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Abstract

OPTIMAL ALLOCATION IN STRATIFIED SAMPLING SCHEMES

This dissertation aims at establishing necessary and sufficient conditions for classical problem

of optimum sample allocation in stratified sampling scheme with simple random sampling

without replacement design in each stratum. In the context of this thesis, an optimal allocation

is in the classical Tschuprow-Neyman’s (Tschuprow 1923; Neyman 1934) sense, and it satisfies

additional lower and upper bounds restrictions imposed on sample sizes in strata. We

formulate optimal allocation problem in the language of mathematical optimization, and then

use Karush-Kuhn-Tucker conditions to derive necessary and sufficient conditions for the

problem in subject. We also provide corresponding numerical algorithms, derived from

established optimality conditions, including implementation in R programming language. The

approach to the optimal allocation problem presented in this work is unique.

Keywords: survey sampling, stratified sampling, optimal allocation, Karush-Kuhn-Tucker

conditions, Neyman optimal allocation, optimal allocation sufficient conditions.





Streszczenie

ALOKACJA OPTYMALNA W WARSTWOWYCH SCHEMATACH PRÓBKOWANIA

Celem pracy jest skonstruowanie warunków koniecznych i wystarczających dla rozwiązania

optymalnego w problemie alokacji próby w warstwowych schematach próbkowania z losowaniem

prostym bez zwracania w każdej z wartsw. W ramach tej pracy, alokacja optymalna rozumiana

jest jako alokacja w sensie Tschuprowa-Neymana (Tschuprow 1923; Neyman 1934) i taka, dla

której spełnione są dodatkowe ograniczenia nakładane na rozmiar próby na poziomie warstwy.

Problem zostanie sformułowany w terminach optymalizacji matematycznej, a następnie, z

wykorzystaniem warunków Karusha-Kuhna-Tuckera, zostaną wyprowadzone docelowe warunki

optymalności. W pracy przedstawiono również algorytmy numeryczne, wraz z implementacją w

języku programowania R, realizujące rozwiązanie problemu optymalnej alokacji, oparte na

wyprowadzonych warunkach dostatecznych optymalności. Prezentowane w pracy podejście i

metodologia są unikatowe w przedstawionym zastosowaniu.

Słowa kluczowe: metoda reprezentacyjna, losowanie warstwowe, optymalna alokacja, warunki

Karusha-Kuhna-Tuckera, optymalna alokacja Neymana, warunki dostateczne alokacji

optymalnej.





Warsaw, July 2, 2019

Declaration

I hereby declare that the thesis entitled „OPTIMAL ALLOCATION IN STRATIFIED

SAMPLING SCHEMES”, submitted for the Master degree, supervised by prof. dr hab. inż.

Jacek Wesołowski, is entirely my original work apart from the recognized reference.

..............................................





Acknowledgments

I would like to thank my supervisor prof. dr hab. inż. Jacek Wesołowski for all his enthusiasm,

help and support given whilst completing this disertation.





Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.1. Context and Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3. Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2. Finite Upper Bounds and no Lower Bounds . . . . . . . . . . . . . . . . . . . . 15

2.1. Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2. Optimality Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3. Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.1. Sequential Allocation (version 0) . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.2. Sequential Allocation (version 1) . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.3. Sequential Allocation (version 2) . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.4. Recursive Neyman Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3. Finite Lower and Finite Upper Bounds . . . . . . . . . . . . . . . . . . . . . . . 31

3.1. Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2. Optimality Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3. Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3.1. The noptcond by Gabler, Ganniger and Munnich (2012) . . . . . . . . . . . . 35

3.3.2. Sufficient noptcond . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4. Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

A. Mathematical Optimization Background . . . . . . . . . . . . . . . . . . . . . . 43

B. Karush-Kuhn-Tucker Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

C. Algorithms - R code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

C.1. The noptcond . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

C.2. Sufficient noptcond . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48





1. Introduction

1.1. Context and Notation

We start with defining the context of the optimal allocation problem, including basic notions

and general terms used throughout this thesis.

Population

Consider a finite population, U , consisting of N distinct and measurable units, where the ith

unit is represented by the label i, such that U = {1, . . . , i, . . . , N}. Population U is partitioned

into H subpopulations, called strata and denoted by {Uh}h∈J , where J = {1, . . . ,H} is a set of

strata indices. Index h will also be used as a synonymous of stratum Uh, h ∈ J , whenever it

follows from the context. A stratum Uh has size Nh, h ∈ J , and
∑

h∈J Nh = N . For a variable

under study Y defined on U , we write yi to denote its value associated with population element

i ∈ U . The parameter of interest is the total of a given study variable Y in U , i.e. t =
∑

i∈U yi.

The standard deviation of variable Y in stratum Uh is denoted by Sh, and it assumes the form

S2
h =

1

Nh − 1

∑
i∈Uh

(yi − yh)2, Nh ≥ 2,

where yh = 1
Nh

∑
i∈Uh yi, Nh ≥ 1, h ∈ J .

Sample

We assume that the values yi, i ∈ U , and therefore t are unknown at the outset. To estimate

unknown population total t of study variable Y, we observe yi for a subset of U called sample S.

More explicitly, in stratified sampling, a probability sample Sh of size nh is selected from each

stratum Uh, h ∈ J according to a chosen sampling design. In the context of this thesis, it is the

simple random sampling without replacement design (abbreviated SI in [9, Chapter 3.3, p. 66]).

Under this design, every sample of the fixed size receives the same probability of being selected.

Selections between strata are independent. The resulting total sample S =
⋃
h∈J Sh, and its size

n =
∑

h∈J nh. Of course, we require at least 0 < nh ≤ Nh for all h ∈ J . Nevertheless, additional

constraints can be added to nh, e.g. 0 < lh ≤ nh ≤ uh ≤ Nh for all h ∈ J .

11



1. Introduction

Stratified π-estimator of the total t takes the form

t̂st =
∑
h∈J

Nh

nh

∑
i∈Sh

yi.

It is unbiased and its variance is

D2
t̂st
(n1, . . . , nH) =

∑
h∈J

N2
hS

2
h

nh
−
∑
h∈J

NhS
2
h ≥ 0. (1.1)

More details are given in [9, Result 3.7.2, p. 103]. The optimum sample allocation problem

in stratified sampling scheme with simple random sampling without replacement design is

formulated as the determination of vector (n∗1, . . . n
∗
H), that minimizes variance (1.1) under

given constraints (optimal allocation problem in the sequel). The values of H, Nh, Sh, as well

as n, lh, uh, h ∈ J are assumed to be known throughout the thesis.

The following three abbreviations allow for compact formulation of numerous expressions

used throughout the text, particularly in sections dedicated to algorithms

dh := NhSh,

dLh :=
dh
lh
,

dUh :=
dh
uh
, h ∈ J.

As indicated above, lh and uh denote lower and upper bound respectively, optionally imposed

on the size nh of sample Sh, h ∈ J .

1.2. Background

Classical Tschuprow-Neyman optimal allocation [11], [8], minimizes variance (1.1) and it satisfies

simple restriction imposed on overall sample size (i.e.
∑H

h=1 nh = n), guaranteeing that the

sample size nh > 0 for all h ∈ J . It does not however ensure, that the allocated samples do

not exceed strata sizes (i.e. nh ≤ Nh, ∀h ∈ J). Moreover, there might be a need to require

a minimum sample size per stratum (i.e. nh ≥ lh > 0, ∀h ∈ J). In many applications such

additional constraints have to be considered. This topic got an attention in domain literature,

and in consequence some algorithms have been proposed.

Recursive version of the Neyman allocation (Recursive Neyman in the sequel) is a standard

operational approach to the problem with additional upper bounds equal to strata sizes (i.e.

nh ≤ uh = Nh, ∀h ∈ J). It repeatedly applies the Neyman’s optimal allocation to step-wise

12



1.2. Background

reduced set of strata, as described in [9, Remark 12.7.1, p. 466]. Yet, despite the intuitive

idea behind, there is no formal proof of its optimality in the domain literature. Stenger and

Gabler, in their work from 2005, form necessary but not sufficient conditions for the optimal

solution for the problem with upper bounds equal to strata sizes [10, Lemma 1, Appendix,

p. 149]. The proof authors offered is based on properties of the gradient of the function under

consideration. Interestingly, an algorithm finding optimal solution to the optimal allocation

problem, can be derived directly from the course of that proof. Another algorithm - the

noptcond proposed by Gabler, Ganninger and Munnich in 2012 [5, Section 3 Programme code,

p. 158], addresses the optimal allocation problem with any feasible lower and upper bounds

(i.e. 0 < lh ≤ nh ≤ uh ≤ Nh, ∀h ∈ J). Apart from what is stated in that paper, the noptcond

algorithm does not always yield an optimal solution, as it will be shown in Chapter 3.

It seems natural to formulate the optimal allocation problem in the language of mathe-

matical optimization1 and then use methods pertained to this domain to derive optimality

conditions for an optimal solution. Optimality conditions, which are often given as closed-form

expressions, are fundamental to the analysis of an optimization problem. They constitute

trustworthy underlay for the development and the analysis of effective algorithms. Namely,

algorithms recognize solutions by checking whether they satisfy various optimality conditions

and terminate when such conditions hold. This elegant strategy has evident advantages over

existing approaches, yet it does not seem to have received an attention in survey sampling

literature it deserves.

The method of Lagrange multipliers is the major workhorse in mathematical optimization. It

is however limited only to the problems with equality constraints. The Karush-Kuhn-Tucker

approach to constrained optimization generalizes the method of Lagrange multipliers by allowing

for inequality constraints. Furthermore, the problem being a subject of this thesis belongs

to special types of problems termed convex problem. Convex problems have well established

treatment in mathematical optimization due to many desirable properties they possess. For

instance, for convex problem (with some minor regularity conditions) the Karush-Kuhn-Tucker

conditions are necessary and sufficient.

1Appendix A
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1. Introduction

1.3. Thesis Outline

The structure of this thesis arises from constraints imposed on a sample size nh in stratum Uh,

h ∈ J , i.e. (1) only upper bounds (0 < nh ≤ uh ≤ Nh, ∀h ∈ J) are considered in Section 2,

and (2) lower and upper bounds (0 < lh ≤ nh ≤ uh ≤ Nh, ∀h ∈ J) are considered in Section

3. For each of these two scenarios: (a) necessary and sufficient optimality conditions will be

formulated, (b) corresponding algorithms will be presented, including new algorithms as well

as modifications of those already existing. In particular, in Section 2.3.4 we provide precise

description of the Recursive Neyman algorithm with generalization of upper bounds uh ≤ Nh

for all h ∈ J , together with the formal proof of its optimality. In Section 3.3, we show that the

noptcond algorithm proposed by Gabler, Ganninger and Munnich in [5, Section 3 Programme

code, p. 158], is not optimal in general. We modify this algorithm so that it meets not only

necessary but also sufficient requirements for an optimal solution. Selected algorithms proposed

in this thesis were implemented in R programming language and attached to the thesis.

14



2. Finite Upper Bounds and no Lower Bounds

2.1. Problem Formulation

Consider an optimum allocation problem where sample of total size n is allocated among strata,

in such a way that from each stratum a sample of size nh is drawn, and the size of the sample

nh must not exceed imposed upper bound uh for all h ∈ J . This problem is formally written as

follows.

Problem 2.1.

min
(n1,...nH)∈Ω

D2
t̂st
(n1, . . . , nH), Ω = RH+ ,

subject to
H∑
h=1

nh − n = 0, (2.1)

nh − uh ≤ 0, h = 1, . . . ,H, (2.2)

where function D2
t̂st

is given by (1.1), and n, uh, h ∈ J are known constants. Following the

sampling design, we shall make throughout, a natural assumptions about known constants, i.e.

n ≤
∑

i∈J ui, and 0 < uh ≤ Nh for all h ∈ J . Without the first assumption the problem might

be infeasible. The set constraint Ω was not placed on the list of functional constraints, assuming

that the solution is in the interior of Ω. The proof of Theorem 2.4 justifies this assumption.

Remark 2.2. Optimization Problem 2.1 is a convex optimization problem1 since the objective

function D2
t̂st

and inequality constraint functions nh−uh of nh, for all h ∈ J are convex, equality

constraint function
∑H

h=1 nh − n of (n1, . . . , nH) is affine.

Proposition 2.3. The optimal solution to Problem 2.1 exists and it is globally unique.

Proof. Problem 2.1 is feasible under assumptions we made, i.e. n ≤
∑

i∈J ui, and 0 < uh ≤ Nh

1Appendix A.1, A.2
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2. Finite Upper Bounds and no Lower Bounds

for all h ∈ J . Then, the existence of the optimal solution is guaranteed by the Extreme Value

Theorem2, as the feasible region is compact subset of Ω (equivalent to closed and bounded for

Euclidean space, following Heine–Borel Theorem) and objective function D2
t̂st

is continuous on

Ω. Moreover, since objective function D2
t̂st

is strictly convex, the optimal solution is unique and

global optimum solution.

2.2. Optimality Conditions

In this section, in Theorem 2.4 below, we formulate necessary and sufficient conditions for an op-

timal solution to Problem 2.1, that are the basis for several algorithms. Next, we draw additional

optimality properties (Proposition 2.8), that could possibly further simplify the algorithms.

Theorem 2.4. (n∗1, . . . , n∗H) is the optimal solution to Problem 2.1 for n <
∑

i∈J ui, if and only

if there exists set ∅ 6= J∗ ⊆ J , and number λ∗ ∈ R+ such that

∀h ∈ J∗ : n∗h =

n−
∑
i∈Jc
∗

ui∑
i∈J∗

di
dh < uh, (2.3)

∀h ∈ Jc∗ : n∗h = uh, (2.4)

∀h ∈ J∗, ∀i ∈ Jc∗ :
dh
n∗h

=
√
λ∗ ≤ di

ui
, (2.5)

where Jc∗ = J \ J∗.

The proof of Theorem 2.4 we offer below is based on Karush-Kuhn-Tucker (KKT) conditions.

More details on KKT conditions are given in Appendix B.

Proof. Let the partial derivative of function (1.1) with respect to the variable nh be denoted by

ϕh, and its inverse function by ϕ−1h , i.e.

ϕh : R+ → R− ϕh(nh) =
∂

∂nh
D2
t̂st
(n1, . . . , nH) = −

d2h
n2h
,

ϕ−1h : R− → R+ ϕ−1h (x) =
dh√
−x

, ∀h ∈ J.
(2.6)

Problem 2.1 is a convex optimization problem (Remark 2.2) with objective and constraint func-

tions of class C 1 on Ω. Therefore, the Karush-Kuhn-Tucker conditions are necessary and suffi-

cient, and they take the following form for Problem 2.1

2Appendix A.3 and A.4
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2.2. Optimality Conditions

∃λ∗ ∈ R, ∃(µ∗1, . . . , µ∗H) ∈ RH such that for all h ∈ J

ϕh(n
∗
h) + λ∗ + µ∗h = 0, (stationarity)∑

i∈J
n∗i − n = 0, (primal feasibility)

n∗h − uh ≤ 0, (primal feasibility)

µ∗h(n
∗
h − uh) = 0, (comp. slackness)

µ∗h ≥ 0. (dual feasibility)

(2.7)

The primal feasibility inequality condition can be divided into two distinct cases, leading to the

following optimality conditions equivalent to (2.7):

∃J∗ ⊆ J , ∃λ∗ ∈ R+ such that

n∗h < uh and ϕh(n
∗
h) = −λ∗, ∀h ∈ J∗, (2.8)

n∗h = uh and ϕh(uh) ≤ −λ∗, ∀h ∈ Jc∗ , (2.9)∑
i∈J∗

n∗i +
∑
i∈Jc
∗

ui − n = 0, (2.10)

where Jc∗ = J \ J∗.

Conditions (2.8) - (2.10) can be further shortened when J∗ 6= ∅. This condition is equivalent to

n <
∑

i∈J ui. From now on, we narrow the domain of possible solutions to n∗h > 0, ∀h ∈ J . This

restriction does not invalidate the proof, since functions ϕh are even functions on their natural

domains R \ {0}. It follows from (2.8) that for n∗h > 0, we get n∗h = ϕ−1h (−λ∗) for all h ∈ J∗, and

therefore∑
i∈J∗

n∗i =
∑
i∈J∗

ϕ−1i (−λ∗) =
∑
i∈J∗

di√
λ∗

=
1√

−ϕh(n∗h)

∑
i∈J∗

di =
1√
d2h

(n∗h)
2

∑
i∈J∗

di =
n∗h
dh

∑
i∈J∗

di,

n∗h =

∑
i∈J∗ n

∗
i∑

i∈J∗ di
dh, ∀h ∈ J∗.

Given (2.10)

n∗h =
n−

∑
i∈Jc
∗
ui∑

i∈J∗ di
dh, ∀h ∈ J∗. (2.11)

Furthermore, (2.9) and (2.8) read

∀(h, i) ∈ J∗ × Jc∗ , ∃λ∗ ∈ R+ such that

ϕi(ui) ≤ −λ∗ = ϕh(n
∗
h),

i.e.

dh
n∗h

=
√
λ∗ ≤ di

ui
. (2.12)

17



2. Finite Upper Bounds and no Lower Bounds

Due to (2.11) and (2.12), optimality conditions (2.8) - (2.10) can be formulated as in Theorem 2.4.

To complete the proof, it should be noted that optimality conditions (2.3) - (2.4), and

n∗h = ϕ−1h (−λ∗) > 0 for all h ∈ J∗ guarantee that the optimal solution (n∗1, . . . , n
∗
H) is in the

interior of Ω.

Remark 2.5. (to the proof of Theorem 2.4)

Optimality conditions (2.3) - (2.5) were derived from KKT conditions preserving equivalence if

and only if J∗ 6= ∅. This requirement comes from the fact that the optimality condition (2.10)

was enclosed into (2.3). Hence, if J∗ = ∅, then (2.3) decays and condition (2.10) may possibly

be violated resulting in non-optimal solution.

Proposition 2.6. Consider Theorem 2.4. In case of n =
∑

i∈J ui, set J∗ = ∅, and therefore

Jc∗ = J . Optimality conditions (2.3) - (2.5) are replaced with

∀h ∈ J : n∗h = uh,∑
i∈J

n∗h − n = 0,

in order to preserve sufficiency. In other words

(n∗1, . . . , n
∗
H) = (u1, . . . , uH) ⇔ n =

H∑
i=1

ui,

which is rather an intuitive result without the formalism of the KKT conditions.

Proof. The proof is an immediate conclusion of Remark 2.5. In order to preserve sufficiency of

the optimality conditions stated in Theorem 2.4, condition (2.10) should explicitly be evaluated

in place of condition (2.3) when J∗ = ∅. Moreover, in case of J∗ = ∅, condition (2.5) assumes

the form
√
λ∗ ≤ di

ui
and it therefore vanishes.

Proposition 2.7. In Theorem 2.4, in case of overall sample size n <
∑

i∈J ui, set J∗ 6= ∅, and

number λ∗ ∈ R+ exist and are unique, i.e. there is one and only one non-empty subset J∗ of set J ,

and number λ∗ corresponding to the optimal solution. In the remaining case, i.e. n =
∑

i∈J ui,

set J∗ = ∅, Jc∗ = J

Proof. The proof is an immediate conclusion from Proposition 2.3 and distinctness of the primal

feasibility condition (2.7) split, made in the course of the proof of Theorem 2.4. The extraction

of subset J∗ from J is equivalent of that split.

18



2.3. Algorithms

Theorem 2.4 splits set of strata indices J into two subsets, Proposition 2.8 below, reveals the

property bound up with these subsets, that might be used by the algorithms to Problem 2.1.

Proposition 2.8. Let J∗, Jc∗ be the sets as in Theorem 2.4. The following property holds

dh
uh

<
di
ui
, ∀(h, i) ∈ J∗ × Jc∗ .

Proof. Let function ϕh be given by (2.6). Since ϕh is strictly increasing, (2.8) yields

ϕh(uh) > −λ∗, ∀h ∈ J∗, (2.13)

and due to (2.9)

ϕi(ui) ≤ −λ∗, ∀i ∈ Jc∗ . (2.14)

Inequalities (2.13) and (2.14) imply ϕh(uh) > ϕi(ui), i.e.

−
d2h
u2h

> −d
2
i

u2i
≡ dh
uh

<
di
ui
, ∀(h, i) ∈ J∗ × Jc∗ .

Proposition 2.8 reduces number of candidates to J∗ from naive
∑H

k=0

(
H
k

)
= 2H (all subsets of

J) to H. More explicitly, kth candidate is equal {j(k), . . . , j(H)} ⊆ J, k = 1, . . . ,H, where j is

permutation of J = {1, . . . ,H} such that dj(1)
uj(1)

≥ dj(2)
uj(2)

≥ · · · ≥ dj(H)

uj(H)
.

2.3. Algorithms

Two algorithms solving Problem 2.1 will be presented in this section. The first algorithm

Sequential Allocation is a direct consequence of Theorem 2.4 and Proposition 2.8 and it comes

with three different versions. They differ between themselves in the way they find set of indices

J∗. The third version of the Sequential Allocation algorithm is probably the most interesting.

It forms a sequence of numbers on the basis of optimality condition (2.3) and examines its

monotonicity in order to find J∗. The second algorithm, Recursive Neyman, has been known

among practitioners for years, and its principles are outlined e.g. in [9, Remark 12.7.1, p. 466].

We first provide precise description of this algorithm for the case when upper bounds uh ≤ Nh,

for all h ∈ J , and afterwards we use Theorem 2.4 to demonstrate its correctness. Analogies of

Recursive Neyman allocation to the Sequential Allocation algorithm will be discussed as well.
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2. Finite Upper Bounds and no Lower Bounds

The Sequential Allocation algorithm makes use of Proposition 2.8. It is therefore convenient

to work with relabelled3 strata indices, i.e. j(k) 7→ k for k = 1, . . . ,H, and denote the set of

relabelled strata indices by J̃ . Here, j is permutation of J = {1, . . . ,H} such that dUj(1) ≥ d
U
j(2) ≥

· · · ≥ dUj(H). Corresponding sets J∗, Jc∗ , introduced in Theorem 2.4 will be relabelled accordingly,

and denoted by J̃∗, J̃c∗ .

2.3.1. Sequential Allocation (version 0)

Theorem 2.4 provides closed-form expression for an optimal solution to Problem 2.1. Whereas

construction of set J∗ is not directly discussed in that theorem, the optimality conditions (2.3) -

(2.5), and Proposition 2.8, can be used to identify it. Proposition 2.7 ensures such identification

will be unique. It is beneficial for subsequent derivations to introduce a sequence, which is defined

on the basis of optimality condition (2.3), and its kth element depends on Jk = {k, . . . ,H} ⊆ J̃ .

This allows for convenient examination of candidates Jk. Such sequence is defined below by

(2.15).

Definition 2.9. Let J̃ = {1, . . . ,H} (dU1 ≥ dU2 ≥ · · · ≥ dUH), Jk = {k, . . . ,H} ⊆ J̃ , Jck = J̃ \ Jk,

k ∈ J̃ .

ξk =

n−
∑
i∈Jc

k

ui∑
i∈Jk

di
, k = 1, . . . ,H. (2.15)

In this version of the Sequential Allocation algorithm, candidate sets Jk are evaluated se-

quentially4 for k = 1, . . . , k∗ ≤ H against ξkdk ≥ uk condition until it is not met. Hence,

k∗ = min{k ∈ J̃ | ξkdUk < 1} and J̃∗ = Jk∗ .

A formal statement of the algorithm is given below. The order(x) function used throughout,

returns a permutation which rearranges the input series x into ascending (default) or descending

order, e.g. order([3, 1, 2, 4]) = [2, 3, 1, 4]. Comments are preceded by the sign ..

Algorithm 1 Sequential Allocation
Require: 0 < n ≤

∑
i∈J ui . problem must be feasible

1: procedure SeqAlloc(d[1, . . . ,H], u[1, . . . ,H], n)

2: n∗ ← u

3: if (n <
∑
i
u[i]) then . J∗ 6= ∅

4: j ← order([ d[1]u[1] , ...,
d[H]
u[H] ], decreasing) . dUj[1] ≥ · · · ≥ d

U
j[H]

3Except formal statements of the algorithms.
4It is worth to observe that Jk+1 = Jk \ {k}, i.e. strata are deleted as iterations progress.
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2.3. Algorithms

5: ds←
∑
i
d[i]

6: for k ← 1 to H do

7: if n
ds ·

d[j[k]]
u[j[k]] ≥ 1 then . if ξkdUj[k] ≥ 1, then stratum j[k] goes to Jc∗

8: n← n− u[j[k]]

9: ds← ds− d[j[k]]

10: else . executed at least once as J∗ 6= ∅ ensures ξHdUj[H] < 1

11: k∗ ← k

12: break

13: end if

14: end for

15: n∗[j[k∗], . . . , j[H]]← [ nds · d[j[k∗]], . . . ,
n
ds · d[j[H]]

16: end if

17: return n∗

18: end procedure

The diagram below illustrates the state of objects upon algorithm termination. A single dot

symbol used in subscripts stands for each and every element from Jc∗ (left column) or J∗ (right

column).

J = {1, . . . ,H}

j(1) . . . j(k∗ − 1) j(k∗) . . . j(H)

dUj(1) ≥ . . . ≥ dUj(k∗−1) > dUj(k∗) ≥ . . . ≥ dUj(H)

ξ1d
U
j(1) ≥ 1 . . . ξk∗−1d

U
j(k∗−1) ≥ 1 ξk∗d

U
· < 1

Jc∗ J∗

n∗· ≡ u· n∗· = ξk∗d· < u·

Proposition 2.10. Let (ξk) be a sequence defined by (2.15) and k∗ = min{k ∈ J̃ | ξkdUk < 1}.

Then, for k∗ ∈ {1, . . . ,H − 1}, the following inequalities hold

0 < ξ1 ≤ ξ2 ≤ . . . ≤ ξk∗ > ξk∗+1. (2.16)

Proof. Inequality ξ1 > 0 is evident, given natural assumptions n > 0, Nh > 0, Sh > 0 are met
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2. Finite Upper Bounds and no Lower Bounds

for all h ∈ J . Below equivalences hold for k = 1, . . . ,H − 1.

ξk+1 ≥ ξk ⇔
n−

∑
i∈Jc

k

ui − uk∑
i∈Jk

di − dk
≥
n−

∑
i∈Jc

k

ui∑
i∈Jk

di
| (
∑
i∈Jk

di − dk)
∑
i∈Jk

di > 0

⇔ XXXXXXXXXX

(n−
∑
i∈Jc

k

ui)
∑
i∈Jk

di − uk
∑
i∈Jk

di ≥
XXXXXXXXXX

(n−
∑
i∈Jc

k

ui)
∑
i∈Jk

di − (n−
∑
i∈Jc

k

ui)dk

⇔ (n−
∑
i∈Jc

k

ui)dk ≥ uk
∑
i∈Jk

di

⇔ ξkd
U
k ≥ 1.

Last equivalence, together with the following fact

ξkd
U
k ≥ 1, ∀k ∈ {1, . . . , k∗ − 1} = J̃c∗ ,

ξk∗d
U
k∗ < 1,

completes the proof.

Theorem 2.11. Algorithm 1 determines the unique optimal solution to Problem 2.1.

Proof. From Proposition 2.3 we know that the optimal solution exists when the problem is

feasible. Algorithm 1 runs sequentially through all feasible splits of J (i.e. as given by Proposition

2.8) in order to find set J∗. This set exists and it is unique, following Proposition 2.7. Hence,

algorithm terminates in at most H iterations. Upon termination, the solution corresponding to

J∗, clearly satisfies optimality conditions (2.3) - (2.4). To prove that condition (2.5) is met too,

it should be noted that

ξkd
U
k ≥ 1, ∀k ∈ {1, . . . , k∗ − 1} = J̃c∗ .

Given this fact, and since (ξk) is non-decreasing with k = 1, . . . , k∗ (Proposition 2.10), it follows

that

ξk∗d
U
k ≥ 1, ∀k ∈ J̃c∗ .

This last inequality is equivalent to

∃λ∗ ∈ R+ :
dk
uk
≥ 1

n−
∑

i∈Jc∗
ui∑

i∈J∗ di

dh
dh

=
dh
n∗h

=
√
λ∗, ∀(h, k) ∈ J̃∗ × J̃c∗ .

Example 2.12. Optimal allocation (column n∗.) for two different sample total sizes n for an

example population with 4 strata. Column J̃c∗ indicates whether stratum is assigned to J̃c∗ set.

All floating numbers in below table are rounded to 2 decimal places.
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n = 190

J̃ d· u· dU· ξ·d
U
· J̃c∗ n∗·

1 5000 70 71.43 0.97 0 67.86

2 4000 90 44.44 0 54.29

3 3000 100 30.00 0 40.71

4 2000 80 25.00 0 27.14

J̃∗ = J1 = {1, 2, 3, 4}, J̃c∗ = ∅.

n = 230

J̃ d· u· dU· ξ·d
U
· J̃c∗ n∗·

1 5000 70 71.43 1.17 1 70.00

2 4000 90 44.44 0.79 0 71.11

3 3000 100 30.00 0 53.33

4 2000 80 25.00 0 35.56

J̃∗ = J2 = {2, 3, 4}, J̃c∗ = {1}.

2.3.2. Sequential Allocation (version 1)

The algorithm described above does not make use of certain property that sequence (ξk) possesses.

This property could further improve the algorithm. It turns out that it might not always be

necessary to calculate ξk for every iteration k of the for loop (lines 6 - 14) in order find set J∗.

Corollary 2.13 below, is essential to justify this simplification.

Corollary 2.13. Let (ξk) be a sequence defined by (2.15). The following implication holds for

all k ∈ {1, . . . , k∗ − 1} = J̃c∗

(∃l ∈ {1, . . . , k − 1} | ξk−ldUk ≥ 1) =⇒ ξkd
U
k ≥ 1. (2.17)

Proof. The proof is an immediate conclusion of Proposition 2.10.

It is worth noticing, that converse implication does not necessary hold as it may happen that

1 < ξkd
U
k < 1 + xdUk , where x = ξk − ξk−l > 0,

resulting in

ξkd
U
k < 1 + (ξk − ξk−l)dUk ,

ξk−ld
U
k < 1.

At a single iteration k, Algorithm 1 continues to next iteration when condition ξkdUk ≥ 1 is met

(line 7). In such case, stratum k is classified to J̃c∗ . Corollary 2.13 assures that as long as it is

true that ξk−ldUk ≥ 1 for some l ∈ {1, . . . , k−1}, inequality ξkdUk ≥ 1 holds as well, and therefore

stratum k can be classified to J̃c∗ through inequality ξk−ldUk ≥ 1. It is apparent that ξk−ldUk < 1

(premise of the implication (2.17) is false) is inconclusive, that is ξkdUk < 1 or ξkdUk ≥ 1. The

formal statement of this enhancement is described below. It is the repeat loop solely responsible
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2. Finite Upper Bounds and no Lower Bounds

for J∗ construction. It replaces for loop from the Algorithm 1 (lines 6 - 14). The repeat loop

type is more convenient here than for, as none of the indices k, g is necessary altered in every

single iteration of the loop.

1: k ← 1

2: g ← 1 . Here, g := k − l with regard to notation of Corollary 2.13

3: repeat

4: if n
ds ·

d[j[k]]
u[j[k]] ≥ 1 then . if ξgdUj[k] ≥ 1, stratum j[k] goes to Jc∗

5: k ← k + 1

6: else if g < k then . ξgd
U
j[k] < 1 inconclusive for g < k ...

7: n← n−
k−1∑
i=g

u[j[i]]

8: ds← ds−
k−1∑
i=g

d[j[i]]

9: g ← k . ... hence, ξkdUj[k] ≥ 1 checked at next iter.

10: else . ξkd
U
j[k] < 1, then J∗ = {j[k], . . . , j[H]}

11: k∗ ← k

12: break

13: end if

14: end repeat

Example 2.14. Optimal allocation (column n∗.) for two different sample total sizes n for an

example population with 4 strata. For n = 320, ξ1d
U
2 = 0.0229 · 44.4444 = 1.0159 > 1, hence

stratum 2 is classified to J̃c∗ together with stratum 1 through ξ1. Column J̃c∗ indicates whether

stratum is assigned to J̃c∗ set. All floating numbers in below table are rounded to 3 decimal

places.

n = 210

J̃ d· u· dU· ξ· ξ·d
U
· J̃c

∗ n∗·

1 5000 70 71.429 0.015 1.071 1 70.000

2 4000 90 44.444 0.016 0.691 0 62.222

3 3000 100 30.000 0 46.667

4 2000 80 25.000 0 31.111

n = 320

J̃ d· u· dU· ξ· ξ·d
U
· J̃c

∗ n∗·

1 5000 70 71.429 0.023 1.633 1 70

2 4000 90 44.444 1.016 1 90

3 3000 100 30.000 0.032 0.960 0 96

4 2000 80 25.000 0 64
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2.3.3. Sequential Allocation (version 2)

Finally, Proposition 2.10 induces yet another version of the Sequential Allocation algorithm. In

this approach, monotonicity of sequence (ξk) is inspected in order to find J∗. Formal statement

of the algorithm routine, solely responsible for J∗ construction, is given below. It replaces for

loop from the Algorithm 1 (lines 6 - 14).

1: ksi← n
ds

2: ksi1← 0

3: k ← 1

4: while k ≤ H − 1 do

5: n← n− u[j[k]]

6: ds← ds− d[j[k]]

7: ksi1← n
ds

8: if ksi > ksi1 then . if change of monotonicity found

9: break

10: else

11: ksi← ksi1

12: k ← k + 1

13: end if

14: end while

15: if (k == H − 1) & (ksi ≤ ksi1) then . if change of monotonicity not found

16: k∗ ← H . then it must be that J∗ = {j(H)} as J∗ 6= ∅

17: else

18: k∗ ← k

19: end if

Example 2.15. Optimal allocation (column n∗.) for four different sample total sizes n for an

example population with 4 strata. Value in column ξ· ↓ and row (k + 1) indicates if ξk > ξk+1

inequality is met, k = 1, . . . , 3. Column J̃c∗ indicate whether stratum is assigned to J̃c∗ set. All

floating numbers in below table are rounded to 4 decimal places.
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2. Finite Upper Bounds and no Lower Bounds

n = 190

J̃ d· u· dU· ξ· ξ· ↓ J̃c
∗ n∗·

1 5000 70 71.4286 0.0136 0 67.86

2 4000 90 44.4444 0.0133 1 0 54.29

3 3000 100 30.0000 0 40.71

4 2000 80 25.0000 0 27.14

n = 270

J̃ d· u· dU· ξ· ξ· ↓ J̃c
∗ n∗·

1 5000 70 71.4286 0.0193 1 70.00

2 4000 90 44.4444 0.0222 0 0 88.89

3 3000 100 30.0000 0.0220 1 0 66.67

4 2000 80 25.0000 0 44.44

n = 300

J̃ d· u· dU· ξ· ξ· ↓ J̃c
∗ n∗·

1 5000 70 71.4286 0.0214 1 70

2 4000 90 44.4444 0.0256 0 1 90

3 3000 100 30.0000 0.0280 0 0 84

4 2000 80 25.0000 0.0200 1 0 56

n = 330

J̃ d· u· dU· ξ· ξ· ↓ J̃c
∗ n∗·

1 5000 70 71.4286 0.0236 1 70

2 4000 90 44.4444 0.0289 0 1 90

3 3000 100 30.0000 0.0340 0 1 100

4 2000 80 25.0000 0.0350 0 0 70

Sequential Allocation algorithm is based on Proposition 2.8. As it was mentioned, this proposition

reduces the number of candidates to J∗ from 2H to H. Yet, there is the price to pay for this

facilitation, the set of strata indices J must be properly ordered up-front.

2.3.4. Recursive Neyman Allocation

Recursive Neyman allocation approach to Problem 2.1, here termed Recursive Neyman algo-

rithm, is historically not connected to Theorem (2.4). We start with describing the principles

of this approach for the case when upper bounds uh ≤ Nh for all h ∈ J . Consider Problem 2.1

without inequality constraints (2.2), referred here as Relaxed Problem 2.1. The classical Neyman

optimal allocation [9, Chapter 3.7.4.i, p. 106] provides an optimal solution

n∗h =
n∑

i∈J
di
dh, ∀h ∈ J, (2.18)

to Relaxed Problem 2.1.

It turns out that the Neyman allocation (2.18), when applied in a recursive way to step-wise

reduced set of strata [9, Remark 12.7.1, p. 466]5, it can be used to determine the optional solution

to problems with inequality constrains on lower or (exclusive or) upper bound of (n1, . . . , nH),

such as Problem 2.1. Namely, if the solution to such additionally constrained problem, given

by allocation (2.18), violates some of the inequality constraints, then constraints limiting values

should be taken as a solution for strata exceeding these restrictions. For allocation in remaining

5Costs are not considered here in this work, by assuming fixed cost ch ≡ 1, ∀h ∈ J .
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strata, allocation (2.18) is applied again on reduced set of strata. The whole operation is itera-

tively repeated until the allocation meets all of the inequality constraints. Below is the formal

statement of this concept for Problem 2.1. Function length(x) used in below pseudo-code, returns

length of the vector x, e.g. length([3, 1, 2, 5]) = 4.

Algorithm 2 Recursive Neyman allocation - upper finite bounds only
Require: 0 < n ≤

∑
i∈J ui . problem must be feasible

1: procedure rneyman(d[1, . . . ,H], u[1, . . . ,H], n)

2: n∗ ← u

3: if (n <
∑
i
u[i]) then . J∗ 6= ∅

4: ds←
∑
i
d[i]

5: j ← [1, . . . ,H]

6: repeat

7: jl← length(j)

8: nopt← [ nds · d[j[1]], . . . ,
n
ds · d[j[jl]]]

9: for i← 1 to jl do

10: if nopt[i] ≥ u[j[i]] then . if true, then strata j[i] goes to Jc∗

11: n← n− u[j[i]]

12: ds← ds− d[j[i]]

13: j ← j[1, . . . , i− 1, i+ 1, . . . , jl]

14: end if

15: end for

16: if jl == length(j) then . if no bounds exceeded in a given iteration of repeat

17: break . stop, j is equal J∗

18: end if

19: end repeat

20: n∗[j[1], . . . , j[jl]]← nopt

21: end if

22: return n∗

23: end procedure

It would be convenient for further derivations to introduce the following sequence, in a way

similar to sequence (ξk) defined by (2.15).

Definition 2.16. Let JRr ⊆ J denote set of strata indices that left for allocation at iteration

27



2. Finite Upper Bounds and no Lower Bounds

r = 1, . . . , r∗ of the Recursive Neyman algorithm.

ξRr =

n−
∑

i∈J\JR
r

ui∑
i∈JR

r

di
, r = 1, . . . , r∗. (2.19)

Proposition 2.17. Let Jc∗ = {h ∈ J | n∗h = uh}, where allocation n∗h, h ∈ J is computed by

the Recursive Neyman algorithm. At every iteration of the algorithm (except the last iteration),

strata indices h with highest dUh among all strata remaining for allocation at that iteration, are

moved to Jc∗ .

Proof. Let JRr ⊆ J denote set of strata indices that left for allocation at iteration r = 1, . . . , r∗

of the algorithm, and ξRr be defined by (2.19). At every iteration r = 1, . . . , r∗, all strata indices

h ∈ JRr are evaluated against condition

ξRr d
U
h ≥ 1.

Since ξRr > 0, dUh > 0, for r = 1, . . . , r∗, ∀h ∈ J ; it is evident that if there are any strata indices

h ∈ JRr that meet this above condition at iteration r, these are the strata with highest dUh .

Theorem 2.18. Recursive Neyman algorithm (Algorithm 2), determines the optimal solution

to Problem 2.1.

Proof. Let J∗R = {h ∈ J | n∗h < uh}, and Jc∗R = {h ∈ J | n∗h = uh}, where allocation n∗h, h ∈ J is

computed by the Recursive Neyman algorithm, and ξRr is defined by (2.19). Upon termination,

the algorithm leads to the following allocation

∀h ∈ J∗R : nh =

n−
∑

i∈Jc
∗R

ui∑
i∈J∗R

di
dh ∈ (0, uh),

∀h ∈ Jc∗R : nh = uh,

(2.20)

which clearly satisfies optimality conditions (2.3) - (2.4) stated in Theorem 2.4 for an optimal

solution. In order to prove that optimality condition (2.5) is met too, the following two facts

should be noticed:

(1) ∃λ∗ ∈ R+, i.e. λ∗ = dh
n∗h

= (ξRr∗)
−1, ∀h ∈ J∗R .

(2) It is a direct consequence of Proposition 2.17 that sequence (ξRr )r=1,...,r∗ is a subsequence

of the sequence (ξk)k=1,...,k∗ defined by (2.15). Thus, sequence (ξRr )r=1,...,r∗ is non-decreasing,

following Proposition 2.10. Then, since ∀r ∈ {1, . . . , r∗ − 1} ∀i ∈ JRr , we have

ξRr d
U
i ≥ 1, (2.21)
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the following inequality holds

ξRr∗d
U
i ≥ 1. (2.22)

Facts (1) and (2) read, λ∗ = dh
n∗h

= 1
ξRr∗
≤ dUi , ∀h ∈ J∗R , ∀i ∈ Jc∗R .

To complete the proof, it should be noted that by the uniqueness of the optimal solution (Propo-

sition 2.3) and uniqueness of corresponding J∗ (Proposition 2.7), it follows that J∗R = J∗, and

Jc∗R = Jc∗ .

Closer look at this algorithm reveals its analogy to Sequential Allocation (version 1) algorithm

introduced in the previous part of this chapter. Unlike Sequential Allocation algorithm, the

Recursive Neyman does not order strata indices up-front. Yet, in every iteration (except the

last one), it classifies to Jc∗ strata indices with highest dU (see Proposition 2.17). That in fact

imposes automatically the order on J .

Recursive Neyman algorithm, calculates allocations for all strata remaining for allocation at a

given iteration, and then searches for strata exceeding inequality constraints among all strata

allocated in that iteration. In contrast, Sequential Allocation algorithm, calculates allocations in

sequence for strata in ordered set of strata indices left for allocation at a given iteration, until it

finds the first stratum not exceeding inequality constraint.

In other words, assuming strata set of indices J were ordered up-front with regard to non-

increasing dUh , it would be sufficient for Recursive Neyman algorithm to calculate allocations at

given iteration, only for those first strata left for allocation, for which inequality constraints are

exceeded. This is what in fact the Sequential Allocation algorithm in version 1 does.
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3. Finite Lower and Finite Upper Bounds

3.1. Problem Formulation

Problem 2.1 will be generalized by adding lower bound constraints lh of nh for all h ∈ J .

Problem 3.1.

min
(n1,...nH)∈Ω

D2
t̂st
(n1, . . . , nH), Ω = RH+ ,

subject to
H∑
h=1

nh − n = 0, (3.1)

lh − nh ≤ 0, h = 1, . . . ,H, (3.2)

nh − uh ≤ 0, h = 1, . . . ,H. (3.3)

where function D2
t̂st

is given by (1.1), and n, lh, uh, h ∈ J are known constants. Following the

sampling design, we shall make throughout a natural assumptions about known constants, i.e.∑
i∈J li ≤ n ≤

∑
i∈J ui, and 0 ≤ lh ≤ uh ≤ Nh for all h ∈ J . Without the first assumption

Problem 3.1 might be infeasible. We will additionally require lh 6= 0. Case lh = 0 simplifies

Problem 3.1 to Problem 2.1. Clearly, the optimal solution is in the interior of Ω due to presence

of inequality constraints (3.2), (3.3), and assumptions about known constants. Hence the set

constraint (n1, . . . nH) ∈ Ω is not placed on the list of functional constraints.

Remark 3.2. Optimization Problem 3.1 is a convex optimization problem1 since the objective

function D2
t̂st

and inequality constraint functions lh−nh, nh− uh of nh for all h ∈ J are convex,

equality constraint function
∑H

h=1 nh − n of (n1, . . . , nH) is affine.

Proposition 3.3. The optimal solution to Problem 3.1 exists and it is globally unique.

Proof. The proof is analogous to the proof of Proposition 2.3
1Appendix A.1
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3.2. Optimality Conditions

Similarly to Chapter 2, optimality conditions can be formulated for an optimal solution to

Problem 3.1. Gabler, Ganninger and Munnich formulate necessary (not sufficient) conditions

in [5, Theorem 1, p. 152]. Theorem 3.4 below, provides necessary and sufficient conditions for

an optimal solution without assumption of particular ordering2 of set of strata indices J .

Theorem 3.4. (n∗1, . . . , n∗H) is an optimal solution to Problem 3.1, if and only if there exist

disjoint sets J∗, JL∗ , JU∗ , J∗ ∪ JL∗ ∪ JU∗ = J , and number λ∗ ∈ R+ such that:

(i) for J∗ 6= ∅

∀h ∈ J∗ : lh < n∗h =

n−
∑
i∈JL
∗

li −
∑
i∈JU
∗

ui∑
i∈J∗

di
dh < uh, (3.4)

∀h ∈ JL∗ : n∗h = lh, (3.5)

∀h ∈ JU∗ : n∗h = uh, (3.6)

∀h ∈ J∗, ∀i ∈ JL∗ , ∀j ∈ JU∗ :
di
li
≤ dh
n∗h

=
√
λ∗ ≤ dj

uj
; (3.7)

(ii) for J∗ = ∅

∀h ∈ JL∗ : n∗h = lh, (3.8)

∀h ∈ JU∗ : n∗h = uh, (3.9)

∀i ∈ JL∗ , ∀j ∈ JU∗ :
di
li
≤ dj
uj
, (3.10)∑

i∈JL
∗

li +
∑
i∈JU
∗

ui − n = 0. (3.11)

Proof. Problem 3.1 is a convex optimization problem (Remark 3.2) with objective and constraint

functions of class C 1 on Ω. Therefore, the Karush-Kuhn-Tucker conditions are necessary and

sufficient, and they take the following form for Problem 3.1

2Authors of [5] assume that the set J = {1, 2, . . . , H} is ordered such that d1
u1
≤ · · · ≤ dH

uH
. This additional

assumption is obsolete.
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∃λ∗ ∈ R, ∃(µL∗1 , . . . , µL∗H ) ∈ RH , ∃(µU∗1 , . . . , µU∗H ) ∈ RH such that for all h ∈ J

ϕh(n
∗
h) + λ∗ − µL∗h + µU∗h = 0, (stationarity)∑

i∈J
n∗i − n = 0, (primal feasibility)

n∗h − uh ≤ 0, (primal feasibility)

lh − n∗h ≤ 0, (primal feasibility)

µL∗h (lh − n∗h) = 0, (comp. slackness)

µU∗h (n∗h − uh) = 0, (comp. slackness)

µL∗h ≥ 0, (dual feasibility)

µU∗h ≥ 0, (dual feasibility)

(3.12)

where partial derivative function ϕh and its inverse function ϕ−1h are given by (2.6).

Each of the primal feasibility inequality conditions can be divided into two distinct cases, leading

to the following optimality conditions equivalent to (3.12):

There exist disjoint sets J∗, JL∗ , JU∗ , J∗ ∪ JL∗ ∪ JU∗ = J , and ∃λ∗ ∈ R+ such that

lh <n
∗
h < uh and ϕh(n

∗
h) = −λ∗, ∀h ∈ J∗, (3.13)

n∗h = lh and ϕh(lh) ≥ −λ∗, ∀h ∈ JL∗ , (3.14)

n∗h = uh and ϕh(uh) ≤ −λ∗, ∀h ∈ JU∗ , (3.15)∑
i∈J∗

n∗i +
∑
i∈JL
∗

li +
∑
i∈JU
∗

ui − n = 0. (3.16)

Conditions (3.13) - (3.16) can be further shortened when J∗ 6= ∅. From now on, we narrow the

domain of possible solutions to n∗h > 0, ∀h ∈ J . This restriction does not invalidate the proof,

since functions ϕh are even functions on their natural domains R\{0}. It follows from (2.8) that

for n∗h > 0, we get n∗h = ϕ−1h (−λ∗) for all h ∈ J∗, and therefore∑
i∈J∗

n∗i =
∑
i∈J∗

ϕ−1i (−λ∗) =
∑
i∈J∗

di√
λ∗

=
1√

−ϕh(n∗h)

∑
i∈J∗

di =
1√
d2h

(n∗h)
2

∑
i∈J∗

di =
n∗h
dh

∑
i∈J∗

di,

n∗h =

∑
i∈J∗ n

∗
i∑

i∈J∗ di
dh, ∀h ∈ J∗.

Given (3.16)

n∗h =
n−

∑
i∈JL
∗
li −

∑
i∈JU
∗
ui∑

i∈J∗ di
dh, ∀h ∈ J∗. (3.17)

Furthermore, (3.13) - (3.15) read

∀(h, i, j) ∈ J∗ × JL∗ × JU∗ , ∃λ∗ ∈ R+ such that

ϕj(uj) ≤ ϕh(n∗h) = −λ∗ ≤ ϕi(li),
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3. Finite Lower and Finite Upper Bounds

i.e.

di
li
≤ dh
n∗h

=
√
λ∗ ≤ dj

uj
. (3.18)

Due to (3.17) and (3.18), optimality conditions (3.13) - (3.16) can be formulated as in Theorem

3.4.

To complete the proof, it should be noted that optimality conditions (3.4) - (3.6) guar-

antee that the optimal solution (n∗1, . . . , n
∗
H) is in the interior of Ω.

Remark 3.5. (to the proof of Theorem 3.4)

Optimality condition (3.16) was enclosed (and replaced) into (3.17) in the course of the proof

assuming J∗ 6= ∅. If J∗ = ∅, condition (3.17) and therefore (3.16) decay, resulting in possibly

non-optimal solution. Hence, when J∗ = ∅, condition (3.16) must be evaluated explicitly in order

to preserve sufficiency.

Remark 3.6. In Theorem 3.4, the split of J into distinct sets J∗, JL∗ , JU∗ is unique if and only

if lh 6= uh, for all h ∈ J .

Proof. The proof is an immediate conclusion from Proposition 3.3 and distinctness of the split of

primal feasibility conditions (3.12) made in the course of the proof of Theorem 3.4. The division

of set J into J∗, JL∗ , JU∗ is equivalent of that split.

Remark 3.7. It is an immediate conclusion from Theorem 3.4 that the following expressions

hold for an optimal solution (n∗1, . . . , n
∗
H)

(n∗1, . . . , n
∗
H) = (l1, . . . , lH) ⇔ n =

H∑
i=1

li,

(n∗1, . . . , n
∗
H) = (u1, . . . , uH) ⇔ n =

H∑
i=1

ui,

which is rather an intuitive result without the formalism of the KKT conditions.

Theorem 3.4 introduces three distinct subsets J∗, JL∗ , JU∗ of J . Below Proposition 3.8 reveals

the property related to these sets which allows for simplification of algorithms to Problem 3.1.

Proposition 3.8. Let J∗, JL∗ , JU∗ be as in Theorem 3.4. The following properties hold

di
li
<
dh
lh
, ∀(i, h) ∈ JL∗ × J∗,
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3.3. Algorithms

dh
uh

<
dj
uj
, ∀(h, j) ∈ J∗ × JU∗ .

Proof. Let the function ϕh be given by (2.6). Since ϕh is strictly increasing, (3.13) yields

ϕh(lh) < −λ∗, (3.19)

ϕh(uh) > −λ∗, ∀h ∈ J∗. (3.20)

Due to (3.14)

ϕi(li) ≥ −λ∗, ∀i ∈ JL∗ , (3.21)

and (3.15)

ϕj(uj) ≤ −λ∗, ∀j ∈ JU∗ . (3.22)

Inequalities (3.19) and (3.21) imply ϕh(lh) < ϕi(li), i.e.

−
d2h
l2h
< −d

2
i

l2i
≡ di
li
<
dh
lh
, ∀(i, h) ∈ JL∗ × J∗.

Inequalities (3.20) and (3.22) imply ϕh(uh) > ϕj(uj), i.e.

−
d2h
u2h

> −
d2j
u2j
≡ dh
uh

<
dj
uj
, ∀(h, j) ∈ J∗ × JU∗ .

3.3. Algorithms

3.3.1. The noptcond by Gabler, Ganniger and Munnich (2012)

Gabler, Ganninger and Munnich propose the algorithm called noptcond [5, Section 3 Programme

code, p. 158]3 providing feasible, but - as it will be revealed further below - not necessary optimal

solution to Problem 3.1. This algorithm tests each feasible (i.e. as indicated by Proposition 3.8)

split of J into J0, JL, JU , against optimality condition (3.4) in order to determine a feasible

solution. If the condition is violated for a given split, algorithm proceeds to next candidate.

The table below illustrates feasible splits (one candidate per one row) in the order the algorithm

evaluates them. The procedure stops at the candidate for which optimality condition (3.4) is

met. Using the notation adopted in this thesis, the noptcond orders strata so that d1
l1
≤ · · · ≤ dH

lH
,

and i describes permutation of strata indices such that di(1)
ui(1)
≤ · · · ≤ di(H)

ui(H)
. The symbol R denotes

total number of strata to allocate to JL∪JU at given iteration, and it is consistent with variable

R in the R program code [5, Section 3 Programme code, p. 158]. Only distinct candidates
3The R code of this algorithm can be found in Appendix C.1 of this thesis.
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3. Finite Lower and Finite Upper Bounds

(i.e. JL ∩ JU = ∅) are considered, others, non-distinct are simply skipped. The algorithm

terminates in at most 1 + (H − 1)H iterations. It is worth noticing that R = H (equivalent to

J0 = ∅) even if allowed by the algorithm, is never reached. This is caused by accepting non-strict

inequalities when assessing optimality condition (3.4). Such approach does not invalidate the

results obtained, yet it causes sets J∗, JL∗ , JU∗ found by the algorithm, even if they correspond

to unique optimal solution, they may not be consistent with Theorem 3.4. It also leads to one

less iteration.

R JL JU

0 ∅ ∅

1 {1} ∅

1 ∅ {i(H)}

2 {1, 2} ∅

2 {1} {i(H)}

2 ∅ {i(H − 1), i(H)}

· · ·

H-1 {1, . . . ,H − 1} ∅

· · ·

H-1 ∅ {i(2), . . . , i(H)}

It is important to remark that that the feasible solution provided by the algorithm may not be

optimal. The fact that the solution is feasible is evident from the construction of the algorithm.

The optimality is not guaranteed as the procedure does not ensure that the optimality condition

(3.7) is met. The impact of possible violation of the condition (3.7), can readily be spotted with

the following example. Let the algorithm stops with R = 1 and JL = {1}, JU = ∅, meaning

that the corresponding solution is feasible. It is however possible that the optimal solution is for

JL∗ = ∅, JU∗ = {i(H)}. That however won’t be discovered by noptcond, since the algorithm stops

before moving to this candidate. Such scenario is possible, for instance for J = {1, 2},

∃n ∈ R+, ∃κ = d2
d1
, such that

l1 + l2 < n < u1 + u2, | problem must be feasible
n

d1 + d2
>
u1
d1
≡ n > u1(κ+ 1), | e.g. uper bound exceeded

d1
l1
<
d2
l2
≡ κ > l2

l1
, | stratum 1 goes to JL

l2 < n− l1 < u2 ≡ l1 + l2 < n < l1 + u2, | no bounds exceeded

d1
l1
>

d2
n− l1

≡ n > l1(κ+ 1). | but opt. condition (3.7) violated
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First restriction (feasibility due to n), together with l1 < u1, l2 < u2, simplify above inequalities

to

max(l1 + l2, u1(κ+ 1)) < n < l1 + u2, (3.23)

κ >
l2
l1
. (3.24)

It is evident these three inequalities can be met for some n, and κ, when choosing u2 big enough.

Numerical example below illustrates the scenario considered.

Example 3.9. Non-optimal allocation by noptcond alogorithm and optimal allocation for an

example of population with 2 strata with
∑

h∈J lh = 70,
∑

h∈J uh = 250, and κ = 1.5. Hence,

max(l1 + l2, u1(κ+ 1)) = 125 < n = 160 < 230 = l1 + u2, as well as κ = 1.5 > 1.33 = l2
l1
.

J N· S· l· u· nnoptcond· n∗·

1 100 20 30 50 30 50

2 300 10 40 200 130 110

Optimal solution yields JL∗ = ∅, J∗ = {2}, JU∗ = {1}, while noptcond terminates with

JL∗ = {1}, J∗ = {2}, JU∗ = ∅. Corresponding variances (rounded to the nearest integer):

D2
t̂st
(nnoptcond1 , nnoptcond2 ) = 132564 > 91818 = D2

t̂st
(n∗1, n

∗
2).

3.3.2. Sufficient noptcond

A simple adjustment can be made to noptcond algorithm so that it provides the optimal solution

to Problem 3.1. Specifically, a feasible candidate found, should additionally be checked against

optimality condition (3.7). This causes that all necessary and sufficient optimality conditions

(3.4) - (3.7) are evaluated for every feasible candidate J0, JL, JU . Re-implemented algorithm in

R, including proposed enhancement can be found in Appendix C.2.
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4. Concluding Remarks

Although results presented in this work are complete, there are possible further development

paths. Among them, the most important are as follows.

1. Algorithms presented in Chapter 2.3 can be further analyzed against computational com-

plexity and memory usage. For instance, most of available sorting algorithms (sorting

operation is invoked in all of the algorithms presented in Chapter 2.3, except Recursive

Neyman algorithm), immediately yields O(n2) upper bound1 on the worst-case running

time. There are however sorting algorithms with O(nlog(n)) worst-case running time.

Furthermore, if some information about the probabilistic distribution of the algorithm in-

put is available, the average-case running time could be computed. It may turn out that

for some different population/sampling characteristics some algorithms perform better (in

terms of average-case running time) and some other worst.

2. Algorithm noptcond discussed in Chapter 3.3, at each iteration (except last one) moves

only one stratum to JL ∪ JU . It would be desirable to move more than just one stratum

to JL ∪ JU at single iteration whenever possible, in the way similar to Recursive Neyman

allocation in Problem 2.1. It evident that recursive Neyman approach does not yield

optimal solution for Problem 3.1. This trivial example below clearly illustrates it.

Example 4.1. Results of classical Neyman allocation for sample total size n = 55 for an

example of population with 2 strata. Both restrictions are exceeded.

J d· l· u· nneyman· nneyman· < l· nneyman· > u·

1 90 18 25 13.56 TRUE FALSE

2 275 30 40 41.44 FALSE TRUE

1O(g(n)) = {f(n) | ∃c > 0, ∃n0 > 0 such that 0 ≤ f(n) ≤ cg(n) ∀n ≥ n0}. O(·)-notation is used to give an

upper bound on a function, up to a constant factor.
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3. It is evidently desired that strata sample sizes are integers. Problems 2.1 and 3.1 were

formulated in the way they do not require integer solution. Consequently, the optimality

conditions obtained, and the algorithms proposed do not assure the solution will be inte-

ger. Furthermore, it may happen that after rounding of non-integer optimal solution: (1)

minimum of the objective function is not guaranteed anymore, (2) sample size (i.e. overall

sample size, or sample sizes within strata) violates imposed constraints [12]. These draw-

backs received an attention in e.g. [12] and [4], where authors propose algorithms yielding

integer solution to optimal allocation problem under given sample size constraints. In the

context of this work, it seems interesting to investigate whether optimal allocation problem

formulated in the language of mathematical optimization could be adjusted so that it yields

an optimal integer solution.

Apparently, algorithms giving integer optimal solutions are more time consuming, whilst

the gain in optimality is typically negligible. Therefore, at least from the applications

point of view, it is rather desirable to have an efficient algorithm for the optimal, possibly

non-integer solution, and then round such a solution properly to an integer (which will be

negligibly sub-optimal).
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A. Mathematical Optimization Background

Mathematical optimization is concerned with problems called optimization problems. Below is

the most common formulation of the optimization problem

optimize f(x)

subject to hi(x) = 0, i = 1, . . . , l,

gj(x) ≤ 0, j = 1, . . . , p,

x ∈ Ω,

where l, p ≥ 0 and 'optimize' means minimize or (exclusive or) maximize.

If l = 0 and p = 0 the problem is an unconstrained optimization problem. Point x is the

optimization variable of the problem, the function f(·) is the objective function, and hi(·), gj(·)

are constraint functions. The constraints hi(x) = 0, gj(x) ≤ 0 are referred to as functional

constraints; more specifically, hi(x) = 0 is termed as equality constraint and gj(x) ≤ 0 as

inequality constraint. The constraint x ∈ Ω is a set constraint. Set constraints are quite often

de-emphasized, assuming in most cases that either is the whole Euclidean space En or that the

solution to the problem is in the interior of Ω. A point x ∈ Ω that satisfies all the functional

constraints is said to be feasible. A set of all feasible points is called feasible region or just feasible

set. A feasible point x∗ is called optimal, or a solution of the problem, if it has the smallest

(in case of minimization) or largest (in case of maximization) objective value among all feasible

points.

Many books cover this topic, including [6], and [2].

Definition A.1. (Convex Problem)

A convex optimization problem is an optimization problem in which the objective function is a

convex function and the feasible region is a convex set.

Proposition A.2. Sufficient conditions for an optimization problem to be a convex optimization

problems are:

• The objective function is convex,
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A. Mathematical Optimization Background

• Inequality constraint functions are convex.

• Equality constraint functions are affine,

Proof. Presence of the first condition is evident. Since the objective function is convex, its

domain set is convex (1). Sublevels {x | g(x) ≤ 0} (g(x) - inequality constraint function) of

convex sets are convex (2), and affine sets are convex (3). The intersection of convex sets (1),

(2), (3) is convex. More details on convex optimization problems can be found in [3, Chapter

4.2 Convex optimization, p. 150]

Theorem A.3. (The Extreme Value Theorem)

If f : X→ R is real valued function from a compact space to the real numbers, then f attains a

largest value, that is there is an x ∈ X such that f(x) ≥ f(y) ∀y ∈ X.

Theorem A.4. (Heine-Borel Theorem)

A subset of Rn is compact if and only if it is closed and bounded.

Proofs to A.3 and A.4 can be found in [7].
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B. Karush-Kuhn-Tucker Conditions

The Karush-Kuhn-Tucker (KKT) approach to constrained nonlinear programming generalizes

the method of Lagrange multipliers (which allows for equality constraints only).

Theorem B.1. (Karush-Kuhn-Tucker Necessary Conditions) Suppose f : RH → R,

f ∈ C 1; hi : RH → R, hi ∈ C 1(i = 1, . . . , l); gj : RH → R, gj ∈ C 1(j = 1, . . . , p). Let x = x∗ be

a local optimum to the problem

minimize f(x)

subject to hi(x) = 0, i = 1, . . . , l,

gj(x) ≤ 0, j = 1, . . . , p,

(B.1)

where l, p ≥ 1, x = (x1, · · · , xH), and constraint functions hi(·), gj(·) satisfy some regularity

conditions. Then

∃λ∗ ∈ Rl,∃µ∗ ∈ Rp such that

Stationarity

∂

∂xh
f(x∗) +

l∑
i=1

λ∗i
∂

∂xh
hi(x

∗) +

p∑
j=1

µ∗j
∂

∂xh
gj(x

∗) = 0, h = 1, . . . ,H,

Primal feasibility

hi(x
∗) = 0, i = 1, . . . , l,

gj(x
∗) ≤ 0, j = 1, . . . , p,

Dual feasibility

µ∗j ≥ 0, j = 1, . . . , p,

Complementary slackness

µ∗jgj(x
∗) = 0, j = 1, . . . , p.

(B.2)

In case hi(·) and gj(·) are affine functions, then no further regularity conditions are needed.

Furthermore, for convex optimization problem (see Definition A.1) with f(·) ∈ C 1, hi(·) ∈ C 1

and gj(·) ∈ C 1, necessary conditions (B.2) are also sufficient for optimality [3, Chapter 5.5.3

KKT optimality conditions, p. 243]. In such case, it can be stated that, x∗ is a local optimum
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B. Karush-Kuhn-Tucker Conditions

to the problem (B.1) if and only if x∗ satisfies conditions (B.2).

Objective function f(·) and constraint functions hi(·), gj(·) take the following form for Problem

2.1

f(n1, . . . , nH) =
∑
h∈J

(
N2
hS

2
h

nh
−NhS

2
h

)
,

h(n1, . . . , nH) =
∑
h∈J

nh − n = 0,

gh(nh) = nh − uh ≤ 0, ∀h ∈ J.

(B.3)

More detailed discussion on the KKT conditions can be found in [6, Part III, Chapter 11.8,

p. 341], or [1].
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C.1. The noptcond

This is the noptcond algorithm in R, as originally proposed in [5, Section 3 Programme code,

p. 158] by Gabler, Ganninger and Munnich. Comments originated by the author of this thesis

are enclosed in square brackets [ ].

1 noptcond <− f unc t i on (dh ,mh ,Mh ,n) {

2 H <− l ength (dh) # Number o f s t r a t a

3 m <− sum(mh) # Total o f lower bounds

4 M <− sum(Mh) # Total o f upper bounds

5 U1 <− order (dh/mh , dec r ea s ing=FALSE) # Ordered s e t equ iva l en t to U(L_1)

6 U3 <− order (dh/Mh , dec r ea s ing=TRUE) # Ordered s e t equ iva l en t to U(L_2)

7 nopt <− n∗dh/sum(dh) # Nai ive a l l o c a t i o n

8 Hk <− 1 :H # Index 1 to H

9 R <− 0

10 whi le (R<=H){

11 i <− 0

12 whi le ( i<=R){

13 s1 <− as . i n t e g e r (0 )

14 s3 <− as . i n t e g e r (H+1)

15 i f ( i<R) { s1 <− as . i n t e g e r (U1 [ 1 : (R−i ) ] ) }

16 i f ( i >0){ s3 <− as . i n t e g e r (U3 [ 1 : i ] ) }

17 i f ( ! any ( s1%in%s3 ) ) {

18 noptU1 <− numeric ( l ength ( s1 ) )

19 noptU3 <− numeric ( l ength ( s3 ) )

20 i f ( i<R) { noptU1 <− mh[ s1 ] }

21 i f ( i >0){ noptU3 <− Mh[ s3 ] }

22 # Omit s o l u t i o n s which v i o l a t e the requirement

23 # sum(noptU1 , noptU3 )<=n

24 i f (sum(noptU1 , noptU3 )<=n) {

25 i f ( i==0 & R==0){ s2 <− Hk}

26 i f ( i==0 & R>0) { s2 <− Hk[− s1 ] } # [ i t s t a r t s ( i . e . i =0) with moving a l l

s t r a t a to JL ]
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27 i f ( i >0 & R==i ) { s2 <− Hk[− s3 ] } # [ i t ends ( i . e . i=R) with moving a l l

s t r a t a JU ]

28 i f ( i >0 & R>i ) { s2 <− Hk[−c ( s1 , s3 ) ] } # [ in the midle ( i . e . 0 < i < R) ,

s t r a t a are moving to JL and JU ]

29 noptU2 <− (n−sum(noptU1 )−sum(noptU3 ) ) ∗dh [ s2 ] /sum(dh [ s2 ] ) # [ t h i s i s

a l l o c a t i o n a f t e r moving s t r a t a to JL , JU ]

30 # I f a l l c ond i t i on s are met , stop and return s o l u t i o n

31 i f (sum(noptU2 <mh[ s2 ] )==0 & sum(noptU2 >Mh[ s2 ] )==0){ #[ note : a l l

c ond i t i on s are met at non−s t r i c t i n e q u a l i t i e s ]

32 i f ( i==0 & R==0){ nopt1 <− cbind ( s2 , noptU2 ) }

33 i f ( i==0 & R >0){ nopt1 <− cbind ( c ( s1 , s2 ) , c ( noptU1 , noptU2 ) ) }

34 i f ( i >0 & R==i ) { nopt1 <− cbind ( c ( s2 , s3 ) , c ( noptU2 , noptU3 ) ) }

35 i f ( i >0 & R>i ) { nopt1 <− cbind ( c ( s1 , s2 , s3 ) , c ( noptU1 , noptU2 , noptU3

) ) }

36 re turn ( nopt1 [ order ( nopt1 [ , 1 ] ) , 2 ] )

37 }

38 }

39 }

40 i <− i+1

41 }

42 R <− R+1

43 }

44 }

C.2. Sufficient noptcond

This is the modified version of the noptcond algorithm in R, assuring solution returned is optimal.

1 #' Optimal sample a l l o c a t i o n in s t r a t i f i e d random sampling scheme .

2 #' Maximize : \deqn{ \sum_{h \ in J} \ f r a c {N_h^2 S_h^2}{n_h} − \sum_{h \ in J} N_h S_

h^2 }

3 #' Subject to : \deqn{ \sum_{h \ in J} = n } and \deqn{ l_h \ l eq n_h \ l eq u_h \

f o r a l l h \ in J }

4 #'

5 #' @param d numeric vector , d = N∗S , where N − s t r a t a s i z e s , S − s t r a t a standard

dev i a t i on s .

6 #' @param l numeric vector , lower bounds on sample s i z e s in s t r a t a .

7 #' @param u numeric vector , upper bounds on sample s i z e s in s t r a t a .

8 #' @param n numeric s ca l a r , t o t a l sample s i z e .

9 #'
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10 #' @return numeric vec to r with optimal a l l o c a t i o n or e r r o r i f the problem i s

i n f e a s i b l e

11 #'

12 #' @examples

13 #'

14 #' noptcond_s u f f i c i e n t (d = c (2000 , 3000) ,

15 #' l = c (30 , 40) ,

16 #' u = c (50 , 200) ,

17 #' n = 160)

18 #'

19 noptcond_s u f f i c i e n t <− f unc t i on (d , l , u , n ) {

20

21 `&` <− f unc t i on (x , y ) {

22 i f ( ! a l l ( x ) ) re turn (FALSE)

23 i f ( ! a l l ( y ) ) re turn (FALSE)

24 re turn (TRUE)

25 }

26

27 i f (n > sum(u) | n < sum( l ) )

28 stop ( "n i s not f e a s i b l e " )

29

30 dL <− d/ l

31 dU <− d/u

32

33 J_dL <− order (dL)

34 J_dU <− order (dU, dec r ea s ing = TRUE)

35 H <− l ength (d)

36 J <− seq_along (d)

37

38 f o r ( R in 0 : (H−1) ) { # i f problem i s f e a s i b l e , s o l u t i o n must be found in at

most H−1 i t e r a t i o n s

39

40 f o r ( i in 0 :R ) {

41

42 JL <− J_dL [ 0 : (R−i ) ]

43 JU <− J_dU [ 0 : i ]

44

45 i f ( ! any (JL %in% JU) & (n > sum( l [ JL ] , u [ JU ] ) ) ) {

46

47 J0 <− i f (R != 0) J[−c (JL , JU) ] e l s e J

48 noptJ0 <− (n − sum( l [ JL ] , u [ JU ] ) ) ∗ ( d [ J0 ] / sum(d [ J0 ] ) )

49
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50 i f ( ( l [ J0 ] <= noptJ0 & noptJ0 <= u [ J0 ] ) &

51 ( d [ J0 ] / noptJ0 >= suppressWarnings (max(dL [ JL ] ) ) &

52 d [ J0 ] / noptJ0 <= suppressWarnings (min (dU[JU ] ) ) ) )

53

54 # form so l u t i o n

55 re turn ( c ( l [ JL ] , noptJ0 , u [ JU ] ) [ order ( c (JL , J0 , JU) ) ] )

56

57 }

58 }

59 }

60 }

61

62 # Note : max( ) and min ( ) f un c t i on s are wrapped with suppressWarnings ( )

63 # to suppres s a warning , thrown when the argument i s o f l ength 0 ,

64 # which i s a behavior o f base : : max( ) and base : : min ( ) .
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