Brainfuck is Turing-complete

ziem?24

September-October 2025

Abstract

Turing-completeness of a system is the ability to perform any calcu-
lation that can be computed by a Universal Turing Machine (UTM). In
this paper, I propose a model that can simulate any Turing machine pro-
gram using Brainfuck, with the main goal of creating a TM-to-Brainfuck
compiler.

1 Introduction to Brainfuck

Brainfuck is one of the simplest esoteric programming languages. It consists
of a memory tape with unsigned 8-bit values initialized with 0’s, and a single
pointer which starts at the position 0. If the pointer goes out of bounds, the
program ends with an error. It has the following instruction set:

+ — increment [ptr] [[]

— — decrement [ptr]

> — increment ptr

< — decrement ptr
[— if [ptr] = 0, go to the matching]
| — if [ptr] # 0, go to the matching |
, —> input a character at ptr
. — output [ptr]

The last two instructions handle I/O, and thus will not be needed to show
Brainfuck’s Turing-completeness.

'In context of memory access, [X] means ”value under the address/pointer X”

2 Turing machines

Let M =(Q, qo,qn,T,,d) define a single-tape Turing machine with states Q -
where gy € @ is the initial state, and g, € @ is the halting state - an alphabet
[':|T'| =2, a blank symbol € € T, and a state transition function:
0:QxT = QxT x{L,R}. M has the same computational power as a UTM,
meaning that a system is Turing-complete if it can simulate M (given sufficient
memory space).

For practical purposes, let I' = {0,1}. We can encode every transition in a
matrix [T]g|x6, Where for each row Ty = [qog, Soq, Mog, Q14> S1¢, M14), the state
transition function ¢ can be expressed as

(5((] S) — (QOQ7 50q7m0q) lf s = 0
’ (Q1q> slq»mlq) ifs=1

Below is an example of how that simulator may be implemented in C:

#define LENGTH 50
#define H -1

int main() {
int ptr = 24, tape[LENGTH], current_state = 0;
for (int i = 0; i < LENGTH; i++) { tapelil = 0; }
// state_0, set_0, move_0, state_1, set_1, move_1
int trans_O[6] = {1, 1, 1, 1, 1, -1};
int trans_1[6] = {0, 1, -1, 2, 0, -1};
int trans_2[6] = {H, 1, 1, 3, 1, -1};
int trans_3[6] {3, 1, 1, 0, 0, 13};
int* transitions[] = {trans_0O, trans_1, trans_2, trans_3};

while (current_state != H) {
int* current_t = transitions[current_state];
if (tapelptr] == 0) {
current_state = current_t[0];
tape[ptr] = current_t[1];
ptr += current_t[2];
}
else {
current_state = current_t[3];
tape[ptr] = current_t[4];
ptr += current_t[5];
}
}

3 Simulating a Turing machine in Brainfuck

To simulate any Turing machine in Brainfuck, we are going to need space for
the tape, and a place to store every transition tuple T;, and a structure (later
referred to as C E[) that holds the new state x € @, symbol o € {0,1}, and
movement direction u € {0,1}:

S=[T1,T%,T5,...,T,][C][TAPE] : n = |Q|, where
TAPE € {0,1} : M € N, and
C = [\lo][u] € {0, 1}xI*2

3.1 Changing the states

The first thing that the program will handle is changing the state. With the
arbitrary amount of states, more than one cell may be needed to encode them.
Let each state be a binary sequence of fixed length |¢| = &k : £ € N. Note that
k can be computed at compile time. Let a transition header be the structure
that holds information about the new state, symbol, and movement direction.
For now, this is how each header might look like:

T, = [1[go1, 902, - - - » Gox][s0][mo][q11. @12, - - -, que] [s1][mu] € {0, 1}T7] where
o [- state index: if I7,,, = 0 and I7, = 1 then T} is the targeted header;
e ¢, - new state if value under the Turing machine head H is 1;

e s, - new symbol if [H] = x;
e m, - movement direction if [H] = x.

The length of this structure is equal to 7 := |T;| = 2k + 5. Because C is
placed to the right of the headers in S, it would be easier if the headers were
sorted in descending order, starting from 7, and ending at T7. If we interpret
X as a binary number (big-endian), moving the pointer to the state T} requires
us to change some number t of header indexes to 1, where:

k

=1

Going back from T) is fairly simple and can be implemented as [(>)"], which
moves the pointer from I, to the right, until it encounters 0. We, however,
need to guarantee that the value under (I7, + 7) is 0. Let this cell be called .
This is how S looks like after applying all of the modifications:

S = [T,,..., T1|[Q)[C][TAPE]

21t is possible to simulate them without it, but the result will take up more memory, while
being slower and more complex.

Let S(i) be the procedure that starts at x; and increments the values of the first
2k~ zeroed state indexes. Let (o|z) = ()" =00 -- -0, where ¢ is a sequence of

 times
Brainfuck instructions. This is how S(i) will be implemented:

(i) = (<™ (<) + (<702 T)

The pointer starts and ends at y;. While x; # 0 (practically, equal to 1),
the pointer goes to I , after which it moves to the leftmost I = 0. Then

n?

it increments its value and the values of the next 25~% — 1 indexes to the left,
effectively increasing the state number by 2¥~%. After this, it returns to x; and
decrements its value. Starting from €2, this is the full implementation of the
state change algorithm:

procedure SET_(
>>

for i an [1, ..., k] do { S(i)> } // ends at sigma

3.2 Replacing tape symbols

I will approach the problem of head positioning similarly to state indexing in
Bl This is how the TAPE could look like:

TAPE = [O][so, Jo[s1, J1] - - - [Sm, Jm] : m € N, where
e O = 0: serves the same purpose as 2 in S
e J;: tape index - if J; =0 and J;_; = 1, the head is placed at TAPE]i];
e s;: tape symbol.
The procedure below starts at o, ends at p, and handles the symbol change:

procedure SET_S

>>>>[>>]<[-]<[«<]<< // clear s_m and go to sigma
[>>>>[>>] <+< [<<]<<-] // if sigma then s_m++ and sigma-—-
> // go to mu

3.3 Pointer positioning

Let 0 and 1 represent moving H to the left and to the right respectively. The
operation +>> will push the head to the right, and <<- will push it to the left.
The idea is to move the head to the right twice if p # 0, then always move it to
the left. It is also possible without going back to u, which is faster, but requires
the head to be sufficiently far away from C.

procedure MOVE_HEAD
[>+<-1> // move mu to Theta and go to Theta (sync)
[->>[>>]+>>+>>] // if Theta then Theta-- and H >> 2

>>[>>] // if not Theta then go to H
<L [>>] // synchronize the pointer to be at H
<<-<<[<<] (< [k+3) // H << 1, go to Omega

Alternatively - the slower, but more memory-safe option:

procedure MOVE_HEAD
[>>>[>>]+>>+[<<1-]1 // if mu then H >> 2 and mu--
>>>[>>]- // H << 1
<<[<<] (<[k+3) // go to Omega

3.4 Loading and storing data into C
Let Tg and qu be subsequences of T;, such that:

T(? = [qo1, - - - » qox][s0][m0]
qu = [q11,- - -, qux)[s1][ma]

The idea behind copying the configuration is to first create a small buffer for
each transition header. One of the most basic Brainfuck algorithms, the value
copy algorithm (implemented as [>+>+<<-]1>>[<<+>>-]; copies the cell value to
the right), needs two cells of extra space, one of which can be reused later. For
IT?| = |T,}| = k + 2, the buffer would require a size of k + 3 cells. A procedure
would first copy Tg into the buffer, then if [H] = 1, clear the buffer and copy
T ql into it. This is how the headers are going to be structured:

Tq = [I][q01,...7q0k][so][m0][q11,...7q1k][81][m1][BUF] :BUF = [0,07,0]

k + 3 times

The value of 7 will then be equal to 3k + 8.

Let C(x) be the procedure that copies a value under the pointer z cells to
the right. For z € {0,1}, FULLCOPY x will start and end at s,, and copy 7
into the buffer of 7.

procedure C(z)

LO>z) +>+(<[z+1) -1 (>]z+1) [(<[z+1)+(>[z+1) -] (<[z+1)
procedure FULLCOPY_O

(C(2k+4)>[k+2) (<|2k+5)
procedure FULLCOPY_1

(C(k+2)>[k+2) (< [k+3)

The procedures below handle pointer movement between €2, H, and the current
transition header.

procedure GOTO_T // from Omega
(<[taw) [(</tau)] (>/tau)

procedure COME_FROM_T // to Omega
[(>/tau)]

procedure GOTO_H // from Omega
(>/k+5) [>>]<

procedure COME_FROM_H // to Omega
<[] (</k+3)

The full sequence of loading the header into the buffer will be performed as
follows:

procedure LOAD_HEADER

GOTO_T
> // go to s_0
FULLCOPY_O
COME_FROM_T
GOTO_H
L
COME_FROM_H
GOTO_T
(>/2k+5) // go to BUF
([-1>/k+2) // clear BUF
(<[2k+4) // go to s_1
FULLCOPY_1
COME_FROM_T // synchronize the position
GOTO_H
- // clear [H]
]
COME_FROM_H

Note that the [H] will always be overwritten before the next position change,
which is why we can clear its value while loading the header, and thus SET_S
will not need to handle clearing [H]:

procedure SET_S
[>>>>[>>]<+< [c<]<<=]>

Storing the buffer of 7}, into C' is simply a sequence of moving individual values
and can be implemented like this:

procedure STORE_HEADER

offs := 2k + 5 // BUF[0]
GOTO_T
for i in [0, ..., k+1] do
(>loffs) // go to the copied value "V"
[// while V
(>/tau-offs) // (Omega + i)++ (store V)
COME_FROM_T
(>1i+1)
+
(<li+1)
GOTO_T /) V-

(>loffs)

]

(<loffs) // go back to I_T

offs++ // point to BUF[4]
COME_FROM_T

3.5 Looping and halting

The easiest way of looping the program is to put the entire logic in square
brackets and end the loop on a special cell that indicates whether the state is
halting or not. This cell can be, for example, x1. If x1 # 0, then y # HALT,
otherwise y = HALT.

procedure TURING_MAIN
INITIALIZE_STRUCTURE // places the pointer at chi_1

I
-< // clear chi_1, go to Omega
TURING_LOOP // ends at Omega
> // go to chi_1
]
(>/k) // handle symbol and position changes after HALT

SET_S < MOVE_HEAD

With this, SET_Q will skip checking x1, as it is only a flag and will always be set
to 0 by the time this procedure is executed.

procedure SET_(]
>>

for i in [2, ..., k] do { S(i)> }

3.6 Initialization

Let T be the transition matrix taken from the C code example. L and R are
changed to 0 and 1 respectively. All non-halting states map to the placement of
their transition tuples (trans-0 — 1 etc.). They are then encoded into binary
numbers with uniform length |log,(|@Q])] + 1. A one is then placed at the
beginning of those states (x1). We can then evaluate k = [log,(|Q|)| + 2 and
H — {0}~

t1 1 R t1 1 L 211 210 1010 1 1 1010 1 O
T_ t0 1 L ¢t 0 L| (1 1 0 3 0 0| (1001 1 0 1011 0O O
H 1 R 3 1 L 011410 0000 1 1 1100 1 O
t3 1 R t0 0 R 4 1 1101 1100 1 1 1001 O 1

The order of the transition tuples is then reversed, and to each one, we add a
single 0 at the beginning (I) and append {0}**3 (BUF) to the end, creating a

transition header space.

01100111001010000000
00000111100100000000
01001101011000000000
01010111010100000000

HEADERS =

The C section holds the entirety of 77 (here: 101011), and TAPE = 0{01}?,
where p is the initial head position. All initial information can be represented
by the string HEADERS +Q+C+TAPE. To put the data into memory, we
map 0 to > and 1 to +>, then initialize the tape and go to x1 with <<>2er +2

4 Conclusion

4.1 Synthesis

A configuration file for each Turing machine can take this form:

section CONFIG

FILE [file name].bf

HEADPOS [initial head position >= 0]
section TRANSITIONS

/%

Q_x - new state if [H] == x

S_x - new symbol if [H] ==

M_x - movement direction if [H] == x
*/

[STATE_1] : [Q_0] [S_ol [M_0] [Q_1] [S_1] [M_1]
[STATE_2] : [Q_0] [S_0] [M_0] [Q_1] [sS_1] [M_1]
[STATE_3] : [Q_0] [S_0] [M_0] [Q_1] [sS_1] [M_1]

kéfATE_n] : [Q_0] [s_o] [M_o0] [Q_11 [s_11 [M_1]

A compiler will then evaluate INITIALIZE_STRUCTURE, following the imple-
mentation steps discussed in the subsection 3.6

procedure INITIALIZE STRUCTURE
p := HEADPOS

INITIALIZE_HEADERS // ends at Theta
(>>+/p) // place H at p (initialize TAPE)
(</2p + k + 2) // go to chi_1

The loop part will first go to the new state, set the new symbol, then it will
move the pointer to the left/right, after which it will load and store another
header into T, rent:

procedure TURING_LOOP
SET_Q

SET_S

MOVE_HEAD

LOAD_HEADER

STORE_HEADER

GOTO_T // Clear all I_T walues
[-(>/taw)]

Provided model is capable of simulating any Turing machine program, which
proves that Brainfuck is Turing-complete.

O

4.2 Implementation in C++4

The steps documented in section |3| allowed me to implement a Turing machine-
to-Brainfuck compiler in C++4. The repository can be accessed through
https://github.com/ziem24/BFT. For more information on this project, refer
to its documentation in the README file.

4.3 Remarks

The model I presented also happens to prove that Brainfuck with 1-bit values
and undefined overflow/underflow behavior is Turing-complete. If the values
wrap, a simple 5-instruction 1-bit Brainfuck is Turing-complete (the instructions
+ and — are effectively bit negations). Basic 5-instruction Brainfuck is Turing-
complete as well, because all instances of (—)" can be replaced with (+)°°7".
In the particular case of this model, each minus symbol can be replaced with
[+], because the only time a cell is decremented is when it is set to 0.

As for the nested conditionals, Turing-completeness can be achieved with triply
nested conditions, which do not depend on the initial configuration (replacing
minuses with [+] raises this number to 4).

References

https://esolangs.org/wiki/Brainfuck
https://brainfuck.org/utm.b

https://github.com/ziem24/BFT
https://esolangs.org/wiki/Brainfuck
https://brainfuck.org/utm.b

	Introduction to Brainfuck
	Turing machines
	Simulating a Turing machine in Brainfuck
	Changing the states
	Replacing tape symbols
	Pointer positioning
	Loading and storing data into C
	Looping and halting
	Initialization

	Conclusion
	Synthesis
	Implementation in C++
	Remarks

