
A Method of Integrating Robot Programming
Frameworks

Piotr Trojanek‡ and Cezary Zieli«ski‡

∗‡ Institute of Control and Computation Engineering, Warsaw University of Technology,

Warsaw, Poland

P.Trojanek@elka.pw.edu.pl, C.Zielinski@ia.pw.edu.pl

Abstract There is an ongoing quest for producing an ultimate robot programming

framework that can be utilised in the design of controllers for any types of robots

and moreover executing any tasks. Although many solutions have been presented

since the early eighties of the XX century and much progress has been attained,

the ultimate solution is still far away. The designed frameworks excel in certain

areas, while exhibit signi�cant drawbacks in some other. This paper focuses on an

alternative solution to this problem � on fusion of programming frameworks. How-

ever, this shifts the problem to another area, namely the communication between

the software originating with di�erent frameworks. Combining the capabilities of

MRROC++ and Player is presented as an example.

1 Introduction

One of the �rst precursors of robot programming frameworks were PasRo (Blume and
Jakob, 1986) and RCCL (Hayward and Paul, 1986). RCCL later evolved into KALI (Hay-
ward et al., 1989). At the time that they were de�ned they were simply called robot
programming libraries, as the bene�t of associating a programming pattern was not
evident. Over the years not only the base programming language changed, but also
new programming paradigms have been employed and the necessity of a programming
template became obvious. Initially Pascal (PasRo) and C (RCCL) were used and thus pro-
cedural programming paradigm was employed. Currently C++ or even Java are used and
object oriented or component based programming paradigms are utilised. Newer frame-
works (e.g., MRROC++ (Zieli«ski, 1999; MRROC++, 2007), OROCOS (Bruyninckx et al.,
2003; OROCOS, 2007), Player (Vaughan et al., 2003; Gerkey et al., 2003; Player/Stage,
2007)) come with a pattern according to which the programmer assembles the building
blocks into a program that controls the hardware and solves the task at hand.

There are many robot programming frameworks, thus it is impossible to mention all
of them. However, at least some ought to be characterised. OROCA (Makarenko et al.,
2006; Brooks et al., 2007) produces distributed component-based systems. Its emphasis
is on: cross platform operation involving di�erent operating systems, i.e. is a form of
middleware. OROCA was initially CORBA based, but due to the complexity of the latter
∗This work has been supported by MNiSW grant no. 3 T11A 009 29



Ice was chosen as a task communication management tool, thus many programming
languages can be supported (e.g., C++, C#, Java, Python). However, the assumed
method of communication limits the utilisation of OROCA to mobile robots, where the
communication delays are not that signi�cant.

OROCOS (OROCOS, 2007) applications are built of components, which form a net-
work. For this purpose application templates are provided, e.g., a pattern for motion
control contains components for: device access, position control, path planning and data
reporting. The granularity of control components may vary from an algorithm computing
inverse kinematics to controlling a whole robot. OROCOS uses �ve methods of interfac-
ing components, that is through: properties, events, methods, commands and data �ow
ports. The emphasis of this framework is on con�gurability, which is achieved through
XML.

Simplicity of code generation is at the focus of GenoM (Generator of Modules) (Alami
et al., 1998; Fleury and Herrb, 2001), which is a tool for automatic generation of enti-
ties providing services upon request. The system builder speci�es the interfaces between
modules and provides codels (code elements) that are responsible for providing the func-
tionality of the module. Control requests in�uence the execution of a service (e.g. pa-
rameterize, abort, interrupt it), whereas execution requests start services. A running
service, called an activity, exchanges data with other modules through posters. Services
are provided by execution tasks. Besides one or more execution tasks, a module con-
tains a single control task that is responsible for asynchronous communications with the
clients of the module, checking the validity of the incoming requests and for initiating
the service execution. Execution tasks and the control task contain codels.

One of the main problems with diverse robot programming frameworks is that each
one of them was tested on di�erent hardware, thus the speci�c software (device drivers,
algorithms) exists only in some of them. The bigger the popularity of a certain frame-
work the larger the chance that it will support the required hardware. However, quite
frequently, not all of the hardware and not all data processing capabilities are provided
by one framework. In such a situation either speci�c drivers have to be developed sep-
arately and appended to the chosen framework or mechanisms enabling the utilisation
of both frameworks have to be developed. In this paper we advocate the latter solution.
As an example we present the merging of MRROC++ and the Player frameworks.

2 Structure of the MRROC++ based controllers

MRROC++ provides a library of software modules (i.e. classes, objects, processes and
threads) and design patterns according to which any multi-robot system controller can
be constructed. This set of ready made modules can be extended by the user by coding
extra modules in C++. The structure of MRROC++ is due to formal considerations presented
in (Zieli«ski, 2001, 2006).

MRROC++ based controllers assume a hierarchical structure with a single coordinator
and many e�ectors (manipulators, mobile platforms etc.) (�g. 1). Each of the e�ectors
can use as many exteroceptors (sensors gathering the information from the environment)
as necessary. The state of the e�ector is monitored by proprioceptors. The resulting
system is thus composed of a single coordinator, many e�ectors with each one of them
possessing many exteroceptors. Such a system can be treated as an embodied agent. This



Figure 1. General structure of a MRROC++ based system/agent (j = 1, . . . , ne, where ne

is the number of e�ectors, and k = 0, . . . , nr , where njr is the number of virtual sensors
associated with e�ector ej)

agent has extra communication capabilities with other such agents through transmitters.
If the coordinator of a single-agent is dormant, independent operation of e�ectors results.
E�ectors can also be divided into groups, with each group having its own coordinator �
several agents thus result. One-member groups are also possible.

A MRROC++ based control system is a set of processes (�g. 1):
UI � User Interface Process � a single system con�guration dependent process (it can

be absent, if the system is meant to be fully autonomous),

MP � Master Process � a single process representing the coordinator,

ECP � E�ector Control Process � responsible for the execution of the task allotted to
the e�ector � there are as many such processes as there are distinct e�ectors,

EDP � E�ector Driver Process � responsible for controlling the hardware associated
with the e�ector (proprioceptors are used by the e�ector control algorithm) � there
are as many EDPs as there are ECPs,



VSP � Virtual Sensor Process � responsible for performing data aggregation on extero-
ceptor readings and thus producing a virtual sensor reading � zero or more of those
processes can be associated with MP or any of the ECPs.

Each of the above processes may consist of several threads enabling concurrent realization
of their tasks, e.g. acquiring data, interpreting and processing it and dispatching it to
other components of the system.

From software engineering perspective process contains two elements: its shell and
its kernel. The shell is responsible for the communication with the other processes and
possibly other agents, and for error handling. The kernel executes of the user's task. In
the case of MP and the ECPs the kernel is usually composed of the Move instructions
producing motion of the e�ector or causing the e�ector to exert forces and torques on the
environment. The shell contains the communication bu�ers responsible for contacting the
VSPs, the transmitters that communicate with other agents, and bu�ers for contacting
other processes that are either higher up or lower down in the control hierarchy of the
agent. Error monitoring is done by standard exception handling mechanisms, so it is
active during the execution of the Move instructions, as well as any other instructions of
C++ language. The generated exceptions are caught and handled at the topmost level of
each process.

The Move instructions of the MP pertain to all of the e�ectors while the Move instruc-
tions of the ECPs deal with single e�ectors. In both cases those instructions cause the
computation of a position/force command that is being transmitted to the lower con-
trol layers, i.e., MP sends this data to the ECPs while ECPs to the EDPs. All of this
communication takes place through bu�ers that hold data for one control period � the
macrostep. Typically a macrostep is de�ned as several steps, where each step is executed
by the EDP at a servo sampling rate, e.g. 1 ms. The main argument of the Move in-
struction is a motion generator. A motion generator computes the next e�ector position
taking into account the current state of the e�ector, the associated VSP readings, the
data obtained via transmitters from the other agents and the data obtained from the
higher layers of the control system (if they exist). It generates the set value for the next
macrostep. It is the responsibility of the user to deliver appropriate motion generators
for the execution of their task. Some of them are readily available in the framework.
The generated exceptions, due to the detection of errors, are caught and handled at the
topmost level of each process.

3 Structure of the Player based controllers

The general structure of the Player based controllers is composed of two main compo-
nents connected together by a TCP/IP network. The �rst one is the Player server and
the second one is the client application (�g. 2). The Player server is a robot device
interface, which provides uni�ed access methods to common hardware found in mobile
robot systems. Player software is a collection of: device drivers, the server (the goal
of which is to provide network transport mechanisms) and the client libraries (which
communicate with the drivers through well de�ned interfaces). The drivers are coded in
C++, but the server can provide access to their methods by any network mechanism. The
robot high level control can be coded in a variety of programming languages, as long as
the client library for a speci�c language is available.



D
1

D
n

Device

Drivers

1
H H

n

Simulated

or real

hardware

TCP / IP

Client

Player
Server

Figure 2. Control structure of Player software

The Player based controllers do not assume any structure and leave much more �ex-
ibility for the programmer. In most common scenario there is an instance of Player
server running onboard a mobile platform and one client application, which communi-
cates with the robot over wireless. The client continuously polls for new data and after
processing it sends a new command to be executed by the drivers. Typically this loop
runs at a frequency of 10 to 100 Hz, which is enough to control relatively not demanding
mobile platforms and is in the range of most common sensor update rates (e.g.: camera,
range�nder). The Player server with its device drivers runs on Linux operating system,
while with portable client libraries it is possible to control the robot from virtually all
common operating systems through TCP/IP network.

4 Integration of MRROC++ and Player

From the point of view of MRROC++ controller designer the Player server can be seen
as a remote repository of e�ector and sensor devices, similar to the native VSP and
EDP processes. Usually a hierarchy of drivers is utilized while programming within the
Player framework. One of the reasons for this is sensor data fusion, e.g., when mobile
robot position is estimated using both odometry, which often provides unreliable data
due to wheels slipping, and laser range �nder readings, which are utilized for corrections.
To keep the hierarchical use of drivers it is more convenient to let them run inside the
original Player server shell code and to communicate with the most external interface
through TCP/IP client library instead of wrapping each driver in the MRROC++ process
shell. Using this approach, it is preferred to integrate Player server as an external agent
and communicate with it on the MRROC++ side using the transmitter concept.

The transmitter is an abstract class representing the inter�agent data exchange both
in the MP and the ECP. They are used for storing the incoming and outgoing data
from/to the other agents. Both the MP and the ECP may need to communicate with
many agents. Thus each of those processes will have many transmitters holding the



ECPj

D
n

H
n1

H

D1

Virtual
sensor
reading
requests

Current
virtual
sensor

readings

Current
effector
states

Next
effector
states

MP

reply

Transmitter
buffer

from MP

Drivers

hardware
or real
Simulated

TCP / IP

Server

Player

Messages
from other

agents

Messages

agents
to other

Device

(used by generator)
− auxilary variables
− transmission data
− virtual sensor data
− effector data
Internal data structures:

to MP
buffer

Transmitter

command
sensor
Virtual

buffers

buffers
reading
sensor
VirtualjMP to ECP

command
buffer

buffer

Figure 3. Integration of Player server as an external agent of a MRROC++ controller
(communication between the coordinator and remote devices)

current state of the interchange of information between those processes and the agents.
This class is a functional equivalent of stubs, which represent remote object proxy, e.g.,
in CORBA. The transmitter class has two methods, which copy data between the internal
controller data structures and the communication bu�ers.

The communication with the Player server is handled by a separate thread inside
the transmitter class. This allows nonblocking calls from the MRROC++ code and thus en-
ables adaptation to diverse device update rates of industrial manipulators (typically few
milliseconds) and mobile robots (typically tens or hundreds of milliseconds). The ded-
icated thread handles communication bu�ers data transmission utilizing native Player

protocol.
At the initialization stage the transmitter object connects to a remote server and then

sends and receives data at the frequency governed by the Player protocol. Messages from
and to the remote devices are processed by MP (in the case of cooperating robots) and
ECP (in the case of a single remote controlled manipulator) control loops in a similar
way that they communicate with the native VSP and EDP processes, i.e., by utilizing
the bu�ers (�g. 3).

The inter-framework communication on the MRROC++ side has been implemented using
messip library (Message Passing over TCP/IP). In this way inter-framework message
passing is made similar to the native QNX message passing over QNET used by the
MRROC++ processes running on QNX only. In both cases the initiator of communication



sends a message and waits for a reply from the receiver. As communication is handled
by separate threads the other activities of the proces can be handled without disruption.
The interface to the inter-framework communication tools consists of seven functions
handling: creation and destruction of the communication channel, opening and closing
of the channel, waiting for the message, dispatching the message and dispatching the
reply to the message. If a programming environment permits the use of external system
libraries, this interface can be used by programs written in di�erent languages � not
only C++, which is the base language for MRROC++. Thus, e.g. Java or Lisp can be used
to create components of the created system. Low latency of communication has been
achieved by minimization of the number of system calls necessary to control the TCP/IP
communication and the elimination of dynamic data structure allocation, which induces
indeterministic times of execution.

5 Applications

The proposed approach has been implemented and veri�ed by two speci�c applications.
The �rst one shows how to overcome the problem of unsupported hardware in realtime
operating systems such as QNX (e.g., USB devices and �rewire cameras), which is used
by MRROC++. As an example the control of a manipulator with a common USB gamepad
device has been implemented. The manipulator controller is MRROC++ based, thus relies on
QNX, which does not support the USB devices, however Player, which is Linux based
does. The problem of unsupported devices often leads to handcrafted remote device
servers and custom TCP/IP based communication, which can be successfully avoided
using the above presented method.

The second application controls cooperating mobile robot and immobile manipulator.
Each of this two kinds of robots is controlled by a native driver processes (ECP and
Player server respectively). At the level of the coordinator (i.e., MP) those processes
are treated as a dependant e�ector and remote agent respectively. This application
presents successful integration of robots with signi�cantly di�erent control rates (1 ms
for the manipulator and 100 ms for the mobile robot).

6 Conclusions

The presented method of integrating software belonging to two di�erent robot program-
ming frameworks using TCP/IP based connection is e�ective for controlling distinct
agents and utilizing foreign exteroceptors or e�ectors. The transmission delays intro-
duced both by the transmission hardware and software (both by MRROC++ and Player)
is about 100 µs each. The total delay due to both of those factors is about 200 µs on
AMD 1 GHz processors and 100 Mb/s Ethernet LAN � and that is acceptable.

The experience gained while using the MRROC++ distributed programming framework
showed that the communication model based on passing message packets to input and
output bu�ers is the simplest, yet most e�cient. It is intuitive and well suited to formal
description of robot controllers, since it is natural to enclose message passing as an el-
ement of data processing loop. In terms of reduction of development time the major
bene�t stems from using the software that has been already developed and tested within
each of the programming frameworks that are being connected, while the postulated



connection is easy to implement if TCP/IP can be utilized on both sides � and this is
usually the case.

Bibliography

R. Alami, R. Chatila, S. Fleury, M. Ghallab M., and Ingrand F. An architecture for
autonomy. Int. J. of Robotics Research, 17(4):315�337, 1998.

C. Blume and W. Jakob. Programming Languages for Industrial Robots. Springer-Verlag,
Berlin, 1986.

A. Brooks, T. Kaupp, A. Makarenko, S. Williams, and A. Orebäck. Orca: A component
model and repository. In Davide Brugali, editor, Software Engineering for Experi-
mental Robotics, pages 231�251. Springer, 2007.

H. Bruyninckx, P. Soetens, and B. Koninckx. The real-time control core of the oro-
cos project. In Proceedings of the IEEE International Conference on Robotics and
Automation, Taipei, Taiwan, pages 2766�2771. September, 14�19 2003.

S. Fleury and M. Herrb. Genom user's guide. Report, LAAS, Toulouse, December 2001.

B.P. Gerkey, R.T. Vaughan, and A. Howard. The player/stage project: Tools for multi-
robot and distributed sensor systems. In Proceedings of the International Conference
on Advanced Robotics, ICAR'03, Coimbra, Portugal, pages 317�323. June 30 � July
3 2003.

V. Hayward and R. P. Paul. Robot manipulator control under unix RCCL: A robot
control C library. Int. J. Robotics Research, 5(4):94�111, 1986.

V. Hayward, L. Daneshmend, and S. Hayati. An overview of KALI: A system to program
and control cooperative manipulators. In K. Waldron, editor, Advanced Robotics,
pages 547�558. Springer-Verlag, Berlin, 1989.

A. Makarenko, A. Brooks, and T. Kaupp. Orca: Components for robotics. In IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS'06), December
2006.

MRROC++, 2007. URL http://robotics.ia.pw.edu.pl.

OROCOS, 2007. URL http://www.orocos.org/rtt/documentation.

Player/Stage, 2007. URL http://playerstage.sf.net/.

R.T. Vaughan, B.P. Gerkey, and A. Howard. On device abstractions for portable, reusable
robot code. In Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems, IROS'03, Las Vegas, Nevada, pages 2121�2427. October 2003.

C. Zieli«ski. By How Much Should a General Purpose Programming Language be
Extended to Become a Multi-Robot System Programming Language? Advanced
Robotics, 15(1):71�96, 2001.

C. Zieli«ski. Transition-function based approach to structuring robot control software.
In K. Kozªowski, editor, Robot Motion and Control: Recent Developments, Lecture
Notes in Control and Information Sciences, Vol.335, pages 265�286. Springer Verlag,
2006.

C. Zieli«ski. The MRROC++ System. In First Workshop on Robot Motion and Control,
RoMoCo'99, pages 147�152, June 28�29 1999.


