) + T 2
2 (q2 − q1)

]
...

3
Tn−1Tn−2

[
T 2

n−3(qn−1 − qn−2) + T 2
n−2(qn−2 − qn−3)

]
3

Tn−2Tn−1

[
T 2

n−2(qn − qn−1) + T 2
n−1(qn−1 − qn−2)

]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The matrix of the system is not tridiagonal anymore. However, also in this
case (the system of equations is called cyclic) efficient computational methods
exist for the solution, see Appendix A.5. Once the velocities v0, . . . , vn−1 have
been obtained, the coefficients of the splines can be calculated by means of
(4.8).

174 4 Multipoint Trajectories

−5 0 5 10 15 20 25
−4

−2

0

2

4

6

8

A
cc

el
er

at
io

n

−4

−2

0

2

4

6

V
el

oc
ity

−5

0

5

10

P
os

iti
on

Fig. 4.8. Spline trajectory for periodic motions.

Example 4.8 Fig. 4.8 shows a periodic spline trajectory with continuous
velocity and acceleration profiles at the initial and final points, which are
obviously assumed equal. The trajectory is defined by the following conditions

t0 = 0, t1 = 5, t2 = 7, t3 = 8, t4 = 10, t5 = 15, t6 = 18,
q0 = 3, q1 = −2, q2 = −5, q3 = 0, q4 = 6, q5 = 12, q6 = 3.

The resulting matrix A is

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

16 3 0 0 0 5
2 14 5 0 0 0
0 1 6 2 0 0
0 0 2 6 1 0
0 0 0 5 14 2
3 0 0 0 3 16

⎤
⎥⎥⎥⎥⎥⎥⎦

and

c =
[
−54, −28, 25.5, 39, 52.2, −34.2

]T
which give the following velocities in the intermediate points (and in this case
also in the first point3)
3 Note that v0 = −2.2823 is the initial velocity (v0 = v6), while the acceleration in

the first and in the last point results ω0 = ω6 = 2a02 = 1.72.

4.4 Cubic Splines 175

v =
[
−2.28, −2.78, 2.99, 5.14, 2.15, −1.8281

]T
.

The expression of the spline is

s(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

3 − 2.28 t + 0.86 t2 − 0.12 t3, if 0 ≤ t < 5

−2 − 2.78 (t − 5) − 0.96 (t − 5)2 + 0.80 (t − 5)3, if 5 ≤ t < 7

−5 + 2.99 (t − 7) + 3.85 (t − 7)2 − 1.85 (t − 7)3, if 7 ≤ t < 8

5.14 (t − 8) − 1.71 (t − 8)2 + 0.32 (t − 8)3, if 8 ≤ t < 10

6 + 2.15 (t − 10) + 0.22 (t − 10)2 − 0.008 (t − 10)3, if 10 ≤ t < 15

12 + 1.82 (t − 15) − 1.02 (t − 15)2 + 0.21 (t − 15)3, if 15 ≤ t < 18

�

4.4.3 Cubic splines with assigned initial and final velocities:
computation based on the accelerations

A different method for the definition of splines is based on the fact that the
generic cubic polynomial qk(t) of the spline can be expressed as a function
of the second derivative computed at its endpoints, i.e. of the accelerations
q̈(tk) = ωk, k = 0, . . . , n, instead of the velocities vk

qk(t) =
(tk+1 − t)3

6Tk
ωk +

(t − tk)3

6Tk
ωk+1 +

(
qk+1

Tk
− Tkωk+1

6

)
(t − tk)+

+

(
qk

Tk
− Tkωk

6

)
(tk+1 − t), t ∈ [tk, tk+1].

(4.14)

Then, the velocity and the acceleration are computed as

q̇k(t) =
(t − tk)2

2Tk
ωk+1 +

(tk+1 − t)2

2Tk
ωk +

qk+1 − qk

Tk
− Tk(ωk+1 − ωk)

6
(4.15)

q̈k(t) =
ωk+1(t − tk) + ωk(tk+1 − t)

Tk
. (4.16)

In this case, it is necessary to find the accelerations ωk which univocally
define the spline. Because of the continuity of velocities and accelerations in
the intermediate points, one obtains

q̇k−1(tk) = q̇k(tk) (4.17)

q̈k−1(tk) = q̈k(tk) = ωk. (4.18)

By substituting (4.15) in (4.17), and using (4.18), one obtains

Tk−1

Tk
ωk−1 +

2(Tk + Tk−1)
Tk

ωk +ωk+1 =
6
Tk

(
qk+1 − qk

Tk
− qk − qk−1

Tk−1

)
(4.19)

for k = 1, . . . , n − 1. From the conditions on initial and final velocities

176 4 Multipoint Trajectories

ṡ(t0) = v0, ṡ(tn) = vn

one deduces

T 2
0

3
ω0 +

T 2
0

6
ω1 = q1 − q0 − T0v0 (4.20)

T 2
n−1

3
ωn +

T 2
n−1

6
ωn−1 = qn−1 − qn + Tn−1vn. (4.21)

By stacking eq. (4.19)-(4.21), one obtains the linear system

A ω = c (4.22)

with the (n + 1) × (n + 1) matrix A (tridiagonal and symmetric)

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2T0 T0 0 · · · 0

T0 2(T0 + T1) T1

...

0
. . . 0

... Tn−2 2(Tn−2 + Tn−1) Tn−1

0 · · · 0 Tn−1 2Tn−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.23)

and the vector of known variables

c =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6
(

q1 − q0

T0
− v0

)
6
(

q2 − q1

T1
− q1 − q0

T0

)
...

6
(

qn − qn−1

Tn−1
− qn−1 − qn−2

Tn−2

)
6
(
vn − qn − qn−1

Tn−1

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4.24)

The solution of this system is straightforward, by applying the remarks re-
ported in the previous section and exploiting the algorithm described in Ap-
pendix A.5. The spline is finally obtained by substituting the values of the
parameters ωk in (4.14).

Obviously, it is also possible to describe the cubic spline according to the
initial definition, that is

s(t) = {qk(t), t ∈ [tk, tk+1], k = 0, . . . , n − 1},
qk(t) = ak0 + ak1(t − tk) + ak2(t − tk)2 + ak3(t − tk)3

by computing the coefficients of the polynomials from the points qk and the
accelerations ωk as

4.4 Cubic Splines 177⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ak0 = qk

ak1 =
qk+1 − qk

Tk
− Tk

6
(ωk+1 + 2ωk)

ak2 =
ωk

2
ak3 =

ωk+1 − ωk

6Tk

k = 0, . . . , n − 1. (4.25)

4.4.4 Cubic splines with assigned initial and final velocities and
accelerations

A spline is a function continuous up to the second derivative, but in general it
is not possible to assign at the same time both initial and final velocities and
accelerations. As a consequence, at its extremities the spline is characterized
by a discontinuity on the velocities or on the accelerations. In case these
discontinuities represent a problem, different approaches can be adopted:

1. A polynomial function of degree 5 can be used for the first and last tract,
with the consequent drawback of allowing larger overshoot in these seg-
ments and slightly increasing the computational burden.

2. Two free4 extra points are added in the first and last segment, and their
value is computed by imposing the desired initial and final values of both
velocity and acceleration.

The latter method is now illustrated in details.
Let us consider a vector of n − 1 points to be interpolated

q = [q0, q2, q3, . . . qn−3, qn−2, qn]T

at the time instants

t = [t0, t2, t3, . . . tn−3, tn−2, tn]T

and the boundary conditions on the velocities v0, vn, and on the accelerations
a0, an. In order to impose the desired accelerations, two extra points q̄1 and
q̄n−1 are added. Time instants t̄1 and t̄n−1 are placed between t0 and t2 and
between tn−2 and tn respectively. The problem is then to determine the spline
through

q̄ = [q0, q̄1, q2, q3, . . . qn−3, qn−2, q̄n−1, qn]T

at
t̄ = [t0, t̄1, t2, t3, . . . tn−3, tn−2, t̄n−1, tn]T

with initial and final velocities v0 and vn. This problem can be solved by
means of the linear system (4.22) but, since q̄1 and q̄n−1 are unknown, it is

4 In the sense that these points cannot be fixed a priori.

178 4 Multipoint Trajectories

necessary to express such points in terms of known variables, namely first/last
position, velocity, acceleration (q0/qn, v0/vn, a0/an) and the acceleration at
these points (ω1, ωn−1). In this way, it is possible to consider the constraints
on the initial and final acceleration. By substituting

q1 = q0 + T0v0 +
T 2

0

3
a0 +

T 2
0

6
ω1 (4.26)

qn−1 = qn − Tn−1vn +
T 2

n−1

3
an +

T 2
n−1

6
ωn−1 (4.27)

in (4.23) and (4.24), and by rearranging the n − 1 equations, one obtains a
linear system

A ω = c (4.28)

with

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2T1 + T0

(
3 +

T0
T1

)
T1 0 · · · 0

T1 −
T2
0

T1
2(T1 + T2) T2

.

.

.

0 T2 2(T2 + T3) T3
.
.
.

.

.

. 0

Tn−3 2(Tn−3 + Tn−2) Tn−2 −
T2

n−1
Tn−2

0 · · · 0 Tn−2 2Tn−2 + Tn−1

(
3 +

Tn−1
Tn−2

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

c =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6
(

q2 − q0

T1
− v0

(
1 + T0

T1

)
− a0

(
1
2

+ T0
3T1

)
T0

)
6
(

q3 − q2

T2
− q2 − q0

T1
+ v0

T0
T1

+ a0
T2
0

3T1

)
6
(

q4 − q3

T3
− q3 − q2

T2

)
...

6
(

qn−2 − qn−3

Tn−3
− qn−3 − qn−4

Tn−4

)
6

(
qn − qn−2

Tn−2
− qn−2 − qn−3

Tn−3
− vn

Tn−1
Tn−2

+ an
T2

n−1
3Tn−2

)
6
(

qn−2 − qn

Tn−2
+ vn

(
1 +

Tn−1
Tn−2

)
− an

(
1
2

+
Tn−1
3Tn−2

)
Tn−1

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Note that T0, T1 and Tn−2, Tn−1 are functions of t̄1 and t̄n−1 respectively,
which can be arbitrarily selected in the intervals (t0, t2) and (tn−2, tn), e.g.

t̄1 =
t0 + t2

2
and t̄n−1 =

tn−2 + tn
2

.

By solving the system (4.28), it is possible to determine the accelerations in
the intermediate points

4.4 Cubic Splines 179

0 2 4 6 8 10 12 14 16
−4

−2

0

2

4

6

A
cc

el
er

at
io

n

−4

−2

0

2

4

6

V
el

oc
ity

−5

0

5

10

P
os

iti
on

Fig. 4.9. Spline trajectory with constraints on initial and final velocities and ac-
celerations.

ω = [ω1, ω2, ω3, . . . ωn−2, ωn−1]T

which, together with the boundary values a0 and an, allow to compute the
overall spline according to (4.14).

Example 4.9 Fig. 4.9 shows a spline computed according to the above algo-
rithm. In particular, the goal is to find a trajectory through the points

t0 = 0, t2 = 5, t3 = 7, t4 = 8, t5 = 10, t6 = 15, t8 = 18,
q0 = 3, q2 = −2, q3 = −5, q4 = 0, q5 = 6, q6 = 12, q8 = 8,

with v0 = 2, v8 = −3, a0 = 0, a8 = 0. In order to impose the conditions on
the acceleration, two extra points are added in t1 = 2.5 and t7 = 16.5 (note
that this choice is completely arbitrary). As a consequence, the vector of the
time interval length is

T =
[
2.5, 2.5, 2, 1, 2, 5, 1.5, 1.5

]T
.

180 4 Multipoint Trajectories

The resulting matrix A is

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

3 0.5 0 0 0 0
0 5 2 0 0 0
0 2 18 7 0 0
0 0 7 18 2 0
0 0 0 2 8 0
0 0 0 0 2 12

⎤
⎥⎥⎥⎥⎥⎥⎦

and the known variables

c =
[
−12, 12, −14.57, 8.57, 0, −24

]T
.

The solution of the linear system (4.28) provides the following accelerations
in the intermediate points

ω =
[
−4.50, 3.03, − 1.58, 1.12, − 0.28, − 1.95

]T
.

Therefore, the two extra points, computed with (4.26) and (4.27), are

q1 = 5.48 and q7 = 11.68.

The final expression of the spline is

s(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s0(t), if 0 ≤ t < 2.5
s1(t), if 2.5 ≤ t < 5
s2(t), if 5 ≤ t < 7
s3(t), if 7 ≤ t < 8
s4(t), if 8 ≤ t < 10
s5(t), if 10 ≤ t < 15
s6(t), if 15 ≤ t < 16.5
s7(t), if 16.5 ≤ t < 18

where

s0(t) = − 0.16 t3 + 3.2 t + 1.2 (2.5 − t)
s1(t) = −0.16 (5 − t)3 + 0.007 (t − 2.5)3 − 0.84 (t − 2.5) + 3.2 (5 − t)
s2(t) = 0.009 (7 − t)3 + 0.58 (t − 5)3 − 4.82 (t − 5) − 1.03 (7 − t)
s3(t) = 1.16 (8 − t)3 − 0.51 (t − 7)3 + 0.51 (t − 7) − 6.16 (8 − t)
s4(t) = −0.25 (10 − t)3 − 0.018 (t − 8)3 + 3.07 (t − 8) + 1.03 (10 − t)
s5(t) = −0.007 (15 − t)3 − 0.01 (t − 10)3 + 2.66 (t − 10) + 1.38 (15 − t)
s6(t) = −0.03 (16.5 − t)3 − 0.24 (t − 15)3 + 8.33 (t − 15) + 8.07 (16.5 − t)
s7(t) = −0.24 (18 − t)3 + 5.33 (t − 16.5) + 8.33 (18 − t).

�

4.4.5 Smoothing cubic splines

Smoothing cubic splines are defined in order to approximate, and not to in-
terpolate, a set of given data points [32, 33, 34, 35, 36]. In particular, this
kind of trajectory is adopted to find a tradeoff between two apposite goals:

4.4 Cubic Splines 181

• A good fit of the given via-points.
• A trajectory as smooth as possible, i.e. with curvature/acceleration as

small as possible.

Given the vector of points

q = [q0, q1, q2, . . . , qn−2, qn−1, qn]T

and the time instants

t = [t0, t1, t2, . . . , tn−2, tn−1, tn]T

the coefficients of the cubic smoothing spline s(t) are computed with the
purpose of minimizing

L := μ

n∑
k=0

wk

(
s(tk) − qk

)2 + (1 − μ)
∫ tn

t0

s̈(t)2dt (4.29)

where the parameter μ ∈ [0, 1] reflects the different importance given to the
two conflicting goals, while wk are parameters which can be arbitrarily chosen
in order to modify the weight of the k-th quadratic error on the global opti-
mization problem. Note that the selection of different coefficients wk allows
to operate locally on the spline, by reducing the approximation error only
in some points of interest. The integral in the second term of (4.29) can be
written as ∫ tn

t0

s̈(t)2dt =
n−1∑
k=0

∫ tk+1

tk

q̈k(t)2dt. (4.30)

Since the spline is composed by cubic segments, the second derivative in each
interval [tk, tk+1] is a linear function from the initial acceleration ωk to the
final acceleration ωk+1, and therefore
∫ tk+1

tk

q̈k(t)2dt =
∫ tk+1

tk

(
ωk +

(t − tk)
Tk

(ωk+1 − ωk)
)2

dt = (4.31)

=
∫ Tk

0

(
ωk +

τ

Tk
(ωk+1 − ωk)

)2

dτ =
1
3
Tk

(
ω2

k + ωkωk+1 + ω2
k+1

)
where it is assumed τ = t − tk.
Then, the criterion function (4.29) can be written as

L =
n∑

k=0

wk

(
qk − s(tk)

)2 + λ

n−1∑
k=0

2Tk

(
ω2

k + ωkωk+1 + ω2
k+1

)
(4.32)

where λ =
1 − μ

6μ
, with μ �= 0, or, with a more compact notation, as

L = (q − s)T W (q − s) + λωT Aω (4.33)

182 4 Multipoint Trajectories

where s is the vector of the approximations [s(tk)], ω = [ω0, . . . , ωn]T is the
vector of accelerations, W = diag{w0, . . . , wn}, and A is the constant matrix
defined in (4.23).
Equation (4.22) provides the relation between the position of the intermediate
points q(tk) and the accelerations ωk. In the case of smoothing splines, the
intermediate points are not the given via-points, which are only approximated,
but the value of the spline itself at time instants tk, i.e. s(tk). For a clamped
spline , i.e. with null initial and final velocity v0 = vn = 0, the linear function
(4.22) can be rewritten as

A ω = C s (4.34)

where

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 6
T0

6
T0

0 · · · 0

6
T0

−(6
T0

+ 6
T1

) 6
T1

...

0 6
T1

−(6
T1

+ 6
T2

) 6
T2

...
. . . 0

6
Tn−2

−(6
Tn−2

+ 6
Tn−1

) 6
Tn−1

0 · · · 0 6
Tn−1

− 6
Tn−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

By substituting (4.34) in (4.33), it is possible to obtain an expression of L
which depends only on s

L(s) = (q − s)T W (q − s) + λsT CT A−1Cs.

The optimal value of the approximation s minimizes the function L(s). There-
fore, by differentiating L(s) with respect to s and setting the result to zero,
one obtains

−(q − s)T W + λsT CT A−1C = 0

that is
s = (W + λCT A−1C)−1Wq.

By exploiting the matrix inversion lemma, this relation can be rewritten as

s = q − λW−1CT (A + λCW−1CT)−1Cq.

In this way, being W diagonal, the solution of the problem requires only one
matrix inversion. In particular, it is necessary to solve the following linear
system

(A + λCW−1CT)ω = Cq (4.35)

which provides the parameters5 ω. Then, it is possible to compute

s = q − λW−1CT ω. (4.36)
5 It can be easily shown that these parameters are the accelerations in the inter-

mediate points, which appear in (4.31) - (4.34).

4.4 Cubic Splines 183

0 2 4 6 8 10 12 14 16 18
−4

−2

0

2

4

6

8

A
cc

el
er

at
io

n

−4

−2

0

2

4

6

V
el

oc
ity

−5

0

5

10

P
os

iti
on

Fig. 4.10. Smoothing splines computed for different values of μ (0.3, 0.6, 1).

Matrix (A+λCW−1CT) in (4.35) is symmetric with five diagonal bands, and
therefore the system can be solved by means of computationally efficient pro-
cedures. Moreover, it is possible to assign directly W−1 = diag

{
1

w0
, . . . , 1

wn−1

}
(without computing the inverse of W) in (4.35) and (4.36), in particular when
it is desired that the k-th position error qk − s(tk) is zero. In this case, it is
sufficient to impose that the element of W−1 corresponding to this point is
null.
Once the accelerations in the intermediate points, obtained from (4.35), have
been computed, it is possible to define the spline trajectory from (4.14).

Example 4.10 Fig. 4.10 shows a smoothing spline computed for different
values of μ (in particular, μ = 1 for the solid line trajectory, μ = 0.6 for the
dashdot line and μ = 0.3 for the dashed line). The trajectory approximates
the following points

t0 = 0, t1 = 5, t2 = 7, t3 = 8, t4 = 10, t5 = 15, t6 = 18
q0 = 3, q1 = −2, q2 = −5, q3 = 0, q4 = 6, q5 = 12, q6 = 8

which are weighted by

W−1 = diag
{

0, 1, 1, 1, 1, 1, 0
}

.

184 4 Multipoint Trajectories

As a consequence, the first and the last point are exactly interpolated, while
the approximation on the intermediate ones depends on μ:

• For μ = 0.3, s =
[
3, −2.29, −2.22, −0.41, 4.79, 10.33, 8

]T
.

• For μ = 0.6, s =
[
3, −2.55, −3.11, −0.76, 5.62, 11.38, 8

]T
.

• For μ = 1 all the data points are exactly interpolated (s = q), but, on the
other hand, the acceleration has the maximum values.

From Fig. 4.10, it is evident that (when μ �= 1) approximation errors are
larger for those points in which the acceleration(/curvature) is higher. For
this reason, it is possible to selectively reduce these errors by changing the
weights in W . In particular, by assuming

W−1 = diag
{

0, 1, 0.1, 1, 1, 1, 0
}

and μ = 0.6, the approximating points are

s =
[
3, −3.14, −4.66, −1.73, 5.60, 11.42, 8

]T
.

As shown in Fig. 4.11, the error with respect to the third via-point is consid-
erably reduced. �

0 2 4 6 8 10 12 14 16 18
−4

−2

0

2

4

6

8

A
cc

el
er

at
io

n

−4

−2

0

2

4

6

V
el

oc
ity

−5

0

5

10

P
os

iti
on

Fig. 4.11. Smoothing splines for different values of μ and wk.

4.4 Cubic Splines 185

0 2 4 6 8 10 12 14 16

−2

0

2

4

A
cc

el
er

at
io

n

−4

−2

0

2

4

V
el

oc
ity

−5

0

5

10

P
os

iti
on

Fig. 4.12. Smoothing splines with assigned initial and final velocity/acceleration.

It is worth noticing that the elements of s are the positions of the (smooth-
ing) spline at the time instants tk, i.e. sk = s(tk). Therefore, it is possible to
regard them as new points which must be exactly interpolated with one of the
techniques reported above. In this way, at the expense of a small deformation
of the spline with respect to the smoothing spline with null initial and final
velocities, it is possible to consider boundary conditions on the velocity and
on the acceleration.

Example 4.11 Fig. 4.12 shows a smoothing spline computed for μ = 0.9 and
with initial and final velocities v0 = 2, vn = −3, while the initial and final
accelerations have been set to zero (a0 = 0, an = 0.) The trajectory must
approximate the points

t0 = 0, t1 = 5, t2 = 7, t3 = 8, t4 = 10, t5 = 15, t6 = 18,
q0 = 3, q1 = −2, q2 = −5, q3 = 0, q4 = 6, q5 = 12, q6 = 3,

with the weights

W−1 = diag
{

0, 1, 1, 1, 1, 1, 0
}

.

The approximating points are

s =
[
3, −2.28, −4.10, −0.65, 6.09, 11.71, 3

]T

186 4 Multipoint Trajectories

−5 0 5 10 15 20 25
−2

0

2

4

A
cc

el
er

at
io

n

−4

−2

0

2

4

V
el

oc
ity

−5

0

5

10

P
os

iti
on

Fig. 4.13. Smoothing splines with periodic conditions.

which, used for computing the trajectory according to the algorithm reported
in Sec. 4.4.4, provide the following accelerations on the intermediate points

ω =
[
0, − 2.65, 1.23, 4.06, − 0.66, − 0.25, − 1.71, 0.16, 0

]T
,

while the two extra points are q1 = 5.23 (at t1 = 2.5) and qn−1 = 7.56 (at
tn−1 = 16.5). �

Example 4.12 The same points qk and weights wk of the previous example
are considered, with the purpose of finding a smoothing trajectory subject
to periodic constraints (v0 = vn, a0 = an). The approximating points sk are
the same, and by means of the algorithm reported in Sec. 4.4.2 they produce
the trajectory of Fig. 4.13. In this case, the coefficients aki (k = 0, . . . , n,
i = 0, . . . , 3) of the n − 1 cubic polynomials composing the spline are

4.4 Cubic Splines 187

k ak0 ak1 ak2 ak3

0 3 − 2.39 0.67 − 0.08
1 − 2.28 − 1.78 − 0.55 0.49
2 − 4.10 1.96 2.43 − 0.94
3 − 0.65 3.99 − 0.40 0.04
4 6.09 2.94 − 0.12 − 0.04
5 11.71 − 1.89 − 0.84 0.16

�

Smoothing spline with prescribed tolerance

By recursively applying the algorithm for the computation of smoothing
splines, it is possible to find the value of the coefficient μ which guarantees
that the maximum approximation error (εmax = maxk{q(tk) − qk}) is smaller
than a given threshold (δ). In particular, by applying a binary research on
μ ∈ [0, 1], few iterations are sufficient to determine the correct value. The
algorithm is based on three steps, which must be iterated until εmax > δ and
the maximum number of iterations is not reached. The generic i-th iteration
consists in:

1. Assume μ(i) =
L(i) + R(i)

2
where L(i) and R(i) are two auxiliary vari-

ables (whose initial values are 0 and 1 respectively).

2. Compute sk(i) with (4.35) and (4.36), and εmax(i).

3. Update L and R according to the value of εmax(i):

if (εmax(i) > δ)
L(i + 1) = μ
R(i + 1) = R(i)

else
R(i + 1) = μ
L(i + 1) = L(i)

end

Example 4.13 Fig. 4.14 shows two smoothing splines computed with the
purpose of approximating the points

t0 = 0, t1 = 5, t2 = 7, t3 = 8, t4 = 10, t5 = 15, t6 = 18,
q0 = 3, q1 = −2, q2 = −5, q3 = 0, q4 = 6, q5 = 12, q6 = 3,

with a maximum tolerance of 0.1 (solid line) and 1 (dashed line). The resulting
coefficients μ are respectively 0.9931 and 0.8792. In this case, the maximum
number of iterations has been set to 20, and the matrix of the weights is

W−1 = diag
{

0, 1, 1, 1, 1, 1, 0
}

.

188 4 Multipoint Trajectories

0 2 4 6 8 10 12 14 16 18
−4

−2

0

2

4

6

8

A
cc

el
er

at
io

n

−4

−2

0

2

4

6

V
el

oc
ity

−5

0

5

10

P
os

iti
on

Fig. 4.14. Smoothing splines computed with a approximation error of 0.1 (solid)
and 1 (dashed).

�

The procedure described in this section operates only on μ, while it has
been highlighted in previous examples that also the weights wk play an im-
portant role on the approximation error. For this reason, it is important to
underline that a proper choice of these coefficients is of fundamental impor-
tance for the computation of the trajectory, see [37]. On the other hand, it is
not practical to define an algorithm which acts iteratively on all the weights wk

to obtain a prescribed maximum approximation error, since, especially when
the set of data points to be approximated is very large, the computational
burden (and duration) would be excessive.

4.4.6 Choice of the time instants and optimization of cubic splines

If not imposed by the specific application, the time instants tk, used to perform
the interpolation process of the points qk, k = 0, . . . , n, can be chosen in several
ways, with different results. In particular, according to the most common
techniques available in the literature [38] and with reference to a unitary
interval

4.4 Cubic Splines 189

t0 = 0, tn = 1,

the distribution of the intermediate time instants can be defined as

tk = tk−1 +
dk

d
with d =

n−1∑
k=0

dk (4.37)

where dk may be computed as:

1. dk =
1

n − 1
, i.e. a constant value leading to equally spaced points.

2. dk = |qk+1 − qk|, producing the cord length distribution.

3. dk = |qk+1−qk|μ, where it is usually assumed μ = 1
2 , defining the so-called

centripetal distribution.

The first method usually gives the highest speeds, while the last one is par-
ticularly useful when it is desired to reduce the accelerations.

Example 4.14 The spline trajectory interpolating the points

q0 = 0, q1 = 2, q2 = 12, q3 = 5, q4 = 12,
q5 = −10, q6 = −11, q7 = −4, q8 = 6, q9 = 9,

and with null initial and final velocities and accelerations is shown in Fig. 4.15.
The choice of the time instants has been made according to the above three
techniques. The uniform distribution produces peaks in the velocity profile,
while the cord length distribution leads to high accelerations. As a conse-
quence, if the trajectories are scaled in time in order to meet given constraints
on velocity and acceleration (in particular it is assumed vmax = 3, amax = 2),
the duration of the spline computed with a cord length distribution of tk is
limited by the maximum acceleration, while the other two trajectories reach
the maximum speed, see Fig. 4.16.

�

The total duration of a spline trajectory s(t), interpolating the points
(tk, qk), k = 0, . . . , n, is

T =
n−1∑
k=0

Tk = tn − t0

where Tk = tk+1 − tk. Therefore, when limit values of velocity, acceleration,
etc. are provided, it is possible to define an optimization problem aiming at
minimizing the total time T , [39, 40, 41]. From a formal point of view, the
problem can be formulated as

190 4 Multipoint Trajectories

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1
x 10

4

A
cc

el
er

at
io

n

−300

−200

−100

0

100

200

V
el

oc
ity

−15

−10

−5

0

5

10

15

P
os

iti
on

Fig. 4.15. Spline trajectories interpolating a set of data points, with different distri-
butions of time instants: uniformly spaced (solid), cord length (dashed), centripetal
(dotted).

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

min T =
n−1∑
k=0

Tk

such that
|ṡ(t, Tk)| < vmax, t ∈ [0, T]

|s̈(t, Tk)| < amax, t ∈ [0, T].

(4.38)

This is a nonlinear optimum problem with a linear objective function, solvable
with classical techniques of operational research. Since the coefficients which
determine the spline (and as a consequence the value of the velocity and of the
acceleration along the trajectory) are computed as a function of the intervals
Tk, the optimization problem can be solved in a iterative way, by scaling in
time the segments which compose the spline [34, 42, 43]. As a matter of fact,
if the time interval Tk is replaced by T ′

k = λTk, then the velocity, acceleration
and jerk are scaled by 1/λ, 1/λ2, 1/λ3 respectively. Therefore, by choosing

λ = max{λv, λa, λj}

4.4 Cubic Splines 191

0 10 20 30 40 50 60 70 80 90
−2

−1

0

1

2

A
cc

el
er

at
io

n

−4

−2

0

2

4

V
el

oc
ity

−15

−10

−5

0

5

10

15

P
os

iti
on

Fig. 4.16. Spline trajectories interpolating a set of data points, with different dis-
tributions of time instants, and properly scaled to be compliant with the constraints
on the velocity and acceleration: uniformly spaced (solid), cord length (dashed),
centripetal (dotted).

where

λv = maxk {λv,k} , with λv,k = maxt∈[tk,tk+1)

{
|q̇k(t)|
vmax

}

λa = maxk {λa,k} , with λa,k = maxt∈[tk,tk+1)

⎧⎨
⎩
√

|q̈k(t)|
amax

⎫⎬
⎭

λj = maxk

{
λj,k

}
, with λj,k = maxt∈[tk,tk+1)

⎧⎨
⎩ 3

√
|q(3)

k (t)|
jmax

⎫⎬
⎭

it is possible to optimize the trajectory, in the sense that the spline will reach
the maximum speed or the maximum acceleration or, if given, the maximum
jerk, in at least a point ot the interval [t0, tn] (see Example 4.14). In order to
obtain a spline composed by segments individually optimized, that is executed
in minimum time, it is necessary to scale in time each interval according to

T ′
k = λkTk (4.39)

192 4 Multipoint Trajectories

with
λk = max{λv,k, λa,k, λj,k}.

In this way, in each tract the maximum speed, the maximum acceleration or
the maximum jerk is obtained; on the other hand, by scaling separately each
spline segment, the velocity, the acceleration and the jerk are discontinuous
at the joints between two contiguous tracts. It is therefore necessary to recal-
culate the spline coefficients with the new values T ′

k. This approach can be
iterated until the variation between Tk and T ′

k is small enough. Therefore, the
optimization procedure is composed by two steps to be iterated:

• Given the spline compute the time intervals T ′
k with (4.39).

• Recalculate the spline coefficients with the new T ′
k according to one of the

methods described in this section.

Since the limit trajectory is obtained by a local modification process, we can-
not expect it to be a global solution of the optimization problem (4.38). How-
ever, the solution in general is quite satisfactory, even after few iterations [42].
An alternative method for obtaining optimal minimum time splines, based on
heuristics, is reported in [17].

Example 4.15 The goal is to plan the spline trajectory interpolating the
following points

q0 = 0, q1 = 2, q2 = 12, q3 = 5

which minimizes the total time T with the constraints vmax = 3, amax = 2.
Null initial and final velocities are assumed.
It is necessary to solve the nonlinear optimum problem defined by

min {T = T0 + T1 + T2}

4.4 Cubic Splines 193

with the constraints
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a01 ≤ vmax (init. vel. 1-st tract ≤ vmax)

a11 ≤ vmax (init. vel. 2-nd tract ≤ vmax)

a21 ≤ vmax (init. vel. 3-rd tract ≤ vmax)

a01 +2a02T1 +3a03T
2
1 ≤ vmax (final vel. 1-st tract ≤ vmax)

a11 +2a12T2 +3a13T
2
2 ≤ vmax (final vel. 2-nd tract ≤ vmax)

a21 +2a22T3 +3a23T
2
3 ≤ vmax (final vel. 3-rd tract ≤ vmax)

a01 +2a02

(
− a02

3a03

)
+3a03

(
− a02

3a03

)2

≤ vmax (vel. 1-st tract ≤ vmax)

a11 +2a12

(
− a12

3a13

)
+3a13

(
− a12

3a13

)2

≤ vmax (vel. 2-nd tract ≤ vmax)

a21 +2a22

(
− a22

3a23

)
+3a23

(
− a22

3a23

)2

≤ vmax (vel. 3-rd tract ≤ vmax)

2a02 ≤ amax (init. acc. 1-st tract ≤ amax)

2a12 ≤ amax (init. acc. 2-nd tract ≤ amax)

2a22 ≤ amax (init. acc. 3-rd tract ≤ amax)

2a02 +6a03T1 ≤ amax (final acc. 1-st tract ≤ amax)

2a12 +6a13T2 ≤ amax (final acc. 2-nd tract ≤ amax)

2a22 +6a23T3 ≤ amax (final acc. 3-rd tract ≤ amax).

Notice that all the constraints depend on Tk, since the coefficients ak,i are
computed as a function of the time intervals Tk. By solving iteratively this
optimization problem6, after 10 iterations one obtains the following values

T0 = 1.5576, T1 = 4.4874, T2 = 4.5537 ⇒ T = 10.5987

while after 100 iterations

T0 = 1.5551, T1 = 4.4500, T2 = 4.5767 ⇒ T = 10.5818

and after 1000 iterations

T0 = 1.5551, T1 = 4.4500, T2 = 4.5767 ⇒ T = 10.5818.

Figure 4.17(a) shows the profiles of the splines obtained during the iterative
process. Notice the very fast convergence rate of the procedure towards the
“optimal” trajectory, reported in Fig. 4.17(b). �

6 The first computation of the spline is performed with a cord length distribution
of the time instants tk.

194 4 Multipoint Trajectories

0 2 4 6 8 10 12
−3

−2

−1

0

1

2

3

A
cc

el
er

at
io

n

−3

−2

−1

0

1

2

3

V
el

oc
ity

0

5

10

15

P
os

iti
on

0 2 4 6 8 10 12
−3

−2

−1

0

1

2

A
cc

el
er

at
io

n

−3

−2

−1

0

1

2

3

V
el

oc
ity

0

2

4

6

8

10

12

P
os

iti
on

(a) (b)

Fig. 4.17. Optimal spline through a set of points: iterative procedure (a) and final
trajectory (b).

4.5 B-spline Functions for Trajectories with High Degree
of Continuity

In some applications, it is required to plan trajectories with continuous deriva-
tives up to a given order d > 2 (e.g. with continuous jerk, snap or even higher
order derivatives)[44]. For this purpose, instead of the standard piecewise poly-
nomial form adopted in the previous sections:

s(t) = {qk(t), t ∈ [tk, tk+1], k = 0, . . . , n − 1},
qk(t) = ak0 + ak1(t − tk) + . . . + aki(t − tk)i + . . . + akp(t − tk)p

it is preferable to use spline functions expressed in the B-form (or B-splines),
i.e.

s(u) =
m∑

j=0

pjB
p
j (u), umin ≤ u ≤ umax (4.40)

where pj are the control points and Bp
j (u) the basis functions of degree p,

defined for the knot vector u = [u0, . . . , unknot
].

Because of their clear geometrical meaning, B-splines (described in details
in Appendix B) are particularly useful for the definition of multi-dimensional
parametric curves. For this reason they are adopted in Chapter 8, focussed
on path planning in 3D space. On the other hand, an important feature of
B-splines is that, by definition, they are p − k continuous differentiable at

4.5 B-spline Functions for Trajectories with High Degree of Continuity 195

a knot of multiplicity k, see Sec. B.1. Therefore, if all the internal knots are
distinct (k = 1), the continuity of velocity and acceleration simply requires the
adoption of a B-spline of degree three (p = 3). If a continuous jerk is required,
then it is necessary to set p = 4, while the condition p = 5 guarantees also the
continuity of the snap. For this reason, B-splines can be profitably used also in
one-dimensional problems, since the continuity between contiguous segments
within the curve is implicitly obtained. In this case, the independent variable
is u = t, and (4.40) may be rewritten as

s(t) =
m∑

j=0

pjB
p
j (t), tmin ≤ t ≤ tmax (4.41)

where pj are scalar parameters.

Given the desired degree p (selected on the basis of the desired degree of
continuity for the B-spline), and the points qk, k = 0, . . . , n to be interpolated
at time instants tk, the problem consists in finding the values of the unknown
parameters pj , j = 0, . . . , m, which guarantee that

s(tk) = qk, k = 0, . . . , n.

First of all, it is necessary to define the knot vector u. A typical choice is

u = [t0, . . . , t0︸ ︷︷ ︸
p+1

, t1, . . . , tn−1, tn, . . . , tn︸ ︷︷ ︸
p+1

]. (4.42)

Therefore the total number of knots is nknot+1 = n+2p+1. As a consequence,
because of the relationship between nknot, m, and p for a B-spline function
(i.e. nknot − p− 1 = m), the number of unknown control points pj is m + 1 =
(n + 1) + p − 1. Another possibility for the choice of the knot vector is

u = [t0, . . . , t0︸ ︷︷ ︸
p+1

, (t0 + t1)/2, . . . , (tk−1 + tk)/2, . . . , (tn−1 + tn)/2, tn, . . . , tn︸ ︷︷ ︸
p+1

].

(4.43)

In this case, the knots are nknot + 1 = n + 2p + 2, and, as a consequence,
the number of control points to be determined is m + 1 = (n + 1) + p. With
this choice, the interpolation of points qk occurs at time instants tk, as in
the previous case. The difference is that now the segments composing the B-
spline trajectory abut at time instants shifted with respect to the tk. i.e. at
t = (tk−1 + tk)/2. The adoption of (4.42) or (4.43) is strictly related to the de-
gree of the spline. In particular, as highlighted in the Examples 4.16 and 4.17,
the fact that the degree p is odd or even strongly affects the trajectory profiles
obtained with B-spline functions. If p is odd, the choice (4.42) is preferable
while, if p is even, the knot vector expressed by (4.43) provides better results,
[45].

196 4 Multipoint Trajectories

In order to determine the unknown coefficients pj , j = 0, . . . ,m, one can
build a linear system by stacking the n + 1 equations obtained by imposing
the interpolation conditions of each point qk at time tk:

qk =
[
Bp

0(tk), Bp
1(tk), . . . , Bp

m−1(tk), Bp
m(tk)

]
⎡
⎢⎢⎢⎢⎢⎣

p0

p1

...
pm−1

pm

⎤
⎥⎥⎥⎥⎥⎦ , k = 0, . . . , n.

In this way, a system of n + 1 equations in the m + 1 unknown control points
pj is obtained. However, in order to have a unique solution, more constraints
have to be imposed. In particular, p− 1 or p additional equations, depending
on the choice of u, are necessary to obtain a square system with m + 1 equa-
tions and m + 1 unknown variables. Typical conditions, beside the via-points
interpolation, concern velocities and accelerations (and more generally higher
order time derivatives of the curve) at the initial and final points:

s(1)(t0) = v0, s(1)(tn) = vn

s(2)(t0) = a0, s(2)(tn) = an

...
...

These constraints can be written as

vk =
[
Bp

0
(1)(tk), Bp

1
(1)(tk), . . . , Bp

m−1
(1)(tk), Bp

m
(1)(tk)

]
⎡
⎢⎢⎢⎢⎢⎣

p0

p1

...
pm−1

pm

⎤
⎥⎥⎥⎥⎥⎦, k = 0, n

ak =
[
Bp

0
(2)(tk), Bp

1
(2)(tk), . . . , Bp

m−1
(2)(tk), Bp

m
(1)(tk)

]
⎡
⎢⎢⎢⎢⎢⎣

p0

p1

...
pm−1

pm

⎤
⎥⎥⎥⎥⎥⎦, k = 0, n

where Bp
j
(i)(tk) are the i-th derivatives of the basis functions Bp

j (t) computed

at time instant tk. For the calculation of Bp
j
(i)(tk), see Sec. B.1.

Note that the generic equation

s(i)(tk) =
[
Bp

0
(i)(tk), Bp

1
(i)(tk), . . . , Bp

m−1
(i)(tk), Bp

m
(i)(tk)

]
⎡
⎢⎢⎢⎢⎢⎣

p0

p1

...
pm−1

pm

⎤
⎥⎥⎥⎥⎥⎦ (4.44)

4.5 B-spline Functions for Trajectories with High Degree of Continuity 197

is equivalent to

s(i)(tk) =
m∑

j=0

pjB
p
j
(i)(tk).

Alternatively, instead of assigning boundary conditions on the velocity
or on the acceleration, one may impose the continuity of the curve and of
its derivatives at the initial and final time instants (the so-called periodic or
cyclic conditions), i.e

s(i)(t0) = s(i)(tn)
or, in matrix notation,

[
Bp

0
(i)(t0)−Bp

0
(i)(tn), Bp

1
(i)(t0)−Bp

1
(i)(tn), . . . , Bp

m
(i)(t0)−Bp

m
(i)(tn)

]
⎡
⎢⎢⎢⎢⎢⎣

p0

p1

...
pm−1

pm

⎤
⎥⎥⎥⎥⎥⎦=0.

(4.45)

The conditions in (4.44) or (4.45) can be mixed in order to obtain desired
profiles.

By setting p = 3, the standard cubic splines are obtained and, depending
on the choice of the two additional conditions, the different cases reported in
the previous sections can be easily deduced.

If p = 4 also the jerk profile is continuous. Since with the choice of the knot
vector expressed by (4.43), there are four free parameters to be determined,
it is possible to assign initial and final velocities and accelerations. This leads
to a linear system of (n + 1) + 4 equations in (n + 1) + 4 unknowns (in this
case m = n + 4):

Ap = c (4.46)

where
p = [p0, p1, . . . , pm−1, pm]T

and (with p = 4)

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Bp
0(t0) Bp

1(t0) · · · Bp
m(t0)

Bp
0
(1)(t0) Bp

1
(1)(t0) · · · Bp

m
(1)(t0)

Bp
0
(2)(t0) Bp

1
(2)(t0) · · · Bp

m
(2)(t0)

Bp
0(t1) Bp

1(t1) · · · Bp
m(t1)

...
...

...
Bp

0(tn−1) Bp
1(tn−1) · · · Bp

m(tn−1)

Bp
0
(2)(tn) Bp

1
(2)(tn) · · · Bp

m
(2)(tn)

Bp
0
(1)(tn) Bp

1
(1)(tn) · · · Bp

m
(1)(tn)

Bp
0(tn) Bp

1(tn) · · · Bp
m(tn)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, c =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q0

v0

a0

q1

...
qn−1

an

vn

qn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4.47)

198 4 Multipoint Trajectories

0 2 4 6 8 10 12 14 16 18
−10

−5

0

5

Je
rk

−4

−2

0

2

4

6

A
cc

el
er

at
io

n

−5

0

5

10

V
el

oc
ity

−10

−5

0

5

10

15

P
os

iti
on

Fig. 4.18. B-spline trajectory with continuity of the jerk (p = 4), obtained by
computing the knot vector as in (4.43).

The control points pj , j = 0, . . . ,m, are obtained by solving (4.46), and the B-
spline can be evaluated for any value of t ∈ [t0, tn] according to the algorithm
reported in Appendix B.

Example 4.16 Fig. 4.18 shows a spline computed according to the above
algorithm (with p = 4). The trajectory is computed by considering the inter-
polation of the following points

t0 = 0, t1 = 5, t2 = 7, t3 = 8, t4 = 10, t5 = 15, t6 = 18,
q0 = 3, q1 = −2, q2 = −5, q3 = 0, q4 = 6, q5 = 12, q6 = 8,

and with the boundary conditions

v0 = 2, v6 = −3, a0 = 0, a6 = 0.

4.5 B-spline Functions for Trajectories with High Degree of Continuity 199

With the knot vector

u =
[
0, 0, 0, 0, 0, 2.5, 6, 7.5, 9, 12.5, 16.5, 18, 18, 18, 18, 18

]
the resulting matrix A is

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.00 0 0 0 0 0 0 0 0 0 0
−1.60 1.60 0 0 0 0 0 0 0 0 0
1.92 −2.72 0.80 0 0 0 0 0 0 0 0
0 0.00 0.08 0.43 0.44 0.03 0 0 0 0 0
0 0 0.00 0.05 0.58 0.34 0.00 0 0 0 0
0 0 0 0.00 0.34 0.59 0.05 0.00 0 0 0
0 0 0 0 0.03 0.50 0.40 0.05 0.00 0 0
0 0 0 0 0 0.00 0.08 0.39 0.45 0.05 0
0 0 0 0 0 0 0 0 1.45 −6.78 5.33
0 0 0 0 0 0 0 0 0 −2.66 2.66
0 0 0 0 0 0 0 0 0 0 1.00

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and the known variables are

c =
[
3, 2, 0, −2, −5, 0, 6, 12, 0, − 3, 8

]T
.

From (4.46) the control points defining the trajectory shown in Fig. 4.18 result

p =
[
3, 4.25, 7.25, 7.39, −13.66, 7.44, 4.98, 12.59, 13.25, 9.12, 8

]
.

If one computes the knot vector according to (4.42), the trajectory obtained
by interpolating the point qk is still satisfactory (see Fig. 4.19), but it presents
more pronounced oscillations, and as a consequence the peak values of velocity
and acceleration are higher than in the previous case. Note that by adopting
(4.42), the knot vector is

u =
[
0, 0, 0, 0, 0, 5, 7, 8, 10, 15, 16.5, 18, 18, 18, 18, 18

]
(4.48)

where an extra-knot at 16.5 has been inserted in the standard knot vector
expression, in order to impose the four additional constraints. As a matter of
fact, the choice of (4.42) leads to p − 1 (in this case three) free parameters
which must be determined by imposing the boundary conditions. Since, in
this example, the number of free parameters is smaller than the number of
desired conditions, one has to increase the number of unknown control points
pj . This can be obtained by increasing the number of knots. For instance, the
knot vector (4.48) is obtained by assuming

u = [t0, . . . , t0︸ ︷︷ ︸
5

, t1, . . . , tn−1, (tn + tn−1)/2, tn, . . . , tn︸ ︷︷ ︸
5

]

but it is worth noticing that additional knots can be added in any position of
u, with the only constraint of avoiding coincident knots which would produce
a reduction of the continuity order of the trajectory. In Fig. 4.20 a trajectory

200 4 Multipoint Trajectories

0 2 4 6 8 10 12 14 16 18
−15

−10

−5

0

5

10

Je
rk

−10

−5

0

5

10

A
cc

el
er

at
io

n

−5

0

5

10

V
el

oc
ity

−10

−5

0

5

10

15

P
os

iti
on

Fig. 4.19. B-spline trajectory of degree 4, obtained by computing the knot vector
as in (4.42).

computed with a double knot at 15 is shown. Note the discontinuity on the
jerk at t = 15.

�

For p = 4, one can assume cyclic conditions for the velocity, acceleration,
jerk and, since the choice (4.43) requires four additional constraints, also for
the snap (which in the interior of the trajectory will be however discontinuous).
Alternatively, besides the periodic conditions on the first three derivatives, one
can assume a boundary condition on the velocity or acceleration. The system
(4.46) is now defined by

4.5 B-spline Functions for Trajectories with High Degree of Continuity 201

0 2 4 6 8 10 12 14 16 18
−15

−10

−5

0

5

10

Je
rk

−10

−5

0

5

10

A
cc

el
er

at
io

n

−5

0

5

10

V
el

oc
ity

−10

−5

0

5

10

15

P
os

iti
on

Fig. 4.20. B-spline trajectory of degree 4, with a double knot at 15.

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Bp
0 (t0) Bp

1 (t0) · · · Bp
m(t0)

Bp
0 (t1) Bp

1 (t1) · · · Bp
m(t1)

...
...

...
Bp

0 (tn−1) Bp
1 (tn−1) · · · Bp

m(tn−1)

Bp
0 (tn) Bp

1 (tn) · · · Bp
m(tn)

Bp
0
(1)(tn)−Bp

0
(1)(t0) Bp

1
(1)(tn)−Bp

1
(1)(t0) · · · Bp

m
(1)(tn)−Bp

m
(1)(t0)

Bp
0
(2)(tn)−Bp

0
(2)(t0) Bp

1
(2)(tn)−Bp

1
(2)(t0) · · · Bp

m
(2)(tn)−Bp

m
(2)(t0)

Bp
0
(3)(tn)−Bp

0
(3)(t0) Bp

1
(3)(tn)−Bp

1
(3)(t0) · · · Bp

m
(3)(tn)−Bp

m
(3)(t0)

Bp
0
(4)(tn)−Bp

0
(3)(t0) Bp

1
(4)(tn)−Bp

1
(3)(t0) · · · Bp

m
(4)(tn)−Bp

m
(4)(t0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

c = [q0, q1, . . . , qn−1, qn, 0, 0, 0, 0]T .

202 4 Multipoint Trajectories

Example 4.17 A B-spline trajectory of degree 4 interpolating the points

t0 = 0, t1 = 5, t2 = 7, t3 = 8, t4 = 10, t5 = 15, t6 = 18,
q0 = 3, q1 = −2, q2 = −5, q3 = 0, q4 = 6, q5 = 12, q6 = 3,

is defined by imposing the periodic conditions

s(1)(t0) = s(1)(t6)
s(2)(t0) = s(2)(t6)
s(3)(t0) = s(3)(t6)
s(4)(t0) = s(4)(t6).

With the use of the knot vector

u =
[
0, 0, 0, 0, 0, 2.5, 6, 7.5, 9, 12.5, 16.5, 18, 18, 18, 18, 18

]
the resulting matrix A and vector c are

A=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0
0 0.00 0.08 0.43 0.44 0.03 0 0 0 0 0
0 0 0.00 0.05 0.58 0.34 0.00 0 0 0 0
0 0 0 0.00 0.34 0.59 0.05 0.00 0 0 0
0 0 0 0 0.03 0.50 0.40 0.05 0.00 0 0
0 0 0 0 0 0.00 0.08 0.39 0.45 0.05 0
0 0 0 0 0 0 0 0 0 0 1

−1.60 1.60 0 0 0 0 0 0 0 2.66 −2.66
1.92 −2.72 0.80 0 0 0 0 0 −1.45 6.78 −5.33
−1.53 2.44 −1.12 0.21 0 0 0 0.32 −2.79 9.57 −7.11
0.61 −1.02 0.55 −0.17 0.02 0 −0.03 0.34 −2.05 6.48 −4.74

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

c =
[
3, 2, − 2, − 5, 0, 6, 12, 3, 0, 0, 0, 0

]T
.

The control points obtained with these values are

p =
[
3, 1.82, 1.30, 8.88, − 13.96, 7.73, 3.66, 20.41, 7.53, 3.70, 3

]T
.

The profiles of the B-spline trajectory and of its derivatives are shown in
Fig. 4.21.
By considering the same via-points of the above example, and by adopting
a knot vector of the form (4.42) with periodic conditions on the velocity,
acceleration and jerk, the matrix

A=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0
0 0.02 0.23 0.51 0.22 0 0 0 0 0
0 0 0.00 0.24 0.69 0.05 0 0 0 0
0 0 0 0.05 0.69 0.24 0.00 0 0 0
0 0 0 0 0.22 0.58 0.18 0.01 0 0
0 0 0 0 0 0.03 0.23 0.49 0.24 0
0 0 0 0 0 0 0 0 0 1

−0.80 0.80 0 0 0 0 0 0 1.33 −1.33
0.48 −0.82 0.34 0 0 0 0 −0.50 1.83 −1.33
−0.19 0.42 −0.32 0.08 0 0 0.10 −0.55 1.34 −0.88

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

4.5 B-spline Functions for Trajectories with High Degree of Continuity 203

0 2 4 6 8 10 12 14 16 18
−20

−10

0

10

20

S
na

p

−10

−5

0

5

Je
rk

−4

−2

0

2

4

6

A
cc

el
er

at
io

n

−10

−5

0

5

10

V
el

oc
ity

−10

−5

0

5

10

15

P
os

iti
on

Fig. 4.21. B-spline trajectory of degree 4 with cyclic conditions.

results ill-conditioned. As a consequence, it leads to a solution which cannot
be used in practice, see Fig. 4.22 where the values of velocities, accelerations
and jerk are shown to range in ±1017. �

204 4 Multipoint Trajectories

0 2 4 6 8 10 12 14 16 18

5

0

0.5

1 x 1017

Je
rk

4

2

0

2

4 x 1016

A
cc
el
er
at
io
n

4

2

0

2

4 x 1016

V
el
oc
ity

6

4

2

0

2

4
x 10

16

P
os
iti
on

Fig. 4.22. B-spline trajectory of degree 4 with cyclic conditions and with the knot
vector u = [0, 0, 0, 0, 0, 5, 7, 8, 10, 15, 18, 18, 18, 18, 18].

With p = 5, the knots should be selected according to (4.42), i.e.

u = [t0, . . . , t0︸ ︷︷ ︸
6

, t1, . . . , tn−1, tn, . . . , tn︸ ︷︷ ︸
6

].

It is therefore possible to impose the desired values of the initial and final
velocities/accelerations (four conditions). Moreover, this value of p guarantees
the continuity of the trajectory up to the fourth derivative (snap). The system
(4.46) with the expressions of A and c reported in (4.47) remains unchanged.

Example 4.18 The data (via-points and constraints) of Example 4.16 are
used to build a B-spline of degree 5, with the knot vector constructed as in
(4.42). By solving (4.46), with

4.5 B-spline Functions for Trajectories with High Degree of Continuity 205

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0
0.8 −1.37 0.57 0 0 0 0 0 0 0 0
0 0.01 0.10 0.40 0.40 0.07 0 0 0 0 0
0 0 0.00 0.07 0.54 0.37 0.00 0 0 0 0
0 0 0 0.01 0.36 0.56 0.06 0.00 0 0 0
0 0 0 0 0.07 0.50 0.35 0.05 0.00 0 0
0 0 0 0 0 0 0.08 0.31 0.43 0.15 0
0 0 0 0 0 0 0 0 0.83 −3.05 2.22
0 0 0 0 0 0 0 0 0 −1.66 1.66
0 0 0 0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

c =
[
3, 2, 0, −2, −5, 0, 6, 12, 0, − 3, 8

]T
,

the control points

p =
[
35, 7.80, 9.69, −18.83, 12.01, 1.5137, 12.33, 14.60, 9.80, 8

]T
are obtained. The profiles of the B-spline trajectory and of its derivatives are
shown in Fig. 4.23, superimposed to the ones of Example 4.16 (dashed) which
are relative to a B-spline trajectory of degree 4. Note the small differences
between the two position profiles. �

If p = 5, the four additional constraints can also be determined by mixing
boundary conditions on the velocity, and periodic conditions on the accelera-
tion and jerk. In this way, the matrix A and the vector c in (4.46) become

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Bp
0 (t0) Bp

1 (t0) · · · Bp
m(t0)

Bp
0
(1)(t0) Bp

1
(1)(t0) · · · Bp

m
(1)(t0)

Bp
0 (t1) Bp

1 (t1) · · · Bp
m(t1)

...
...

...
Bp

0 (tn−1) Bp
1 (tn−1) · · · Bp

m(tn−1)

Bp
0
(1)(tn) Bp

1
(1)(tn) · · · Bp

m
(1)(tn)

Bp
0 (tn) Bp

1 (tn) · · · Bp
m(tn)

Bp
0
(2)(tn)−Bp

0
(2)(t0) Bp

1
(2)(tn)−Bp

1
(2)(t0) · · · Bp

m
(2)(tn)−Bp

m
(2)(t0)

Bp
0
(3)(tn)−Bp

0
(3)(t0) Bp

1
(3)(tn)−Bp

1
(3)(t0) · · · Bp

m
(3)(tn)−Bp

m
(3)(t0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and
c = [q0, v0, q1, . . . , qn−1, vn, qn, 0, 0]T .

Example 4.19 A B-spline trajectory of degree 5 interpolating the points

t0 = 0, t1 = 5, t2 = 7, t3 = 8, t4 = 10, t5 = 15, t6 = 18,
q0 = 3, q1 = −2, q2 = −5, q3 = 0, q4 = 6, q5 = 12, q6 = 3,

206 4 Multipoint Trajectories

0 2 4 6 8 10 12 14 16 18
−15

−10

−5

0

5

10

S
na

p

−10

−5

0

5

Je
rk

−4

−2

0

2

4

6

A
cc

el
er

at
io

n

−5

0

5

10

V
el

oc
ity

−10

−5

0

5

10

15

P
os

iti
on

Fig. 4.23. B-spline trajectory with continuity of the snap (p = 5).

is defined by imposing the conditions

s(1)(t0) = 2, s(1)(t6) = 2

and

s(2)(t0) = s(2)(t6)
s(3)(t0) = s(3)(t6).

4.5 B-spline Functions for Trajectories with High Degree of Continuity 207

The resulting matrix A and vector c are

A=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0
−1 1 0 0 0 0 0 0 0 0 0
0 0.01 0.10 0.40 0.40 0.07 0 0 0 0 0
0 0 0.00 0.07 0.54 0.37 0.01 0 0 0 0
0 0 0 0.01 0.36 0.56 0.06 0.00 0 0 0
0 0 0 0 0.07 0.50 0.35 0.05 0.00 0 0
0 0 0 0 0 0.01 0.08 0.31 0.43 0.15 0
0 0 0 0 0 0 0 0 0 −1.66 1.66
0 0 0 0 0 0 0 0 0 0 1

0.80 −1.37 0.57 0 0 0 0 0 −0.83 3.05 −2.22
−0.48 1.06 −0.80 0.21 0 0 0 0.25 −1.39 3.36 −2.22

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

c =
[
3, 2, − 2, − 5, 0, 6, 12, 2, 3, 0, 0, 0

]T
.

The control points obtained with these values are

p =
[
3, 5.00, 13.13, 8.34, −18.96, 12.57, −2.81, 34.44, 2.26, 1.80, 3

]T
The profiles of the B-spline trajectory and of its derivatives are shown in
Fig. 4.24. �

In general, to build a r times differentiable trajectory which interpolates
n+1 points, it is sufficient to consider a B-spline of degree p = r+1. If p is odd,
it is convenient to assume a knot distribution as in (4.42) while, if p is even,
a knot vector of the kind (4.43) provides better results. In the former case,
p − 1 additional constraints are necessary to have a unique solution (in this
case the unknown control points are m+1 = n+p) while, in the latter one, p
additional condition are needed (in this case the unknown control points are
m + 1 = n + p + 1). By adding further knots (and accordingly by increasing
the number of control points pj), it is also possible to consider additional
constraints.

208 4 Multipoint Trajectories

0 2 4 6 8 10 12 14 16 18
−20

−10

0

10

20

S
na

p

−10

−5

0

5

Je
rk

−4

−2

0

2

4

6

A
cc

el
er

at
io

n

−10

−5

0

5

10

V
el

oc
ity

−10

−5

0

5

10

15

P
os

iti
on

Fig. 4.24. B-spline trajectory with continuity of the snap (p = 5) computed with
periodic conditions.

4.6 Nonlinear Filters for Optimal Trajectory Planning

The computation of trajectories with constraints on velocity, acceleration, and
jerk is of particular interest for the control of multi-axis automatic machines.
In general, this problem is solved offline, by defining a function satisfying the
desired conditions on the interpolated points and on the maximum values of

4.6 Nonlinear Filters for Optimal Trajectory Planning 209

Filter
r(t) e(t) q(t)

vmax amax jmax

Basic profile
generator

Fig. 4.25. Conceptual scheme of the nonlinear filter for online optimal trajectory
generation.

velocity, acceleration and jerk. Usually, if any of these conditions changes, the
whole trajectory must be recomputed.

The approach presented in this section is conceptually different: a dynamic
nonlinear filter is used in cascade to a trajectory generator which provides only
basic motion profiles, such as steps or ramps, that, although very simple, are
in general not directly applicable in industrial tasks. The goal of the filter is
to process online these basic profiles and provide, as output, feasible trajecto-
ries satisfying the given constraints. As schematically shown in Fig. 4.25, the
nonlinear filter is based on a feedback scheme, which guarantees that the out-
put signal q(t), subject to constraints on maximum values of its derivatives,
follows as well as possible the external reference r(t).

For instance, a step reference may be tracked in minimum time, in compli-
ance with the constraints, producing a continuous motion profile, with velocity
and acceleration also continuous and jerk piecewise constant (in this case the
trajectory generator is called “third order filter”) or with continuous velocity
and piecewise constant acceleration (in the case of a “second order filter”).
The design of the filter is based on the well known nonlinear variable structure
control theory, for which a wide scientific literature is available, [46, 47]. In
the following, only the algorithmic results are reported, trying to simplify as
much as possible the theoretical presentation.

4.6.1 Online trajectory planner with velocity, acceleration and
jerk constraints

This trajectory planner is able to transform in real-time any standard refer-
ence signal r(t), received as input, in a smooth signal q(t) which satisfies the
following constraints:

vmin ≤ q̇(t) ≤ vmax

amin ≤ q̈(t) ≤ amax

−U = jmin ≤ q(3)(t) ≤ jmax = U.

The input signal r(t) can be generated by a simple trajectory planner, which
provides only simple motion profiles such as steps or ramps. Note that it is

210 4 Multipoint Trajectories

C3

rk Tsz
−1

1 − z−1

Ts

2

1 + z−1

1 − z−1

Ts

2

1 + z−1

1 − z−1

qkq̇kq̈kuk

Fig. 4.26. Third order filter for online optimal trajectory generation.

also possible to use this trajectory generator to filter a signal generated at
runtime by another device, as in tracking operations, or directly provided by
a human operator, e.g. by means of a teach-pendant.
Since the filter is implemented on digital controllers, for its definition it is
convenient to adopt a discrete time formulation. The digital realization of
the trajectory planner has been obtained by discretizing the continuous time
version reported in [48]. The scheme of the trajectory generator is shown in
Fig. 4.26. At each time instant tk = kTs, k = 1, 2, . . . , the variable structure
controller C3 receives the reference signal rk (and its derivatives ṙk and r̈k)
and the current values of position, velocity, and acceleration (qk, q̇k, q̈k respec-
tively), and computes the value of the control action uk. This control variable
corresponds to the desired jerk, which must be integrated three times to obtain
the position profile. The integration is performed by means of a rectangular
approximation for the acceleration, i.e.

q̈k = q̈k−1 + Tsuk−1

while the trapezoidal approximation is used for the velocity and the position:

q̇k = q̈k−1 +
Ts

2
(q̈k + q̈k−1)

qk = qk−1 +
Ts

2
(q̇k + q̈k−1).

The controller C3 is based on the tracking error between the reference signal
rk and the output position qk.
Let us define the normalized error variables

ek =
qk − rk

U
, ėk =

q̇k − ṙk

U
, ëk =

q̈k − r̈k

U

where U is the maximum value of the control action uk. The constraints on
maximum/minimum velocity and acceleration are translated into constraints
on ėk and ëk:

ėmin =
vmin − ṙk

U
, ėmax =

vmax − ṙk

U
,

ëmin =
amin − r̈k

U
, ëmax =

amax − r̈k

U
.

4.6 Nonlinear Filters for Optimal Trajectory Planning 211

It is worth noticing that these constraints are not constant, but depend on ṙk,
r̈k, and therefore they must be re-computed at each sampling time. On the
other hand, this implies that it is possible to change online the limits on veloc-
ity and acceleration vmin, vmax, amin, amax: the controller will then change
the current velocity or acceleration in order to match the new constraints.
The controller C3 in Fig. 4.26 is defined as

C3 :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δ = ėk +
ëk |ëk|

2

σ = ek + ėk ëk sδ −
ë3

k

6
(1 − 3|sδ|) +

sδ

4

√
2[ë2

k + 2 ėk sδ]3

ν+ = ek − ëmax(ë2
k − 2ėk)
4

− (ë2
k − 2ėk)2

8ëmax
− ëk(3ėk − ë2

k)
3

ν− = ek − ëmin(ë2
k + 2ėk)
4

− (ë2
k + 2ėk)2

8ëmin
+

ëk(3ėk + ë2
k)

3

Σ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ν+ if ëk ≤ ëmax and ėk ≤ ë2
k

2
− ë2

max

ν− if ëk ≥ ëmin and ėk ≥ ë2
min − ë2

k

2
σ otherwise

uc = −U sign
(
Σ + (1 − |sign(Σ)|) [δ + (1 − |sδ|)ëk]

)
uk = max

{
uv(ėmin),min{uc, uv(ėmax)}

}

(4.49)

where sδ = sign(δ) and sign(·) is the sign function

sign(x) =

⎧⎨
⎩

+1, x > 0
0, x = 0

−1, x < 0.

The function uv(·), if used as control action uk = uv(v), forces the “velocity”
ėk to reach the value ėk = v in minimum time. It is defined as

Cv :

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

uv(v) = max
{
ua(ëmin),min{ucv(v), ua(ëmax)}

}
ucv(v) = −U sign

(
δv(v) + (1 − |sign(δv(v))|)ëk

)
δv(v) = ëk|ëk| + 2(ėk − v)

ua(a) = −U sign(ëk − a).

(4.50)

The result is a trajectory composed by double S segments, which tracks the
reference signal rk in an optimal way, see Fig. 4.27.

Unfortunately, the discretization process has some drawbacks. In particu-
lar, the output position qk is characterized by small overshoots with respect

212 4 Multipoint Trajectories

0 5 10 15 20
−6

−4

−2

0

2

4

6

Je
rk

−2

−1

0

1

2

A
cc

el
er

at
io

n

−3

−2

−1

0

1

2

V
el

oc
ity

0

5

10

P
os

iti
on

vmax

vmin

amax

amin

jmax

jmin

Fig. 4.27. Double S trajectory profiles (position, velocity, acceleration and jerk)
computed by means of the third order nonlinear filter, with Ts = 0.001s.

to the desired position profile. Moreover, the filter C3 is affected by chattering
on the controlled variable uk when the value of the jerk should be zero. In
general, this is not a problem, since the three integrators filter the signal uk

and produce in any case smooth profiles.

Example 4.20 Fig. 4.27 shows position, velocity, acceleration and jerk of a
trajectory computed with the third order nonlinear filter. The reference signal
rk is a sequence of three step functions: the first of magnitude 4 applied at
t = 1, the second of magnitude 6 at time t = 7, and the last one of amplitude
−12 applied at t = 13. The constraints are

vmin = −3, vmax = 2
amin = −2, amax = 2

4.6 Nonlinear Filters for Optimal Trajectory Planning 213

0 5 10 15 20

−2

−1

0

1

2

A
cc

el
er

at
io

n

−3

−2

−1

0

1

2

V
el

oc
ity

0

5

10

P
os

iti
on

vmax

vmin

amax

amin

Fig. 4.28. Double S trajectory profiles (position, velocity, acceleration and jerk)
computed by means of the third order nonlinear filter; in this case Ts = 0.0001s.

while U = jmax = 5. Note that the minimum and the maximum values of ve-
locity and acceleration are asymmetric. The sampling time is Ts = 0.001s. �

From the acceleration profile of the previous example it results that the tra-
jectory (or, more precisely, each segment of the trajectory) is not an ideal
double S, but is characterized by small overshoots. The amplitude of this
error strictly depends on the sampling time, as shown in Fig. 4.28, which
reports a trajectory calculated with the same boundary conditions but with
Ts = 0.0001s.

As already mentioned, an interesting aspect of this method for trajectory
generation with respect to other techniques, as those introduced in Sections
3.2, 3.4, is the possibility to change at runtime the constraints for the motion
planning.

Example 4.21 Fig. 4.29 shows position, velocity, acceleration and jerk for
a trajectory computed by means of the third order nonlinear filter, when
the reference signal rk is a piecewise constant signal and the constraints are
changed during the computation of the trajectory. The limit values are

214 4 Multipoint Trajectories

0 5 10 15 20
−6

−4

−2

0

2

4

6

Je
rk

−2

−1

0

1

2

A
cc

el
er

at
io

n

−3

−2

−1

0

1

2

V
el

oc
ity

0

5

10

P
os

iti
on

vmax

vmin

amax

amin

jmax

jmin

Fig. 4.29. Double S trajectory profiles computed by means of the third order
nonlinear filter with variable constraints.

vmin = −3 t=12−−−→ −1.5, vmax = 2
amin = −2, amax = 2 t=16−−−→ 1.5

and U = jmax = 5. It is worth noticing that when the limit velocity (vmin) is
modified, the filter reduce the output velocity as fast as possible in order to
satisfy the new constraint. �

An interesting application of this method for trajectory planning is the
tracking of an unknown reference signal. A typical example is given by an
automatic machine, working on mechanical parts transported by a conveyer
belt and disposed in a casual way. In this case, the tool must be synchronized
with the object on the belt (whose velocity is constant and known). The
tool must wait and “catch” the pieces and, therefore, the motion task must

4.6 Nonlinear Filters for Optimal Trajectory Planning 215

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

−2000

−1000

0

1000

2000

Je
rk

−200

−100

0

100

200

A
cc

el
er

at
io

n

−20

−10

0

10

20

V
el

oc
ity

0

5

10

15

20

P
os

iti
on

vmax

vmin

amax

amin

jmax

jmin

Fig. 4.30. Output (position, velocity, acceleration and jerk) of the third order
nonlinear filter with a “sawtooth” reference signal.

be planned online. This problem is quite complex with offline algorithmic
techniques, but can be easily solved by using the nonlinear filter.

Example 4.22 Fig. 4.30 shows position, velocity, acceleration and jerk for a
trajectory computed by means of the third order nonlinear filter, when the ref-
erence signal rk has a “sawtooth” profile. Note that in this case the controller
tries to reduce the position “error” as quickly as possible, and then follows the
input signal until a new change occurs. In order to achieve a good tracking of
the desired motion, it is important to provide the filter with rk and also ṙk

(in previous examples the values ṙk = 0, and r̈k = 0 have been considered). �

216 4 Multipoint Trajectories

C2

rk Tsz
−1

1 − z−1

Ts

2

1 + z−1

1 − z−1

qkq̇kuk

Fig. 4.31. Second order filter for online optimal trajectory generation.

4.6.2 Online trajectory planner with velocity and acceleration
constraints

If a limited jerk is not required, and it is desirable to have a low computa-
tional burden, it may be preferable to adopt a so-called “second order” filter,
designed to reduce the position error qk − rk as quickly as possible while
satisfying the constraints

|q̇k| ≤ vmax

|uk| = |q̈k| ≤ amax = U

where q̇k, q̈k are respectively the trajectory velocity and acceleration at time
kTs (being Ts the sampling time).
Figure 4.31 shows the block-scheme of the trajectory generator, similar to
the third order filter. In this case, the variable structure controller has been
directly designed in discrete time [49, 50] and it is not affected by the non-
idealities characterizing the implementation of the third order filter, namely
chattering and overshoot with respect to the desired position.

Therefore, when the reference signal rk is a step displacement, the output
motion is perfectly equivalent to the trapezoidal trajectory of Sec. 3.2 (see
Fig. 4.32) with, on the other hand, all the advantages of online planning:

• Possibility to change the reference signal rk at any instant.
• Possibility to filter time-varying reference signals.
• Possibility to change the constraints at runtime.

Once the (normalized) tracking errors for the position and velocity have been
defined as

ek =
qk − rk

U
, ėk =

q̇k − ṙk

U

the control signal uk = q̈k is computed at each time instant tk = kTs as

4.6 Nonlinear Filters for Optimal Trajectory Planning 217

0 0.5 1 1.5 2 2.5

−10

−5

0

5

10

A
cc

el
er

at
io

n

−10

−5

0

5

10

V
el

oc
ity

0

5

10

15

P
os

iti
on

vmax

vmin

amax

amin

Fig. 4.32. Output (position, velocity and acceleration) of the second order nonlin-
ear filter with a step reference signal.

C2 :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

zk =
1
Ts

(
ek

Ts
+

ėk

2

)
, żk =

ėk

Ts

m = floor

(
1 +

√
1 + 8|zk|
2

)

σk = żk +
zk

m
+

m − 1
2

sign(zk)

uk = −U sat(σk)
1 + sign(q̇k sign(σk) + vmax − TsU)

2

where floor(·) is the function ‘integer part’, sign(·) is the sign function, and
sat(·) is a saturation function defined by

sat(x) =

⎧⎨
⎩

−1, x < −1
x, −1 ≤ x ≤ 1

+1, x > 1.

Once the variable uk (desired acceleration) has been computed, the velocity
and the position are

218 4 Multipoint Trajectories

0 0.5 1 1.5 2 2.5 3 3.5 4

−200

−100

0

100

200

A
cc

el
er

at
io

n

−20

−10

0

10

20

V
el

oc
ity

0

5

10

15

20

P
os

iti
on

vmax

vmin

amax

amin

Fig. 4.33. Output (position, velocity and acceleration) of the second order nonlin-
ear filter with a “sawtooth” reference signal.

⎧⎨
⎩

q̇k = q̇k−1 + Ts uk−1

qk = qk−1 +
Ts

2
(q̇k + q̇k−1)

Example 4.23 Fig. 4.32 shows position, velocity, and acceleration profiles of
a trajectory computed by means of the second order nonlinear filter, when the
reference signal rk is a step from q0 = 0 to q1 = 15, and the constraints are
amax = vmax = 10. Note that the trajectory has an ideal trapezoidal velocity
profile. �

As in the case of the third order generator, this trajectory planner allows
to track time-varying reference inputs, see Fig. 4.33, and to change at runtime
the limit values of velocity and acceleration, as shown in Fig. 4.34.

4.6 Nonlinear Filters for Optimal Trajectory Planning 219

0 5 10 15 20

−2

−1

0

1

2

A
cc

el
er

at
io

n

−2

0

2

V
el

oc
ity

0

5

10

P
os

iti
on

vmax

vmin

amax

amin

Fig. 4.34. Trajectory computed by means of the second order nonlinear filter when
the constraints on velocity and acceleration are changed at runtime.

Part II

Elaboration and Analysis of Trajectories

5

Operations on Trajectories

The trajectory profiles can be modified with the purpose of obtain-
ing motions satisfying given constraints as, for example, the saturation
limits of the actuation system. Typical modifications that can be ap-
plied are geometric scaling, translations in time or position, reflections.
Another operation, particularly useful when it is necessary to impose
on the motion profile proper constraints due to saturations of the actu-
ation system is the scaling in time. There are two kinds of saturations:
the kinematic and the dynamic saturation. In the former case, in order
to execute the given trajectory it is necessary to define desired dis-
placements characterized by velocities and/or accelerations achievable
by the actuation system. In the latter case, typical of multi-axis ma-
chines like e.g. robotic manipulators, the actuation system may be not
able to apply the torques needed to execute the given motion because
of the coupled and variable dynamics which may characterize the ma-
chine.
Another typical operation, particularly useful for the synchronization
of many axes of motion, is the analytical composition of the functions
which define the trajectories. In electronic cam systems, the trajectory
of the so-called slave (in general more than one) is defined with respect
to the position of the master, and not as a function of the time. There-
fore, the final motion law of each slave axis is given by the composition
of the function defining the relation master-slave with the profile which
describes the motion of the master, typically a “sawtooth” profile.

5.1 Geometric Modification of a Trajectory

In order to satisfy some constraints, not considered during the definition of
the trajectory, some simple ‘geometric’ rules may be used. These rules are
based on translations with respect to time t and/or to position variables q,
on reflections about the coordinate axes, or on scaling operations. Figure 5.1

224 5 Operations on Trajectories

t

q

t1

q1

q(t)

qc(t)

qa(t)

qb(t)

Fig. 5.1. Geometric construction of trajectories by reflection.

shows a generic trajectory q(t) from (t0, q0) to (t1, q1), obtained by means of
one of the methods reported in previous chapters (solid line). For the sake of
simplicity it is assumed t0 = 0 and q0 = 0. The other profiles in Fig. 5.1 are
simply obtained by means of the following rules:

1. qa(t) = q(−t), t ∈ [−t1, 0].
2. qb(t) = −q(−t), t ∈ [−t1, 0].
3. qc(t) = −q(t), t ∈ [0, t1].

On the other hand, with reference to Fig. 5.2, the two trajectories denoted by
a dashed line are obtained from q(t) by translation, i.e.

4. qd(t) = q(t) + q0, t ∈ [0, t1].
5. qe(t) = q(t − t0), t ∈ [t0, t0 + t1].

These operations can be exploited to modify the initial time instant or the
initial position of a trajectory. For instance, when it is necessary to consider
generic conditions on t0 and/or q0 for a trajectory whose expression has been
computed with t0 = 0 and q0 = 0, it is sufficient to consider t− t0 in lieu of t
and/or add the initial position q0.

t

q

q(t)

qd(t)

q0

qe(t)

t0
Fig. 5.2. Geometric construction of trajectories by translation.

5.1 Geometric Modification of a Trajectory 225

h

2

T

2
−T

2

−h

2

q

tT

h

q(t)

q′(t)

Fig. 5.3. Translation operations on a modified trapezoidal.

Example 5.1 The modified trapezoidal trajectory described in Sec. 3.7 has
been determined analytically for t ∈ [0, T/2], being T the duration of the
trajectory, and h the desired displacement:

q(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

h

2 + π

[
2t

T
− 1

2π
sin

(
4πt

T

)]
, 0 ≤ t < T

8

h

2 + π

[
1
4
− 1

2π
+

2
T

(
t − T

8

)
+

4π

T 2

(
t − T

8

)2
]

, T
8 ≤ t < 3

8T

h

2 + π

[
−π

2
+ 2(1 + π)

t

T
− 1

2π
sin

(
4π

T

(
t − T

4

))]
, 3

8T ≤ t ≤ T
2 .

The second part of the trajectory can be obtained by exploiting its symme-
try and the rules stated above. In particular, since the trajectory is sym-
metric with respect to the point (T/2, h/2), it is convenient to translate
q(t) so that the entire trajectory will be centered on (0, 0) (and accordingly
t ∈ [−T/2, T/2] and q(t) ∈ [−h/2, h/2]). The new trajectory obtained by
translation, that is

q′(t) = q
(
t − (−T/2)

)
− h/2, (5.1)

is shown in Fig. 5.3. At this point, the second half of the trajectory can be
easily deduced by reflecting q′(t) through the origin (by applying a reflection
about the t-axis and then one about the q-axis), i.e.

q′′(t) = −q′(−t)

as shown in Fig. 5.4. Now, it is necessary to translate again q′′(t), with a dual
operation with respect to (5.1):

q′′′(t) = q′′
(
t − (T/2)

)
+ h/2.

226 5 Operations on Trajectories

h

2

T

2
−T

2

−h

2

q

t

q′′(t)

q′(t)

Fig. 5.4. Reflection operations on a segment of the modified trapezoidal profile.

Following this procedure, the expression of the modified trapezoidal trajectory
for t ∈ [T/2, T] results

q(t)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

h +
h

2 + π

[
π

2
+ 2(1+π)

t − T

T
− 1

2π
sin

(
4π

T

(
t − 3T

4

))]
, 1

2T ≤ t < 5
8T

h +
h

2 + π

[
−1

4
+

1
2π

+
2
T

(
t − 7T

8

)
− 4π

T 2

(
t − 7T

8

)2
]
, 5

8T ≤ t < 7
8T

h +
h

2 + π

[
2(t − T)

T
− 1

2π
sin

(
4π

T
(t − T)

)]
, 7

8T ≤ t ≤ T.

�

Finally, with geometric scaling operations, it is possible to vary the dis-
placement h or, with the techniques reported in the following section, to
change the time scale, i.e. to modify the duration T of the trajectory. With
reference to Fig. 5.5, notice that the profile qf (t) is obtained from q(t) by
increasing the displacement, the profile qg(t) by increasing the duration of the
trajectory, while both T and h have been modified in qh(t). For instance, if a
normalized trajectory is considered, i.e. q(t) ∈ [0, 1] with t ∈ [0, 1], the other
trajectories are obtained as:

6. qf (t) = h q(t).
7. qg(t) = q(t/T).
8. qh(t) = h q(t/T).

Example 5.2 In some applications, it may be computationally convenient to
plan the trajectory as a composition of one or more elementary functions, for

5.1 Geometric Modification of a Trajectory 227

t

q

q(t) qg(t)

qf (t) qh(t)

Fig. 5.5. Geometric modification of trajectories by scaling operations.

example cubic polynomial functions. For instance, consider the case in which
a third degree polynomial trajectory, interpolating the points q0 = 0, q1 =
10, q2 = 5, q3 = 20 at t0 = 0, t1 = 5, t2 = 7, t3 = 10, must be computed.
For this purpose, a normalized expression of the cubic polynomial trajectory
is adopted, see eq. (5.5) and Sec. 5.2.1. A unitary displacement in a unitary
duration is expressed by

qN(τ) = 3τ2 − 2τ3, τ ∈ [0, 1].

The overall trajectory is obtained as composition of the three segments defined
in terms of qN(τ) as

qa(t) = q0 + h1q̃N(t), with q̃N(t) = qN

(
t − t0

T0

)

qb(t) = q1 + h2q̃N(t), with q̃N(t) = qN

(
t − t1

T1

)

qc(t) = q2 + h3q̃N(t), with q̃N(t) = qN

(
t − t2

T2

)
.

where hi = qi+1 − qi, Ti = ti+1 − ti, i = 0, 1, 2. The profiles of qN(τ) and of
the overall trajectory q(t) are reported in Fig. 5.6. �

228 5 Operations on Trajectories

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

s(
τ)

0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

14

16

18

20

Time (sec)

q(
t)

Resulting trajectory

(a) (b)

Fig. 5.6. Composition of 3-rd degree polynomial trajectories; normalized function
qN(τ) (a), and overall trajectory obtained as union of the three segments (b).

5.2 Scaling in Time

In some cases, a trajectory must be modified in order to take into proper
consideration the saturation limits of the actuation system, and to plan the
desired motion so that these limits are not violated. Motion profiles requiring
values of velocity, acceleration and torque outside the allowed ranges must be
avoided, since these motions cannot be performed.

It is possible to distinguish two different types of saturations:

1. Kinematic saturation, when the velocities and/or the accelerations of the
planned trajectory are larger than those achievable by the actuation sys-
tem.

2. Dynamic saturation, that may be present when not feasible torques are
requested to the actuation system; typically, this situation occurs in case of
multi-axis mechanisms, such as industrial robots, because of the nonlinear
and coupled dynamics.

If these effects are not considered a priori in the planning phase of the trajec-
tory, it is necessary to verify them before the motion profile is applied to the
system, taking proper actions in case the saturation limits are violated (e.g.
by increasing the duration of the motion).

Given a generic trajectory
q = q(t)

it is possible to make it slower or faster, and more generally to modify the
profiles of velocity, acceleration, etc., by considering a new time variable t′

related to t by means of a strictly increasing function

t = σ(t′).

5.2 Scaling in Time 229

In this way
q̃(t′) = (q ◦ σ)(t′) = q(σ(t′))

and the velocity and the acceleration are

˙̃q(t′) =
dq(σ)
dσ

dσ(t′)
dt′

(5.2a)

¨̃q(t′) =
dq(σ)
dσ

d2σ(t′)
dt′2

+
d2q(σ)
dσ2

(
dσ(t′)

dt′

)2

(5.2b)

...

Therefore, by properly defining the function σ, one can change the time-
derivatives of q̃(t′) according to the needs.

An example is represented by the modified cycloidal trajectory, Sec. 3.9, ob-
tained by combining a standard cycloidal trajectory

q(t) = h

[
t

T
− 1

2π
sin

(
2πt

T

)]

with the function σ implicitly defined (the following equation provides σ−1)
by

t′ = t − k
T

2π
sin

(
2πt

T

)

with the purpose of reducing the maximum acceleration.

The combinations of trajectories q and functions σ are virtually infinite. A
function of particular interest is the linear one

t = σ(t′) = λt′ =⇒ t′ =
t

λ

which leads to
˙̃q(t′) =

dq(σ)
dσ

λ

¨̃q(t′) =
d2q(σ)
dσ2

λ2

q̃(3)(t′) =
d3q(σ)
dσ3

λ3

...

q̃(n)(t′) =
dnq(σ)
dσn

λn.

(5.3)

For the sake of simplicity, one can rewrite these relations as

230 5 Operations on Trajectories

˙̃q(t′) = λ q̇(t)

¨̃q(t′) = λ2 q̈(t)

q̃(3)(t′) = λ3 q(3)(t)
...

q̃(n)(t′) = λn q(n)(t).

(5.4)

Therefore by assuming the new time variable t′, obtained by scaling t with a
constant parameter 1/λ, all the derivatives of the reparameterized trajectory
are scaled by powers of λ. By properly selecting λ it is possible to reduce, or
increase, the speed, acceleration, jerk, ..., and make the trajectory compliant
with given constraints. For example the choice

λ = min

{
vmax

|q̇(t)|max
,

√
amax

|q̈(t)|max
, 3

√
jmax

|q(3)(t)|max

}

guarantees that the maximum values of speed, acceleration and jerk are never
exceeded.

5.2.1 Kinematic scaling

In order to define a trajectory satisfying given constraints on maximum veloc-
ity and acceleration, it is convenient to consider it in a normalized form and
then perform geometric/time scaling operations. Any trajectory q(t), defined
for a displacement h = q1 − q0 and a duration T = t1 − t0, can be written in
terms of the normalized form qN(τ) with

0 ≤ qN(τ) ≤ 1, 0 ≤ τ ≤ 1.

As a matter of fact, it results

q(t) = q0 + (q1 − q0) q̃N(t) = q0 + h q̃N(t) (5.5)

where
q̃N(t) = qN(τ), with τ =

t − t0
t1 − t0

=
t − t0

T
.

Notice that in this case the time variable t is obtained by scaling τ by a
factor λ = T , and by translating it of t0. From (5.5) it follows

q(1)(t) =
h

T
q
(1)
N (τ)

q(2)(t) =
h

T 2
q
(2)
N (τ)

q(3)(t) =
h

T 3
q
(3)
N (τ)

...

q(n)(t) =
h

Tn
q
(n)
N (τ)

(5.6)

5.2 Scaling in Time 231

where

q
(1)
N (τ) =

d qN(τ)
dτ

, q
(2)
N (τ) =

d2 qN(τ)
dτ2

, . . .

It is simple to verify that the maximum values of velocity, acceleration, jerk,
and so on, are obtained in correspondence of the maximum values of the
functions q

(1)
N , q

(2)
N , Then, it is easy to compute both these values and

the corresponding time instants τ from the given parameterization qN(τ).
Note that, by properly changing the time length T of the trajectory, from

(5.6) it is easy to obtain motion profiles with maximum velocity/acceleration
values equal to the saturation limits, i.e. optimal trajectories in the sense that
their time duration is minimized. Moreover, it is also simple to coordinate
several motion axes.

The application of these considerations to some of the motion profiles
discussed in the previous chapters is now described.

Polynomial trajectories with degree 3, 5, and 7

The parameterization of a cubic polynomial (2.1) in a normalized form is

qN(τ) = a0 + a1τ + a2τ
2 + a3τ

3.

With the boundary conditions q
(1)
N0 = 0, q

(1)
N1 = 0, and obviously qN(0) = 0

and qN(1) = 1, the following values are obtained

a0 = 0, a1 = 0, a2 = 3, a3 = −2.

Therefore
qN(τ) = 3τ2 − 2τ3

q
(1)
N (τ) = 6τ − 6τ2

q
(2)
N (τ) = 6 − 12τ

q
(3)
N (τ) = −12.

(5.7)

The maximum velocity and acceleration values are

q
(1)
N max = q

(1)
N (0.5) =

3
2

=⇒ q̇max =
3h

2T

q
(2)
N max = q

(2)
N (0) = 6 =⇒ q̈max =

6h

T 2
.

(5.8)

For polynomial functions of degree 5 the normalized form is

qN(τ) = a0 + a1τ + a2τ
2 + a3τ

3 + a4τ
4 + a5τ

5.

With the boundary conditions q
(1)
N 0 = 0, q

(1)
N 1 = 0, q

(2)
N 0 = 0, q

(2)
N 1 = 0, the

following parameters are obtained1

1 The trajectory obtained with these conditions is also known in the literature as
”3-4-5” polynomial.

232 5 Operations on Trajectories

a0 = 0, a1 = 0, a2 = 0, a3 = 10, a4 = −15, a5 = 6.

Therefore
qN(τ) = 10τ3 − 15τ4 + 6τ5

q
(1)
N (τ) = 30τ2 − 60τ3 + 30τ4

q
(2)
N (τ) = 60τ − 180τ2 + 120τ3

q
(3)
N (τ) = 60 − 360τ + 360τ2

(5.9)

and

q
(1)
N max = q

(1)
N (0.5) =

15
8

=⇒ q̇max =
15h

8T

q
(2)
N max = q

(2)
N (0.2123) =

10
√

3
3

=⇒ q̈max =
10
√

3h

3T 2

q
(3)
N max = q

(3)
N (0) = 60 =⇒ q(3)

max = 60
h

T 3
.

(5.10)

The normalized polynomial of degree 7 is

qN(τ) = a0 + a1τ + a2τ
2 + a3τ

3 + a4τ
4 + a5τ

5 + a6τ
6 + a7τ

7.

With the boundary conditions q
(1)
N0 = q

(1)
N1 = 0, q

(2)
N0 = q

(2)
N1 = 0, q

(3)
N0 = q

(3)
N1 = 0

one obtains2

a0 = 0, a1 = 0, a2 = 0, a3 = 0, a4 = 35, a5 = −84, a6 = 70, a7 = −20.

Then
qN(τ) = 35τ4 − 84τ5 + 70τ6 − 20τ7

q
(1)
N (τ) = 140τ3 − 420τ4 + 420τ5 − 140τ6

q
(2)
N (τ) = 420τ2 − 1680τ3 + 2100τ4 − 840τ5

q
(3)
N (τ) = 840τ − 5040τ2 + 8400τ3 − 4200τ4

(5.11)

and

q
(1)
N max = q

(1)
N (0.5) =

35
16

=⇒ q̇max =
35h

16T

q
(2)
N max = q

(2)
N (0.2764) = 7.5132 =⇒ q̈max = 7.5132

h

T 2

|q(3)
N |max = |q(3)

N (0.5)| = 52.5 =⇒ |q(3)|max = 52.5
h

T 3
.

(5.12)

Notice that in this case the maximum magnitude of the jerk is obtained for
negative values, i.e. -52.5.
2 The trajectory obtained with these conditions is also known in the literature as

”4-5-6-7” polynomial.

5.2 Scaling in Time 233

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−6

−4

−2

0

2

4

6
Normalized trajectory

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−60

−40

−20

0

20

40

60
Real trajectory

(a) (b)

Fig. 5.7. Profiles of acceleration (dashed), velocity (dotted) and position (solid) a
polynomial trajectory of degree 3: normalized form (a) and with conditions q0 = 10,
q1 = 50, t0 = 0, t1 = 2 (b).

Example 5.3 A polynomial function of degree 3 is used to define an optimal
(minimum time) trajectory from q0 = 10 to q1 = 50 (h = 40). The maxi-
mum velocity that the actuation system can generate is q̇max = 30, and the
maximum acceleration is q̈max = 80. From (5.7) and (5.8) one obtains

q̇max =
3h

2T
= 30 ⇒ T =

3h

2 30
= 2

q̈max =
6h

T 2
= 80 ⇒ T =

√
6h

80
= 1.732.

In order to meet the limit values of the actuator, it is then necessary to
set T = 2, since the constraint on the maximum velocity is more restrictive
than the constraint on the maximum acceleration. The motion profiles of this
example are shown in Fig. 5.7. Note that the maximum velocity is achieved
at t = 1. If a polynomial trajectory of degree 5 is adopted, and the actuator
limits are q̇max = 37.5 and q̈max = 60, from (5.9), (5.10) one obtains

q̇max =
15h

8T
= 37.5 ⇒ T =

15 40
8 37.5

= 2

q̈max =
10
√

3h

3T 2
= 60 ⇒ T =

√
10
√

3 40
3 60

= 1.962.

It is necessary to set T = 2 since also in this case the constraint on the
maximum velocity is more restrictive than the constraint on the maximum
acceleration. The motion profiles are reported in Fig. 5.8.

Finally, if a polynomial of degree 7 is considered, with limits on the actu-
ation system q̇max = 45 and q̈max = 50, from (5.11), (5.12) one obtains

234 5 Operations on Trajectories

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−6

−4

−2

0

2

4

6
Normalized trajectory

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−60

−40

−20

0

20

40

60
Real trajectory

(a) (b)

Fig. 5.8. Profiles of acceleration (dashed), velocity (dotted) and position (solid) of a
polynomial of degree 5: normalized form (a) and with boundary conditions q0 = 10,
q1 = 50, t0 = 0, t1 = 2 (b).

q̇max =
35h

16T
= 45 ⇒ T =

35 40
16 45

= 1.944

q̈max = 7.5132
h

T 2
= 50 ⇒ T =

√
7.5132 40

50
= 2.4516.

In this case, in order to satisfy the actuator limits it is necessary to set T =
2.4516 since the constraint on the maximum acceleration is more restrictive
than the constraint on the maximum velocity. The profiles of this trajectory
are shown in Fig. 5.9.

Notice that if the same actuator (i.e. characterized by q̇max = 30, q̈max =
80) is used for the three trajectories, the durations reported in Table 5.1 are

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−8

−6

−4

−2

0

2

4

6

8
Normalized trajectory

0 0.5 1 1.5 2 2.5
−50

−40

−30

−20

−10

0

10

20

30

40

50
Real trajectory

(a) (b)

Fig. 5.9. Profiles of acceleration (dashed), velocity (dotted) and position (solid) of a
polynomial of degree 7: normalized form (a) and with boundary conditions q0 = 10,
q1 = 50, t0 = 0, t1 = 2.4516 (b).

5.2 Scaling in Time 235

Tvel Tacc

Polynomial 3 2.0000 1.7321

Polynomial 5 2.5000 1.6990

Polynomial 7 2.9167 1.9382

Table 5.1. Minimum duration for some polynomial trajectories with q̇max = 30
and q̈max = 80.

obtained. From this Table, it is possible to see that in any case the most re-
strictive constraint is due to the velocity limit and that, if the degree of the
polynomial function increases, the duration T of the trajectory increases as
well (the maximum velocity is fixed). This result has a general validity: given
a maximum value for the velocity (or for the acceleration), the ‘smoother’ the
motion profiles are, the longer the relative durations are. �

Cycloidal motion

The cycloidal profile (2.22) has a normalized parameterization given by

qN(τ) = τ − 1
2π

sin 2πτ

from which

q
(1)
N (τ) = 1 − cos 2πτ

q
(2)
N (τ) = 2π sin 2πτ

q
(3)
N (τ) = 4π2 cos 2πτ

and

q
(1)
N max = q

(1)
N (0.5) = 2 =⇒ q̇max = 2

h

T

q
(2)
N max = q

(2)
N (0.25) = 2π =⇒ q̈max = 2π

h

T 2

q
(3)
N max = q

(3)
N (0) = 4π2 =⇒ q(3)

max = 4π2 h

T 3
.

Harmonic motion

The harmonic profile (2.20) has the following normalized parameterization

qN(τ) =
1
2
(1 − cos πτ)

236 5 Operations on Trajectories

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−8

−6

−4

−2

0

2

4

6

8
Normalized trajectory

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−80

−60

−40

−20

0

20

40

60

80
Real trajectory

(a) (b)

Fig. 5.10. Profiles of acceleration (dashed), velocity (dotted) and position (solid)
of a cycloidal motion: normalized form (a) and with boundary conditions q0 = 10,
q1 = 50, t0 = 0, t1 = 2, (b).

from which

q
(1)
N (τ) =

π

2
sin πτ

q
(2)
N (τ) =

π2

2
cos πτ

q
(3)
N (τ) = −π3

2
sin πτ

and

q
(1)
N max = q

(1)
N (0.5) =

π

2
=⇒ q̇max =

πh

2T

q
(2)
N max = q

(2)
N (0) =

π2

2
=⇒ q̈max =

π2h

2T 2

|q(3)
N |max = |q(3)

N (0.5)| =
π3

2
=⇒ |q(3)

max| =
π3h

2T 3
.

Example 5.4 In Fig. 5.10 and 5.11 the cycloidal and harmonic trajectories
are reported. The boundary conditions are q0 = 10, q1 = 50, t0 = 0, t1 = 2.

�

5.2.2 Dynamic Scaling

When dynamic couplings or nonlinear effects are present in an automatic ma-
chine, it is possible that, during the execution of a trajectory, the torques
requested to the actuation system exceed the physical limits. In particular,

5.2 Scaling in Time 237

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−5

−4

−3

−2

−1

0

1

2

3

4

5
Normalized trajectory

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−50

−40

−30

−20

−10

0

10

20

30

40

50
Real trajectory

(a) (b)

Fig. 5.11. Profiles of acceleration (dashed), velocity (dotted) and position (solid)
of an harmonic motion: normalized form (a) and with boundary conditions q0 = 10,
q1 = 50, t0 = 0, t1 = 2, (b).

this may happen when the inertia at the motor is not constant, but is a non-
linear function of the load position. In order to avoid these problems, once the
trajectory has been defined it is possible to apply a suitable scaling procedure
which allows to obtain torques within the given limits of the actuation system
[51]. This scaling procedure does not imply the re-computation of the whole
trajectory.

An important example of mechanical system with nonlinear dynamics and
coupling effects is a robotic manipulator. The dynamic model of an industrial
robot with n degrees of freedom (actuated joints) with positions, velocities
and accelerations described by the vectors q(t), q̇(t), q̈(t) respectively, has
the following formulation

M(q)q̈ + C(q, q̇)q̇ + g(q) = τ (5.13)

where M(q) is the (n×n) inertia matrix of the robot (symmetric and positive
definite), C(q, q̇) is a (n × n) matrix describing the Coriolis and centrifugal
effects, g(q) is the (n×1) vector of the gravitational forces acting on the system
and τ is the (n×1) vector of the joint torques applied by the actuation system.
For a more detailed discussion about robot manipulators and their dynamic
models a wide literature is available, see for example [12, 52, 53].

Let us consider the i-th row of (5.13). For each actuator the following
equation holds

mT
i (q(t))q̈(t) +

1
2
q̇T (t)Li(q(t))q̇(t) + gi(q(t)) = τi(t), i = 1, . . . , n

(5.14)
where mi(q) is the i-th column of matrix M(q), the term 1/2 q̇T Li(q)q̇ a
proper formulation of C(q, q̇)q̇, gi(q) the gravitational force and τi the torque

238 5 Operations on Trajectories

applied to the joint by the i-th actuator. If a trajectory q(t), t ∈ [0, T] has
been defined for the joints, the corresponding torques τi(t) can be computed
by means of (5.14), that can be rewritten as

τi(t) = τs,i(t) + τp,i(t) (5.15)

where

τs,i(t) = mT
i (q(t))q̈(t) +

1
2
q̇T (t)Li(q(t))q̇(t) (5.16)

τp,i(t) = gi(q(t)).

Notice that τs,i(t) depends on positions, velocities and accelerations, while
τp,i(t) on positions only.

Let us consider a new trajectory q̃(t′), t′ ∈ [0, T ′], obtained by re-
parameterizing q(t) by means of a strictly increasing scalar function t = σ(t′)
such that 0 = σ(0) and T = σ(T ′). The torques necessary to execute this new
trajectory can be computed as

τ̃i(t′) = mT
i (q̃(t′))¨̃q(t′) +

1
2

˙̃qT (t′)Li(q̃(t′)) ˙̃q(t′) + gi(q̃(t′)). (5.17)

Since
q̃(t′) = (q ◦ σ)(t′)

the relationship between the time-derivatives of q(t) and those of q̃(t′) (in this
case with respect to the new time variable t′) are

˙̃q(t′) = q̇(t)σ̇
¨̃q(t′) = q̈(t)σ̇2 + q̇(t)σ̈.

where σ̇ = dσ/dt′ and σ̈ = d2σ/t′2.
If these equations are substituted in (5.17), one obtains

τ̃i(t
′) =

[
mT

i (q(t))q̇(t)
]
σ̈ +

[
mT

i (q(t))q̈(t) +
1

2
q̇T (t)Li(q(t))q̇(t)

]
σ̇2 + gi(q(t))

where t = σ(t′). Notice that the term gi(q̃(t′)) depends on the joints position
only, and thus its contribution is not influenced by the time scaling. Therefore,
it is convenient to consider only the term

τ̃s,i(t′) =
[
mT

i (q(t))q̇(t)
]
σ̈ +

[
mT

i (q(t))q̈(t) +
1
2
q̇T (t)Li(q(t))q̇(t)

]
σ̇2

which can be rewritten as

τ̃s,i(t′) =
[
mT

i (q(t))q̇(t)
]
σ̈ + τs,i(t)σ̇2. (5.18)

In order to understand the effects of the time scaling on τs,i it is necessary
to specify the scaling function σ. The simplest choice consists in the linear
function

5.2 Scaling in Time 239

t = σ(t′) = λt′ (5.19)

which leads to
σ̇(t′) = λ, σ̈(t′) = 0.

By substituting these values in (5.18) one obtains

τ̃s,i(t′) = λ2τs,i(t), i = 1, . . . , n (5.20)

or, recalling the definition of τs,i,

τ̃i(t′) − gi(q̃(t′)) = λ2[τi(t) − gi(q(t))], i = 1, . . . , n.

Therefore, a linear time scaling by a constant 1/λ (the new time value t′ can
be obtained by inverting (5.19) and therefore t′ = t/λ) produces a scaling
of the magnitude of the torques (depending on velocity/acceleration) by a
coefficient λ2. If λ < 1, the new trajectory q̃(t′) has a duration T ′(= T/λ)
larger than q(t), and accordingly the torques τ̃s,i(t′)(= λ2τs,i(t)) necessary to
perform the motion are smaller than those required to execute the original
trajectory.

Example 5.5 Let us consider a two degrees of freedom planar robotic ma-
nipulator. The limit values for the torques are τ̄1 = 1000, τ̄2 = 200. If the
trapezoidal trajectories shown in Fig. 5.12(a) are specified for both the joints,
with duration T = 2, one obtains the torques profiles shown in dashed lines

0 0.5 1 1.5 2 2.5 3 3.5 4
0

2

4

6

8

10
Position

0 0.5 1 1.5 2 2.5 3 3.5 4
0

5

10

15
Velocity

0 0.5 1 1.5 2 2.5 3 3.5 4
−2000

−1000

0

1000

2000

Torque τ
1

0 0.5 1 1.5 2 2.5 3 3.5 4
−1000

−500

0

500

1000

Torque τ
2

Time (s)

0 0.5 1 1.5 2 2.5 3 3.5 4
−15

−10

−5

0

5

10

15
Acceleration

Time (s)

(a) (b)

Fig. 5.12. Position, velocity, acceleration (a) and torque (b) profiles before (solid)
and after (dashed) a dynamic scaling operation (Example 5.5).

240 5 Operations on Trajectories

in Fig. 5.12(b). The maximum values needed for the execution of this motion
are τ1,max = 1805.9 and |τ2|max = 639.8. In order to obtain a trajectory that
can be physically executed, a dynamic scaling is performed. The value

λ2 = min
{

τ̄1

τ1,max
,

τ̄2

τ2,max

}
= min

{
1000

1805.9
,

200
639.8

}
= 0.3126

is used to scale the time:

t′ =
t

λ
=

t

0.5591
−→ T ′ =

T

λ
=

2
0.5591

= 3.5771.

The new torques (τ(t′) = λ2τ(t)) are both feasible and τ2 reaches the limit
value at t′ = 1.7885. �

Example 5.6 Let us consider the planar robot of the previous example, with
the torque limits τ̄1 = 2500, τ̄2 = 1000. The maximum values required by
the trajectory considered in the previous example are τ1,max = 1805.9 and
τ2,max = 639.8, in this case lower than the allowed limits. In this case, by
using the dynamic scaling, it is possible to compute the optimal trajectory
(minimum duration) by increasing the requested torques. As a matter of fact,
one obtains

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

2

4

6

8

10
Position

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

5

10

15
Velocity

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−3000

−2000

−1000

0

1000

2000

3000

Torque τ
1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1500

−1000

−500

0

500

1000

1500

Torque τ
2

Time (s)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−15

−10

−5

0

5

10

15
Acceleration

Time (s)

(a) (b)

Fig. 5.13. Position, velocity, acceleration (a) and torque (b) profiles before (dashed)
and after (solid) a dynamic scaling operation (Example 5.6).

5.3 Synchronization of Trajectories 241

λ2 = min
{

τ̄1

τ1,max
,

τ̄2

τ2,max

}
= min

{
2500

1805.9
,

1000
639.8

}
= 1.3844

and then

t′ =
t

λ
=

t

1.1766
−→ T ′ =

T

1.1766
=

2
1.1766

= 1.6999.

In this case, a shorter trajectory is achieved (T ′ < T). Also for this motion one
of the two torques, in this case the first one, saturates in a point. The profiles
of this motion are reported in Fig. 5.13(a) and the corresponding torques in
Fig. 5.13(b). �

If the whole trajectory is scaled in order to avoid to exceed the limits in a
single point, an unnecessarily slow motion is likely obtained. Therefore, it is
possible to apply a variable scaling, to be used only in correspondence of the
segments where the torques overcome the given limit values.

A last consideration is that it is possible to show that the minimum time
motion along a given path saturates the torque, the acceleration or the velocity
of one of the actuators in at least a point of each segment.

5.3 Synchronization of Trajectories

The composition of functions is an useful method not only for the scaling in
time of trajectories, but also for their synchronization. As a matter of fact, it is
possible to define the position profile of an actuator as a function of a generic
variable θ instead of the time t. For example, in master-slave applications the
motion profiles of the slave axis are defined with respect to the configuration of
the master, which can be either real, that is an axis of motion of the machine,
or virtual, that is a simple signal in the controller, implementing the so-called
electronic cams.

This idea derives from the mechanical cams, see Fig. 5.14, used in auto-
matic machines with the goal of transferring, coordinating and changing the
type of motion from a master device to one or more slave systems. With ref-
erence to Fig. 5.14 the body C, the cam, is supposed to rotate at a constant
angular velocity, and therefore its angular position θ is a linear function of
time, while body the F, the follower, has an alternative motion q(θ) defined
by the profile of the cam3. In the same manner, an electronic cam is defined
by providing the function q(θ) which describes the position of the slave with
respect to θ. The trajectory of the axis of motion is therefore q̃(t) = (q ◦ θ)(t),
with the velocity and the acceleration given by
3 The design of mechanical cams have been extensively and carefully investigated,

and on this argument a wide literature is available in the mechanical field, [4, 5,
6, 7, 8, 9].

242 5 Operations on Trajectories

C

F

q(θ)

θ(t)

(a)

M
a
ster

Slaveq(θ)

t

θ
(t)

(b)

Fig. 5.14. (a) Mechanical cam (C) with a follower (F); (b) function defining an
electronic cam.

˙̃q(t) =
dq

dθ
θ̇(t)

¨̃q(t) =
d2q

dθ2
θ̇2(t) +

dq

dθ
θ̈(t)

where θ̇(t) and θ̈(t) are the velocity and the acceleration of the master axis
respectively. Therefore by acting on the velocity (or acceleration) of the master
(whose motion law is usually a simple constant velocity trajectory, i.e. θ(t) =
vct, between θ0 = 0o and θ1 = 360o) it is possible to change the velocities,
accelerations of all the slaves “connected” to the master. In particular, when
several slaves are present, like in Fig. 5.15 where qk(θ) denotes the relationship
between the master and the k-th slave (k = 1, . . . , n), the constant velocity
vc of the master must be selected in such a way that all the trajectories q̃k(t)
satisfy the constraints on their velocity, acceleration and jerk (which may be
different for each actuator). For this purpose, it is sufficient to assume

vc = min
{

vmax1

|q̇1(θ)|max
, . . . ,

vmaxn

|q̇n(θ)|max
,

√
amax1

|q̈1(θ)|max
, . . . ,

√
amaxn

|q̈n(θ)|max
,

3

√
jmax1

|q(3)
1 (θ)|max

, . . . , 3

√
jmaxn

|q(3)
n (θ)|max

}

being the relationships between the derivatives of qk(θ) and those of q̃k(t)
similar to (5.4):

5.3 Synchronization of Trajectories 243

q1(t)

q2(t)

q3(t)

t

θ(t)

Master

Slave #1

Slave #2

Slave #3

Fig. 5.15. Position profiles of master and slaves as a function of time in a multi-
slave system.

˙̃q(t) = vc
dq(θ)
dθ

¨̃q(t) = v2
c

d2q(θ)
dθ2

q̃(3)(t) = v3
c

d3q(θ)
dθ3

...

q̃(n)(t) = vn
c

dnq(θ)
dθn

.

Example 5.7 An example of synchronization between a master and two
slaves is reported in Fig. 5.16. The angular position θ ∈ [0, 360o] is a linear
function of the time, while the trajectory of the slave axes are respectively:

• A cycloidal profile from qc0(θ = 0o) = 0o to qc1(θ = 360o) = 360o.
• A polynomial profile of degree 5 interpolating the points qp0(θ = 0o) =

0o, qp1(θ = 180o) = 180o, qp2(θ = 360o) = 0o.

In the first two cycles the motion is “slow” (that is vc = 360os−1), while in the
last two the motion is made faster by increasing the (constant) speed of the
master (vc = 720os−1). Accordingly, in these cycles both the slave velocities
are doubled, while the accelerations are four times those of the first two peri-
ods. �

244 5 Operations on Trajectories

0

7000

A
cc

el
er

at
io

n

-1440

-720

0

720

1440

Ve
lo

ci
ty

0

100

200

300

Po
si

tio
n

0

100

200

300

-7000

t

θ
(t

)

Master

Slaves

Fig. 5.16. Synchronization of two electronic cams with different profiles: cycloidal
(solid) and polynomial of degree 5 (dashed).

6

Trajectories and Actuators

The main properties of the trajectories most frequently adopted in
industrial applications are now considered. In particular, the follow-
ing discussion highlights the connections and implications between the
choice of a trajectory and the actuation system. As a matter of fact
any given actuation system, with its physical limits, has a relevant im-
pact on the selection of the motion law and, conversely, it may happen
that the motor is selected on the basis of the desired trajectory to be
executed.

6.1 Trajectories and Electric Motors

Each trajectory, characterized by different profiles and maximum values of
velocity, acceleration, and jerk, generates different effects on the actuator,
on the motion transmission system, and on the mechanical load. Moreover, it
should always be considered that the motion profile has also relevant implica-
tions on the tracking errors. Therefore, in the choice of a trajectory also the
control aspects should be taken into account.

For these reasons, it is fundamental to choose the desired trajectory by
taking into consideration the available actuator or, vice versa, to select the
actuator on the basis (also) of the desired motion profile. Electric motors will
be considered in the following discussion, since these are a very important
class of actuators for automatic machines.

It is well known that electric motors can be synthetically described by
means of their mechanical characteristics, usually expressed by diagrams in
which the torques are reported as functions of the speed, see for example
Fig. 6.1 [54]. The speed-torque curve shows some important properties of the
electric motor.

246 6 Trajectories and Actuators

τ

τp

τc

q̇vn

Continuous operation

region

Intermittent operation

region

Fig. 6.1. Generic speed-torque diagram for an electric motor.

It may be noticed that the torque generated by the motor in general is not
constant over the entire speed range. Two regions can be distinguished:

- The continuous operation region, in which the motor can operate indefi-
nitely.

- The intermittent operation region, where the motor can work only for a
limited period of time, because of thermal reasons.

If the motor operates in the latter region, it may happen that the excess of
generated heat could not be dissipated, and therefore a thermal protection
will eventually stop the motor to avoid damages. Therefore, the duration of
the task performed by the motor in this region has to be carefully considered
in the definition of the trajectory. It is clear that stationary working points,
i.e. with speed and torque constant for long intervals, should be in the contin-
uous operation region. For these motions the size of the motor must be chosen
to satisfy the thermal constraint. Vice versa, if “fast” and cyclic motions are
involved, one can exploit also the intermittent region with a proper design of
the motion profile.

Strictly related to the speed-torque diagram, the following motor param-
eters (reported in the data-sheets) provide important information for sizing
the actuation system [54, 55]:

- Continuous torque (τc) (or rated torque): torque that the motor can pro-
duce continuously without exceeding thermal limits.

- Peak torque (τp): maximum torque that the motor can generate for short
periods.

- Rated speed (vn): maximum value of the speed at rated torque (and at
rated voltage).

- Maximum power: maximum amount of output power generated by the
motor.

6.1 Trajectories and Electric Motors 247

The joint analysis of these features and of the characteristics of the desired
motion profile may be very useful in the design of the actuation system. With
this respect, a possible procedure for the choice of the motor is here discussed,
without taking into consideration other important aspects of the design, such
as the selection of the inverter or the sizing of the transmission system (in-
cluding the reduction ratio), since these issues are less relevant for the purpose
of this discussion.

6.1.1 Trajectories and choice of the actuator

The selection of a suitable actuation system for a given task must consider two
main aspects: the kinematic characteristics (maximum velocity, acceleration,
etc.) of the motion law q(t) necessary to perform the task, and the dynamic
features of the load and of the motor [56]. In particular, besides the obvious
condition on the maximum allowable speed

q̇max ≤ vn

it is also necessary to verify whether the torque τ(t), necessary to perform the
task, can be actually provided by the motor, i.e.

max
t

{τ(t)} = τmax ≤ τp.

In an automatic machine, the torque of a generic actuator can be considered
to be composed by two main terms:

τ(t) = τi(t) + τrl(t)

the inertial torque τi required to accelerate and decelerate the load (and the
rotor), and the reflected torque τrl including all external forces, such as fric-
tion, gravity, and applied forces. In the following discussion, a reduction gear
between the motor and the mechanical load is implicitly considered, and all
the variables of interest, i.e. acceleration, velocity, position, inertia and fric-
tion, are computed at the motor side.
In case that only inertial and frictional forces are considered, the expression
of the torque becomes

τ(t) = Jtq̈(t) + Btq̇(t) (6.1)

where Jt = Jm + Jl/k2
r is the total moment of inertia, composed by the

contribution of the motor Jm and of the load Jl reported at the motor side
(and therefore divided by the square of the reduction ratio kr), while Bt

is the damping coefficient of the overall system, whose expression is Bt =
Bm + Bl/k2

r .
A motion law can be actually performed by a given motor if the mechanical
task, i.e. the curve described by (q̇(t), τ(t)), t ∈ [0, T], is completely included
within the area defined by speed-torque characteristics of the motor itself. Vice

248 6 Trajectories and Actuators

0 2 4 6 8 10 12

−20

−15

−10

−5

0

5

10

15

20
τ
(t

)

q̇(t)
0 2 4 6 8 10 12

−20

−15

−10

−5

0

5

10

15

20

τ
(t

)

q̇(t)
(a) (b)

Fig. 6.2. Mechanical tasks obtained with two different motion laws: a cycloidal
trajectory (a) and a trapezoidal velocity trajectory (b).

versa, once the mechanical task is known, it is possible to select the actuator,
whose speed-torque characteristics contains the curve, with the purpose to
exploit also the intermittent region of the motor.
When the load is mainly inertial, and the friction can be neglected, τ(t) ≈
Jtq̈(t), and therefore the acceleration profile provides a good estimate of the
torque needed to perform the planned application.

Example 6.1 Fig. 6.2(a) and Fig. 6.2(b) refer to a motor characterized by

vn = 10, τp = 20, τc = 8

used to actuate a system with inertia and damping coefficients

Jt = 1, Bt = 0.3.

Two different motion laws are considered: in case (a) a cycloidal trajectory
with h = 15, T = 3, while in case (b) a trapezoidal velocity trajectory with
the additional condition amax = 15. By considering the maximum values of
torques and speeds, it results that both tasks are feasible since the related dia-
grams lie within the area enclosed by the speed-torque curve of the motor. �

When cyclic trajectories1 are considered, it is necessary to take into ac-
count also the thermal problem. As already mentioned, the speed-torque di-
agram of an electric motor has two main working regions: the continuous
and the intermittent region. For thermic reasons, a period in the intermittent
working region must be followed by a period in which the excess of heat is
dissipated. Therefore, the cycle imposed by the trajectory should be designed
so that the excess of thermal energy can be dissipated by the cooling system.

1 In this context, “cyclic” means that the period of the trajectory is considerably
smaller than the thermal time constant of the motor, that is the time it takes for
the motor to reach 63.2 % of its rated temperature.

6.1 Trajectories and Electric Motors 249

A simple condition, which allows to check whether a periodic motion law
is feasible or not for a given motor, concerns the Root Mean Square (RMS)
value of the torque τ(t) required by the task, which can be computed as

τrms =

√
1
T

∫ T

0

τ2(t) dt.

Such a torque is compared with the continuous torque τc of the motor. The
task is compatible with the thermal characteristics of the motor only if

τrms ≤ τc.

For a generic system, like the one represented by eq. (6.1), the RMS torque is
given by

τ2
rms =

1
T

∫ T

0

τ2(t) dt

=
J2

t

T

∫ T

0

q̈2(t) dt +
B2

t

T

∫ T

0

q̇2(t) dt + 2
JtBt

T

∫ T

0

q̇(t) q̈(t) dt

= J2
t q̈2

rms + B2
t q̇2

rms

where

q̈rms =

√
1
T

∫ T

0

q̈2(t) dt, q̇rms =

√
1
T

∫ T

0

q̇2(t) dt

are the RMS values of the acceleration and velocity respectively, and the term

2
JtBt

T

∫ T

0

q̇(t) q̈(t) dt is equal to zero if repetitive motions are considered2

(q̇(0) = q̇(T)).
In case Bt ≈ 0, the expression of the RMS torque can be further simplified
and becomes

τrms = Jtq̈rms.

Therefore, the RMS value of the acceleration profile (multiplied by the total
moment of inertia) is a good estimate of the RMS torque.

Example 6.2 The same system (motor and load) and motion laws of Exam-
ple 6.1 are considered. The RMS torques are respectively

τ (a)
rms = 7.6293, τ (b)

rms = 7.7104

2 Note that 2

∫ T

0

q̇(t) q̈(t) dt = [q̇(t)2]t=T
t=0 = 0.

250 6 Trajectories and Actuators

0 2 4 6 8 10 12

−20

−15

−10

−5

0

5

10

15

20
τ
(t

)

q̇(t)
0 2 4 6 8 10 12

−20

−15

−10

−5

0

5

10

15

20

τ
(t

)

q̇(t)
(a) (b)

Fig. 6.3. Location of the point (q̇max, τrms,) for two different motion laws: a
cycloidal trajectory (a) and a trapezoidal velocity trajectory (b).

and, since τc = 8, both trajectories are feasible. Note that in the two cases the
point3 (τrms, q̇max) falls within the continuous operating area of the speed-
torque curve, see Fig. 6.3.

�

6.2 Characteristics of the Motion Profiles

It is not possible to define a priori what is the “best trajectory” for any
application. The choice is related to several considerations that depend on
the type of load, on the boundary conditions (displacement length, motion
duration, etc.), on the motion profile, on the available actuation system and,
in general, on many other constraints. In any case, for the choice of the motion
law it may be of interest to have some information about the profiles of velocity
and acceleration of a specific trajectory or of a set of possible trajectories. In
particular, as seen in the previous section, peak and RMS values are of great
importance for sizing the actuation system, or vice versa for choosing a proper
motion law for a given motor. For this purpose, it may be convenient to define
some dimensionless coefficients, which do not depend on the displacement h or
on the duration T of the motion law, but only on the “shape” of the trajectory.
These parameters allow to quantify how the peak and RMS values of velocity
and acceleration overcome the ideal mean values. If q̇max = maxt{|q̇(t)|} and
q̈max = maxt{|q̈(t)|}, it is possible to define

Coefficient of velocity Cv =
q̇max

h/T
⇒ q̇max = Cv

h

T

Coefficient of acceleration Ca =
q̈max

h/T 2
⇒ q̈max = Ca

h

T 2
.

3 The maximum speeds are respectively q̇
(a)
max = 10 and q̇

(b)
max = 5.7295.

6.2 Characteristics of the Motion Profiles 251

Constant Acceleration Harmonic Cycloidal Polynomial degree 3

2 1 . 57 2 1.5

4

4.93 6.28 6

 ∞

∞

∞

16

40

1 2

Fig. 6.4. From the top, velocity, acceleration and jerk profiles for the trajectories:
with constant acceleration, harmonic, cycloidal, 3-rd degree polynomial.

Since the maximum velocity cannot be smaller than the mean speed h/T , Cv

is certainly greater than 1, while it is possible to prove that Ca cannot be
smaller than 4. In the same manner, it is possible to define a coefficient of

the peak value of the jerk whose expression is Cj =
q
(3)
max

h/T 3
, where q

(3)
max is the

maximum value of the jerk, although this parameter is not used in the fol-
lowing considerations. Obviously, because of their definitions, the coefficients
Cv, Ca, Cj are the maximum values for velocity, acceleration, and jerk of nor-
malized trajectories qN(τ).
By taking into account the RMS values of the speed and acceleration q̇rms

and q̈rms, the corresponding coefficients are defined as

Cv,rms =
q̇rms

h/T
, Ca,rms =

q̈rms

h/T 2
.

Figures 6.4-6.6 show three tables that report, in each column, the velocity,
acceleration and jerk profiles of the main trajectories illustrated in previous
chapters. The profiles have been computed with the conditions t0 = 0, t1 =
1, q0 = 0, q1 = 1 (therefore, h = 1 and T = 1), which imply Cv = q̇max and
Ca = q̈max.

The coefficient Cv and Ca of all the trajectories considered are collected in
Tab. 6.1, where the per cent variation with respect to the minimum theoretical

252 6 Trajectories and Actuators

Polyn. 5 (3-4-5) Polyn. 7 (4-5-6-7) Mod. Trapez. Mod. Sinusoidal

1.86 2.19 2 1.76

5.77 7.52 4.89 5.53

6 0

52

42 6 1 6 9

23

Fig. 6.5. From the top, velocity, acceleration and jerk profiles for the trajectories:
5-th, 7-th degree polynomial, modified trapezoidal, modified sinusoidal.

values, respectively 1 and 4, are also reported. The coefficients for polynomial
trajectories of degree higher than 7 are reported in Tab. 2.2.

Gutman 1-3 Freudenstein 1-3 Freudenstein 1-3-5

2 2 2

5.13 5.38 5

59 50.7 60

Fig. 6.6. From the top, velocity, acceleration and jerk profiles for the trajectories:
Gutman 1-3, Freudenstein 1-3, Freudenstein 1-3-5.

6.2 Characteristics of the Motion Profiles 253

From the table, it is clear that trajectories with smoother profiles present
higher peak values of velocity and acceleration. These values are of interest
since the dynamic forces applied to a mechanism by the motor are proportional
to its acceleration, see eq. (6.1). In general, it is desired to maintain these forces
as low as possible, and therefore it is convenient to choose functions with
low acceleration and continuous profiles. Moreover, since the kinetic energy
is proportional to the velocity, it may result convenient to use trajectories
characterized also by low velocity values.

Since in all those applications in which inertial loads are predominant the
RMS torque required to the motor is proportional to the RMS value of the
acceleration, it may be of interest to compare the coefficients Ca,rms relative
to the different trajectories. Table 6.2 summarizes peak and RMS coefficients
of the motion laws already considered in Tab. 6.1.

In order to avoid overloading the actuators and the application of excessive
stress on the mechanical components, it is necessary to minimize the above
coefficients. In general, a compromise is necessary, since by minimizing one of
the coefficients of speed or acceleration, the other ones increase.
By considering the RMS values, the “best” trajectory is the 3-rd degree poly-
nomial, for which Ca,rms = 3.4131, while the worst one is the 7-th degree
polynomial, characterized by Ca,rms = 5.0452.
On the other hand, by considering the maximum acceleration(/torque) values,
the trajectory with the minimum coefficient Ca is the constant acceleration
(i.e. the triangular, the limit case of the trapezoidal profile) with Ca = 4,
while the 7-th degree polynomial is characterized by the maximum value
Ca = 7.5107 (+87.77% with respect to the minimum possible value). The
cubic polynomial trajectory has a quite high acceleration, Ca = 6, i.e. 50%
more than the constant acceleration profile.
Moreover, the constant acceleration (triangular) trajectory and the modified
trapezoidal trajectory (with cycloidal blends) have the same speed coefficient
Cv (and accordingly the same maximum speed), while both the peak and RMS
values of the acceleration are larger for the modified trapezoidal. Similar con-
siderations hold for the double S trajectory, that presents only a different
blend profile for the acceleration.

Besides being a valid tool for comparing trajectories, the speed and accel-
eration coefficients are a good starting point for sizing the actuation system
or, vice versa, for choosing the most appropriate trajectory for a given task,
especially when high performances are required. If the load can be modelled
as an inertia, the linear relation between the acceleration and the torque im-
posed to it allows to easily transform the torque constraints into acceleration
constraints and vice versa: a multiplication by the moment of inertia Jt is
sufficient. Therefore, if the motor is already available and it is necessary to
select the most appropriate trajectory, one can transform the maximum rat-
ings of the motor (peak torque τp and continuative torque τc) on constraints
on the motion law (maximum acceleration amax and maximum value of the

254 6 Trajectories and Actuators

Trajectory Cv ΔCv % Ca ΔCa %

Constant acceleration 2 100.00 4 0.00

Harmonic 1.5708 57.08 4.9348 23.37

Cycloidal 2 100.00 6.2832 57.08

Polynomial: degree 3 1.5 50.00 6 50.00

Polynomial: 3-4-5 1.875 87.5 5.7733 44.33

Polynomial: 4-5-6-7 2.1875 118.75 7.5107 87.77

Modified Trapezoidal 2 100.00 4.8881 22.20

Modified Sinusoidal 1.7593 75.93 5.5279 38.20

Gutman 1-3 2 100.00 5.1296 28.24

Freudenstein 1-3 2 100.00 5.3856 34.64

Freudenstein 1-3-5 2 100.00 5.0603 26.51

Table 6.1. Coefficients of the maximum values for speeds and accelerations of
some of the trajectories introduced in previous chapters, and percent variations
with respect to the minimum theoretical values.

Trajectory Cv Ca Cv,rms Ca,rms

Constant acceleration 2 4 1.1547 4

Harmonic 1.5708 4.9348 1.1107 3.4544

Cycloidal 2 6.2832 1.2247 4.4428

Polynomial: degree 3 1.5 6 1.0954 3.4131

Polynomial: 3-4-5 1.875 5.7733 1.1952 4.1402

Polynomial: 4-5-6-7 2.1875 7.5107 1.2774 5.0452

Modified Trapezoidal 2 4.8881 1.2245 4.3163

Modified Sinusoidal 1.7593 5.5279 1.1689 3.9667

Gutman 1-3 2 5.1296 1.2006 4.2475

Freudenstein 1-3 2 5.3856 1.2106 4.3104

Freudenstein 1-3-5 2 5.0603 1.2028 4.2516

Table 6.2. Coefficients of the maximum and RMS values for speeds and accelera-
tions of some of the trajectories introduced in previous chapters.

RMS acceleration arms
max):

amax =
τp

Jt
, arms

max =
τc

Jt

besides the obvious condition on the velocity vmax = vn.
On the contrary if the task is well defined, and requires a prescribed tra-

jectory (Cv, Ca, Cv,rms and Ca,rms are therefore already settled), with given
values of the displacement h and of the duration T , from the RMS acceler-
ation and maximum acceleration it is possible to easily obtain the minimum
value of the peak torque and continuative torque that the motor must provide
to perform it.
More generally, (in case of an inertial load) from the mechanical characteristics
of the motor, it is possible to deduce a curve in a speed-acceleration diagram
in which the trajectory must be contained, and vice versa (see Fig. 6.7).

6.2 Characteristics of the Motion Profiles 255

0 1 2 3 4 5 6

−30

−20

−10

0

10

20

30
τ
(t

)

τc

τp

v
n

q̇(t)
0 1 2 3 4 5 6

−100

−50

0

50

100

q̈(
t)

q̇(t)

amax
rms

arms
v
m

a
x

(a) (b)

Fig. 6.7. Speed-torque and speed-acceleration diagrams for a given mechani-
cal/actuation system.

Example 6.3 Given a mechanical system, characterized by the total inertia
Jt = 0.25, a negligible damping coefficient, i.e. Bt ≈ 0, and driven by an
actuator with the speed-torque diagram plotted in Fig. 6.7(a), the goal is to
find the fastest harmonic trajectory from q0 = 0 to q1 = 0.6 (h = 0.6). From
the figure, the maximum ratings of the motor can be easily deduced:

τp = 30, τc = 14, vn = 6

and the diagram of Fig. 6.7(b) is obtained, with the corresponding constraints
on the trajectory:

amax = 120, arms
max = 56, vmax = 6.

From the values of the coefficients Cv, Ca and Ca,rms for the harmonic tra-
jectory, and the constraints on the maximum velocity, acceleration and RMS
acceleration, one can compute the value of T. As a matter of fact, by con-
sidering the definition of the velocity and acceleration coefficients, it follows
that

q̇max = Cv
h

T
⇒ T ≥ Cv

h

vmax
= Tmin,1

q̈max = Ca
h

T 2
⇒ T ≥

√
Ca

h

amax
= Tmin,2

q̈a,max = Ca,rms
h

T 2
⇒ T ≥

√
Ca,rms

h

arms
max

= Tmin,3.

(6.2)

The numerical values of this example lead to

Tmin,1 = 0.1571, Tmin,2 = 0.1571, Tmin,3 = 0.1924.

256 6 Trajectories and Actuators

0 1 2 3 4 5 6

−100

−50

0

50

100

v
m

a
xq̈(

t)

q̇(t)

amax
rms

arms

0 0.05 0.1 0.15 0.2
−100

−50

0

50

100
0

1

2

3

4

5
0

0.2

0.4

0.6

0.8

t

q(
t)

q̇(
t)

q̈(
t)

(a) (b)

Fig. 6.8. Task obtained with a harmonic trajectory represented in a speed-
acceleration diagram (a) and single plots of position, velocity, acceleration (b).

The most limiting constraint is relative to the RMS acceleration, which implies
the highest duration of the trajectory. Therefore, the length of the motion is

Tmin = max{Tmin,1, Tmin,2, Tmin,3} = 0.1924.

In Fig. 6.8 the task is reported in the speed-acceleration diagram, where the
point (q̇max, q̈rms) is also explicitly represented.
If vmax = 4, the durations obtained from (6.2) are

Tmin,1 = 0.2356, Tmin,2 = 0.1571, Tmin,3 = 0.1924

and the minimum duration of the trajectory is bounded by the maximum
speed, see Fig. 6.9. �

6.2.1 Comparison between trapezoidal and double S trajectories

Because of their wide use in the industrial practice, it is of interest to compare
the performances achievable with a trapezoidal and a double S trajectory, see
Sec. 3.2 and Sec. 3.4. In order to define the trajectories, besides the condi-
tions on the total displacement h = q1 − q0 and on the duration T = t1 − t0
(initial and final velocities and accelerations are assumed to be null), it is
necessary to consider one more constraint for the trapezoidal motion law (e.g.
the value of the maximum acceleration amax or the duration Ta of the accel-
eration/deceleration phases supposed of the same length) and two additional
constraints for the double S trajectory. In particular, for the trapezoidal mo-
tion law the duration of the acceleration and deceleration phases (supposed
equal) are defined as

6.2 Characteristics of the Motion Profiles 257

0 0.5 1 1.5 2 2.5 3 3.5 4

−100

−50

0

50

100

v
m

a
xq̈(

t)

q̇(t)

amax
rms

arms

0 0.05 0.1 0.15 0.2 0.25
−100

−50

0

50

100
0

1

2

3

4
0

0.2

0.4

0.6

0.8

t

q(
t)

q̇(
t)

q̈(
t)

(a) (b)

Fig. 6.9. Task obtained with a harmonic trajectory represented in a speed-
acceleration diagram (a) and single plots of position, velocity, acceleration (b).

Ta = αT, α ≤ 1/2.

By substituting this value in⎧⎪⎪⎨
⎪⎪⎩

T =
h

q̇max
+ Ta

Ta =
q̇max

q̈max

it is possible to calculate the maximum values of the speed and acceleration
and the related coefficients as a function of the free parameter α:⎧⎪⎪⎨

⎪⎪⎩
q̇max =

h

(1 − α)T
⇒ Ctr

v =
1

(1 − α)

q̈max =
h

α(1 − α)T 2
⇒ Ctr

a =
1

α(1 − α)
.

Then, one can obtain the coefficient of the RMS acceleration by substituting
the expressions of Ta and q̈max in the definition4

4 For the trapezoidal trajectory, characterized by constant acceleration segments,
the RMS value of the acceleration can be computed with the formula

q̈tr
rms =

√∑
i Tia2

i

T

where Ti is the duration of the i-th segment with constant acceleration ai.

258 6 Trajectories and Actuators

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

5

10

15

20

25

Cv

Ca

Ca,rms

α

Fig. 6.10. Coefficients Cv, Ca and Ca,rms of the trapezoidal trajectory as a function
of the parameter α (Ta = αT).

α Cv Ca Cv,rms Ca,rms

1/2 2 4 1.15 4

1/3 1.5 4.5 1.12 3.67

1/4 1.33 5.33 1.09 3.77

1/5 1.25 6.25 1.07 3.95

Table 6.3. Coefficients of the maximum and RMS values for speeds and accel-
erations of trapezoidal trajectories obtained for different values of the parameter
α.

q̈rms =

√
1
T

∫ T

0

q̈(t)2dt

=

√
1
T

(2Taq̈2
max)

=
√

2α
h

α(1 − α)T 2
⇒ Ctr

a,rms =
√

2α
1

α(1 − α)
.

In fig. 6.10, the coefficients Cv, Ca and Ca,rms of the trapezoidal trajectory are
plotted as a function of the parameter α ∈ [0, 1/2]. Note that if α increases also
Cv (and therefore the maximum speed) grows, while Ca decreases. Conversely,
Ca,rms is not a monotonic function of α, but it has a minimum at α = 1/3, see
Tab. 6.3. For this reason, the trapezoidal trajectory obtained with three equal-
length segments is often adopted in the industrial practice, also considering
that, for α = 1/3, the coefficients Cv and Ca are quite small.

6.2 Characteristics of the Motion Profiles 259

0 0.5 1 1.5 2 2.5
−10

−8

−6

−4

−2

0

2

4

6

8

10
τ
(t

),
q̈(

t)

q̇(t)
0 0.2 0.4 0.6 0.8 1

−5

0

5
0

0.5

1

1.5

2
0

0.2

0.4

0.6

0.8

1

t

q(
t)

q̇(
t)

q̈(
t)

(a) (b)

Fig. 6.11. Tasks obtained with a trapezoidal trajectory for different values of α
(a) and plots of position, velocity, acceleration (b).

Example 6.4 Figure 6.11 shows a task with the conditions h = 1, T = 1,
performed by means of trapezoidal trajectories computed for different values
of α. In particular, the values α = 1/2 (solid) and α = 1/3 (dashed) have
been considered. For the sake of simplicity it is assumed that Jt = 1. In this
manner, by neglecting the friction, the torque is equal to the acceleration.
From Fig. 6.11(a), where the classical speed-torque diagram of a motor (in
this case equal to the diagram speed-acceleration) is reported, it results that
the triangular trajectory (obtained for α = 1/2) is a limit case of feasible
trajectory since not only the maximum speed q̇max is equal to vmax = 2, but
also the RMS acceleration q̈rms is equal to its limit value (amax

rms = τc/Jt = 4).
On the contrary, the trajectory obtained for α = 1/3 presents speed and
acceleration values lower than the relative limits. In this case it is possible to
reduce the duration T of the trajectory, which remains still feasible with the
constraints imposed by the motor. Since the most limiting factor is clearly the
RMS value of the acceleration (note the point (q̇max, q̈rms), reported in the
diagram of Fig. 6.11(a)), the minimum trajectory duration can be computed
according to

Tmin =

√
Ca,rms

h

arms
max

which, with the numerical values of this example, is Tmin = 0.9582. In Fig. 6.12
the trajectories obtained for T = 1 (dashed) and T = 0.9582 (solid) are re-
ported. �

For the double S trajectory the two additional constraints here considered
are the duration of the acceleration phase, supposed to be a fraction of the
overall period

260 6 Trajectories and Actuators

0 0.5 1 1.5 2 2.5
−10

−8

−6

−4

−2

0

2

4

6

8

10
τ
(t

),
q̈(

t)

q̇(t)
0 0.2 0.4 0.6 0.8 1

−5

0

5
0

0.5

1

1.5

2
0

0.2

0.4

0.6

0.8

1

t

q(
t)

q̇(
t)

q̈(
t)

(a) (b)

Fig. 6.12. Tasks obtained with a trapezoidal trajectory with α = 1/3 for different
values of the duration T (a) and plots of position, velocity, acceleration (b).

Ta = αT, α ≤ 1/2

and the time length of the constant jerk phase

Tj = βTa, β ≤ 1/2

that in this case is assumed to be a fraction of the acceleration period. In
this way, from the expressions of the total duration, of the time length of
acceleration phase and of the constant jerk segment⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

T =
h

q̇max
+ Ta

Ta =
q̇max

q̈max
+ Tj

Tj =
q̈max

q
(3)
max

one obtains the values of maximum speed, acceleration and jerk of the double
S trajectory q(t) as a function of T , h, α, β:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

q̇max =
h

(1 − α)T
⇒ Css

v =
1

(1 − α)

q̈max =
h

α(1 − α)(1 − β)T 2
⇒ Css

a =
1

α(1 − α)(1 − β)

q
(3)
max =

h

α2β(1 − α)(1 − β)T 3
⇒ Css

j =
1

α2β(1 − α)(1 − β)
.

Moreover, it is possible to compute the RMS value of the acceleration of the
double S trajectory as a function of h, T , α, β, by substituting the expressions
of Ta, Tj and q̈max in its definition:

6.2 Characteristics of the Motion Profiles 261

�
��α
β

1/2 1/3 1/4 1/5

1/2 2.0000 2.0000 2.0000 2.0000

1/3 1.5000 1.5000 1.5000 1.5000

1/4 1.3333 1.3333 1.3333 1.3333

1/5 1.2500 1.2500 1.2500 1.2500

Table 6.4. Coefficient Cv of the double S trajectory, for some values of the param-
eters α and β.

�
��α
β

1/2 1/3 1/4 1/5

1/2 8.0000 6.0000 5.3333 5.0000

1/3 8.9820 6.7500 6.0000 5.6250

1/4 10.6667 8.0000 7.1111 6.6667

1/5 12.5000 9.3750 8.3333 7.8125

Table 6.5. Coefficient Ca of the double S trajectory, for some values of the param-
eters α and β.

q̈rms =

√
1
T

∫ T

0

q̈(t)2dt

=

√
1
T

(
2(Ta − 2Tj)q̈2

max +
4
3
Tj q̈2

max

)

=
1

(1 − α)(1 − β)

√
6 − 8β

3α

h

T 2
⇒ Css

a,rms =
1

(1 − α)(1 − β)

√
6 − 8β

3α
.

The numerical values of the coefficients Cv, Ca, Cv,rms, Ca,rms for α and β
equal to 1/2, 1/3, 1/4, 1/5 are reported in Tables 6.4-6.7.

Example 6.5 The same system (motor and load) of Example 6.4 is consid-
ered, but in this case the task is performed by means of double S trajectories.
In particular, two different motion laws obtained with α = 1/2, β = 1/4
(dashed) and α = 1/3, β = 1/4 (solid) are taken into account.

While both trajectories are compliant with the constraints on the max-
imum speed and acceleration, the RMS acceleration in the case α = 1/2
overcomes the maximum allowed value. As a matter of fact, as can be easily
deduced from Tab. 6.7 by considering h = 1 and T = 1, the RMS acceleration
is q̈rms = 4.3547 for α = 1/2 and q̈rms = 4 for α = 1/3. Therefore, if one
intends to adopt a trajectory without constant velocity segment (α = 1/2) it
is necessary to increase its duration, whose minimum value is, for a unitary
displacement, T = 1.0434. In this way, the performance with respect to the
trapezoidal trajectory (characterized by q̈rms = 4 for T = 1) is reduced of

262 6 Trajectories and Actuators

�
��α
β

1/2 1/3 1/4 1/5

1/2 1.2383 1.2270 1.2141 1.2045

1/3 1.1511 1.1466 1.1414 1.1376

1/4 1.1089 1.1061 1.1029 1.1006

1/5 1.0849 1.0829 1.0807 1.0790

Table 6.6. Coefficient Cv,rms of the double S trajectory, for some values of the
parameters α and β.

�
��α
β

1/2 1/3 1/4 1/5

1/2 4.6188 4.4721 4.3547 4.2818

1/3 4.2426 4.1079 4.0000 3.9330

1/4 4.3547 4.2163 4.1056 4.0369

1/5 4.5645 4.4194 4.3034 4.2314

Table 6.7. Coefficient Ca,rms of the double S trajectory, for some values of the
parameters α and β.

about 4%.
In the case α = 1/3, one can reduce β in order to decrease Ca,rms and ac-
cordingly the acceleration q̈rms (see Tab. 6.7). �

It could be of interest to compare the values of the velocity and acceleration
coefficients obtained for trapezoidal and double S trajectories. This is possible
since the meaning of Ta, and therefore of α = T/Ta, is the same for both the

0 0.5 1 1.5 2 2.5
−10

−8

−6

−4

−2

0

2

4

6

8

10

τ
(t

),
q̈(

t)

q̇(t)
0 0.2 0.4 0.6 0.8 1

−10

−5

0

5

10
0

0.5

1

1.5

2
0

0.2

0.4

0.6

0.8

1

t

q(
t)

q̇(
t)

q̈(
t)

(a) (b)

Fig. 6.13. Tasks obtained with a double S trajectory for two different values of α
(β = 1/4 in both cases) (a) and plots of position, velocity, acceleration (b).

6.2 Characteristics of the Motion Profiles 263

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

β

f a

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

β

f a
,r

m
s

(a) (b)

Fig. 6.14. Functions of β relating the coefficients Ca (a) and Ca,rms (b) of the
trapezoidal and double S trajectories.

trajectories. In particular, it is evident that5

Css
v = Ctr

v

while the relationships between the coefficients Ca and Ca,rms of the two
trajectories are more complex and related to the β factor of the double S. By
inspection, it can be easily observed that

Css
a = fa(β) Ctr

a with fa(β) =
1

1 − β

and

Css
a,rms = fa,rms(β) Ctr

a,rms with fa,rms(β) =
1

1 − β

√
3 − 4β

3
.

The functions fa(β) and fa,rms(β) are plotted in Fig. 6.14; while the function
fa(β) doubles for β varying from 0 to 1/2, fa,rms(β) ranges from 1 to 1.1547.
As a consequence, the RMS value of the acceleration of the double S trajectory
differs from q̈rms of a trapezoidal motion law, computed with the same α, at
most of 15.47%. For β = 0 (that is Tj = 0) the two functions fa(β) and
fa,rms(β) are both equal to 1, since in this case the double S degenerates
in the trapezoidal trajectory (characterized by an impulsive jerk of infinite
amplitude).

Example 6.6 The trapezoidal and double S trajectories, considered in Ex-
amples 6.4 and 6.5 (for α = 1/3), are reported in Fig. 6.15. The double S
trajectory has a smoother profile, with obvious advantages in terms of har-
monic contents (see Ch. 7). On the other hand, the trapezoidal trajectory
shows lower maximum (peak and RMS) values of acceleration, but also the
5 The superscript ss stands for double S, while tr for trapezoidal.

264 6 Trajectories and Actuators

0 0.5 1 1.5 2 2.5
−10

−8

−6

−4

−2

0

2

4

6

8

10
τ
(t

),
q̈(

t)

q̇(t)
0 0.2 0.4 0.6 0.8 1

−10

−5

0

5

10
0

0.5

1

1.5
0

0.2

0.4

0.6

0.8

1

t

q(
t)

q̇(
t)

q̈(
t)

(a) (b)

Fig. 6.15. Comparison between trapezoidal (dashed) and double S (solid) trajec-
tories for α = 1/3: speed-acceleration diagram (a) and plots of position, velocity,
acceleration (b).

double S is fully compatible with the given constraints and, moreover, it al-
lows a better exploitation of the intermittent working region of the motor.
In both cases, the most limiting factor of the performance is q̈rms which is 4
for the normalized double S trajectory and 3.67 for the trapezoidal one. In
terms of minimum time duration of the two trajectories, with the constraints
considered in this example, the trapezoidal is characterized by Tmin = 0.9582,
while for the double S the minimum value is T = 1. Therefore, the difference
is less than 5%.

�

7

Dynamic Analysis of Trajectories

Vibrations are undesired phenomena often present in automatic ma-
chines. They are basically due to the presence of structural elasticity
in the mechanical system, and may be generated during the normal
working cycle of the machine for several causes. In particular, among
other reasons, vibrations may be produced if trajectories with a discon-
tinuous acceleration profile are imposed to the actuation system. As a
matter of fact, a discontinuity in the acceleration profile implies a rapid
variation (discontinuity) of the inertial forces applied to the mechan-
ical structure. Relevant discontinuities of these forces, when applied
to an elastic system, generate vibrations. Since every mechanism is
characterized by some degree of elasticity, this type of phenomenon
must always be considered in the design of a trajectory, that therefore
should have a smooth acceleration profile or, more in general, a limited
bandwidth.

7.1 Models for Analysis of Vibrations

In order to analyze vibrational phenomena, it is necessary to use models that
take into account the elastic, inertial and dissipative properties of the me-
chanical devices composing an automatic machine. The complexity level of
the model is usually chosen as a compromise between the desired precision
and the computational burden. The simplest criterion, quite often adopted
in practice, is to describe the mechanical devices, that are intrinsically dis-
tributed parameter systems, as lumped parameter systems, i.e. as pure rigid
masses (without elasticity) and pure elastic elements (without mass). More-
over, energy dissipative elements are introduced in order to consider frictional
phenomena among moving parts. The numerical values of the elements that
describe inertia, elasticity and dissipative effects have to be determined by
energetic considerations, i.e. trying to maintain the equivalence of the kinetic

266 7 Dynamic Analysis of Trajectories

and elastic energy of the model with the energy of the corresponding parts
of the mechanism under study. The description of these phenomena will be
either linear or nonlinear.
Some models for the analysis of the vibrational effects in automatic machines
are now described, as examples of the mathematical tools that should be
adopted for this type of study. The order of presentation starts from simple
to more complex models, able to better describe the dynamics of the real
mechanical systems, with the drawback of an increased computational com-
plexity. For notational ease, all the models are described considering linear
motions and forces. The discussion is obviously valid also in case of rotational
movements and torques.

7.1.1 Linear model with one degree of freedom

Let us consider the lumped parameters model composed by a mass m, a
spring with elastic coefficient k and a dumper d that takes into consideration
the friction and then dissipates energy, see Fig. 7.1. Let x be the position of
the mass m, and y the input position of the mechanism, i.e the position of the
actuation system. The dynamics of the system is described by the differential
equation

mẍ + d ẋ + k x = d ẏ + k y. (7.1)

If the difference z = x−y due to the elastic element is considered, one obtains

m z̈ + d ż + k z = −mÿ

or
z̈ + 2 δ ωnż + ω2

nz = −ÿ (7.2)

where

ωn =

√
k

m
, δ =

d

2mωn

are the natural frequency and the dumping coefficient respectively of the con-
sidered dynamic model. The second order differential equation (7.2), with

Actuator

k

d

m

xy

Fig. 7.1. Linear model with one degree of freedom.

7.1 Models for Analysis of Vibrations 267

Actuator

k1

d2

k2 kn

dnd1

m1 mn

x1 xny

Fig. 7.2. Linear model with n degrees of freedom.

proper initial conditions z(0) = z0, ż(0) = ż0, represents a one degree of free-
dom model of the mechanism under study. In the state space, with x1 = z
and x2 = ż, the corresponding model is given by{

ẋ1 = x2

ẋ2 = −ω2
nx1 − 2δωnx2 − ÿ.

In matrix form
ẋ = A x + B u

with

x =
[

x1

x2

]
, A =

[
0 1

−ω2
n − 2δωn

]
, B =

[
0
−1

]
, u = ÿ

and initial conditions x1(0) = x10 = z(0) and x2(0) = x20 = ż(0).

7.1.2 Linear model with n degrees of freedom

A more complex model, closer to a distributed parameters model and able to
describe in a more detailed way the physical behavior of a mechanical system,
takes into consideration n lumped parameters, as shown in Fig. 7.2.

Let x1, x2, . . . , xn be the positions of the masses m1, m2, . . . , mn, and
y the input position. The dynamics of the system is now described by the
following system of differential equations
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

m1ẍ1 + d1(ẋ1 − ẏ) + k1(x1 − y) − d2(ẋ2 − ẋ1) − k2(x2 − x1) = 0
m2ẍ2 + d2(ẋ2 − ẋ1) + k2(x2 − x1) − d3(ẋ3 − ẋ2) − k3(x3 − x2) = 0

...
miẍi + di(ẋi − ẋi−1) + ki(xi − xi−1) − di+1(ẋi+1 − ẋi)−ki+1(xi+1−xi)= 0

...
mnẍn + dn(ẋn − ẋn−1) + kn(xn − xn−1) =0.

268 7 Dynamic Analysis of Trajectories

By considering ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

z1 = x1 − y

z2 = x2 − x1

...
zn = xn − xn−1

or, in a more compact form,

xi =
i∑

j=1

zj + y, i = 1, . . . , n

the equations of the system may be written as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m1z̈1 + d1ż1 + k1z1 − d2ż2 − k2z2 = −m1ÿ

m2(z̈1 + z̈2) + d2ż2 + k2z2 − d3ż3 − k3z3 = −m2ÿ
...

mn−1

n−1∑
j=1

z̈j + dn−1żn−1 + kn−1zn−1 − dnżn − knzn = −mn−1ÿ

mn

n∑
j=1

z̈j + dnżn + knzn = −mnÿ

or, in matrix form, as

Mz̈ + Dż + Kz = −m ÿ (7.3)

where

M =

⎡
⎢⎢⎢⎢⎢⎣

m1 0 0 . . . 0 0
m2 m2 0 . . . 0 0
...

...
...

...
...

...
mn−1 mn−1 mn−1 . . . mn−1 0
mn mn mn . . . mn mn

⎤
⎥⎥⎥⎥⎥⎦

D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

d1 −d2 0 0 . . . 0 0
0 d2 −d3 0 . . . 0 0
0 0 d3 −d4 . . . 0 0
...

...
...

...
...

...
...

0 0 0 0 . . . dn−1 dn

0 0 0 0 . . . 0 dn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

7.1 Models for Analysis of Vibrations 269

Actuator

k

d

m

xy

Fig. 7.3. One degree of freedom model with passive nonlinear parameters.

K =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

k1 −k2 0 0 . . . 0 0
0 k2 −k3 0 . . . 0 0
0 0 k3 −k4 . . . 0 0
...

...
...

...
...

...
...

0 0 0 0 . . . kn−1 kn

0 0 0 0 . . . 0 kn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

m = [m1, m2, m3, m4, . . . , mn−1, mn]T .

Since matrix M is always invertible (its eigenvalues are m1, m2, . . . , mn >
0), from (7.3) one obtains

z̈ = −M−1Dż − M−1Kz − M−1m ÿ.

By defining the state vector as

x = [z1, z2, . . . , zn, ż1, ż2, . . . , żn]T

the model in state space is finally obtained:

ẋ = Ax + B u (7.4)

where

A =
[

0 I
−M−1K − M−1D

]
, B =

[
0

−M−1m

]
, u = ÿ.

7.1.3 Nonlinear model with one degree of freedom

Usually, a mechanical system is characterized by nonlinear effects that may
be considered by properly defining the ‘passive’ parameters of the model. Sev-
eral nonlinear effects may be taken into account, such as Coulomb or viscous
friction, nonlinear dumping (e.g. proportional to ẋ2), backslash, and so on.
Let us consider the system of Fig. 7.3 where, in particular, the dumping ele-
ment takes into consideration different frictional phenomena. The parameters
d, α and β represent the viscous, the quadratic and the Coulomb damping
respectively. The dynamics of the system is described now by

270 7 Dynamic Analysis of Trajectories

mz̈ + dż + kz = −mÿ − α|ż|ż − β
ż

|ż| .

where z = x − y. This equation may also be written as

z̈ + 2δωnż + ω2
nz = −ω2

nζ

with
ζ =

ÿ

ω2
n

+
α

mω2
n

|ż|ż +
β

mω2
n

ż

|ż| .

If a backslash effect has to be considered, it is necessary to define an additional
nonlinear term, such as the one represented in Fig. 7.4. In this case, with a
proper choice of the origin of the reference frames, the ‘contact’ between motor
and load occurs only if y − x > x0. The equations describing the dynamics
are now {

mẍ + kx = 0, y − x < x0

mẍ + dẋ + kx = ky + dẏ, y − x > x0.

7.1.4 Nonlinear model with n degrees of freedom

A n-dimensional model with nonlinear passive parameters is shown in Fig. 7.5.
Let x1, x2, . . . , xn be the positions of the masses m1, m2, . . . , mn, and y the
input motion.

By using the state variables z1 = x1−y, z2 = x2−x1, . . . , zn = xn−xn−1,
the system equations are

Actuator

k

d

m

x

x0

y

Fig. 7.4. A one degree of freedom model with backslash.

Actuator

k1

d2

k2 kn

dnd1

m1 mn

x1 xny

Fig. 7.5. Model with n degrees of freedom with passive nonlinear parameters.

7.2 Analysis of the Trajectories in the Time Domain 271

miz̈i + γi(ż1, ż2, . . . , żn) + ηi(z1, z2, . . . , zn) = fi(t), i = 1, . . . , n

fi(t) =

{
−m1ÿ(t) + ϕ1(t), i = 1

ϕi(t), i �= 1

where ϕi is the external force acting on the i-th mass mi (if any), and the
functions γi(ż1, ż2, . . . , żn) and ηi(z1, z2, . . . , zn) represent the i-th nonlinear
dumping force and the i-th nonlinear elastic force respectively. Obviously,
γi(·) and ηi(·) may have any expression. The dynamics of the system can be
therefore written as

z̈ + 2δiωni
żi + ω2

ni
z = −ω2

ni
ζi i = 1, . . . , n

with

ζi =
1

ω2
ni

(
γi + ηi − fi

mi
− 2δiωni

żi − ω2
ni

zi

)

and ωni
=
√

ki/mi, δi = di/(2miωni
), where ki and di are the linear stiffness

and damping coefficients connected with ηi and γi, [6].

7.2 Analysis of the Trajectories in the Time Domain

In order to show how the different motion profiles may generate different be-
haviors and responses in mechanical systems with elastic elements, and how
different models of the same system may lead to different results, a simulation
study of a mechanical device described with two different models is now re-
ported and discussed. The two mass/spring/dumper models are characterized
respectively by one and five degrees of freedom.

In the following discussion, ideal actuation and control systems are im-
plicitly considered, and therefore the trajectory profile is supposed to be the
input signals of the two models, i.e.

y(t) = q(t)

while the position x (or x5) of the mass m (or m5) is the output. In order to
perform a direct comparison of the results, in all the simulations the desired
displacement and the duration of the motion have the same values. In partic-
ular, the reference trajectory has been obtained with the following conditions

q0 = 0, q1 = 15, t0 = 0, t1 = 30.

272 7 Dynamic Analysis of Trajectories

The parameters of the mechanical systems have been assumed as:

1. One degree of freedom system

m = 1, d = 2, k = 100 =⇒ ωn = 10, δ = 0.1.

2. Five degrees of freedom system

m1 = m2 = m3 = m4 = m5 = 0.2
d1 = d2 = d3 = d4 = d5 = 10
k1 = k2 = k3 = k4 = k5 = 500.

Notice that with these choices the total mass of the system with five degrees
of freedom is the same as in the one degree of freedom case (m =

∑5
i=1 mi).

Similarly, the total stiffness and the dissipation coefficient are the same for
both systems.

For each one of the considered trajectories, the profiles of position, velocity,
and acceleration of the mass m for the one degree of freedom model (left
diagrams) and of the mass m5 for the five degrees of freedom model (right
diagrams) are reported in the following figures. The order of presentation is
summarized in Table 7.1.

Figure n. Trajectory

7.6 Constant acceleration
7.7 Harmonic
7.8 Cycloidal
7.9 Elliptic

7.10 Polynomial degree 3
7.11 Polynomial degree 5
7.12 Linear with circular blends
7.13 Trapezoidal
7.14 Modified trapezoidal
7.15 Gutman 1-3
7.16 Freudenstein 1-3
7.17 Freudenstein 1-3-5

Table 7.1. Simulation of elastic systems.

7.2 Analysis of the Trajectories in the Time Domain 273

0 5 10 15 20 25 30 35 40

−0.15

−0.1

−0.05

0

0.05

0.1

0

0.2

0.4

0.6

0.8

1

0

5

10

15
x

ẋ
ẍ

0 5 10 15 20 25 30 35 40

−0.05

0

0.05

0

0.2

0.4

0.6

0.8

1

0

5

10

15

x
5

ẋ
5

ẍ
5

t t

0 5 10 15 20 25 30 35 40

−0.1

−0.05

0

0.05

0.1

−0.01

−0.005

0

0.005

0.01

−1

−0.5

0

0.5

1

1.5

x 10
−3

z
ż

z̈

0 5 10 15 20 25 30 35 40

−0.01

−0.005

0

0.005

0.01

0.015

−5

0

5

x 10
−4

−4

−2

0

2

4

6

x 10
−5

z
ż

z̈

t t
(a) (b)

Fig. 7.6. Position, velocity, acceleration and errors (z = x−q) of mass m of the one
degree of freedom system (a) and of the mass m5 of the system with five degrees of
freedom (b). In this latter case z = x5 − q. The input q(t) is a constant acceleration
trajectory.

274 7 Dynamic Analysis of Trajectories

0 5 10 15 20 25 30 35 40
−0.1

−0.05

0

0.05

0.1

0.15

0

0.2

0.4

0.6

0.8

0

5

10

15
x

ẋ
ẍ

0 5 10 15 20 25 30 35 40

−0.05

0

0.05

0.1

0

0.2

0.4

0.6

0.8

0

5

10

15

x
5

ẋ
5

ẍ
5

t t

0 5 10 15 20 25 30 35 40

−0.05

0

0.05

−5

0

5

x 10
−3−15

−10

−5

0

5

x 10
−4

z
ż

z̈

0 5 10 15 20 25 30 35 40

−10

−5

0

5

x 10
−3−6

−4

−2

0

2

x 10
−4−6

−4

−2

0

2

x 10
−5

z
ż

z̈

t t
(a) (b)

Fig. 7.7. Position, velocity, acceleration and errors (z = x−q) of mass m of the one
degree of freedom system (a) and of the mass m5 of the system with five degrees of
freedom (b). In this latter case z = x5 − q. The input q(t) is an harmonic trajectory.

7.2 Analysis of the Trajectories in the Time Domain 275

0 5 10 15 20 25 30 35 40

−0.1

−0.05

0

0.05

0.1

0

0.2

0.4

0.6

0.8

1

0

5

10

15
x

ẋ
ẍ

0 5 10 15 20 25 30 35 40

−0.1

−0.05

0

0.05

0.1

0

0.2

0.4

0.6

0.8

1

0

5

10

15

x
5

ẋ
5

ẍ
5

t t

0 5 10 15 20 25 30 35 40
−2

−1

0

1

2

x 10
−3−4

−2

0

2

x 10
−4−1

−0.5

0

0.5

1

x 10
−3

z
ż

z̈

0 5 10 15 20 25 30 35 40

−1

0

1

x 10
−4

−1.5

−1

−0.5

0

0.5

1
x 10

−5−4

−2

0

2

4

x 10
−5

z
ż

z̈

t t
(a) (b)

Fig. 7.8. Position, velocity, acceleration and errors (z = x − q) of mass m of the
one degree of freedom system (a) and of the mass m5 of the system with five degrees
of freedom (b). In this latter case z = x5−q. The input q(t) is a cycloidal trajectory.

276 7 Dynamic Analysis of Trajectories

0 5 10 15 20 25 30 35 40

−0.2

0

0.2

0

0.5

1

1.5

0

5

10

15
x

ẋ
ẍ

0 5 10 15 20 25 30 35 40

−0.2

0

0.2

0

0.5

1

1.5

0

5

10

15

x
5

ẋ
5

ẍ
5

t t

0 5 10 15 20 25 30 35 40

−0.02

−0.01

0

0.01

−2

−1

0

1

2
x 10

−3

−2

−1

0

1

2

x 10
−3

z
ż

z̈

0 5 10 15 20 25 30 35 40

−2

−1

0

1

x 10
−3−15

−10

−5

0

5

x 10
−5−1

0

1

x 10
−4

z
ż

z̈

t t
(a) (b)

Fig. 7.9. Position, velocity, acceleration and errors (z = x − q) of mass m of the
one degree of freedom system (a) and of the mass m5 of the system with five degrees
of freedom (b). In this latter case z = x5 − q. The input q(t) is an elliptic trajectory
(n = 2).

7.2 Analysis of the Trajectories in the Time Domain 277

0 5 10 15 20 25 30 35 40

−0.1

−0.05

0

0.05

0.1

0.15

0

0.2

0.4

0.6

0.8

0

5

10

15
x

ẋ
ẍ

0 5 10 15 20 25 30 35 40

−0.1

−0.05

0

0.05

0.1

0

0.2

0.4

0.6

0.8

0

5

10

15

x
5

ẋ
5

ẍ
5

t t

0 5 10 15 20 25 30 35 40

−0.1

−0.05

0

0.05

−10

−5

0

5

x 10
−3

−1.5

−1

−0.5

0

0.5

1
x 10

−3

z
ż

z̈

0 5 10 15 20 25 30 35 40

−10

−5

0

5

x 10
−3

−6

−4

−2

0

2

4

x 10
−4

−6

−4

−2

0

2

4
x 10

−5
z

ż
z̈

t t
(a) (b)

Fig. 7.10. Position, velocity, acceleration and errors (z = x − q) of mass m of
the one degree of freedom system (a) and of the mass m5 of the system with five
degrees of freedom (b). In this latter case z = x5 − q. The input q(t) is a polynomial
trajectory of degree three.

278 7 Dynamic Analysis of Trajectories

0 5 10 15 20 25 30 35 40

−0.1

−0.05

0

0.05

0.1

0

0.2

0.4

0.6

0.8

1

0

5

10

15
x

ẋ
ẍ

0 5 10 15 20 25 30 35 40

−0.1

−0.05

0

0.05

0.1

0

0.2

0.4

0.6

0.8

1

0

5

10

15

x
5

ẋ
5

ẍ
5

t t

0 5 10 15 20 25 30 35 40

−2

0

2

x 10
−3−6

−4

−2

0

2

x 10
−4−1

−0.5

0

0.5

1
x 10

−3

z
ż

z̈

0 5 10 15 20 25 30 35 40

−2

−1

0

1

2

x 10
−4

−2

−1

0

1

x 10
−5−4

−2

0

2

4
x 10

−5
z

ż
z̈

t t
(a) (b)

Fig. 7.11. Position, velocity, acceleration and errors (z = x − q) of mass m of
the one degree of freedom system (a) and of the mass m5 of the system with five
degrees of freedom (b). In this latter case z = x5 − q. The input q(t) is a polynomial
trajectory of degree five.

7.2 Analysis of the Trajectories in the Time Domain 279

0 5 10 15 20 25 30 35 40

−0.2

−0.1

0

0.1

0

0.2

0.4

0.6

0.8

0

5

10

15
x

ẋ
ẍ

0 5 10 15 20 25 30 35 40

−0.1

0

0.1

0

0.2

0.4

0.6

0.8

0

5

10

15

x
5

ẋ
5

ẍ
5

t t

0 5 10 15 20 25 30 35 40

−0.1

−0.05

0

0.05

0.1

−0.01

−0.005

0

0.005

0.01

−1

0

1

2

x 10
−3

z
ż

z̈

0 5 10 15 20 25 30 35 40

−0.01

−0.005

0

0.005

0.01

0.015

−5

0

5

x 10
−4−5

0

5

x 10
−5

z
ż

z̈

t t
(a) (b)

Fig. 7.12. Position, velocity, acceleration and errors (z = x − q) of mass m of the
one degree of freedom system (a) and of the mass m5 of the system with five degrees
of freedom (b). In this latter case z = x5 − q. The input q(t) is a linear trajectory
with circular blends.

280 7 Dynamic Analysis of Trajectories

0 5 10 15 20 25 30 35 40
−0.2

−0.1

0

0.1

0.2

0

0.2

0.4

0.6

0

5

10

15
x

ẋ
ẍ

0 5 10 15 20 25 30 35 40

−0.1

−0.05

0

0.05

0.1

0

0.2

0.4

0.6

0

5

10

15

x
5

ẋ
5

ẍ
5

t t

0 5 10 15 20 25 30 35 40

−0.1

−0.05

0

0.05

0.1

−0.01

−0.005

0

0.005

0.01

−1

0

1

x 10
−3

z
ż

z̈

0 5 10 15 20 25 30 35 40

−0.01

−0.005

0

0.005

0.01

−5

0

5

x 10
−4

−5

0

5

x 10
−5

z
ż

z̈

t t
(a) (b)

Fig. 7.13. Position, velocity, acceleration and errors (z = x − q) of mass m of the
one degree of freedom system (a) and of the mass m5 of the system with five degrees
of freedom (b). In this latter case z = x5−q. The input q(t) is a trapezoidal velocity
trajectory.

7.2 Analysis of the Trajectories in the Time Domain 281

0 5 10 15 20 25 30 35 40

−0.05

0

0.05

0

0.2

0.4

0.6

0.8

1

0

5

10

15
x

ẋ
ẍ

0 5 10 15 20 25 30 35 40

−0.05

0

0.05

0

0.2

0.4

0.6

0.8

1

0

5

10

15

x
5

ẋ
5

ẍ
5

t t

0 5 10 15 20 25 30 35 40

−2

0

2

x 10
−3−6

−4

−2

0

2

4
x 10

−4

−5

0

5

x 10
−4

z
ż

z̈

0 5 10 15 20 25 30 35 40

−2

−1

0

1

2

x 10
−4

−2

−1

0

1

x 10
−5

−2

0

2

x 10
−5

z
ż

z̈

t t
(a) (b)

Fig. 7.14. Position, velocity, acceleration and errors (z = x − q) of mass m of
the one degree of freedom system (a) and of the mass m5 of the system with five
degrees of freedom (b). In this latter case z = x5 − q. The input q(t) is a modified
trapezoidal velocity trajectory.

282 7 Dynamic Analysis of Trajectories

0 5 10 15 20 25 30 35 40
−0.1

−0.05

0

0.05

0.1

0

0.2

0.4

0.6

0.8

1

0

5

10

15
x

ẋ
ẍ

0 5 10 15 20 25 30 35 40
−0.1

−0.05

0

0.05

0.1

0

0.2

0.4

0.6

0.8

1

0

5

10

15

x
5

ẋ
5

ẍ
5

t t

0 5 10 15 20 25 30 35 40

−2

0

2

x 10
−3−6

−4

−2

0

2

4
x 10

−4

−5

0

5

x 10
−4

z
ż

z̈

0 5 10 15 20 25 30 35 40

−2

−1

0

1

2

x 10
−4

−2

−1

0

1

x 10
−5

−2

0

2

x 10
−5

z
ż

z̈

t t
(a) (b)

Fig. 7.15. Position, velocity, acceleration and errors (z = x − q) of mass m of
the one degree of freedom system (a) and of the mass m5 of the system with five
degrees of freedom (b). In this latter case z = x5 − q. The input q(t) is a Gutman
1-3 trajectory.

7.2 Analysis of the Trajectories in the Time Domain 283

0 5 10 15 20 25 30 35 40
−0.1

−0.05

0

0.05

0.1

0

0.2

0.4

0.6

0.8

1

0

5

10

15
x

ẋ
ẍ

0 5 10 15 20 25 30 35 40
−0.1

−0.05

0

0.05

0.1

0

0.2

0.4

0.6

0.8

1

0

5

10

15

x
5

ẋ
5

ẍ
5

t t

0 5 10 15 20 25 30 35 40

−2

−1

0

1

2

x 10
−3

−4

−2

0

2

x 10
−4

−5

0

5

x 10
−4

z
ż

z̈

0 5 10 15 20 25 30 35 40

−2

−1

0

1

2
x 10

−4
−2

−1

0

1

x 10
−5

−2

0

2

x 10
−5

z
ż

z̈

t t
(a) (b)

Fig. 7.16. Position, velocity, acceleration and errors (z = x − q) of mass m of the
one degree of freedom system (a) and of the mass m5 of the system with five degrees
of freedom (b). In this latter case z = x5 − q. The input q(t) is a Freudenstein 1-3
trajectory.

284 7 Dynamic Analysis of Trajectories

0 5 10 15 20 25 30 35 40
−0.1

−0.05

0

0.05

0.1

0

0.2

0.4

0.6

0.8

1

0

5

10

15
x

ẋ
ẍ

0 5 10 15 20 25 30 35 40
−0.1

−0.05

0

0.05

0.1

0

0.2

0.4

0.6

0.8

1

0

5

10

15

x
5

ẋ
5

ẍ
5

t t

0 5 10 15 20 25 30 35 40

−2

0

2

x 10
−3−6

−4

−2

0

2

4
x 10

−4

−5

0

5

x 10
−4

z
ż

z̈

0 5 10 15 20 25 30 35 40

−2

−1

0

1

2

x 10
−4

−2

−1

0

1

x 10
−5

−2

0

2

x 10
−5

z
ż

z̈

t t
(a) (b)

Fig. 7.17. Position, velocity, acceleration and errors (z = x − q) of mass m of the
one degree of freedom system (a) and of the mass m5 of the system with five degrees
of freedom (b). In this latter case z = x5 − q. The input q(t) is a Freudenstein 1-3-5
trajectory.

7.3 Analysis of the Trajectories in the Frequency Domain 285

Some considerations

From the previous figures, it is possible to see that for all the trajectories the
oscillations are more evident in the acceleration profiles than in the velocity
and position ones. This is quite obvious, since the velocity and the position are
obtained by integration of the acceleration and velocity signals respectively.
Since in the frequency domain an integrator may be considered as a low-pass
filter, the high-frequency oscillations are eliminated.

Another result that can be noticed in all the simulations is that oscillations
are dumped more quickly and are located at higher frequencies in the case of
the five degrees of freedom system.

Moreover, the simulations show another fact already mentioned and that
will be discussed with more details in the following section: the trajecto-
ries with discontinuous acceleration profiles (constant acceleration, harmonic,
elliptic, polynomial of degree three, linear with circular blends, linear with
parabolic bends) generate larger oscillations with respect to trajectories with
continuous acceleration profile (cycloidal, polynomial of degree five, modified
trapezoidal, modified cycloidal, Gutman 1-3, Freudenstein 1-3, Freudenstein 1-
3-5). The amplitude of the oscillations is proportional to the acceleration dis-
continuity.

7.3 Analysis of the Trajectories in the Frequency
Domain

A different approach for studying the trajectories from a dynamical point of
view is based on the analysis of their frequency properties using the Fourier
Transform.

A generic real function x(t) can be expressed as the “summation” of an
infinite number of sinusoidal terms, each of them with frequency ω, amplitude
V (ω) and phase ϕ(ω) (see Appendix D for more details):

x(t) =
∫ +∞

0

V (ω) cos[ωt + ϕ(ω)]dω.

By means of a frequency analysis of the acceleration profiles of the trajectories,
it is possible to evaluate the stress that, in the ideal case, is applied to the
mechanical structure by the actuation system during the motion. From this
point of view, it is convenient to keep the harmonic content, i.e. the function
V (ω), of the acceleration small at high frequencies. As a matter of fact, a
negligible harmonic content at high frequencies implies a smoother motion
profile in the time domain. If “fast” variations, or discontinuities in the limit
case, are present in the acceleration profile, then V (ω) presents relevant terms
at high frequencies. In this case, the resonant frequencies of the mechanical

286 7 Dynamic Analysis of Trajectories

10
0

10
1

10
2

−80

−70

−60

−50

−40

−30

−20

|G
(j

ω
)|

(d
B

)

ω (rad/sec)

Fig. 7.18. Magnitude of the frequency response of the system (7.2).

structure could be excited and then vibrations generated. As a matter of
fact the mechanical system acts like a filter which amplifies or reduces the
magnitude of the different harmonics according to the value of its frequency
response. In Fig. 7.18 the Bode diagram (magnitude) of the one-dof linear
system represented by (7.2), with the parameters as in Sec. 7.2 (i.e. m = 1,
d = 2, k = 100), is reported1. In this simple case, in order to avoid vibrations
(that is high values of the “error” z) the maximum frequency of the adopted
trajectory must be smaller than the resonance frequency ωr ≈ 10 (at which
the magnitude of the frequency response has a peak).

The main trajectories presented in previous chapters, are now analyzed
and compared with respect to their harmonic content (in particular, the ac-
celeration profiles are considered). For some of them, the Fourier transform is
presented in a closed form, while for others the spectra have been computed
numerically (i.e. by means of the discrete Fourier transform). In any case,
all the spectra shown in the figures of this section are obtained under the
conditions of unitary displacement (h = q1 − q0 = 1) and unitary duration
(T = t1 − t0 = 1).

1 The transfer function of the system (7.2), providing the dynamic relation between
the acceleration ÿ(t) and the “error” z(t) = x(t) − y(t), is

G(s) =
Z(s)

A(s)
=

−1

s2 + d/m s + k/m

being A(s) the Laplace transform of the acceleration and Z(s) the Laplace trans-
form of z(t).

7.3 Analysis of the Trajectories in the Frequency Domain 287

7.3.1 Frequency spectrum of some elementary trajectories

Constant velocity trajectory
The acceleration profile of the constant velocity trajectory is represented

by two impulses δ(t) at the start and end points, being the velocity profile
(q̇(t) = h/T, t ∈ [0, T]) discontinuous:

q̈(t) =
h

T
δ (t + T/2) − h

T
δ (t − T/2) .

By transforming each term of q̈(t) (note that the transform of the impulse
δ(t) is the unitary constant) the Fourier transform can be easily deduced:

A(ω) =
h

T
ejωT/2 − h

T
e−jωT/2

= 2j
h

T
sin

(
ω

T

2

)
.

Therefore the amplitude V (ω) =
|A(w)|

π
for the constant velocity trajectory

is

V (ω) =
2h

πT

∣∣∣∣sin
(

ω
T

2

)∣∣∣∣ .
In order to compare different kinds of trajectories with the same values of T
and h, it is convenient to express V as a function of a dimensionless variable
Ω defined as

Ω =
ω

ω0
with ω0 =

2π

T
. (7.5)

Therefore, the function describing the harmonic content of the acceleration
profile of a given trajectory is

V ′(Ω) = V (ω)∣∣
ω = ω0Ω

. (7.6)

For the constant velocity trajectory, V ′(Ω) assumes the expressions

V ′(Ω) =
h

T

2
π
|sin (πΩ)| .

The spectrum V ′(Ω) is reported in Fig. 7.19. Note that the maximum ampli-
tude of the lobes composing the spectrum remains equal for increasing values
of the frequency Ω.

Trapezoidal velocity trajectory
As in Sec. 6.2.1, the trapezoidal trajectory is defined by assuming that the

acceleration period is a fraction α of the total time-length: Ta = αT . Accord-

ingly, the maximum (constant) acceleration is q̈max =
h

α(1 − α)T 2
. In this

288 7 Dynamic Analysis of Trajectories

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

V
′ (

Ω
)

Ω

Fig. 7.19. Harmonic content of the constant velocity trajectory.

−T

2

T

2−T

2
+ αT

T

2
− αT

q̈max

−q̈max

Fig. 7.20. Decomposition of the acceleration profile of the trapezoidal trajectory
into elementary functions (step functions).

case, the acceleration can be represented as a sequence of steps of amplitude
q̈max, see Fig. 7.20:

q̈(t) = q̈max

(
h(t + T/2) − h(t + T/2 − αT) − h(t − T/2 + αT) + h(t − T/2)

)
where h(t) is the Heaviside step function. After transforming each term of
q̈(t), and after some algebraic manipulations exploiting the linearity of the
Fourier transform, one obtains

A(ω) = 4j
h

(1 − α)αT 2ω
sin

(
(1 − α)ω

T

2

)
sin

(
αω

T

2

)
.

The magnitude spectrum is therefore

V ′(Ω) =
h

T

2
(1 − α)απ2Ω

∣∣∣sin((1 − α)πΩ
)

sin
(
απΩ

)∣∣∣
where Ω is defined in (7.5).

7.3 Analysis of the Trajectories in the Frequency Domain 289

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1
V

′ 1
(Ω

)
V

′ 2
(Ω

)
V

′ 3
(Ω

)
V

′ 4
(Ω

)

Ω

α = 1/2

α = 1/4

α = 1/8

α = 1/16

0 0.2 0.4 0.6 0.8 1
−10

−5

0

5

10
−10

−5

0

5

10
−10

−5

0

5

10
−10

−5

0

5

10

q̈ 1
(t

)
q̈ 2

(t
)

q̈ 3
(t

)
q̈ 4

(t
)

t
(a) (b)

Fig. 7.21. Harmonic content (a) and related acceleration profiles (b) of trapezoidal
trajectories for different values of the parameter α.

The spectra of some trapezoidal trajectories, obtained for different values
of α, are reported in Fig. 7.21. If the value of α decreases, and accordingly
the maximum acceleration value grows, the bandwidth of the amplitude spec-
trum V ′(Ω) widens. The limit case, for α → 0, is the spectrum of the constant
velocity trajectory2 (characterized by an impulsive acceleration).

2 It can be easily shown that the acceleration spectrum of the trapezoidal velocity
trajectory converges to the spectrum of the constant velocity as α goes to zero:

lim
α→0

V ′
tr(Ω, α) = lim

α→0

⎧⎨
⎩ h

T

2

(1 − α)π

∣∣∣∣∣∣sin
(
(1 − α)πΩ

) sin
(
απΩ

)
απΩ

∣∣∣∣∣∣
⎫⎬
⎭ =

=
h

T

2

π

∣∣∣sin(πΩ
)∣∣∣ = V ′

cv(Ω).

290 7 Dynamic Analysis of Trajectories

−
2

+ αβ −
2

+ α − αβ

−
2

−
2

+ α

2
− α

2
− α + αβ

2
− αβ

2

q̈max

−q̈max

T

TTTTT

T
T

T
T T

TTTTT

Fig. 7.22. Decomposition of the acceleration profile of the double S trajectory into
elementary functions (ramp functions).

Double S trajectory
The acceleration profile of the double S trajectory is expressed in terms of

the parameters α and β, which define the ratios between the total duration T
of the trajectory, the acceleration period Ta and the duration of the constant
jerk phase Tj :

α =
Ta

T
, β =

Tj

Ta
.

This leads to the following expression

q̈(t) = q(3)
max

(
r(t + T/2) − r(t + T/2 − αβT) − r(t + T/2 − αT + αβT) +

+r(t + T/2 − αT) − r(t − T/2 + αT) + r(t − T/2 + αT − αβT) +

+r(t − T/2 + αβT) − r(t − T/2)
)

where r(t) is the ramp function defined by r(t) = t h(t) (see Fig. 7.22), and
q
(3)
max is the peak value of the jerk, defined in (3.42). By means of a Fourier

transform of each term of q̈(t), after some algebraic manipulations, one obtains

A(ω) = 8j
h

α2β(1 − α)(1 − β)T 3ω2
sin

(
(1 − α)ω

T

2

)
sin

(
α(1 − β)ω

T

2

)
sin

(
αβω

T

2

)
.

The magnitude spectrum is therefore

V ′(Ω) =
h

T

2

α2β(1 − α)(1 − β)π3Ω2

∣∣∣sin((1 − α)πΩ
)

sin
(
α(1 − β)πΩ

)
sin

(
αβπΩ

)∣∣∣ .
The shape of V ′(Ω) depends on α in a manner similar to the one of the
trapezoidal trajectory (harmonic components at high frequencies have larger
magnitudes for small values of α), but in this case it is also possible to act on
β in order to properly reshape the spectrum.

7.3 Analysis of the Trajectories in the Frequency Domain 291

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1
V

′ 1
(Ω

)
V

′ 2
(Ω

)
V

′ 3
(Ω

)
V

′ 4
(Ω

)

Ω

β = 1/2

β = 1/4

β = 1/8

β = 1/16

0 0.2 0.4 0.6 0.8 1
−10

−5

0

5

10
−10

−5

0

5

10
−10

−5

0

5

10
−10

−5

0

5

10

q̈ 1
(t

)
q̈ 2

(t
)

q̈ 3
(t

)
q̈ 4

(t
)

t
(a) (b)

Fig. 7.23. Harmonic content (a) and related acceleration profiles (b) of double S
trajectories for different values of the parameter β (α is constant and equal to 1/4).

As reported in Fig. 7.23, by increasing β up to its maximum value (1/2) the
harmonic components at high frequencies are reduced. Conversely for β ≈ 0,
the spectrum is the same of the trapezoidal trajectory3.

For many trajectories, the simplest way to compute the Fourier transform
of the acceleration profile is to apply the definition (D.1) to its expression.
In particular, it is convenient to adopt the normalized form of the trajectory
qN(τ), whose second derivative (q̈N(τ), τ ∈ [0, 1]) is related to the acceleration
of the corresponding trajectory q(t), with t ∈

[
−T

2 , T
2

]
and displacement h,

through

q̈(t) =
h

T 2
q̈N

(
t

T
− 1

2

)
, with t ∈

[
−T

2
,

T

2

]
.

Therefore, the Fourier transform A(ω) of q̈(t) can be obtained from the trans-
form AN(ω) of q̈N(τ) by means of
3 More formally

lim
β→0

V
′

ss(Ω, α, β) =
h

T

2

α(1 − α)(1 − β)π2Ω

∣∣∣∣∣∣sin
(
(1 − α)πΩ

)
sin

(
α(1 − β)πΩ

) sin
(

αβπΩ
)

αβπΩ

∣∣∣∣∣∣
=

h

T

2

(1 − α)απ2Ω

∣∣∣sin ((1 − α)πΩ
)

sin
(

απΩ
)∣∣∣ = V

′
tr(Ω, α).

292 7 Dynamic Analysis of Trajectories

A(ω) =
h

T
AN(ωT)e

j
ω

2 .

In particular, it is possible to relate the magnitude spectrum of q̈(t) to the
one of q̈N(τ):

V ′(Ω) =
h

T
V ′

N(Ω), Ω =
ω

2π/T
(7.7)

where the spectrum of the normalized trajectory is

V ′
N(Ω) =

|AN(ω)|
π

∣∣
ω = 2πΩ

. (7.8)

Polynomial trajectories
The acceleration profile of the polynomial trajectory of degree 3 has the

normalized expression
q̈N(τ) = 6 − 12τ

whose Fourier transform is

AN(ω) =
12j
ω2

e−j ω
2 (2 − jω) sin

(
ω

T

2

)

which provides the magnitude spectrum

V ′(Ω) =
h

T
V ′

N(Ω) =
h

T

6
π3Ω2

√
1 + π2Ω2 |sin (πΩ)| .

In the case of the 5-th degree polynomial trajectory, the acceleration has the
normalized form

q̈N(τ) = 60τ − 180τ2 + 120τ3

leading to the Fourier transform

AN(ω) =
120j
ω4

e−j ω
2 (12 − ω2 + j6ω) sin

(
ω

T

2

)

and to the magnitude spectrum

V ′(Ω) =
h

T
V ′

N(Ω) =
h

T

30
π5Ω4

√
9 + 4π2Ω2 + π4Ω4 |sin (πΩ)| .

The harmonic contents of the polynomials of degree 3 and degree 5 are com-
pared in Fig. 7.24. Note that, although the main lobe of the 5-th degree poly-
nomial has a peak value larger than the one of the 3-rd degree polynomial,

7.3 Analysis of the Trajectories in the Frequency Domain 293

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
V

′ (
Ω

)

Ω
0 2 4 6 8 10 12 14 16 18 20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

V
′ (

Ω
)

Ω
(a) (b)

Fig. 7.24. Harmonic content of the 3-rd degree (a) and 5-th degree (b) polynomial
trajectories.

the side lobes are considerably smaller. Therefore the polynomial of order 5,
with its continuous acceleration, is preferable when high frequencies must not
be excited.

Harmonic trajectory
The expression of the acceleration profile of harmonic trajectory in normal

form is

q̈N(τ) =
π2

2
cos πτ

and, accordingly, the Fourier transform results

AN(ω) =
jπ2ω

π2 − ω2
e−j ω

2 cos
(ω

2

)
.

Therefore, the magnitude spectrum, depicted in Fig. 7.25(a), is

V ′(Ω) =
h

T
V ′

N(Ω) =
h

T

2Ω

1 − 4Ω2
|cos (πΩ)| .

Cycloidal trajectory
The acceleration of the normalized cycloidal trajectory is

q̈N(τ) = 2π sin 2πτ

294 7 Dynamic Analysis of Trajectories

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
V

′ (
Ω

)

Ω
0 2 4 6 8 10 12 14 16 18 20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

V
′ (

Ω
)

Ω
(a) (b)

Fig. 7.25. Magnitude spectra of the harmonic (a) and cycloidal (b) trajectories.

which leads to the Fourier transform

AN(ω) =
8jπ2

(4π2 − ω2)
e−j ω

2 sin
(ω

2

)

and to the amplitude spectrum

V ′(Ω) =
h

T
V ′

N(Ω) =
h

T

2
π(1 − Ω2)

|sin (πΩ)| .

In Fig. 7.25 the spectra of cycloidal and of harmonic trajectories are compared.
Note that, despite the similar expressions of the two motion profiles (both
based on trigonometric functions), the spectra are considerably different. In
particular, the cycloidal trajectory is more suitable for those applications in
which accelerations with high frequency components are not allowed.

7.3.2 Numerical computation of the frequency spectrum of generic
trajectories

In many occasions, the Fourier transform of a given motion profile cannot be
obtained in a closed form, mainly because of complexity reasons (e.g. when
multi-segments trajectories are considered). In these cases numerical methods
can help in analyzing the harmonic content of the trajectory. As a matter of
fact, the Fourier transform of a generic function x(t) at the discrete frequency
values kΔω, with Δω = 2π

T , where T is the duration, is related to the discrete
Fourier transform Xk of the sequence obtained by sampling the signal x(t)
with the time period Ts by means of

X(kΔω) = TsXk. (7.9)

7.3 Analysis of the Trajectories in the Frequency Domain 295

For more details see Sec. D.4. Since the frequency period Δω is inversely
proportional to T , it is possible to change such a period by modifying T . In
particular one can augment the trajectory duration by adding to the sequence
xn = x(nTs) an arbitrary number of zeros (this technique is known as zero
padding). As a consequence the DFT can be compute for an arbitrary Δω
(which de facto does not depend on the trajectory duration).
The magnitude spectrum can be then obtained

V (kΔω) =
|X(kΔω)|

π
=

|TsXk|
π

.

As for continuous transforms, it is convenient to express V as a function of a
dimensionless variable

Ωk = kΔΩ = k
Δω

ω0
.

Moreover, since the relations (7.7) and (7.8) are still valid4, it is convenient
to consider unitary displacements in a unitary duration. This allows to easily
compare different kinds of trajectories. For those motion laws which require
several via-points (orthogonal polynomials, splines), the following data have
been assumed

t0 = 0, t1 = 0.3, t2 = 0.6, t3 = 1,
q0 = 0, q1 = 0.2, q2 = 0.7, q3 = 1.

In Fig. 7.26-7.28, the spectra of the acceleration profiles of many of the tra-
jectories illustrated in the previous chapters are shown.

4 In this case, the magnitude spectrum of the acceleration of a given trajectory
q̈(t), sampled at time instants nTs, is related to the one of the corresponding
normalized trajectory by

V ′(kΔΩ) =
h

T
V ′

N(kΔΩ) =
h

T

|AN(kΔω)|
π

∣∣
Δω = 2πΔΩ

=
h

T

|TsANk |
π

where ANk is the DFT of the sequence q̈Nn = q̈N(nTs).

296 7 Dynamic Analysis of Trajectories

Constant velocity Constant acceleration

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

V
′ N
(Ω

)

Ω
0 2 4 6 8 10 12 14 16 18 20

0

0.2

0.4

0.6

0.8

1

V
′ N
(Ω

)

Ω

Const. Asymm. Acceler. (tf = 0.3T) Harmonic

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

V
′ N
(Ω

)

Ω
0 2 4 6 8 10 12 14 16 18 20

0

0.2

0.4

0.6

0.8

1
V

′ N
(Ω

)

Ω

Cycloidal Elliptic (n = 2)

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

V
′ N
(Ω

)

Ω
0 2 4 6 8 10 12 14 16 18 20

0

0.2

0.4

0.6

0.8

1

V
′ N
(Ω

)

Ω

Fig. 7.26. Frequency analysis of the acceleration profiles for the trajectories: con-
stant velocity, constant acceleration, asymmetric constant acceleration, harmonic,
cycloidal and elliptic.

7.3 Analysis of the Trajectories in the Frequency Domain 297

Polynomial degree 3 Polynomial degree 5

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

V
′ N
(Ω

)

Ω
0 2 4 6 8 10 12 14 16 18 20

0

0.2

0.4

0.6

0.8

1

V
′ N
(Ω

)

Ω

Orthogonal polynomials Constant velocity circular blends

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

V
′ N
(Ω

)

Ω
0 2 4 6 8 10 12 14 16 18 20

0

0.2

0.4

0.6

0.8

1
V

′ N
(Ω

)

Ω

Trapezoidal velocity Modified trapezoidal

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

V
′ N
(Ω

)

Ω
0 2 4 6 8 10 12 14 16 18 20

0

0.2

0.4

0.6

0.8

1

V
′ N
(Ω

)

Ω

Fig. 7.27. Frequency analysis of the acceleration profiles for the trajectories: poly-
nomials of degree 3 and 5, orthogonal polynomials, constant velocity (linear) with
circular blends, trapezoidal, modified trapezoidal.

298 7 Dynamic Analysis of Trajectories

Modified sinusoidal Modified cycloidal

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

V
′ N
(Ω

)

Ω
0 2 4 6 8 10 12 14 16 18 20

0

0.2

0.4

0.6

0.8

1

V
′ N
(Ω

)

Ω

Gutman 1-3 Freudenstein 1-3

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

V
′ N
(Ω

)

Ω
0 2 4 6 8 10 12 14 16 18 20

0

0.2

0.4

0.6

0.8

1
V

′ N
(Ω

)

Ω

Freudenstein 1-3-5 Cubic Spline

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

V
′ N
(Ω

)

Ω
0 2 4 6 8 10 12 14 16 18 20

0

0.2

0.4

0.6

0.8

1

V
′ N
(Ω

)

Ω

Fig. 7.28. Frequency analysis of the acceleration profiles for the trajectories: mod-
ified sinusoidal, modified cycloidal, Gutman 1-3, Freudenstein 1-3 and 1-3-5, cubic
spline.

7.3 Analysis of the Trajectories in the Frequency Domain 299

From these figures, it is possible to appreciate that the cycloidal trajectory
has the lowest harmonic content, see Fig. 7.26. A low harmonic content charac-
terizes also for the 5-th degree polynomial, (Fig. 7.27), the modified cycloidal,
and the Gutman 1-3, Freudenstein 1-3, and Freudenstein 1-3-5 (Fig. 7.28) tra-
jectories. Among the functions considered in the analysis, besides the constant
velocity trajectory, never used for practical applications, the worst profile is
the one based on the orthogonal polynomials. The remaining profiles have
intermediate features. Notice that at low frequencies all the profiles present a
peak: the maximum value of these peaks is obtained for the elliptic trajectory.

7.3.3 Harmonic content of periodic trajectories

In typical industrial applications it is required that the actuators repeat con-
tinuously the same trajectory. Therefore, the motion law (and accordingly the
related acceleration) consists of the periodic repetition of a basic function of
duration T , i.e. (with reference with the acceleration profile)

¨̃q(t) =
∞∑

k=−∞
q̈(t − kT).

Since ¨̃q(t) is a periodic function, its harmonic content may be analyzed by
means of the Fourier series expansion, which decomposes ¨̃q(t) in an infinite
number of harmonic functions at frequencies multiple of ω0 = 2π/T , and with
amplitude vk and phase ϕk:

¨̃q(t) = v0 +
∞∑

k=1

vk cos(kω0t + ϕk), ω0 =
2π

T
.

For more details see Sec. D.2. Because of the relation between vk and the
Fourier transform of q̈(t) (see Sec. D.2), it is possible to obtain the amplitude
spectrum of the periodic function from the amplitude spectrum V (ω) of the
corresponding aperiodic motion profile:

vk =
2π

T
V (kω0), ω0 =

2π

T
, k = 1, 2,

Moreover, by considering the dimensionless variable Ω = ω/ω0, it possible to
write (see (7.6))

vk =
2π

T
V ′(k), k = 1, 2, . . .

and, by tacking into account the normalized trajectory (with coefficients vNk

and the corresponding magnitude spectrum V ′
N(Ω)),

vk =
h

T
vNk

, with vNk
=

2π

T
V ′

N(k).

300 7 Dynamic Analysis of Trajectories

Constant velocity Constant acceleration

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7

v N
k

Ω
0 2 4 6 8 10 12 14 16 18 20

0

1

2

3

4

5

6

7

v N
k

Ω

Const. asymm. acceler. (tf = 0.3T) Harmonic

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7

v N
k

Ω
0 2 4 6 8 10 12 14 16 18 20

0

1

2

3

4

5

6

7

v N
k

Ω

Cycloidal Elliptic (n = 2)

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7

v N
k

Ω
0 2 4 6 8 10 12 14 16 18 20

0

1

2

3

4

5

6

7

v N
k

Ω

Fig. 7.29. Frequency analysis of the acceleration profiles of the periodic repeti-
tion of trajectories: constant velocity, constant acceleration, asymmetric constant
acceleration, harmonic, cycloidal and elliptic.

From the spectra reported in the previous subsection one can immediately ob-
tain the corresponding coefficients of the Fourier series expansion. In Fig. 7.29-
7.31 such coefficients are shown for the same trajectories considered in the
previous subsection.

7.3 Analysis of the Trajectories in the Frequency Domain 301

Polynomial degree 3 Polynomial degree 5

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7

v N
k

Ω
0 2 4 6 8 10 12 14 16 18 20

0

1

2

3

4

5

6

7

v N
k

Ω

Orthogonal polynomials Constant velocity with circular blends

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7

v N
k

Ω
0 2 4 6 8 10 12 14 16 18 20

0

1

2

3

4

5

6

7

v N
k

Ω

Trapezoidal velocity Modified trapezoidal

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7

v N
k

Ω
0 2 4 6 8 10 12 14 16 18 20

0

1

2

3

4

5

6

7

v N
k

Ω

Fig. 7.30. Frequency analysis of the acceleration profiles of the periodic repetition
of trajectories: polynomials with degree 3 and 5, orthogonal polynomials, constant
velocity with circular blends, trapezoidal, modified trapezoidal.

Note that in this case the best motion law is represented by the constant
velocity trajectory which has a null harmonic content for any frequency value;
this is quite obvious, since the periodic repetition of the constant velocity tra-

302 7 Dynamic Analysis of Trajectories

Modified sinusoidal Modified cycloidal

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7

v N
k

Ω
0 2 4 6 8 10 12 14 16 18 20

0

1

2

3

4

5

6

7

v N
k

Ω

Gutman 1-3 Freudenstein 1-3

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7

v N
k

Ω
0 2 4 6 8 10 12 14 16 18 20

0

1

2

3

4

5

6

7

v N
k

Ω

Freudenstein 1-3-5 Cubic Spline

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7

v N
k

Ω
0 2 4 6 8 10 12 14 16 18 20

0

1

2

3

4

5

6

7

v N
k

Ω

Fig. 7.31. Frequency analysis of the acceleration profiles of the periodic repetition
of trajectories: modified sinusoidal, modified cycloidal, Gutman 1-3, Freudenstein
1-3 and 1-3-5, cubic spline.

jectory does not require any variation of the speed, and therefore the accel-
eration is always null (¨̃q(t) = 0, ∀t). The cycloidal trajectory is characterized
by only one component at the frequency

7.3 Analysis of the Trajectories in the Frequency Domain 303

Ω = 1
ω= 2π

T Ω−−−−−→ ω =
2π

T
.

The trajectories based on the Fourier series expansion have two or more non-
null harmonic components, e.g. in the case of the Freudenstein and Gutman
1-3 trajectories only the components at Ω = 1 and Ω = 3 have a not null
magnitude, while for the Freudenstein 1-3-5 also the component at Ω = 5 is
not null.
All the other trajectories have larger harmonic contents, and a direct com-
parison can help in selecting a specific motion law among many different
possibilities.

7.3.4 Scaling and frequency properties of a trajectory

The previous acceleration spectra V ′
N(Ω), both of aperiodic and periodic tra-

jectories, have been obtained with the conditions h = 1, T = 1 and are
functions of the dimensionless variable Ω. By inverting (7.6), the acceleration
spectra of a generic trajectory can be easily deduced:

V (ω) = V ′(Ω)∣∣
Ω = ωT/2π

=
h

T
V ′

N(Ω)∣∣
Ω = ωT/2π

.

Therefore, the magnitude spectrum V of the acceleration of a trajectory with
a non-unitary displacement can be obtained by scaling by h the spectrum
V ′

N of the normalized trajectory. The duration of the trajectory has a twofold
effect on this spectrum: firstly the magnitude of V ′

N is scaled by 1/T , and,
secondly, the frequencies are scaled by T (note that Ω is proportional to ωT).

Given a generic motion law q(t) of duration T and with an acceleration
spectrum V (ω), the trajectory obtained by time scaling q(t)

q′(t′) = q(t)∣∣
t = λt′

, t′ ∈ [0, T ′], with T ′ =
T

λ

is characterized by a spectrum Vλ(ω) of the acceleration profile related to
V (ω) by

Vλ(ω) = λV (ω/λ) .

Therefore, if we consider λ < 1 (i.e. a slower motion), not only the frequency
range but also the amplitudes, i.e. Vλ, are reduced. In principle, it is then
possible to compute the value of λ in order to make in practice negligible,
above an assigned limit frequency ω, the spectral content of the acceleration
profile.

304 7 Dynamic Analysis of Trajectories

0 5 10 15 20 25 30
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

q̈(
t)

t
0 0.5 1 1.5 2 2.5 3

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

V
(ω

)

ω

(a) (b)

Fig. 7.32. (a) Acceleration profiles of a polynomial trajectory of degree 5 (solid) and
of the same function scaled in time, with λ = 0.5 (dashed). (b) Frequency content
of the same signals.

Example 7.1 Let us consider a polynomial trajectory of degree 5, defined
with the conditions

q0 = 10, q1 = 15, t0 = 0, t1 = 15, T = t1 − t0 = 15.

If the value λ = 0.5 is considered, then the scaled trajectory has a time length
T ′ = T/λ = 30. The two acceleration profiles are shown in Fig. 7.32(a), while
their frequency contents are reported in Fig. 7.32(b).

�

7.4 Frequency Modifications of Trajectories

The analyses reported in the previous sections show that a trajectory can gen-
erate undesired vibrations when applied to mechanical systems characterized
by structural elasticities. For this reason, a trajectory should be selected by
comparing its spectral content with the frequency response characteristics of
the mechanical system. This is particularly important when high speed ma-
chines are considered. In this case, the suppression of residual vibrations5 is a
critical problem. This can be solved by means of different methods, based on
the optimization of both the trajectory profiles and the control modalities:

5 The amplitude of the residual vibrations can be defined as

max
t≥t1

|x(t) − q(t1)|

where x(t) is the actual position of the plant at time t ≥ t1, q(t1) = q1 the desired
position at the final time t1.

7.4 Frequency Modifications of Trajectories 305

Feedback
control

Feedforward

Plant

q(t)

y(t) x(t)

Fig. 7.33. Standard two dof controller.

• Trajectory smoothing or shaping: this approach consists in considering tra-
jectories with high order continuity (therefore, with continuous jerk, snap,
etc.), trying where possible to reduce the maximum values of velocity and
acceleration. Moreover, it is possible to smooth or shape the motion pro-
files by means of proper filters (low-pass filters, notch filters, input shapers,
and so on) with the purpose of minimizing the energy introduced at the
system resonance frequencies [57].

• Control optimization: since in modern motion systems a combination of
feedback and feedforward control action is normally used in a two degrees
of freedom (two dof) controller structure, see Fig. 7.33, it is necessary to
consider two main aspects: on one side the feedback control must guarantee
the (robust) stability of the system and the disturbance rejection while, on
the other hand, the feedforward action can be used to improve the tracking
performance.

In the next sections, the effects on the system response of different types of
filtering actions applied to the input trajectories are considered. The feed-
forward control is also taken into account, since it can be assimilated to a
dynamic filter applied to the trajectory.

7.4.1 Polydyne and splinedyne functions

The first attempts of shaping an input motion profile by taking into account
the dynamic model of the system were made in the field of mechanical cam
design [58, 59]. In 1953, the term polydyne was introduced as a contraction of
polynomial and dynamic, [60]. It describes a design technique for mechanical
cams, originally proposed in 1948 [61], that takes into account the dynamics of
the cam/follower system in order to define a cam profile able to “compensate”
for the dynamic vibrations of the follower train, at least at one particular cam
speed. Given, for example, the simple mechanical chain shown in Fig. 7.34, it
is possible to write the differential equation

306 7 Dynamic Analysis of Trajectories

Actuator

k2

k1

d1

m

xy

Fig. 7.34. Scheme of the mechanical system considered for the design of a polydyne
function.

mẍ(t) + d1ẋ(t) + (k1 + k2)x(t) = k1y(t). (7.10)

As in Sec. 7.3, in the sequel it is assumed that an ideal actuation system is
present, and therefore y(t) = q(t). The basic idea of this approach is to use
(7.10) for the definition of the function q(t)(= y(t)) in order to obtain the
desired profile x(t) or, in equivalent terms, to “invert” the dynamic model
(7.10) in order to define the proper trajectory q(t) for the actuator, given
the desired motion profile x(t) of the mass m (this type of approach will
be considered also in the following Sec. 7.4.3, on the basis of considerations
deriving from the automatic control field).

As a matter of fact, from (7.10) it is possible to compute position, velocity
and acceleration of the actuator as

q(t) =
1
k1

(
mẍ(t) + d1ẋ(t) + (k1 + k2)x(t)

)
(7.11)

q̇(t) =
1
k1

(
mx(3)(t) + d1ẍ(t) + (k1 + k2)ẋ(t)

)
(7.12)

q̈(t) =
1
k1

(
mx(4)(t) + d1x

(3)(t) + (k1 + k2)ẍ(t)
)

. (7.13)

If the desired profile x(t) is known, from these equations it is possible to
compute the motion q(t) so that undesired dynamic effects of the mechanical
system are compensated for. Note that, in order to have smooth acceleration
profiles for q(t), it is necessary that the fourth derivative of x(t), i.e. the snap,
is smooth as well. This means that any desired motion profile x(t) should be
continuous at least up to the fourth derivative.

Moreover, since in classical machines the displacement q(t) is normally
obtained through the angular motion θ(t) of a cam, and therefore q = q(θ),
usually also the position x(t), the velocity dx/dt and the acceleration d2x/dt2

are defined in terms of the angular displacement θ(t) of the cam, rotating at
a constant velocity θ̇(t) = vrpm expressed in rpm (revolutions per minute:
1 rpm = 2π min−1 = 360o min−1 = 6o sec−1), from which θ(t) = 6o vrpmt,
with θ(t) expressed in degrees. Therefore,

7.4 Frequency Modifications of Trajectories 307

dq(t)
dt

=
dq(θ)
dθ

θ̇(t) =
dq(θ)
dθ

6vrpm

d2q(t)
dt2

=
d2q(θ)
dθ2

θ̇2(t) =
d2q(θ)
dθ2

36v2
rpm

and similarly for x(t). In conclusion, the acceleration profile d2q/dθ2 can be
written as

d2q

dθ2
= 36v2

rpm

m

k1

d4x

dθ4
+ 6vrpm

d1

m

d3x

dθ3
+

(k1 + k2)
k1

d2x

dθ2

Therefore, the motion q(t) depends also on the desired angular speed, and a
mechanical cam optimized for a given value of vrpm has lower performances
when used with other speeds.

In the literature, polynomial functions have been widely used to define
proper desired profiles for x(t), and a number of polydyne functions have
been proposed, with specific properties aiming at satisfying different crite-
ria. Although the minimum degree of a polynomial function compliant with
boundary conditions up to the snap (the fourth derivative) is 9, polynomials
of much higher degree have been utilized. In general, their derivation is not
simple, and the interested reader may refer to the many publications available
on this subject, see e.g. [58]-[62].
Polynomials in normalized form, i.e. with unitary displacement and duration,
are usually adopted, whose coefficients can be easily modified in order to take
into account a specific duration T and a desired displacement h (the coeffi-
cients of normalized polynomials up to degree 21 are reported in Sec. 2.1.7).

In [61], Dudley proposed a general polydyne profile on the basis of poly-
nomials of the form

xN(τ) = 1 + a2(1 − τ)2 + ap(1 − τ)p + aq(1 − τ)(p+2) + ar(1 − τ)p+4 (7.14)

xN ∈ [0, 1], τ ∈ [0, 1]

with p ≥ 4 and

a2 =
−6p2 − 24p

6p2 − 8p − 8
, ap =

p3 + 7p2 + 14p + 8
6p2 − 8p − 8

,

aq =
−2p3 − 4p2 + 16p

6p2 − 8p − 8
, ar =

p3 − 3p2 + 2p

6p2 − 8p − 8
.

In this way, polynomial functions with exponents 2-4-6-8, 2-6-8-10, . . . , may
be defined. In particular, the polynomial 2-10-12-14

xN(τ) =
1
64

(
64 − 105(1 − τ)2 + 231(1 − τ)10 − 280(1 − τ)12 + 90(1 − τ)14

)
was considered among those offering the best performances, [61]. This poly-
nomial may be rewritten as

308 7 Dynamic Analysis of Trajectories

xN(τ) =
1
64

(
90τ14 − 1260τ13 + 7910τ12 − 29400τ11 + 71841τ10 − 120890τ9

+142065τ8 − 114840τ7 + 60060τ6 − 16632τ5 + 1120τ3
)
.

Note that eq. (7.14) defines the polynomial function from 0 to 1, for τ = [0, 1].
The return motion from 1 to 0, if of interest, is simply obtained as

xN(τ) = 1 + a2τ
2 + apτ

p + aqτ
(p+2) + arτ

p+4.

The profiles of the function xN(τ) for a rise-return motion are shown in
Fig. 7.35. Note that velocity and acceleration have null values at the ini-
tial and final points. Moreover, acceleration, jerk and snap present constant
values when the displacement is maximum.

Another example is the Peisekah polydyne function [63], that is based on
the polynomial

xN(τ) = a5τ
5 + a6τ

6 + a7τ
7 + a8τ

8 + a9τ
9 + a10τ

10 + a11τ
11 (7.15)

where

a5 = 336, a6 = −1890, a7 = 4740,

a8 = −6615, a9 = 5320, a10 = −2310, a11 = 420 .

The degree of the polynomial and the values of the coefficients have been
determined in order to satisfy proper boundary conditions (null values up to
the snap), to obtain a symmetric behavior of the function, and to minimize
the value of the peak acceleration (in this case the maximum value for the
acceleration results 7.91, while the maximum acceleration for a standard nor-
malized polynomial of degree 11 is 11.2666, see Tab. 2.2), [63]. The profiles of
position, velocity, acceleration, jerk and snap of this polynomial function are
shown in Fig. 7.36.

From the normalized polynomial xN(τ), defining the shape and the charac-
teristics of the desired trajectory, it is straightforward to determine the poly-
nomial x(t) with the desired duration T = t1−t0 and displacement h = q1−q0.
As reported also in Sec. 2.1.7, x(t) and its k-th derivatives are polynomials of
the form

x(k)(t) =
n−k∑
i=0

bi,k (t − t0)i, t ∈ [t0, t1] (7.16)

whose coefficients are related to the coefficients ai of the normalized polyno-
mial function xN(τ) by

7.4 Frequency Modifications of Trajectories 309

0 0.5 1 1.5 2

−1000

−500

0

S
na

p

−100

−50

0

50

100

Je
rk

−4

−2

0

2

4

6

8

A
cc

el
er

at
io

n

−2

−1

0

1

2

V
el

oc
ity

0

0.2

0.4

0.6

0.8

1

P
os

iti
on

Fig. 7.35. Position, velocity, acceleration, jerk and snap for the Dudley polynomial
function.

position: x(t) =
n∑

i=0

bi,0(t − t0)i → bi,0 =

⎧⎨
⎩

q0 + h a0, i = 0
h

T i
ai, i > 0

velocity: ẋ(t) =
n−1∑
i=0

bi,1(t − t0)i → bi,1 = (i + 1)
h

T i+1
ai+1

acceleration: ẍ(t) =
n−2∑
i=0

bi,2(t − t0)i → bi,2 = (i + 1)(i + 2)
h

T i+2
ai+2.

(7.17)

310 7 Dynamic Analysis of Trajectories

0 0.2 0.4 0.6 0.8 1

−500

0

500

S
na

p

−40

−20

0

20

40

60

Je
rk

−5

0

5

A
cc

el
er

at
io

n

0

0.5

1

1.5

2

V
el

oc
ity

0

0.2

0.4

0.6

0.8

1

P
os

iti
on

Fig. 7.36. Position, velocity, acceleration, jerk and snap for the Peisekah polynomial
function.

Once a proper polynomial function x(t) and its derivatives up to the proper
order have been defined, it is possible to compute the polydyne function q(t)
that takes into account the dynamics of the mechanical system, as for exam-
ple in eq. (7.11). Note that, as in the case of mechanical cams design based
on polydyne functions, which is optimized for a specific velocity vrpm, in the
trajectory planning the duration T of the desired motion x(t) must be fixed in

7.4 Frequency Modifications of Trajectories 311

advance, since it is not possible to scale in time a polydyne function q(t), with
the technique discussed in Sec. 5.1, without deteriorating its performances.
As a matter of fact, if the duration T is changed, it is necessary firstly to re-
compute the coefficients of x(t), ẋ(t), ẍ(t), . . ., and then the overall polydyne
function q(t).

A more straightforward method to obtain the polydyne function q(t) is the
following. Let us consider a generic dynamic model expressed in the Laplace
transform domain as

X(s)
Q(s)

= G(s) =
k

s2 + 2δωns + ω2
n

equivalent, with null initial conditions, to the second order differential equa-
tion

ẍ(t) + 2δωn ẋ(t) + ω2
n x(t) = k q(t). (7.18)

If the desired displacement of the mass is expressed by means of a polynomial
function x(t), from (7.18) and by taking into account the relationships (7.17)
(for the sake of simplicity t0 = 0 is assumed) one obtains

q(t) =
1
k

[
n∑

i=0

(i + 1) (i + 2)
h

T i+2
ai+2 ti + 2δωn

n∑
i=0

(i + 1)
h

T i+1
ai+1 ti+

+ω2
n

(
q0 +

n∑
i=0

ai
h

T i
ti

)]

=
ω2

n

k
q0 +

h

k

n∑
i=0

(
(i + 1) (i + 2)

ai+2

T i+2
+ 2δωn (i + 1)

ai+1

T i+1
+ ω2

n

ai

T i

)
ti

=
ω2

n

k
q0 +

n∑
i=0

bi ti (7.19)

where the coefficients bi are

bi =
h

k

(
ω2

n

ai

T i
+ 2δωn(i + 1)

ai+1

T i+1
+ (i + 2)(i + 1)

ai+2

T i+2

)
(7.20)

with an+1 = an+2 = 0.
With (7.19) and (7.20) it is possible to compute directly the polydyne function
q(t) from the coefficients ai of the normalized polynomial xN(τ), the desired
duration T and displacement h, and obviously the relevant parameters of the
dynamic model.

Example 7.2 Let us consider the mechanism represented in Fig. 7.34 with

m = 5 kg, k1 = 5000 N/m, k2 = 1000 N/m, d1 = 25 Ns/m.

312 7 Dynamic Analysis of Trajectories

The desired displacement is a periodic motion from x0 = 0 to x1 = 50 (h = 50)
and back in a period of time T = Tr + Td = 1, with Tr = Td = 0.5 for the
rise (Tr) and for the return (Td) part. If the Peisekah polynomial is chosen,
the polydyne function q(t) is computed by using (7.15) and its derivatives in
(7.17) and then in (7.11) or, equivalently, from eq. (7.19) and (7.20).
From the parameters of the system, it results

ωn =

√
k1 + k2

m
= 34.641, δ =

d1

2mωn
= 0.0722, k =

k1

m
= 1000.

Note that the static gain of the systems in G(0) = k/ω2
n = 0.8333. From

eq. (7.19) and (7.20) one obtains

qrise(t) =
h

k

[
a11

T 11
r

ω2
nt11 +

(a10

T 10
r

ω2
n + 22

a11

T 11
r

δωn

)
t10

+
(a9

T 9
r

ω2
n + 20

a10

T 10
r

δωn + 110
a11

T 11
r

)
t9

+
(a8

T 8
r

ω2
n + 18

a9

T 9
r

δωn + 90
a10

T 10
r

)
t8

+
(a7

T 7
r

ω2
n + 16

a8

T 8
r

δωn + 72
a9

T 9
r

)
t7

+
(a6

T 6
r

ω2
n + 14

a7

T 7
r

δωn + 56
a8

T 8
r

)
t6

+
(a5

T 5
r

ω2
n + 12

a6

T 6
r

δωn + 42
a7

T 7
r

)
t5

+
(
10

a5

T 5
r

δωn + 30
a6

T 6
r

)
t4 + 20

a5

T 5
r

t3
]

and, after the substitutions,

qrise(t) = 51609600 t11 − 139560960 t10 + 162247680 t9

−106122240 t8 + 42822144 t7 − 10937472 t6

+1737792 t5 − 168000 t4 + 10752 t3

for t ∈ [0, Tr]. Because of symmetry (Tr = Td), the computation of qreturn(t)
in the interval [Tr, T], can be simply obtained as

qreturn(t) = qrise(Tr) − qrise(t − Tr), t ∈ [Tr, T].

The desired motion x(t) for the mechanical system of Fig. 7.34, obtained from
(7.17) as

x(t) = h xN(τ), with τ =
t

Tr
, t ∈ [0, Tr]

for the rise (and similarly for the return) period is reported in Fig. 7.37. The
overall function q(t) for the rise and return periods and its derivatives are
shown in Fig. 7.38.

7.4 Frequency Modifications of Trajectories 313

0 0.2 0.4 0.6 0.8 1

−5

0

5

x 10
5

S
na

p

−2

−1

0

1

2

x 10
4

Je
rk

−1000

0

1000

A
cc

el
er

at
io

n

−200

−100

0

100

200

V
el

oc
ity

0

10

20

30

40

50

P
os

iti
on

Fig. 7.37. Desired motion profile x(t) for the mass of Fig. 7.34.

In Fig. 7.39, a comparison is reported between the motion of the mass when
q(t) is computed as described above, taking into consideration the dynamics
of the mechanism, and when the input profile q′(t) is the (smooth) profile
defined by the polynomial function of degree 11 in (7.15), that for the rise
period [0, Tr] is

314 7 Dynamic Analysis of Trajectories

0 0.2 0.4 0.6 0.8 1

−5

0

5
x 10

6

S
na

p

−5

0

5

x 10
4

Je
rk

−1000

0

1000

A
cc

el
er

at
io

n

−200

−100

0

100

200

V
el

oc
ity

0

20

40

60

P
os

iti
on

Fig. 7.38. Position, velocity, acceleration, jerk and snap for the Peisekah polydyne
trajectory q(t).

q′rise(t) =
ω2

n

k
x(t)

= 51609600 t11 − 141926400 t10 + 163430400 t9

−101606400 t8 + 36403200 t7 − 7257600 t6 + 645120 t5.

7.4 Frequency Modifications of Trajectories 315

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−10

0

10

20

30

40

50

60
Mass position with polydyne (solid); w/o polydyne (dash)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1.5

−1

−0.5

0

0.5

1

1.5
x 10

−6 Error with polydyne

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−4

−3

−2

−1

0

1

2

3
Error without polydyne

(a) (b)

Fig. 7.39. Position of the mass of Fig. 7.34 (a) and tracking errors due to the
elasticity (b) with and without using the polydyne; note the different amplitudes of
the diagrams in (b).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−10

0

10

20

30

40

50

60

70
Input to system − Polydyne and Polynomial

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
Difference between Polydyne and Polynomial

(a) (b)

Fig. 7.40. Functions q(t) (solid) and q′(t) (dashed) given as input to the system
(a), and their difference (b).

The two input profiles q(t) and q′(t) are compared in Fig. 7.40. Note that,
although also this latter function is very smooth, and with the same degree
of the polydyne, quite relevant errors are present in the motion of the mass
due to the non-compensated elasticity of the system.

�

Example 7.3 The position profiles of Fig. 7.40 are quite similar: as a matter
of fact the compensating actions in the polydyne profile q(t) become more
evident only when the speed of the desired motion increases.
Let us consider the same rise-return motion from x0 = 0 to x1 = 50 (h = 50) as
in the previous example. Assume now T = Tr +Td = 0.4, with Tr = Td = 0.2.
The increased velocity and acceleration components are now evident in the

316 7 Dynamic Analysis of Trajectories

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

−1

−0.5

0

0.5

1

x 10
9

S
na

p

−5

0

5

x 10
6

Je
rk

−2

0

2

x 10
4

A
cc

el
er

at
io

n

−500

0

500

V
el

oc
ity

0

20

40

60

P
os

iti
on

Fig. 7.41. Position, velocity, acceleration, jerk and snap for the Peisekah polydyne
trajectory (Tr = Td = 0.2).

position profile q(t) shown in Fig. 7.41 (compare with Fig. 7.38).
In Fig. 7.42 and Fig. 7.43 the comparison between q(t) and q′(t) is reported.
In this case, the differences originated by the two profiles are very relevant.

�

7.4 Frequency Modifications of Trajectories 317

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
−20

−10

0

10

20

30

40

50

60

70
Mass position with polydyne (solid); w/o polydyne (dash)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
−1

−0.5

0

0.5

1
x 10

−5 Error with polydyne

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
−20

−15

−10

−5

0

5

10

15
Error without polydyne

(a) (b)

Fig. 7.42. Position of the mass of Fig. 7.34 (a) and tracking errors due to the
elasticity (b) with and without using the polydyne; note the different amplitudes of
the diagrams in (b).

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

10

20

30

40

50

60

70
Input to system − Polydyne and Polynomial

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
−15

−10

−5

0

5

10

15
Difference between Polydyne and Polynomial

(a) (b)

Fig. 7.43. Functions q(t) (solid) and q′(t) (dashed) given as input to the system
(a), and their difference (b).

Polydyne functions have been used extensively and in several important ap-
plications, like for example for automotive valve cams. However, this type of
functions has some drawbacks, related to the fact that the mechanical cams
built according to this technique are optimized only for a given speed of rota-
tion, and to the fact that polynomial functions of high degree must be used
(polynomials up to degree 30, 40 and even more have been proposed), with
the consequences that high values for the maximum accelerations and unde-
sired excursions, typical of high-degree polynomials, are obtained. For these
reasons, spline functions, and in particular B-splines, are currently adopted
for their superior properties with respect to simple polynomial functions. The
term splinedyne has then been proposed, [58].
Moreover, it has to be mentioned the fact that the problem of defining proper
parameters and functions for the design of mechanical cams has been faced

318 7 Dynamic Analysis of Trajectories

G(s)

q(t) y(t) x(t)

Control loop

Fig. 7.44. Block diagram of a system with a shaper.

also with approaches based on the optimal control theory, [64], trying to min-
imize a cost function based on the derivatives of the displacement and on
the forces applied to the follower. However, this type of approach has been
generalized, for automatic machines with electronic cams, in the context of
feeedforward control as illustrated in the following sections.

7.4.2 Input filtering and shaping

The simplest way to reduce the energy of a trajectory at frequencies close to
the resonance of a given system is to properly filter the profile. Low-pass fil-
ters can be designed with standard techniques, i.e. Butterworth, Chebyshev,
Elliptic and so on, with a pass band that anticipates the lowest resonance
frequency of the system. In this manner, the spectral components of the tra-
jectory above the cut-off frequency of the filter are reduced below a desired
level. Similarly, it is possible to apply to the trajectory notch filters centered
around the resonance frequency with the purpose of reducing the components
of the trajectory in a more selective way. For the design of (analog and digital)
filters see e.g. [65, 66, 67].
A significant drawback of this approach is the fact that this kind of filters
produces distortions on the trajectory and introduces time delays. Moreover,
as highlighted in [68], generic low-pass and notch filters are not able to com-
pletely cancel output vibrations.

A different and more effective method for the reduction of vibrations is
the so-called input shaping. It consists in convolving a sequence of impulses,
which form the input shaper, with the desired trajectory and applying the
signal obtained in this way to the (controlled) system, see Fig. 7.44. The
main idea of input shaping, based on the knowledge of a model of the system,
supposed stable, consists in generating an input y(t) able to cancel out the
vibrations induced on the plant.
For example, let us consider a second order system with a natural frequency
ωn and a damping ratio δ expressed by

G(s) =
ω2

n

s2 + 2δωns + ω2
n

. (7.21)

If the input y(t) to this system is a Dirac impulse, the output x(t) is the
damped sinusoidal function

7.4 Frequency Modifications of Trajectories 319

0 0.5 1 1.5 2 2.5
−2

0

2

4

6−4

−2

0

2

4

6

x
0

(s
o
li
d
),

x
1

(d
a
sh

ed
)

x
0

+
x

1

t

Fig. 7.45. Response to the Dirac impulse of the second order system (7.21) and
vibration cancellation using two impulses.

x(t) =
e−δωnt

ωn

√
1 − δ2

sin (ωn

√
1 − δ2t)

with period T0 = 2π/(ωn

√
1 − δ2), see Fig. 7.45.

In order to eliminate the output oscillations after the first lobe, the sim-
plest approach consist in applying a second impulse delayed by T0/2, which
produces an oscillation out of phase with respect to the first one, see Fig. 7.45.

The two impulses, which form the shaper, can be convolved with any realiz-
able trajectory to generate an input signal with the same vibration-cancelling
properties of the input shaper [69]. The amplitudes of the two impulses must
be computed in such a way that the response to the second impulse cancels
the vibrations due to the first one, so that the residual vibrations are null.

In the case of the second order system (7.21) the residual vibration, re-
sulting from a sequence of n + 1 impulses, has the expression [70, 71]

Z(ωn, δ)=e−δωntn

√√√√(
n∑

i=0

sieδωnti cos(ωn

√
1 − δ2 ti)

)2

+

(
n∑

i=0

sieδωnti sin(ωn

√
1 − δ2 ti)

)2

where si is the magnitude of the i-th impulse applied at the time instant ti.

In case n = 1, the Zero Vibration (ZV) shaper is obtained [69] by setting

Z(ωn, δ) = 0.

It is composed by two impulses, characterized by

time instants t0 = 0, t1 = T0/2

amplitudes s0 =
1

1 + κ
, s1 =

κ

1 + κ

320 7 Dynamic Analysis of Trajectories

where the two constants T0 (period vibration) and κ have the expressions

T0 =
2π

ωn

√
1 − δ2

, κ = e
− δπ√

1−δ2 .

The success of this technique is strictly related to the knowledge of the sys-
tem’s parameters: if these are not perfectly known, the vibration cancella-
tion may result imperfect. To make the input shaping technique more robust
with respect to modelling errors, additional equations must be added to the
problem formulation, and accordingly the number of impulses increases. This
assures a that the vibrations will remain limited even in presence of modelling
errors.
Typical additional conditions concern the derivatives of Z(ωn, δ), which are
set equal to zero. If ∂Z(ωn,δ)

∂ωn
= 0 the Zero Vibration, Zero Derivative (ZVD)

shaper, composed by three impulses, is obtained:

time instants t0 = 0, t1 = T0/2, t2 = T0

amplitudes s0 =
1

1 + 2κ + κ2
, s1 =

2κ

1 + 2κ + κ2
, s2 =

κ2

1 + 2κ + κ2
.

The further condition ∂2Z(ωn,δ)
∂ω2

n
= 0 leads to the ZVDD shaper:

time instants

{
t0 = 0, t1 = T0/2,

t2 = T0, t3 = 3T0/2,

amplitudes

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

s0 =
1

1 + 3κ + 3κ2 + κ3
, s1 =

3κ

1 + 3κ + 3κ2 + κ3
,

s2 =
3κ2

1 + 3κ + 3κ2 + κ3
, s3 =

κ3

1 + 3κ + 3κ2 + κ3
.

In Fig. 7.46 the sensitivity curve of the ZV, ZVD and ZVDD shapers are com-
pared for undamped systems (δ = 0). The three plots are null for ωn/ωn = 1,
that is for the nominal value ωn of the natural frequency. The main differ-
ence among them consists in the width of the notch around ωn = ωn. As a
consequence, the ZVDD, with the largest notch, is the most robust and, also
in case of noticeable modelling errors it produces low amplitude vibrations.
When systems with a non-null damping coefficient δ are considered, the sen-
sitivity curve is deformed but it is still null for ωn = ωn, see Fig. 7.47. In
particular, for δ > 0, the values of the curve at frequencies higher than ωn

are considerably reduced. This means that for high values of the damping
coefficient the robustness of the filter with respect to an overestimation of the
natural frequency is improved.

After the design of the shaper, i.e. of the parameters si, ti made according
to the above discussion, the input signal y(t) resulting from the convolution
of the shaper with the desired trajectory q(t) is computed as

7.4 Frequency Modifications of Trajectories 321

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

10

20

30

40

50

60

70

80

90

100

ωn/ωn

Z
(ω

n
,δ

)
%

Fig. 7.46. Sensitivity curves of ZV (dashdot) ZVD (dashed) and ZVDD (solid)
shapers, obtained for δ = 0.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

10

20

30

40

50

60

70

80

90

100

ωn/ωn

Z
(ω

n
,δ

)
%

Fig. 7.47. Sensitivity curves of a ZVDD shaper for different value of δ: δ = 0 (dot),
δ = 0.2 (dashdot), δ = 0.4 (dashed), δ = 0.6 (solid).

y(t) =
n∑

i=0

si q(t − ti).

As a consequence, the total duration of the motion is extended by a time pe-
riod equal to tn−t0 due to the impulse sequence, see Fig. 7.48 where a generic
trajectory is filtered by a ZV shaper. Therefore, the robustness of the system
is increased if more impulses are used, although a larger delay is injected into
the system response.

322 7 Dynamic Analysis of Trajectories

q(t)

t tn − t0

y(t)

t

(a) (b)

Fig. 7.48. Generic trajectory q(t) (a), and input function y(t) obtained by convo-
luting q(t) with a ZV shaper (b).

Example 7.4 Let us consider the second order system described in Sec. 7.1.1,
with transfer function

G(s) =
d s + k

ms2 + d s + k
(7.22)

and with the parameters

m = 1 kg, d = 2 Ns/m, k = 100 N/m.

In this case, the damping coefficient and the natural frequency are

δ = 0.1, ωn = 10.

The amplitude and the application time instant of each impulse composing
the ZV, ZVD and ZVDD input shapers are, respectively,

ZV

{
t0 = 0, t1 = 0.3157
s0 = 0.5783, s1 = 0.4217

ZVD

{
t0 = 0, t1 = 0.3157, t2 = 0.6315
s0 = 0.3344, s1 = 0.4877, s2 = 0.1778

ZVDD

{
t0 = 0, t1 = 0.3157, t2 = 0.6315, t3 = 0.9472
s0 = 0.1934, s1 = 0.4231, s2 = 0.3085, s3 = 0.0750.

Assume the double S trajectory q(t) defined by

q0 = 0, q1 = 10, vmax = 10, amax = 50, jmax = 100.

The application of the ZV shaper to the trajectory q(t) suppresses all the
vibrations that otherwise would be superimposed to the desired output of the
system. The outputs of G(s) without and with the input shaper are shown in
Fig. 7.49. The shaper acts by reducing the magnitude of the spectral compo-

7.4 Frequency Modifications of Trajectories 323

0 0.5 1 1.5 2 2.5 3
0

2

4

6

8

10

12

y
(d

a
sh

ed
),

x
(s

o
li
d
)

t
0 0.5 1 1.5 2 2.5 3

0

2

4

6

8

10

12

y
(d

a
sh

ed
),

x
(s

o
li
d
)

t
(a) (b)

Fig. 7.49. Input (dashed) and output (solid) of G(s) without (a) and with (b) ZV
shaper.

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

ω

V
ÿ
(ω

)
(s

o
li
d
),

V
q̈
(ω

)
(d

a
sh

ed
)

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

ω

V
ÿ
(ω

)
(s

o
li
d
),

V
q̈
(ω

)
(d

a
sh

ed
)

(a) (b)

Fig. 7.50. Spectrum of ÿ(t) (solid) obtained by shaping the trajectory q(t), com-
pared with the spectrum of q̈(t) (dashed): ZV shaper (a), ZVDD shaper (b).

nents of q(t) located around the resonance frequency of the mechanical system
that, in this case, is approximatively equal to ωn. In Fig. 7.50(a) the spectrum
of the second derivative of

y(t) = s0 q(t) + s1 q(t − t1)

is compared with the spectrum of q̈(t), while in Fig. 7.50(b) the acceleration
spectrum obtained by adopting a ZVDD shaper is considered. Note that in
this latter case, the components at high frequencies (around ωn = 10) are
reduced in a more pronounced way with respect to the case of the ZV shaper.
This reflects the major robustness of the ZVDD shaper when estimation errors
of the natural frequency are present, but also the larger delay injected by the
ZVDD shaper into the system.

For example, as shown in Fig. 7.51, when a ZV shaper defined for the
nominal parameters of G(s) is applied to the real system characterized by
different values of δ and ωn (in Fig. 7.51 the values ωn = 8, δ = 0.125 are

324 7 Dynamic Analysis of Trajectories

0 0.5 1 1.5 2 2.5 3
0

2

4

6

8

10

12
0

2

4

6

8

10

12
0

2

4

6

8

10

12

t

y Z
V

(d
a
sh

ed
),

x
Z
V

(s
o
li
d
)

y Z
V

D
(d

a
sh

ed
),

x
Z
V

D
(s

o
li
d
)

y Z
V

D
D

(d
a
sh

ed
),

x
Z
V

D
D

(s
o
li
d
)

Fig. 7.51. Output x(t) of the system (7.22) (solid) with the parameters values
m = 1 kg, d = 2 Ns/m, k = 64 N/m when the input trajectory q(t) is modified
with a ZV, a ZVD or a ZVDD shaper.

considered) some oscillations appear in the system response. Conversely, the
output obtained by imposing the input y(t) computed from the trajectory q(t)
by means of the ZVDD shaper is not affected by residual vibrations. �

An alternative approach for increasing the insensitivity of the shaper with
respect to modelling errors is based on Extra-Insensitive (EI) constraints [72].
Instead of forcing the residual vibration Z(ωn, δ) to zero at the modelling
frequency ωn, the residual vibration is limited to a given level z̄. The width
of the notch in the sensitivity curve is maximized by forcing the vibration to
zero at two frequencies (one-hump EI), one lower than the nominal frequency,
and the other higher (see Fig. 7.52) obtaining a shaper composed by three
impulses that, in case of undumped systems (δ = 0), are characterized by

time instants t0 = 0, t1 = T0/2, t2 = T0

amplitudes s0 =
1 + z̄

4
, s1 =

1 − z̄

2
, s2 =

1 + z̄

4
.

Obviously, it is possible to add more constraints to reduce the sensitivity of the

7.4 Frequency Modifications of Trajectories 325

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

10

20

30

40

50

60

70

80

90

100

ωn/ωn

Z
(ω

n
,δ

)
%

Fig. 7.52. Sensitivity curves of one-hump (dashdot), two-hump (dashed) and three-
hump (solid) EI shapers, obtained for δ = 0.

shaper, obtaining in this way multi-hump shapers. For instance, a two-hump
shaper can be obtained by considering four impulses6, whose amplitudes and
time instants for z̄ = 5% are

time instants

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

t0 = 0
t1 = (0.4989 +0.1627 δ −0.5426 δ2 +6.1618 δ3)T0

t2 = (0.9974 +0.1838 δ −1.5827 δ2 +8.1712 δ3)T0

t3 = (1.4992 −0.0929 δ −0.2833 δ2 +1.8571 δ3)T0

amplitudes

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

s0 = 0.1605 +0.7669 δ +2.2656 δ2 −1.2275 δ3

s1 = 0.3391 +0.4508 δ −2.5808 δ2 +1.7365 δ3

s2 = 0.3408 −0.6153 δ −0.6876 δ2 +0.4226 δ3

s3 = 0.1599 −0.6024 δ +1.0028 δ2 −0.9314 δ3.

A three-hump shaper composed by the five impulses defined (for z̄ = 5%) by

6 The values of the impulses parameters are expressed in a polynomial form as a
function of the damping coefficient δ.

326 7 Dynamic Analysis of Trajectories

time instants

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

t0 = 0
t1 = (0.4997 +0.2383 δ +0.4455 δ2 +12.4720 δ3)T0

t2 = (0.9984 +0.2980 δ −2.3646 δ2 +23.3999 δ3)T0

t3 = (1.4987 +0.1030 δ −2.0139 δ2 +17.0320 δ3)T0

t4 = (1.9960 −0.2823 δ +0.6153 δ2 +5.4045 δ3)T0

amplitudes

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

s0 = 0.1127 +0.7663 δ +3.2916, δ2 −1.4438, δ3

s1 = 0.2369 +0.6116 δ −2.5785 δ2 +4.8522 δ3

s2 = 0.3000 −0.1906 δ −2.1456 δ2 +0.1374 δ3

s3 = 0.2377 −0.7329 δ +0.4688 δ2 −2.0865 δ3

s4 = 0.1124 −0.4543 δ +0.9638 δ2 −1.4600 δ3

produces the sensitivity curve represented by a solid line in Fig. 7.52.

Example 7.5 For the design of an EI input shaper, the system of Example
7.4 is considered again, i.e.

G(s) =
2 s + 1

s2 + 2 s + 100

along with the double S trajectory q(t) defined by

q0 = 0, q1 = 10, vmax = 10, amax = 50, jmax = 100.

In particular, a three-hump shaper with a vibration limit z̄ = 5% is taken into
account. It is defined by four impulses:

time instants t0 = 0, t1 = 0.3622, t2 = 0.6829, t3 = 0.9382
amplitudes s0 = 0.3222, s1 = 0.4225, s2 = 0.2156, s3 = 0.0400.

The response of the system G(s) to the trajectory q(t) filtered by the shaper
is shown in Fig. 7.53 (compare with Fig. 7.49(a) where the output obtained
without any filter is reported). If the model is affected by errors on the natural
frequency or on the damping ratio, the approach based on the three-hump EI
shaper shows an high robustness and keeps the vibrations at a very low level.
For instance, in Fig. 7.54 the responses obtained with values of ωn different
from the nominal one (ωn = 10) are compared. In particular, the values ωn = 9
(solid), ωn = 7 (dashed), ωn = 5 (dotted) are assumed, and despite a 50%
variation the performances of the shaper remain acceptable.

�

If the system G(s) is characterized by multiple modes it is convenient to
employ different impulse sequences, which increase the robustness of the filter.

7.4 Frequency Modifications of Trajectories 327

0 0.5 1 1.5 2 2.5 3
0

2

4

6

8

10

12

y
(d

a
sh

ed
),

x
(s

o
li
d
)

t

Fig. 7.53. Response of the system G(s) = 2 s+1
s2+2 s+100

to a double S trajectory with
a three-hump EI input shaper.

0 0.5 1 1.5 2 2.5 3
0

2

4

6

8

10

12

y
(d

a
sh

ed
),

x
(s

o
li
d
)

t

Fig. 7.54. Output of three mechanical systems, which differ from the model G(s)
used for the computation of a three-hump EI shaper in the value of the natural
frequency. In particular, the values ωn = 9 (solid), ωn = 7 (dashed), ωn = 5 (dotted)
are assumed.

Example 7.6 When the double S trajectory q(t) defined by

q0 = 0, q1 = 10, vmax = 40, amax = 120, jmax = 800

is applied to the system

G(s) = 800
s + 50

(s2 + 2 s + 100)(s2 + 400)
(7.23)

the oscillating output of Fig. 7.55 is obtained.
Since the system is characterized by two second-order modes defined by the

328 7 Dynamic Analysis of Trajectories

0 0.5 1 1.5 2 2.5 3
0

2

4

6

8

10

12

14

y
(d

a
sh

ed
),

x
(s

o
li
d
)

t

Fig. 7.55. Output of the system G(s) = 800 s+50
(s2+2 s+100)(s2+400)

when a double S

trajectory is applied, without input shaper.

0 0.5 1 1.5 2 2.5 3
0

2

4

6

8

10

12

y
(d

a
sh

ed
),

x
(s

o
li
d
)

t

Fig. 7.56. Response of the system G(s) = 800 s+50
(s2+2 s+100)(s2+400)

to a double S

trajectory with a ZVDD input shaper based on the first mode of the system.

pairs7 (ωn1 = 10, δ1 = 0.1) and (ωn2 = 20, δ2 = 0), the use of an input
shaper, whose design is only based on the first mode, it is not sufficient to
cancel the vibrations which affect the output of G(s). The response of G(s)
obtained with the input filtered by a ZVDD shaper is shown in Fig. 7.56. In
this case, one can add a second input shaper, as depicted in Fig. 7.57, obtain-
ing the response of Fig. 7.58. A further delay is added to the system but the
residual vibrations are completely suppressed. �

7 Note that the first mode is the same of the system considered in Example 7.4.

7.4 Frequency Modifications of Trajectories 329

The shapers considered in this section have an interesting interpretation if
they are analyzed in the digital domain, i.e. by means of the Z-transform, [73].
For instance, in the case of the ZVD shaper of the Example 7.4, by assuming
a sampling period Ts equal to T0/2, the corresponding transfer function is

GZVD(z) = s0 + s1 z−1 + s2 z−2 =
0.3344z2 + 0.4877z + 0.1778

z2
.

The zeros of the shaper (z1 = −0.7292, z2 = −0.7292) cancels the poles of the
system, described by the discrete-time transfer function

G(z) =
1.729z + 1.261

z2 + 1.458z + 0.5318

obtained by discretizing G(s) with Ts. More generally, given a system which
must follow a prescribed trajectory without oscillations, and described by the
discrete transfer function G(z), it is possible to design a Digital Shaping Filter
(DSF), by assuming

GDSF =
C

zr
(z − p1)n1(z − p∗1)

n1 · · · (z − pm)nm(z − p∗m)nm

where the pairs (pi, p∗i) represent the (complex conjugate) poles of G(z), C
is a constant and r = 2(n1 + n2 + ...nm) is the total number of poles of the

G(s)

q(t) r(t) y(t) x(t)

(ωψn1, δ1) (ωn2, δ2) Control loop

Fig. 7.57. Block diagram of a system with a cascade of two shapers.

0 0.5 1 1.5 2 2.5 3
0

2

4

6

8

10

12

y
(d

a
sh

ed
),

x
(s

o
li
d
)

t

Fig. 7.58. Response of the system G(s) = 800 s+50
(s2+2 s+100)(s2+400)

to a double S

trajectory filtered by a cascade of two ZVDD shapers.

330 7 Dynamic Analysis of Trajectories

F (s) G(s)
q(t) y(t) x(t)

Fig. 7.59. Cascade connection of the feedforward controller and of the plant.

system, [74]. Therefore, the design of a DSF is based on pole-zero cancellations
according to a procedure not dissimilar from the feedforward control based
on model inversion described in the next section.

7.4.3 Feedforward based on the inversion of the plant dynamics

If the main mechanical properties of the machine are known and if the actu-
ator’s bandwidth is sufficiently large, more general approaches for the com-
pensation of undesired effects, such as oscillations, can be considered. These
approaches are based on an inversion of the dynamic model of the system.
Let us consider the simple case of a SISO (Single Input Single Output) linear8

system, modelled with the transfer function G(s). The cascade connection of
the feedforward controller F (s) and of G(s) shown in Fig. 7.59 leads to the
input/output transfer function

X(s)
Q(s)

= F (s)G(s)

where Q(s) and X(s) are the Laplace transforms of the input trajectory q(t)
and of the system response x(t) respectively. In order to have x(t) = q(t), ∀t,
it is then necessary that

F (s) = G−1(s).

This means that the dynamic behavior of the feedforward controller must be
equal to the inverse of the dynamics of the plant.
The same results can be obtained also in presence of a feedback control C(s),
see Fig. 7.60. As a matter of fact, the relation between the input q(t) and the
variable error e(t) = q(t) − x(t) is, in terms of Laplace transforms,

E(s)
Q(s)

=
1 − F (s)G(s)
1 + C(s)G(s)

= S(s)
(
1 − F (s)G(s)

)

where S(s) =
(
1 + C(s)G(s)

)−1

is the sensitivity function of the controlled
system. Therefore, also in this case the conditions

F (s) = G−1(s)

guarantees that the tracking error is null for t ≥ 0.

8 For the sake of simplicity a linear model is considered, but similar results are also
valid for nonlinear systems, see e.g. [75, 76].

7.4 Frequency Modifications of Trajectories 331

- +

+

F (s)

C(s) G(s)
q(t) e(t) y(t) x(t)

Fig. 7.60. Feedback/feedforward control of a SISO linear system.

Despite the solution of the perfect tracking problem is conceptually simple,
its practical implementation is made difficult by uncertainties, delays and/or
non-minimum phase dynamics.
Given a generic linear system

G(s) = K1
b(s)
a(s)

= K1
sm + bm−1s

m−1 + · · · + b0

sn + an−1sn−1 + · · · + a0
, K1 �= 0 (7.24)

with relative degree ρ = n − m, where it is assumed that the polynomials
a(s) and b(s) are coprime (no pole-zero cancellations occur), it is convenient
to express its inverse as

G−1(s) =
1

K1

a(s)
b(s)

= cρs
ρ + cρ−1s

ρ−1 + · · · + c0 + G0(s) (7.25)

where G0(s) is a strictly proper rational transfer function representing the
zero dynamics of the system (7.24), [77]. By using the fraction expansion,
G0(s) can be rewritten as

G0(s) = G−
0 (s) + G+

0 (s) =
d(s)
b−(s)

+
e(s)
b+(s)

where b−(s) and b+(s) are the monic polynomials containing the roots of b(s)
with negative and positive real parts, respectively.
The profile y(t), which guarantees that x(t) = q(t), can be computed by means
of the inverse Laplace transform applied to

Y (s) = G−1(s)Q(s).

By considering (7.25), it is possible to show that a bounded and continuous
function which solves the problem of the dynamic inversion is

y(t) = cρq
(ρ)(t)+· · ·+c1q

(1)(t)+c0q(t)+
∫ t

0

γ−
0 (t−τ)q(τ)dτ−

∫ +∞

t

γ+
0 (t−τ)q(τ)dτ

(7.26)

332 7 Dynamic Analysis of Trajectories

+
+
+

k1 + k2

k1

d1

k1

m

k1

k1

ms2 + d1s + (k1 + k2)

q(t)

q̇(t)

q̈(t)

x(t)y(t)

Fig. 7.61. Feedforward action for the tracking of the desired motion profile q(t),
with the mechanical system in Fig. 7.34.

where γ−
0 (t) and γ+

0 (t) are the inverse Laplace transforms of G−
0 (s) and G+

0 (s)
respectively, [78]. The continuity of y(t) requires that the target trajectory
profile q(t) belongs to the class of Cρ bounded functions.
If the mechanical system has no zeros, the computation of the feedforward
action is particularly simple, being the integral terms in (7.26) not present.
As a matter of fact, in this case the signal y(t) which guarantees a perfect
tracking is a linear combination of q(t) and of its first ρ derivatives, as already
discussed in Sec. 7.4.1 with the polydyne approach.

Example 7.7 Consider the linear and time-invariant mechanical system of
Fig. 7.34, whose transfer function is

G(s) =
k1

ms2 + d1s + (k1 + k2)
.

In this case, the feedforward filter is

F (s) = G−1(s) =
ms2 + d1s + (k1 + k2)

k1

and, if the desired motion q(t) is known along with its derivative up to the
second order, the equation (7.26) provides the expression of the desired input
signal:

y(t) =
m

k1
q̈(t) +

d1

k1
q̇(t) +

k1 + k2

k1
q(t). (7.27)

Note that the “s” operator in the Laplace domain is equivalent to the deriva-
tive action in the time domain.
From (7.27), it results that a continuous input function y(t) can be obtained
if the trajectory q(t) is continuous at least up to its second derivative (note
that the relative degree of the system is ρ = 2).
By applying the profile y(t) to the system G(s), as shown in Fig. 7.61, the
output results equal to q(t). Fig. 7.62(a) shows the output of G(s) with the
parameters

m = 1 kg, d1 = 2 Ns/m, k1 = 80 N/m, k2 = 20 N/m

7.4 Frequency Modifications of Trajectories 333

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

2

4

6

8

10

12

14

y
(d

a
sh

ed
),

x
(s

o
li
d
)

t
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

2

4

6

8

10

12

14

y
(d

a
sh

ed
),

x
(s

o
li
d
)

t

(a) (b)

Fig. 7.62. Input and output signals of the system G(s) = 80
s2+2s+100

without (a)
and with (b) model inversion; q(t) is a double S trajectory.

when a double S profile9 q(t) is directly applied to the input (multiplied by
the gain (k1 + k2)/k1)). In Fig. 7.62(b) the output of the same system is con-
sidered, with the input y(t) obtained according to (7.27). Note that in this
case x(t) = q(t) without any oscillation. �

The presence of “stable” zeros (i.e. with negative real part) makes the
dynamic inversion more complex since, besides the linear combination of q(t)
and its derivatives, it is necessary to consider the convolution between q(t)
and γ−

0 (t): ∫ t

0

γ−
0 (t − τ)q(τ)dτ. (7.28)

This term represents a post-action, whose duration Tp can be computed with
arbitrarily precision as Tp = tp−t0, being t0 the instant at which the trajectory
is applied and

tp := min
{

τ ∈ R :
∣∣∣∣y(t) − 1

G(0)

∣∣∣∣ ≤ εp, ∀t ∈ [τ, ∞)
}

with εp an arbitrary small parameter, [77].
Once the trajectory q(t) has been fixed, the contribution (7.28) can be esti-
mated by computing the integral in a closed form or in a numerical way, or,
equivalently, by considering the output of the stable linear filter G−

0 (s) with
the profile q(t) as input.
9 The double S trajectory considered in all the examples of this section is obtained

with the conditions

q0 = 0, q1 = 10,

vmax = 10, amax = 50, jmax = 100.

The total duration of the trajectory is T = 1.585 s.

334 7 Dynamic Analysis of Trajectories

+

+

+

+

m

d

1 − m k

d2

d s + k

ms2 + ds + k

q(t)

q(t)

q̇(t)

mk2

d3

1
s + k/d

x(t)y(t)

Fig. 7.63. Feedforward action for the tracking of the desired motion profile q(t),
with the mechanical system in Fig. 7.1.

Example 7.8 Given the one-dof elastic system already considered in Sec. 7.1.1
and described by the transfer function

G(s) =
d s + k

ms2 + ds + k

where the meaning of the parameters m, d, k is explained in Fig. 7.1, the
feedforward filter is

F (s) = G−1(s) =
[
m

d
s +

(
1 − mk

d2

)]
+ G−

0 (s)

with

G−
0 (s) =

mk2

d3

1
s + k/d

.

Therefore, the signal y(t) which guarantees a perfect tracking of the trajec-
tory q(t) is composed by two terms. The former is represented by a linear
combination of q(t) and q̇(t), while the latter is given by the trajectory q(t)
filtered by G−

0 (s) (see Fig. 7.63):

y(t) =
[
m

d
q̇(t) +

(
1 − mk

d2

)
q(t)

]
+
∫ t

0

mk2

d3
e−

k
d (t−τ)q(τ)dτ. (7.29)

Differently from Example 7.7, in this case a continuous input function y(t)
can be obtained if the trajectory q(t) is continuous up to the first derivative.
As a matter of fact, the relative degree ρ of the system is equal to one. With
the values of the parameters

m = 1 Kg, d = 2 Ns/m, k = 100 N/m

the response of G(s) to the input y(t) = q(t) is shown in Fig. 7.64(a), while
the output of G(s), when the y(t) is computed as in (7.29), is reported in
Fig. 7.64(b). �

7.4 Frequency Modifications of Trajectories 335

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

2

4

6

8

10

12

y
(d

a
sh

ed
),

x
(s

o
li
d
)

t
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

2

4

6

8

10

12

y
(d

a
sh

ed
),

x
(s

o
li
d
)

t

(a) (b)

Fig. 7.64. Input and output signals of the system G(s) = 2 s+100
s2+2s+100

without (a)
and with (b) model inversion.

If the zeros of the transfer function are characterized by a positive real part,
the model inversion is more complicated since, besides the post-action due to
the presence of stable zeros, if any, it is necessary to consider a pre-action,
whose contribution begins at

ta := min {τ ∈ R : |y(t)| ≤ εa, ∀t ∈ (−∞, τ]}

where, as in the case of the post-action, εa is an arbitrary small parameter.
The analytical expression of the pre-action is

−
∫ +∞

t

γ+
0 (t − τ)q(τ)dτ

and can be estimated by computing (or approximating, [78]) the integral. Note
that, in this case the integral form of the pre-action is not equivalent to the
output of the filter G+

0 (s), since this one is unstable.

Example 7.9 Consider the linear SISO system [77]

G(s) = 4
(1 − s)(s + 1)

(s + 2)(s2 + 2s + 2)

which leads to the feedforward filter

F (s) = G−1(s) =
[
−1

4
s − 1

]
+ G−

0 (s) + G+
0 (s)

where

G−
0 (s) =

1
8

s + 1
, G+

0 (s) =
−15

8

s − 1
.

As shown in Fig. 7.65, the feedforward control y(t) which guarantees a perfect

336 7 Dynamic Analysis of Trajectories

−5 −4 −3 −2 −1 0 1 2 3 4 5
−15

−10

−5

0

5

10

15

20

y
(t

)

t

Fig. 7.65. Feedforward signal based on model inversion (solid), decomposed in its
components: pre-action (dotted), post-action (dashdot), linear combination of q and
q̇ (dashed).

0 1 2 3 4 5 6 7 8 9 10
−4

−2

0

2

4

6

8

10

12

y
(d

a
sh

ed
),

x
(s

o
li
d
)

t
−5 −4 −3 −2 −1 0 1 2 3 4 5
0

2

4

6

8

10

12

y
(d

a
sh

ed
),

x
(s

o
li
d
)

t

(a) (b)

Fig. 7.66. Input and output signals of the system G(s) = 4 (1−s)(s+1)

(s+2)(s2+2s+2)
without

(a) and with (b) model inversion.

tracking of the trajectory q(t) is composed by three terms. The first is repre-
sented by a linear combination of q(t) and q̇(t), while the others are the pre-
and post- actions due to the zero dynamics of the system:

y(t) =
[
−1

4
q̇(t) − q(t)

]
+

15
8

∫ +∞

t

e(t−τ)q(τ)dτ +
1
8

∫ t

0

e−(t−τ)q(τ)dτ.

In Fig. 7.66 the output of the system G(s) is shown, when the double S tra-
jectory is applied to the input Fig. 7.66(a), and when the feedforward filter
is adopted Fig. 7.66(b). Note that, in this latter case, the input y(t) starts
before the application of the trajectory q(t) and ends after the trajectory has
completed. �

7.4 Frequency Modifications of Trajectories 337

Ideally, the approach based on feedforward compensation, derived from the
automatic control field, would allow to compensate for many non-idealities
of the mechanical system. Unfortunately, it is often limited in applications
since it is necessary to know the exact values of the parameters of the model
and, moreover, the undesired effects are usually at high frequencies where it is
not possible to apply any proper corrective actions by means of the actuation
system.

Example 7.10 The three cases considered in the previous examples of this
section are now analyzed by supposing that the parameters of the system G(s)
differ from their nominal values. In particular, instead of the models G(s) new
models Ga(s) are assumed, whose expressions10 are respectively

a) G(s) =
80

s2 + 2s + 100
⇒ Ga(s) =

64.8
s2 + 1.8s + 81

b) G(s) =
2s + 100

s2 + 2s + 100
⇒ Ga(s) =

2s + 81
s2 + 1.8s + 81

c) G(s) = 4
(1 − s)(s + 1)

(s + 2)(s2 + 2s + 2)
⇒ Ga(s) = 3.24

(1 − s)(s + 1)
(s + 2)(s2 + 1.8s + 1.62)

.

In Fig. 7.67 the responses obtained with the nominal models (dashed) are
compared with those provided by Ga(s), with the same inputs y(t) (solid).
While in the first two cases the outputs of Ga(s) and of G(s) remain quite
similar, in the last case the responses are considerably different. �

10 In the three cases, a variation of −10% on the natural frequency of the first mode
is assumed.

338 7 Dynamic Analysis of Trajectories

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

2

4

6

8

10

12

x
n
o
m

in
a
l

(d
a
sh

e
d
) ,

x
a
c
tu

a
l

(s
o
li
d
)

t

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

2

4

6

8

10

12

x
n
o
m

in
a
l

(d
a
sh

e
d
) ,

x
a
c
tu

a
l

(s
o
li
d
)

t

(b)

0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

x
n
o
m

in
a
l

(d
a
sh

e
d
) ,

x
a
c
tu

a
l

(s
o
li
d
)

t

(c)

Fig. 7.67. Response of the systems considered in the Examples 7.7, 7.8 and 7.9,
when the actual system is different from the nominal model used to compute the
feedforward action y(t).

Part III

Trajectories in the Operational Space

8

Multidimensional Trajectories and Geometric
Path Planning

In this Chapter, the problem of trajectory planning in 3D is addressed.
This problem is of relevance in operations with multi-degrees of free-
dom machines, like for example robots or special sanding/milling ma-
chines. Planning motions in the 3D space is more complex than in
the single axis case, since in general two aspects must be defined: the
geometry of the trajectory (e.g. a straight line, a circle, and so on),
and the motion law to be adopted while following the geometric path.
Moreover, also the problem of the orientation (of the tool) has to be
considered. Therefore, there are at least seven variables to be specified
for a 3D trajectory: three for the position, three for the orientation and
one for the motion law.
Besides these aspects, in order to execute a desired motion in the space
by means of a multi-degree-of-freedom machine, it is also necessary to
consider the fact that a (inverse) kinematic model of the machine must
be used in order to transform the given trajectory from the 3D space,
where it is specified, to the space of actuation (usually called the joint
space) where the motion of the actuators takes place. In general, this
kinematic transformation may be quite complex and depends on the
particular machine or robot at hand.

8.1 Introduction

The definition of a trajectory in the Cartesian (3D) space implies the deter-
mination of a geometric path to be tracked with a prescribed motion law, that
in turns can be defined by means of functions similar to those reported in the
previous chapters. For this purpose, it is convenient to consider a parametric
representation of a curve in the space

p = p(u), u ∈ [umin, umax] (8.1)

342 8 Multidimensional Trajectories and Geometric Path Planning

where p(·) is a (3 × 1) a continuous vectorial function, which describes the
curve when the independent variable u ranges over some interval of the domain
space.
In many cases, the definition of a trajectory in the task space of a robot or of a
multi-axis automatic machine requires also to assign the orientation of the tool
in each point of the curve. This can be achieved by specifying the configuration
of the frame linked to the end effector (the tool frame) with respect to the
base (world) frame. Therefore, in the general case the parametric description
of the trajectory (8.1) is a six dimensional function1 providing, for each value
of the variable u, both the position and the orientation of the tool:

p = [x, y, z, α, β, γ]T .

Therefore, the planning of a trajectory in the workspace consists in defining:

1. The function p(u), which interpolates a set of desired points/configurations.
2. The motion law u = u(t) describing how the tool should move along the

path.

In case the multi-dimensional problem can be decomposed in its components,
the 3D trajectory planning can be considered as a set of scalar problems, and
the techniques reported in the previous chapters can be adopted for its solu-
tion. In this case, each function pi(·) depends directly on the time t, and the
synchronization among the different components is performed by imposing
interpolation conditions at the same time instants.
In this chapter, the multi-dimensional problem is approached by considering
the computation of the 3D geometric path to be tracked with a prescribed
motion law.
Once the trajectory in the task space has been defined, it is necessary to
translate it in the joint/motor space by means of the inverse kinematic model
of the system. The reader interested to this topics should refer to the special-
ized literature, see for example [12] and the many other excellent textbooks
[79, 80, 81].

Before discussing the techniques that can be used to define the function
p(u), some preliminary considerations and definitions are necessary. Quite
often, the trajectories for the position and for the orientation are defined
separately, since it can be desirable to track a well defined path in the work
space, e.g. a straight line, with the orientation of the tool specified only at
the endpoints of the motion. In fact, with the exception of some applications
(e.g. welding, painting, etc.), not always a strict relation between position and
orientation exists.
Although the two problems can be treated separately, they result conceptually

1 In case that a minimal representation of the orientation is assumed, e.g. Euler or
Roll-Pitch-Yaw angles, only three parameters are necessary, see Appendix C.

8.1 Introduction 343

similar, i.e. given a set of via-points2 qk = [xk, yk, zk]T (position) or qk =
[αk, βk, γk]T (orientation) it is necessary to find a parametric curve which
passes through o near them. In simple cases, such a function can be directly
provided in an analytical manner by means of circular/straigh line motion
primitives. More frequently, it must be constructed by adopting more complex
approaches that guarantee also a desired smoothness (continuity of the curve
and its derivatives up to a desired order). In this case, classical approaches are
based on B-spline functions, Bézier curves or Nurbs [82], which are piecewise
polynomial functions defined by

p(u) =
m∑

j=0

pjBj(u) (8.2)

where pj are the so called control points, i.e. constant coefficients which deter-
mine the shape of the curve by weighting the basis functions Bj(u), properly
defined according to the type of curve used. The definition and the most sig-
nificant properties of B-spline, Bézier and Nurbs curves are summarized in
Appendix B.

8.1.1 Continuity of the geometric path and continuity of the
trajectory

As shown in Fig. 8.1, a geometric path is usually composed by a number of
segments, i.e.

p(u) = pk(u), k = 0, . . . , n − 1.

It is therefore necessary to guarantee the smoothness of the curve by impos-
ing continuity constraints at the joints, i.e. the locations where the segments3

composing the curve abut, see Fig. 8.2. For this purpose, it is necessary to
specify the meaning of continuity, since different notions exist about this prop-
erty for motions in 3D [83, 84]. In particular, two types of continuity are of
interest for a trajectory in the Cartesian space: the geometric and the paramet-
ric continuity. As a matter of fact, the use of a parametric curve for trajectory
planning generally requires, besides the obvious continuity of the geometric
path, that also the velocity and acceleration vectors, which are respectively
the first and the second parametric derivative vectors

(
dp
du , d2p

du2

)
of the curve,

are continuous.
On the other hand, if proper care is not taken, it may happen that the curve,
although geometrically smooth, is discontinuous in speed or in acceleration.

2 A via-point is a point (configuration) in the 3D space used to plan the trajectory.
The via-points may be either interpolated or approximated, see the following
sections.

3 For the sake of simplicity it is usually assumed that each segment is defined in
the interval u ∈ [0, 1].

344 8 Multidimensional Trajectories and Geometric Path Planning

p1(u)

p2(u)

p3(u)

p4(u)

p5(u)

Fig. 8.1. Piecewise polynomial curve characterized by G1 continuity.

In this case the curve is said geometrically continuous but parametrically dis-
continuous. Let us consider the example of the (apparently continuous) path
of Fig. 8.1. Its first derivative is shown in Fig. 8.4(a), and it is clear that
with the adopted parameterization the derivative is discontinuous although
the geometric path appears to be smooth.
Two infinitely differentiable segments meeting at a common point, i.e. pk(1) =
pk+1(0)4 like in Fig. 8.2, are said to meet with n-order parametric continuity,
denoted by Cn, if the first n parametric derivatives match at the common
point, that is if

p
(i)
k (1) = p

(i)
k+1(0), k = 1, . . . , n.

Unfortunately, derivative vectors are not intrinsic properties of a curve [83],
and their value changes by substituting the parameterization u with an equiva-

pk

pk+1

pk(1) pk+1(0)

Fig. 8.2. Two parametric curves meeting at a common point, the joint.

4 It is assumed u ∈ [0, 1], ∀k.

8.1 Introduction 345

umin umax

ûmin
ûmax

p(u)

p̂(û) = (p ◦ f)(û)

f

Fig. 8.3. Reparameterization of a curve p(u).

lent5 one û. Therefore two curves meeting at a point with a Cn continuity may
lose this property if the parametrization of one of them is changed. Conversely,
the unit tangent

(
dp
du/

∣∣∣dp
du

∣∣∣) and the unit curvature
(

d2p
du2 /

∣∣∣d2p
du2

∣∣∣) vectors are
intrinsic properties of the curve, and they lead to the notion of geometric con-
tinuity. Two parametric curves meet with a first order geometric continuity,
denoted by G1, if and only if the have a common unit tangent vector. In this
case the tangent direction at the joint is preserved, but the continuity of the
velocity vector is not guaranteed, since the tangent vectors may have different
magnitude.
Two curves meet with G2 continuity if and only if they have common unit
tangent and curvature vectors.
More generally, it is possible to state that two segments pk(u) and pk+1(u)
meet with n-order geometric continuity (Gn continuity) if and only if there
exists a parametrization û equivalent to u such that p̂k(û) and pk+1(u) meet
with Cn continuity at the joint. This means that, given a Gn curve composed
by several segments, it is possible to find a parameterization which makes
the curve Cn continuous, guaranteeing in this way the continuity of speed,
acceleration, and so on.

Example 8.1 The trajectory of Fig. 8.1, composed by five polynomial seg-
ments (Bézier curves), is G1 continuous. From a visual point of view, the path
appears to be smooth, but Fig. 8.4(a) reveals that the first derivative is dis-
continuous at the joints. An equivalent parameterization is therefore used to
make the curve C1 continuous, as shown in Fig. 8.4(b). �

5 Two parameterizations (see Fig. 8.3) are said to be equivalent if there exists a
regular Cn function f : [ûmin, ûmax]
→ [umin, umax] such that:
1) p̂(û) = p(f(û)) = p(u).
2) f([ûmin, ûmax]) = [umin, umax].
3) f (1) > 0.

346 8 Multidimensional Trajectories and Geometric Path Planning

0 1 2 3 4 5
−2

−1

0

1

2

3
−4

−2

0

2

4
0.5

1

1.5

2

2.5
p
(1

)
x

p
(1

)
y

p
(1

)
z

u

(a)

0 2 4 6 8 10 12
−1

−0.5

0

0.5

1
−1

−0.5

0

0.5

1
0.2

0.4

0.6

0.8

1

p
(1

)
x

p
(1

)
y

p
(1

)
z

u

(b)

Fig. 8.4. Components along the x, y and z directions of the tangent vector p(1) of
the 3D trajectory shown in Fig. 8.1, with two different parameterizations.

8.1.2 Global and local interpolation/approximation

As mentioned above, a trajectory in the 3D space is usually constructed with
the purpose of fitting a given set of data points. To this goal, different criteria
can be adopted according to the needs imposed by the specific application.
In particular, two types of fitting can be distinguished: interpolation and ap-
proximation (see Fig. 8.5)[85, 86]. If the points are interpolated, the curve
passes exactly through them for some values of the independent variable. If
they are approximated, the curve does not passes exactly through the given
points, but in a neighborhood within a prescribed tolerance. This case is usu-
ally adopted when the trajectory must fit a large number of points, but the
free parameters which characterize the curve are not sufficient to obtain an
exact interpolation. In other applications approximation is preferable to inter-
polation, e.g. when the goal is to construct a curve reproducing the “shape”
of the data, avoiding fast oscillations between contiguous points (reducing in
this way the curvature/acceleration along the trajectory); this is the case of
smoothing B-splines.
The interpolating/approximating curve can be determined by global or local
procedures. With a global algorithm the parameters which define the trajec-
tory, e.g. the control points in eq. (8.2), are computed by solving an opti-
mization problem. This is based on the whole set of data points and usually
allows to minimize some quantity, e.g. the curvature of the overall path. With
a global algorithm, if some points are modified, the shape of the entire curve

8.2 Orientation of the Tool 347

(a) (b)

Fig. 8.5. Interpolation (a) and approximation (b) of a set of data points.

is perturbed. Conversely, a local procedure is based only on local data (tan-
gent vectors, curvature vectors, etc.) for each pair of points. These algorithms
are generally computationally less expensive than global methods, but the
achievement of the desired level of continuity at the joints is a quite tricky
job. On the other hand, local methods allow to deal with corners, straight line
segments, and other particularities in a simpler way, and the modification of
a point involves only the two adjacent segments.

8.2 Orientation of the Tool

The orientation R of the end effector6 may be expressed by means of a rotation
matrix composed by three orthogonal unit vectors (called in robotics normal,
slide, and approach) defining the orientation of the tool with respect to the
base world frame:

R = [n, s, a].

Therefore, in order to specify the orientation of the end effector in different
points of the trajectory, a desired rotation matrix Rk must be specified at each
point pk and a proper interpolating technique must be used among them, see
Fig. 8.6.

8.2.1 Case of independent position and orientation

In defining a trajectory, it is in general not convenient to adopt rotation ma-
trices for the interpolation of the orientation among given poses. As a matter
of fact, by interpolating the three unit vectors n, s,a, from the initial value
corresponding to the rotation matrix R0 to the final one R1, it is not pos-
sible to guarantee that the orthonormality conditions7 hold in every instant.
6 An end effector is the (generic) tool carried by a robotic arm or the operating

tool of a multi-axis machine.
7 See Appendix C.

348 8 Multidimensional Trajectories and Geometric Path Planning

ox
y

z

p0
s0

n0

a0

p1

s1

n1

a1 p2

s2

n2

a2

p3

s3

n3

a3

Fig. 8.6. Change of the orientation.

For this reason, the planning of a change of the orientation is often based on
a set of three angles φ = (ϕ, ϑ, ψ), e.g. the Euler or Roll-Pitch-Yaw angles,
Appendix C, which are varied according to some laws (usually, a polynomial
function of the time) from the initial value φ0 to the final one φ1. In this way,
a continuous variation of the orientation (and a continuous angular velocity)
is obtained.

Example 8.2 In Fig. 8.7 a trajectory with a displacement both in terms
of position and orientation is shown. In particular, the orientation in each
via-point is provided by means of Roll-Pitch-Yaw angles with respect to the
world frame (in the figure the corresponding frames, computed according to

−5

0

5

−4
−2

0
2

4
6

8

4

5

6

7

8

9

10

11

12

x
y

z

Fig. 8.7. Multipoint trajectory for position and orientation based on Roll-Pitch-
Yaw angles representation.

8.2 Orientation of the Tool 349

0 0.2 0.4 0.6 0.8 1
−2

−1

0

1

2

3

u

R
P

Y
 a

ng
le

s

−5

0

5

10

15

P
os

iti
on

Fig. 8.8. Trajectory for position and orientation in 3D space based on RPY angles
representation: profiles of the different components (see Fig. 8.7).

eq. (C.13), are reported). The six-dimensional via-points are⎡
⎢⎢⎢⎢⎢⎢⎣

qx

qy

qz

ψ
θ
ϕ

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

3.31 −3.01 −1.07 4.48 1.52
−2.38 −3.53 5.81 2.97 −1.25

7.14 10.89 6.72 4.54 5.81
0 0 −1.11 2.11 2.46
0 0.90 0.42 −0.33 −0.77
0 0 −0.69 0 −0.87

⎤
⎥⎥⎥⎥⎥⎥⎦

.

By means of a suitable interpolation algorithm8, discussed in Sec. 8.4.2, a
C2 curve passing through all the points is found. This guarantees that the
angles change smoothly, and it is possible to demonstrate that both the cor-
responding angular velocities and angular accelerations are continuous. The
components of the trajectory (position and orientation) are shown in Fig. 8.8.

�

An alternative approach, that in the Cartesian space assumes a more clear
meaning, is based on the so-called angle-axis representation. Given two frames
with coincident origins but different orientations, it is always possible to find
a vector w such that the latter frame can be obtained from the former one
by means of a rotation of an angle ϑ about w. Given the initial frame F0

8 Note that all the interpolation and approximation algorithms reported in the next
sections are in general suitable for n-dimensional problems.

350 8 Multidimensional Trajectories and Geometric Path Planning

(represented in the base frame by the rotation matrix R0) and the final frame
F1(with the associated matrix R1), the rotation matrix describing the trans-
formation is

0R1 = RT
0 R1 =

⎡
⎣ r11 r12 r13

r21 r22 r23

r31 r32 r33

⎤
⎦ (8.3)

i.e. R1 = R0
0R1. Matrix 0R1 can be expressed as the rotation matrix about

the fixed axis

w =
1

2 sin θt

⎡
⎣ r32 − r23

r13 − r31

r21 − r12

⎤
⎦ =

⎡
⎣wx

wy

wz

⎤
⎦ (8.4)

of the angle

θt = cos−1

(
r11 + r22 + r33 − 1

2

)
. (8.5)

The rotational motion of the tool from R0 to R1 can be described as

R(t) = R0 Rt(θ(t))

where Rt(θ(t)) is a time depending matrix such that Rt(0) = I3, the (3 × 3)
identity matrix, and Rt(θt) = 0R1. The expression of matrix Rt(θ) is

Rt(θ)=

⎡
⎣ w2

x(1 − cθ) + cθ wxwy(1 − cθ) − wzsθ wxwz(1 − cθ) + wysθ

wxwy(1 − cθ) + wzsθ w2
y(1 − cθ) + cθ wywz(1 − cθ) − wxsθ

wxwz(1 − cθ) − wysθ wywz(1 − cθ) + wxsθ w2
z(1 − cθ) + cθ

⎤
⎦

where cθ = cos(θ), sθ = sin(θ). Therefore, the orientation of the tool in the
transition from R0 to R1 depends on the parameter θ. At this point it is only
necessary to assign the motion law θ(t).

Example 8.3 A change of orientation along a straight line trajectory from
p0 = [0, 0, 0]T to p1 = [5, 5, 5]T is shown in Fig. 8.9. In particular the
matrices associated to the initial and final frames are

R0 =

⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦ , R1 =

⎡
⎣0 1 0

0 0 1
1 0 0

⎤
⎦ .

The transition from R0 to R1 can be expressed as a rotation of the angle
θt = 2.09 rad about the vector w = [−0.57, − 0.57, − 0.57]T . In the figure,
the tool frame is represented for different values of θ, which is varied from 0
to θt in a linear manner.

�

8.2 Orientation of the Tool 351

0 1 2 3 4 5 6
0

2

4

6
0

1

2

3

4

5

6

Fig. 8.9. Frame change obtained with an axis-angle representation.

−5

0

5

−4
−2

0
2

4
6

8

4

5

6

7

8

9

10

11

12

x
y

z

Fig. 8.10. Trajectory for position and orientation based on axis-angle representa-
tion.

Example 8.4 A trajectory computed by means of the axis-angle represen-
tation is shown in Fig. 8.10. The orientation in each via-point is provided by
means of a rotation matrix Rk which defines the configuration of the local
frame with respect to the world frame. The data points are the same as in
Example 8.2. Therefore

352 8 Multidimensional Trajectories and Geometric Path Planning

q0 =

⎡
⎣ 3.31
−2.38

7.14

⎤
⎦ , R0 =

⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦

q1 =

⎡
⎣−3.01
−3.53
10.89

⎤
⎦ , R1 =

⎡
⎣ 0.61 0 0.78

0.00 1 0.00
−0.78 0 0.61

⎤
⎦

q2 =

⎡
⎣−1.07

5.81
6.72

⎤
⎦ , R2 =

⎡
⎣ 0.40 0.57 0.71
−0.81 0.57 0.00
−0.41 −0.58 0.70

⎤
⎦

q3 =

⎡
⎣ 4.48

2.97
4.54

⎤
⎦ , R3 =

⎡
⎣−0.48 −0.85 0.16

0.81 −0.51 −0.28
−0.32 0.00 0.94

⎤
⎦

q4 =

⎡
⎣ 1.52
−1.25

5.81

⎤
⎦ , R4 =

⎡
⎣−0.55 −0.82 −0.13

0.44 −0.16 −0.87
0.70 −0.54 0.45

⎤
⎦ .

In this case the points describing the position are interpolated by means of
a cubic B-spline, while the orientation is changed from the initial configuration
to the final one by considering a pair of points at a time. Therefore the overall
trajectory for the orientation is composed by four segments, defined by the

0 0.2 0.4 0.6 0.8 1
−4

−2

0

2

4

u

R
P

Y
 a

ng
le

s

−5

0

5

10

15

P
os

iti
on

Fig. 8.11. Trajectory for position and orientation in 3D space based on axis-angle
representation: profiles of the different components.

8.2 Orientation of the Tool 353

axes9 ⎡
⎣wx

wy

wz

⎤
⎦ =

⎡
⎣ 0 0.05 0.05 −0.77

1 −1.10 0.32 −0.62
0 −0.99 −0.94 0.10

⎤
⎦

and by the angles
[θt] = [0.90, 0.95, 3.10, 0.85].

In each segment the axis is kept constant, while the angle varies from 0
to θtk by means of a 5-th degree polynomial function of u (the same inde-
pendent variable of the B-spline for the position trajectory) which allows to
set initial (for u = ūk, being ūk the time instant in which the point qk is
crossed) and final (for u = ūk+1) velocities and accelerations equal to zero.
The components of the trajectory for the position and the orientation are
shown in Fig. 8.11. The RPY angles corresponding to the local frame at each
point of the trajectory are used. Note in particular that the profile of an an-
gle is discontinuous since the RPY angles are defined in the range [−π, π]. �

8.2.2 Case of position and orientation coupled

In many tasks, positioning and orientation problems are coupled at the
Cartesian-coordinate level. In this case, a technique can be applied that allows
to specify the orientation of the end effector on the basis of the orientation of
the path at a given point. As a matter of fact, if the parametric form of the
(regular) curve to be tracked, eq. (8.1), is expressed in terms of the curvilinear
coordinate s (which measures the arc length10)

Γ : p = p(s), s ∈ [0, l] (8.6)

it is possible to define a coordinate frame directly tied to the curve, the Frenet
frame, represented by three unit vectors:

• The tangent unit vector et, lying on the line tangent to the curve and is
oriented according to the positive direction induced on the curve by s.

• The normal unit vector en, lying on the line passing through the point p,
and orthogonal to et; the orientation of en is such that in a neighborhood
of p the curve is completely on the side of en with respect to the plane
passing through et and normal to en.

• The binormal unit vector eb, defined in a such way that the three vectors
(et,en,eb) form a right handed frame.

9 For each pair of frames (Rk, Rk+1) the axis and the rotation angle are computed
by means of (8.4) and (8.5).

10 Therefore the parameter l in (8.6) represents the total length of the curve.

354 8 Multidimensional Trajectories and Geometric Path Planning

s(t)

et

en

eb
p

Γ

0

Fig. 8.12. Definition of a Frenet frame on a parametric curve.

The value of the Frenet vectors at a generic point p can be deduced from the
expression of the curve Γ by means of simple relations:

et =
dp

ds
, en =

1∣∣∣∣d2p
ds2

∣∣∣∣
d2p

ds2 , eb = et × en.

Note that if the curve is characterized by the arc-length parameterization s
and not by a generic parameter u, the tangent vector et has unit length.
In those applications in which the tool must have a fixed orientation with
respect to the motion direction, e.g. in arc welding, the Frenet vectors implic-
itly define such an orientation. It is therefore sufficient to define the position
trajectory function to obtain in each point the orientation of the tool.

Example 8.5 A helicoidal trajectory is shown in Fig. 8.13, with the associ-
ated Frenet frames. The trajectory is described by the parametric form

p =

⎡
⎣ r cos(u)

r sin(u)
d u

⎤
⎦ (8.7)

with u ∈ [0, 4π], which leads to the frame11

RF = [et,en,eb] =

⎡
⎣−c sin(u) − cos(u) l sin(u)

c cos(u) − sin(u) −l cos(u)
l 0 c

⎤
⎦ (8.8)

where c = r√
r2 + d2

and l = d√
r2 + d2

. �

11 Since the parameter u is not the curvilinear coordinate, the associated (time

varying) Frenet frames are computed as et = dp/du
|dp/du| , en = det/du

|det/du| , eb = et×en.

8.2 Orientation of the Tool 355

−4

−2

0

2

4
−4

−2

0

2

4

0

1

2

3

4

5

x
y

z

Fig. 8.13. Helicoidal trajectory and associated Frenet frames.

Example 8.6 Figure 8.14 shows a circular trajectory (for the sake of simplic-
ity a planar case is considered) with the tool frame oriented in a fixed manner
with respect to the Frenet frame. By considering the parametric description
of the curve, expressed by (8.10) with o′ = 0 and R = I3, the Frenet frame is

RF (u) = R

⎡
⎣− sin(u) − cos(u) 0

cos(u) − sin(u) 0
0 0 1

⎤
⎦ .

The desired tool frame differs from the Frenet frame by a rotation of α = 30o

about the zF = eb axis. Such a rotation can be represented by the constant
matrix

Rα =

⎡
⎣ cos(α) − sin(α) 0

sin(α) cos(α) 0
0 0 1

⎤
⎦ =

⎡
⎣ 0.866 −0.500 0

0.500 0.866 0
0 0 1

⎤
⎦ .

Therefore, the matrix representing the orientation in each point of the position
trajectory is obtained simply by pre-multiplying the Frenet matrix by Rα

RT (u) = RαRF (u).

The tool frames computed for u = kπ/4, k = 0, . . . , 8 are shown in Fig. 8.14.
�

356 8 Multidimensional Trajectories and Geometric Path Planning

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

x

y

Fig. 8.14. A circular trajectory with the associated Frenet frames (dashed) and
the desired tool frames (solid).

8.3 Definition of the Geometric Path Through Motion
Primitives

A simple way to define the geometric path in the three-dimensional space is
to use a sequence of basic motion primitives, such as straight lines, circles,
and so on, or, more generally, a sequence of parametric functions.
Obviously, the simplest manner to interpolate a given sequence of points is

to use straight lines. In this case, the parametric form of a segment joining
two points p0 and p1 is

p(u) = p0 + (p1 − p0)u, with 0 ≤ u ≤ 1 (8.9)

Although the trajectory composed by a set of linear segments is continuous, it
is characterized by discontinuous derivatives at the intermediate points. Then,
undesired discontinuities in the velocity and acceleration profiles of the motion
are present and, as discussed in more details in Sec. 8.11, this technique is
often accompanied by the use of blending functions which guarantee a smooth
transition between two consecutive segments.
Another typical motion primitive is the circular arc, starting from a given
point p0 and with the center located on a desired axis, univocally determined
by a unitary vector z1 and a generic point d, see Fig. 8.15. Given these
data, it is possible to compute the circular path. Firstly, it is necessary to
determine the exact location of the center, provided that the trajectory does
not degenerate in a point12. Let us define r = p0 −d, then the position of the
12 In this case the point p0 is located on the axis through the center of the circle.

8.3 Definition of the Geometric Path Through Motion Primitives 357

x0

y0

z0

x1
y1

z1

o0

o1

p0

p1

θ

d

r

Fig. 8.15. Example of motion primitive: circular arc.

center is
o1 = d + (rT z1) z1

while the radius is
ρ = |p0 − o1|.

The parametric representation of the circular arc in the frame F1 (defined by
o1− x1y1z1, see Fig. 8.15) is simply

p1(u) =

⎡
⎣ρ cos(u)

ρ sin(u)
0

⎤
⎦ , with 0 ≤ u ≤ θ

that, expressed in the base frame F0, has the form

p(u) = o1 + R p1(u) (8.10)

where R is the rotation matrix of the frame F1 with respect to the frame F0,
given by

R = [x1 y1 z1].

Example 8.7 A two-dimensional trajectory composed by the following mo-
tion primitives

358 8 Multidimensional Trajectories and Geometric Path Planning

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

x

y

Fig. 8.16. Complex trajectory in the two-dimensional space obtained by composing
linear and circular motion primitives.

p0 p1 z1 d θ

line [0 0 0]T [1 0 0]T

circle [1 0 0]T [0 0 1]T [1 1 0]T π/2

circle [2 1 0]T [0 0 1]T [3 1 0]T − π/2

line [3 2 0]T [5 2 0]T

circle [5 3 0]T [0 0 1]T [5 3 0]T π

line [5 4 0]T [4 5 0]T

is represented in Fig. 8.16. In this case, it is necessary to guarantee the conti-
nuity of the curve by properly choosing the initial and final points, the centers
of the circular arcs, and so on. However, in general C1 continuity of the curve
is not guaranteed (see Fig. 8.16), while C2 continuity can never be obtained
by mixing linear and circular segments. Moreover, the construction of a com-
plex curve in the 3D space, see Fig. 8.17, is a quite difficult problem. �

8.4 Global Interpolation 359

0
0.5

1
1.5

2

0
0.5

1
1.5

2
0

0.5

1

1.5

2

xy

z

Fig. 8.17. Complex trajectory in the three-dimensional space obtained by com-
posing linear and circular motion primitives.

8.4 Global Interpolation

The easiest way to interpolate a set of points qk, k = 0, . . . , n, is to use
p degree B-spline curves s(u), see Appendix B. The first step consists of the
choice of the parameters ūk (which represent a sort of “time instants”) for each
point qk, and of a suitable knot vector u = [u0, . . . , unknot

], where nknot,is the
number of knots, see Appendix B. Then, it is possible to set up a system of
m + 1 linear equations in the unknowns pj obtained by imposing that the
curve crosses each point qk at ūk:

qk = s(ūk) =
m∑

j=0

pjB
p
j (ūk) (8.11)

or in a matrix form

qk
T =

[
Bp

0(ūk), Bp
1(ūk), . . . , Bp

m−1(ūk), Bp
m(ūk)

]
⎡
⎢⎢⎢⎢⎢⎣

pT
0

pT
1
...

pT
m−1

pT
m

⎤
⎥⎥⎥⎥⎥⎦ .

8.4.1 Definition of the set {ūk}

In case there are no constraints due to the particular application at hand (in
this case the ūk are provided together with the point qk), the parameters ūk

in (8.11) can be assumed within the range [0, 1], therefore

360 8 Multidimensional Trajectories and Geometric Path Planning

ū0 = 0, ūn = 1.

The most common choices for ūk, k = 1, . . . , n − 1, are:

• Equally spaced:

ūk =
k

n
. (8.12)

• Cord length distribution:

ūk = ūk−1 +
|qk − qk−1|

d
(8.13)

where

d =
n∑

k=1

|qk − qk−1|.

• Centripetal distribution:

ūk = ūk−1 +
|qk − qk−1|μ

d
(8.14)

where

d =
n∑

k=1

|qk − qk−1|μ.

This method, in which usually μ = 1/2, provides good results when the
data points take sharp turns.

8.4.2 Cubic B-spline interpolation

The interpolation problem is quite often solved by assuming p = 3, which
produces the traditional C2 cubic spline, already described in Sec. 4.4. The
parameters ūk are used to determine the knot vector u as

u0 = u1 = u2 = ū0 un+4 = un+5 = un+6 = ūn

uj+3 = ūj j = 0, . . . , n.
(8.15)

With this choice the interpolation occurs at the knots. Since the number of
(unknown) control points, m + 1, and the number of the knots, nknot + 1,
are related by nknot = m + 4 and, as can be easily deduced from (8.15),
nknot = n+6, the unknown variables pj are n+3. Therefore, in order to find
a unique solution, it is necessary to impose two additional constraints (besides
the n+1 points to be interpolated). In the following, these two constraints are
assumed to be the first derivatives at the endpoints, respectively t0 and tn. As
a consequence, the first two and the last two equations of the (n+3)× (n+3)
linear system are

p0 = q0

−p0 + p1 =
u4

3
t0

8.4 Global Interpolation 361

and
−pn+1 + pn+2 =

1 − un+3

3
tn

pn+2 = qn.

These four equations can be directly solved, obtaining⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

p0 = q0

p1 = q0 +
u4

3
t1

pn+2 = qn

pn+1 = qn − 1 − un+3

3
tn.

(8.16)

The remaining n − 1 control points are computed by imposing

s(ūk) = qk, k = 1, . . . , n − 1.

By recalling the fact that for a cubic spline in an interior knot only three
basis functions are not null, see Appendix B, the n − 1 equations have the
expression

qk = B3
k(ūk)pk + B3

k+1(ūk)pk+1 + B3
k+2(ūk)pk+2

and therefore they form a tridiagonal system

B P = R (8.17)

where

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

B3
2(ū1) B3

3(ū1) 0 · · · 0

B3
2(ū2) B3

3(ū2) B3
4(ū2)

...

0
. . . 0

... B3
n−2(ūn−2) B3

n−1(ūn−2) B3
n(ūn−2)

0 · · · 0 B3
n−1(ūn−1) B3

n(ūn−1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

pT
2

pT
3

pT
4

...
pT

n−1

pT
n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

qT
1 − B3

1(ū1)pT
1

qT
2

qT
3

...
qT

n−2

qT
n−1 − B3

n+1(ūn−1)pT
n+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

362 8 Multidimensional Trajectories and Geometric Path Planning

−150
−100

−50
0

50
100

150
200

−100

0

100

80

100

120

140

160

180

200

220

240

xy

Fig. 8.18. Three dimensional global interpolation by a cubic B-spline (solid) and
related control polygon (dashed).

The control points pj , j = 2, . . . , n are obtained by solving (8.17):

P = B−1 R

see Appendix A.5 .
Once the control points pj , j = 0, . . . , n + 2 are known, and given the knot
vector u, the B-spline is completely defined and it is possible to compute
s(u) for any value of the independent variable u according to the algorithm
reported in B.1.3. Another possibility is to convert the B-spline in a standard
piecewise polynomial form, as discussed in Appendix B.1.5.

Example 8.8 The interpolation of a set of points by means of a cubic B-
spline is reported in Fig. 8.18. In particular, the goal is to find a trajectory
passing through the points⎡

⎣ qx

qy

qz

⎤
⎦ =

⎡
⎣ 83 −64 42 −98 −13 140 43 −65 −45 71
−54 10 79 23 125 81 32 −17 −89 90
119 124 226 222 102 92 92 134 182 192

⎤
⎦

with the initial and final derivatives13

13 When the derivatives are not imposed by the particular application, it is possible

to assume t0 =
q1 − q0

ū1 − ū0
and tn =

qn − qn−1

ūn − ūn−1
.

8.4 Global Interpolation 363

t0 =

⎡
⎣−1236

538
42

⎤
⎦ , t9 =

⎡
⎣ 732

1130
63

⎤
⎦ .

The parameters ūk are assumed according to a cord length distribution, there-
fore the knots are

u = [0, 0, 0, 0, 0.11, 0.23, 0.35, 0.48, 0.60, 0.68, 0.77, 0.84, 1, 1, 1, 1] .

The control points of the spline, computed by (8.16) and (8.17), are

P =

⎡
⎣ 83 34 −168 146 −182 −45 207 31 −89 −29 32 71
−54 −32 −5 128 −41 177 88 21 14 −172 30 90
119 120 88 252 245 68 98 83 121 218 188 192

⎤
⎦

T

.

Given the control points P , the curve can be evaluated, for 0 ≤ u ≤ 1, ac-
cording to the algorithm reported in Sec. B.1.3. �

Example 8.9 Fig. 8.19 reports a case in which the interpolation by means
of B-splines is used to approximate the geometric path obtained with linear
and circular motion primitives (see Fig. 8.16). In particular, the geometric
path is sampled (with different levels of quantization) and then the points are
interpolated. Obviously, the approximation error depends on the number of
points used to describe the original trajectory. Anyway, it is worth noticing
that the interpolation by means of cubic B-splines guarantees the C2 conti-
nuity of the geometric path. On the other hand, because of the continuity of
the curve derivatives, it is not possible to obtain a path with sharp corners.
In this case, it is necessary to split the trajectory in different tracts, each one
described by a different B-spline curve. �

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

x

y

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

x

y

Fig. 8.19. B-spline approximation of motion primitives.

364 8 Multidimensional Trajectories and Geometric Path Planning

8.5 Global Approximation

In many cases the need of reducing the number of data points, for example for
computational reasons, requires the adoption of simpler curves (with respect
to those obtained with interpolation techniques) at the expense of lower pre-
cision. Such trajectories do not exactly cross the via-points but approximate
them within a prescribed tolerance δ. Also in this case the most straight-
forward solution is based on the use of B-splines. Nevertheless, while in an
interpolation problem the number of control points (and of knots) is deter-
mined once the points and the spline order are given, approximation requires
the choice of a proper number of control points according to the desired ac-
curacy.
Given the points q0, . . . , qn to be approximated, the degree p ≥ 1 (p = 3 is
normally considered in order to guarantee the C2 continuity of the curve),
and provided that n > m > p, the approximating trajectory is a B-spline

s(u) =
m∑

j=0

pjB
p
j (u), umin ≤ u ≤ umax (8.18)

satisfying the following two conditions:

1. The end points are exactly interpolated, i.e. q0 = s(0) and qn = s(1).
2. The internal points qk are approximated in the least square sense, i.e. by

minimizing the functional

n−1∑
k=1

wk|qk − s(ūk)|2 (8.19)

with respect to the m + 1 variables pj ; the coefficients wk can be freely
chosen to weight the error at different points.

By stacking the n + 1 equations

s(ūk) =
m∑

j=0

pjB
p
j (ūk) = qk, k = 0, . . . n

the approximation problem can be written in a matrix form as

B P = R (8.20)

that represents a linear system of n + 1 equations in the m + 1 unknowns pj .
The first and last control points are determined by assigning p0 = q0 and
pm = qn, while the remaining control points are the solution of (8.20), where
B, P , and R are (n − 1) × (m − 1), (m − 1) × 3, and (n − 1) × 3 matrices14

respectively, defined by
14 The 3D case is considered; more generally, P and R have dimensions (m− 1)× d

and (n − 1) × d respectively, where d is the dimension of the space of the points
to be interpolated, and accordingly of the control points defining the spline.

8.5 Global Approximation 365

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Bp
1(ū1) Bp

2(ū1) . . . Bp
m−2(ū1) Bp

m−1(ū1)

Bp
1(ū2)

. . . Bp
m−1(ū2)

...
...

Bp
1(ūn−2) . . . Bp

m−1(ūn−2)

Bp
1(ūn−1) Bp

2(ūn−1) . . . Bp
m−2(ūn−1) Bp

m−1(ūn−1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8.21)

and

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

pT
1

pT
2

...
pT

m−2

pT
m−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

qT
1 − Bp

0(ū1)qT
0 − Bp

m(ū1)qT
n

qT
2 − Bp

0(ū2)qT
0 − Bp

m(ū2)qT
n

...
qT

n−2 − Bp
0(ūn−2)qT

0 − Bp
m(ūn−2)qT

n

qT
n−1 − Bp

0(ūn−1)qT
0 − Bp

m(ūn−1)qT
n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Since n > m, the problem (8.20) is over-constrained and an optimal solution
in the least square sense can be found by using a standard technique based
on a weighted pseudo-inverse matrix, which minimizes the expression

tr
(
(RT − P T BT)W (R − B P)

)
(8.22)

where tr(X) is the trace15 of the matrix X, and W = diag{w1, . . . , wn−1} the
matrix of the weights. Therefore, the internal control points P = [p1, . . . ,pm−1]T

15 The criterium (8.22) is nothing but the minimization of

|V (R − BP)|2F (8.23)

where V T V = W , and |X |F is the Frobenius norm of the m × n matrix X ,
defined as

|X |F =

√√√√ m∑
i=1

n∑
j=1

|xi,j |2.

A noteworthy property, from which the equivalence of (8.22), (8.23) and (8.19)
descends, is that

|X |2F = tr(XXT).

The results proposed in this and in the following sections can be obtained by
collecting the points composing P and R in a different way; in particular, in the
3D case some authors consider the

(
3(m − 1) × 1

)
vector

pv = [px,1, . . . , px,m−1, py,1, py,2, . . . , py,m−1, px,1, py,2, . . . , py,m−1]
T

and the
(
3(n − 1) × 1

)
vector

rv = [rx,1, . . . , rx,n−1, ry,1, ry,2, . . . , ry,n−1, rx,1, ry,2, . . . , ry,n−1]
T

366 8 Multidimensional Trajectories and Geometric Path Planning

are
P = B† R (8.24)

where
B† = (BT WB)−1BT W . (8.25)

8.5.1 Knots choice

In order to set up the system (8.20), it is necessary to fix both the value of the
“time instants” ūk, k = 0, . . . , n, at which the approximation occurs and the
value of the knots which define the B-spline. While the computation of ūk is
straightforward and can be performed according to the techniques reported in
Sec. 8.4.1, the choice of the knots uk deserves a particular attention, in order
to guarantee that every knot span contain at least one ūk. In this case, the
matrix (BT WB) in eq. (8.25) is positive definite and well-conditioned.
Given n + 1 points to be approximated by a p degree B-spline with m + 1
control points, define

d =
n + 1

m − p + 1
(> 0).

Then the m − p internal knots can be computed, for j = 1, . . . , m − p, as⎧⎨
⎩

i = floor(jd)
α = jd − i
uj+p = (1 − α)ūi−1 + αūi

being floor(x) the function which gives the largest integer less than or equal
to x. The first and the last p + 1 knots are

u0 = · · · = up = ū0, um+1 = · · · = um+p+1 = ūn.

Example 8.10 The approximation of a set of 84 points is reported in
Fig. 8.20 (for the sake of simplicity the points are considered disposed on
the x − y plane). In particular a cubic B-spline (p = 3) is adopted, with 10

related by the
(
3(m − 1) × 3(n − 1)

)
matrix

B3 =

⎡
⎣B 0 0

0 B 0
0 0 B

⎤
⎦

where B is defined by (8.21). In this case, the solution pv = B†
3rv, which min-

imizes |V 3(rv − B3pv)|22 (where the standard Euclidean norm is considered),
coincides with (8.24). In the next sections, in order to make the notation more
simple, the matrices P and R are preferred to the vectors pv and rv, even if this
implies the use of the Frobenius norm in lieu of the usual Euclidean norm. Note
that the Frobenius norm is very useful for numerical linear algebra, being often
easier to compute than induced norms.

8.5 Global Approximation 367

40 60 80 100 120 140 160 180
0

50

100

150

200

250

300

350

400

450

x

y

Fig. 8.20. Global approximation by means of a B-spline (solid curve) defined by
10 control points, represented by the x-marks on the control polygon (dashed).

control points. The parameters ūk are assumed to be proportional to the cord
length, and the knots, computed as described in this section, are

u = [0, 0, 0, 0, 0.16, 0.28, 0.46, 0.65, 0.78, 0.90, 1, 1, 1, 1] .

The control points of the spline obtained by means of (8.24) are

P =

⎡
⎣137 101 177 93 62 49 104 141 147 138

229 201 121 44 203 272 402 277 258 231
0 0 0 0 0 0 0 0 0 0

⎤
⎦

T

.

In this case the spline, composed by few segments, provides a good approxi-
mation of the data points. Nevertheless, in order to reduce the error between
the curve and the via-points one can increase the number of control points,
which define the spline, searching for a good trade-off between approximation
error and complexity of the trajectory. In Fig. 8.21 a B-spline defined by 20
control points is shown, while Tab. 8.1 reports the approximation errors for
different values of the parameter m. �

368 8 Multidimensional Trajectories and Geometric Path Planning

40 60 80 100 120 140 160 180
0

50

100

150

200

250

300

350

400

450

x

y

Fig. 8.21. Global approximation by means of a B-spline (solid) defined by 20
control points, represented by the x-marks on the control polygon (dashed).

m
∑

k |qk − s(ūk)|2 ε̄ εmax

10 3092 4.85 12.97

20 51.22 0.57 3.25

30 7.67 0.19 1.16

40 1.40 0.07 0.55

Table 8.1. Total square error, mean error and maximum error of the approximating
B-spline with respect to the given data points for different numbers of the control
points (m + 1).

8.6 A Mixed Interpolation/Approximation Technique

In some applications, it may be required that the trajectory crosses exactly a
set of data points, while other points are simply approximated. In these cases,
it is possible to adopt an approach that mixes the two techniques reported in
the previous sections by defining a constrained minimization problem.
Let qi,k, k = 0, . . . , ni be the points to be interpolated and qa,k, k = 0, . . . , na

the points to be approximated. Then, it is possible to arrange two systems
of equations, which express the fact that the p degree B-spline16, assumed
to define the trajectory, crosses these points. The system composed by the
constrained equations and the system of the unconstrained equations are re-
spectively

16 Let m + 1 be the number of control points of the trajectory s(u). The condition
m ≥ ni must be satisfied.

8.6 A Mixed Interpolation/Approximation Technique 369

Bi P = Ri (8.26)
Ba P = Ra (8.27)

with

Bi =

⎡
⎢⎢⎣

Bp
0(ūi,0) . . . Bp

m(ūi,0)
...

. . .
...

Bp
0(ūi,ni

) . . . Bp
m(ūi,ni

)

⎤
⎥⎥⎦ , Ri =

⎡
⎢⎢⎣

qT
i,0

...
qT

i,ni

⎤
⎥⎥⎦

and

Ba =

⎡
⎢⎢⎣

Bp
0(ūa,0) . . . Bp

m(ūa,0)
...

. . .
...

Bp
0(ūa,na

) . . . Bp
m(ūa,na

)

⎤
⎥⎥⎦ , Ra =

⎡
⎢⎢⎣

qT
a,0

...
qT

a,na

⎤
⎥⎥⎦ .

In order to set up the two systems (8.26) and (8.27), it is necessary to define
the time instants ūi and ūa in which the interpolation/approximation occurs.
This can be obtained with the same techniques reported in Sec. 8.4.1. At this
point the m + p + 1 knots, necessary for the definition of the B-spline, can be
computed according to the method of Sec. 8.5.1 applied to the parameters ū,
obtained by merging and sorting in ascending order ūi and ūa.
The goal is to minimize the function Ra − Ba P subject to (8.26) that, by
using Lagrange multipliers, is equivalent to minimize

tr
(
(RT

a − P T BT
a)W (Ra − Ba P) + λT (Bi P − Ri)

)
(8.28)

where λ = [λ0, . . . ,λni
]T is the (ni+1)×3 matrix of Lagrange multipliers. By

differentiating (8.28) with respect to the unknowns P and λ and by setting
the result to zero, after some algebraic manipulations [38] one obtains

BT
a WBaP + BT

i λ = BT
a WRa (8.29)

Bi P = Ri. (8.30)

In case BT
a WBa and Bi(BT

a WBa)−1BT
i are both invertible, the solution of

(8.29) and (8.30) is given by

λ =
(
Bi(BT

a WBa)−1BT
i

)−1(
Bi(BT

a WBa)−1BT
a WRa − Ri

)
P = (BT

a WBa)−1BT
a WRa − (BT

a WBa)−1BT
i λ.

Example 8.11 The approximation of the set of points used in the previous
example is reported in Fig. 8.22. In this case, it is also required that the points
(denoted in the figure by square marks)

370 8 Multidimensional Trajectories and Geometric Path Planning⎡
⎣ qi,x

qi,y

qi,z

⎤
⎦ =

⎡
⎣137 137 126 83 54 81 108 134 143

229 132 73 119 226 342 361 301 243
0 0 0 0 0 0 0 0 0

⎤
⎦

are exactly interpolated by the trajectory. In particular a cubic B-spline
(p = 3) is adopted, with 12 control points. In order to reduce the approx-
imation error, a spline with 20 control points is also considered; the result is
shown in Fig. 8.23. �

40 60 80 100 120 140 160 180
0

50

100

150

200

250

300

350

400

450

x

y

Fig. 8.22. Global interpolation/approximation by means of a B-spline defined by
12 control points (x-marks).

8.7 Smoothing Cubic B-splines 371

40 60 80 100 120 140 160 180
0

50

100

150

200

250

300

350

400

450

x

y

Fig. 8.23. Global interpolation/approximation by means of a B-spline defined by
20 control points (x-marks).

8.7 Smoothing Cubic B-splines

Given a set of points qk, k = 0, . . . , n to be approximated within a prescribed
tolerance at time instants ūk, it is possible to adopt the so-called smoothing
cubic splines (in particular in the B-form) i.e. cubic (p = 3) B-spline

s(u) =
m∑

j=0

pjB
p
j (u), umin ≤ u ≤ umax

whose control points are computed as a tradeoff between two apposite goals:

• To find a good fit of the given via-points.
• To obtain a trajectory as smooth as possible (with curvature/acceleration

as small as possible).

The choice of the control points can be made by minimizing the functional

L := μ

n∑
k=0

wk |s(ūk) − qk|
2 + (1 − μ)

∫ ūn

ū0

∣∣∣∣d2s(u)
du2

∣∣∣∣
2

du (8.31)

where the parameter μ ∈ [0, 1] reflects the different importance given to the
conflicting goals, and wk are parameters which can be arbitrarily chosen to
modify the weights of different quadratic errors on the global estimation (the
selection of different coefficients wk allows to operate locally on the spline by

372 8 Multidimensional Trajectories and Geometric Path Planning

reducing the approximation error in some points of interest).
In order to define the trajectory, it is necessary to choose the knot vector. A
common choice is to assume

u0 = · · · = u2 = ū0, un+4 = · · · = un+6 = ūn

uj+3 = ūj , j = 0, . . . , n

and, as a consequence, the number m+1 of control points to be determined is
n+3 (note that it is possible to choose a smaller number of knots and control
points).
The integral in the second term of (8.31) can be written as

∫ ūn

ū0

∣∣∣∣d2s(u)
du2

∣∣∣∣
2

du =
∫

u

n−1∑
j=1

|rj−1B
1
j−1(u) + rjB

1
j (u)|2du (8.32)

where B1
j are the first degree B-spline basis defined on the knot vector

ur = [u2, u3, . . . , un+3, un+4]

and rj are the control points of the spline defining the ‘acceleration’ profile
d2s(u)/du2. The control points rj are related to pj by

rj =
6

uj+4 − uj+2

[
1

uj+4 − uj+1
pj −

(
1

uj+4 − uj+1
+

1
uj+5 − uj+2

)
pj+1+

+
1

uj+5 − uj+2
pj+2

]
.

Note that ur and the expression of rj are both based on the knots of s(u).
Equation (8.32) can be further simplified as

∫ ūn

ū1

∣∣∣∣d2s(u)
du2

∣∣∣∣
2

du =
1
3

n∑
j=1

(uj+3 − uj+2)(|rj |2 + rjrj−1 + |rj−1|2)

=
1
6
tr(RT AR) =

1
6
tr(P T CT ACP) (8.33)

being
R = [r0, r1, . . . , rn]T , P = [p0, p1, . . . , pm]T

and

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2u4,3 u4,3 0 · · · 0

u4,3 2(u4,3 + u5,4) u5,4 0
...

0 u5,4

... 0
. . . 0

un+2,n+1 2(un+2,n+1 + un+3,n+2) un+3,n+2

0 · · · 0 un+3,n+2 2un+3,n+2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8.34)

8.7 Smoothing Cubic B-splines 373

C =

⎡
⎢⎢⎢⎢⎣

c0,1 c0,2 c0,3 0 · · · 0

0 c1,1 c1,2 c1,3 0
...

...
. . . 0

0 · · · 0 cn,1 cn,2 cn,3

⎤
⎥⎥⎥⎥⎦ (8.35)

where ⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ck,1 =
6

uk+4,k+2 uk+4,k+1

ck,2 = − 6
uk+4,k+2

(
1

uk+4,k+1
+

1
uk+5,k+2

)

ck,3 =
6

uk+4,k+2 uk+5,k+2

(8.36)

and ui,j = ui − uj .
Finally, the expression of L becomes

L = tr((Q − BP)T W (Q − BP)) + λ tr(P T CT ACP) (8.37)

with Q = [q0, q1, . . . , qn]T , λ =
1 − μ

6μ
, W = diag{wk}, k = 0, . . . , n, and

B =

⎡
⎢⎢⎣

B3
0(ū0) . . . B3

m(ū0)
...

. . .
...

B3
0(ūn) . . . B3

m(ūn)

⎤
⎥⎥⎦ .

The control points defining the B-spline are obtained by minimizing (8.37)
with respect to P .

8.7.1 Smoothing B-splines with assigned start/end points and
directions

In this section, some additional conditions are considered:

a) The first and the last point q0, qn are exactly interpolated by the trajec-
tory.

b) The tangent vectors t0, tn at q0 and qn are assigned.

As in Sec. 8.4.2, the conditions a) and b) imply that

p0 = q0

−p0 + p1 =
u4

3
d1

and

374 8 Multidimensional Trajectories and Geometric Path Planning

−pn+1 + pn+2 =
1 − un+3

3
dn

pn+2 = qn.

These equations can be directly solved, while the remaining n − 1 unknowns

P = [p2, p3, . . . , pn−1, pn]T

are obtained by minimizing with respect to P the functional

L(P) = tr((Q−B P)T W (Q−B P))+λ tr((C P +P̂)T A(C P)+P̂) (8.38)

where the matrix A has the expression (8.34), W = diag{wk}, k = 1, . . . , n−1,

Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

qT
1 − B3

1(ū1)pT
1

qT
2

qT
3

...
qT

n−2

qT
n−1 − B3

n+1(ūn−1)pT
n+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B3
2(ū1) B3

3(ū1) 0 . . . 0

B3
2(ū2) B3

3(ū2) B3
4(ū2) 0

...

0 B3
3(ū3)

. . . 0
... 0 0 B3

n−2(ūn−2) B3
n−1(ūn−2) B3

n(ūn−2)

0 . . . 0 B3
n−1(ūn−1) B3

n(ūn−1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c0,3 0 · · · 0
c1,2 c1,3 0
c2,1 c2,2 c2,3 0
0 c3,1 c3,2 c3,3 0
... 0

. . .
0 cn−1,1 cn−1,2

0 · · · 0 cn,3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

P̂ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c0,1p
T
0 + c0,2p

T
1

c1,1p
T
1

0
...
0

cn−1,3p
T
n+1

cn,2p
T
n+1 + cn,3p

T
n+2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

8.7 Smoothing Cubic B-splines 375

with the coefficients ck,i defined by (8.36) and 0 = [0, 0, . . . , 0] (of the same
length of pT

k).
By differentiating (8.38) with respect to P and setting the result to zero, the
following equation is obtained

−(Q − B P)T W B + λ(C P + P̂)T AC = 0

and the value which minimizes (8.31) is

P =
(
B

T
W B + λC

T
AT C

)−1(
B

T
W

T
Q − λC

T
AT P̂

)
.

The spline is therefore defined by the control points

P = [p0, p1, P
T
, pn+1, pn+2]

T .

Example 8.12 The interpolation of the via-points⎡
⎣ qx

qy

qz

⎤
⎦ =

⎡
⎣ 0 1 2 4 5 6

0 2 3 3 2 0
0 1 0 0 2 2

⎤
⎦

by means of a cubic smoothing B-spline is reported in Fig. 8.24, with different
values of the parameter λ, and wk = 1, ∀k. Initial and final points are exactly
interpolated; moreover, the initial and final tangent vectors are

t0 = [4.43, 8.87, 4.43]T , t5 = [4.85, −9.71, 0]T .

The control points for λ = 10−4 are

P =

⎡
⎣ 0 0.33 0.82 2.13 4.07 5.03 5.66 6

0 0.66 1.92 3.11 3.17 2.15 0.66 0
0 0.33 0.90 0.05 0.03 1.94 2.00 2

⎤
⎦

T

for λ = 10−5

P =

⎡
⎣ 0 0.33 0.82 1.90 4.44 4.87 5.66 6

0 0.66 1.91 3.22 3.09 2.29 0.66 0
0 0.33 1.52 −0.24 −0.36 2.53 2.00 2

⎤
⎦

T

and for λ = 10−6

P =

⎡
⎣ 0 0.33 0.87 1.81 4.56 4.80 5.66 6

0 0.66 1.89 3.26 3.05 2.34 0.66 0
0 0.33 1.69 −0.33 −0.43 2.67 2.00 2

⎤
⎦

T

.

By assuming λ smaller and smaller, the error with respect to the via-points
decreases (for λ = 0, exact interpolation is obtained). Therefore, given a de-
sired tolerance δ, it is possible to compute the value of λ which guarantees
an error smaller than δ. Moreover, it is possible to act on the weights wk in
order to selectively reduce the distance between the trajectory and some of
the via-points, see [37]. On the other hand, when λ decreases, the value of the
magnitude of the second derivative s(2)(u) increases, see Fig. 8.24. �

376 8 Multidimensional Trajectories and Geometric Path Planning

0

2

4

6

00.511.522.53
0

0.5

1

1.5

2

2.5

3

xy

z

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120
0

5

10

15

u

|s
(1

)
(u

)|
|s

(2
)
(u

)|

(a)

0

2

4

6

00.511.522.53
0

0.5

1

1.5

2

2.5

3

xy

z

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120
0

5

10

15

u

|s
(1

)
(u

)|
|s

(2
)
(u

)|

(b)

0

2

4

6

00.511.522.53
0

0.5

1

1.5

2

2.5

3

xy

z

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120
0

5

10

15

u

|s
(1

)
(u

)|
|s

(2
)
(u

)|

(c)

Fig. 8.24. Interpolation by means of a smoothing B-spline (geometric path on the
right, and velocity and acceleration on the left) for different values of λ: a) λ = 10−4,
b) λ = 10−5, c) λ = 10−6 .

8.8 B-spline Functions for Trajectories with High Degree
of Continuity

The techniques reported in the previous sections, for the interpolation or
the approximation of data points in a multi-dimensional space by means of

8.8 B-spline Functions for Trajectories with High Degree of Continuity 377

B-spline curves, are mainly based on cubic functions. However, it is worth
noticing that the use of B-splines with a degree p > 3 can be necessary when
it is required to plan trajectories with continuous derivatives up to an order
r > 2, e.g. with continuous jerk, snap or even higher order derivatives.
The interpolation problem is considered here, although also all the other
techniques discussed in the previous sections, i.e. approximating B-splines,
smoothing B-splines, and so on, can be extended to the case p > 3.

Given a set of points qk, k = 0, . . . , n, the control points pj , j = 0, . . . , m,
defining the B-spline function s(u) can be determined by imposing

s(ūk) = qk, k = 0, . . . , n

where ūk are proper values of the independent variable u, which can be pro-
vided together with the points qk or computed with one of the methods re-
ported in Sec. 8.4.1.
Once the degree p of the B-spline curve has been defined on the basis of the
required degree of continuity17, it is necessary to build a proper knot vector
u. The standard choice is

u = [ū0, . . . , ū0︸ ︷︷ ︸
p+1

, ū1, . . . , ūn−1, ūn, . . . , ūn︸ ︷︷ ︸
p+1

]. (8.39)

In this case, the total number of knots is nknot + 1 = n + 2p + 1. As a
consequence, because of the relationship between nknot, m, and p, for a B-
spline function (i.e. nknot−p−1 = m), the number of unknown control points
is m + 1 = (n + 1) + p − 1. An alternative choice of the knot vector is

u = [ū0, . . . , ū0︸ ︷︷ ︸
p+1

, (ū0 + ū1)/2, . . . , (ūk−1 + ūk)/2, . . . , (ūn−1 + ūn)/2, ūn, . . . , ūn︸ ︷︷ ︸
p+1

].

(8.40)

In this case, the knots are nknots + 1 = n + 2p + 2, and, as a consequence,
the number of control points to be determined is m + 1 = (n + 1) + p. The
adoption of (8.39) or (8.40) is strictly related to the degree of the B-spline.
In particular, as highlighted in Sec. 4.5, the fact that the degree p is odd or
even strongly affects the trajectory profiles obtained with B-spline functions.
If p is odd, the choice (8.39) is preferable while, if p is even, the knot vector
expressed by (8.40) provides better results, [45].

17 In order to obtain a curve r times differentiable, a value p > r must be chosen. As
a matter of fact, a B-spline curve is, by definition, p−k continuously differentiable
at a knot of multiplicity k, see Sec. B.1. Therefore, if all the internal knots are
distinct (k = 1), the continuity of velocity and acceleration simply requires the
adoption of a B-spline of degree three (p = 3). If a continuous jerk is required, it
is necessary to set p = 4, while the condition p = 5 guarantees also the continuity
of the snap.

378 8 Multidimensional Trajectories and Geometric Path Planning

In order to determine the unknown coefficients pj , j = 0, . . . , m, one can
build a linear system by stacking the n + 1 equations obtained by imposing
the interpolation conditions of each point qk at ūk:

qT
k =

[
Bp

0(ūk), Bp
1(ūk), . . . , Bp

m−1(ūk), Bp
m(ūk)

]
⎡
⎢⎢⎢⎢⎢⎢⎣

pT
0

pT
1
...

pT
m−1

pT
m

⎤
⎥⎥⎥⎥⎥⎥⎦

, k = 0, . . . , n.

In this way, a system of n + 1 equations in the m + 1 unknown control points
pj is obtained. In order to have a unique solution, more constraints must
be imposed. In particular, p − 1 or p additional equations, depending on the
choice of u, are necessary to obtain a square system with m+1 equations and
m + 1 unknown variables. Typical additional conditions concern the value of
the trajectory derivatives at the initial and final points:

s(1)(ū0) = t0, s(1)(ūn) = tn

s(2)(ū0) = n0, s(2)(ūn) = nn

...
...

where tk, nk are respectively the tangent and curvature vectors at ūk. These
constraints can be written as

tT
k =

[
Bp

0
(1)(ūk), Bp

1
(1)(ūk), . . . , Bp

m−1
(1)(ūk), Bp

m
(1)(ūk)

]
⎡
⎢⎢⎢⎢⎢⎢⎣

pT
0

pT
1
...

pT
m−1

pT
m

⎤
⎥⎥⎥⎥⎥⎥⎦

, k = 0, n

nT
k =

[
Bp

0
(2)(ūk), Bp

1
(2)(ūk), . . . , Bp

m−1
(2)(ūk), Bp

m
(1)(ūk)

]
⎡
⎢⎢⎢⎢⎢⎢⎣

pT
0

pT
1
...

pT
m−1

pT
m

⎤
⎥⎥⎥⎥⎥⎥⎦

, k = 0, n

where Bp
j
(i)(ūk) are the i-th derivatives of the basis functions Bp

j (u) computed

at u = ūk. For the calculation of Bp
j
(i)(ūk), see Sec. B.1 in Appendix B.

Note that the generic equation

8.8 B-spline Functions for Trajectories with High Degree of Continuity 379

(
s(i)(ūk)

)T

=
[
Bp

0
(i)(ūk), Bp

1
(i)(ūk), . . . , Bp

m−1
(i)(ūk), Bp

m
(i)(ūk)

]
⎡
⎢⎢⎢⎢⎢⎢⎣

pT
0

pT
1
...

pT
m−1

pT
m

⎤
⎥⎥⎥⎥⎥⎥⎦

(8.41)
is equivalent to

s(i)(ūk) =
m∑

j=0

pjB
p
j
(i)(ūk).

Alternatively, instead of assigning boundary conditions on the derivatives
of the B-spline function, one may impose the continuity of the curve and of
its derivatives at the initial and final time instants (the so-called periodic or
cyclic condition), i.e.

s(i)(ū0) = s(i)(ūn)

or, in a matrix notation,

[
Bp

0
(i)(ū0)−Bp

0
(i)(ūn), Bp

1
(i)(ū0)−Bp

1
(i)(ūn), . . . , Bp

m
(i)(ū0)−Bp

m
(i)(ūn)

]
⎡
⎢⎢⎢⎢⎢⎢⎣

pT
0

pT
1

...
pT

m−1

pT
m

⎤
⎥⎥⎥⎥⎥⎥⎦
=0T

(8.42)

where 0T = [0, 0, . . . , 0] has the same dimensions of pT
j .

The conditions (8.41) or (8.42) can be mixed in order to obtain desired
profiles.

If p = 4, the trajectory is differentiable up to the third derivative and,
since with the choice of the knot vector expressed by (8.40) there are four free
parameters to be determined, it is possible to assign initial and final values of
the tangent and curvature vectors.

This leads to a linear system of (n+1)+4 equations in (n+1)+4 unknowns
(in this case m = n + 4)

B P = R (8.43)

where
P = [p0, p1, . . . , pm−1, pm]T

and (with p = 4)

380 8 Multidimensional Trajectories and Geometric Path Planning

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Bp
0(ū0) Bp

1(ū0) · · · Bp
m(ū0)

Bp
0
(1)(ū0) Bp

1
(1)(ū0) · · · Bp

m
(1)(ū0)

Bp
0
(2)(ū0) Bp

1
(2)(ū0) · · · Bp

m
(2)(ū0)

Bp
0(ū1) Bp

1(ū1) · · · Bp
m(ū1)

...
...

...
Bp

0(ūn−1) Bp
1(ūn−1) · · · Bp

m(ūn−1)

Bp
0
(2)(ūn) Bp

1
(2)(ūn) · · · Bp

m
(2)(ūn)

Bp
0
(1)(ūn) Bp

1
(1)(ūn) · · · Bp

m
(1)(ūn)

Bp
0(ūn) Bp

1(ūn) · · · Bp
m(ūn)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

qT
0

tT
0

nT
0

qT
1
...

qT
n−1

nT
n

tT
n

qT
n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (8.44)

The control points pj , j = 0, . . . , m, are obtained by solving (8.43), and the B-
spline can be evaluated for any value of u ∈ [ū0, ūn] according to the algorithm
reported in Appendix B.

Example 8.13 A B-spline of degree 4 is considered for the interpolation of
the points ⎡

⎣ qx

qy

qz

⎤
⎦ =

⎡
⎣ 3 −2 −5 0 6 12 8
−1 0 2 4 −9 7 3

0 0 0 −2 −1 3 0

⎤
⎦

with the further conditions on the initial and final tangent and curvature
vectors

t0 =

⎡
⎣−30

10
0

⎤
⎦ , t6 =

⎡
⎣−20

0
0

⎤
⎦

n0 =

⎡
⎣−200

10
0

⎤
⎦ , n6 =

⎡
⎣ 0

300
0

⎤
⎦ .

The parameters ūk are assumed with a cord-length distribution within the
range [0, 1], i.e.

ū =
[
0, 0.09, 0.16, 0.27, 0.54, 0.87, 1

]
.

From these ūk the knot vector is constructed according to (8.40), i.e.

u =
[
0, 0, 0, 0, 0, 0.04, 0.13, 0.21, 0.40, 0.71, 0.93, 1, 1, 1, 1, 1

]
and the matrices B and R result

8.8 B-spline Functions for Trajectories with High Degree of Continuity 381

−10
0

10
20

−10−50510
−4

−3

−2

−1

0

1

2

3

4

5

6

xy

z

Fig. 8.25. B-spline trajectory of degree 4.

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
−82.7 82.7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5137 −7035 1897 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.01 0.29 0.57 0.13 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.01 0.43 0.50 0.05 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.04 0.54 0.38 0.03 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.01 0.29 0.50 0.19 0.01 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.24 0.59 0.14 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 687 −3945 3258
0.00 0.00 0.00 0.00 0.00 0.00 −0.00 −0.00 −0.00 −65.9 65.9
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3.00 −1.00 0.00
−30.00 10.00 0.00

−200.00 0.00 0.00
−2.00 0.00 0.00
−5.00 2.00 0.00

0.00 4.00 −2.00
6.00 −9.00 −1.00

12.00 7.00 3.00
0.00 300.00 0.00

−20.00 0.00 0.00
8.00 3.00 0.00

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

By solving (8.43) the control points, defining the trajectory shown in Fig. 8.25,
are obtained:

P =

⎡
⎣ 3.00 2.64 1.55 −2.21 −9.57 14.12 −4.12 21.18 9.74 8.30 8.00
−1.00 −0.88 −0.55 −0.54 3.58 8.27 −31.18 21.69 3.44 3.00 3.00

0.00 0.00 0.00 −0.16 0.78 −6.01 −3.33 12.61 −0.00 0.00 −0.00

⎤
⎦

T

.

382 8 Multidimensional Trajectories and Geometric Path Planning

0 0.2 0.4 0.6 0.8 1
−4

−2

0

2

4
x 10

4−1000

−500

0

500

1000

1500
−100

−50

0

50

100
−10

−5

0

5

10

15

u

|s
(u

)|
|s

(1
)
(u

)|
|s

(2
)
(u

)|
|s

(3
)
(u

)|

Fig. 8.26. Components of a B-spline trajectory of degree 4 and of its derivatives
(component x - solid, component y - dashed, component z - dashdot).

In Fig. 8.26 the components of the B-spline curve and of its derivatives are
reported. Note the continuity of the first three derivatives. �

For p = 4, one can assign cyclic conditions for the derivatives up to the
fourth order, since the choice (8.40) requires four additional constraints. How-
ever, since in any case the fourth derivative will be discontinuous in the in-
terior of the trajectory, it is more useful to impose other conditions in place
of s(4)(ū0) = s(4)(ūn). For example, besides the periodic conditions on the
first three derivatives, one can assume a boundary condition on the tangent
or curvature vector. The system (8.43) is now defined by

8.8 B-spline Functions for Trajectories with High Degree of Continuity 383

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Bp
0 (ū0) Bp

1 (ū0) · · · Bp
m(ū0)

Bp
0 (ū1) Bp

1 (ū1) · · · Bp
m(ū1)

...
...

...
Bp

0 (ūn−1) Bp
1 (ūn−1) · · · Bp

m(ūn−1)

Bp
0 (ūn) Bp

1 (ūn) · · · Bp
m(ūn)

Bp
0
(1)(ūn)−Bp

0
(1)(ū0) Bp

1
(1)(ūn)−Bp

1
(1)(ū0) · · · Bp

m
(1)(ūn)−Bp

m
(1)(ū0)

Bp
0
(2)(ūn)−Bp

0
(2)(ū0) Bp

1
(2)(ūn)−Bp

1
(2)(ū0) · · · Bp

m
(2)(ūn)−Bp

m
(2)(ū0)

Bp
0
(3)(ūn)−Bp

0
(3)(ū0) Bp

1
(3)(ūn)−Bp

1
(3)(ū0) · · · Bp

m
(3)(ūn)−Bp

m
(3)(ū0)

Bp
0
(4)(ūn)−Bp

0
(3)(ū0) Bp

1
(4)(ūn)−Bp

1
(3)(ū0) · · · Bp

m
(4)(ūn)−Bp

m
(4)(ū0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

R =
[
qT

0 , qT
1 , . . . , qT

n−1, qT
n , 0T , 0T , 0T , 0T

]T
.

Example 8.14 A B-spline trajectory of degree 4 interpolating the points⎡
⎣ qx

qy

qz

⎤
⎦ =

⎡
⎣ 3 −2 −5 0 6 12 3
−1 0 2 4 −9 7 −1

0 0 0 −2 −1 3 0

⎤
⎦

is defined by imposing the periodic conditions

s(1)(ū0) = s(1)(ū6)
s(2)(ū0) = s(2)(ū6)
s(3)(ū0) = s(3)(ū6)
s(4)(ū0) = s(4)(ū6).

Note that the first and the last points are coincident. By assuming the same
knot vector of the previous example18

u =
[
0, 0, 0, 0, 0, 0.04, 0.13, 0.21, 0.40, 0.71, 0.93, 1, 1, 1, 1, 1

]
the matrices B and R result

B=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.01 0.29 0.57 0.13 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.01 0.43 0.50 0.05 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.04 0.54 0.38 0.03 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.01 0.32 0.50 0.16 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.09 0.42 0.45 0.04 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

−92.19 92.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 37.88 −37.88
6374 −8729 2354 0.00 0.00 0.00 0.00 0.00 −315 1391 −1076

−293845 442487 −172546 23904 0.00 0.00 0.00 997 −8716 28103 −20384
6772579 −10539889 4643117 −940762 64953 0.00 −1242 15035 −91745 270998 −193045

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

18 With other choices of the knot vector, e.g. computed by means of (8.40), an
ill-conditioned matrix B can be obtained.

384 8 Multidimensional Trajectories and Geometric Path Planning

−10
0

10
20

−10−8−6−4−202468
−4

−3

−2

−1

0

1

2

3

4

xy

z

Fig. 8.27. B-spline curve of degree 4 computed with periodic conditions.

R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3.00 −1.00 0.00
−2.00 0.00 0.00
−5.00 2.00 0.00

0.00 4.00 −2.00
6.00 −9.00 −1.00

12.00 7.00 3.00
3.00 −1.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The control points obtained with these values are

P =

⎡
⎣ 3.00 2.45 0.93 −1.80 −9.93 14.40 −3.13 19.40 8.86 4.35 3.00
−1.00 −1.13 −1.20 −0.13 3.23 8.36 −29.71 20.64 2.37 −0.69 −1.00
−0.00 −0.06 −0.17 −0.06 0.71 −6.20 0.13 5.92 1.17 0.16 −0.00

⎤
⎦

T

.

The B-spline curve and its components are shown in Fig. 8.27 and Fig. 8.28
respectively.

�

With p = 5, the knots should be selected according to (8.39), i.e.

u = [ū0, . . . , ū0︸ ︷︷ ︸
6

, ū1, . . . , ūn−1, ūn, . . . , ūn︸ ︷︷ ︸
6

].

It is therefore possible to impose the desired values of the initial and final
tangent and curvature vectors (four conditions). Moreover, this value of p

8.8 B-spline Functions for Trajectories with High Degree of Continuity 385

0 0.2 0.4 0.6 0.8 1
−4

−2

0

2

4
x 10

4−1000

0

1000

2000
−100

−50

0

50

100
−10

−5

0

5

10

15

u

|s
(u

)|
|s

(1
)
(u

)|
|s

(2
)
(u

)|
|s

(3
)
(u

)|

Fig. 8.28. Components of a B-spline trajectory of degree 4 computed with periodic
conditions (component x - solid, component y - dashed, component z - dashdot).

guarantees the continuity of the trajectory up to the fourth derivative (snap).
The system (8.43) with the expressions of B and R reported in (8.44) re-
mains unchanged (with obvious differences on the B-basis functions, that are
computed for a different degree p and for a different knot vector u).

Example 8.15 The data (via-points and constraints) of Example 8.13 are
used to build a B-spline of degree 5, with the knot vector constructed as in
(8.39), that is

u =
[
0, 0, 0, 0, 0, 0, 0.09, 0.16, 0.27, 0.54, 0.87, 1, 1, 1, 1, 1, 1

]
.

By solving (8.43), with

386 8 Multidimensional Trajectories and Geometric Path Planning

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
−51.7 51.7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2140 −3394 1254 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.03 0.37 0.50 0.10 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.04 0.50 0.41 0.05 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.11 0.54 0.32 0.04 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.04 0.30 0.43 0.21 0.02 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.17 0.51 0.29 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 362 −1720 1357
0.00 0.00 0.00 0.00 0.00 −0.00 −0.00 −0.00 −0.00 −41.1 41.1
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3.00 −1.00 0.00
−30.00 10.00 0.00

−200.00 0.00 0.00
−2.00 0.00 0.00
−5.00 2.00 0.00

0.00 4.00 −2.00
6.00 −9.00 −1.00

12.00 7.00 3.00
0.00 300.00 0.00

−20.00 0.00 0.00
8.00 3.00 0.00

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

the control points

P =

⎡
⎣ 3.00 2.42 1.27 −2.85 −11.90 22.36 −13.53 25.87 10.30 8.49 8.00
−1.00 −0.81 −0.48 −0.57 4.37 10.06 −42.66 29.01 3.83 3.00 3.00

0.00 0.00 0.00 −0.20 1.29 −7.75 −5.71 17.91 −0.00 0.00 −0.00

⎤
⎦

T

are obtained. The geometric path described by the B-spline trajectory is re-
ported in Fig. 8.29 superimposed to the one of degree 4. The components of
the trajectory and of its derivatives are shown in Fig. 8.30.

�

In general, to build a trajectory r times differentiable which interpolates
n+1 points, it is sufficient to consider a B-spline of degree p = r+1. If p is odd,
it is convenient to assume a knot distribution as in (8.39) while, if p is even,
a knot vector of the kind (8.40) provides better results. In the former case,
p − 1 additional constraints are necessary to have a unique solution (in this
case the unknown control points are m+1 = n+p) while, in the latter one, p
additional condition are needed (in this case the unknown control points are
m + 1 = n + p + 1). By adding further knots (and accordingly by increasing
the number of control points pj), it is also possible to consider additional
constraints. For instance, one could desire to plan a trajectory interpolating a
set of points with given tangent directions. Therefore, besides the points qk,

8.8 B-spline Functions for Trajectories with High Degree of Continuity 387

−10
0

10
20

−10−50510
−6

−4

−2

0

2

4

6

8

xy

z

Fig. 8.29. B-spline curve of degree 5 superimposed to the B-spline of degree 4
(thin line).

k = 0, . . . , n, (to be interpolated at ūk) it is necessary to provide also the
tangent vectors tk. In this case, the knot vector can be defined as

u = [ū0, . . . , ū0︸ ︷︷ ︸
p+1

, (ū0 + ū1)/2, ū1, . . . , ūk−1, (ūk−1 + ūk)/2, ūk, . . .

. . . , ūn−1, (ūn−1 + ūn)/2, ūn, . . . , ūn︸ ︷︷ ︸
p+1

]. (8.45)

Therefore the number of knots is nknot + 1 = 2(n + p) + 1, and the number of
unknown control points is m+1 = 2n+p. Accordingly, it is possible to impose
the n+1 interpolation conditions, the n+1 desired tangent vectors, and p−2
additional constraints (e.g. in the case p = 4 the curvature vectors n0 and nn

at the endpoints) in order to univocally determine the control points pj .

For p = 4 the matrices of the system (8.43) are

388 8 Multidimensional Trajectories and Geometric Path Planning

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1
x 10

6−4

−2

0

2

4
x 10

4−1000

−500

0

500

1000

1500
−100

−50

0

50

100
−10

−5

0

5

10

15

u

|s
(u

)|
|s

(1
)
(u

)|
|s

(2
)
(u

)|
|s

(3
)
(u

)|
|s

(4
)
(u

)|

Fig. 8.30. Components of a B-spline trajectory of degree 5 (component x - solid,
component y - dashed, component z - dashdot).

8.8 B-spline Functions for Trajectories with High Degree of Continuity 389

−10
0

10
20

−10−8−6−4−202468
−4

−3

−2

−1

0

1

2

3

4

xy

z

Fig. 8.31. B-spline curve of degree 4 crossing the via-points with a given direction.

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Bp
0(ū0) Bp

1(ū0) · · · Bp
m(ū0)

Bp
0
(1)(ū0) Bp

1
(1)(ū0) · · · Bp

m
(1)(ū0)

Bp
0
(2)(ū0) Bp

1
(2)(ū0) · · · Bp

m
(2)(ū0)

Bp
0(ū1) Bp

1(ū1) · · · Bp
m(ū1)

Bp
0
(1)(ū1) Bp

1
(1)(ū1) · · · Bp

m
(1)(ū1)

Bp
0(ū2) Bp

1(ū2) · · · Bp
m(ū2)

...
...

...
Bp

0(ūn−1) Bp
1(ūn−1) · · · Bp

m(ūn−1)

Bp
0
(1)(ūn−1) Bp

1
(1)(ūn−1) · · · Bp

m
(1)(ūn−1)

Bp
0
(2)(ūn) Bp

1
(2)(ūn) · · · Bp

m
(2)(ūn)

Bp
0
(1)(ūn) Bp

1
(1)(ūn) · · · Bp

m
(1)(ūn)

Bp
0(ūn) Bp

1(ūn) · · · Bp
m(ūn)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

qT
0

tT
0

nT
0

qT
1

tT
1

qT
2

...
qT

n−1

tT
n−1

nT
n

tT
n

qT
n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(8.46)

Example 8.16 Fig. 8.31 shows a B-spline trajectory interpolating the via-
points of Example 8.13 with given directions. Therefore, the trajectory is built
by considering not only the via-points qk, but also the tangent vectors at each
point, which are computed according to the algorithm reported in Sec. 8.10.1:⎡

⎣ tx
ty
tz

⎤
⎦ =

⎡
⎣−56.32 −47.14 −9.26 39.10 20.25 −19.32 −46.59

−0.74 21.43 25.06 −0.54 −4.65 −11.29 −54.62
0.00 0.00 −7.08 −12.07 7.43 −14.90 −34.54

⎤
⎦ .

Moreover, two additional constraints on the curvature vectors at the initial
and final points are considered:

390 8 Multidimensional Trajectories and Geometric Path Planning

n0 =

⎡
⎣ 300

200
0

⎤
⎦ , n6 =

⎡
⎣ 0
−200

0

⎤
⎦ .

The knot vector is constructed as in (8.45), that is

u =
[

0, 0, 0, 0, 0, 0.04, 0.09, 0.13, 0.16, 0.21, 0.27, 0.40, 0.54,

0.71, 0.87, 0.9393, 1, 1, 1, 1, 1
]

and the matrices of the system (8.43) are

B =
[
B1 B2

]
with

B1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
−82.7 82.7 0.00 0.00 0.00 0.00 0.00 0.00

5137.00 −770.006 2569.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.03 0.35 0.55 0.07 0.00 0.00
0.00 0.00 −3.31 −12.43 10.07 5.67 0.00 0.00
0.00 0.00 0.00 0.00 0.09 0.58 0.33 0.01
0.00 0.00 0.00 0.00 −6.37 −7.97 13.02 1.32
0.00 0.00 0.00 0.00 0.00 0.00 0.19 0.60
0.00 0.00 0.00 0.00 0.00 0.00 −5.68 −0.15
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

B2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.20 0.01 0.00 0.00 0.00 0.00 0.00 0.00
5.45 0.39 0.00 0.00 0.00 0.00 0.00 0.00
0.07 0.50 0.39 0.03 0.00 0.00 0.00 0.00

−1.69 −2.68 3.38 0.99 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.18 0.57 0.24 0.00 0.00
0.00 0.00 −0.31 −4.40 −1.17 5.89 0.00 0.00
0.00 0.00 0.00 0.00 0.00 1629.00 −4887.00 3258.00
0.00 0.00 0.00 −0.00 −0.00 −0.00 −65.90 65.90
0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

8.9 Use of Nurbs for Trajectory Generation 391

R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3.00 − 1.00 0.00
−56.32 −0.74 0.00
300.00 200.00 0.00
−2.00 0.00 0.00

−47.14 21.43 0.00
−5.00 2.00 0.00
−9.26 25.06 −7.08

0.00 4.00 −2.00
39.10 −0.54 −12.07
6.00 −9.00 −1.00

20.25 −4.65 7.43
12.00 7.00 3.00

−19.32 −11.29 −14.90
0.00 −200 0.00

−46.59 −54.62 −34.54
8.00 3.00 0.00

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

By inverting (8.43) one obtains

P =

⎡
⎣ 3.00 2.32 1.08 −0.90 −2.43 −5.34 −5.30 1.22 1.30 5.47 6.82
−1.00 −1.01 −0.95 −0.51 0.14 1.86 2.65 4.71 3.56 −10.72 −10.55

0.00 0.00 0.00 0.04 −0.05 0.18 −0.21 −2.44 −2.43 −1.02 −1.21

14.20 12.16 10.12 8.71 8.00
8.52 7.37 5.36 3.83 3.00
4.74 3.10 1.57 0.52 −0.00

⎤
⎦

T

.

The components of the trajectory and of its derivatives are shown in Fig. 8.32.
Note that not only the trajectory interpolates the via-points, but also the
profile of the first derivative crosses (ūk, tk), k = 0, . . . , n. �

8.9 Use of Nurbs for Trajectory Generation

Non-Uniform Rational B-Splines (Nurbs) are standard curves in CAD/CAM
systems [87] since they offer an exact representation of a wide variety of com-
mon curves such as circles, parabolas, ellipses, lines, and hyperbolas, [88, 38].
For this reason they are adopted for trajectories description in many CNC
(Computer Numerical Control) systems.
They are generalizations of non-rational B-splines, and their expression is

n(u) =

m∑
j=0

pjwjB
p
j (u)

m∑
j=0

wjB
p
j (u)

, umin ≤ u ≤ umax (8.47)

392 8 Multidimensional Trajectories and Geometric Path Planning

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1
x 10

5−1000

0

1000

2000
−100

−50

0

50

100
−10

−5

0

5

10

15

u

|s
(u

)|
|s

(1
)
(u

)|
|s

(2
)
(u

)|
|s

(3
)
(u

)|

Fig. 8.32. Components of a B-spline trajectory of degree 4 with constraints on po-
sitions and tangent vectors (component x - solid, component y - dashed, component
z - dashdot).

where Bp
j (u) are standard B-spline basis functions, pj the control points and

wj the weights associated to each control point (for a more detailed descrip-
tion on Nurbs curves and their properties see Sec. B.2). The techniques re-
ported in previous sections based on B-spline functions can be adopted with
minor modifications in the case of Nurbs (only the basis functions change)
but de facto almost all the interpolation and approximation methods used in
the literature are based on B-spline representations since the weights wj are
generally kept constant. As a matter of fact, by definition, Nurbs curves are
standard B-splines when wj = 1, j = 0, . . . ,m. Afterward the weights can be
modified in order to iteratively change the shape of the trajectory obtained
as a B-spline function.

8.10 Local Interpolation with Bézier Curves 393

1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

x

y

(a)

1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

x

y

(b)

Fig. 8.33. Interpolation by means of smoothing B-spline (dashdot) converted in a
Nurbs (wj = 1), and effects of the modification of some weights.

Example 8.17 In Fig. 8.33 the interpolation of the via-points⎡
⎣ qx

qy

qz

⎤
⎦ =

⎡
⎣ 1 2 3 4 5 6 7 8 9 10

0 2 3 3 2 3 −1 0 1 −1
0 0 0 0 0 0 0 0 0 0

⎤
⎦

by means of a cubic smoothing B-spline is reported, with λ = 10−5, and the
weights wk in (8.31) equal to one. The spline is then converted in a Nurbs
by assigning to each of the 12 control points a unitary weight. By changing
the weights wj , j = 0, . . . , 11, it is possible to modify the shape of the curve,
which for increasing values of a specific weight moves towards the correspond-
ing control point. In the figure, two different cases are shown. In Fig. 8.33(a), it
is assumed w5 = 10, while in Fig. 8.33(b) w6 and w7 are both equal to five. �

As mentioned above, Nurbs are widespread in CAD/CAM environments since
they allow to exactly represent conic curves, such as circles, parabolas, ellipses,
etc. There exist a number of techniques to construct the Nurbs curves in order
to represent the desired figures, but these method are out of the purposes of
this book. Interested readers should refer to the literature dedicated to this
topic, see e.g. [38].

8.10 Local Interpolation with Bézier Curves

When the trajectory has to be constructed in an interactive manner (and the
set of the via-points is not completely known in advance) the use of Bézier
curves provides some important advantages, see Appendix B.3. Bézier curves
can also be used when the goal is to find a trajectory based only on local data,

394 8 Multidimensional Trajectories and Geometric Path Planning

i.e. a pair of via-points, with prescribed tangent and curvature vectors [89].
Differently from the global methods reported in previous sections, the tech-
niques based on Bézier curves need not only the knowledge of the points to
be interpolated, but also of the derivatives19 at these points in order to guar-
antee the desired level of smoothness. Often, these vectors are imposed by
the task to be performed, but sometimes it is necessary to compute the tan-
gent directions and possibly also the curvature directions from the via-points
distribution.

8.10.1 Computation of the tangent and curvature vectors

Several methods exist for the computation of the tangent vectors for a given
set of points, see [38, 90]. Given a sequence of points qk, to be interpolated at
the “time instants” ūk, k = 0, . . . , n, the simplest way to define the tangent
and curvature directions at a point qk is

tk =
qk+1 − qk−1

ūk+1 − ūk−1
, nk =

qk+1−qk

ūk+1−ūk
− qk−qk−1

ūk−ūk−1

ūk+1 − ūk−1
. (8.48)

Some authors [91, 90] adopt the tangent vectors and the curvature vectors
of a B-spline curve, computed on the set of points in order to construct a
trajectory approximating the B-spline but with additional features (e.g. an
arc-length parameterization). Among the many techniques for the computa-
tion of tangent vectors, a method frequently adopted to estimate the derivative
at each point is

tk = (1 − αk)δk + αkδk+1, for k = 1, . . . , n − 1 (8.49)

where

δk =
Δqk

Δūk
, for k = 1, . . . , n

αk =
Δūk

Δūk + Δūk+1
, for k = 1, . . . , n − 1

being
Δqk = qk − qk−1, Δūk = ūk − ūk−1.

Equation (8.49) can be used only for the internal points, while the computa-
tion of the tangent vectors at endpoints requires special methods. In particu-
lar, they can be defined as

t0 = 2δ1 − t1, tn = 2δn − tn−1.

The tangent vectors for a set of points in the three-dimensional space are
shown in Fig. 8.34.
19 In general, the first and second derivatives are used.

8.10 Local Interpolation with Bézier Curves 395

Fig. 8.34. Computation of the tangent vectors for local interpolation.

8.10.2 Cubic Bézier curves interpolation

The generation of a G1 trajectory20 requires the use of Bézier curves at least
of degree 3, i.e.

b(u) = (1 − u)3p0 + 3u(1 − u)2p1 + 3u2(1 − u)p2 + u3p3, u ∈ [0, 1].

While the control points p0 and p3 are generally given, since they are coinci-
dent with the two via-points to be joined, the remaining control points can be
determined by imposing prescribed tangent directions, expressed by the unit
vectors t0 and t3 at p0 and p3 respectively, see Fig. 8.35. In particular, p1

and p2 are chosen so that the first derivatives in the central point and at the
endpoints of the Bézier curve have the same magnitude:

|b(1)(0)| = |b(1)(1)| = |b(1)(1/2)| = α. (8.50)

In this way, the velocities at the endpoints and at the midpoint are equal.
From (B.24) it follows that

p1 = p0 +
1
3
αt0, p2 = p3 −

1
3
αt3 (8.51)

p0

p1
p2

p3

t0
t3

Fig. 8.35. Bézier curve of degree 3 and its control points.

20 In many applications, the continuity of the curvature function is not required.

396 8 Multidimensional Trajectories and Geometric Path Planning

where α is the positive solution of the equation

aα2 + bα + c = 0 (8.52)

with

a = 16 − |t0 + t3|2, b = 12(p3 − p0)
T · (t0 + t3), c = −36|p3 − p0|2

which is obtained from (8.50) (for more details, see [38]).

The computation of a trajectory composed by Bézier curve segments interpo-
lating the points qk, k = 0, . . . , n, consists of the following steps:

• If not given, compute the tangent vectors tk according to (8.48) or (8.49).
• For each pair qk, qk+1, the Bézier curve bk(u), u ∈ [0, 1], can be determined

by assuming

p0,k = qk, p3,k = qk+1

t0,k = tk, t3,k = tk+1

and by solving (8.52), which provides the position of the internal control
points p1,k, p2,k with (8.51).

This procedure leads to the definition of a trajectory composed by n Bézier
segments (if n + 1 are the via-points), each one defined in the interval [0, 1],
i.e.

p = bk(uk), uk ∈ [0, 1], k = 0, . . . , n − 1 (8.53)

where the variable uk denotes the independent variable of the k-th Bézier. In
order to describe the entire geometric path as a function of the unique variable
u ∈ [umin, umax] it is necessary to properly “time shift” each tract. Being the
“duration” of each Bézier curve unitary, by assuming

uk = u − k, u ∈ [k, k + 1], k = 0, . . . , n − 1

it is possible to define all the segments composing the curve in terms of u.
Therefore

p(u) = bk(u − k), u ∈ [0, n], k = 0, . . . , n − 1.

Since the tangent vectors of two adjacent Bézier have the same direction
but different magnitude, the curve p(u) constructed in this way will be G1

continuous. In order to obtain a C1 continuous trajectory, it is necessary to
reparameterize it by scaling (and shifting) each Bézier curve. For this purpose,
with reference to (8.53), it is sufficient to assume for the k-th tract

uk =
û − û0,k

λk
, with λk = 3|p1,k − p0,k| and û ∈ [û0,k, û0,k+1] (8.54)

8.10 Local Interpolation with Bézier Curves 397

where the initial time instant21 is

û0,k =

{
0, if k = 0

û0,k−1 + λk, if k > 0 .

In this manner, the tangent vectors at the endpoints of all segments compos-
ing the trajectory have unit length, and therefore the speed is continuous.
This new parameterization p̂(û) is a good approximation of a uniform pa-
rameterization (that is a parameterization characterized by a constant speed
over the entire parameter range, see Chapter 9). Moreover, from the control
points of Bézier curves, it is possible to construct a C1 continuous cubic spline
interpolating the qk, which is defined by the control points

P = [q0, p1,0, p2,0, p1,1, p2,1, . . . , p1,n−2, p2,n−2, p1,n−1, p2,n−1, qn]

and by the knots

u = [u0, u0, u0, u0, u1, u1, . . . , un−1, un−1, un, un, un, un]

computed in a recursive way as

uk = uk+1 + 3|p1,k − p0,k|, for k = 1, . . . , n

with u0 = 0. It is worth noticing that, differently from the splines adopted
in previous sections, the knots are not defined within the range [0, 1], but a
simple uniform scaling22 (û = u/un) can lead to this type of parameterization.

Example 8.18 The local interpolation of the points⎡
⎣ qx

qy

qz

⎤
⎦ =

⎡
⎣ 0 1 2 4 5 6

0 2 3 3 2 0
0 1 0 0 2 2

⎤
⎦

by means of cubic Bézier curves is reported in Fig. 8.36. The tangent vectors
(with unit length), computed by assuming a cord-length distribution of the
“time instants”

[ūk] = [0, 0.22, 0.38, 0.56, 0.79, 1]

21 Note that with this parameterization the duration of each Bézier segment is
û0,k+1 − û0,k = λk.

22 The “scaling in time” of a B-spline curve can be performed by multiplying each
knot span by a constant value λ, that is (in case u0 = 0) by assuming ûk = λuk.
This leads to

ŝ(1)(ûk) =
1

λ
s(1)(uk), ŝ(2)(ûk) =

1

λ2
s(2)(uk), ŝ(3)(ûk) =

1

λ3
s(3)(uk).

398 8 Multidimensional Trajectories and Geometric Path Planning

0

2

4

6

00.51
1.522.53

0

0.5

1

1.5

2

2.5

3

xy

z

Fig. 8.36. Bézier curves of degree 3 interpolating a set of via-points.

are ⎡
⎣ tx

ty
tz

⎤
⎦ =

⎡
⎣ 0.21 0.58 0.87 0.87 0.48 0.36

0.67 0.78 0.34 −0.21 −0.75 −0.88
0.70 −0.19 −0.34 0.43 0.44 −0.30

⎤
⎦

and the G1 continuous trajectory composed by Bézier segments is defined by
the following control points[

p0,k p1,k p2,k p3,k

]
=⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0.18 0.49 1
0 0.58 1.32 2
0 0.59 1.26 1
1 1.35 1.47 2
2 2.47 2.79 3
1 0.88 0.20 0
2 2.60 3.39 4
3 3.24 3.15 3
0 −0.24 −0.30 0
4 4.76 4.57 5
3 2.80 2.66 2
0 0.38 1.61 2
5 5.37 5.72 6
2 1.42 0.67 0
2 2.33 2.23 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

8.10 Local Interpolation with Bézier Curves 399

0 1 2 3 4 5
−2

−1

0

1

2

3
−4

−2

0

2

4
0.5

1

1.5

2

2.5
p
(1

)
x

p
(1

)
y

p
(1

)
z

u
(a)

0 2 4 6 8 10 12
−1

−0.5

0

0.5

1
−1

−0.5

0

0.5

1
0.2

0.4

0.6

0.8

1

p̂
(1

)
x

p̂
(1

)
y

p̂
(1

)
z

û

(b)

Fig. 8.37. Components of the tangent vector p(1)(u) of the trajectory composed
by Bézier segments, without (a) and with (b) “scaling in time”.

The Cartesian components of the tangent vector for the entire trajectory are
reported in Fig. 8.37(a); at the transition points the magnitude of this vector
shows a discontinuity and therefore the speed is discontinuous. In Fig. 8.37(b)
the tangent vector of the trajectory reparameterized according to (8.54) is
reported. In this case, the magnitude of the tangent vector remains unchanged
during the transition between two adjacent Bézier curves (and it is equal to
one), and the speed is continuous over all the trajectory, which is therefore
C1 continuous. As shown in Fig. 8.38 the speed is not only continuous but
also rather constant (uniform parameterization).

0 2 4 6 8 10 12
0.9

0.95

1

1.05

1.1

|b(
1
)
|

u

Fig. 8.38. Magnitude of the speed of a trajectory composed by 3-rd degree Bézier
curves properly reparameterized.

400 8 Multidimensional Trajectories and Geometric Path Planning

The same results can be obtained by considering the cubic B-spline defined
by the control points

P =

⎡
⎣0.00 0.18 0.49 1.35 1.47 2.69 3.39 4.76 4.57 5.37 5.72

0.00 0.58 1.32 2.47 2.79 3.24 3.15 2.80 2.66 1.42 0.67
0.00 0.59 1.16 0.88 0.20 −0.24 −0.30 0.38 1.61 2.33 2.23

⎤
⎦

T

and by the knots

u = [0, 0, 0, 0, 2.5, 2.5, 4.3, 4.3, 6.4, 6.4, 9.1, 9.1, 11.3, 11.3, 11.3, 11.3] .

�

8.10.3 Quintic Bézier curves interpolation

In order to build a G2 (or C2) continuous trajectory, it is necessary to consider
Bézier curves of degree m > 3. In general, 5-th degree Bézier curves, with six
free parameters, may be adopted:

bk(u) =
5∑

j=0

B5
j (u)pj , 0 ≤ u ≤ 1. (8.55)

In this case, for the computation of the trajectory both tangent and curvature
vectors tk,nk at each point qk are necessary. In the literature this kind of
trajectory is often used to approximate the behavior of a cubic B-spline [91]
with the purpose of obtaining a uniform parameterization (the advantages are
highlighted in Chapter 9). Therefore, tangent and curvature vectors can be
computed by interpolating the given points with a B-spline curve s(u) and by
considering its derivatives, s(1)(u), s(2)(u), at ūk. Then for each pair of via-
points (qk, qk+1) the control points which define the k-th Bézier curve bk(u)
are computed, by imposing the conditions on initial and final tangent vectors
(respectively t0,k = tk and t5,k = tk+1) and curvature vectors (n0,k = nk and
n5,k = nk+1) assumed of unit length. Therefore,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

bk(0) = p0,k = qk

bk(1) = p5,k = qk+1

b
(1)
k (0) = 5(p1,k − p0,k) = αktk

b
(1)
k (1) = 5(p5,k − p4,k) = αktk+1

b
(2)
k (0) = 20(p0,k − 2p1,k + p2,k) = βknk

b
(2)
k (1) = 20(p5,k − 2p4,k + p3,k) = βknk+1

where αk and βk (respectively the magnitude of tangent and curvature vectors
at the endpoints) are parameters which can be freely chosen. In particular,

8.10 Local Interpolation with Bézier Curves 401

like in the case of cubic Bézier curves, the value αk is computed by assuming
that |b(1)

k | is equal at the endpoints and at the midpoint (this condition allows
to maintain the magnitude of the first derivative almost constant along the
entire curve), while it is assumed that βk = β̄α2

k. In this way, when the
Bézier curves are reparameterized, by imposing that the first derivatives at
the endpoints have unit magnitude, also the second derivatives of all the Bézier
tracts at these points have equal magnitude (= β̄), and the overall trajectory
is therefore C2 continuous. The conditions on αk and βk lead to the quartic
equation

aα4
k + bα3

k + cα2
k + dαk + e = 0 (8.56)

where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

a = β̄2|nk+1 − nk|2

b = −28β̄(tk + tk+1)T · (nk+1 − nk)

c = 196|tk + tk+1|2 + 120β̄(qk+1 − qk)T · (nk+1 − nk) − 1024

d = −1680(qk+1 − qk)T · (tk + tk+1)

e = 3600|qk+1 − qk|2

with the free parameter β̄ that can be chosen in different ways, e.g. with the
purpose of minimizing the mean value of |p(2)(u)| over the entire trajectory
p(u). The curve is completely determined by adopting the smallest positive
solution of (8.56), which can be computed either in a closed form or in a
numerical way. Finally, the control points of the k-th Bézier tract are⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p0,k = qk

p1,k = p0,k +
αk

5
tk

p2,k = 2p1,k − p0,k +
β̄α2

k

20
nk

p5,k = qk+1

p4,k = p5,k − αk

5
tk+1

p3,k = 2p4,k − p5,k +
β̄α2

k

20
nk+1

(8.57)

and the trajectory can be evaluated as reported in Sec. B.3. In particular,
each segment can be transformed in a standard polynomial form, i.e.

bk(u) = a0,k + a1,ku + a2,ku2 + a3,ku3 + a4,ku4 + a5,ku5, 0 ≤ u ≤ 1

by assuming

402 8 Multidimensional Trajectories and Geometric Path Planning

0
1

2
3

4
5

6

0

1

2

3

4
−0.5

0

0.5

1

1.5

2

2.5

xy

z

Fig. 8.39. Interpolation of a set of points by means of a Bézier curve of degree 5;
the interpolating cubic spline is also shown with a thin line, see also Fig. 8.36.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

a0,k = p0,k

a1,k = −5p0,k + 5p1,k

a2,k = 10p0,k − 20p1,k + 10p2,k

a3,k = −10p0,k + 30p1,k − 30p2,k + 10p3,k

a4,k = 5p0,k − 20p1,k + 30p2,k − 20p3,k + 5p4,k

a5,k = −p0,k + 5p1,k − 10p2,k + 10p3,k − 5p4,k + p5,k.

Example 8.19 The points of Example 8.18, interpolated by means of a quin-
tic Bézier curve, are shown in Fig. 8.39. The curve is obtained by computing
the B-spline which crosses all points and calculating tangent and curvature
vectors. The B-spline trajectory s(u) obtained as explained in Sec. 8.4 is de-
fined by the knots (assumed with a cord-length distribution)

u =
[
0, 0, 0, 0, 0.22, 0.38, 0.56, 0.79, 1, 1, 1, 1

]
and by the control points

P =

⎡
⎣ 0 0.33 0.88 1.79 4.57 4.79 5.66 6

0 0.66 1.89 3.26 3.04 2.34 0.66 0
0 0.33 1.71 −0.34 −0.44 2.68 2.00 2

⎤
⎦ .

By computing the derivatives of s(u), at[
ūk

]
=
[
0, 0.22, 0.38, 0.56, 0.79, 1

]
the following tangent and curvature vectors (normalized to unit length) are
found

8.10 Local Interpolation with Bézier Curves 403

−2
0

2
4

6
8

−1

0

1

2

3

4
−1

−0.5

0

0.5

1

1.5

2

2.5

3

xy

z

Fig. 8.40. Tangent and curvature vectors deduced by interpolating the given via-
points with a B-spline curve.

t1 = [0.40, 0.81, 0.40]T , n1 = [−0.02, 0.10, 0.99]T

t2 = [0.47, 0.85, −0.19]T , n2 = [0.02, −0.10, −0.99]T

t3 = [0.80, 0.28, −0.51]T , n3 = [0.59, −0.50, 0.62]T

t4 = [0.77, −0.19, 0.59]T , n4 = [−0.64, −0.10 0.73]T

t5 = [0.37, −0.78, 0.48]T , n5 = [0.22, −0.37, −0.90]T

t6 = [0.44, −0.89, 0]T , n6 = [−0.22, 0.37, 0.90]T .

The vectors at each via-point are shown in Fig. 8.40. For each pairs of points
(qk, qk+1), the value of αk is computed according to (8.56) and the Bézier
tracts bk(u), u ∈ [0, 1] are completely determined. In order to approximate
an arc-length parameterization (characterized by unit length tangent vectors)
the trajectory must be reparameterized as in (8.54) with a little difference on
λk, whose value is in this case λk = 5|p1,k−p0,k|. Therefore, for each segment,
it is assumed that

u =
û − ûk

λk
, with û ∈ [ûk, ûk+1] (8.58)

ûk =

{
0, if k = 0

ûk−1 + λk, if k > 0

Note that, for the sake of notation simplicity, in (8.58) the subscripts k in û
and 0 in ûk have been omitted. Therefore, û and ûk denotes respectively the
independent variable and the initial value of û for each Bézier segment.
The magnitude of the tangent and curvature vectors for different values of β̄
is reported in Fig. 8.41. Note that the speed has almost a constant unitary
value, while the value of the acceleration at the joint between different Bézier
tracts is obviously equal to β̄. By considering β̄ = 0.51, the acceleration shows

404 8 Multidimensional Trajectories and Geometric Path Planning

less pronounced oscillation (with this particular value, β̄ is equal to the mean
value of |b(2)(u)| over the entire trajectory), and also the deviations of |b(1)(u)|
around 1 are smaller. With the value of β̄ = 0.51, the trajectory composed by
quintic Bézier segments is defined by the following control points (computed
with (8.57)) [

p0,k p1,k p2,k p3,k p4,k p5,k

]
=⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0.20 0.40 0.51 0.75 1
0 0.41 0.84 1.11 1.56 2
0 0.20 0.57 1.03 1.10 1
1 1.17 1.34 1.47 1.71 2
2 2.30 2.60 2.75 2.89 3
1 0.92 0.77 0.42 0.18 0
2 2.34 2.76 3.24 3.66 4
3 3.12 3.18 3.15 3.08 3
0 −0.22 −0.37 −0.42 −0.25 0
4 4.39 4.68 4.65 4.80 5
3 2.89 2.77 2.74 2.40 2
0 0.30 0.74 1.34 1.74 2
5 5.17 5.37 5.56 5.79 6
2 1.64 1.23 0.86 0.40 0
2 2.22 2.32 2.12 2.00 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

�

8.10 Local Interpolation with Bézier Curves 405

0 2 4 6 8 10 12
0

0.5

1

1.5
0.9

0.95

1

1.05

1.1

1.15

û

|b
(1

)
(u

)|
|b

(2
)
(u

)|

(a)

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8
0.9

0.95

1

1.05

1.1

1.15

û

|b
(1

)
(u

)|
|b

(2
)
(u

)|

(b)

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8
0.9

0.95

1

1.05

1.1

1.15

û

|b
(1

)
(u

)|
|b

(2
)
(u

)|

(c)

Fig. 8.41. Velocity and acceleration of the trajectory composed by quintic Bézier
curves for different values of β̄: a) β̄ = 1, b) β̄ = 0.75, c) β̄ = 0.51.

406 8 Multidimensional Trajectories and Geometric Path Planning

8.11 Linear Interpolation with Polynomial Blends

The simplest approach for the definition of a trajectory which approximates
a set of via-points with a prescribed tolerance δ is based on piecewise linear
segments with polynomial blends, which guarantee a smooth transition (i.e.
continuity of position, speed and acceleration) between adjoining tracts [92,
93]. In particular the use of Bézier curves simplifies this application.
Given the via-points qk, k = 0, . . . , n, the design of the trajectory is performed
according to the following steps:

• For each point qk (with the only exception of the first and last ones, for
which q′′

0 = q0, q′
n = qn), two additional points q′

k and q′′
k are obtained

by finding the intersections between the lines qk−1 qk, qk qk+1 and a ball
of radius δ (possibly different for each point) centered on qk, see Fig. 8.42.

• A straight line is used to join each pair (q′′
k , q′

k+1).
• A Bézier curve of 4-th (or 5-th) degree is adopted to interpolate the pair

(q′
k, q′′

k).

This procedure allows the construction of a G2 continuous trajectory, since
the use Bézier curves guarantees that tangent vectors and curvature vectors
of two contiguous segments (linear segment-Bézier, or Bézier-linear segment)
at the transition have the same directions.
The overall trajectory is therefore represented by a sequence of linear segments
lk(u) and the Bézier blends bk(u), each one defined for u ∈ [0, 1]:

p = {l0(u), b1(u), l1(u), . . . , bk(u), lk(u), bk+1(u), . . . , ln−2(u), bn−1(u), ln−1(u)}.

The generic i-th segment of the trajectory is denoted with pi(u), i =
0, . . . , 2n − 2.

While the computation of linear segments is straightforward once the end-
points are known:

qk

q′
k

q′′
k

δ

qk−1
qk+1

t0,k, n0,k t4,k, n4,k

Fig. 8.42. Particular of a linear trajectory with a polynomial blend.

8.11 Linear Interpolation with Polynomial Blends 407

lk(u) = q′′
k + (q′

k+1 − q′′
k)u, 0 ≤ u ≤ 1, k = 0, . . . , n − 1,

the definition of Bézier curves of degree 4 requires also the knowledge of
tangent and curvature vectors at the endpoints, in order to define the five
control points pj,k:

bk(u) =
4∑

j=0

B4
j (u)pj,k, 1 ≤ u ≤ 1, k = 1, . . . , n − 1.

Since a Bézier curve joins two linear tracts, the tangent vector t and the curva-
ture vector n at a transition point have the same direction, and at the points
q′

k and q′′
k , they are oriented along

−−−→
q′

k qk and
−−−→
qk q′′

k respectively. Therefore

t0,k = n0,k =
qk − q′

k

δ
, t4,k = n4,k =

q′′
k − qk

δ
.

Note that because of the definition of q′
k and q′′

k , tangent and curvature vectors
have both unit length. To define the k-th Bézier curve it is necessary to impose
the interpolation of the two endpoints

p0,k = q′
k, p4,k = q′′

k (8.59)

and that the first and second derivatives at the endpoints are respectively
oriented along the tangent and curvature vectors⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

b
(1)
k (0) = 4(p1,k − p0,k) = αkt0,k

b
(1)
k (1) = 4(p4,k − p3,k) = αkt4,k

b
(2)
k (0) = 12(p0,k − 2p1,k + p2,k) = β0,kn0,k

b
(2)
k (1) = 12(p4,k − 2p3,k + p2,k) = β4,k.n4,k

(8.60)

Like in the previous section, the value of αk is determined by assuming that
the velocities are equal at the endpoints and in the middle point

|b(1)
k (0)| = |b(1)

k (1)| = |b(1)
k (1/2)| = αk. (8.61)

In the case of a 4-th degree Bézier, the expression of the tangent vector for
u = 1/2 is

b
(1)
k (1/2) =

1
2
(p4,k + 2p3,k − 2p1,k − p0,k). (8.62)

Note that the point p2,k can be freely changed without modifying the tangent
directions of the curve at the initial and final points and also the tangent
direction in the middle point (i.e. for u = 1/2). From (8.61), (8.62) and (8.60)
it follows

aα2
k + bαk + c = 0 (8.63)

408 8 Multidimensional Trajectories and Geometric Path Planning

with ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a = 4 − 1
4
|t4,k + t0,k|2

b = 3
(
p4,k − p0,k

)T · (t0,k + t4,k)

c = −9
∣∣p4,k − p0,k

∣∣2
which provides the value of αk (the largest solution must be considered). In
this way from the first two equations of (8.60) the control points p1,k and p3,k

are obtained.
The remaining control point p2,k can be computed by considering the last two
equations of (8.60) which can be rewritten as

b
(2)
k (0) = 12(p0,k − p1,k) − 12(p1,k − p2,k) = β0,kn0,k (8.64a)

b
(2)
k (1) = 12(p4,k − p3,k) − 12(p3,k − p2,k) = β4,kn4,k. (8.64b)

By considering that n0,k = t0,k and n4,k = t4,k, (8.64a)-(8.64b) yield

p2,k = p0,k +
1
12

(β0,k + 6αk)t0,k (8.65a)

p2,k = p4,k +
1
12

(β4,k − 6αk)t4,k. (8.65b)

Both conditions (8.65a) and (8.65b) hold if p2,k is located in the point where
the line with direction t0,k and passing through p0,k intersects the line crossing
p4,k and oriented as t4,k, that is

p2,k = qk.

Therefore, the k-th Bézier curve is completely defined by

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

p0,k = q′
k

p1,k = q′
k +

1
4
αkt0,k

p2,k = qk

p3,k = q′′
k − 1

4
αkt4,k

p4,k = q′′
k

where αk is computed using (8.63). The trajectory can be evaluated by using
the definition (8.11). Otherwise, the transformation in a standard polynomial
form, i.e.

bk(u) = a0,k + a1,ku + a2,ku2 + a3,ku3 + a4,ku4, 0 ≤ u ≤ 1,

is straightforward by assuming

8.11 Linear Interpolation with Polynomial Blends 409

0

2

4

6

00.51
1.522.53

0

0.5

1

1.5

2

2.5

3

xy

z

Fig. 8.43. Linear interpolation with polynomial blends obtained as Bézier curves
of degree 4 (see also Fig. 8.36 and Fig. 8.39).

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

a0,k = p0,k

a1,k = −4p0,k + 4p1,k

a2,k = 6p0,k − 12p1,k + 6p2,k

a3,k = −4p0,k + 12p1,k − 12p2,k + 4p3,k

a4,k = 5p0,k − 4p1,k + 6p2,k − 4p3,k + p4,k.

Example 8.20 The interpolation of the same points of Example 8.18 and
Example 8.19 by means of linear segments with polynomial blends is shown
in Fig. 8.43. By considering δ = 0.5, the endpoints for linear segments and for
Bézier curves are obtained from the points⎡

⎣ qx

qy

qz

⎤
⎦ =

⎡
⎣ 0 1 2 4 5 6

0 2 3 3 2 0
0 1 0 0 2 2

⎤
⎦ .

The five linear tracts join the following points

q′′
0 = [0 0 0]T , q′

1 = [0.79 1.59 0.79]T

q′′
1 = [1.28 2.28 0.71]T , q′

2 = [1.71 2.71 0.28]T

q′′
2 = [2.5 3 0]T , q′

3 = [3.5 3 0]T

q′′
3 = [4.20 2.79 0.40]T , q′

4 = [4.79 2.20 1.59]T

q′′
4 = [5.22 1.55 2]T , q′

5 = [6 0 2]T

while the Bézier curves have the following endpoints

410 8 Multidimensional Trajectories and Geometric Path Planning

q′
1 = [0.79 1.59 0.79]T , q′′

1 = [1.28 2.28 0.71]T

q′
2 = [1.71 2.71 0.28]T , q′′

2 = [2.5 3 0]T

q′
3 = [3.5 3 0]T , q′′

3 = [4.20 2.79 0.40]T

q′
4 = [4.79 2.20 1.59]T , q′′

4 = [5.22 1.55 2]T

with tangent/curvature vectors

t0,1 = n0,1 = [0.40 0.81 0.40]T , t4,1 = n4,1 = [0.57 0.57 −0.57]T

t0,2 = n0,2 = [0.57 0.57 −0.57]T , t4,2 = n4,2 = [1 0 0]T

t0,3 = n0,3 = [1 0 0]T , t4,3 = n4,3 = [0.40 −0.40 0.81]T

t0,4 = n0,4 = [0.40 −0.40 0.81]T , t4,4 = n4,4 = [0.44 −0.89 0]T .

The trajectory composed by linear segments and Bézier curves properly
reparametrized23 is C1 continuous, as shown in Fig. 8.44(b), but the second
derivative of the trajectory is discontinuous at the transition points (therefore,
the trajectory is only G2 continuous). Since the curvature vectors of a Bézier
tract at its endpoints are oriented along the directions of adjacent lines, it is
possible to guarantee the continuity of the acceleration by assuming a proper
motion law along the geometric path so defined (in particular the acceleration
at the beginning and at the end of each linear tract must be not null).

�

It is possible to define a C2 continuous trajectory composed by linear seg-
ments with polynomial blends by assuming 5-th degree (or quintic) Bézier
curves. As in Sec. 8.10.3, the six control points of each Bézier curve are ob-
tained by imposing initial and final points, tangent vectors and curvature
vectors: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

bk(0) = p0,k = q′
k

bk(1) = p5,k = q′′
k

b
(1)
k (0) = 5(p1,k − p0,k) = αkt0,k

b
(1)
k (1) = 5(p5,k − p4,k) = αkt5,k

b
(2)
k (0) = 20(p0,k − 2p1,k + p2,k) = β0,kn0,k

b
(2)
k (1) = 20(p5,k − 2p4,k + p3,k) = β5,kn5,k.

23 Each tract pi(u) of the trajectory is reparameterized according to

u =
û − ûi

λi
, with û ∈ [ûi, ûi+1]

where λi = 4|p1,i − p0,i| for Bézier curves and λi = |p1,i − p0,i| for the linear
tracts joining p0,i with p1,i and

ûi =

{
0, if i = 0

ûi−1 + λi, if i > 0.

.

8.11 Linear Interpolation with Polynomial Blends 411

0 1 2 3 4 5 6 7 8 9
−1

−0.5

0

0.5

1

1.5
−2

−1

0

1

2
0.2

0.4

0.6

0.8

1
p
(1

)
x

p
(1

)
y

p
(1

)
z

u
(a)

0 2 4 6 8 10 12
−1

−0.5

0

0.5

1
−1

−0.5

0

0.5

1
0.4

0.6

0.8

1

1.2

1.4

p̂
(1

)
x

p̂
(1

)
y

p̂
(1

)
z

û
(b)

Fig. 8.44. Components of the tangent vectors p(1)(u) and p̂(1)(û) of the trajectory
composed by linear and 4-th degree Bézier segments, without (a) and with (b)
“scaling in time”.

In particular, it is assumed that the second derivative of b
(2)
k (u) for u = 0 and

u = 1 has zero magnitude (therefore β0,k = 0 and β5,k = 0), while the value
αk is computed by assuming that |b(1)

k (u)| is equal at the endpoints and at
the midpoint. This last condition leads to the equation

aα2
k + bαk + c = 0 (8.66)

where ⎧⎪⎪⎨
⎪⎪⎩

a = 256 − 49 |t0,k + t5,k|2

b = 420
(
p5,k − p0,k

)T (t0,k + t5,k)

c = −900
∣∣p5,k − p0,k

∣∣2 = 0

which provides24 the value of αk (the largest of the two possible solutions).
Finally, the control points which define the k-th Bézier segment are

24 Note that all the terms in (8.66) are known since

p0,k = q′
k, p5,k = q′′

k ,

t0,k = n0,k =
qk − q′

k

δ
, t5,k = n5,k =

q′′
k − qk

δ
.

412 8 Multidimensional Trajectories and Geometric Path Planning

0

2

4

6

00.51
1.522.53

0

0.5

1

1.5

2

2.5

3

xy

z

Fig. 8.45. Linear interpolation with polynomial blends obtained as Bézier curves
of degree 5.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p0,k = q′
k

p1,k = p0,k +
αk

5
t0,k

p2,k = 2p1,k − p0,k

p5,k = q′′
k

p4,k = p5,k − αk

5
t5,k

p3,k = 2p4,k − p5,k.

Example 8.21 The interpolation of the same points of the previous examples
by means of linear segments and 5-th degree Bézier tracts is shown in Fig. 8.45.
Once the endpoints and the tangent vectors have been defined (the same as in
the previous examples), the computation of Bézier curves is straightforward by
means of (8.57) while the procedure for the determination of linear tracts does
not change. The first and the second derivatives of the trajectory, properly

8.11 Linear Interpolation with Polynomial Blends 413

0 2 4 6 8 10 12
−1

−0.5

0

0.5

1
−1

−0.5

0

0.5

1
0.4

0.6

0.8

1

1.2

1.4
p̂
(1

)
x

p̂
(1

)
y

p̂
(1

)
z

û
(a)

0 2 4 6 8 10 12
−2

−1

0

1

2
−1

−0.5

0

0.5
−1.5

−1

−0.5

0

0.5

1

p̂
(2

)
x

p̂
(2

)
y

p̂
(2

)
z

û
(b)

Fig. 8.46. Components of the velocity p̂(1)(û) (a) and of the acceleration p̂(2)(û)
(b) of the trajectory composed by linear and 5-th degree Bézier segments.

reparameterized25, are shown in Fig. 8.46. In this case both the speed and the
acceleration are continuous (in particular, the acceleration at the beginning
and at the end of each Bézier segment is null), and the trajectory is C2

continuous, see Fig. 8.46. Moreover, the parameterization obtained in this
way is an optimal approximation of an arc-length parametrization (with unit-
length tangent vector), as shown in Fig. 8.47.

�

25 Each Bézier tract of the trajectory is reparameterized according to

u =
û − ûk

λk
, with û ∈ [ûk, ûk+1]

where λk = 5|p1,k − p0,k| and

ûk =

{
0, if k = 0

ûk−1 + λk, if k > 0.

.

414 8 Multidimensional Trajectories and Geometric Path Planning

0 2 4 6 8 10 12

0

0.5

1

1.5

2
0.99

0.995

1

1.005

1.01

|p̂
(1

)
(û

)|
|p̂

(2
)
(û

)|

û

Fig. 8.47. Magnitude of the tangent and curvature vectors of the trajectory com-
posed by straight line segments and 5-th degree Bézier curves.

9

From Geometric Paths to Trajectories

In this chapter the problem of composing the geometric path with the
motion law is considered. The goal is to define parametric functions
of time so that given constraints on velocities, accelerations, . . ., are
satisfied. A particular case of interest is the “constant velocity” motion,
used in several industrial tasks.

9.1 Introduction

Given a geometric path represented by a parametric curve

p = p(u)

the trajectory is completely defined only when the motion law

u = u(t)

is provided. In many cases, the function u(t) is a simple proportional law,
e.g. u = λt, but are common situations in which a particular motion law
is adopted to guarantee that the trajectory is compliant with velocity and
acceleration constraints. It is worth noticing that in this case the motion law
is nothing but a reparameterization of the curve, which modifies the velocity
and acceleration vectors, see Fig. 9.1. As a matter of fact, by applying the
chain rule to compute the derivatives of the trajectory p̃(t) = (p ◦ u)(t):

˙̃p(t) =
dp

du
u̇(t)

¨̃p(t) =
dp

du
ü(t) +

d2p

du2
u̇2(t)

...

(9.1)

416 9 From Geometric Paths to Trajectories

umin umaxtmin tmax

p = p(u)

p̃(t) = p(u(t))

u = u(t)

Fig. 9.1. Composition of a generic 3D path p(u) and of a motion law u(t).

it is evident that the velocity vector of p̃(t) is equal to the first derivative of
the parametric curve p(u) modulated by the velocity of the motion law, while
the acceleration depends on both the acceleration and the (square) speed of
u(t). In particular by comparing (9.1) with (8.2.2), it comes out that the
velocity is always oriented along the direction tangent to the curve, while the
acceleration is composed by two components, oriented along the directions
tangent (tangential acceleration) and normal (centripetal acceleration) to the
curve.

9.2 Constant Scaling

When a proportional law is used to describe the relation between the time
and the variable u (u = λt), the k-th derivative of the parametric curve is
simply scaled by a factor λk. Therefore

p̃(1)(t) =
dp

du
λ

p̃(2)(t) =
d2p

du2
λ2

p̃(3)(t) =
d3p

du3
λ3

...

These relations are used when the trajectory must satisfy particular con-
straints on velocity (vmax), acceleration (amax), jerk (jmax), etc.. In this case,
it is sufficient to assume

λ = min

{
vmax

|p(1)(u)|max
,

√
amax

|p(2)(u)|max
, 3

√
jmax

|p(3)(u)|max
, . . .

}
(9.2)

to assure that the trajectory is compliant with all the constraints. On the
other hand, it is worth observing that a constant scaling cannot guarantee
a smooth starting/ending (with initial and final velocities and accelerations
equal to zero). In this case a continuous motion law, like those introduced in
previous chapters, should be taken into account.

9.2 Constant Scaling 417

0 0.5 1 1.5 2 2.5 3 3.5
0

5

10

15

20
0

1

2

3

4

|p̃
(1

)
(t

)|
|p̃

(2
)
(t

)|

t

Fig. 9.2. Magnitude of velocity and acceleration of the trajectory composed by
straight line segments and 5-th degree Bézier curves.

Example 9.1 The geometric path obtained in Example 8.21 is considered.
In particular, the parametric trajectory composed by linear segments and 5-
th degree Bézier curves (after the reparameterization which guarantees the
continuity of the overall curve) is assumed. The goal is to make the trajectory
as fast as possible with the constraints

vmax = 5, amax = 20.

By applying (9.2) where |p(1)(u)|max = 1.02 and |p(1)(u)|max = 1.8 (see
Fig. 8.47) the value λ = 3.33 is obtained. It is therefore sufficient for each
segment of the trajectory to consider

û = λt, t ∈
[
ûk

λ
,

ûk+1

λ

]

being ûk and ûk+1 the limit values for the independent variable û of the k-th
tract. Note that, differently from the case of B-spline or Nurbs curves obtained
by globally interpolating/approximating a set of data points (and therefore
characterized by only one variable u ∈ [umin, umax]), in this case each seg-
ment depends on the corresponding variable û, which can be reparameterized
separately. In this case, this opportunity is not exploited (by considering only
a constant scaling λ for the overall trajectory), and the profiles of the magni-
tude of the velocity and acceleration are those reported in Fig. 9.2 (while the
components are shown in Fig. 9.3). Note that the velocity, although rather
constant, does not reach the maximum allowed value since the value of λ is
determined by the maximum acceleration. Moreover, the velocity is discon-
tinuous at the start and end points of the trajectory.

�

418 9 From Geometric Paths to Trajectories

0 0.5 1 1.5 2 2.5 3 3.5
−2

−1

0

1

2

3
−4

−2

0

2

4
1

1.5

2

2.5

3

3.5
p̃
(1

)
x

p̃
(1

)
y

p̃
(1

)
z

t

(a)

0 0.5 1 1.5 2 2.5 3 3.5
−20

−10

0

10

20
−15

−10

−5

0

5
−15

−10

−5

0

5

10

p̃
(2

)
x

p̃
(2

)
y

p̃
(2

)
z

t

(b)

Fig. 9.3. Components of the velocity p̃(1)(t) (a) and of the acceleration p̃(2)(t)
(b) of the trajectory composed by linear and 5-th degree Bézier segments, after a
constant scaling.

9.3 Generic Motion Law

When a generic motion law is assumed to describe the relation between t
and u, the derivatives of the parametric curve are modified according to (9.1).
Therefore, it is not simple to find a motion law which satisfies prescribed values
of acceleration or jerk, since the derivatives of u(t) are mixed in the expression
of p̃(2)(t), p̃(3)(t), etc. A special case is represented by linear trajectories, i.e.

p(u) = p0 + (p1 − p0)u, with 0 ≤ u ≤ 1

characterized by p(1)(u) = p1 − p0 = const., p(2)(u) = p(3)(u) = . . . =
p(m)(u) = 0. As a consequence

p̃(1)(t) = (p1 − p0)u
(1)(t) (9.3a)

p̃(2)(t) = (p1 − p0)u
(3)(t) (9.3b)

p̃(3)(t) = (p1 − p0)u
(3)(t) (9.3c)

and the constraints on |p̃(i)(t)| can be easily translated to constraints on u(i)(t)
by inverting (9.3a), (9.3b), etc. Therefore,

9.3 Generic Motion Law 419

|u(1)(t)| ≤ vmax

|p1 − p0|
|u(2)(t)| ≤ amax

|p1 − p0|

|u(3)(t)| ≤ jmax

|p1 − p0|
.

Moreover, also the constraints on a single axis (e.g. the x axis) can be easily
translated to limits on u(i)(t), i.e.

|u(1)(t)| ≤ vxmax

|(p1 − p0)x|
|u(2)(t)| ≤ axmax

|(p1 − p0)x|

|u(3)(t)| ≤ jxmax

|(p1 − p0)x|

where the subscript x denotes the component of a vector along the x axis.

Example 9.2 The geometric curve of Example 8.21 is considered again. Dif-
ferently from the uniform scaling of the trajectory, performed in Example 9.1,
the segments composing the curve (linear segments and 5-th degree Bézier
curves) are now considered separately. For this reason, it is necessary to ad-
dress the problem of maintaining the continuity of the trajectory (and its
derivatives) at the joints. Moreover, each segment is considered before the
reparameterization which leads to unit tangent vectors at the endpoints of
each tract (therefore for each segment u ∈ [0, 1]). The goal is to make the
trajectory as fast as possible with the constraints

vmax = 5, amax = 20.

In particular, a constant scaling u = λkt, is used for Bézier segments while a
double S trajectory is adopted for u(t) in each linear tract. The reparameter-
ization is based on two subsequent steps:

1. The value of λk for each Bézier segments is found by means of (9.2).
2. A double S trajectory u(t), is computed for each linear tract with the

following constraints1:

u0 = 0, u1 = 1

u̇0 =
|tk−1|λk−1

lk
, u̇1 =

|tk+1|λk+1

lk
ü0 = 0, ü1 = 0

u̇max =
vmax

lk
, ümax =

amax

lk
1 For the generation of double S motion law for straight line segments the further

condition on the jerk jmax = 200 is considered; this leads to
...
umax =

jmax

lk
.

420 9 From Geometric Paths to Trajectories

0 0.5 1 1.5 2 2.5 3
0

5

10

15

20
0

1

2

3

4

5

|p̃
(1

)
(t

)|
|p̃

(2
)
(t

)|

t

Fig. 9.4. Magnitude of velocity and acceleration of the trajectory composed by
straight line segments and 5-th degree Bézier curves.

where lk is the length of the linear segment (= |q′k+1 − q′′k |), |tk∓1| is
the norm of the tangent vector of the (k ∓ 1)-th Bézier segment, at the
end and at the start points respectively, λk∓1 the scaling factor of the
reparameterization of the (k ∓ 1)-th Bézier segment.

The conditions on initial and final values of the velocity of the reparameteriza-
tion u(t) guarantee the continuity of the overall trajectory. Moreover, for the
first and the last linear segment the conditions u̇0 = 0, u̇1 = 0 are considered.
The resulting velocity and acceleration are reported in Fig. 9.4 (magnitude)
and Fig. 9.5 (components). Note that the time duration of the trajectory is
considerably shorter that the one produced by a constant scaling (Example
9.1), although in this case the initial and final velocities are null. This is due to
the fact that each segment is optimized, i.e. it reaches the maximum allowed
value of velocity or acceleration (compare Fig. 9.4 with Fig. 9.2).

�

9.4 Constant Feed Rate 421

0 0.5 1 1.5 2 2.5 3
−4

−2

0

2

4

6
−5

0

5
0

1

2

3

4

5
p̃
(1

)
x

p̃
(1

)
y

p̃
(1

)
z

t

(a)

0 0.5 1 1.5 2 2.5 3
−20

−10

0

10

20
−20

−10

0

10

20
−20

−10

0

10

20

p̃
(2

)
x

p̃
(2

)
y

p̃
(2

)
z

t

(b)

Fig. 9.5. Components of the velocity p̃(1)(t) (a) and of the acceleration p̃(2)(t) (b)
of the trajectory composed by linear and 5-th degree Bézier segments.

9.4 Constant Feed Rate

A special problem in trajectory generation for multi-axis cutting/milling ma-
chines, which can be solved by means of a correct reparameterization, consists
in obtaining a constant feed rate. The goal is to plan a motion of the tool in
the workspace with a constant speed [94]. In this case, the function u(t) must
guarantee that

| ˙̃p(t)| = vc (constant) (9.6)

where p̃(t) = (p ◦ u)(t). Since nowadays automatic machines are controlled
by computers, it is not necessary to obtain analytically the function u(t): its
values u(tk) = uk can be numerically computed in real-time at each sampling
time tk = kTs, [95]. The calculation of uk, k = 0, 1, . . . , is based on the
following Taylor expansion of u(t)

uk+1 = uk + Tsu̇k +
T 2

s

2
ük + O

(
Tn

s

n!
u

(n)
k

)
, k = 0, 1, . . . (9.7)

From (9.6) and (9.1) the following condition is obtained

u̇(t) =
vc∣∣∣∣dp

du

∣∣∣∣
(9.8a)

while, by differentiating (9.6) with respect to time, after some calculations
one obtains

422 9 From Geometric Paths to Trajectories

0 1 2 3 4 5 6 7 8 9 10
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

x

y

Fig. 9.6. Geometric path defined with a cubic B-spline s(u) (0 ≤ u ≤ 1).

ü(t) = −v2
c

dp

du

T

· d2p

du2∣∣∣∣dp

du

∣∣∣∣
4 . (9.8b)

Therefore, if the first order approximation of u(t) is considered, the value of
the variable u at time (k + 1)Ts can be determined as

uk+1 = uk +
vcTs∣∣∣∣dp

du

∣∣∣∣
uk

(9.9a)

while, by considering the second order approximation,

uk+1 = uk +
vcTs∣∣∣∣dp

du

∣∣∣∣
uk

− (vcTs)2

2

⎡
⎢⎢⎢⎣

dp

du

T

· d2p

du2∣∣∣∣dp

du

∣∣∣∣
4

⎤
⎥⎥⎥⎦

uk

. (9.9b)

Example 9.3 Figure 9.6 shows a cubic B-spline interpolating the set of 10
via-points [

qx

qy

]
=
[

0 1 2 4 5 6 7 8 9 10
0 2 1 3 2 3 0 −1 −1 2

]

with initial and final derivatives

t0 =
[

8.07
16.14

]
, t9 =

[
5.70
17.11

]
.

The B-spline is completely determined by the knot vector

9.4 Constant Feed Rate 423

u = [0, 0, 0, 0, 0.12, 0.20, 0.35, 0.43, 0.51, 0.69, 0.76, 0.82, 1, 1, 1, 1]

and by the control points

P =
[

0 0.33 0.69 2.38 3.67 4.96 6.60 6.49 7.76 9.96 9.66 10
0 0.66 3.12 −0.46 4.53 1.18 4.54 0.17 −1.08 −1.15 1.00 2

]T

.

If u = t, the trajectory is characterized by an extremely variable feed rate,
as shown in Fig. 9.7(a). With a constant scaling in time u = λt it is possible
to modify |s(1)(u)| with the purpose of obtaining desired mean or maximum
values of the speed, but its shape remain unchanged. For instance, in order
find the “optimal” trajectory through the given set of data points for which
|s̃(1)(t)| ≤ vmax = 10, it is sufficient to chose λ = vmax

|s(1)(u)|max
= 0.37. The new

velocity profile is reported in Fig. 9.7(b). By applying (9.9a) with vc = 10 (and
Ts = 0.01s), the motion is executed with a speed oscillating around the de-
sired value within a range smaller than 1.5%, see Fig. 9.8 where the relation
between u and t is also reported. By adopting a second order approxima-
tion, given by (9.9b), the variations of the speed around vc = 10 are further
reduced, at the expense of a higher computational complexity, see Fig. 9.9. �

It is worth noticing that, from a computational point of view, the calculation
of (9.9a) and (9.9b) is rather heavy, involving at each sampling time the
computation of the magnitude of the first and second derivatives of p(u). It is
therefore preferable the construction of a parametric curve characterized by
a tangent vector with unitary magnitude over the entire curve, i.e.∣∣∣∣dp

du
(u)

∣∣∣∣ = 1, ∀u ∈ [umin, umax].

This is possible by adopting an arc-length parameterization, obtaining in this
way a so-called uniform parameterization. In this case, the reparameterization
of the curve which produces a constant feed rate equal to vc is straightforward:

u = vc t (9.10)

0 0.2 0.4 0.6 0.8 1
5

10

15

20

25

30

t

|s̃
(1

)
(t

)|

(a)

0 0.5 1 1.5 2 2.5 3
2

4

6

8

10

12

t

|s̃
(1

)
(t

)|

(b)

Fig. 9.7. Feed rate of the trajectory defined with a cubic B-spline, with u = t (a),
and with u = λt (b).

424 9 From Geometric Paths to Trajectories

0 0.5 1 1.5 2
9.85

9.9

9.95

10

10.05

10.1

t

|s̃
(1

)
(t

)|

(a)

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

u

t

(b)

Fig. 9.8. Feed rate of the trajectory defined with a cubic B-spline, with u computed
by means of (9.9a) (a), and relation between t and u (b).

0 0.5 1 1.5 2
9.85

9.9

9.95

10

10.05

10.1

t

|s̃
(1

)
(t

)|

(a)

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

u

t

(b)

Fig. 9.9. Feed rate of the trajectory defined with a cubic B-spline, with u computed
by means of (9.9b) (a), and relation between t and u (b).

or, for a sampled system,

uk+1 = uk + vc Ts

where Ts is the sampling time. Moreover, under the condition that the tangent
vector has unitary magnitude over all the geometric curve, it is possible to
handle in a simple way particular conditions, such as the start/end phases of
the trajectory, and to impose desired profile of the feed rate.

9.5 Generic Feed Rate Profile

Equations (9.8a) and (9.8b) are special instances of a more general case in
which | ˙̃p(t)| (and possibly also |¨̃p(t)|) is not constant, but is a function of
time i.e. | ˙̃p(t)| = v(t) (|¨̃p(t)| = a(t)) [96]. In this case, the parameterization
of the curve, which guarantees that a desired profile of v(t) (and of a(t))
is obtained, can be again computed in real-time by considering the Taylor
expansion of u(t) expressed by (9.7), where u̇ and ü are

9.5 Generic Feed Rate Profile 425

u̇(t) =
v(t)∣∣∣∣dp

du

∣∣∣∣
(9.11a)

ü(t) =
a(t)∣∣∣∣dp

du

∣∣∣∣
−

v(t)2
(

dp

du

T

· d2p

du2

)
∣∣∣∣dp

du

∣∣∣∣
4 . (9.11b)

Finally, for discrete time systems with sampling period Ts, it is possible to
compute the new value of uk = u(kTs) as

uk+1 = uk +
vkTs∣∣∣∣dp

du

∣∣∣∣
uk

+
T 2

s

2

⎛
⎜⎜⎜⎜⎝

ak∣∣∣∣dp

du

∣∣∣∣
uk

− v2
k

⎡
⎢⎢⎢⎢⎣

(
dp

du

T

· d2p

du2

)
∣∣∣∣dp

du

∣∣∣∣
4

⎤
⎥⎥⎥⎥⎦

uk

⎞
⎟⎟⎟⎟⎠ (9.12)

where vk = v(kTs) and ak = a(kTs) are the samples of the desired profiles
of velocity and acceleration at time kTs. Note that the motion law q(t), with
velocity v(t) and acceleration a(t), can be computed with one of the techniques
reported in previous sections by assuming a displacement equal to the curve
length. As a matter of fact, by integrating v(t) = | ˙̃p(t)| with respect to the
time, one obtains

q(t) =
∫ t

tmin

v(τ)dτ =
∫ u(t)

umin

∣∣∣∣dp(u)
du

∣∣∣∣ du

and in particular2 q(tf) =
∫ umax

umin

∣∣∣∣dp(u)

du

∣∣∣∣ du, that is the length of the curve3.

When the geometric path is described by an arc-length parameterization,
the displacement induced by the motion law is simply equal to umax − umin,
and (9.12) becomes

uk+1 = uk + vkTs +
T 2

s

2

(
ak − v2

k

(
dp

du

T

· d2p

du2

)
uk

)

Example 9.4 The same geometric path of the previous example must be
tracked with a motion law which guarantees that the feed rate has a “bell”
profile. In this way initial and final velocities and accelerations are null. This is
obtained by considering for the feed rate a double S trajectory from q0 = 0 to
q1 = l where l is the length of the curve, obtained by numerically estimating
[19] the integral
2 It is assumed q(tf) = 0.
3 The case umin ≤ u ≤ umax is considered.

426 9 From Geometric Paths to Trajectories

0 0.5 1 1.5 2 2.5 3
−40

−20

0

20

40

0

2

4

6

8

10

0

5

10

15

20

t

v
(t

)
q(

t)
a
(t

)

Fig. 9.10. Trajectory of the desired feed rate.

∫ 1

0

∣∣∣∣ds(u)
du

∣∣∣∣ du.

Moreover, the constraints

vmax = 10, amax = 50, jmax = 100

on the maximum value of the feed rate and of its derivatives are assumed.
The desired profile of the feed rate v(t) is reported in Fig. 9.10.

Equation (9.12) is used to compute at each sampling time the value of
uk+1 on the basis of tangent and curvature vectors of the spline at uk, and of
the velocity and acceleration value at time kTs (with Ts = 0.001s). Note that
the position profile q(t) used to define the desired feed rate v(t) (and possibly
also a(t)) is not employed, but only q̇(t) = v(t) and q̈(t) = a(t) are exploited.
The resulting feed rate is reported in Fig. 9.11, as well as the profile of the
independent variable u used to evaluate the curve s(u). The approach based
on the choice of a desired feed rate, imposed by properly computing the value
of uk at each sampling time, is quite different from the adoption of a desired
motion law for u(t), as presented in Sec. 9.3. By assuming a desired profile of
the variable u(t), it is possible to consider constraints on the maximum feed
rate, which remains rather oscillating. For instance, u(t) can be computed ac-

9.5 Generic Feed Rate Profile 427

0 0.5 1 1.5 2 2.5 3
0

2

4

6

8

10

12

t

|s̃
(1

)
(t

)|

(a)

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

u

t

(b)

Fig. 9.11. Feed rate of the trajectory defined with a cubic B-spline, with u com-
puted by means of (9.12) (a), and relation between t and u (b).

cording to a double S trajectory from umin = 0 to umax = 1, with a maximum
speed

u̇max =
vmax

|p(1)(u)|max
.

This condition guarantees that the feed rate is not greater than vmax. More
difficult is the choice of ümax and

...
umax from the constraints on the feed rate

amax, jmax, since the expressions of the acceleration of ¨̃p(t), given by (9.1),
and of higher order derivatives, lead to overconservative constraints on u(t).
In the example reported in Fig. 9.12 the values

u̇max = 0.37, ümax = 0.94, ...umax = 10

are used. Figure 9.13 shows the consequent profile of the feed rate and of its
first derivative.

�

428 9 From Geometric Paths to Trajectories

0 0.5 1 1.5 2 2.5 3 3.5
−1

−0.5

0

0.5

1
0

0.1

0.2

0.3

0.4
0

0.2

0.4

0.6

0.8

1

t

u̇
(t

)
u
(t

)
ü
(t

)

Fig. 9.12. Motion profile of the variable u(t).

0 0.5 1 1.5 2 2.5 3 3.5
0

20

40

60

80

100

120
0

2

4

6

8

10

12

t

|s̃
(1

)
(t

)|
|s̃

(2
)
(t

)|

Fig. 9.13. Feed rate induced by a double S trajectory for u(t).

9.6 Integration of Geometric Path and Motion Law for Complex 3D Tasks 429

9.6 Integration of Geometric Path and Motion Law for
Complex 3D Tasks

In this section the main issues related to the design of complex trajectories,
concerning both position and orientation in the 3D space, are shown by means
of some examples, discussed step by step. In particular, given a set of via
points, four cases are analyzed:

1. Approximation by means of a linear trajectory with polynomial blends.
2. Interpolation by a B-spline trajectory.
3. Approximation by a smoothing B-spline trajectory.
4. Approximation by a B-spline of a trajectory based on motion primitives.

9.6.1 Linear trajectory with polynomial blends

Let us consider the case of a trajectory composed by straight lines properly
joined in order to avoid discontinuities of the speed and acceleration, see
Sec. 8.11. As a case study, we assume a motion composed by eight linear
tracts defined by the via-points⎡

⎣ qx

qy

qz

⎤
⎦ =

⎡
⎣ 0.0 0.0 0.6 0.6 0.6 0.6 0.0 0.0 0.0

0.0 0.4 0.4 0.0 0.0 0.4 0.4 0.0 0.0
0.0 0.0 0.0 0.0 0.4 0.4 0.4 0.4 0.0

⎤
⎦ .

Moreover, it is desired to keep constant the orientation in each one of the eight
tracts. In particular, the rotation matrices defining the desired orientation
with respect to the base frame are

R0 =

⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦ , R1 =

⎡
⎣ 0 1 0
−1 0 0
0 0 1

⎤
⎦

R2 =

⎡
⎣−1 0 0

0 −1 0
0 0 1

⎤
⎦ , R3 =

⎡
⎣−1 0 0

0 0 1
0 2 0

⎤
⎦

R4 =

⎡
⎣−1 0 0

0 1 0
0 0 −1

⎤
⎦ , R5 =

⎡
⎣ 0 −1 0
−1 0 0
0 0 −1

⎤
⎦

R6 =

⎡
⎣ 1 0 0

0 −1 0
0 0 −1

⎤
⎦ , R7 =

⎡
⎣ 1 0 0

0 0 1
0 −1 0

⎤
⎦ .

The via-points with the related local frames are shown in Fig. 9.14. Since the
goal is to design a trajectory composed by linear segments with polynomial

430 9 From Geometric Paths to Trajectories

0

0.2

0.4

0.6

0.8

0

0.1

0.2

0.3

0.4

0.5

0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

xy

z

Fig. 9.14. Via-points and related local frames considered for linear interpolation
with 5-th degree Bézier blends.

blends (in particular 5-th degree Bézier curves are adopted), besides the via-
points4, also the endpoints of the linear tracts are reported. They are obtained
by intersecting the lines joining the points [qk, qk+1] with balls of radius δ and
centered in qk and qk+1 respectively. In this example, it is assumed δ = 0.5
for all the via-points. Then, the sequence of points, interpolated alternatively
by means of straight lines and Bézier curves, is

Q′ =
[
q′′

0 , q′
1, q′′

1 , . . . , q′′
k−1, q′

k, q′′
k , . . . , q′′

n−1, q′
n

]
=⎡

⎣0 0 0.05 0.55 0.60 0.60 0.60 0.60 0.60 0.60 0.55 0.05 0 0 0 0
0 0.35 0.40 0.40 0.35 0.05 0 0 0.05 0.35 0.40 0.40 0.35 0.05 0 0
0 0 0 0 0 0 0.05 0.35 0.40 0.40 0.40 0.40 0.40 0.40 0.35 0

⎤
⎦.

As a first step, the trajectory for the position is computed by means of the al-
gorithm reported in Sec. 8.11. Therefore, 5-th degree Bézier curves are inserted
between adjacent straight lines. The control points defining the trajectory seg-
ments5 are

4 Note that with this approach the via-points are approximated and not interpo-
lated.

5 Note that a straight line tract can be seen as 1-st degree Bézier curve expressed
by

p(u) = p0(1 − u) + p1u, u ∈ [0, 1]

where p0 and p1 are the two control points, corresponding to the initial and final
point of the segment itself.

9.6 Integration of Geometric Path and Motion Law for Complex 3D Tasks 431

p0,0 =

⎡
⎣ 0

0
0

⎤
⎦, p1,0 =

⎡
⎣ 0

0.35
0

⎤
⎦

p0,1 =

⎡
⎣ 0

0.35
0

⎤
⎦, p1,1 =

⎡
⎣ 0

0.36
0

⎤
⎦, p2,1 =

⎡
⎣ 0

0.38
0

⎤
⎦, p3,1 =

⎡
⎣0.01

0.40
0

⎤
⎦, p4,1 =

⎡
⎣0.03

0.40
0

⎤
⎦, p5,1 =

⎡
⎣0.05

0.40
0

⎤
⎦

p0,2 =

⎡
⎣0.05

0.40
0

⎤
⎦, p1,2 =

⎡
⎣0.55

0.40
0

⎤
⎦

p0,3 =

⎡
⎣0.55

0.40
0

⎤
⎦, p1,3 =

⎡
⎣0.56

0.40
0

⎤
⎦, p2,3 =

⎡
⎣0.58

0.40
0

⎤
⎦, p3,3 =

⎡
⎣0.60

0.38
0

⎤
⎦, p4,3 =

⎡
⎣0.60

0.36
0

⎤
⎦, p5,3 =

⎡
⎣0.60

0.35
0

⎤
⎦

p0,4 =

⎡
⎣0.60

0.35
0

⎤
⎦, p1,4 =

⎡
⎣0.60

0.05
0

⎤
⎦

p0,5 =

⎡
⎣0.60

0.05
0

⎤
⎦, p1,5 =

⎡
⎣0.60

0.03
0

⎤
⎦, p2,5 =

⎡
⎣0.60

0.01
0

⎤
⎦, p3,5 =

⎡
⎣0.60

0
0.01

⎤
⎦, p4,5 =

⎡
⎣0.60

0
0.03

⎤
⎦, p5,5 =

⎡
⎣0.60

0
0.05

⎤
⎦

p0,6 =

⎡
⎣0.60

0
0.05

⎤
⎦, p1,6 =

⎡
⎣0.60

0
0.35

⎤
⎦

p0,7 =

⎡
⎣0.60

0
0.35

⎤
⎦, p1,1 =

⎡
⎣0.60

0
0.36

⎤
⎦, p2,7 =

⎡
⎣0.60

0
0.38

⎤
⎦, p3,7 =

⎡
⎣0.60

0.01
0.40

⎤
⎦, p4,7 =

⎡
⎣0.60

0.03
0.40

⎤
⎦, p5,7 =

⎡
⎣0.60

0.05
0.40

⎤
⎦

p0,8 =

⎡
⎣0.60

0.05
0.40

⎤
⎦, p1,8 =

⎡
⎣0.60

0.35
0.40

⎤
⎦

p0,9 =

⎡
⎣0.60

0.35
0.40

⎤
⎦, p1,9 =

⎡
⎣0.60

0.36
0.40

⎤
⎦, p2,9 =

⎡
⎣0.60

0.38
0.40

⎤
⎦, p3,9 =

⎡
⎣0.58

0.40
0.40

⎤
⎦, p4,9 =

⎡
⎣0.56

0.40
0.40

⎤
⎦, p5,9 =

⎡
⎣0.55

0.40
0.40

⎤
⎦

p0,10 =

⎡
⎣0.55

0.40
0.40

⎤
⎦, p1,10 =

⎡
⎣0.05

0.40
0.40

⎤
⎦

p0,11 =

⎡
⎣0.05

0.40
0.40

⎤
⎦, p1,11 =

⎡
⎣0.03

0.40
0.40

⎤
⎦, p2,11 =

⎡
⎣0.01

0.40
0.40

⎤
⎦, p3,11 =

⎡
⎣ 0

0.38
0.40

⎤
⎦, p4,11 =

⎡
⎣ 0

0.36
0.40

⎤
⎦, p5,11 =

⎡
⎣ 0

0.35
0.40

⎤
⎦

p0,12 =

⎡
⎣ 0

0.35
0.40

⎤
⎦, p1,12 =

⎡
⎣ 0

0.05
0.40

⎤
⎦

p0,13 =

⎡
⎣ 0

0.05
0.40

⎤
⎦, p1,13 =

⎡
⎣ 0

0.03
0.40

⎤
⎦, p2,13 =

⎡
⎣ 0

0.01
0.40

⎤
⎦, p3,13 =

⎡
⎣ 0

0
0.38

⎤
⎦, p4,13 =

⎡
⎣ 0

0
0.36

⎤
⎦, p5,13 =

⎡
⎣ 0

0
0.35

⎤
⎦

p0,14 =

⎡
⎣ 0

0
0.35

⎤
⎦, p1,14 =

⎡
⎣0

0
0

⎤
⎦ .

Each tract pi(u), i = 0, . . . , 14 is computed for values of the independent
variable u ranging in [0, 1]. Therefore the duration of the trajectory in terms
of u is 15.

432 9 From Geometric Paths to Trajectories

0

0.2

0.4

0.6

0.8

0

0.1

0.2

0.3

0.4

0.5

0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

xy

z

Fig. 9.15. Position trajectory obtained with linear and 5-th degree Bézier segments.

Although the geometric path, reported in Fig. 9.15, is geometrically contin-
uous, velocity and accelerations are discontinuous, see Fig. 9.16(a) where the
first derivative (properly shifted with respect to u) of each Bézier tracts is
shown. For this reason, it is necessary to reparameterize the trajectory. For
each segment composing the overall curve, it is assumed

u =
û − ûi

λi
, with û ∈ [ûi, ûi+1] , i = 0, . . . , 14 (9.13)

where the constant parameters λi and ûi are

λi =

{
5|p1,i − p0,i|, for 5-th degree Bézier segments

|p1,i − p0,i|, for linear segments

and

ûi =

{
0, if i = 0

ûi−1 + λi−1, if i > 0.
(9.14)

Note that the “duration” of each tract, in terms of the variable û, is λi.
With this reparameterization of each segment, the trajectory p̂(û) is contin-
uous in velocity (and acceleration) and, moreover, is defined as a function of
a unique independent variable u ∈ [0, û15], instead of a set of functions, each
one defined for û ∈ [0, λi].
The derivative of p̂(û) with respect to û is shown in Fig. 9.16(b). It is worth
noticing that the magnitude of the “velocity” is practically equal to one.

Since the terms ûi, i = 0, . . . , 15, computed with (9.14), determine initial
and final values of the segments which compose the trajectory and are defined

9.6 Integration of Geometric Path and Motion Law for Complex 3D Tasks 433

0 5 10 15
0

0.2

0.4

0.6

0.8

1

−0.5

0

0.5

−0.5

0

0.5

−0.5

0

0.5
p
(1

)
x

p
(1

)
y

p
(1

)
z

|p
(1

)
|

u
0 0.5 1 1.5 2 2.5 3 3.5

0

0.2

0.4

0.6

0.8

1

−2

−1

0

1

2
−2

−1

0

1

2
−2

−1

0

1

2

û

p̂
(1

)
x

p̂
(1

)
y

p̂
(1

)
z

|p̂
(1

)
|

(a) (b)

Fig. 9.16. First derivative (components and magnitude) of a trajectory composed
by linear and 5-th degree Bézier segments, before (a) and after (b) the reparame-
terization.

by assigning the points Q′ to be interpolated, they are a sort of “time instants”
in which these points are crossed. In this example, the vector of such terms is

û =
[
0, 0.35, 0.43, 0.93, 1.01, 1.31, 1.39, 1.69, 1.77, 2.07, 2.15, 2.65, 2.74,

3.04, 3.12, 3.47
]
.

The duration of the overall trajectory in terms of û is Δû = û15 − û0 = 3.47.
In order to associate a trajectory for the orientation to the position trajectory
obtained so far, it is therefore sufficient to link to each element of Q′ and û
the frame defining the desired orientation, see Fig. 9.14. In this example, the
sequence of desired frame is

R =
[
R0, R0, R1, R1, R2, R2, R3, R3, R4, R4, R5, R5, R6, R6, R7, R7]

where Rk, k = 0, . . . , 7 are the rotation matrices which define the desired
orientation over the linear paths. For each pairs of elements of R, denoted
with Ri, i = 0, . . . , 15, the transformation between them in terms of axis/angle
notation is found as described in Sec. 8.2.1. In particular, in the linear tracts
the orientation is maintained constant (in this case, for i even, Ri = Ri+1),
while the angle variation and the axis value in the Bézier blends (i odd) are

434 9 From Geometric Paths to Trajectories

θt,1 = π
2 , w1 = [0, 0,−1]T

θt,3 = π
2 , w3 = [0, 0,−1]T

θt,5 = π
2 , w5 = [1, 0, 0]T

θt,7 = π
2 , w7 = [1, 0, 0]T

θt,9 = π
2 , w9 = [0, 0,−1]T

θt,11 = π
2 , w11 = [0, 0,−1]T

θt,13 = π
2 , w13 = [1, 0, 0]T .

In order to impose the variation of the angle θt,i about the axis wi in the
interval [ûi, ûi+1], the trajectory θi(û) has been computed by assuming a 5-th
degree polynomial with the following boundary conditions

û0,i = ûi, û1,i = ûi+1

θ0,i = 0, θ1,i = θt,i

θ̇0,i = 0, θ̇1,i = 0

θ̈0,i = 0, θ̈1,i = 0.

The trajectory for the orientation is described by

R(û) =

{
Ri, û ∈ [ûi, ûi+1], i even

RiRt,i(θi(û)), û ∈ [ûi, ûi+1], i odd
(9.15)

where Rt,i(θi) is the matrix which defines the transition from Ri to Ri+1 as a
function of the variable θi, see Sec. 8.2. The complete trajectory, for position
and orientation, is plotted in Fig. 9.17 as a function of û.

Finally, it is necessary to associate to the geometric path (p̂(û), R(û))
a particular motion law, by imposing the desired û(t). For the definition
of the motion law, only the trajectory p̂(û) for the position is taken into
account. In this example, we assume a motion at a constant feed rate but
with smooth starting and ending phases, i.e. with null initial and final veloci-
ties/accelerations. Therefore, by exploiting the technique reported in Sec. 9.5,
it is assumed a desired feed rate v(t) characterized by the velocity profile of a
double S trajectory qss(t), with a total displacement6 h = 3.47 and with the
constraints (which lead to an overall duration of 2 seconds)

vmax = 1.82, amax = 27.41, jmax = 822.54.

By imposing

6 The displacement is equal to the length of the curve p̂(û), û ∈ [0, 3.47], given by

the sum the length of each segment, computed by numerically integrating
∣∣∣ dp̂i(û)

dû

∣∣∣
over the interval [ûi, ûi+1].

9.6 Integration of Geometric Path and Motion Law for Complex 3D Tasks 435

0

0.2

0.4

0.6

0.8

0

0.1

0.2

0.3

0.4

0.5

0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

xy

z

Fig. 9.17. Changes in the orientation superimposed to the position trajectory
composed by linear and 5-th degree Bézier segments, with a particular of a Bézier
blend.

0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

3.5

û
(t

)

t

Fig. 9.18. Motion law associated to the geometric path composed by linear and
5-th degree Bézier segments.

vk = q̇ss(kTs), ak = q̈ss(kTs)

in eq. (9.12), used for the computation of û(t) at the k-th time instant, the
profiles û(t) of Fig. 9.18 and the trajectory velocities/accelerations of Fig. 9.19
are obtained. The function |p̃(1)(t)| is the velocity of a double S motion law
with the considered constraints, while |p̃(2)(t)| includes both the acceleration
components given by the initial acceleration and final deceleration (charac-
terized by a trapezoidal shape) and the acceleration contributions due to the
variation of the tangent vector in the Bézier blends, which are proportional to
˙̂u2(t). Note that this latter contribution has a magnitude considerably larger
than the former. If there exists a constraint on the maximum magnitude of
the acceleration, one may scale in time the motion law û(t), according to the
methods reported in Sec. 5.2.

436 9 From Geometric Paths to Trajectories

0 0.5 1 1.5 2
0

0.5

1

1.5

2
−2

−1

0

1

2
−2

−1

0

1

2
−2

−1

0

1

2
p̃
(1

)
x

p̃
(1

)
y

p̃
(1

)
z

|p̃
(1

)
|

t
0 0.5 1 1.5 2

0

20

40

60

80

−50

0

50

−50

0

50

−50

0

50

t

p̃
(2

)
x

p̃
(2

)
y

p̃
(2

)
z

|p̃
(2

)
|

(a) (b)

Fig. 9.19. Velocity and acceleration (components and magnitude) of a trajectory
composed by linear and 5-th degree Bézier segments, with a double S feed rate.

For instance, with the motion law û(t) of Fig. 9.18 the acceleration mag-
nitude is 85.76. If the acceleration must be limited by the maximum value
|p̃(2)|max,d = 40, i.e.

|p̃(2)(t)| ≤ |p̃(2)|max,d = 40

it is then necessary to assume

t′ =
t

λ
, with λ =

√
|p̃(2)|max,d

|p̃(2)|max

= 0.68.

The new velocity and acceleration profiles, re-scaled in time, are reported in
Fig. 9.20. The duration of the trajectory is now T ′ = 2.92.
If, as in this case, the trajectory is characterized by a uniform parameterization
|dp̂(û)/dû| ≈ 1, ∀û, a similar result can be obtained by reducing the maximum
feed rate value. Therefore, in order to obtain a trajectory compliant with the
new constraint on the maximum acceleration, it is sufficient to consider a
double S profile with the constraint

v′max = vmax

√
|p̃(2)|max,d

|p̃(2)|max

= 1.82

√
40

85.74
= 1.24

9.6 Integration of Geometric Path and Motion Law for Complex 3D Tasks 437

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2
−2

−1

0

1

2
−2

−1

0

1

2
−2

−1

0

1

2
p̃
(1

)
x

p̃
(1

)
y

p̃
(1

)
z

|p̃
(1

)
|

t′
0 0.5 1 1.5 2 2.5

0

10

20

30

40

−40

−20

0

20

40

−40

−20

0

20

40

−40

−20

0

20

40

t′

p̃
(2

)
x

p̃
(2

)
y

p̃
(2

)
z

|p̃
(2

)
|

(a) (b)

Fig. 9.20. Velocity and acceleration (components and magnitude) of a trajectory
composed by linear and 5-th degree Bézier segments, properly scaled in time in order
to have a maximum acceleration of 40.

see Fig. 9.21. Also in this case the feed rate is constant, and the duration
T = 2.8720 of the trajectory is considerably larger than the original one.

An alternative approach for the definition of u(t), which allows to handle in
a simple manner the constraints on the maximum speed/acceleration, consists
in considering the segments of the trajectory separately, applying to each of
them a different motion law. For example, a simple constant velocity trajectory
may be assumed in the Bézier tracts, and a double S profile in the linear
segments. Obviously, these motion laws have to be designed in such a way
to guarantee the continuity of the velocity and acceleration profiles along the
geometric path. For this reason, this method can be directly applied to the
curve p(u) before the reparameterization (9.13).
Given the trajectory segments pi(u), i = 0, . . . , 14 with u ∈ [0, 1], the first
step consists in computing the constraints on u(t) which limit the velocity
|p̃(1)(t)| and acceleration |p̃(2)(t)| below the desired values. In this example,
the maximum values are

vmax = 1.82, amax = 40, jmax = 822.54

from which the constraints on u(t) result

438 9 From Geometric Paths to Trajectories

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2
−2

−1

0

1

2
−2

−1

0

1

2
−2

−1

0

1

2
p̃
(1

)
x

p̃
(1

)
y

p̃
(1

)
z

|p̃
(1

)
|

t
0 0.5 1 1.5 2 2.5

0

10

20

30

40

−40

−20

0

20

40

−40

−20

0

20

40

−40

−20

0

20

40

t

p̃
(2

)
x

p̃
(2

)
y

p̃
(2

)
z

|p̃
(2

)
|

(a) (b)

Fig. 9.21. Velocity and acceleration (components and magnitude) of a trajectory
composed by linear and 5-th degree Bézier segments, with a motion law which limits
the maximum acceleration.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u̇max,i =
vmax∣∣∣∣dpi(u)
du

∣∣∣∣
max

ümax,i =
amax∣∣∣∣dpi(u)
du

∣∣∣∣
max

...
umax,i =

jmax∣∣∣∣dpi(u)
du

∣∣∣∣
max

(9.16)

for straight line segments (i even), and

u̇max,i = min

⎧⎪⎨
⎪⎩

vmax∣∣∣∣dpi(u)
du

∣∣∣∣
max

,

√√√√√
amax∣∣∣∣d2pi(u)

du2

∣∣∣∣
max

⎫⎪⎬
⎪⎭

9.6 Integration of Geometric Path and Motion Law for Complex 3D Tasks 439

if pi(u) is a Bézier function7 (i odd).
Once the maximum values of speed and acceleration of each tract are com-
puted (in particular the velocities in the Bézier segments), it is possible to
deduce the initial and final velocities of the linear tracts (with the only ex-
ception of the initial and final segments for which, respectively, initial and
final velocities are null) that guarantee the continuity of the overall trajectory
velocity: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u̇0,i = u̇max,i−1

∣∣∣∣dpi−1(u)
du

∣∣∣∣
u=1∣∣∣∣dpi(u)

du

∣∣∣∣
u=0

u̇1,i = u̇max,i+1

∣∣∣∣dpi+1(u)
du

∣∣∣∣
u=0∣∣∣∣dpi(u)

du

∣∣∣∣
u=1

i even. (9.17)

Then, for each linear tract, a double S trajectory from umin = 0 to umax = 1
and starting at t = ti (being ti the final time of previous segment) is com-
puted, while a motion law8 with a constant velocity u̇max,i, given by (9.17), is
adopted for Bézier blends. The geometric path defined by p̃(t) = p(u), with
u = u(t), does not change, but the resulting velocities/accelerations, shown
in Fig. 9.22, are rather different from the ones obtained in previous examples.
Note that in each tract either the maximum acceleration or the maximum
velocity is reached, and the duration of the trajectory (T = 2.24) is consid-
erably reduced with respect to the previous cases, in which the velocity has
been reduced along the overall geometric path to meet the constraint on amax.

For what concerns the orientation, it is possible to define the related tra-
jectory as a function of the time t, by assuming θi(t) in (9.15) as a 5-th degree
polynomial, computed with the conditions

t0,i = ti, t1,i = ti+1

θ0,i = 0, θ1,i = θt,i

θ̇0,i = 0, θ̇1,i = 0

θ̈0,i = 0, θ̈1,i = 0.

7 In this case, it is assumed a motion law with a constant velocity u(t) = umax,i.
8 Also in this case the constraints are umin = 0, umax = 1, with the initial time

t = ti.

440 9 From Geometric Paths to Trajectories

0 0.5 1 1.5 2
0

0.5

1

1.5

2
−2

−1

0

1

2
−2

−1

0

1

2
−2

−1

0

1

2
p̃
(1

)
x

p̃
(1

)
y

p̃
(1

)
z

|p̃
(1

)
|

t
0 0.5 1 1.5 2

0

10

20

30

40

50
−50

0

50
−50

0

50
−50

0

50

t

p̃
(2

)
x

p̃
(2

)
y

p̃
(2

)
z

|p̃
(2

)
|

(a) (b)

Fig. 9.22. Velocity and acceleration (components and magnitude) of a trajectory
composed by linear and 5-th degree Bézier segments, with a motion law optimized
in each tract.

9.6.2 B-spline trajectory

The same set of points used in the previous section is considered:⎡
⎣ qx

qy

qz

⎤
⎦ =

⎡
⎣ 0 0.0 0.6 0.6 0.6 0.6 0.0 0.0 0

0 0.4 0.4 0.0 0.0 0.4 0.4 0.0 0
0 0.0 0.0 0.0 0.4 0.4 0.4 0.4 0

⎤
⎦ .

The goal is now to use a cubic B-spline for their interpolation, as described in
Sec. 8.4. Also in this case the orientation is specified by means of local frames,
described by rotation matrices defined for each data point, see Fig. 9.23. In
particular, the frames related to the points qk, k = 0, . . . , 8 are

R =
[
R0, R1, R2, R3, R4, R5, R6, R7, R0]

where the matrices Rk are those defined in the previous section. In this case,
also the time instants at which the points must be interpolated by the trajec-
tory are specified:

t = [0, 0.5, 0.8, 1.1, 1.6, 1.9, 2.2, 2.5, 3].

9.6 Integration of Geometric Path and Motion Law for Complex 3D Tasks 441

−0.2
0

0.2
0.4

0.6
0.8

−0.2

0

0.2

0.4

0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

xy

z

Fig. 9.23. Via-points and related local frames considered for B-spline interpolation.

In the computation of the B-spline (see Sec. 8.4), it is therefore convenient to
assume ūk = tk, k = 0, . . . , 8. As a consequence the knots which define the
spline are

u = [0, 0, 0, 0, 0.5, 0.8, 1.1, 1.6, 1.9, 2.2, 2.5, 3, 3, 3, 3].

In order to determine the trajectory for the orientation, the rotation matrices
defining the desired configurations are transformed into the corresponding
Roll-Pitch-Yaw angles, obtaining the sequence⎡

⎣ϕ
θ
ψ

⎤
⎦ =

⎡
⎣0 −1.57 3.14 3.14 3.14 −1.57 0.00 0.00 0

0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0
0 0.00 0.00 1.57 3.14 3.14 3.14 −1.57 0

⎤
⎦

which can be interpolated with the same technique used for the position. The
synchronization between position and orientation is implicitly obtained, since
the same knot vector is used in both cases. The resulting control points for
the B-splines defining the position and the orientation are

P pos =

⎡
⎣0 0.00 −0.39 0.80 0.52 0.51 0.81 −0.21 0.10 0.00 0

0 0.13 0.41 0.51 −0.20 −0.19 0.49 0.50 −0.24 0.00 0
0 0.00 −0.01 0.01 −0.08 0.48 0.39 0.35 0.61 −0.40 0

⎤
⎦

T

and

P or =

⎡
⎣0 −0.52 −5.04 4.93 1.73 6.58 −3.78 1.00 −0.49 0.00 0

0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0
0 0.00 0.22 −0.45 2.17 3.54 2.62 4.96 −5.56 1.57 0

⎤
⎦

T

442 9 From Geometric Paths to Trajectories

−0.2
0

0.2
0.4

0.6
0.8

−0.2

0

0.2

0.4

0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

xy

z

Fig. 9.24. Position trajectory obtained with a B-spline curve.

respectively. Figure 9.24 shows the B-spline curve spos(u) which defines the
position, while in Fig. 9.25 the frames corresponding to the profiles of Roll-
Pitch-Yaw angles described by sor(u) are reported.

These trajectories are obtained by imposing the simple motion law u(t) = t
to the two B-spline curves:

s̃(t) = s(u)∣∣
u = t

.

−0.2
0

0.2
0.4

0.6
0.8

−0.2

0

0.2

0.4

0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

xy

z

Fig. 9.25. Trajectory for the orientation superimposed to the B-spline position
trajectory.

9.6 Integration of Geometric Path and Motion Law for Complex 3D Tasks 443

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5
−2

−1

0

1

2

3
−2

−1

0

1

2
−4

−2

0

2

4
s̃(1

)
x

s̃(1
)

y
s̃(1

)
z

|s̃
(1

)
|

t
0 0.5 1 1.5 2 2.5 3

0

10

20

30
−20

−10

0

10

20

30
−10

−5

0

5

10
−20

−10

0

10

20

t

s̃(2
)

x
s̃(2

)
y

s̃(2
)

z
|s̃

(2
)
|

(a) (b)

Fig. 9.26. Velocity and acceleration (components and magnitude) of a the position
trajectory represented by a B-spline curve, with the parameterization u(t) = t.

In this way, the data points are interpolated at time instants tk = ūk, and the
resulting velocities/accelerations are discontinuous at initial and final points,
see Fig. 9.26. This depends on the fact that the parameterization u(t) = t is
characterized by a non-null initial and final velocity u̇(t) and acceleration ü(t).
In order to obtain null initial and final velocities/accelerations, it is therefore
necessary to assume a parameterization with

u̇(t0) = 0, u̇(t8) = 0,
ü(t0) = 0, ü(t8) = 0.

For this purpose, the function u(t) = t has been modified by assuming in the
time intervals [t0, t1] and [t7, t8] 5-th degree polynomial blends, computed
with the conditions

u(t0) = ū0, u(t1) = ū1,
u̇(t0) = 0, u̇(t1) = 1,
ü(t0) = 0, ü(t1) = 0,

and
u(t7) = ū7, u(t8) = ū8,
u̇(t7) = 1, u̇(t8) = 0,
ü(t7) = 0, ü(t8) = 0.

444 9 From Geometric Paths to Trajectories

0 0.5 1 1.5 2 2.5 3
−10

−5

0

5

10
0

0.5

1

1.5

2
0

1

2

3

u
(t

)
u̇
(t

)
ü
(t

)

t

Fig. 9.27. Smooth parameterization u(t) for the computation of B-spline trajec-
tories.

The profiles of the modified function u(t) are reported in Fig. 9.26. Note that
with the new parameterization, the desired interpolation time instants are
maintained, since ūk = tk, k = 0, . . . , 8. Moreover, the velocity and accelera-
tion profiles have now null initial and final values, see Fig. 9.28.

0 0.5 1 1.5 2 2.5 3
0

1

2

3
−3

−2

−1

0

1

2
−2

−1

0

1

2
−4

−2

0

2

4

s̃(1
)

x
s̃(1

)
y

s̃(1
)

z
|s̃

(1
)
|

t
0 0.5 1 1.5 2 2.5 3

0

10

20

30
−20

−10

0

10

20

30
−10

−5

0

5

10
−20

−10

0

10

20

t

s̃(2
)

x
s̃(2

)
y

s̃(2
)

z
|s̃

(2
)
|

(a) (b)

Fig. 9.28. Velocity and acceleration (components and magnitude) of the position
trajectory represented by a B-spline curve, with the parameterization of Fig. 9.27.

9.6 Integration of Geometric Path and Motion Law for Complex 3D Tasks 445

9.6.3 Smoothing B-spline trajectory

In this example, a trajectory approximating a large number of points is con-
sidered. In particular, only the position is taken into account, assuming a
constant orientation of the tool along the path. Given the points shown in
Fig. 9.29, disposed on a plane, the goal consists in finding a curve which ap-
proximates them and that must be tracked with a constant velocity.
For this purpose a smoothing B-spline is adopted, see Sec. 8.7. The knots for
the computation of s(u) are assumed with a cord-length distribution in the
interval [0, 1], and the control points are computed according to the algorithm
of Sec. 8.7.1, with unitary weights wk, and the coefficient λ = 10−6. Figure
9.30 shows the geometric path described by s(u). It is clear that the value
of λ assumed in this example guarantees small curvatures, but on the other
hand the approximation error (εmax = 0.0252) is noticeable.
A double S feed rate profile is used to define the motion law u(t), with the
advantage of obtaining a constant velocity along the most part of the curve
and smooth initial/final phases (i.e with null initial/final velocities and accel-
erations). By adopting the same method exploited in the first example, and
explained in details in Sec. 9.5, u(t) is defined by imposing in (9.12) the values

vk = q̇ss(kTs), ak = q̈ss(kTs)

where qss(t) is double S trajectory computed for a displacement h = 2.9096
(equal to the length of s(u)) and with the conditions

vmax = 2, amax = 40, jmax = 200.

The profiles of velocity and acceleration are reported in Fig. 9.31. Note that
|s̃(1)(t)| is characterized by an ideal double S profile, while the acceleration

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

x

y

Fig. 9.29. Via-points used for the approximation with a smoothing B-spline.

446 9 From Geometric Paths to Trajectories

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

x

y

Fig. 9.30. Smoothing B-spline approximating a set of data points, for λ = 10−6.

has a behavior extremely variable due to the curvature of the geometric path.
If smaller values of λ are considered, the approximation error can be reduced
at the expense of higher curvature values. For instance, for λ = 10−8 the
maximum distance of the spline curve from the via-points is εmax = 0.0073,
see Fig. 9.32. By adopting the same feed rate of the case λ = 10−6 with a
double S shape, the magnitude of the velocity has the same profiles while its
components have a more oscillating behavior, see Fig. 9.33(a). This is due to
the fast variations on the velocity direction required to “track” the points.
These fast variations are also the cause of the high values of the curvature
and the acceleration shown in Fig. 9.33(b).

9.6 Integration of Geometric Path and Motion Law for Complex 3D Tasks 447

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.5

1

1.5

2

−2

−1

0

1

2

−2

−1

0

1

2

−2

−1

0

1

2
s̃(1

)
x

s̃(1
)

y
s̃(1

)
z

|s̃
(1

)
|

t
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

0

20

40

60

80

−50

0

50

−50

0

50

−50

0

50

t

s̃(2
)

x
s̃(2

)
y

s̃(2
)

z
|s̃

(2
)
|

(a) (b)

Fig. 9.31. Velocity and acceleration (components and magnitude) of the position
trajectory represented by a smoothing B-spline approximating a set of data points,
for λ = 10−6.

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

x

y

Fig. 9.32. Smoothing B-spline approximating a set of data points, for λ = 10−8.

448 9 From Geometric Paths to Trajectories

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.5

1

1.5

2

−2

−1

0

1

2

−2

−1

0

1

2

−2

−1

0

1

2
s̃(1

)
x

s̃(1
)

y
s̃(1

)
z

|s̃
(1

)
|

t
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

0

200

400

600

800

−500

0

500

−500

0

500

−500

0

500

t

s̃(2
)

x
s̃(2

)
y

s̃(2
)

z
|s̃

(2
)
|

(a) (b)

Fig. 9.33. Velocity and acceleration (components and magnitude) of the position
trajectory represented by a smoothing B-spline approximating a set of data points,
for λ = 10−8.

9.6 Integration of Geometric Path and Motion Law for Complex 3D Tasks 449

9.6.4 B-spline approximation of a trajectory based on motion
primitives

Because of their simple use, in many industrial applications the definition of
the geometric path is often performed by means of motion primitives, such
as straight lines, circles, etc. Unfortunately, when linear and circular motions
are mixed in order to obtain complex paths, discontinuities in the acceleration
profile are inevitable, because of the centripetal component of the acceleration
in rotational motions. The only way to avoid these discontinuities is to adopt
a motion law with null velocity at the transition points between linear and
circular segments. An alternative approach consists in approximating the path
with an intrinsically continuous trajectory, for instance based on cubic (or
higher degree) B-spline curves. In the example described below, the trajectory
to be approximated is the one shown in Fig. 8.17, where the orientation is not
taken into account. This trajectory can be approximated by interpolating the
points⎡

⎣ qx

qy

qz

⎤
⎦ =

⎡
⎣0 1.00 1.70 2.00 2.00 2.00 2.00 2.00 2.00 2.00

0 0.00 0.29 0.99 1.70 2.00 1.70 1.00 0.01 0.00
0 0.00 0.00 0.00 0.29 0.99 1.70 2.00 2.00 2.00

⎤
⎦

obtained by “sampling” the trajectory itself, see Fig. 9.34 where the original
trajectory, and the approximating cubic B-spline are reported. In particular,
the knots (chosen according to a cord-length distribution in the interval [0, 1])
and the control points (computed with the algorithm of Sec. 8.4) which define
the B-spline curve are

u =
[
0, 0, 0, 0, 0.15, 0.26, 0.38, 0.49, 0.61, 0.73, 0.84, 0.99, 1, 1, 1, 1

]
and

P =

⎡
⎣0 0.33 0.91 1.79 2.05 1.98 2.00 1.99 2.00 2.00 2.00 2.00

0 0 −0.07 0.20 1.00 1.77 2.10 1.78 0.92 0.33 0.00 0
0 0 −0.00 0.01 −0.05 0.20 0.99 1.79 2.07 2.00 2.00 2.00

⎤
⎦

T

.

The maximum approximation error, measured in terms of Housdorff9 dis-
tance, is εmax = 0.0194, and the profiles of velocity and acceleration of the
trajectory s̃(t), obtained by imposing on s(u) a feed rate described by a double
S trajectory with the conditions

9 Given two curves, and more generally two sets of data, the Hausdorff distance
provides the maximum distance of a set to the nearest point in the other set.
More formally, the Hausdorff distance between two parametric curves fi(si) is
defined as

dH(f1, f2) = max

{
maxs1 mins2 |f1(s1) − f2(s2)|
maxs2 mins1 |f1(s1) − f2(s2)|. (9.18)

450 9 From Geometric Paths to Trajectories

vmax = 2, amax = 40, jmax = 200,

are reported in Fig. 9.35.
Note that the acceleration is continuous, although it is quite different from

that one would expect when a trajectory composed by linear and circular seg-
ments is tracked with a constant velocity (acceleration/deceleration phases
apart). As a matter of fact, the acceleration should be null in the straight line
segments and constant along circular paths.
If we increase the number of points of the original trajectory which are interpo-
lated by the B-spline curve, the result is considerably improved. For instance,
by assuming that the number of points qk is 42, the maximum approximation
error is εmax = 0.0032, as shown in Fig. 9.36. Moreover, also the velocity and
acceleration profiles obtained by assuming the same feed rate profile of the
previous case are more similar to the ones of a trajectory composed by lin-
ear and circular segments, see Fig. 9.37. After the initial acceleration phase,
the acceleration is null along the straight line segments, while during circular
motions it is practically constant.

0

0.5

1

1.5

2

0

0.5

1

1.5

2
0

0.5

1

1.5

2

xy

z

Fig. 9.34. Trajectory based on motion primitives, approximated by a B-spline
curve with 12 control points.

9.6 Integration of Geometric Path and Motion Law for Complex 3D Tasks 451

0 0.5 1 1.5 2 2.5 3 3.5
0

0.5

1

1.5

2

−2

−1

0

1

2

−2

−1

0

1

2

−2

−1

0

1

2
s̃(1

)
x

s̃(1
)

y
s̃(1

)
z

|s̃
(1

)
|

t
0 0.5 1 1.5 2 2.5 3 3.5

0

10

20

30
−30

−20

−10

0

10

20

30
−30

−20

−10

0

10

20

30
−30

−20

−10

0

10

20

30

t

s̃(2
)

x
s̃(2

)
y

s̃(2
)

z
|s̃

(2
)
|

(a) (b)

Fig. 9.35. Velocity and acceleration (components and magnitude) of a B-spline
curve approximating a trajectory based on motion primitives, with a double S feed
rate profile.

452 9 From Geometric Paths to Trajectories

0

0.5

1

1.5

2

0

0.5

1

1.5

2
0

0.5

1

1.5

2

xy

z

Fig. 9.36. Trajectory based on motion primitives, approximated by a B-spline
curve with 42 control points.

9.6 Integration of Geometric Path and Motion Law for Complex 3D Tasks 453

0 0.5 1 1.5 2 2.5 3 3.5
0

0.5

1

1.5

2

−2

−1

0

1

2

−2

−1

0

1

2

−2

−1

0

1

2
s̃(1

)
x

s̃(1
)

y
s̃(1

)
z

|s̃
(1

)
|

t
0 0.5 1 1.5 2 2.5 3 3.5

0

10

20

30
−30

−20

−10

0

10

20

30
−30

−20

−10

0

10

20

30
−30

−20

−10

0

10

20

30

t

s̃(2
)

x
s̃(2

)
y

s̃(2
)

z
|s̃

(2
)
|

(a) (b)

Fig. 9.37. Velocity and acceleration (components and magnitude) of a B-spline
curve approximating a trajectory based on motion primitives, with a double S feed
rate profile.

Part IV

Appendices

A

Numerical Issues

In this Appendix, the expression of the parameters ai of normalized polyno-
mials up to degree 21, Sec. 2.1.7, the expressions of the parameters necessary
to compute the trajectory ’4-3-4’, Sec. 3.6, and of the trajectory obtained as
a composition of polynomial and trigonometric segments, Sec. 3.11, are re-
ported.
Efficient algorithms for the evaluation of polynomial functions and the solu-
tion of tridiagonal systems are also illustrated, see Sec. 4.4.1, and Sec. 4.4.3.

A.1 Parameters of normalized polynomials qN(τ)

The coefficients ai of the normalized polynomials qN(τ) up to degree 21 with
unitary displacement h = q1 − q0 = 1 and duration T = τ1 − τ0 = 1 (without
loss of generality, the value τ0 = 0 is assumed)

qN(τ) = a0 + a1τ + a2τ
2 + a3τ

3 + . . . + anτn =
n∑

i=0

aiτ
i

computed assuming null boundary conditions on velocity, acceleration, jerk,
. . . , are reported in Tab. A.1. The coefficients of the polynomials q̇N(τ) and
q̈N(τ) defining the velocity and acceleration profiles are reported in Tab. A.2
and Tab. A.3 respectively.

458 A Numerical Issues

3
5

7
9

1
1

1
3

1
5

1
7

1
9

2
1

a
0

0
0

0
0

0
0

0
0

0
0

a
1

0
0

0
0

0
0

0
0

0
0

a
2

3
0

0
0

0
0

0
0

0
0

a
3

-2
1
0

0
0

0
0

0
0

0
0

a
4

-
-1

5
3
5

0
0

0
0

0
0

0

a
5

-
6

-8
4

1
2
6

0
0

0
0

0
0

a
6

-
-

7
0

-4
2
0

4
6
2

0
0

0
0

0

a
7

-
-

-2
0

5
4
0

-1
9
8
0

1
7
1
6

0
0

0
0

a
8

-
-

-
-3

1
5

3
4
6
5

-9
0
0
9

6
4
3
5

0
0

0

a
9

-
-

-
7
0

-3
0
8
0

2
0
0
2
0

-4
0
0
4
0

2
4
3
1
0

0
0

a
1
0

-
-

-
-

1
3
8
6

-2
4
0
2
4

1
0
8
1
0
8

-1
7
5
0
3
2

9
2
3
7
8

0

a
1
1

-
-

-
-

-2
5
2

1
6
3
8
0

-1
6
3
8
0
0

5
5
6
9
2
0

-7
5
5
8
2
0

3
5
2
7
1
6

a
1
2

-
-

-
-

-
-6

0
0
6

1
5
0
1
5
0

-1
0
2
1
0
2
0

2
7
7
1
3
4
0

-3
2
3
3
2
3
0

a
1
3

-
-

-
-

-
9
2
4

-8
3
1
6
0

1
1
7
8
1
0
0

-5
9
6
9
0
4
0

1
3
4
3
0
3
4
0

a
1
4

-
-

-
-

-
-

2
5
7
4
0

-8
7
5
1
6
0

8
3
1
4
0
2
0

-3
3
2
5
6
0
8
0

a
1
5

-
-

-
-

-
-

-3
4
3
2

4
0
8
4
0
8

-7
7
5
9
7
5
2

5
4
3
1
8
2
6
4

a
1
6

-
-

-
-

-
-

-
-1

0
9
3
9
5

4
8
4
9
8
4
5

-6
1
1
0
8
0
4
7

a
1
7

-
-

-
-

-
-

-
1
2
8
7
0

-1
9
5
6
2
4
0

4
7
9
2
7
8
8
0

a
1
8

-
-

-
-

-
-

-
-

4
6
1
8
9
0

-2
5
8
6
5
8
4
0

a
1
9

-
-

-
-

-
-

-
-

-4
8
6
2
0

9
1
8
9
1
8
0

a
2
0

-
-

-
-

-
-

-
-

-
-1

9
3
9
9
3
8

a
2
1

-
-

-
-

-
-

-
-

-
1
8
4
7
5
6

Table A.1. Per column: coefficients ai of the normalized polynomials qN(τ) with
degree n = 3, 5, . . . , 21, with null boundary conditions on their derivatives up to
order 10. The degree of the polynomials is n = 2nc + 1, being nc the number of null
initial (and final) conditions.

A.1 Parameters of normalized polynomials qN(τ) 459

2
4

6
8

1
0

1
2

1
4

1
6

1
8

2
0

a
0

0
0

0
0

0
0

0
0

0
0

a
1

6
0

0
0

0
0

0
0

0
0

a
2

-6
3
0

0
0

0
0

0
0

0
0

a
3

-
-6

0
1
4
0

0
0

0
0

0
0

0

a
4

-
3
0

-4
2
0

6
3
0

0
0

0
0

0
0

a
5

-
-

4
2
0

-2
5
2
0

2
7
7
2

0
0

0
0

0

a
6

-
-

-1
4
0

3
7
8
0

-1
3
8
6
0

1
2
0
1
2

0
0

0
0

a
7

-
-

-
-2

5
2
0

2
7
7
2
0

-7
2
0
7
2

5
1
4
8
0

0
0

0

a
8

-
-

-
6
3
0

-2
7
7
2
0

1
8
0
1
8
0

-3
6
0
3
6
0

2
1
8
7
9
0

0
0

a
9

-
-

-
-

1
3
8
6
0

-2
4
0
2
4
0

1
0
8
1
0
8
0

-1
7
5
0
3
2
0

9
2
3
7
8
0

0

a
1
0

-
-

-
-

-2
7
7
2

1
8
0
1
8
0

-1
8
0
1
8
0
0

6
1
2
6
1
2
0

-8
3
1
4
0
2
0

3
8
7
9
8
7
6

a
1
1

-
-

-
-

-
-7

2
0
7
2

1
8
0
1
8
0
0

-1
2
2
5
2
2
4
0

3
3
2
5
6
0
8
0

-3
8
7
9
8
7
6
0

a
1
2

-
-

-
-

-
1
2
0
1
2

-1
0
8
1
0
8
0

1
5
3
1
5
3
0
0

-7
7
5
9
7
5
2
0

1
7
4
5
9
4
4
2
0

a
1
3

-
-

-
-

-
-

3
6
0
3
6
0

-1
2
2
5
2
2
4
0

1
1
6
3
9
6
2
8
0

-4
6
5
5
8
5
1
2
0

a
1
4

-
-

-
-

-
-

-5
1
4
8
0

6
1
2
6
1
2
0

-1
1
6
3
9
6
2
8
0

8
1
4
7
7
3
9
6
0

a
1
5

-
-

-
-

-
-

-
-1

7
5
0
3
2
0

7
7
5
9
7
5
2
0

-9
7
7
7
2
8
7
5
2

a
1
6

-
-

-
-

-
-

-
2
1
8
7
9
0

-3
3
2
5
6
0
8
0

8
1
4
7
7
3
9
6
0

a
1
7

-
-

-
-

-
-

-
-

8
3
1
4
0
2
0

-4
6
5
5
8
5
1
2
0

a
1
8

-
-

-
-

-
-

-
-

-9
2
3
7
8
0

1
7
4
5
9
4
4
2
0

a
1
9

-
-

-
-

-
-

-
-

-
-3

8
7
9
8
7
6
0

a
2
0

-
-

-
-

-
-

-
-

-
3
8
7
9
8
7
6

Table A.2. Per column: coefficients ai of the normalized polynomials q̇N(τ) with
degree n = 2, 4, . . . , 20.

460 A Numerical Issues

1
3

5
7

9
1
1

1
3

1
5

1
7

1
9

a
0

6
0

0
0

0
0

0
0

0
0

a
1

-1
2

6
0

0
0

0
0

0
0

0
0

a
2

-
-1

8
0

4
2
0

0
0

0
0

0
0

0

a
3

-
1
2
0

-1
6
8
0

2
5
2
0

0
0

0
0

0
0

a
4

-
-

2
1
0
0

-1
2
6
0
0

1
3
8
6
0

0
0

0
0

0

a
5

-
-

-8
4
0

2
2
6
8
0

-8
3
1
6
0

7
2
0
7
2

0
0

0
0

a
6

-
-

-
-1

7
6
4
0

1
9
4
0
4
0

-5
0
4
5
0
4

3
6
0
3
6
0

0
0

0

a
7

-
-

-
5
0
4
0

-2
2
1
7
6
0

1
4
4
1
4
4
0

-2
8
8
2
8
8
0

1
7
5
0
3
2
0

0
0

a
8

-
-

-
-

1
2
4
7
4
0

-2
1
6
2
1
6
0

9
7
2
9
7
2
0

-1
5
7
5
2
8
8
0

8
3
1
4
0
2
0

0

a
9

-
-

-
-

-2
7
7
2
0

1
8
0
1
8
0
0

-1
8
0
1
8
0
0
0

6
1
2
6
1
2
0
0

-8
3
1
4
0
2
0
0

3
8
7
9
8
7
6
0

a
1
0

-
-

-
-

-
-7

9
2
7
9
2

1
9
8
1
9
8
0
0

-1
3
4
7
7
4
6
4
0

3
6
5
8
1
6
8
8
0

-4
2
6
7
8
6
3
6
0

a
1
2

-
-

-
-

-
1
4
4
1
4
4

-1
2
9
7
2
9
6
0

1
8
3
7
8
3
6
0
0

-9
3
1
1
7
0
2
4
0

2
0
9
5
1
3
3
0
4
0

a
1
2

-
-

-
-

-
-

4
6
8
4
6
8
0

-1
5
9
2
7
9
1
2
0

1
5
1
3
1
5
1
6
4
0

-6
0
5
2
6
0
6
5
6
0

a
1
3

-
-

-
-

-
-

-7
2
0
7
2
0

8
5
7
6
5
6
8
0

-1
6
2
9
5
4
7
9
2
0

1
1
4
0
6
8
3
5
4
4
0

a
1
4

-
-

-
-

-
-

-
-2

6
2
5
4
8
0
0

1
1
6
3
9
6
2
8
0
0

-1
4
6
6
5
9
3
1
2
8
0

a
1
5

-
-

-
-

-
-

-
3
5
0
0
6
4
0

-5
3
2
0
9
7
2
8
0

1
3
0
3
6
3
8
3
3
6
0

a
1
6

-
-

-
-

-
-

-
-

1
4
1
3
3
8
3
4
0

-7
9
1
4
9
4
7
0
4
0

a
1
7

-
-

-
-

-
-

-
-

-1
6
6
2
8
0
4
0

3
1
4
2
6
9
9
5
6
0

a
1
8

-
-

-
-

-
-

-
-

-
-7

3
7
1
7
6
4
4
0

a
1
9

-
-

-
-

-
-

-
-

-
7
7
5
9
7
5
2
0

Table A.3. Per column: coefficients ai of the normalized polynomials q̈N(τ) with
degree n = 1, 3, . . . , 19.

A.3 Solution of the Equation M k = q 461

A.2 Parameters of the Trajectory ‘4-3-4’

A trajectory ’4-3-4’ is defined by means of 14 parameters, see Sec. 3.6. Some of
these parameters are computed on the basis of the initial and final conditions

a0l = q0, a1l = 0, a2l = 0,

a0t = qa,

a0s = q1, a1s = 0, a2s = 0.

The remaining seven parameters are computed by solving the system with
seven equations introduced in Sec. 3.6. Let us define for the sake of simplicity
the constants

m0 = 7Ts(2Tl+Tt)+3Tt(3Tl+2Tt), ha = qa−q0, hb = qb−qa, h1 = q1−qb.

The parameters are

a4l =
−3TsTt(Ts + 2Tt)ha + Tl(−2Tt

2h1 + Ts
2(−2ha + hb) + 3TsTt(−ha + hb))

Tsm0

a3l =
4TsTt(Ts + 2Tt)ha + Tl(2Tt

2h1 + Ts
2(4ha − hb) + Tt(6Tsha − 3Tshb))

Tsm0

a3t =
Tt(2Tt

2h1 + 2Ts
2ha + TsTt(6ha − hb)) + Tl(6Tt

2h1 − Ts
2hb − 6TsTthb)

Tsm0

a2t =
3(−2TsTt(Ts + 2Tt)ha + Tl(−2Tt

2h1 + Ts
2hb + 3TsTthb))

Tsm0

a1t =
Tt(−2Tt

2h1 + 3TsTt(2ha + hb) + Ts
2(4ha + hb))

Tsm0

a4s =
3TsTt(2Tl + Tt)h1 + Tt

2(3Tl + 2Tt)h1 + Ts
2(2Ttha − 3Tlhb − Tthb)

Ttm0

a3s =
4TsTt(2Tl + Tt)h1 + 2Tt

2(3Tl + 2Tt)h1 + Ts
2(2Ttha − 3Tlhb − Tthb)

Ttm0
.

A.3 Solution of the Equation M k = q

The coefficients a1, a2, kij , solutions of the equation (3.56), with null bound-
ary conditions (v0 = v7 = 0), are computed as follows.

If the elements mi,j of matrix M are known, one can define the parameters

462 A Numerical Issues

s1 = (−m1,1 + m2,1 + m3,1 + m4,1)

s2 = (m13,2 + m14,2 + m15,2 + m16,2)

s3 = (m10,1 + m11,1 + m12,1)

s4 = (m5,2 + m6,2 + m7,2 + m8,2)

s5 = (−m1,1 + m2,1)

T13 = (T1 + T2 + T3)

T23 = (T2 + T3)

T24 = (T2 + T3 + T4)

T25 = (T2 + T3 + T4 + T5)

T26 = (T2 + T3 + T4 + T5 + T6)

T27 = (T2 + T3 + T4 + T5 + T6 + T7)

T14 = (T1 + T2 + T3 + T4)

T15 = (T1 + T2 + T3 + T4 + T5)

T16 = (T1 + T2 + T3 + T4 + T5 + T6)

T17 = (T1 + T2 + T3 + T4 + T5 + T6 + T7)

T34 = (T3 + T4)

T35 = (T3 + T4 + T5)

T36 = (T3 + T4 + T5 + T6)

T37 = (T3 + T4 + T5 + T6 + T7)

T45 = (T4 + T5)

T46 = (T4 + T5 + T6)

T47 = (T4 + T5 + T6 + T7)

T57 = (T5 + T6 + T7)

D1 = (−s2s1 + (s3 − m9,1)s4

+(−T14m1,1 + T24m2,1 + T34m3,1 + T4m4,1)m5,2 +

+(−T15m1,1 + T25m2,1 + T35m3,1 + T45m4,1)m6,2

+(−T16m1,1 + T26m2,1 + T36m3,1 + T46m4,1)m7,2

+(−T17m1,1 + T27m2,1 + T37m3,1 + T47m4,1)m8,2).

Then, the solution of equation (3.56) is

A.4 Efficient Evaluation of Polynomial Functions 463

a1 = −s4(q0 − q1)/D1

a2 = s1(q0 − q1)/D1

k11 = (m1,1s4(q0 − q1))/D1

k21 = ((m1,1 − m2,1)s4(q0 − q1))/D1

k31 = ((m1,1 − m2,1 − m3,1)s4(q0 − q1))/D1

k41 = (−s1s4(q0 − q1))/D1

k51 = (−s1(m6,2 + m7,2 + m8,2)(q0 − q1))/D1

k61 = (−s1(m7,2 + m8,2)(q0 − q1))/D1

k71 = (−s1m8,2(q0 − q1))/D1

k12 = ((−s2s1 + (s3 − T14m1,1 + T24m2,1 + T34m3,1 + T4m4,1)m5,2 +

+(s3 − T15m1,1 + T25m2,1 + T35m3,1 + T45m4,1)m6,2 +

+(s3 − T16m1,1 + T26m2,1 + T36m3,1 + T46m4,1)m7,2 +

+(s3 − T17m1,1 + T27m2,1 + T37m3,1 + T47m4,1)m8,2)q0 − s4m9,1q1)(1/D1)

k22 = ((−s2s1 + (m11,1 + m12,1 + T24s5 + T34m3,1 + T4m4,1)m5,2 +

+(m11,1 + m12,1 + T25s5 + T35m3,1 + T45m4,1)m6,2 +

+(m11,1 + m12,1 + T26s5 + T36m3,1 + T46m4,1)m7,2 +

+(m11,1 + m12,1 + T27s5 + T37m3,1 + T47m4,1)m8,2)q0 +

+(m10,1 − m9,1 − m1,1T1)s4q1)(1/D1)

k32 = ((−s2s1 + m12,1s4 + (T34s5 + T34m3,1 + T4m4,1)m5,2 +

+(T35s5 + T35m3,1 + T45m4,1)m6,2 + (T36s5 + T36m3,1 + T46m4,1)m7,2 +

+(T37s5 + T37m3,1 + T47m4,1)m8,2)q0 +

+((m10,1 + m11,1 + T2m2,1 − m9,1) − m1,1(T1 + T2))s4q1)(1/D1)

k42 = ((−s2 + T4m5,2 + T45m6,2 + T46m7,2 + T47m8,2)s1)q0 +

+((s3 − T123m1,1 + T23m2,1 + T3m3,1 − m9,1)s4)q1)(1/D1)

k52 = ((−(m14,2 + m15,2 + m16,2) + T5m6,2 + (T5 + T6)m7,2 + T57m8,2)s1q0 +

+(−m13,2s1 + (−T14m11 + T24m2,1 + T34m3,1 + T4m4,1 + s3 − m9,1)s4)q1)(1/D1)

k62 = ((−(m15,2 + m16,2) + T6m7,2 + (T6 + T7)m8,2)s1q0

+(−(m13,2 + m14,2)s1 + (s3 − m9,1)s4

+(−T14m1,1 + T24m2,1 + T34m3,1 + T4m4,1)m5,2

+(−T15m1,1 + T25m2,1 + T35m3,1 + T45m4,1)(m6,2 + m7,2 + m8,2))q1)(1/D1)

k72 = ((T7m8,2 − m16,2)s1q0 + (−(m13,2 + m14,2 + m15,2)s1 +

+(s3 − m9,1)s4 + (−T14m1,1 + T24m2,1 + T34m3,1 + T4m4,1)m5,2 +

+(−T15m1,1 + T25m2,1 + T35m3,1 + T45m4,1)m6,2 +

+(−T16m1,1 + T26m2,1 + T36m3,1 + T46m4,1)(m7,2 + m8,2))q1)(1/D1).

A.4 Efficient Evaluation of Polynomial Functions

Given a polynomial of degree n, represented in a standard form as

464 A Numerical Issues

p(x) = anxn + an−1x
n−1 + . . . + a1x + a0

the so-called Horner method provides an efficient technique for its evaluation in
a point x0, requiring only n multiplications and n additions. This techniques
is based on the observation that a polynomial can be written in a “nested
multiplication form” as

p(x) = ((. . . ((an x + an−1)x + an−2) . . .)x + a1)x + a0.

Therefore, the evaluation of p(x) can be performed recursively by assuming
bn = an and performing for each ak the following computation

for k = n − 1 : −1 : 0 do

bk = ak + x0bk+1

end loop (k)

Then p(x0) = b0. With the same technique, it is possible to compute the
value of the derivative of the polynomial ṗ(x) in x0. By assuming cn = bn,
the evaluation of ṗ(x0) proceeds as follows

for k = n − 1 : −1 : 1 do

ck = bk + x0ck+1

end loop (k)

and finally ṗ(x0) = c1.

A.5 Numerical Solution of Tridiagonal Systems

A.5.1 Tridiagonal systems

The solution of algebraic linear systems, such as

A x = d

is computationally simple and efficient when the system matrix A results
tridiagonal. In this case, the system has the form⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1 c1 0 · · · 0

a2 b2 c2 0
...

0 a3 b3
. . .

... 0
. . . 0. . . cn−1

0 · · · 0 an bn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

...

xn−1

xn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d1

d2

...

dn−1

dn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

A.5 Numerical Solution of Tridiagonal Systems 465

and the solution can be obtained in O(n) operations by applying the so-called
Thomas algorithm [97].
The algorithm overwrites the original arrays (if this is not desirable, it is
convenient to copy the original arrays) and is based on two steps:

1. Forward Elimination

for k = 2 : 1 : n do

m =
ak

bk−1

bk = bk − mck−1

dk = dk − mdk−1

end loop (k)

2. Backward substitution

xn =
dn

bn

for k = n − 1 : −1 : 1 do

xk =
dk − ck xk+1

bk

end loop (k)

This method cannot be used if b1 = 0. In this case, it is possible to eliminate
the variable x2 = d1

c1
and then solve the resulting system of n − 1 unknowns,

which is still a tridiagonal system.

A.5.2 Cyclic tridiagonal systems

When the linear system has a cyclic form, namely⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1 c1 0 · · · 0 a1

a2 b2 c2 0 0

0 a3 b3
. . .

...
... 0

. . . 0
0

. . . cn−1

cn 0 · · · 0 an bn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

...

xn−1

xn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d1

d2

...

dn−1

dn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A.1)

the solution can be found by exploiting the algorithm for standard tridiagonal
systems, by applying the Sherman-Morrison formula, [98]. In particular, the
system (A.1) can be rewritten as

466 A Numerical Issues

(A + uvT) x = d (A.2)

where

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 c1 0 · · · 0 0
a2 b2 c2 0 0

0 a3 b3
. . .

...
... 0

. . . 0
0

. . . cn−1

0 0 · · · 0 an

(
bn− a1cn

b1

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

uT = [b1 0 0 . . . 0 cn], vT = [1 0 0 . . . 0 a1/b1].

At this point, it is sufficient to solve the two following auxiliary problems (as
detailed in the previous section):

A y = d
A q = u.

The solution of (A.2) can be found as

x = y − vT y

1 + (vT q)
q.

B

B-spline, Nurbs and Bézier curves

B.1 B-spline Functions

Splines are piecewise polynomial functions widely used to interpolate sets of
data points or to approximate functions, curves and surfaces. On this topic a
wide literature exists, see among many others the excellent books [38, 99, 100].
A particularly efficient technique for the computation of splines is based on
so called B-splines, or Basic-splines. The reason for such a name is that a
generic spline can be obtained as a linear combination of a proper number of
basis functions, the B-splines (Bp

j (u)), i.e.

s(u) =
m∑

j=0

pjB
p
j (u), umin ≤ u ≤ umax

where the coefficient pj , j = 0, . . . , m, called control points, define the curve
and can be computed by imposing approximation/interpolation conditions on
the given set of data points, as explained in Chapter 8. This representation
modality is called B-form.

B.1.1 B-spline basis functions

Let u = [u0, . . . , unknot
] be a vector of real numbers (called knots), with uj ≤

uj+1. The j-th B-spline basis function of degree p (or equivalently of order
p + 1) is defined, in a recursive manner, as

B0
j (u) =

{
1, if uj ≤ u < uj+1

0, otherwise

Bp
j (u) =

u − uj

uj+p − uj
Bp−1

j (u) +
uj+p+1 − u

uj+p+1 − uj+1
Bp−1

j+1 (u), p > 0.

Note that

468 B B-spline, Nurbs and Bézier curves

B1
0 B1

1 B1
2 B1

3 B1
4

u
0
0

1

1 2 3 4 5 6 7

Fig. B.1. B-spline basis functions of degree 1 defined on u = [0, 0, 1, 2, 4, 7, 7].

1. Bp
j (u) is a piecewise polynomial, defined ∀u ∈ [umin, umax].

2. Bp
j (u) is equal to zero everywhere except in the interval u ∈ [uj , uj+p+1),

see Fig. B.1 and Fig. B.2.
3. The interval [ui, ui+1) is called i-th knot span; it can be of zero length, in

case knots are coincident1.
4. The B-spline basis functions are normalized so that

m∑
j=0

Bp
j (u) = 1, ∀u ∈ [u0, unknot

] (partition of the unity).

5. In every knot span [ui, ui+1) at most p + 1 basis functions Bp
j are not

null, namely Bp
i−p, . . . , B

p
i (see Fig. B.2); this is illustrated in the graph

of Fig. B.3 (truncated triangular table), referred to cubic functions, which
shows the dependencies of the 3-rd degree basis functions on B0

3 (which
is the only 0-degree term different from zero in the interval [u3, u4)).

Given a value of u ∈ [ui, ui+1), it is possible to evaluate the basis functions
with a simple and efficient algorithm. By tacking into account the observation

B3
0

B3
1

B3
2

B3
3

B3
4 B3

5

B3
6

u
0
0

1

1 2 3 4 5 6 7

Fig. B.2. Cubic basis functions defined on u = [0, 0, 0, 0, 1, 2, 4, 7, 7, 7, 7].

1 The difference between knots and breakpoints is that breakpoints are the set of
distinct knot values.

B.1 B-spline Functions 469

B0
0

B1
0

B0
1 B2

0

B1
1 B3

0

↗
B0

2 B2
1

↗ ↘
B1

2 B3
1

↗ ↘ ↗
B0

3 B2
2

↘ ↗ ↘
B1

3 B3
2

↘ ↗
B0

4 B2
3

↘
... B1

4

... B3
3

...
...

Fig. B.3. Truncated triangular table of a cubic B-spline function.

4, for each knot span it is sufficient to evaluate p + 1 basis functions. The
following procedure, written in C language, computes the nonvanishing basis
functions at u and stores the results in B[j] (j= 0 . . . p + 1)

void BasisFuns(int i, double u, int p, double U[], double B[])

/*

Input: i - knot span including u

u - value of the independent variable

p - degree of the spline

U[] - Knot vector

Output: B[] - value of the nonvanishing basis function at u

*/

{

int j,r;

double temp, acc;

double DR[MAX_P], DL[MAX_P];

B[0]=1;

for (j=1; j<=p;j++)

{

DL[j] = u - U[i+1-j];

DR[j] = U[i+j] - u;

acc = 0.0;

for (r=0; r<= j-1;r++)

{

470 B B-spline, Nurbs and Bézier curves

temp = B[r]/(DR[r+1] + DL[j-r]);

B[r] = acc + DR[r+1]*temp;

acc =DL[j-r]*temp;

}

B[j] = acc;

}

}

where i is the index of the knot span which includes u. In particular, for a
given i, B[j] provides the value of the basis function Bp

i−p+j .
A further problem consists in finding i, for a given value of u and of the knot
vector U. The following algorithm2, based on a binary search, provides the
solution:

int WhichSpan(double u, double U[], int n_knot, int p)

/*

Input: u - value of the independent variable

U[] - Knot vector

n_knot - length of U[] -1

p - degree of the spline

Output: mid - index of the knot span including u

*/

{

int high, low, mid;

high = n_knot - p;

low = p;

if (u == U[high])

mid = high;

else

{

mid = (high+low)/2;

while ((u<U[mid])||(u>=U[mid+1]))

{

if (u==U[mid+1])

mid = mid+1; /* knot with multiplicity >1 */

else

{

if (u > U[mid])

low = mid;

else

high=mid;

mid = (high+low)/2;

2 These algorithms, implemented in C language, do not work for u = umax. It is
therefore necessary to consider separately this case (for u = umax the last basis
function has a unit value, while all the other functions are null) or to avoid that
this condition occurs by assuming u = umax − ε, where ε is a small positive
number.

B.1 B-spline Functions 471

}

}

}

return mid;

}

Example B.1 Given p = 3, u = [0, 0, 0, 0, 1, 2, 4, 7, 7, 7, 7] and u = 1.5,
then u ∈ [u4, u5), i = 4, and the nonvanishing basis functions are

B3
1 = 0.0313, B3

2 = 0.5885, B3
3 = 0.3733, B3

4 = 0.0069.

The shape of all the basis functions defined on u is shown in Fig. B.2. �

B.1.2 Definition and properties of B-splines

Given the B-spline basis functions defined on the nonuniform knot vector (of
size nknot)

u = [umin, . . . , umin︸ ︷︷ ︸
p+1

, up+1, . . . , unknot−p−1, umax, . . . , umax︸ ︷︷ ︸
p+1

] (B.1)

a p degree B-spline curve is defined as

s(u) =
m∑

j=0

pjB
p
j (u), umin ≤ u ≤ umax (B.2)

where pj , j = 0, . . . ,m are the control points, and form the so-called control
polygon. Therefore, to represent a spline curve in the B-form, it is necessary
to provide:

1. The integer p, defining the degree of the spline.
2. The vector of the knots u.
3. The coefficients (control points) P = [p0, p1, . . . , pm−1, pm] of s(u).

Example B.2 Fig. B.4 shows a cubic B-spline curve (p = 3), together with
its control polygon defined by3

P = [p0, p1, . . . , pm−1, pm]

=
[

1 2 3 4 5 6 7
2 3 −3 4 5 −5 −6

]
.

The knot vector is

u = [0, 0, 0, 0, 1, 2, 4, 7, 7, 7, 7].

�

3 In the procedure BSplinePoint, reported below and used to evaluate the B-spline
for a given value of u, the vector P is defined as P = {1, 2, 3, 4, 5, 6, 7, 2,

3, -3, 4, 5, -5, -6}.

472 B B-spline, Nurbs and Bézier curves

1 2 3 4 5 6 7
−6

−4

−2

0

2

4

6

Fig. B.4. Cubic B-spline and its control polygon.

The main properties of a B-spline, useful for generation of trajectories, are:

1. The degree p of the spline, the number m + 1 of control points, and the
number nknot + 1 of knots are related by nknot = m + p + 1.

2. s(u) is differentiable infinite times in the interior of the knot intervals,
and it is p − k times continuously differentiable at a knot of multiplicity
k, e.g. a cubic B-spline (p = 3) has two continuous derivatives at a knot
with multiplicity one.

Example B.3 Fig. B.5 shows a cubic B-spline curve (p = 3), passing
through the control points of Example B.2:

P = [p0, p1, . . . , pm−1, pm]

=
[

1 2 3 4 5 6 7
2 3 −3 4 5 −5 −6

]
.

In this case the knot vector has a multiple element at its interior, i.e.

u = [0, 0, 0, 0, 2, 2, 2, 7, 7, 7, 7].

As a consequence the spline curve is characterized by a discontinuity. �

3. Endpoints interpolation: s(umin) = p0 and s(umax) = pm.
4. The curve is invariant under affine transformations, i.e. translations, rota-

tions, scalings, shears, and they can be applied to s(u) by applying them
to the control points.

5. Local modifications: the change of a control point pj modifies only s(u)
in the interval [uj , uj+p+1].

B.1 B-spline Functions 473

1 2 3 4 5 6 7
−6

−4

−2

0

2

4

6

Fig. B.5. Cubic B-spline with a multiple knots in the interior of the knot vector.

6. A B-spline curve can be scaled in time by applying a transformation on
the knots; in particular by assuming u′ = λu, the i-th derivative of the
B-spline is scaled by a factor 1/λi.

Example B.4 The components of the first and second derivatives of the
B-spline curves defined by the control points of previous example, and
computed for

u = [0, 0, 0, 0, 1, 2, 4, 7, 7, 7, 7]

and u′ = 2u are reported in Fig. B.6. In the latter case the velocity is
half the velocity produced by the original spline, while the acceleration is
four times smaller.

�

7. The control polygon represents a piecewise linear approximation of the
curve. In general, the lower the degree, the closer the curve follows the
control polygon, see Example B.5.

Example B.5 The splines of degree 1 and degree 2, computed with the
control points of Example B.2, namely

P = [p0, p1, . . . , pm−1, pm]

=
[

1 2 3 4 5 6 7
2 3 −3 4 5 −5 −6

]
are reported in Fig. B.7. Note the different approximation of the control
polygon produced by the curve according to its degree. In particular, for
p = 1 the spline overlaps its control polygon. �

474 B B-spline, Nurbs and Bézier curves

0 1 2 3 4 5 6 7
−30

−20

−10

0

10

20

U

−6

−4

−2

0

2

4

s(2
)

x
,y

(u
)

s(1
)

x
,y

(u
)

0 2 4 6 8 10 12 14
−6

−4

−2

0

2

4

U

−3

−2

−1

0

1

2

s(2
)

x
,y

(u
)

s(1
)

x
,y

(u
)

(a) (b)

Fig. B.6. Components of the first and second derivatives (x solid, y dashed) of the
B-spline curves computed for u (a) and u′ = 2u (b).

1 2 3 4 5 6 7
−6

−4

−2

0

2

4

6

(a)
1 2 3 4 5 6 7

−6

−4

−2

0

2

4

6

(b)

Fig. B.7. B-spline curves of degree 1 (a) and 2 (b) computed with the same control
points.

B.1.3 Evaluation of a B-spline curve

For a fixed value u of the independent variable, a spline of degree p can be
computed by considering only the p + 1 basis functions which are not null in
the i-th span interval, which includes u:

s(u) =
i∑

j=i−p

pjB
p
j (u). (B.3)

Therefore, the value of s(u) can be calculated according to the following three
steps:

1. Find the index i of the knot interval to which u belongs (by means of the
function WhichSpan(u,U,p)).

B.1 B-spline Functions 475

2. Given i, compute the basis functions at u by means of the function
BasisFuns(i,u,p,U).

3. Compute s(u), by equation (B.3), which can be rewritten as

s(u) =
p∑

j=0

pi−p+jB
p
i−p+j(u). (B.4)

The algorithm for the computation of a spline function for a given value of u
is

void BSplinePoint(double u, double U[], int n_knot, int p,

double P[],int d, double s[])

/*

Inputs:u - value of the independent variable

U[] - Knot vector

n_knot - length of U[] -1

p - degree of the spline

P[] - Control point vector

d - dimensions of a control point (2 in 2D, 3 in 3D, etc.)

Output:s[] - value of the B-spline at u

*/

{

double B[MAX_P];

int i, k, j;

i= WhichSpan(u, U, n_knot, p);

BasisFuns(i, u, p, U, B);

for (k = 0; k<d; k++) /* For each components of the B-spline*/

{

s[k] = 0;

for (j = 0; j<=p; j++)

{

s[k] = s[k] + P[k*(n_knot-p) + i-p+j]*B[j];

}

}

}

It is worth noticing that the above algorithm implements the equation (B.4).

B.1.4 Derivative of a B-spline curve

The derivative of a B-spline curve s(u) defined on the nonuniform knot vector

u = [umin, . . . , umin︸ ︷︷ ︸
p+1

, up+1, . . . , unknot−p−1, umax, . . . , umax︸ ︷︷ ︸
p+1

] (B.5)

476 B B-spline, Nurbs and Bézier curves

can be obtained by differentiating the basis functions Bp
j (u) in (B.2):

s(1)(u) =
m∑

j=0

pjB
p
j
(1)(u), umin ≤ u ≤ umax. (B.6)

Since the derivative of a basis function element is

Bp
j
(1)(u) =

p

uj+p − uj
Bp−1

j (u) − p

uj+p+1 − uj+1
Bp−1

j+1 (u) (B.7)

the derivative of the overall curve is a spline defined on

u′ = [umin, . . . , umin︸ ︷︷ ︸
p

, up+1, . . . , unknot−p−1, umax, . . . , umax︸ ︷︷ ︸
p

] (B.8)

by

s(1)(u) =
m−1∑
j=0

qjB
p−1
j (u), umin ≤ u ≤ umax (B.9)

where the new control points qj are computed as

qj = p
pj+1 − pj

uj+p+1 − uj+1
. (B.10)

In many cases, it is necessary to compute the generic k-th derivative of
the B-spline function s(u), i.e.

s(k)(u) =
m∑

j=0

pjB
p
j
(k)(u), umin ≤ u ≤ umax.

This can be obtained by computing the functions Bp
j
(k)(u). An efficient al-

gorithm for the computation of the k-th derivative of Bp
j (u), in terms of the

basis functions Bp−k
j (u), . . . , Bp−k

j+k (u) defined on u, is

Bp
j
(k)(u) =

p!
(p − k)!

k∑
i=0

ak,iB
p−k
j+i (B.11)

with

a0,0 = 1

ak,0 =
ak−1,0

uj+p−k+1 − uj

ak,i =
ak−1,i − ak−1,i−1

uj+p+i−k+1 − uj+i
, i = 1, . . . , k − 1

ak,k =
−ak−1,k−1

uj+p+1 − uj+k
.

B.1 B-spline Functions 477

Note that k cannot exceed p (all the derivatives of order k > p are null). More-
over, it is possible that the denominators involving knots differences become
zero; in this case the quotient is defined to be zero.

The algorithm (B.11) for the computation of the basis functions and their
derivatives up to the order n can be implemented as a routine C in the fol-
lowing way [38].

typedef double Matrix[MAX_P+1][MAX_P+1];

void DersBasisFuns(double u, int j, int p, int n, double U[],

Matrix Ders)

{

/*

Inputs: u - value of the independent variable

j - index of the knot span, which includes u

p - degree of the spline

n - max degree of differentiation of B-spline

basis functions

U[] - Knot vector

Output: Ders[][] - values of B-spline basis functions and theirs

derivatives at u

*/

double DR[MAX_P], DL[MAX_P];

Matrix Du, a;

double acc, temp, d;

int i, r, k, s1, s2, rk, pk, i1, i2;

Du[0][0] = 1.0;

for (j=1; j<=p; j++)

{

DL[j] = u - U[i+1-j];

DR[j] = U[i+j]-u;

acc = 0.0;

for (r=0;r<j;r++)

{

Du[j][r] = DR[r+1] + DL[j-r];

temp = Du[r][j-1] / Du[j][r];

Du[r][j] = acc + DR[r+1] * temp;

acc = DL[j-r] * temp;

}

Du[j][j] = acc;

}

for (j=0; j<=p; j++)

Ders[0][j] = Du[j][p];

478 B B-spline, Nurbs and Bézier curves

for (r=0; r<=p; r++)

{

s1=0;

s2=1;

a[0][0] = 1.0;

for (k=1; k<=n; k++)

{

d = 0.0;

rk = r - k;

pk = p - k;

if (r >= k)

{

a[s2][0] = a[s1][0] / Du[pk+1][rk];

d = a[s2][0] * Du[rk][pk];

}

if (rk >= -1)

j1 = 1;

else

j1 = -rk;

if (r-1 <= pk)

j2 = k - 1;

else

j2 = p - r;

for (j=j1; j<=j2; j++)

{

a[s2][j] = (a[s1][j] - a[s1][j-1]) / Du[pk+1][rk+j];

d += a[s2][j] * Du[rk+j][pk];

}

if (r <= pk)

{

a[s2][k] = -a[s1][k-1] / Du[pk+1][r];

d += a[s2][k] * Du[r][pk];

}

Ders[k][r] = d;

j = s1; s1 = s2; s2 = j;

}

}

r = p;

for (k=1; k<=n; k++)

{

for (j=0; j<=p; j++) Ders[k][j] *= r;

r *= (p-k);

}

}

The array Ders[][] contains the nonzero basis functions and their derivatives.
In particular, Ders[k][j]provides the values of Bp

i−p+j
(k)(u), j = 0, . . . , p,

computed for u ∈ [uj , uj+1]. The other elements of Bp
i−p+j

(k)(u) are null.

B.1 B-spline Functions 479

Example B.6 The basis functions of degree three (p = 3), and the related
derivatives, defined on the knots vector u = [0, 0, 0, 0, 1, 2, 4, 7, 7, 7, 7]
and computed at ū = 4.5 (therefore the knot span index is i = 6), are4

Ders[0][0] = 0.1736, Ders[0][1] = 0.5208, Ders[0][2] = 0.3009, Ders[0][3] = 0.0046,

Ders[1][0] = -0.2083, Ders[1][1] = -0.1250, Ders[1][2] = 0.3055, Ders[1][3] = 0.0277,

Ders[2][0] = 0.1666, Ders[2][1] = -0.3000, Ders[2][2] = 0.0222, Ders[2][3] = 0.1111,

Ders[3][0] = -0.0666, Ders[3][1] = 0.2800, Ders[3][2] = -0.4355, Ders[3][3] = 0.2222.

which correspond to

B3
3 = 0.1736, B3

4 = 0.5208, B3
5 = 0.3009, B3

6 = 0.0046,

B3
3
(1)

= −0.2083, B3
4
(1)

= −0.1250, B3
5
(1)

= 0.3055, B3
6
(1)

= 0.0277,

B3
3
(2)

= 0.1666, B3
4
(2)

= −0.3000, B3
5
(2)

= 0.0222, B3
6
(2)

= 0.1111,

B3
3
(3)

= −0.0666, B3
4
(3)

= 0.2800, B3
5
(3)

= −0.4355, B3
6
(3)

= 0.2222.

All the other terms B3
j
(k) are null.

�

B.1.5 Conversion from B-form to Piecewise Polynomial form
(pp-form)

The representation of a spline as a piecewise polynomial (the so-called pp-
form) can be useful to perform the pointwise evaluation of the curve for a
given u. The definition of a piecewise polynomial spline of degree p consists
of:

1. A strictly increasing sequence of points u� = [u�
0, . . . , u

�
m], the so-called

breakpoints (in this case multiple points are not admitted).
2. The p+1 coefficients of each polynomial pj(u) = a0,j +a1,ju+. . .+ap,ju

p

forming the spline

s(u) = pj(u), if u�
j ≤ u ≤ u�

j+1, j = 0, . . . , m − 1.

The conversion from B-form to pp-form is straightforward by using the pro-
cedures for the evaluation and the differentiation of a B-spline. As a matter
of fact the piecewise polynomial form can be found according to the following
two steps:

1. Find the vector of the breakpoints u� from the knot vector u, by checking
whether each knot has a multiplicity greater than one.

4 In this case, MAX P=6.

480 B B-spline, Nurbs and Bézier curves

2. Compute the coefficients ak,j , k = 0 . . . p, of the j-th polynomial function
by evaluating the spline and its derivatives at the breakpoint u�

j ; the
expression of the coefficients is

ak,j =

dks(u)
duk

∣∣
u = u�

j

k!
.

Example B.7 The pp-form of the B-spline reported in example B.2 is a
spline of degree 3, with 5 distinct breakpoints5

u� = [0, 1, 2, 4, 7]

whose coefficients6 are

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ax
p,0 · · · ax

1,0 ax
0,0

ay
p,0 · · · ay

1,0 ay
0,0

ax
p,1 · · · ax

1,1 ax
0,1

ay
p,1 · · · ay

1,1 ay
0,1

...

ax
p,j · · · ax

1,j ax
0,j

ay
p,j · · · ay

1,j ay
0,j

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.37 − 1.50 3.00 1.00
6.37 − 12.00 3.00 2.00

0.09 − 0.37 1.12 2.87
−2.90 7.12 − 1.87 − 0.62

0.01 − 0.08 0.66 3.72
0.04 − 1.58 3.66 1.72

0.01 0.02 0.54 4.86
0.32 − 1.30 − 2.10 3.10

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Note that the spline has dimension 2, and for this reason the coefficients are
denoted with superscripts x and y. �

5 As a consequence j=4.
6 The representation adopted in Matlab is used.

B.2 Definition and Properties of Nurbs 481

1 2 3 4 5 6 7
−6

−4

−2

0

2

4

6

Fig. B.8. A cubic B-spline and its control polygon.

B.2 Definition and Properties of Nurbs

A Non Uniform Rational B-Spline (Nurbs) curve of degree p is defined as

n(u) =

m∑
j=0

pjwjB
p
j (u)

m∑
j=0

wjB
p
j (u)

, umin ≤ u ≤ umax (B.12)

where pj , j = 0, . . . , m are the control points, forming the so-called control
polygon, wj are proper weights and Bp

j (u) are the B-spline basis functions of
degree p defined on the nonuniform knot vector (of size nknot + 1)

u = [umin, . . . , umin︸ ︷︷ ︸
p+1

, up+1, . . . , unknot−p−1, umax, . . . , umax︸ ︷︷ ︸
p+1

]. (B.13)

By setting

Np
j (u) =

wjB
p
j (u)

m∑
i=0

wiB
p
i (u)

, umin ≤ u ≤ umax (B.14)

it is possible to rewrite (B.12) in the form

n(u) =
m∑

j=0

pjN
p
j (u), umin ≤ u ≤ umax. (B.15)

482 B B-spline, Nurbs and Bézier curves

w6 ↑

Fig. B.9. Local modification of a Nurbs trajectory by acting on a weight.

The Np
j (u) are piecewise rational functions, called the rational basis functions.

Note that if the weights are constant and equal, i.e. wj = w̄ �= 0, ∀j, then7

Np
j (u) = Bp

j (u); therefore, B-splines are a special case of Nurbs curves.
All the properties stated for the B-spline hold for Nurbs:

1. Endpoints interpolation: n(umin) = p0 and n(umax) = pm.
2. The curve is invariant under affine transformations, i.e. translations, ro-

tations, scalings, shears, that can be applied to n(u) by applying them to
the control points.

3. Local modifications: the change of a control point pj or of a weight wj

modifies n(u) only in the interval [uj , uj+p+1], see Fig. B.9.
4. The control polygon represents a piecewise linear approximation of the

curve. In general, the lower the degree of the Nurbs, the closer the curve
follows the control polygon.

An efficient way to represent (and evaluate) Nurbs curves is based on homo-
geneous coordinates. In the three-dimensional case, for a given set of control
points pj = [px,j , py,j , pz,j]T and weights wj , it is possible to construct the
weighted control points pw

j = [wjpx,j , wjpy,j , wjpz,j , wj]T ∈ IR4, which
define the nonrational B-spline

7 In this case, (B.14) becomes

Np
j (u) =

w̄Bp
j (u)

w̄

m∑
i=0

Bp
i (u)

, umin ≤ u ≤ umax

and, by considering that
m∑

j=0

Bp
j (u) = 1, it follows Np

j (u) = Bp
j (u).

B.3 Definition and Properties of Bézier Curves 483

nw(u) =
m∑

j=0

pw
j Bp

j (u), umin ≤ u ≤ umax. (B.16)

The representations (B.15) and (B.16) are equivalent in the sense that they
are related by means of a bijective map. By applying the perspective map

p = H(pw) =

⎧⎪⎨
⎪⎩
[
pw

x

w
,

pw
y

w
,

pw
z

w

]T

, if w �= 0

direction of [pw
x , pw

y , pw
z]T , if w = 0

(B.17)

it is possible to transform nw(u) in the corresponding rational B-spline

n(u) = H(nw(u)) = H

⎛
⎝ m∑

j=0

pw
j Bp

j (u)

⎞
⎠ .

In particular, the expression (B.16) is used to evaluate the Nurbs curve for a
given value of the variable u, by exploiting the algorithm reported in Sec. B.1.3

n(u) H−1

−−−→ nw(u)
Alg.(B.1.3)−−−−−−−→ nw(ū) =

⎡
⎢⎢⎢⎣

nw
x

nw
y

nw
z

w

⎤
⎥⎥⎥⎦ H−→ n(ū) =

⎡
⎢⎢⎣

nw
x

w

nw
x

w

nw
x

w

⎤
⎥⎥⎦ .

B.3 Definition and Properties of Bézier Curves

A Bézier curve of degree m is defined as

b(u) =
m∑

j=0

Bm
j (u)pj , 0 ≤ u ≤ 1 (B.18)

where the coefficients pj are the control points, and the basis functions Bm
j (u)

are m-th degree Bernstein polynomials defined by

Bm
j (u) =

(
m

j

)
uj(1 − u)m−j (B.19)

with the binomial coefficients given by(
m

j

)
=

m!
j! (m − j)!

.

The binomial coefficients, for j = 0, . . . , m, form the rows of Pascal’s triangle
shown in Tab. B.1 for m = 0, . . . , 9.

484 B B-spline, Nurbs and Bézier curves

m

0 1
1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1
5 1 5 10 10 5 1
6 1 6 15 20 15 6 1
7 1 7 21 35 35 21 7 1
8 1 8 28 56 70 56 28 8 1
9 1 9 36 84 126 126 84 36 9 1

. . .

Table B.1. Pascal’s triangle.

Example B.8 For m = 1, the basis functions are B1
0(u) = 1 − u and

B1
1(u) = u, therefore the curve is b(u) = (1 − u)p0 + up1, that is a straight

line from p0 to p1. �

Example B.9 For m = 3, the Bézier curve has the form

b(u) = (1 − u)3p0 + 3u(1 − u)2p1 + 3u2(1 − u)p2 + u3p3.

A 2-dimensional curve obtained with

p0 =
(

0
0

)
, p1 =

(
0
1

)
, p2 =

(
1

2.5

)
, p3 =

(
2
3

)

is illustrated in Fig. B.10.
�

From the previous example, it results that:

• The control polygon (formed by the control points) approximates the shape
of the curve;

• p0 = b(0) and pm = b(1).
• The tangent directions in p0 and pm are parallel to p1−p0 and pm−pm−1.
• The curve is completely contained in the convex hull formed by its control

points.

B.3.1 Evaluation of a Bézier curve

The value of a Bézier curve for a given ū can be computed, according to the
de Casteljau algorithm, as b(ū) = pm

j with pm
j defined in a recursive way:

B.3 Definition and Properties of Bézier Curves 485

pk
j (ū) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(1 − ū)pk−1
j (ū) + ū pk−1

j+1 (ū) if
{

k = 1, . . . ,m
j = 0, . . . ,m − k

pj if
{

k = 0
j = 0, . . . ,m.

(B.20)

This algorithm, although less efficient from a computational point of view with
respect to classical polynomial evaluation methods (e.g. the Horner formula,
reported in Sec. A.4), is affected by smaller round-off errors. The procedure
for the computation of the Bézier curve b_u of degree m defined by the control
points P[] (for the sake of simplicity a one-dimensional case is considered) for
a given value is

void DeCasteljau(int m, double u, double P[], double b_u[])
{

int i, k;
double Q[MAX_M];

for (i=0; i<=m; i++)
Q[i]=P[i];

for (k=1; k<=m; k++)
for (i=0; i<=m-k; i++)

Q[i] = (1.0-u)*Q[i]+u*Q[i+1];

b_u[0] = Q[0];
}

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.5

1

1.5

2

2.5

3

x

y

Fig. B.10. 3 − rd degree Bézier curve, in the 2-dimensional space.

486 B B-spline, Nurbs and Bézier curves

Obviously, in order to evaluate the curve for a given value u it is always
possible to transform a curve from the Bézier form to a standard polynomial
form. For the trajectories computation, the curves commonly adopted are of
degree 3, 4, and 5. In these cases, the curve can be represented as

b(u) =
m∑

i=0

aiu
i (B.21)

where the coefficients aj are

for m = 3

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a0 = p0

a1 = −3p0 + 3p1

a2 = 3p0 − 6p1 + 3p2

a3 = −p0 + 3p1 − 3p2 + p3

for m = 4

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

a0 = p0

a1 = −4p0 + 4p1

a2 = 6p0 − 12p1 + 6p2

a3 = −4p0 + 12p1 − 12p2 + 4p3

a4 = 5p0 − 4p1 + 6p2 − 4p3 + p4

for m = 5

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

a0 = p0

a1 = −5p0 + 5p1

a2 = 10p0 − 20p1 + 10p2

a3 = −10p0 + 30p1 − 30p2 + 10p3

a4 = 5p0 − 20p1 + 30p2 − 20p3 + 5p4

a5 = −p0 + 5p1 − 10p2 + 10p3 − 5p4 + p5.

More generally, the relationship between the control points defining a Bézier
curve and the coefficients ai of the standard polynomial representation (B.21)
is

ai =
m!

(m − i)!

i∑
j=0

(−1)j+i

j! (i − j)!
pj (B.22)

where m is the degree of the Bézier curve.

B.3.2 Derivatives of a Bézier curve

The derivative of a m-th degree Bézier curve is a Bézier curve (of degree m−1)
defined by

b(1)(u) = m

m−1∑
i=0

Bm−1
i (u)(pi+1 − pi). (B.23)

B.3 Definition and Properties of Bézier Curves 487

From eq. (B.23), the values of the end derivatives of a Bézier curve can be
easily deduced

b(1)(0) = m(p1 − p0), b(2)(0) = m(m − 1)(p0 − 2p1 + p2),

b(1)(1) = m(pm − pm−1), b(2)(1) = m(m − 1)(pm − 2pm−1 + pm−2).
(B.24)

Notice that the k-th derivative at an endpoint depends only on the k + 1
control points at that end.

C

Representation of the Orientation

The problem of describing the orientation of a rigid body in the 3D space can
be solved in different ways. This problem is of particular relevance in robotics,
where in general the end effector must be both positioned and oriented in or-
der to execute a given task.
The most common mathematical tools for describing the orientation of a rigid
body are: rotation matrices, the angle-axis representation, the Euler angles,
and the Roll-Pitch-Yaw angles. For a detailed description of these mathemat-
ical operators, refer to the wide literature available for example in robotics:
see [12], [11], [52] among many others.

x

y

z

n

s

a

Fig. C.1. Generic rotation between two frames.

C.1 Rotation Matrices

A rotation matrix R is a 3× 3 positive definite matrix whose column vectors
describe a reference frame F1 with respect to a base frame F0, Fig. C.1. If
n, s,a are the unit vectors associated to the axes of F1, then the rotation
matrix R is defined as

490 C Representation of the Orientation

R =

⎡
⎣nx sx ax

ny sy ay

nz sz az

⎤
⎦ .

Rotation matrices have several important properties:

1. det{R} = +1.
2. R is an orthogonal matrix, i.e.

nT s = nT a = sT a = 0, ‖n‖ = ‖s‖ = ‖a‖ = 1

or, in a more compact form RT R = I (3 × 3 identity matrix).
3. Since R is orthogonal, it follows also that R−1 = RT .

C.1.1 Elementary rotation matrices

An elementary rotation is a rotation about one of the axes of the base frame
F0. The rotation matrices Rx, Ry, and Rz expressing these rotations have
the form

Rx(α) =

⎡
⎣ 1 0 0

0 cos α − sin α
0 sin α cos α

⎤
⎦ (C.1)

Ry(β) =

⎡
⎣ cos β 0 sinβ

0 1 0
− sin β 0 cos β

⎤
⎦ (C.2)

Rz(γ) =

⎡
⎣ cos γ − sin γ 0

sin γ cos γ 0
0 0 1

⎤
⎦ . (C.3)

By properly composing these elementary rotations, it is possible to compute
the rotation matrix of a generic rotation in space.

C.2 Angle-Axis Representation

Often, one is interested in expressing a rotation of a given angle about an
arbitrary axis in space.

Let us define a base frame F0, and a unit vector w = [wx, wy, wz]T ,
see Fig. C.2. The rotation matrix Rw(θ) specifying a rotation of an angle θ,
positive in the counter-clockwise direction, about w is defined as

Rw(θ)=

⎡
⎣ w2

x(1 − cθ) + cθ wxwy(1 − cθ) − wzsθ wxwz(1 − cθ) + wysθ

wxwy(1 − cθ) + wzsθ w2
y(1 − cθ) + cθ wywz(1 − cθ) − wxsθ

wxwz(1 − cθ) − wysθ wywz(1 − cθ) + wxsθ w2
z(1 − cθ) + cθ

⎤
⎦

(C.4)
where cθ = cos(θ), sθ = sin(θ). Note that

C.3 Euler Angles 491

x

y

z

α

β
θ

w

Fig. C.2. Angle-Axis representation.

R−w(−θ) = Rw(θ).

It may be of interest to solve the inverse problem, i.e. given a generic rotation
matrix R

R =

⎡
⎣ r11 r12 r13

r21 r22 r23

r31 r32 r33

⎤
⎦ (C.5)

define the equivalent axis w and angle θ. If sin(θ) �= 0 (θ �= k π), these
parameters are given by

θ = cos−1

(
r11 + r22 + r33 − 1

2

)
(C.6)

w =
1

2 sin θ

⎡
⎣ r32 − r23

r13 − r31

r21 − r12

⎤
⎦ . (C.7)

If sin(θ) = 0, it is necessary to analyze the particular expression assumed by
R and compute the equations for θ = 0, π. Note that for θ = 0 the rotation
axis w is arbitrary.

C.3 Euler Angles

The Euler angles, as well as the Roll-Pitch-Yaw angles, are minimum rep-
resentations of rotations, in the sense that only three parameters (i.e. three
angles ϕ, θ, ψ) are used to express an arbitrary rotation in the 3D space. Com-
monly, the ZYZ representation is chosen for the Euler angles, that is three
consecutive rotations about the z0 (ϕ), y1 (θ), z2 (ψ) axes of the current
reference frame (the frame obtained by applying the rotations), see Fig. C.3.

The rotation matrix REuler corresponding to these three rotations is de-
fined as

REuler(ϕ, θ, ψ) =

⎡
⎣ cφcθcψ − sφsψ − cφcθsψ − sφcψ cφsθ

sφcθcψ + cφsψ − sφcθsψ + cφcψ sφsθ

−sθcψ sθsψ cθ

⎤
⎦ . (C.8)

492 C Representation of the Orientation

x x
x

x

y y

y

y

z z zz

θ

ϕ
ψ

F0 F1 F2 F3

Fig. C.3. Euler angles.

For the inverse problem, i.e given a generic rotation matrix R as in eq. (C.5)
define the three angles ϕ, θ, ψ, there are two possibilities:

1. r2
13 + r2

23 �= 0, then sin θ �= 0. There are two sets of solutions depending
on the value assigned to the sign of θ. If 0 < θ < π, i.e. sin θ > 0, from
(C.8) one obtains ⎧⎪⎨

⎪⎩
ϕ = atan2(r23, r13)

θ = atan2(
√

r2
13 + r2

23, r33)
ψ = atan2(r32,−r31)

(C.9)

or, considering −π < θ < 0 (sin θ < 0),⎧⎪⎨
⎪⎩

ϕ = atan2(−r23,−r13)

θ = atan2(−
√

r2
13 + r2

23, r33)
ψ = atan2(−r32, r31)

(C.10)

where atan2(y, x) is the four quadrant arctangent of x and y.
2. r2

13 + r2
23 = 0. In this case θ = 0, π and cos θ = ±1. By choosing θ = 0, i.e.

cos θ = 1 one obtains{
θ = 0
ϕ + ψ = atan2(r21, r11) = atan2(−r12, r11).

(C.11)

Vice versa, if θ = π, (cos θ = −1) one obtains{
θ = 0
ϕ − ψ = atan2(−r21,−r11) = atan2(−r12,−r11).

(C.12)

In both cases there are infinite solutions, since only the sum (difference) of
ϕ and θ can be determined. In fact, being θ = 0, π, the rotations ϕ,ψ are
about parallel axes and therefore it is not possible to distinguish between
them.

C.4 Roll-Pitch-Yaw Angles 493

x

y

z

θ

ϕ

ψ

Roll

Pitch

Yaw

Fig. C.4. RPY angles.

C.4 Roll-Pitch-Yaw Angles

The Roll-Pitch-Yaw (RPY) representation indicates three consecutive rota-
tions about the axes of the base reference frame F0: of an angle ϕ (Yaw)
about x, of an angle θ (Pitch) about y and of an angle ψ (Roll) about z, see
Fig. C.4.

The rotation matrix RRPY corresponding to these three rotations is de-
fined as

RRPY (ϕ, θ, ψ) =

⎡
⎣ cφcθ − sφcψ + cφsθsψ sφsψ + cφsθcψ

sφcθ cφcψ + sφsθsψ − cφsψ + sφsθcψ

−sθ cθsψ cθcψ

⎤
⎦ .(C.13)

For the inverse problem, i.e given a generic rotation matrix R as in (C.5)
define the three angles ϕ, θ, ψ, there are two possibilities:

1. r2
11 + r2

21 �= 0 → cos θ �= 0: one obtains⎧⎪⎨
⎪⎩

ϕ = atan2(r21, r11)

θ = atan2(−r31,
√

r2
32 + r2

33)
ψ = atan2(r32, r33)

with θ ∈ [−π/2, π/2], or⎧⎪⎨
⎪⎩

ϕ = atan2(−r21,−r11)

θ = atan2(−r31,−
√

r2
32 + r2

33)
ψ = atan2(−r32,−r33)

if θ ∈ [π/2, 3π/2].
2. r2

11 + r2
21 = 0 → cos θ = 0: θ = ±π/2 and infinite solution exist (sum or

difference of ψ and ϕ).
It may be convenient to assign a value to an angle (e.g. ϕ or ψ equal to
±90o) and then compute the remaining one{

θ = ±π/2
ϕ − ψ = atan2(r23, r13) = atan2(−r12, r22).

D

Spectral Analysis and Fourier Transform

D.1 Fourier Transform of a Continuous Time Function

Let x(t) be a function T → IR, where T is the time domain and IR the set of
real numbers. The function x(t) has finite energy if the integral

∫ +∞

−∞
x(t)2dt

has a finite value. Notice that this property, for physical reasons, holds for the
accelerations/velocities of all the trajectories q(t) presented in this book.

For functions x(t) with finite energy, it is possible to define the Fourier
transform and the inverse Fourier transform (see Fig. D.1) as

X(ω) =
∫ +∞

−∞
x(t)e−jωtdt, x(t) =

1
2π

∫ +∞

−∞
X(ω)ejωtdω. (D.1)

By considering the Fourier transform in polar coordinates, i.e. X(ω) =
|X(ω)|ejϕ(ω), its inverse can be rewritten as

x(t) =
1
2π

∫ +∞

−∞
|X(ω)|ej(ωt+ϕ(ω))dω

x(t) |X(ω)|

T t ωωmax−ωmax

F{x(t)}

F−1{X(ω)}

Fig. D.1. Fourier transform of a bandlimited (and finite length) signal x(t).

496 D Spectral Analysis and Fourier Transform

or, equivalently,

x(t) =
1
2π

∫ +∞

−∞
|X(ω)|[cos(ωt + ϕ(ω)) + j sin(ωt + ϕ(ω))]dω.

Since x(t) ∈ IR, it follows that

x(t) =
1
2π

∫ +∞

−∞
|X(ω)| cos(ωt + ϕ(ω))dω

and, by taking into account that |X(ω)| cos(ωt + ϕ(ω)) is an even function,
one obtains

x(t) =
1
π

∫ +∞

0

|X(ω)| cos(ωt + ϕ(ω))dω

and finally

x(t) =
∫ +∞

0

V (ω) cos(ωt + ϕ(ω))dω (D.2)

where

V (ω) =
|X(ω)|

π
, ω ≥ 0

ϕ(ω) = arg{X(ω)}, ω ≥ 0.

Equation (D.2) expresses the function x(t) as the “summation” of an infinite
number of sinusoidal terms, each of them with frequency ω, amplitude V (ω)
and phase ϕ(ω).

D.1.1 Main properties of the Fourier transform

The main properties of the Fourier transform, which can be of interest for the
analysis of trajectories, are now summarized. If x(t) ↔ X(ω), y(t) ↔ Y (ω)
then:

1. Linearity:

αx(t) + βy(t) ↔ αX(ω) + βY (ω), ∀α, β ∈ C.

2. Scaling:

x(λt) ↔ 1
|λ|X

(ω

λ

)
, ∀λ ∈ IR, λ �= 0.

3. Shifting:
x(t − λ) ↔ ejλtX (ω) , ∀λ ∈ IR.

4. Derivative:
dx(t)

dt
↔ jωX(ω).

5. Energy Theorem (Parseval):∫ ∞

−∞
|x(t)|2dt =

1
2π

∫ ∞

−∞
|X(ω)|2dω.

D.2 Fourier Series of a Periodic Continuous Function 497

0

x̃(t)

|ck|
1
T
|X(ω)|

T t ωωmax−ωmax

Fourier
Series coefficients

Fourier Series
Expansion

Fig. D.2. Fourier series coefficients of a periodic signal x̃(t).

D.2 Fourier Series of a Periodic Continuous Function

Let us consider a periodic function x̃(t) with period T , i.e. x̃(t + T) = x̃(t).
Its Fourier transform consists of impulses that in the frequency domain are
spaced by ω0 = 2π/T , [101]. This result leads to the standard Fourier Series
(FS) expansion (in the exponential form)

x̃(t) =
∞∑

k=−∞
ckejkω0t, ω0 =

2π

T

where the coefficients ck are computed as

ck =
1
T

∫ T

0

x̃(t)e−jkω0tdt.

If the periodic function x̃(t) is obtained by repeating the finite length function
x(t) ∈ [0, T], the coefficients of the Fourier series are related to the Fourier
transform of x(t) by

ck =
1
T

X(kω0), ω0 =
2π

T

that is they can be computed by sampling (and scaling by 1/T) the Fourier
transform X(ω), as shown in Fig. D.2. As in the case of the Fourier transform,
when a real signal x̃(t) is considered, the Fourier series can be written as the
summation of harmonic functions:

x̃(t) = v0 +
∞∑

k=1

vk cos(kω0t + ϕk), ω0 =
2π

T

where

v0 = c0,

{
vk = 2|ck|
ϕk = arg(ck)

, k > 0.

498 D Spectral Analysis and Fourier Transform

0

0

xn |Xs(ω)|
1

Ts
|X(ω)|

T
Ts

n

ω

ω

ωmax

ωmax

−ωmax

−ωmax

−ωs

−ωs

ωs

ωs

DTFT

IDTFT

Xk = Xs(kΔω)DFT

IDFT

|Xk|

Δω

Fig. D.3. Discrete time Fourier transform and discrete Fourier transform of a
sequence xn.

D.3 Fourier Transform of a Discrete Time Function

The Fourier transform of a sequence1 xn, which represents the values of a
continuous-time function x(t) ∈ [0, T] at the discrete time instants t = nTs

where Ts is the sampling period, is defined as

Xs(ω) =
∞∑

n=−∞
xne−jωnTs

which is periodic, with period ωs = 2π
Ts

. In this case, the inverse Fourier
transform is

xn =
1
ωs

∫ ωs
2

−ωs
2

Xs(ω)ejωnTsdω.

It is possible to shown that the Fourier transform of xn consists of periodically
repeated copies of the Fourier transform of x(t) (scaled by 1/Ts), i.e.

Xs(ω) =
1
Ts

∞∑
k=−∞

X(ω + kωs). (D.3)

For the proof see [65]. If the Nyquist condition on the sampling time is satisfied
(i.e. Ts <

π

ωmax
, where ωmax is such that |X(ω)| � 0, ∀ω > ωmax), the

spectrum X(ω) can be obtained by multiplying Xs(ω) by Ts in the interval
ω ∈

[
− π

Ts
, π

Ts

]
.

1 Called Discrete Time Fourier Transform (DTFT).

D.3 Fourier Transform of a Discrete Time Function 499

D.3.1 Discrete Fourier transform

If x̃n is a periodic sequence with period N, i.e. x̃n = x̃n+rN , it is possible to
write it as a Fourier series corresponding to a sum of complex exponential
functions with frequencies that are multiples of the fundamental frequency
2π
N :

x̃n =
1
N

N−1∑
k=0

X̃kej(2π
N)k n (D.4)

where X̃k are the Discrete Fourier Series (DFS) coefficients, defined as

X̃k =
N−1∑
n=0

x̃ne−j(2π
N)k n.

Note that the sequence X̃k is periodic with period N , i.e. X̃k = X̃k+rN . Often,
the discrete Fourier series is rewritten in terms of the complex quantity

WN = e−j(2π
N).

With this notation, the expression of DFS and of its inverse are respectively

X̃k =
N−1∑
n=0

x̃nWN
k n, x̃n =

1
N

N−1∑
k=0

X̃kWN
−k n.

In case of a periodic sequence obtained by repeating a finite length sequence
xn (such that xn = 0 outside the range 0 ≤ n ≤ N − 1), that is

x̃n =
∞∑

r=−∞
xn−rN ,

the discrete Fourier series X̃k is related to the Fourier transform of xn, called
Discrete Fourier Transform (DFT), by means of

Xk =

{
X̃k, 0 ≤ k ≤ N − 1

0, otherwise.

Therefore, the DFT and its inverse (IDFT) are respectively defined as

Xk =

⎧⎪⎨
⎪⎩

N−1∑
n=0

xnWN
k n, 0 ≤ k ≤ N − 1

0, otherwise

(D.5)

and

500 D Spectral Analysis and Fourier Transform

xn =

⎧⎪⎨
⎪⎩

1
N

N−1∑
k=0

XkWN
−k n, 0 ≤ k ≤ N − 1

0, otherwise.

The DFT is characterized by properties similar to those of the Fourier trans-
form for continuous functions (i.e. linearity, scaling, shifting, and so on), but
the main advantage of adopting the DFT is the fact that very efficient algo-
rithms for its computation exist (Fast Fourier Transform (FFT)). By means
of these numerical methods the discrete Fourier transform can be computed
in O(N log2 N) operations, while the use of the definition (D.5) would require
O(N2) operations. For the details about the FFT implementation see [19, 65].
It is possible to relate the DFT of the finite length sequence xn, obtained by
sampling the continuous function x(t) ∈ [0, T], with the corresponding discrete
time Fourier transform:

Xk = Xs(ω)∣∣
ω = 2πk/NTs

.

By considering that Ts = T/N , it is easy to show that the coefficients of the
DFT are the values of Xs(ω) sampled with a frequency period Δω = 2π/T :

Xk = Xs(kΔω). (D.6)

D.4 Fourier Analysis of Signals Using DFT (and FFT)

One of the main application of the DFT is the analysis of the frequency
content of continuous-time signals. Given a bandlimited signal (possibly with
the adoption of an anti-aliasing filter) x(t), it is possible to obtain a discrete-
time sequence xn by sampling x(t) with a period Ts (xn = x(nTs)). Since the
sampling operation in the time domain corresponds to the periodic repetition
in the frequency domain, as expressed by (D.3), the Fourier transform of
the continuous signal x(t) is simply a restriction of the (continuous) Fourier
transform of the discrete-time signal xn:

X(ω) =

⎧⎨
⎩

TsXs(ω), ω ∈
[
−ωs

2
,
ωs

2

]
0, otherwise.

Therefore, by applying the DFT to xn, which provides the value of Xs(ω) at
discrete frequencies k2π/T (see (D.6)), it is possible to numerically evaluate
X(ω), being

Xk = Xs(kΔω) =
1
Ts

X(kΔω), with Δω =
2π

T
.

The relationships among continuous- and discrete- time functions and their
transforms are summarized in Fig. D.4.

D.4 Fourier Analysis of Signals Using DFT (and FFT) 501

0

0

xn

x(t)

xn = x(nTs)

|Xs(ω)|

|X(ω)|

1
Ts

|X(ω)|

Xs(ω) = 1
Ts

|X(ω)|

T

T

Ts

t

n

ω

ω

ω

ωmax

ωmax

ωmax

−ωmax

−ωmax

−ωmax

−ωs

−ωs

ωs

ωs

DTFT

IDTFT

Xk = Xs(kΔω)
DFT

IDFT

FT

IFT

|Xk|

Δω

Fig. D.4. Continuous and discrete Fourier transforms.

References

1. Y. Xiao, K. Zhu, and H.C. Liaw. Generalized synchronization control of multi-
axis motion systems. Control Engineering Practice, 13:809–819, 2005.

2. J.V. Gerwen. Electronic camming and gearing. Assembly Automation, 19:35–
38, 1999.

3. C. Melchiorri. Traiettorie per Azionamenti Elettrici. Progetto Leonardo. Es-
culapio Ed., Bologna, I, second edition, 2003.

4. M.A. Gonzales-Palacios and J. Angeles. Cam Synthesis, volume 26 of Solid
Mechanics and its Applications. Kluver Academic, 1993.

5. J. Angeles and C.S. Lopez-Cajun. Optimization of cam mechanisms. Kluwer
Academic Publ., 1991.

6. F.Y. Chen. Mechanics and Design of Cam Mechanisms. Pergamon Press Inc.,
1982.

7. P.W. Jensen. Cam design and manifacture. New York Industrial Press, 1965.
8. P.L. Magnani and G. Ruggeri. Meccanismi per macchine automatiche. UTET,

1986.
9. R.L. Norton. Design of machinery. McGraw-Hill, 1992.

10. Merriam-Webster dictionary, url: http://www.m-w.com/dictionary/trajectory.
11. J. Angeles. Fundamentals of robotic mechanical systems. Springer-Verlag, 1997.
12. B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo. Robotics: Modelling, Plan-

ning and Control. Advanced Textbooks in Control and Signal Processing.
Springer-Verlag, Berlin, Heidelberg, 2008.

13. Thomas R. Kurfess, editor. Robotics and Automation Handbook. CRC Press,
2000.

14. Z. Koloc and M. Vaclavik. Cam Mechanisms, volume 14 of Studies in Mechan-
ical Engineering. Elsevier, 1993.

15. A.S. Gutman. To avoid vibration - try this new cam profile. Product engineer-
ing, 25:42–48, Dec. 1961.

16. F. Freudenstein. On the dynamics of high-speed cam profiles. International
Journal of Mechanical Sciences,, 1:342–349, 1960.

17. S.A. Bazaz and B. Tondu. Minimum time on-line joint trajectory generator
based on low order spline method for industrial manipulators. Robotics and
Autonomous Systems, 29:257–268, 1999.

18. G. Strang. Linear Algebra and Its Applications. Thomson Brooks/Cole, fourth
edition, 2006.

504 References

19. W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. Numerical
Recipes: The Art of Scientific Computing. Cambridge University Press, third
edition, 2007.

20. G.J. Borse. Numerical Methods with MATLAB. PWS Publishing Company,
1997.

21. G.E. Forsythe. Generation and use of orthogonal polynomials for data-fitting
with a digital computer. Journal of Society for Industrial and Applied Mathe-
matics, 5:74–88, 1957.

22. C.W. Clenshaw and J. G. Hayes. Curve and surface fitting. Journal of Applied
Mathematics, 1:164–183, 1965.

23. J.C. Mason and David C. Handscomb. Chebyshev Polynomials. CRC Press,
2002.

24. T. J. Rivlin. The Chebyshev Polynomials. Tracts in Pure & Applied Mathe-
matics. John Wiley & Sons, 1974.

25. A. C. R. Newbery. Interpolation by algebraic and trigonometric polynomials.
Mathematics of Computation, 20(96):597–599, 1966.

26. A. C. R. Newbery. Trigonometric interpolation and curve-fitting. Mathematics
of Computation, 24(112):869–876, 1970.

27. T. Lyche and R. Winther. A stable recurrence relation for trigonometric B-
splines. Journal of Approximation Theory, 25:266–279, 1979.

28. T. Lyche, L. L. Schumaker, and S. Stanley. Quasi-interpolants based on
trigonometric splines. Journal of Approximation Theory, 95(2):280–309, 1998.

29. M. Neamtu, H. Pottmann, and L.L. Schumaker. Designing Nurbs cam profiles
using trigonometric splines. Journal of Mechanical Design, Transactions of the
ASME, 120(2):175–180, 1998.

30. E. Dyllong and A. Visioli. Planning and real-time modifications of a trajectory
using spline techniques. Robotica, 21:475–482, 2003.

31. I.J. Schoenberg. Contributions to the problem of approximation of equidistant
data by analytic functions. Quarterly of Applied Mathematics, 4:45–99, 1946.

32. C. Reinsch. Smoothing by spline function. Numerische Mathematik, 10:177–
183, 1967.

33. T. Lyche and L. L. Schumaker. Procedures for computing smoothing and
interpolating natural splines. Communications of the ACM, 17(8):463 – 467,
1974.

34. B. Cao, G.I. Dodds, and G.W. Irwin. Constrained time-efficient and smooth
cubic spline trajectory generation for industrial robots. Proceedings of IEE
Conference on Control Theory and Applications, 144:467–475, 1997.

35. R. L. Eubank. Nonparametric Regression and Spline Smoothing. Marcel
Dekker, 1999.

36. C. Lee and Y. Xu. Trajectory fitting with smoothing splines using velocity
information. In Proceedings of the IEEE International Conference on Robotics
and Automation, ICRA’00, San Francisco, CA, 2000.

37. L. Biagiotti and C. Melchiorri. Smooth trajectories for high-performance multi-
axes automatic machines. In Proc. 4th IFAC Syposium on Mechatronic Sys-
tems, Heidelberg, G, Sept. 2006.

38. L. Piegl and W. Tiller. The Nurbs Book. Springer-Veralg, second edition, 1997.
39. A. De Luca, L. Lanari, and G. Oriolo. A sensitivity approach to optimal spline

robot trajectories. Automatica, 27(3):535–539, 1991.

References 505

40. C. G. Lo Bianco and Aurelio Piazzi. Minimum-time trajectory planning of
mechanical manipulators under dynamic constraints. International Journal of
Control, 75(13):967–980, 2002.

41. A. Piazzi and A. Visioli. Global minimum-jerk trajectory planning of robot
manipulator. IEEE Transaction on Industrial Electronics, 47(1):140–149, 2000.

42. W. Hoffmann and T. Sauer. A spline optimization problem from robotics.
Rendiconti di matematica, 26 (7):221–230, 2006.

43. C.-S. Lin, P.-R. Chang, and J.Y.S. Luh. Formulation and optimization of
cubic polynomial joint trajectories for industrial robots. IEEE Transaction on
Automatic Control, 28(12):1066–1074, 1983.

44. D. Simon. Data smoothing and interpolation using eighth order algebraic
splines. IEEE Transactions on Signal Processing, 52(4):1136– 1144, 2004.

45. H. Park. Choosing nodes and knots in closed B-spline curve interpolation to
point data. Computer-Aided Design, 33:967–975, 2001.

46. C. Edwards, E. Fossas, and L. Fridman, editors. Advances in Variable Struc-
ture and Sliding Mode Control, volume 334 of Lecture Notes in Control and
Information Sciences. Springer Verlag, 2006.

47. A. Sabanovic, L. Fridman, and S. K. Spurgeon, editors. Variable Structure
Systems: From Principles to Implementation. IEE Book Series, 2004.

48. R. Zanasi and R. Morselli. Third order trajectory generator satisfying velocity,
acceleration and jerk constraints. In Proceedings of the 2002 International
Conference on Control Applications, Glasgow, UK, 2002.

49. R. Zanasi, C. Guarino Lo Bianco, and A. Tonielli. Nonlinear filter for smooth
trajectory generation. In Proceedings of the IFAC Symposium on Nonlinear
Control Systems, NOLCOS’98, Enschede, NL, 1998.

50. R. Zanasi, C. Guarino Lo Bianco, and A. Tonielli. Nonlinear filters for the
generation of smooth trajectories. Automatica, 36:439–448, March 2000.

51. J.M. Hollerbach. Dynamic scaling of manipulator trajectories. Journal of
Dynamic Systems, Measurement and Control, 106:102–106, 1983.

52. R.M. Murray, Z. Li, and S.S. Sastry. A Mathematical Introduction to Robotic
Manipulation. CRC Press, 1994.

53. L.-W. Tsai. Robot Analysis: The Mechanics of Serial and Parallel Manipula-
tors. John Wiley & Sons, 1999.

54. H. W. Beaty and J. L. Kirtley. Electric Motor Handbook. McGraw-Hill, 1998.
55. B.K. Fussell and C.K. Taft. Brushless DC motor selection. In Electrical Elec-

tronics Insulation Conference, pages 345–353, Rosemont, IL, USA, Sept. 1995.
56. R. Fredrik, J. Hans, and W. Jan. Optimal selection of motor and gearhead in

mechatronic applications. Mechatronics, 16(1):63–72, 2006.
57. P. Meckl and W. Seering. Minimizing residual vibration for point-to-point mo-

tion. ASME Journal of Vibration, Acoustics, Stress, and Reliability in Design,
107:378–382, 1985.

58. R.L. Norton. Cam Design and Manufacturing Handbook. Industrial Press,
2002.

59. K. Itao and K. Kanzaki. High-speed positioning with polydyne cams. Review
of the electrical communication laboratories, 21(1-2):12–22, 1973.

60. T.R. Thoren, H.H. Engermann, and D.A. Stoddart. Cam design as related to
valve train dynamics. SAE Quarterly Transactions, 6:1–14, 1952.

61. W.M. Dudley. New methods in valve cam design. SAE Quarterly Transactions,
2:19–33, 1948.

506 References

62. D.A. Stoddart. Polydyne cam design - III. Machine Design, 25(3):149–164,
1953.

63. E.E. Peisekah. Improving the polydyne cam design method. Russian Engi-
neering Journal, 46:25–27, 1966.

64. J.-G. Sun, R.W. Longman, and F. Freudenstein. Determination of appropri-
ate cost functionals for cam-follower design using optimal control theory. In
Proceedings of the American Control Conference, San Diego, CA, 1984.

65. A. V. Oppenheim and R. W. Schafer. Discrete-time signal processing. Prentice-
Hall, Upper Saddler River, NJ, second edition, 1999.

66. T.W. Parks and C.S. Burrus. Digital Filter Design. John Wiley & Sons, New
York, 1987.

67. S. Winder. Analog and Digital Filter Design. Elsevier, 2002.
68. W. Singhose, N. Singer, and W. Seering. Comparison of command shaping

methods for reducing residual vibration. In Proceedings of the European Control
Conference, ECC’95, volume 2, pages 1126–1131, Rome, I, 1995.

69. N.C. Singer and W.P. Seering. Preshaping command inputs to reduce system
vibration. ASME Journal of Dynamic Systems, Measurement and Control,
112:76–82, 1990.

70. W. Singhose, W. Seering, and N. Singer. Shaping inputs to reduce vibration: a
vector diagram approach. In Proceedings of the IEEE Conference on Robotics
and Automation, ICRA’90, Cincinnati, OH, 1990.

71. W. Singhose, W. Seering, and N. Singer. Residual vibration reduction using
vector diagrams to generate shaped inputs. ASME Journal of Mechanical
Design, 116:654–659, 1994.

72. W.E. Singhose, L.J. Porter, T.D. Tuttle, and N.C. Singer. Vibration reduc-
tion using multi-hump input shapers. Transactions of the ASME Journal of
Dynamic Systems, Measurement, and Control, 119:320–326, 1997.

73. K. Ogata. Discrete-time control systems. Prentice-Hall, second edition, 1995.
74. T.D. Tuttle and W.P. Seering. A zero-placement technique for designing shaped

inputs to suppress multiple-mode vibration. In American Control Conference,
Baltimore, Maryland, 1994.

75. S. Devasia, D. Chen, and B. Paden. Nonlinear inversion-based output tracking.
IEEE Transactions on Automatic Control, AC-41:930–942, 1996.

76. L.R. Hunt and G. Meyer. Stable inversion for nonlinear systems. Automatica,
33:1549–1554, 1997.

77. A. Visioli and A. Piazzi. A toolbox for input-output system inversion. In-
ternational Journal of Computers, Communications and Control, 2:388–402,
2007.

78. D. Pallastrelli and A. Piazzi. Stable dynamic inversion of nonminimum-phase
scalar linear systems. In 16th IFAC World Congress on Automatic Control,
Prague, CZ, 2005.

79. Tsuneo Yoshikawa. Foundations of Robotics. Analysis and Control. The MIT
Press, 1990.

80. W. Khalil and E. Dombre. Modeling, Identification and Control of Robots.
Hermes Penton Science, 2002.

81. F. L. Lewis, D. M. Dawson, and C. T. Addallah. Robot Manipulator Control
Theory and Practice. Control Engineering. Marcel Dekker, second edition,
2004.

82. Z. Yang and E. Red. On-line cartesian trajectory control of mechanisms along
complex curves. Robotica, 15:263–274, 1997.

References 507

83. B.A. Barsky and T. D. Derose. Geometric continuity of parametric curves:
three equivalent characterizations. IEEE Computer Graphics and Applications,
9(6), 1989.

84. B.A. Barsky and T. D. Derose. Geometric continuity of parametric curves:
construction of geometrically continuous splines. IEEE Computer Graphics
and Applications, 9(6), 1989.

85. P. J. Davis. Interpolation and Approximation. Dover, 1976.
86. G. M. Phillips. Interpolation and Approximation by Polynomials. CMS books

in mathematics. Springer, 2003.
87. J. Park, S.Nam, and M. Yang. Development of a real-time trajectory gen-

erator for nurbs interpolation based on the two-stage interpolation method.
International Journal of Advanced Manufacturing Technology, 26(4):359–365,
2005.

88. C. Blanc and C. Schlick. Accurate parametrization of conics by Nurbs. IEEE
Computer Graphics and Applications, 16(6):64–71, 1996.

89. H. Akima. A new method of interpolation and smooth curve fitting based
on local procedures. Journal of the Association for Computing Machinery,
17(4):589 – 602, 1970.

90. F.-C. Wang and P. K. Wright. Open architecture controllers for machine tools,
Part 2: a real time quintic spline interpolator. Journal of Manufacturing Sci-
ence and Engineering, 120:425–432, 1998.

91. F.-C. Wang and D. C. H. Yang. Nearly arc-length parameterized quintic-spline
interpolation for precision machining. Computer Aided Design, 25(5):281–288,
1993.

92. R. Volpe. Task space velocity blending for real-time trajectory generation. In
Proceedings of the IEEE International Conference on Robotics and Automa-
tion, ICRA’93, Atlanta, Georgia, US, 1993.

93. J. Lloyd and V. Hayward. Real-time trajectory generation using blend func-
tions. In Proceedings of IEEE International Conference on Robotics and Au-
tomation, ICRA’91, Sacramento, CA, USA, 1991.

94. R. V. Fleisig and A. D. Spence. A constant feed and reduced angular acceler-
ation interpolation algorithm for multi-axis machining. International Journal
of Machine Tools and Manufacture, 33(1):1–15, 2001.

95. R.-S. Lin. Real-time surface interpolator for 3-D parametric surface machining
on 3-axis machine tools. International Journal of Machine Tools and Manu-
facture, 40:1513–1526, 2000.

96. C.-W. Cheng and M.-C. Tsai. Real-time variable feed rate Nurbs curve inter-
polator for CNC machining. International Journal of Advanced Manufacturing
Technology, 23:865–873, 2004.

97. S.D. Conte and C. de Boor. Elementary Numerical Analysis: An Algorithmic
Approach. McGraw-Hill, third edition, 1981.

98. W. H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling. Numerical
Recipes in FORTRAN: The Art of Scientific Computing. Cambridge University
Press, second edition, 1992.

99. C. de Boor. A Practical Guide to Spline, volume 27 of Applied Mathematical
Sciences. Springer Verlag, 1978.

100. E.V. Shikin and A.I. Plis. Handbook on Splines for the User. CRC, 1995.
101. A. Papolulis. Signal Analysis. McGraw-Hill, New York, 1984.

Index

Acceleration
centripetal, 416
coefficient of, 250
constraint, 135, 216, 230, 245, 415,

416
root mean square (RMS), 249
spectrum, 287, 299, 303, 323
tangential, 416

Angle
Euler, 491
Roll-Pitch-Yaw, 493

Angle-axis, 490
Approximation, 180, 346, 364, 368, 371

B-spline, 364
global, 364
Hausdorf distance, 449
least square minimization, 364
with prescribed tolerance, 187

Arc length, 353

B-spline, 194, 359, 376, 397, 440, 467
approximation, 364, 371
basis function, 467
basis function evaluation, 469
boundary conditions, 196, 373, 378
continuity, 207
control point, 471
control polygon, 471
cubic, 360, 371
cyclic conditions, 197, 200, 379, 382
degree, 467
differentiation, 475
evaluation, 474

extra-knot, 199
interpolation, 360
knot, 195, 359, 366, 377, 467
knots choice, 195, 377
mixed interpolation approximation,

368
of order five, 204, 384
of order four, 197, 379
order, 467
partition of the unity, 468
properties, 471
smoothing, 346, 371, 445

Bézier, 32, 483
Bézier curve, 393, 406, 483

cubic, 395
derivative, 486
evaluation, 484
interpolation, 395
quintic, 400

Bell trajectory, see Double S
Bernstein polynomial, 32
Bernstein polynomial, 483
Binormal vector, 353
Bode diagram, 286
Breakpoint, 188, 359, 468

centripetal distribution, 189
choice, 188
cord length distribution, 189
equally spaced, 189

Cam, 4
electronic, 4, 241
mechanical, 4, 241

510 Index

Cartesian space, 341
Chebyshev polynomial, 162
Computer Numerical Control (CNC),

391
Condition number, 152
Constraint

acceleration, 230
jerk, 230
velocity, 230

Continuity, 343, 349, 399, 420
derivative, 343
geometric, 343, 345
parametric, 343

Continuous torque, 246
Control point, 484
Control polygon, 484
Cubic polynomial, 23, 166

coefficient of acceleration, 253
coefficient of velocity, 253
frequency spectrum, 292
vibration, 277

Cubic spline, 166
approximation, 180
assigned initial and final velocities,

169, 175
assigned initial and final velocities

and acceleration, 177
breakpoint, 188
choice of the time instants, 188
duration optimization, 189
frequency spectrum, 299, 300
interpolation, 167
periodic, 172
properties, 168
smoothing, 180

Curvature vector, 345, 384
compuation from via-points, 394

Curvilinear coordinate, 353
Cyclic conditions, 165, 173, 197, 379
Cycloidal trajectory, 43, 235

coefficient of acceleration, 253
coefficient of velocity, 253
frequency spectrum, 293, 295, 300
modified, 127, 229
normalized form, 235
vibration, 275

de Casteljau algorithm, 484
Diagram speed-torque, 245

Discrete Fourier Series (DFS), 499
Discrete Fourier Transform (DFT), 295,

499
Discrete Time Fourier Transform

(DTFT), 498
Double S, 79, 209, 256

coefficient of acceleration, 256
coefficient of velocity, 256
computation for negative displace-

ment, 90
duration, 101
flux diagram for parame-

ters’computation, 90
frequency spectrum, 290
online computation, 93, 209
with preassigned durations of the

different phases, 102
with zero initial and final velocities,

90
Dynamics

inversion, 306, 330
mechanical system, 247, 305
non-minimum phase, 331
robot, 237

Electric motor, 245
continuous torque, 246
diagram speed-torque, 245, 247, 254
peak torque, 246
rated speed, 246

Electronic cam, 4
Elliptic trajectory, 45

frequency spectrum, 295, 300
vibration, 276

Exponential trajectory, 47
Extra-Insensitive (EI) shaper, 324

Fast Fourier Transform (FFT), 500
frequency analysis, 500

Feed rate, 421
constant, 421
double S, 434
variable, 424

Feedforward, 306, 330
Fifteen segments trajectory, 107
Filtering, 318

Extra-Insensitive (EI) shaper, 324
input shaping, 318
low-pass, 318

Index 511

Zero Vibration (ZV) shaper, 319
Fourier, 51, 52

aperiodic continuous function, 495
discrete series, 499
discrete time function, 498
discrete transform, 295, 499
fast transform, 500
frequency analysis, 500
periodic continuous function, 299, 497

Fourier series, 52, 299, 497
Fourier transform, 285, 291, 303, 495

properties, 496
Frenet frame, 353
Frequency, 303–305

analysis, 285
modification, 303, 304

Freudenstein, 54, 55, 253, 283, 284, 299,
300

Frobenius norm, 365

Geometric path, 7, 342
Gutman, 53, 253, 282, 299, 300

Harmonic trajectory, 42, 235
coefficient of acceleration, 253
coefficient of velocity, 253
frequency spectrum, 293, 295, 300
normalized form, 235
vibration, 274

Hausdorf distance, 449
Horner formula, 463

Interpolation, 164, 346, 347, 359, 368,
375

B-spline, 359
cubic splines, 167
global, 359
Lagrange formula, 154
linear, 406
local, 393
polynomial, 151
trigonometric polynomial, 164

Jerk
constraint, 209, 230, 416

Kinematics, 7
inverse, 7, 342

Knot, 359, 366

centripetal distribution, 360
choice, 366
cord length distribution, 360
equally spaced, 360

Lagrange formula, 154
Laplace transform, 322
Linear interpolation, 406, 429

Master-slave system, 241
Matlab

precision, 153
Matrix

diagonal, 365
Frobenius norm, 365
trace, 365

Mechanical
task, 247

Mechanical cam, 4
Mechanical model, 266, 305, 331

n degrees of freedom, 267
modeling error, 326
nonlinear, 269, 270
one degree of freedom, 266, 322

Modified cycloidal
Alt modification, 128
distorsion angle, 129
frequency spectrum, 299, 300
Wildt modification, 128

Motion law, 7, 342, 415, 418
double S, 419

Motion primitive, 343, 449
circular arc, 356
straight line, 356

Motor sizing, 245
Multipoint trajectory, 393

B-spline, see B-spline
intermediate velocities computation,

25
orthogonal polynomial, 155
polynomial, 151
spline, see Spline
trigonometric polynomial, 164

Neville, 154
Normal vector, 353
Normalized form, 31, 230, 291, 457

cubic polynomial, 231
cycloidal trajectory, 235

512 Index

exponential trajectory, 48
harmonic trajectory, 235
polynomial of degree five, 231
polynomial of degree seven, 232
polynomials of higher degree, 30

Normalized polynomials, 231, 457
Nurbs, 391, 481

evaluation, 483
weights, 392

Orientation, 342, 347, 429, 488
angle-axis, 349, 490
Euler angles, 342, 348, 491
Roll-Pitch-Yaw angles, 342, 348, 493
rotation matrix, 347, 489

Orthogonal polynomial, 155
Chebyshev, 162
frequency spectrum, 299, 300

Parameterization, 31, 230, 457
Parametric curve, 341
Peak torque, 246
Periodic condition, see Cyclic conditions
Polydyne, 305
Polynomial, 15, 23, 26, 28, 119, 151

Chebyshev, 162
cubic, 23, 231, 233, 292, 299, 300
Lagrange formula, 154
of degree five, 26, 231, 233, 253, 299,

300
of degree seven, 28, 232, 233, 253
orthogonal, 155, 299, 300
trigonometric, 164
vibration, 278

Polynomial evaluation, 463
Horner formula, 463

Reparameterization, 396, 415
Robot

dynamics, 237
end effector, 347
kinematics, 7

Root mean square (RMS), 249
Rotation, 350, 488

angle-axis, 490
Euler angles, 491
matrix, 489
Roll-Pitch-Yaw angles, 493

Rotation matrix, 357

Saturation, 228
dynamic, 228
kinematic, 228

Scaling
dynamic, 236
geometric, 223
kinematic, 230
time, 228, 303, 396, 416

Schoenberg, 166
Seven segments trajectory, see Double S
Sherman-Morrison formula, 465
Shift

time, 224, 226, 396
Sinusoidal trajectory

modified, 124, 253, 299, 300
Smoothness, 343, 371
Snap, 204, 306

continuity, 204
Spectrum

residual, 49
Spline

approximation, 364
B-basis, 467
B-form, 471
B-spline, 359, 364, 467
Basic, 467
clamped, 182
conversion from PP-form to B-Form,

479
cubic, 166, 299, 300
cyclic conditions, 173, 197, 379
interpolation, 359
natural, 167
Nurbs, 481
periodic, 167
PP-form, 479
trigonometric, 165

Splinedyne, 318
Synchronization, 66, 241

trapezoidal trajectory, 66

Tangent vector, 345, 353, 384, 389
compuation from via-points, 394
interpolation, 389

Thomas algorithm, 465
Time scaling, 228

constant, 229, 239
Torque

constraint, 237

Index 513

continuous, 249
inertial, 247
reflected, 247
root mean square (RMS), 249

Trajectory
‘4-3-4’, 118
3D space, 341
asymmetric constant acceleration,

295, 300
asymmetric constant acceleration, 21
based on Fourier series, 51
Cartesian space, 341
circle, 355
constant acceleration, 18, 295, 300
constant acceleration with cy-

cloidal/cubic blends, 144,
461

constant velocity, 17, 287, 295, 300
constant velocity/acceleration with

cycloidal or harmonic blends, 133
constraint on the acceleration, 135,

216, 230, 245, 415, 416
constraint on the velocity, 133, 230,

245, 416
cubic polynomial, 23, 231, 253, 277,

292, 299, 300
cyclic, 165, 172, 248, 299, 379
cycloidal, 43, 127, 142, 148, 235, 253,

275, 293, 295, 300
double S, 79, 148, 209, 256, 290
elliptic, 45, 276, 295, 300
exponential, 47
fifteen segments, 107
filtering, see Filtering
frequency analysis, 285
Freudenstein 1-3, 54, 253, 283, 299,

300
Freudenstein 1-3-5, 55, 253, 284, 299,

300
geometric modification of, 223
Gutman 1-3, 53, 253, 282, 299, 300
harmonic, 42, 235, 253, 274, 293, 295,

300
helix, 354
linear trajectory with circular blends,

279
linear with circular blends, 59, 299,

300
linear with parabolic blends, 62

linear with polynomial blends, 76
minimum time, 140, 231, 233, 241
modified cycloidal, 127, 299, 300
modified sinusoidal, 124, 253, 299,

300
modified trapezoidal, 119, 253, 281,

299, 300
motion primitive, 356
multi-dimensional, 6, 341
multipoint, 24, 28, 151, 346
nonlinear filter, 208
normalized, 31, 230, 291, 457
one-dimensional, 3
online computation of the double S,

93
online planning, 208
optimization, 208, 241
orthogonal polynomial, 155, 299, 300
parabolic, 148
piecewise polynomial, 117
polydyne, 305
polynomial, 15, 119
polynomial of degree five, 26, 231,

253, 278, 299, 300
polynomial of degree seven, 28, 232,

253
spline, 166, 299, 300
splinedyne, 318
straight line, 356
synchronization, 241
translation, 223
trapezoidal, 62, 148, 216, 256, 280,

287, 299, 300
trigonometric, 42, 144
trigonometric polynomial, 164
with preassigned acceleration, 65
with preassigned acceleration and

velocity, 65
Transfer function, 322, 329, 330

inverse, 330
Transform

Fourier, 52, 285, 291
Laplace, 286, 322, 330
Zeta, 329

Trapezoidal, 62, 216, 256
coefficient of acceleration, 256
coefficient of velocity, 256
duration, 69
frequency spectrum, 287, 299, 300

514 Index

modified, 119, 253, 281, 299, 300
multipoint, 67, 74
vibration, 280
with finite initial and final velocities,

70
with preassigned acceleration, 65
with preassigned acceleration and

velocity, 65
with preassigned durations, 69

Tridiagonal system, 464
cyclic, 465
Sherman-Morrison formula, 465
Thomas algorithm, 465

Trigonometric polynomial, 164
Trigonometric spline, 165

Trigonometric trajectory, 42

Uniform parameterization, 397, 423,
436

Vandermonde matrix, 151
condition number, 152

Velocity
coefficient of, 250
constraint, 230, 245, 415, 416
root mean square (RMS), 249

Via-point, 343
Vibration, 47, 57, 265, 319

Zero Vibration (ZV) shaper, 319

	front-matter
	Chapter 1
	Part I
	Chapter 2
	Chapter 3
	Chapter 4
	Part II
	Chapter 5
	Chapter 6
	Chapter 7
	Part III
	Chapter 8
	Chapter 9
	Part IV
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	back-matter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

