
Brainfuck is Turing-complete

ziem24

September-October 2025

Abstract

Turing-completeness of a system is the ability to perform any calcu-
lation that can be computed by a Universal Turing Machine (UTM). In
this paper, I propose a model that can simulate any Turing machine pro-
gram using Brainfuck, with the main goal of creating a TM-to-Brainfuck
compiler.

1 Introduction to Brainfuck

Brainfuck is one of the simplest esoteric programming languages. It consists
of a memory tape with unsigned 8-bit values initialized with 0’s, and a single
pointer which starts at the position 0. If the pointer goes out of bounds, the
program ends with an error. It has the following instruction set:

+ −→ increment [ptr] 1

− −→ decrement [ptr]

> −→ increment ptr

< −→ decrement ptr

[−→ if [ptr] = 0, go to the matching]

] −→ if [ptr] ̸= 0, go to the matching [

, −→ input a character at ptr

. −→ output [ptr]

The last two instructions handle I/O, and thus will not be needed to show
Brainfuck’s Turing-completeness.

1In context of memory access, [X] means ”value under the address/pointer X”

1

2 Turing machines

Let M = ⟨Q, q0, qh,Γ, ε, δ⟩ define a single-tape Turing machine with states Q -
where q0 ∈ Q is the initial state, and qh ∈ Q is the halting state - an alphabet
Γ : |Γ| = 2, a blank symbol ε ∈ Γ, and a state transition function:
δ : Q× Γ → Q× Γ× {L,R}. M has the same computational power as a UTM,
meaning that a system is Turing-complete if it can simulate M (given sufficient
memory space).

For practical purposes, let Γ = {0, 1}. We can encode every transition in a
matrix [T]|Q|×6, where for each row Tq = [q0q, s0q,m0q, q1q, s1q,m1q], the state
transition function δ can be expressed as

δ(q, s) =

{
(q0q, s0q,m0q) if s = 0

(q1q, s1q,m1q) if s = 1

Below is an example of how that simulator may be implemented in C:

#define LENGTH 50
#define H -1

int main() {

int ptr = 24, tape[LENGTH], current_state = 0;

for (int i = 0; i < LENGTH; i++) { tape[i] = 0; }

// state_0, set_0, move_0, state_1, set_1, move_1

int trans_0[6] = {1, 1, 1, 1, 1, -1};

int trans_1[6] = {0, 1, -1, 2, 0, -1};

int trans_2[6] = {H, 1, 1, 3, 1, -1};

int trans_3[6] = {3, 1, 1, 0, 0, 1};

int* transitions[] = {trans_0, trans_1, trans_2, trans_3};

while (current_state != H) {

int* current_t = transitions[current_state];

if (tape[ptr] == 0) {

current_state = current_t[0];

tape[ptr] = current_t[1];

ptr += current_t[2];

}

else {

current_state = current_t[3];

tape[ptr] = current_t[4];

ptr += current_t[5];

}

}

}

2

3 Simulating a Turing machine in Brainfuck

To simulate any Turing machine in Brainfuck, we are going to need space for
the tape, and a place to store every transition tuple Ti, and a structure (later
referred to as C 2) that holds the new state χ ∈ Q, symbol σ ∈ {0, 1}, and
movement direction µ ∈ {0, 1}:

S = [T1, T2, T3, . . . , Tn][C][TAPE] : n = |Q|, where
TAPE ∈ {0, 1}M : M ∈ N, and

C = [χ][σ][µ] ∈ {0, 1}|χ|+2

3.1 Changing the states

The first thing that the program will handle is changing the state. With the
arbitrary amount of states, more than one cell may be needed to encode them.
Let each state be a binary sequence of fixed length |q| = k : k ∈ N. Note that
k can be computed at compile time. Let a transition header be the structure
that holds information about the new state, symbol, and movement direction.
For now, this is how each header might look like:

Tq = [I][q01, q02, . . . , q0k][s0][m0][q11, q12, . . . , q1k][s1][m1] ∈ {0, 1}|Tq|, where

• I - state index: if ITq+1
= 0 and ITq

= 1 then Tq is the targeted header;

• qx - new state if value under the Turing machine head H is 1;

• sx - new symbol if [H] = x;

• mx - movement direction if [H] = x.

The length of this structure is equal to τ := |Tq| = 2k + 5. Because C is
placed to the right of the headers in S, it would be easier if the headers were
sorted in descending order, starting from Tn and ending at T1. If we interpret
χ as a binary number (big-endian), moving the pointer to the state Tχ requires
us to change some number t of header indexes to 1, where:

t =

k∑
i=1

2k−iχi

Going back from Tχ is fairly simple and can be implemented as [⟨>⟩τ], which
moves the pointer from ITχ to the right, until it encounters 0. We, however,
need to guarantee that the value under (IT1 + τ) is 0. Let this cell be called Ω.
This is how S looks like after applying all of the modifications:

S = [Tn, . . . , T1][Ω][C][TAPE]

2It is possible to simulate them without it, but the result will take up more memory, while
being slower and more complex.

3

Let S(i) be the procedure that starts at χi and increments the values of the first
2k−i zeroed state indexes. Let (⋄|x) = ⟨⋄⟩x = ⋄ ⋄ · · · ⋄︸ ︷︷ ︸

x times

, where ⋄ is a sequence of

Brainfuck instructions. This is how S(i) will be implemented:

S(i) = [⟨<⟩i+τ
[⟨<⟩τ] + ⟨⟨<⟩τ +⟩2

k−i−1
[⟨>⟩τ] ⟨>⟩i −]

The pointer starts and ends at χi. While χi ̸= 0 (practically, equal to 1),
the pointer goes to ITn

, after which it moves to the leftmost IT = 0. Then
it increments its value and the values of the next 2k−i − 1 indexes to the left,
effectively increasing the state number by 2k−i. After this, it returns to χi and
decrements its value. Starting from Ω, this is the full implementation of the
state change algorithm:

procedure SET_Q
>>

for i in [1 , ..., k] do { S(i) > } // ends at sigma

3.2 Replacing tape symbols

I will approach the problem of head positioning similarly to state indexing in
3.1. This is how the TAPE could look like:

TAPE = [Θ][s0, J0][s1, J1] . . . [sm, Jm] : m ∈ N, where

• Θ = 0: serves the same purpose as Ω in S

• Ji: tape index - if Ji = 0 and Ji−1 = 1, the head is placed at TAPE[i];

• si: tape symbol.

The procedure below starts at σ, ends at µ, and handles the symbol change:

procedure SET_S
>>>>[>>]<[-]<[<<]<< // clear s_m and go to sigma

[>>>>[>>]<+<[<<]<<-] // if sigma then s_m ++ and sigma --

> // go to mu

3.3 Pointer positioning

Let 0 and 1 represent moving H to the left and to the right respectively. The
operation +>> will push the head to the right, and <<- will push it to the left.
The idea is to move the head to the right twice if µ ̸= 0, then always move it to
the left. It is also possible without going back to µ, which is faster, but requires
the head to be sufficiently far away from C.

procedure MOVE_HEAD
[>+<-]> // move mu to Theta and go to Theta (sync)

[->>[>>]+>>+>>] // if Theta then Theta -- and H >> 2

4

>>[>>] // if not Theta then go to H

<<<<[>>] // synchronize the pointer to be at H

<<-<<[<<](<|k +3) // H << 1 , go to Omega

Alternatively - the slower, but more memory-safe option:

procedure MOVE_HEAD
[>>>[>>]+>>+[<<]-] // if mu then H >> 2 and mu --

>>>[>>]- // H << 1

<<[<<](<|k +3) // go to Omega

3.4 Loading and storing data into C

Let T 0
q and T 1

q be subsequences of Tq, such that:

T 0
q = [q01, . . . , q0k][s0][m0]

T 1
q = [q11, . . . , q1k][s1][m1]

The idea behind copying the configuration is to first create a small buffer for
each transition header. One of the most basic Brainfuck algorithms, the value
copy algorithm (implemented as [>+>+<<-]>>[<<+>>-]; copies the cell value to
the right), needs two cells of extra space, one of which can be reused later. For
|T 0

q | = |T 1
q | = k + 2, the buffer would require a size of k + 3 cells. A procedure

would first copy T 0
q into the buffer, then if [H] = 1, clear the buffer and copy

T 1
q into it. This is how the headers are going to be structured:

Tq = [I][q01, . . . , q0k][s0][m0][q11, . . . , q1k][s1][m1][BUF] : BUF = [0, 0, . . . , 0︸ ︷︷ ︸
k + 3 times

]

The value of τ will then be equal to 3k + 8.
Let C(x) be the procedure that copies a value under the pointer x cells to

the right. For x ∈ {0, 1}, FULLCOPY x will start and end at sxq and copy T x
q

into the buffer of Tq.

procedure C(x)
[(>|x) +>+(<|x +1) -](>|x +1) [(<|x +1) +(>|x +1) -](<|x +1)

procedure FULLCOPY_0

(C(2k +4) >|k +2)(<|2k +5)

procedure FULLCOPY_1

(C(k +2) >|k +2)(<|k +3)

The procedures below handle pointer movement between Ω, H, and the current
transition header.

procedure GOTO_T // from Omega
(<|tau) [(<|tau)](>|tau)

procedure COME_FROM_T // to Omega

[(>|tau)]

5

procedure GOTO_H // from Omega

(>|k +5) [>>]<

procedure COME_FROM_H // to Omega

<[<<](<|k +3)

The full sequence of loading the header into the buffer will be performed as
follows:

procedure LOAD_HEADER
GOTO_T

> // go to s_0

FULLCOPY_0

COME_FROM_T

GOTO_H

[

COME_FROM_H

GOTO_T

(>|2k +5) // go to BUF

([-]>|k +2) // clear BUF

(<|2k +4) // go to s_1

FULLCOPY_1

COME_FROM_T // synchronize the position

GOTO_H

- // clear [H]

]

COME_FROM_H

Note that the [H] will always be overwritten before the next position change,
which is why we can clear its value while loading the header, and thus SET S

will not need to handle clearing [H]:

procedure SET_S
[>>>>[>>]<+<[<<]<<-]>

Storing the buffer of Tq into C is simply a sequence of moving individual values
and can be implemented like this:

procedure STORE_HEADER
offs := 2k + 5 // BUF [0]

GOTO_T

for i in [0 , ..., k +1] do

(>|offs) // go to the copied value "V"

[// while V

(>|tau -offs) // (Omega + i) ++ (store V)

COME_FROM_T

(>|i +1)

+

(<|i +1)

GOTO_T // V --

6

(>|offs)

-

]

(<|offs) // go back to I_T

offs ++ // point to BUF [i]

COME_FROM_T

3.5 Looping and halting

The easiest way of looping the program is to put the entire logic in square
brackets and end the loop on a special cell that indicates whether the state is
halting or not. This cell can be, for example, χ1. If χ1 ̸= 0, then χ ̸= HALT,
otherwise χ = HALT.

procedure TURING_MAIN
INITIALIZE_STRUCTURE // places the pointer at chi_1

[

-< // clear chi_1 , go to Omega

TURING_LOOP // ends at Omega

> // go to chi_1

]

(>|k) // handle symbol and position changes after HALT

SET_S < MOVE_HEAD

With this, SET Q will skip checking χ1, as it is only a flag and will always be set
to 0 by the time this procedure is executed.

procedure SET_Q
>>

for i in [2 , ..., k] do { S(i) > }

3.6 Initialization

Let T be the transition matrix taken from the C code example. L and R are
changed to 0 and 1 respectively. All non-halting states map to the placement of
their transition tuples (trans 0 7→ 1 etc.). They are then encoded into binary
numbers with uniform length ⌊log2(|Q|)⌋ + 1. A one is then placed at the
beginning of those states (χ1). We can then evaluate k = ⌊log2(|Q|)⌋ + 2 and
H 7→ {0}k.

T =


t1 1 R t1 1 L
t0 1 L t2 0 L
H 1 R t3 1 L
t3 1 R t0 0 R

 =


2 1 1 2 1 0
1 1 0 3 0 0
0 1 1 4 1 0
4 1 1 1 0 1

 =


1010 1 1 1010 1 0
1001 1 0 1011 0 0
0000 1 1 1100 1 0
1100 1 1 1001 0 1


The order of the transition tuples is then reversed, and to each one, we add a
single 0 at the beginning (I) and append {0}k+3 (BUF) to the end, creating a

7

transition header space.

HEADERS =


01100111001010000000
00000111100100000000
01001101011000000000
01010111010100000000


The C section holds the entirety of T 0

1 (here: 101011), and TAPE = 0{01}p,
where p is the initial head position. All initial information can be represented
by the string HEADERS +Ω+C + TAPE. To put the data into memory, we
map 0 to > and 1 to +>, then initialize the tape and go to χ1 with ⟨<⟩2p+k+2

.

4 Conclusion

4.1 Synthesis

A configuration file for each Turing machine can take this form:

section CONFIG

FILE [file name].bf

HEADPOS [initial head position >= 0]

section TRANSITIONS

/*

Q_x - new state if [H] == x

S_x - new symbol if [H] == x

M_x - movement direction if [H] == x

*/

[STATE_1] : [Q_0] [S_0] [M_0] [Q_1] [S_1] [M_1]

[STATE_2] : [Q_0] [S_0] [M_0] [Q_1] [S_1] [M_1]

[STATE_3] : [Q_0] [S_0] [M_0] [Q_1] [S_1] [M_1]

...

[STATE_n] : [Q_0] [S_0] [M_0] [Q_1] [S_1] [M_1]

A compiler will then evaluate INITIALIZE STRUCTURE, following the imple-
mentation steps discussed in the subsection 3.6.

procedure INITIALIZE_STRUCTURE
p := HEADPOS

INITIALIZE_HEADERS // ends at Theta

(>>+|p) // place H at p (initialize TAPE)

(<|2p + k + 2) // go to chi_1

The loop part will first go to the new state, set the new symbol, then it will
move the pointer to the left/right, after which it will load and store another
header into Tcurrent:

procedure TURING_LOOP
SET_Q

8

SET_S

MOVE_HEAD

LOAD_HEADER

STORE_HEADER

GOTO_T // Clear all I_T values

[-(>|tau)]

Provided model is capable of simulating any Turing machine program, which
proves that Brainfuck is Turing-complete.

□

4.2 Implementation in C++

The steps documented in section 3 allowed me to implement a Turing machine-
to-Brainfuck compiler in C++. The repository can be accessed through
https://github.com/ziem24/BFT. For more information on this project, refer
to its documentation in the README file.

4.3 Remarks

The model I presented also happens to prove that Brainfuck with 1-bit values
and undefined overflow/underflow behavior is Turing-complete. If the values
wrap, a simple 5-instruction 1-bit Brainfuck is Turing-complete (the instructions
+ and − are effectively bit negations). Basic 5-instruction Brainfuck is Turing-

complete as well, because all instances of ⟨−⟩n can be replaced with ⟨+⟩256−n
.

In the particular case of this model, each minus symbol can be replaced with
[+], because the only time a cell is decremented is when it is set to 0.
As for the nested conditionals, Turing-completeness can be achieved with triply
nested conditions, which do not depend on the initial configuration (replacing
minuses with [+] raises this number to 4).

References

https://esolangs.org/wiki/Brainfuck

https://brainfuck.org/utm.b

9

https://github.com/ziem24/BFT
https://esolangs.org/wiki/Brainfuck
https://brainfuck.org/utm.b

	Introduction to Brainfuck
	Turing machines
	Simulating a Turing machine in Brainfuck
	Changing the states
	Replacing tape symbols
	Pointer positioning
	Loading and storing data into C
	Looping and halting
	Initialization

	Conclusion
	Synthesis
	Implementation in C++
	Remarks

