
Lab 10 – MIPS32

Typy danych

• Data types:
– Instructions are all 32 bits

– byte(8 bits), halfword (2 bytes), word (4 bytes)

– a character requires 1 byte of storage

– an integer requires 1 word (4 bytes) of storage

• Literals:
– numbers entered as is. e.g. 4

– characters enclosed in single quotes. e.g. 'b'

– Strings enclosed in double quotes. e.g. "A string"

Rejestry

• 32 general-purpose registers
• register preceded by $ in assembly language

instruction
two formats for addressing:
– using register number e.g. $0 through $31
– using equivalent names e.g. $t1, $sp

• special registers Lo and Hi used to store result of
multiplication and division
– not directly addressable; contents accessed with special

instruction mfhi ("move from Hi") and mflo ("move from
Lo")

• stack grows from high memory to low memory

Register

Number

Alternative

Name
Description

0 zero the value 0

1 $at (assembler temporary) reserved by the assembler

2-3 $v0 - $v1 (values) from expression evaluation and function results

4-7 $a0 - $a3
(arguments) First four parameters for subroutine.

Not preserved across procedure calls

8-15 $t0 - $t7

(temporaries) Caller saved if needed. Subroutines can use w/out

saving.

Not preserved across procedure calls

16-23 $s0 - $s7

(saved values) - Callee saved.

A subroutine using one of these must save original and restore it before

exiting.

Preserved across procedure calls

24-25 $t8 - $t9

(temporaries) Caller saved if needed. Subroutines can use w/out

saving.

These are in addition to $t0 - $t7 above.

Not preserved across procedure calls.

26-27 $k0 - $k1 reserved for use by the interrupt/trap handler

28 $gp

global pointer.

Points to the middle of the 64K block of memory in the static data

segment.

29 $sp
stack pointer

Points to last location on the stack.

30 $s8/$fp
saved value / frame pointer

Preserved across procedure calls

31 $ra return address

Struktura programu

• just plain text file with data declarations, program code (name of file
should end in suffix .s to be used with SPIM simulator)

• data declaration section followed by program code section
Data Declarations
• placed in section of program identified with assembler directive .data
• declares variable names used in program; storage allocated in main

memory (RAM)
Code
• placed in section of text identified with assembler directive .text
• contains program code (instructions)
• starting point for code e.g.ecution given label main:
• ending point of main code should use exit system call (see below under

System Calls)
Comments
• anything following # on a line

.data # variable declarations follow this line

 # ...

.text # instructions follow this line

main: # indicates start of code

 # (first instruction to execute)

 # ...

 # End of program, leave a blank line afterwards

Instrukcje ładowania/zapisu

• RAM access only allowed with load and store instructions
• all other instructions use register operands

load:
• lw register_destination, RAM_source

– #copy word (4 bytes) at source RAM location to destination register.

• lb register_destination, RAM_source
– #copy byte at source RAM location to low-order byte of destination register,

and sign-e.g.tend to higher-order bytes

store word:
• sw register_source, RAM_destination #store word in source register into RAM

destination
• sb register_source, RAM_destination

– #store byte (low-order) in source register into RAM destination

load immediate:
• li register_destination, value #load immediate value into destination register

Tryby adresowania
load address:
• la $t0, var1

copy RAM address of var1 (presumably a label defined in the
program) into register $t0

indirect addressing:
• lw $t2, ($t0) load word at RAM address contained in $t0 into $t2
• sw $t2, ($t0) store word in register $t2 into RAM at address

contained in $t0
based or indexed addressing:
• lw $t2, 4($t0) load word at RAM address ($t0+4) into register $t2
• "4" gives offset from address in register $t0
• sw $t2, -12($t0) store word in register $t2 into RAM at address ($t0

- 12)
• negative offsets are fine

Instrukcje arytmetyczne
• all operands are registers; no RAM or indirect addressing - operand size is word (4 bytes)

• add $t0,$t1,$t2

– # $t0 = $t1 + $t2; add as signed (2's complement) integers

• sub $t2,$t3,$t4

– # $t2 = $t3 - $t4

• addi $t2,$t3, 5

– # $t2 = $t3 + 5; "add immediate" (no sub immediate)

• addu $t1,$t6,$t7

– # $t1 = $t6 + $t7; add as unsigned integers

• subu $t1,$t6,$t7

– # $t1 = $t6 + $t7; subtract as unsigned integers

• mult $t3,$t4

– # multiply 32-bit quantities in $t3 and $t4, and store 64-bit result in special registers Lo and

Hi: (Hi,Lo) = $t3 * $t4

• div $t5,$t6

– # Lo = $t5 / $t6 (integer quotient) # Hi = $t5 mod $t6 (remainder)

• mfhi $t0

– # move quantity in special register Hi to $t0: $t0 = Hi

• mflo $t1

– # move quantity in special register Lo to $t1: $t1 = Lo # used to get at result of product or

quotient

• move $t2,$t3

– # $t2 = $t3

Instrukcje sterujące
Branches
• comparison for conditional branches is built into instruction
• b target # unconditional branch to program label target
• beq $t0,$t1,target # branch to target if $t0 = $t1
• blt $t0,$t1,target # branch to target if $t0 < $t1
• ble $t0,$t1,target # branch to target if $t0 <= $t1
• bgt $t0,$t1,target # branch to target if $t0 > $t1
• bge $t0,$t1,target # branch to target if $t0 >= $t1
• bne $t0,$t1,target # branch to target if $t0 <> $t1
Jumps
• j target # unconditional jump to program label target
• jr $t3 # jump to address contained in $t3 ("jump register")
Subroutine Calls
• subroutine call: "jump and link" instruction
• jal sub_label # "jump and link" copy program counter (return address) to register

$ra (return address register)
• jump to program statement at sub_label
• subroutine return: "jump register" instruction
• jr $ra # "jump register" jump to return address in $ra (stored by jal instruction)

Wywołania systemowe
Service

Code
in $v0

Arguments Results

print_int 1 $a0 = integer to be printed

print_float 2 $f12 = float to be printed

print_double 3 $f12 = double to be printed

print_string 4 $a0 = address of string in memory

read_int 5
integer returned in
$v0

read_float 6
float returned in
$v0

read_double 7
double returned in
$v0

read_string 8
$a0 = memory address of string
input buffer
$a1 = length of string buffer (n)

sbrk 9 $a0 = amount address in $v0

exit 10

