
detworks for

1 4 Recognition
pher M. Bishop

Neural Networks for
Pattern Recognition

CHRISTOPHER M. BISHOP
Institute for Adoptive

and Neural Computatbn
Division of Informatics
Edinburgh Univervitu

OXFORD
~~P~ . , I

omom c:T 1 1.
V W W S I I Y M S

- ~ C l a r w d o a S a s % ~ o x z 6 D P .. .
a u e w i . a - d t h e ~ n i w d & d

~ t ~ ~ U ~ t u ' s & ~ o f ~ i n r ~ s c h o ~ ,
m d f ! d u ~ b y p p ~ ~ ~ i n

wwd N w York
Awkbd Cap T m Dar ea salmn Hong Kmg K a r a

~ L u r p p p ~ ~ M e I h o y m e ~ ~ Nafrobi
PIewlkm shmghai Taipei Torontb

WithQffloesh
& p t h a A d Brazil W C ~ ~ F r a u c e Greece
G w t a a b Hulqpq Italy Ja* South ICorerr faw Portu*

% g 8 p e s ~ w T n r k e y - ~

Puhlisbedin theunited Stam
Bp Oxford University Press Inc, WewYark

The moral tights of the author haw b n d
O CM. B w 1995

Databright Oldord Uni~rsiqPress (maker)

w-1995
~leprinted 1% (-1, m 1% m, 2000, m3 (*)t

am, rn
Aarigbrewmd No *of d&public&on may b e r c p r d d

~ i n a x ~ s g s r e m , o r ~ I n a g . f Q t m m ~ a n y ~
wlthrouttheptiorptrmiasiomintrrtitiqdoxbrdU~hese,

o r a m q r e & ~ b y l a w , o r u n d e r ~ + w i t b t h e a p *
r e p r ~ ~ 0 ~ ~ E n ~ c o ~ ~ c d o n

~ d e ~ s c o p e d t . h e ~ & 0 1 d b e s e n t m theftigb-b
O l d d n i U ~ P t e p % a t ~ ~ ~

Y a t r ~ n o t E i r ~ W ~ ~ a n y o t h e r b i a d i a g a r c a v e r
d) . o u m w ~ ? h i s ~ m n d i t i o n o n a o y ~

A ~ t ~ h ~ b # k i s ~ h t b e B r i t i s h m w r y

QA76.87S74 1984 006.- 95-5
ISBN 0 14 853864 2(Pbk)

FOREWORD

F u d ,*
hpt snd bow to &me a ~uitable ermr fimction for the output.
~t~~&ngn~ftheinweasingmaturityoftbefield thatlnstbodswhieh~ae - justEd by vague appeals lo their neuron-lib qualib can now be given a
a hundati~n. Ultimately, we d.bope that a better &stistical un-
d e of neural m r k will Mp us undastsnd bon tbe brain
&hrdy works, but until that dsy &=-it is tO know w b OW a-

d models work and h , ~ to use1- -vdy to solve imp&mt p r d d
pmblems.

I

ra
I ,-A* *P. . b 1 t . 4

m a
Idt

I

I I

1 : rl'

t . ,

d4 , & a h 4 m M .Was In 111 wn
' 7%' ,% s :bad b r ! + U w$ bow

Introduction
In recent years newd computing has emerged m a practical technology, with
suc& applications in many fields. The majority of these appEication8 me
concerned with problems in pattern recogmition, and make use of feed-fomad
n-k architectures such as the multi-law perceptma. and the radial basis
function network. Alm, it has dm h m e widely ackwwledged that success
ful tbpplicatbm of neural wmputiag require a principled, r b e r than ad h,
approach. My aim in writing this book has been to provide a mote h u e d
treatment of neural networks than previously a d b l e , which reflects these d e
velopments. By deliberately concentraing on the pattern reclognition asp& of
neural networks, it has became possible to treat many important tupiw in mrach
greater depth. For emmpIe, d&Q estimation, error functions, p w h r o p
thnbation Wrikbms, data pwprrrce&g, and Bayesian methods are emh the
eubject of an entire chapter.

I From the perspective of pattern recopition, neural networks can be regarded
as an exhmii of the many mnventsonal tdmiqueg which have h e n dewloped
over e m d d d m . I n d d , thia book indudes &&om of mverd concern in
conventional statistical pattern recogmition which I regard a;s essential for a deax
understding of neural networh. Mare m v e treatments of k h w topica can
be found in the mmy on statbtid p&@m m p i t b n , including Duda and
Em% (1973), &d (1981), Devijver Fbnd Kittler (1982), and lhkuaag~~ (1990).
Recent review d c l w by Ripley (1994) and C h q and Tittmhgwn (1994) have
I& emphasized the statistical underp- of n e d mtworb. ' Hktorically, m y concepts in neural computing have been inspired by studiw
&' i610gical n h r k s . The m v e of statistical pattern m i o n , how- i t W , dm rr much more direct and principled route to many of the same con-
-. For example, the sum-and-threshold model of a neumn arise8 naturally as
Waptfmal d i w i m b n t b & i n needed to dhtbguhh two classes whose distri-

me n o d with equal d c e mahioes. Similariy, the fan&= logistic
function needed to allow the output of a network to be
ility? when the distribution of bidden unit actbations b

er of the exponential family.
& i a n t mumption which is made throughout the book is that the pro-

m@&- - give- to the data do not t h e d v e a evolve with time. W q u a s
ddiktgtdkb mn-sWhary sources d data are not so highly devebped, nor so
m a 4 rn ~ & ~ & t + p w b h . Fkthmmme, the hues ddiwsed

w f t b t;his book rm&i q * ' & i * m & I h . ~ h pf t&e tdtwbal mq&
cation of non-&a~omrity. X't &auld b mid that tBfa W c t l e a r h m not meam
W ~ ~ m ~ l n g ~ p ~ o f t i m m r i w a r e d u d e d . T b e k e y

X pmQ= m &:

I a*@n .frif w e is tb time e ~ c m of the && of etatidl0.l pattern recognition, induding pro~ililtm,, d m a&& A'
but ~ -1- proms which. generam tb h is -0- Bayrasp C h ~ ~

Chap- % d& .Rlith the! p m b h of tbepwbi&y &&Mion of
a of &a, -and - a- pmm&ic and mpn-parmc metho&,
a s ~ m d i s r m s s i m o m ~ t ~ e 8 ~ 0 a ~ ~ b u t i o ~ .
b i d e from being .of .considerable practical importlytce h, M - w, the
c0naept;a of p m b b w dedty&m&m we ta of
~ t i n g *

~ ~ r h h a m a single l qw of adaptive wdghk~ m in ' C h a p h 3 . ~ t h o u g h s l r h n & m r h a b s n h ~ ~ U I . e m ~ n &
mrb,.*~ WI plag imporhant role in p d c d appli-, md &
m ~ ~ ~ ~ a l ~ a n d ~ ~ h m c h ~ a p p ~ b ~ ~ t o . ~
p m a l m k s w u ~

4 m d a a ~ m p d m s h e tmimmt of tb.mdti4qw p e m p u ,
and d e h h ~ % h e k h @ e of ermr bd-propagation and its -.ag a
general bmmmk far evaluating derbt lwin mult i -w *h. he E&a -- which playg a central role h many apwation
as weIIas.inBaJllleaian-, haIeob&dat leagik

An -Pb=tw, &pzwCb to J!ep-* gen'3ml nm&
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ r I E g , a s r d - i ~ ~ ~
Chapter 5. T h e nehmk are mi- firom -d m~
hence pmid~-am+g k b m o r k . h h g 8-a of app-.

Several dihen t eror fun&one cm he u d f61. tr9aaing; d m m b ,
and t h e me bfhtd, a d th& p r o - I m 1 in mw 6, % &+

under WM network outpuk- .be-, w p&bab~f'ies m
-, d the c [brpespor i**~ ofhidhrmi6,*ti0n8 is.&
d d e x e d e d

c h a p t e r 7 ~ ~ n l l a r ~ p o f ~ ~ i m ~ , ~ t ~ ~ ~ *he
~ ~ ~ O f t h e ~ ~ i n a ~ i n ~ ~ f o x ~ x k ~ . &nPb
~ ~ ~ , ~ ~ n ~ d e s e s l l t n l t h m m n e n t o m , h ~ m ~ t s ~ ,

~ m ~ o f t b e h e l p ~ t o ~ i v & e s o m e o f t h e m p w m f d
--, t~ and q & N m b methode.
- llOne- Of tk met h@mt fa&m fa deterafinfng,the su- of a pr-

C h a w 9 pMdes a number of high& into the p m b h of + d o g
and d=&#& m d d s , f o r &hs&g k h cdzd h e of modd order & Overview of the b p t e r s tion- The W d the bb-vmianne t r a d e 4 is introdud, snd m d
u q m fof tdMI Muding r q u h t i o n , -<&

The e h a p ~ d k m t h & ~ & ~ ~ ~ & . o f - e m h h m a B-
perspecti=. As d l rn p d d h g a more fundamental view of learning in neural

B- almwh* to.pxacthl produm for E d p h g

- h = & e k p - & f & - & e d ~ d & & d h S u ~ a & t ~ ~ d & ~ ~ ~ ~ . h o t h e r ~ i t ~ s ~ ~
e&@cWS. ~ ~ l t h e w a i a h t e ~ a d n g l e i n d a x . u k ~ ~ ~ w h e r a k m f n r m 1 ~ ~ ~
, . - 4 9 l a - d ~ m : d e r M i n & a p m , d W w andWhthetot.l n d m d * b . ~ h a w r i a b l a s w ~ h.*&
& & ~ d £ @ & k k ~ d ~ ~ ~ ~ ~ ~ f i = , ~ ~ 8 t ' - t o ~ ~ ~ ~ w w b o q a e l e m s n t s m m p ~ d o f t h e ~ ~ (a-
& % m B ' a f l f a t W a S , a a d p ~ , ~ ~ . - F ~ Y a d h W w parametem) in tbe nstwark.
.., &:a ~ b b p p b ~ i a ha&&& =hi& h W e b h provide d T4en-m 6, ~ ~ n s v a l ~ ~ d e l f s ~ b a l , h ~ ~
&-to a ~i- r a & e r ~ & 6 0 m g h 4 ofthe W d d d d

I
I 4 ~ = 1 i f f = f a a d 6 , , , = a ~ . S ~ 1 ~ t h e n o t ~ ~ (~) d ~ ~

O& of the eu4jwt . 1 Dirac ddh fun*, which hm the. mp&w 6(s) = 0 for 0 # 0 and

k-m oe

I I
~ ~ b ~ 9 f i f l d a ~ w ~ . . l e ~ ~ ~ I ~ ~ a J-qz)& = I.

of pmd p i d p b $B E o ~ , ~ ~ . w d a - , for -* v,
& w, while upper-ewe bold a ~ c b @ M, denote

& * ~ f l g t C Y ~ ~ a f - r
d

&om a ~ r y ' w ~ ~ ~ * % r k 6 0 -- n b (z i) .
wridda are i n d d by Itmeraw ip1

Uaerl * M ~ O * OCC- qw&tb jn b k
re listed bdw:

c n m k d ~ u t p ~ h i of e h
ck & h h
d number ofhputs
E errorfmcth
E[Q] -&tion of a r&mn mhble Q
r (.) mvatioa function

a fnpnthM

M , m - M Q . N d h t 3, ~$[~)y.to-the:-*
* ~ * f J m ~ d h ; e r M b ~ o P % (, # t b a t ~ ~ ~ - ~ ~

n: 0uQut Unit label

~ " ~ : ~ ~ ~ p m e m ~ * m ~ ~ w.139. M mmberofhiddenunifs

& & l @ & & & ~ ~ & ~ ~ , @ r ' ~ % yk#& &mwb 4 n p d m ~

d'& - m , K ~ . ; * & k y ~ * > e #&@r$f~J t& debttxhe l m m b ~ a f p a ~

& q , p & ~ x t $ r d l w ~ * ~ k I ~ * - r i - I P(-) pmbablility

#mcowwk*- '
) mbabiity &&ty function

% ~ ~ (& @ & D) f ~ p * , ~ ~ ~ - ~ - I Earget value *, qfJ d e n W ! a b ~ o f * ~ f f %) . aquare--&
r t;im~sbegin~malgoritbms

la tbe aiakdion E[Q] 1hb& d e m b tb (i~e. -1 of*=&- ' W -of-aadbhhanetwork
x netarorkinpyt~~~3able
II getwork otltput m k b l e
2 wtimbn of hidden unit

hgwAthmtobases
,,kc ; w e t o b a s s 2

CONTENTS

n .

xiv

A a i b m ~ - ~
Ffarlly, 1 wiQ kb W~EW my n y d d grat;rtude bo'W rmny pw~k who,
~am,nayo.~her,~~~~oql~thepmar.cdwiititrgtldirbmt Ths

of t h 3 j$ Jd, dpho h a s l ~ ~ ~ comidembb pwbs' ad &od ha-
rdollr, n o ~ ~ d i a g w,- + I - ' u n d ~ d & e t 4 ~ a n P l ~ r e -

@imdtodbmPWthfi bwk. I 8 n ~ ~ l y g n t e f u l t o a m m k ofpebple
dr& &kerid'for thigbook, andfor

in one wa$ or wth~ ham

I
r HwistiEal F&tmm Hemgaitbn

h w q Stephen Luttnll, David M y , A h M J s b b n , Markin M O ~ [Bd 1 A n ~ p f R - & ~ r w ~ @ t i o n

I rord N ~ , ~sshaow Q-, B~EUI ~ i p l g , ~iobard mh-, DPM w\ laia 1.a c l ~ ~ t i o ~

I Shahan, Markus S w d n , Llond'-, David W h , Chris W m , 1.3 P - ~ a a d f e a e u r e i ? d z & a

P e h wulim and Colin wmdwr* I d a h We. to thank H & d Lister 1.4 T h e ~ m e e d d i m r w i m d i ~

for pr.m&ng e o ~ b l e a&st&m% wUle I ww . - ' t&WbEagX. 1.5 ~ m m f i t h i n g
M y , 1 vrbh *I thank && Odord UniVWSi-T their bdp t& w m w ~

, ha.&&&? of preparing w book. 1.7 l (dalt ' i f f3 m-W fuadbm
$ & d a f h r e & g r ~ i n i i h e b O ~ k hm.b;een h q i i ~ ; s h P i l a r d i w p s m 1.8 Btbyis$ttmxsm

I ~ - b pUbWE4i work, I113 f d h E
1.9 ~ n b ~

I 1.10 himmi&& w
I 23,,'2.#, di& 3.1 , , . . . , , . . . (Duds and m, 1 ~ 1 1 &erch

i.... *.. 1 , <.....I.'.*.i * . .,. . , , . I . - *., t pmeh, 1.M)
9$p&$.16 &I &la ,. (MLuPy aed Pap%, 1969)

bbabwDensi&-tbn
1 Parm&rk methods

F'*4;4; .;;,i. i. .- ,-... -..,..7 (r J p v , M 7)
. , ,. , (I-, 1995) -5'8 a .,

(IIaPtmap et ak,, ISNj F ~ 5 ; 9 ~ d 6 . 1 0 ..,...,.*.-- ~-.........,.m..........
' d, J*, I-)

OIL
-8.3,,-..... cG- ": :

Figure 9.12= andw-, 19W))
-9.14-.--...... @Wb$ab., 1m1)
F i e 9 . 1 9 ,, (EkQ a$ d, 1991)
Figuna 10.1, 1U.10, 10.11 wid 10.16 : (m y , I%&)

1O.si loA, T0.5 and 10.6 .- . . [e y , fB3a)
P$ura. 9.3 .Id 10.12'(hf@~Kay, I-) Linear s e p f q t w i

CeEdidUtlear-
r

Chrh Biirbop
I
I

4 m<wdfI*layerF'ePG%&~op
%d-&w&d &!work mappings

. .

a CmMb

1 r Conbenta 3mii

4 Error bd-~~(1-n 140 0 Pf9-processing and Feature Extraction 293

.gg Tbe M i a n mafdx 148 8.1 Pre-promsing and p e p - 298

1 The HesSiannWrh ;: 1 8.2 Input norm&&on and encoding 298

hh 8.3 Missing data 301
I 8.4 Time series prediction

164
302

5 R a d i a l B d 3 h d a % 8.5 E"e&ureselection
164

304
I 1 muAin$Brpoh~n 8,6 Principal component malysis

167 310
5.2 bash function ME^ 8.7 Invariances and prior knowledge

170
. 319

5.3 Network trahw in 329
6.4 h-n wry
5.5 NGhy ihW@olsESrw *&XY , 176 I 9 Learning and Generalization 332
5.6 ~ n % o ~ ~ # ~ ln 9.1 Bim and mian@ 333
5.7 b&i~ fuli&on wtmrks for ~lwdfiatroa 179 9.2 hgdwiiubn

t 338
6.8 Comparbon dtb fbe fndti-km Pmm ' 'k 182 9.3 Tkaining with noise 346
9.9 Bash fuwtion optM@jion 183 9.4 Sofi might &wing 349
5.10 SUpeWid Qm 190 9.5 Growing and pruning algorithms 353

~~ 191 9.6 Committees of networb 364
9.7 Mixtures of experts

194
369

6 EmrRmctions 9.8 M~delorderdwtion
Ig5

371
6.1 S d - m m 9.9 V a p n i k - C h m n d dimemion

208
377

6.2 M h k m a k i ~ ~ 1

213
380

$.?3 bpukkqenbt ,mhm
&4 M O ~ - con-4 W U ~ ~ B aL2 10 Bayesian W q u e s 385
6 5 -ihgposWor prababilitk 222 10.1 B a y a h lemning of network w e i g h 387
a$ -4f-m for c b E ~ a C f o a 225 10.2 Diribation of network outputs 398
,6,7 Urwatrapy%r hv0 230 10.3 Application to cl&ssification problems 403
6.8 Mukiple independent attribufes 3% 10.4 The evidence framework for a and @ 488

S &$ Cxm-entr~py far dfi 237 10.5 Integration over hypeqmmehm 415

I 6.10 %$ropy 280 10.6 Bayesian model cornparkon 418
I 611 Wwal conditions for outputs b b W~W* 246 10.7 CommiW of networks 422

EkeP&eB W 424

s3
425

T p-opthidbn Ah&*
I

429
tl ErtorMfb%

257
433

I T;Z bd q u d r a t i c . a p ~ ~
73 ~ O t r t p u t d b s 259 symmetric %tdw 440

plA O p b i d d o n 269
2& GaudanIntepals 7.5 Grdieret d-nt 444

7 L a d 2%
! I . . 274 Multipliers 448

7.9 ~~~ glwem
2a9 451
2s

4 4
I

m s p e e c h m @ i m d f h e c l w b

of the bmic formdim of statistid pattern mmgnitbri,

id, problem of d i d q d m g . hand-
'b'. hag@ oft he^^ be

Figure 1.1. rllustration of twu hypothethl images reprmnting: handwritten
d o a s of the chm&xm 'a' and '6'. Each image. is d d b e d by an array of
pixel values st which r w h m 0 to 1 according to the &tion d the pivel
square occupied by b k k ink.

superscript T denotes the transpase. In comidering this m p l e we
a number of detailed practical considerations which would have to be
in a red implementation, and focus instead on the underlying imues.

The gud in thb W i c a t i o n problem is to develop an algorithm

P

1.9: m@&.&n @hd m#h

n and

d e s h b y y k where h = l,.,,,c Thw, ifwe
of the alpbaw, we dght c o d e r 26 output

%lk = w) f14

a,(whpse txctual d a b f ~ ~ - A ~ a l ~ k m d d , d t h e ~
d the d u a b e ~ e d e i m ~ b m a ~ d m b f o r ~ h e

. . r ~ - k m for yc~w], andfur-

dEeparcmk?ts . The p
ontheh&#offhedata

. ,

r

1.4: The mm of d i m -

Figure 1.4. The majority of n d metwlork -na the
input vmhbles ~r,...,sa to ba f imdkmd by m e form o f ~ p ~
bgive anew & ofvdabIesZ~, ..., &. Thaw are thentrmtd astheinputs
b t h e n d n € f h o x k , w ~ o u t p n ~ ~ ~ t e d b y ~ l , . . . , y , .

The curse of d i m e n d o e

~igure1.5. Olaewaytoepecifya~ingfPomaoGdimenswnalspsoesl,.. . , x d

to an output d a b l e y b to divide the input a* into a number of &, w Af

indicated k e for the cam of $ = 3, and to & the d m of y for ewh of 3 (~) = l v o + ~ r ~ + * * . + m ~ r ~ =Cturd.
the &. The major problem with thia s p w is that the number of &, f -0

(1.2)

and hence the m u n k of data points r w w , exp0nmw
with d, a phenomenon h a as the 'curse of -on&@'.

(&h, 1961). If we are forced to m r k with a limited qusntitp. of data, ss m,

similar to in$erpoLation.
Although the effects of d i i o d i ~ are gemrally not as severe BS th ~ f w , a n d w ~ t h e p s t ~ ~ ~ b e f & j

~ f - h n o f t h e ~ ~ s w
w- This th& the of

valuw Eor the network outputa, is c d d
p&em the value of the

learning, called ?l&@mnmf
is supplied as to whether the
actual desired dum are
will not be discusmi further.

Wahvei&md&t
point. E m functbu play an important role in tbe we of neural networks, $
the whlu of Cham 6 is dwoted to a d e h W -on of their prop&
T b m w e s b a l l ~ h m t h e ~ d ~ ~ m f u x l c t b n c a n b e d
wmemepmtd &&istied prhciph, prwided WR make &ain m p
thepmperkiegof~~dak WeWakro~igate&herfomofem>r
which areappmprbte whm kbe mumptiom are mt d i d .

We+bhd&a tb WW~ZEB of polynomial curve fitding by
sptheW %q xlrhkb $.Intended to capture some of the b d c pm&
of reJht0 ats.,usedh pa*- =ph pm-. s w c d l y ,
trahiug d&a &om I I

by 88mphg thehmdicm h(s) at equal ~ o f r sad then ad- 4
w i t i ~ r ~amsim *tion (~ectioul 2.1.1) baviug etrndard 4

a = O . a S . ~ f o r ~ & a ~ i n t a m d u e f i o r t h e m i s e ~ ~ ~
Q ~ A M p ~ o f ~ d a t a & o f W i n p ~ r & ~
thstthedaWexhibi&anunderlybg~wgsct , mpre&dinWl-
by the funddon h(z), but is corrupted wttb random noise. The central $

F i g u r e 1 . 7 . T h k ~ h o ~ ~ t h e ~ e d a t a & a s i n ~ 1.6, but tbistimefittdby
a cubic (Ad = 3) polynomial, showing the sigdfimtly i m p d 8ppdxmtion
to h(x) a c b i d by this more flexible functton. I

-.- #w

~ ~ ~ r e l . ~ . ~ e r e s u l t o f f i t t i n g t h e ~ d & t a & a s i n F i g u r e 1 . 6 ~ a 1 0 t h - .
order (M = 10) polynomisl. This g h 3 a perfect fit to the 'mining data, but
at the expeme of a W i o n which hsa large &one, a d whi& t h d m r
mvm a poorer r e p d o n of the generator fimction h(s) thaa did the cubic 1 1

removled. Figure 1.9
M d & a s e t , a s a
training & errm d m a s d ~teadily as the order of the polpornid
test set error, however, reaches a W u m at M = 3, thereak
as the order of the polynomial is h d .

therefore reachm

Figure 1.9. Plots of the FW3 error (1.5) a ~ i a function of the order of the poly-
nomial for both tr- and tet &, for the a ~ ~ m p b e problem considered in

p-us three figurw. Th error with q e c t to the training set d-
notonidly with M, while tfte error in making p r e d k h w for new data (as

by the W e) h a m i n i m u m a t M = 3 .

jq to amgs fM& model, w- gh-w separation of the trw &ta. - I -. - - - -
.! @ rrw'PAmi:-' - . .

I I ' 4

C

~ * ~ @ - , * .* *m

~ ~ ~ h ~ ~ ~ ~ i P ~ 3 * 4 * 9 3

* * ~ ~ l a . ~ ~ ~ ~ Z l e c o m 6 ~
n qfgqenc~af m d d y bm dab &,

a b a n d * - d

b r y * W ~ * ~ 1 1 + h e ~

a polpomid to higher dimdons. Thus, Eof d input variable, and again one
output variable, we d d wmider higher-order pol~rnamials up to, say, order ai
gi- by I

d d d d d d

y = + C ~ j ; e h + C C wr,sxi,ri + C C W ~ I , ~ X ~ X * S X & . (14)
41-1 ii=l i s 4 il=l ha1 h-1 I

For an Mth-order polynomial of thi kind, the number of independent adj
parameters wodd grow Zike dM (Exercise 1-81, While thisl now has a
lerw dependence on d, rather than the exponentid dependmce of the

in p o l y n d) were well deWmimd.

general Mth-order polynumisl. W e devote Chap- 4 and 5 to a st

I

Figure 1.13. D& frogl the of Figure 1.2 re-ted as en array.
~ h e ~ m d b % ~ ~ ~ m d o f t h e e v a l u e s X ~ sndmhimage
ieaaaipd t o o n e o f t b e t w o U C ~ orC2.Themmberddo@indceU
r e p ~ ~ t h s n v m b e r ~ ~ a ~ t h e m ~ p m d i n g v d r u r b ~ l s n d t h s
mnwpodbg W W, Various probaWh me d d d in the text in terms
d & f r s a i o n a f p o i n t s f a l l i n g i n d i f f d ~ ~ o f themmy.

belaqe~ to olaas a. It is given by the fr&c&n ofthe imagaa in ruw CI whlch
i a c e l l ~ ~ (I n t h e E d t o f a n ~ ~ u m b e t o f ~ } .

W e e notF: that; %& fraction ~f the total number of images which
dl (&,.$) iagWnbytbe bacEionof thenumber of- in row Ck
MI i n , d (&, X1j &e. the ikiictfon of the totd number of lmagas which

The i8 & i p i d e & h writing the joint probability in the form

where P(&(X4) is ths prebabilily that the is C k @verb kht
value of &Us in the d x'. The wtity p(Xi)

er d u e Xt 1itb reap& to the whole d a b &,
memberahp,andL~re@-hythehtsonofthe
which fdl into ophunn Xi. The two m p d o n s Eor the joht prabab
and (1.10) must, h m t be e q d . Thw, wz can mibe

~ e ~ l x ~ j +~eapy: = 1..

pun) into: (1.1.2) -wg.bb%&h
.'a

26 Ir Puttvn mh

a new image with feature d m A, as shawPl in m e 1.14, it ah&
-ed to clw Cis

In m m wxs the prior prob.ltBiI&ie can be eetimhd dire& bm the tr
ing data iblf Howem, it ,wa&mw happens (oRen by design) that the &a
~ m o f ~ p l e s ~ o m ~ ~ c ~ i n ~ ~ d a ~ & ~ r ~ t l
prob&itim & when our tr&d pattern mgdtion&8kem is appM
new data. Gs an -ple1 mnBider the problem of a &ti

guish bemeen normal tissue (W C1) and tumom Ca) on medical X-n
uw ill mas^ m. h &d & ~ t b k k S * m y kIlOW thi

in the general p@Wwl the praborbiliy d obwm4n.g a turnour is 1'
we should we prior pmbbilities of P(G) = and P(&) = 0,Ol. I

aentatiw of tmwl without having to me a huge number of images in totjj

.. 7 7 , . *
One a p m ~ b p ~ . A ~ @ a a k t b a r e dors d u d e the

d ~ p d . , ~ ~ W ~ and > W - p t h wba;bW RWMY and then
&he them using B-' theorem to @v& pw@riur prob&%W, whit& can
then be wed W t a l ~ new dt&~&W appmd is to &ate
the postdm probbility fmckbs dinccly. A. we W ~ a e In Chapter B*
ouQ~ufs of a mural mhvotk can be MeqmM BS [a p p r m to) pm&rior
probabith, pmided the mar function wed to Win the m k w d ~ is I
S&on 1.10 we &dl dim88 more gene
mept d a lam mlxb.

event will not occur (w3kh infermd-
o f b w , t h e n b m d v a l u e s
B a p ' theorem then providee w
a t e tbese ptobabilitih when we

abiity density functions, which we write in the farm p(x(Ck) The histogr- 1
plotted in Figure 1.2 efbbively @de unnonmbd~ discmthd -timates of '
the m functione PCX~CX) md p@\&j.

If t b me d variables XI , ..., xd, we may group tberu a w c b r x =
(XI,. . - , x ~) ~ m ~ m d b g t o a p a i e t ina m o d M. W i b t t t i i
of values of x can be dmcribd by probability d d Q firnetion p(x(x), such that
the prababilitg- of x lying in a region 72 of x s p a ia given by

We d&e the q w t d m , or m$d (i.a average) value, of a function Qb)
with rsepect to a grobabiJiW d e d t y p(x) to be

1

q b th.e mal is, over the, whole of X-QBC~. For a finis set of data psinq
2.:,,? &,,dnam &om tBe distribution p(x), the wectation can be r p g r d

the m . G m th &a pow
\

- 1
1 N

E[Q] = / ~ (x) l i (x) d x = -EQ(X")~ -1

1.8.4 Baues' &eowm in g d
&r ~ n t i n u ~ &les I% pflm prohbIliti- C P M ~ b -bind with the
conditionat demiit~ to giM the pasterior plobabiliti~ P(Cklx) using B a q
thqom~, &hi& c m now be written in the form i

Rare p(x) is the uneondiliond density function, that is the density function
x lrrespectiveuftb d m , and is gieab

formula for the p r p # Qf oompwhg pogterior pmhbil ih. Thm, we can
(1.21) to writ% the mihion (1.25)'311 tbs form

A m r a c k ~ e r
tn one of c A. We

but m y iW be divided IntQ sever4 disjoint regim all of which are

whers P(x E lZL Cz) i~ the joint prohbilisf of x bbeing k g ~ ~ 3 to
the h e class being Ca. Thus, if p(xjCl)P(dl) > p(sl&)P(&) for a
&odd choose the &ow I t 1 azld &! such that x Is in RI, shce t
e d m contrlhticm to the emr. We mgnb this as the d e & h
(1.26) far d h h i n g the prubab'iQ of &d&cation. The same
seen graphically in w e 1.15, in which mkkdfiwtiun errors w e
W e d region.. By choosing the d & i bo
at whi& the two distributions c m (8 h m

~ 4 x 1 =~(xICk)pIClc).

Sinee it is only the relathe magnituda of the discrimiaant functions
i m p d t in d e t e m the we vk{x) by !7(yk(x))3 w
is any monotonic £unction, and the d&ms of the c l d e r will not be
By taking lageyithms for emmple, we mdd write ow dhcrhhnt fun
theform

gk(x) = hp(x)Ck) + Inp(Ck)-

lk (4 = ~f(4-

The locatlow of the d&&ion bupdgjris are therefore u n a f f d by
t r & d u n s of the dimkdnmt function^.

~ b c r ~ t hnctions far t w d a w de&m problems brrdikd~ @38)

$44 = YI(X~ -

a x l d ~ ~ e n c r w w t h e r u l e h t x i 9 ~ e d t 0 ~ C r 8 y (x) > 0 m d ~
C2 if y(x) < 0. From the remarks a b m ik Eo11m C h a t we em urre several
for y(x] Muding

pix) = P(CL~X) - ~ (~ 2 l x T

I

1.10.1 RejeCtim thmhoktiB
In gaerd we expect must of the dda&cation errors to occur in thorn regi~m

1
of x-space where the lug& of the m i r probabili* is rdaki& lm, since
there is then a strong overlap bebvwn d&rent c b m . In some appli&iom
it may be b& not to make a cMcat ion decision in such eases. TW is
sornetkm called the reject option. Ebr the m d d dadiykion problem fior
example, it may be b&ter not to rely on an automatic cldhation ip-

doubtful cam, but to h m these c h d k d instead by a human m. We thea
wive at the Wowing p d u e 4

I

" T ~ Q ~ ~) I"8' < r, then reject x

where 6 ia a thmhdd in the rmge (0,l). The Iarm the d u e of 8, the kxvw
poi* d 1 be c M e d . One way in which the Rjed option can be used is to

d@&p 6 rekdivdy simple but fast clasl* to mn. the bnlk of the
Wwe e p w , while having the remaining regions to a more mpWicatad system
w w h might @Wlvel~ slow. I

The!r@elst @ i o n be applied ta neural mtwarIcs by maklDg use of tM
EMII~) ~ he #bwsd. lo Chapter 6, *hi& the outpucb: of a correctly trained
network .apprdma% hy&m p a o r probabilittes.

I

~ r c i s e s

1.1 (*] The fmk four auerd4a &ore the Uure of common Wtim wha
d d n g with spaces of many dim&= In Appendh B it is s b

I

Consider tke foIIowiag identity ~1~ the tranaformdion tmm CN
to wlar E O O T ~

!

where Sd 18 the s& area of the unit sphere in d dimensions. By
m of (1,411 show a t .- > . . ,

2dl2
I Sd = -

f (4 2)

where r(z) i~ the garnms, hction d @ d

,a ae mults r(i) = 1 r13/2) = =/a, that (1.43) nsduces
tothed----whend=2andd=3.

Using the mult (I+#), show that the volsmg of a h y p q k a of rdiua
iin&dimen&nsisgha by

a

Q d

iz=l*i i#=l
I

Thus, we see that AT) k m ayg0n-1 m y from its
F w i t h I ~ d e a . ~ i n c e o ~ ~ a t l 8 s p e ~ w e ~ t h a t & o f t h s
pr&abiity mm ie concentmW in a thin &elI at rathw. By Eontrast,
note that the vaIu'8 of the probaablQ density ihdf is erxp(d/z] tima w g 9 ~
at theorigin tbm at t h e r a d i u ~ ~ , as 6 s n b s s a n B e o m ~ g ~ (x) in
(1.49) h llx\12 = 0 with p(x) for llxllP = P = 0% Thus, the buk of the
groM1Iity maas is lomted in a different part of qm £ram the r a m of % r 1 ~ , t ~ ~ ~ XG - * ' (I*$?
w & d W t y d d t Y I< 1' .

I I , B ~ w w of ths ilumd-wam emr f~nc t~on (1.31, using the
,*:oftas p o l p d in &2), dmv that vdu- of the PW*

ahm4&st the * htepad$mt p ~ - paf&,m whi&
at M mi&&,'* - >

*.,we y&h t n b b i h the pna are gim W =~~~~ of the ' I F

f&Wingiaa:*@fm w-usequaaions d t

M a (4 q = Cn(i, 6 1 M- i).

wberewehwede&ned

n n

1.8 (*) Cawids W mo&hrder tern in a w - m d e r polynomial in d
m d m , @- bg.

rn , '

Heme, wing the q e s s i o n (l.691, show by induction that

which correqond ta wical small-scde and &adium-e . . appucatmm.
, 1. --.- - I

2

PROBABILFTY DENSITY ESWATION

b(Yeds'iG function. The methods we d&ibe ca$ be
f l ~ by considering eacb of tbe c h Ch Sn turn, and t b c b r ~

a 2 1, Then, wtssumiag th&t (1.6!2) hold$,Order
at M + 1. U* stidhg's a p p d i 9 n . the . chapter we ~ I S W the mblem of modelling a g r o b a b i i depaity

1, p;iven a finite m b a of& IM& xn. sa = l ~ dm- fmm
@mrd a& (M 5 3) p l ~ m i s l itr
f he totd n&& of Wep

*) ~ d p g m txre have 6 bax CO~- 8 apples m1.4 d& then be &
m d bm c d & h g 10 apph and 2 or-. po~terior prababilieies gorrmpon& to

itY esthukhn cw a h be.wpfied ta unlabrrUed data (that b data with-
I(*.) & n s ~ ~ ~ 1 1 - ~ ~ a m d 6 , wWw%n@ dass l a M) where it has a n w b a of a p f l c a ~ . h the of

Q 5 (&)l/Z. &e

~tltp~bs of a t&& mural n e h r k

' - J - '

I (*) y e that the ma-ri& dsddon &&on (1.39) ~u~ to
d e & &%) fir mirLimkhg the pmbsbility of misd=@don w -

to the data a&. The drmu of rmch
of PacaXwtrlc function cham^ m@t be

of the h~ d d @ By m-,
r n W c ~ t p M c a t i o a h not gssume a particular

W be d e e d entirely
problem that the number

p, 1994b).
gbpter 6, Mniques for deu4t.y estimhn am mmbhd with neuraf
*odela to prwide s general f r m m r k hr d e l l l a g m d i t i d demity
P*
~piy cwidelc three a~ternatim appmachs~ to density &oa he
mese involve8 m t h methods In which a specific. ftwtional fmm
bhsi ty model is is. Thfs contains a number of ~ a t a m h which

n, to achieve the bast of both worlds by allowing avery
' f u n d i o d farms in which the number of daptive pmmehre can

8: hhbt i i ty Density Eathatha

m o w for conditional &nsiw &mation, as discussed m h w in Chapter 6.
It should be emphabd that accurate modelling of probability densities from

finite data & in spaces of figh,dimemion&iy (where high could be as low ae
d = 10) h, in general, extmndy dil5cult. In Exercise 1.4 it was shown that most

I
of the pdability IIWW mciated with a G w i a n dhtribution in a space of high
dim40nalIty occm in a thin shell at lwge rdw. With a ihib data &, there
may be few, if my, data points &abed with the region of high probab'ity
density near the or@ This is mother example of the 'curse of dimemiodity'
discussed In Section 1.4.

The kechniqum described in this chapter are not only of great interest in
their own right, but they also p M e WI &lent introduction to many of the
central issues which must be d d r d when using neural networks in practical
q&c&mns. More extensive ~~SCU&OIIS of d m estimation can be found iq

arad Ha& (1973), Ti-gton et dr (19851, Silverman (1986), McLachlw
and B e d (19882, Wunaga (1990) and Scott (1992). I
&,&ww @.&&&d a p p d m tu dendty mtimati011 b to r e p

the pwbbiX4y density p(x) ,in term of a qecific functional form wbich mnt
aimrmnbo d.&&&le ~ a d m s . The d u a of the p r a r & m b um

3
opmkd*'* $be best:,fSf to *he
pmafnWc m&M fs the n m d ;or
0 f ~ e n t ' d s ' t r ~ ~ anrl
basic principles of p&1'ametric density esthWion, we shd firnit our dkmd
to normal distributions.

W e sbaIl dm describe the two principal khdgues for determining the
rmmtem of the model distribution, known rmpectiveIy as -mum @el&
md Bayesian inferem. As an illustration of the Baymian approach, we mnsi
the problem of hdhg the mean of a normal Wxibutio~ Bayesian metha
atw c g u i d d in C h q d q 10 where they are applied to the rnore m

for on-line learning in which the data due^ arrive sequentially and m w
discarded as soon as they are W.

The normal density function, for the case of a single .rrtt$iabb, can be writken iJ8
the form

c& t h ~ mean andt va

lk

d y be v d e d using tk resuh derived in Appendix B. The mem a ~ d
ce af tbe on$dIm&onal n ~ r m d dhtribution s q

1 Ax) = (%)d , l~q l l z mp{-~(x-p)T~-l(x-p)) (2.4)

1x1 is the detmnhetnt sf 2. The pm-r in (2,4) m a that
= I , m c a n ~ a i n b e ~ u s i n , g ~ e m d b d ~ i n A p p e n d i x B ,
function p(x) is gmmed by the paramems p md B, which sat*

P = &I4 (2-51

= & i [~ - f i) b - ~) Y * C2.61

t a n3atrix, md @er&re kw d(d + 1)/2
n t s . T h m ~ & o d i a d e ~ ~ e ~ s i n p , a n d m the

Figure 2.1. A n o d disttibution in taro m o m is govend by a mean
vector p and a wmianm matrix with mmf~ and u*, and correspond-
h g &envalues XI and b. The ellipes carresponds to a m n ~ u of mnstant
probability d d t y en which the bnaity is p d e f by a hrotor e-'p than it is
at &4 point p,

It is s0-a m n v d d to mrqider a simplif~ed form of Gaussian
bution in which the obvaxiance matrix is diagonal,

2 (Elij = 4jflj,

which reduces the total n u m b of independent parameters in the distd
to 2d. In this case the conbum of cod& d d t y are hypmd-s wit
prip.dpd directions $igned with the coordinate ares. The components of x
then said to be ataj!j&idly independent since the distribution dx can be
a4 C b e product of the distributions lor each Of the mmponents mparatel
fop
* P' 5 -

= Ud*,.
*&

h u W l e r * p ~ ~ m c b ~ o ~ b s e h a a d e g a ~ =.fard5i
thenm~dgs~smetrwa.huthBt~Q+>.TgB-&of
. & s r e t h e n ~ ~ ~ A ~ & t . O f t h e h ~ ~ t i o n ,

, , s b W n i n ~ g u r e 2 l . ~ * ~ b ~ . ~ ~ ~ > >
~ m l e W 4 they aha C h d Y hwe.w p-w.

Figure 2,2. S u r h e plat of a n o d distribution in two d h w h for a diw-
oslal cwaFianoe matrix governed by a w e vrrriance parameter 2. Y. Iru

~t *tivelly simple analytical p!!&ies allowing msng. naef~l mdts
to be o b w e d explicitly. Fw iastwe, my moment of the -bution can
be m p W as a fanction of o f anand E.

. The mtnd limit thmm states that, under rather general c i r c ~ ~ ~ ,
the mean of M random variabla tends to be W b u t e d ~ ~ y , in the

t ~ M h d s b W t y . T h e & m n ~ I s t h a t ~ ~ o e o f m y
v a h b b should mt bomb&+. A mwmm appbtioe is to the sum
set of variables dram independently fropi the - dktdbution. In

.practice, mnvqga~ce tan& to be very rapid, so that for values d M rn
smdl as 10 the apgrmhation to a no& disW&i~n can be ,good.
We might hope that me-- of mtudly o m pkmomena have

I I .- T ,1) ' 1 1 1 1 ' I !I .
, Under any non-shqgh hear ~ ~ 1 1 of the coordinate system,

the M @ ~ h o b i s distance k e e ~ b quadratic form d renab p m w
d&te. Thus, &er mch a tradamaioxr, the distrihtion is again sod,
but with djfhent man md @wariaace p ~ ~ .

. The mfgmd dendtim of 8 d M b u t h n , obtain& by integrating
'

jout some oftbe vdables, are h w e I ' y e s normal. SMhrIy, the M t i o n a l
d W b , ohbind by setting some of the he&h tcr fixed duersI are a h

> dwd.
b. There exists a linegt trmdomation wM& diagonaihes the mvarhce ma- =; T& Ids to a new c o m ~ -, b a d on the eigenwcbrs of
&a %he w h b k are &atistically independent, m th& the M t y

I a

i
II

h p r a m , the main reason for c h w a normal distribution is usually its
d y t i i a l simpl'ityb I
2.1.3 D$scr4mhad f inctha
In Seetion 1.9.1 we intmduced the A t of a discriminant fundion, and
how it wdd be r e b d to the &p&dogd d d t y fusctia through Bay+
theorem. This led to a ~ ~ ~ i m of dfscrinainant function given by

where Ck denotes the Ieth h, and pick) denote .the cormqondxng
ability. E&h new input vgdor x is adgned t6 the c h s CI, which gives
value for t h ~ conaponding dhxhd&t gk{x]. This choice of chss&cation
rion minimirrAFl the probability of miaddca t ion . If each of the elm-condit
d d t y fundiom p(xJCk) in (2.11) is taka ta be an independent normal d
bution, then fcom (2+4) we have

where we have dropped constant Wms. The decision boundaries, at0
yk(x) = g,(x), are thedow geuerstl q u w flmctbns in ~~0

An import& BimpWatbn omma if the mvm5mm &CES for the
h are qd, so that Ck = E. Than the lEbl tenma me claas hdeped
may be dropped from (2.12). 'Similarly, t4e quahatic term xTZ-'x is
independent and can be dropped. S i T: 19 a m e t r i c ma*, its in
dw be symmetric (Appendix A). It therefore %Horn that xx8-'pk =
' S h i a @ ~ $ ~ a & p f ~ f u n c t i o a 8 w ~ c a n b e w r l t ; t e n i a ~ e f 0 r m

where

The functiom in (213) are MI emmpb of IWT diaicrMnw@, Sia* k h w
l i n a function@ of x. Decision bottridaries, wrrespondmg to %;e{x) = yj(%),

rmirimafor d o f t h a ~ s s mequad, and in additiondlofthe
~tatkkically Independent, EQ t& E becoma a diagonal matrix.

the elmindependent term -d In c h s been dropped. If the b e s have
P& jprobabilitia P(Ch) then the decision rule takes a m~ulatly simple
-the Euclidean mstancetoe~ofthedaasmeam and wign

the class with the war& mean. In this case the mean vwbm act
or mifotppes md the W o n rule rorresponds to simple template

ties are not equal then tbis template matching rule
by (2.16). The concept of a prototype a z k s

&died enaprmertsk form for adensityfunetionp(x),thenmtstsge is
bmila Wdvefor the pmmetm. In this mion the nexE
M y the hm prindgal sppr* to this problem, h r e B F

Weam Ahhow t h m met-
to - r=1% - %Rmm4iw

b b d * Q P ~ W ~ U W FOB
functiotl derM fmm b *&ling d&&

&: P m W t y B e d @ Estimuth t B M - tw&&Kl

the parametem are described by a p m W i distribution. This

a ~ o d WW mti* -I8, we
~ S u f f w E w m m r n e d e f i c i ~ , ~ ~ ~ ~

N * k h * m a a ~ r ~ d - d a 1 1 ~ 1 ~ 3 % 1 ~ ~ ~ ~ ~ ~ ~
p(#lO) = n p(Pl8) = L(8) x dm from. (2.19) md (2.20L

rp=l

I ' '

N
E = -IDIC(B) = -Clnpfi)p)

n=l

and to h d a minimum of E. This is equivalent to m d m b i i C

-8.4. ~ t i c i l l ~ n o f ~ ~ f o r a ~ 8 . The:
p & ~ & t n ~ ~ w r W b ~ i n ~ r m ~ O f v a l u ~ w h I & B ~
~ , b ~ m e b a ; P e ! o ~ a n y ~ a n d i s t y p i ~ ~ ~ . ~ ~
haw o w . thg a;& X , we can &ke the wmapdbg p t *
& t a i b a t i o a & n g . ~ ~ . Sinaeswnevd~ofthepar~rnetmw3ll~ . . m o , ~ * ~ d a t a h ~ w w ~ ~ * ~ ~ t i 1
~WlernammrthanthepriorW- . . I

, I
in -a1 netmrks. ~ n . this oad, the wnaequen~~~ are potaatidy
miom, as a d of @ mvqh &ger number of p~rarmW8 which haw

9.3 Bayesian bferems

84: Bswsian wrfemw 43

dafnition of c o n d i M probability dens+-, we can tbgn wEite

81x1 = ~ (~ 1 4 XIp(BlX1. (2.W

r, bow eve^, is hihpendrtnt of % &w $*.is just ti* form
&mi@, and Is m m p l e b l y ' ~ ~ once the durn d the

8 have been &. Wi t M r e have

H
~(xle) = n9(xnle)

Yb=l
(2-81

tb EkeUood function introduced in (2.17). Using Bayd the-
write the pmkior didxibution for 8 in the form

mogt commonly encomtmd example,
In order to illustrab the technique of 3

example Involving a o n + h d i o n a l bput
x. We &dl suppose tkak the dab is gener
which the standard dwi&ion u is d
mean p of the dhtributian, given &set,
the prim density for p to be a n o w d
deviation 00, given by

Thisesrprwse~prior~ledgeofthemean p, mdmifwearewry
os to ita d u e we would choose a large d u e for oo. Once we have o
gim set of N data points, we can &late the posterior
p N (p j x ~ , . . . , xNo) using B~yes' theorem. It is imwrtant to
between the distribution of x, which we am trying to model, and the
po(p} and p~@lX), which d d b e our u&ainty in the d u e of p. Xn
p h u h r example, dl of these dktributiollat me m d .

Using (2.28) we a n write the pmbrior didributron ia the form

PN(PIX) = * fi P(Zn]P)- pix> ,,
Then, using the form (2.1) for the normal disfxibution for p(xlp), it is str
forw&d to &ow (Exerdbe 2.6) Ehat the po&erior distribution pN(plX) ig
normal, with mean p~ and h o e u5 given by

whem f h the sample mean

mlution. For a h i t d number of o ~ o n s , however, the two a p p d e a
tend to give somewhat wmt mdh.

There are several other a p p d e 8 b the problem of parameter mtimatio
w h i h we do not have space to discuss in detail here. One technique which
worthy of mention, however, is that of sequential psrau&m estimation, shoe
underpine a number of dgor&hm wed in adaptive n e d network.

Sequential methods for gman~&& &-ion make use ofitmakive t
to update the parmeter dm @a new data paints or o ~ t i o n s are wq
They play an imp~rt+mt role in pa&- recognition for a number of reasom. F
they & not require tlxe w a g e of a complete data set &ce each daka point
be discarded once& b b e e n used, .and sothey can p r o v e d wben I
volums of data are adable . Secwd, they can be used fbr 'on-line' 1
red-time d ~ t i w sptmu. Finally, if the nnderlyhg proms w W
the data ha9 a stow h e -tion, the pmm& vahres can Apt to 'tr
bebaviog of the sys+m.

la simple. . c m it m y be pdb1e to take a m d a r d 'batch' Mnique
,md ~ep~8h2 .out the COntFib~tb from the

data point tu give a wqmtid up-date for& For i n s tmi £rom the
lhdihood expmsion for the mean of B n o r 4 Wbut ion , g i n by

W e ~ f h a t i t i s o & a ~ b s t m t h e d u w o f , @ a n d N, andso&
poiut is used once d can then he discarded. Note that the contribution of
~llc&# data point decreas@ m a comwuenm of the I/(N + 1) co&
Although this.heuristic pm&m mm reamrllrb]RI we wadd like to frnd
f o d assunace that it wilI converge m t W r i l y . To do this, we turn
more general view of sque& parameter w k b t i m .

2.4.1 The Robbim-Mm dg~ri&tn 4
The ikative firmula of (237) is a p&ar aampb of a mom general
&re for fm&g the roots of functiom whi& are dsfined ~tocb t i t dy . Co
pairofrandomvmhblmgand 6 w h i e b m 3 0 0 ~ , a s i d c & d i n F i
Theweragevalueofgfor ~ ~ u e o f % d & n e a a E u n ~ f(6j

@] i s ~ h ~ k h e ~ ~ a f a
' S b , ~ r w h ~ o P j ~ #) & ~ ~ ~ & e

~ . f ~ & ~ p t . o ~ ~ f o r
fm@om'arap gim by Whim and Mdam Elg69.

&d,- tab&$

ElkJ - f)al@] (2.39)

as. he ~ o b b d ~ ~ m ~ M & W
s quence of w c m @mates for the root given by

@N+I = @N + &N~(@N) (2.401

g obtained when 9 t h the Wue

k Q N = O
N-00

the root Be- with probability 1 (bbbhs and Mom, 1951). For a Elimple proof
WB mdt, S W Fbkuz1~a (1m).

The fmt mndi- (
in magnitude m that the pmcw
copditim (2,42) ensura tlsat the
eventually found. The hd c o d
h a s ~ ~ m W f b e n 0

demeshrrvealso
we em 53fmlslaethe

update method using t
~ d ~ u e 8 i s g i ~ byamiut~anaf

where we barve introduced an extra fhdm of J / N , which a k m ua
limit N 4 m and hence obtain the expectation

E [i lnp(zl8)] = 0.

h the Rnbbina-Mom formula (2.40) this tan be solved using an
scheme of the form

1

I
I

h

I

I
i

Figure 2.8. An illustration of the hisbogrm approach to d d b &tion. X
set of t&ty &t+ poi& - generated by sampling a density function givm by
the sum of &a normal Wbutions with means = 0.3, pa = 0.8, standard
devia~om = = 0.1, and ampzituda of 0.7' and 0.3 ~ e c t i d y . The
origbl distribution L &own by the dmhed m, and the hb-am -tima& ,
are &awn by the d i d cunw. The number M of histogram bins within the 1
given interval dderminea the width of the bins, which in turn mntrols the ;
smoothness of the d d t y .

technique called K-nesl.est-ne@bolffs and show how this approach c
both for density estimation and to provide chihation d&iow d
d l y , we consider the role of the smoothing parmeters which govern
of moethnm of the &ima.ted density and which arise in any non-par
technique. Determination of suitable durn £or such paramhers is an im
part of the density &hation process.

2.5.1 Histogmm
The basic problem of non-~ametric density &bation is pery
set of data points, we wish to model the probability distribution
the data, without making any prior assumption about the form o
functin (~ c e p t for some general smooth- prop&, which we
shortly). In Section 1.1 we mnsided a W g m m of hypothetical

If wv have N data points drawn independently from p(x) then the probab
WKofthemflfdwitbintbe~~Rispimbytbebinomialh

Pr(W =
Ni p X (~ - p) ~ - ~ . W t e M , p m i d e d ~ V i h W ~ w I & h N , d g t

R! (N - K)! way (D u b md Kwt, 1973).

P - K/N.
Tf we assnme that pcx) is conthu~us wd d m not vary appreciably over
region 'R, then we can appmxbmte (2.49) ,by

where V rS the volume of 'R, and x i~ some poiat lylng inaide 'R. b (2
and (2.52) we obtain the intuitive muk

K
p(x) = -. w

~ ~ d w i t y ~ b t r s :
l s ideh,withdcubeamtd

I

In general, if the kernel functions

H(u) 2 0

and

Figure 2.10. The K-nearest-neighbow a p p r d to density estimation, again
wing the same data as in Figure 2.8, for various dm of K,

I If h is too large there may be regions of x-space in wbich tbe dimate is d
smoothed. Mucing h m y , h-, lead t6 problem h regions of h e r ded
where tbe model densiw will become noisy. Thus, the optimum choice of h I

he a function of position. This difEcalty is addressed in the IC-mme&neigh&
approach to d e d w estimation.

We again return to (263) as our &mting point, but we now k K and d
the volume V to vary, Thus, we consider a small hyperephere centred at a fi
x, md dow the radius of the sphere to grow until it coataim precisely K B
pointa. The estimate of the density at the point x is then given by (2.531, wl
V f the d u m e of the sphere. In Figure 2.10 we &ow the result of the K - n 4 ' neighbow appro*, for the same data sat as ussd in Figures 2.8 md 2.8, foi
v a ; l u ~ K = 2 0 , 8 a n d I . W e ~ h t K ~ a s a m o o t h i n g p a r ~ a n d t
there is an optimum choice hr the d u e of K.

I One didvantage of the K-nearest-neighbour technique is that the reguh
I d m a t e is not a true probability density since ib integral over dl x-space

we. A disadmtage of both kernel and K-nearest-neighbow methods L'1
all of the tr- data points must be retained. This might led to probled
computer storage, and can require large amounts of processing to evaluat;e
density for new Twlu~ of x. More sophisticated wmions of these algorithm

I Lov fewer data points to be used (Hart, 1sBB; Gates, 1972; Hand and Batch
19781. There dm &st tree search technique8 which speed up the process fm

57

encornpassea K poinh imespdive of the'i class label, Sup-
fvolme V , comhimKk points f m m & s C k . Then wecm use
appraimatbm for the cdebss-csonditional densities ha the form

ion4 d d l y capl be similarly estimated from

?bpmbab'Ilikyof . a new vector x, it shalild
~ ~ ~ r w w h i c h ~ ~ K i . l a g a t . T h h i ~ i m r m .

B p 2.11. l k m p b of the d e & h born produced b3f the wa.mt-
neigbbour W e n rule. Note that the boundary ia p i w m h h-, with
& h ~ t ~ ~ t h e p e r p e ~ ~ b e t m P e e n ~ & t a
* W r m @ m ! l t q ~ ~ .

bqhI go Chd the m& domity % no& end sensitive to tbe individual d:
p o w , @band *e m d&ed mom pis&? in W i n 9.1). Thachc
of a suitable d u e fbr &e ~ma&hb@ par&- d ~ t W b the pmblem
ehoasiag the number of tens. in a po1yn~mi.d used in c u m fitting,=
in S d o n 1.5, Similar smoothing parameters will appear in our dbC
neural networtce For instance, t l ~ number of hidden unih in a layerad fe
fnrwatd network can phy a sindm mh to the number of terms in er polpwm

It is important to mahe that we m o t simply pick the value of the smaa
ing pamm&er which gim the kg& d u e for the likelhod, ras the l i i
c a h p be Incremdinal&t&by&osllngever m m k v a l u e ~ h r , '
a m o d h g pmwmbr. h d e r fat instance the c a ~ of kernel &matom. 7
likelihood function' caa bewri€tm as

where p (4 . . .) is given by (2.68) for the w x of G a ~ s h kern&. It is ea;
vedied that uncombined rnuimidion of L(h) M s to h + 0 so that
readking d d t y &hate c o n a h of a delta fundion at each data point, %
rn d d W ~~*

The god in selecting moothhg parameters is tu produce a model &r'
p r o W i a e n s i t J r w h k h i s m b w p d e t a G h e (

, Ic is a h ~ ~ * , h m ~ f m q d

%& h&hm madeta 69

1 N
E[-h4=- lim - x h f l x n)

N - N - X

= - / ~ X I I ~ . ~ X I dx (2.68)

g d a s a m e ~ o f k h e ~ ~ w h i c h t h e m o d e l d e n s i t y
agree, When F(K) = p(x) this masme has a midual value

- J p(x) p(x)

w, the mtmm of p(x) (Section 6.10). It is mmaient to subtrwt
idual value to give a meamre of the 'dice' beWen p(x) and g(x)

$(XI L=- p(x)ln-ck
*(XI . (2.70)

1; Kullback, 1969). It Is shown (Emrdm 2.10) th&
if, and only if, the two d m -barn eqd. N&

rie with respect to the ~ W O pmbabili~ &&iutbns. Thb is
mare importast fdr the model disbributhn E(xl to be c b

butbn p(x) in regiom where dats is more I%& be found.
.70) ie weighted by the true Wbution.
ity &imd&n problem we me &dore bed w&h the
suitable value for the m t h i n g parametar. This is an

and very important, Issue w h i is concerned with
of complexlp, or Mb'i, of 8 model for a given

consider th18 problem in the hnework d density e k h
~nas im until Ghrmptm 9 and 10, where we wider the
context of neural network mod&. There we shall disc-

with m d d c o m p k i t y , b a d rwpectidy on
03.

the d m i @ function, which might be very di&m~t from the true d d e Usually
however, parametric models allow the demity M i o n to be evaluated
rapidly for new values of the input vector. Non-parametric methods, by conbad

number of m h b b in the model g r m directly witb the number o
points. This leads to m&ls which can be very slow to d u a h
vectors.

function, called a rnktum mdeb As well as providing powerful
dm~ity =timation, mixture modeis h d important applications
of n w a l networks, for m p 1 e in cd igw ihg the bash functions m r
hct3an nehvmk~ ((Section 5 4 , in techniques for conditional densiq

In the non-parametric ked-based appro& to density &hation, the
sity fimction was represented as a W&r superposition of kernel £unctions,
one kernel mtd on each dat,g,point. Hew we d d e r models in which the
sity function L again form& from a linear wmbinakion of bask hctions,
where the number M of basis functions is treated as a parmeter of the
and is typically much less than the number N of data p W . We t h e e
our model for the density as a linear mmbin~tion of component densities p
in the form

114

P (X) = ~(xJj)pb)+
j-1

ion. We shdl PU) the prior pmb&iZity d the data point hadug b m
at& fnnn ramponefit j of the mixime, Thee prim are chosen to =ti&

iy, the component M t y functiom p(x(j) are nomabed so that

of the oornponaks j b first
a data point is g m & d

imporfmt ptoperty of such
d ~ t y ~ o n , t h e y ~

p1wided the model
er of compoamts, aad provided the pmmhm of

ation and a true

&-the link with prhr pmbabilitim a d conditional deesitim, we
kbe mmqmncbg p s t h probabilitim, which we can a p r w

in &he fom

212. ofthe m h t m madel (2.71) h term of a network
'hiagkm. ,For G&wku component dmwith pCx@) given by (2.7'T), tbe lhm
+&ii$j *e h&t& m to the corn- p(xbA) d the d t m m t s pjg
.m&&@&n&jg m w h&am pi. . . I , ' . , . , L

lndIvidud eompx,nent d+es given by Gawsb d i d u t i o n functiot~~.
W further -me th& the eeu&m e d have a covwhce maM whi!
,me w&r multiple of the id* ma* so that Elj = 41 (where I L
identi@ matrix) axrd hence

b w , t h e , w q ~ 8 ~ ~ s l r a I l a d b ~ ~ ~ ~ ~ d a ~
wmpomt densih having f@ c p r ~ W i c m as d k d in W d 2
&t the 90tlWxk of pametric djWhWns.

T h k n W & e d e l c a b e . ~ i n W n s n f a n W w r k d k g r a
&own in Figme 12.12. Tb% b simply e dl$h~rmm~& repm&&ion! of s:m
h c d function, in Chis cme the xnWm model Txl(2.71). 9u& c&gr&m p
pw4icuk1.y usrafpl when mllgid&g1&in* nead wMuds s t m x t u ~ , 8s:
d in la* ,&phm.

representhg the mixing parameters in bmna of a set of M a d b y wriab:
I91 that

The transformation given by (2.81) is called the s o f h m hlidon, or no&
exponentid, and ensures that, for -rxr 5 3; 5 oo, the wnstrdnts (2.72) a
(2.73) are satided as raqubed for probabilities. We can now perfom an uric(

strained minimieation of the i3rMr function with respect to the (~ ~ 1 . To find i
derivative8 of E with respect lm 7j we we of

which hllows h m (2.81), Using the chrain rule in the £om

together with (2.75) snd (2.781, we then obtain the required derivatives is.1
f i a

I

(a
' I

' B R ~ m W e iq& WB of [2.?&). T&,wnpI& set sf dwi* d
1

fundioli wah r€&pm tb, the ~~W d** the'dd, @= by Pm), L
a o d (2 6 4) , ~ t b i a b e u s a d i a C b s n a n - l i r a e s r o ~ ~ n ~ ~ ~ ~
in-f t o p ~ e p r a e d i c a l t c c h d ~ f Q r ~ ~ m i n i m a o f t b e $ I .1

-.-
a&~ rep- the intuitive result that the vmbce of the jth component

by the miame of the data with raspect to the mean of that component,
weighted with the pmtehr probabilities. Finally, the derivative fn P
to zero we obtain

(2.87)

%he mdmum l ikebod mlutiaa, the prior p r o b a b i fot the jth
b &en by the pwkior pmbabilittes for tbt componmt, ~~
EM a l g o a m

6) and (2.8'1) pmide u d d im@t into
dufion, do not provide a direct

. h fact they reprmnt h i i y ma-linear
since kb pamdam occur implicitly on the rigbhmd dda
. T h e y h , ~ , ~ t h a t w e m i g h t s e e k ~ i t m ~

e G w b mixhim model, which we shall call

hr the pmamdm, which
whkh we might hope thb d u e d the

smak. These ptarameter valm then become the 'old' dues,
ia repeahd. We BWI &ow that, provided some care L taken

which the updtttes m prfhnd, an dgorithm of W form cm

YII .,-, :

I
I *) 2: Pmhbilitg Demitg E t W ~ t h

can write tb in the form

whm the lfiet factor inaide the bra;clteta is simply the ihtity. We now
of Jmsm's ineqdity (Exercb 213) ybch ,+p &t, @m* + of
Aj ~Osuchthat Cjh = 1,

1 Sics the p m b W t k (jld h the merator of (2-8s) sum to d t y , -
can b y the mle of the Xf in (2.903. This giw 3. -tic plot of the error fuoctioa E as a hcthn of the new

~ f ~ o f ~ ~ a m h o f t h e m i x t u w m o d e l . n e - ~ ~ +

ofthis qqw bond.

(2-94)
the rigbe-hmd side in (

e dmintiye8 of (2.W) with fo PBWGj) fo ESO IWQW

(2.95)

I
I A can be faund by multiplying both d& of (2.95) by

g = - C C ~'(jlx") h {p"(j)pM(x"lj)) Pd(j lxn) = 1 we o b ~
* s for the p&rmmtera

I Pgy = i ~ ~ d ~ ~ x n) .
- ' I ? . - \ 8 m C L

Figure 2.14. Example of the appWiw of the EM i d p i t h to mixture den-
sity -tian &wing 1000 d&ta points- drawn from a diatribu%ha whih is
uniform b i d e an 8hnuJ.m region.

sides of th& expremions. Thew ahodd be compared with
m u m likelihood rBsuleS (2185)-(2.87). The algorithm is r
include Gaussian functbm with full c o v w h c e -.

As a simple m p l e of the use of the EM algorithm
we consider a set of 1000 data points generated from a
uniform within an imn&-shapd region, ae shown in Figwe 2.14 A G
mixture model, with seven comgonenb of the form (2.77), was then
this data The initial m&u&ion of the model is shown in F i 2.
20 cyclea of the EM algorithm the G d m m had evolved to the form
in F i e 2.16. The correspondhg conbum of probability density are
FigG 2.17.

e t iato the EM algorithm can be
earlier remarks concerning the simikities be-
the reprmentath for the mcmditional d- in a
the latter -, the data points xn all carry a d m label i n d i a
p o n d density function was responsible for g e n e r e them. This
cl-ditional d e w f u n d to
found by rnaximbhg the IWihood

S & i a 2 2 W the cormwonding
ghmq- & m'(2~19) & " br F

.m , .

L

0.0 0.5 1 .o
2.15. This a h the initial murat ion of aaven G& &a&

in the rage (1, M) s p e w which mrnponed
+paw. The n-ye log-&elhod (or e m
piobIeqTi '-7 p-y* valy5SI is given by

E(amP = - h , p m P

N
= - C l n ~ (~ , I")

-1

N I
= -CiU{~~(i")d"(zlz"Tf.

-1

respect to the paramekrs of the component distributloll~. The

B**ae- ~*hcwsiww-~=bare %16*D

m- &&a & k0i.n m ' 2 " 1 &

M M N

E I P m *] = C ..* C Fmp nP"ld(Pl~n). (2,102)
zi=l aH=1 n=l

@mnient to r e d & F P fmm (2,101) fn the equivalent h m

N W
, p m ~ = - JJP In { ~ l i l ~ ~ (x ~ l j) l .

n=rl j=1

subatit* (2.103) into (2.1[12), and paform the sulns wer the {zn)
by M&& me of the identity

JzmE&a %

M

C p""d(Ixn) = 1.
-1

Tbts gives the expectation of the complete-data EMhood in the form o use t h i ~ as an apprdmaion for the q d . Al-~Pe-Ity, the psrramehm
lY M

E[PmJ'] = - cPdd(j[*~) In <PW(j)flm(.Se:*I j)) .
n=l j=l 1 PO'lfl) 1 +, =

PO.l#+') ;iP (2.111)

We m nate that (2.M6) is identi4 to (2.92). T~IIS* m'mimiz&m of (2.
lea& ta the form Of the EM algorithm derived &we.

25.3 St- estipndim ofwmrnekm
As a W d approach %a the d ~ t i o ~ of the parmew
ture model we cowid@ the technique of &&&ie omline op
1991), &pin wb ~98ek to minimize the error fuadian, but now we suppo
the d a b points are arriving one ak rs time gnd we wish t~ find a sequentid the farm (2.1) far the normal distribution in one -on, trnd
scheme, Cansider $he minimum-error expm&011(2,85) fur the mean pj
jth mpbnent of the &me for a d t a set mntbthg d N wta

~f =
pdilxn)xn

z:=lwt*l -

(2.18) are given by (2.21) and (2.22).
p;"' = fir + #+I - pT)

where ths p w ~ r ny is given by

being dstenninsd the data, w that the sstima~ of the vmianoe/ 1:10(*) B~alteCchingmaphsofIn~mdx-I vsrifgtheiaequalttyhzss-1
with mt;y if9 aud only if, x = I. Cob this regult by dif&-ation
of lnz - (x - 1). Hs~e shm. that the Kullbad-Leibler d-e (2.m)
s a M m L 2 0 with qualib if, and only if, the two W i b u t i w are qud.

',U(*) &nsid&r tro dkre te probability dWibution8 pr and pr that
I C i~ i = 1 and C,P~ = I* m e m ~ n d i p g d i ~ ~ d ~ ~ o f t h e

KulJb&-Leibier dhbme crm be written

h By differentiating (2.114) with mpeet to qi, and mgWeg use of g lkgrw
multiplier (Appanh O) to mure that the comtrsint pr = 1 is sawed,
~ t b ~ t h i s d ~ ~ c e i s ~ f a h e n ~ i = p j f o r a l l d , d t h a t t h e
wrmonding d u e for the distance h zero.
(*) Using the mult (2.105), veriIy the identi& (2.104).
(**) In ~~ the mnmrgence prop-qtia of the EM algorithm m made
uee of Jen~en's iwqualiw for cooonvex functhm. We can dehe a convex
betion j{x) as one for WW evety c h d hs m or below the gnph of
the funtion (a chord bang a staight line whirh mm& two pohb on the
mph of the function). This is ilIwtrW in Figure 2.l&. Use &is ddmition

I

tbediscriminant~ons*dusethetraioingdata8ettadetermine~
dues far the pmwnehrs. h this =tion we consider miow frmos of 1

I diabimnt, and disims their propert*.
II

: 3.1.1 Two c l w m
We begin by considering the bmcategory cla&&ation problem
welxxtroducedtbeconoeptof~&' " t hctim ~ (x) such t
xisa&gnedtochC1 ify(x) > 0 and t o c b & ify(x) <O.
&ice of d i m h i n d function is one WE& h h e a in the cornpa&
&ad whkb can therefare be writtea as

remite (3.1) in the form

-
- 1

onding to p(x) = 0, in a tam
vector w, whish can be rep

output

-""-.-".

Qfa&wk&mjn&u& ftmckh~sla-rtafttork

- 1

3.1.2 S d
beextended to the-of c c l m by

d*ck~ftbehm

A new point x is then i d & to elam Ck if ya(x) > pj(x) for all j # k.
decision boundary separating dw.& fmm eLass C, is given bygn(x) = &
which, for linear d* ' ' ts, cmra@ads to a hgpwplans of the form

By adom d t h our earlier rmdb for the single drscrrrmnant
. , , (3.1), we ma tti

the n d ko the dtxidon boundary is giw by the diff6mnce the t!
weight wctaxh, and that the peqendicuk ~WJW of tbe dsdsion bounds
EFomkheodghiPr~by

The mdticlssa linsar discriminant function (3.4) csn be ~xpressed in
a neural w p k t i i i as in ~ i g u r e 3.3. T& circles at the tad
the diagram, corrsspl
mmceBsim units, and

A ~ O ~ gk(~) h (3.4)
the dhrhbant ful

;ding t.0

the &u
the h
atton d

- r

aa a ftow of infirm* from the inputs to ebe outputs, E d output yk(q
~~ with s w+dght vector wk and bibs- w ~ . We exprm the ne
outpub in tmw of the mmpmmts of the h e v e c t m s {wh) to give I
TbeneaehliaehFigure3.3mnnectinganinputitoanoutput k mrrsspol
aweigh+, -ter wH. Asbefore,wecanregsrdthe bias parametem ss
w e i g h ~ ~ m a n e x t r a i e p u t s ~ = 1 , m ~ , I I

Once the netwwk is trained, a new vecbr is W d by A& ,> it . 4
Cnmrta d ' S k m p m o&put unit &htion~, a

t i : L h m r IldpcrifnOad fPmeSiOtlS

Figure 3.3. Repmatation of multiple linear d k h h a n t functions uk(x) ae
a neural n e h r k diagram h a v i c output units. Again, Ehe biasss are rep-
sented tsweighCfrorn an extrainput & = 1,

e o f d g c i a i o n b m d & h ' p r d d b y a m u l ~ h ~
mdxB b&lie~nde&hnm&n~ therxlweq

~ t h w n l r m s t ~ l i e i a m g i m ~ . I t ~
r s g i o n s m a t b e d m p l y ~ ~ d ~ .

and~whichbothlieintheregion~~mshowrmin
which l i e on the b e joining d md fl can be written

So br we have considered *ant hlctions which me
tiom of the hpnt M I = . There are =al. mp in WE&
be generaIid, and here we consider the use of a m~Unar
actsonthehe8~sumtogiveaCU ' ' t fbndion for the two-clw pro
of the form

whereg(.) b a e d sin a & ~ ~ s n d i s ~ a U y ~ t o be
tonic. The fwm (3.10) h stIU regarded ess a hear d h h b n t since the d

&ure of gC).
A a a m a t i v a t i a n f o r W s f a m o f d i s c h h m t , 4 & a ~ w M

in which the k c a d t t i o d d d t i e s am given by Ga- distributions ~
~ u a l ~ & ~ E 1 = E a = E , ~ W I

Usbg Barn' theorem, the pahior probabiliitg of menhemhip
-by.

where

a biolagical n m u s system. Again this takes the form (3.10) with an ac
function which is the Heaviside step function

In this model the hpub xi repwent the level of &ivity of other n e m
connect to the neumn being modelled, the &ts w* represent the stre.
the i n t e r c o ~ i o n s , d d sympm, M m e n the neurons, and tbe biaa
m n t a the thrmhold for the neuron to 'h'. Although this model has it8
in biology, it b dear that it can equally well be motivated within the &a
of s t a t i d pattern recognition. Network of bhreshold units were 9tu
Rmenbhtt (1962) under the name ~ p b . 0 ~ md by Widrow and H f
who called them &tines. They will be discussed in detail in Section 3.1

Nata that it is 80m- convenient ta regr)rd the linear ~~
a ts specid case d the more general b m (3.10). In this case &e made
tg ham a linear activation function, which Jn fact is just the identity g(#

discriminants, and the logistic activation function, a h ariee in a
way whezt we 00@4er input p&t,eras in wl$& the va&bla me binary
4 xi can take only the d u e s 0 or 1). Let denate the probabil
the input xi t a k the d u e +I when the input vector is drawn from t
Ck. The correspo~1dhg pmbab'i *hat xi = 0 0 then given by 1 - PM.
d i n e t h e together to mite tbe probabii for xi to take either of ita
values in the form

wbich is called a B e m d f distribution. Ewe now - m e that the inpnt x
EIW ~~y independent, we OW the prababiliw for the compfe
vector as the pmduct of the pro'babiliiim for wh of the componmts

~ ~ n o w d f r o m ~ h a ~ l thatwecaawritaa--k . . the prnbability d mIscl&Qhg new inputs in the form
b

3.6 Linear s-mbdiby

which theweights a d biasam gisenby

i=l

We have already seen that, hr two & a m with n o d y distributed b
ditional densitb, the postdor pmb&rJitiw can be obtained &om the linear

applying a W t i c &v&ion f u & ~ A s h k W E h o b
mdi distribution. C o d e r a of Mependent b i i vmi&

c l ~ n d i W densities ghen by (3.221, If WE subtit&
(3-12) we agdn obtain a dngblayer network structure, with a hgistic

n function, of the form

P(C1lx) = g(wTx + ~ u o)

g(a) is given by (3.16) and

P(C2) +In- wo = ch-
i I - % P(G2)

in W o n 6.7.1.

and we might well

L

F i 3.6. The exdusbOR pbkm wn~iste of four pa- in a two-
d t m ~ . p e a r . b a m . I t & d a a ~ p b w m p b d a p m U a w h i c b '
is pot IinsarIy e l e , Figure 3.7'. Plot of the fra*tion F(N,d) of the dichotomi~~ of N data

- in d dimeaeiom which am linearly separ&Le, M a frubction of N/(d + I), hr
, v s s i o u s ~ e ~ o f d.

w h e n N < d + l

is pl* as a function of N/(d + 1) in Figure 3.7 hr d = 1, d = 20 and

- r 4

4 of all podble binary inprxt wcbw of l& d,

utjon used to gemrake the random

I I

Iarrgely idwant. We are primarily hkmbed in ddgdng systems with
generalidion perbmmq so that they give tbe great& accuracy when
sented with prevtou81y unseen data, hthmnoce , problem such as XOR
parity involve 1emhg the compbte B& of all pmib1e input paterm, so
wncept of generalieation does not even apply Fhdy, they ham the
that the small& p d b l e change in the input pattern produces
aible chesalge in the output. Mwt practbd W r n recognition pro
o p p d b dmmteristic, m that mall dugm m the inputs do not, for th
pwt, produce large ehaage~ in the outptl*, md hence the mapping rep
by the network elmuid be relatively smooth.

Consider the problm of two normally-distributed cl
ance matrim, d h d in Section 2.1 -3. Since the c h
is entirely pwsible that a finite kmd data set drawn from
lDat be fineaa1y ~ p a r ~ b I e . Emver, we know
is in kt hear. A shgbhpr network can

rt may mt *parate
training data exactly.

The key d d e r a t i o n c b n m s the choice of an appropriate d
! h c t b n for the partfdar problem in hand. This may involve a com
of prior knowledge of the generd form which the dution should t
with an gmphical comparimn of the ~ ~ c e of alterdive mo
h e s are considered in more &dl in C h p W s 8 ,9 and 10. Here we
note that singlelayer networks cormpond to a m y narrow
d i r r c r h h m t functions, and in many practical situations may not rep
optimal choice. N w e r h h , dngbhyer
.tiad importance in prcwidmg a benchark again& whidh the
more complex multi-layer mtworb can be d. The fact t
-rks can often be trained very quickly, as shown in Section 3.4,
particular dmt* over more cromplex m h o r k sbucturw which
d d e r t h l e mpytatlond effort to train.

$3 G e n e ~ a k d linear d i e c r i t s
O n e w a y t Q ~ ~ t B e ~ ~ t om, m a t o
fmge of p d L deidon bound-, is to transform the inp
s& :of M predehed nm-linew functiow 4, (x), mmstima
awl 4 b to p e p m a t the output a~ a W&r combination

M

udxl = Cw*l#*(x) + W m .
i=l

This now represents a much hgm claw of.
Chapters 4 and 5, for a mitable choiw of

/ in (3.32) can appmxhmk any e o n m u h l

5.4: Lemt-sgUun% td*e#

acy. A g & , w e ~ d m r b t b e b k asspecfalcam of khewejghtsby
an extra basis function & = 1, SO that

M

y*(.)= Cww4j(x).
f d

assumed that the barsis 4 j (~) a ~ e bed, indvdently d the
4 and 5 dismw multi-byer neural networks, m a y of whi& can

adhd d k r b b n t ~ o n s oftbe form (3.321, but in whieh
the training proms.

&ecbapteriscomni%d
with a M o n of

regEmiw1 problems.
exist ather, more

~ f u n c t i ~ i 8 , ~ a t ~ i n ~ t e r 6 .

; ', *, ? . . , + :..-

5-0

con&ained to lie in the mb-spwe S, as shown in Figure 3.8. By
valued3 of the weights wj we can &rage the location of gsubject to

squases error (3.34) csa rnow be'writkn fa khe form

M
16

1 E = - Cror$,j-f
jdd

mhbhe t b expmion a h mpt t~ weights wj WB find
- -, - -

92 3: Bhgk-Lagep N e ~ ~ 8.4: M a q u u m technigww 93

3.4.3 Ps&hume solution then it mn be shown that the limit alwap dshI and thak this lhmhg value
W e now p r o d to h d an exact mlution. to the Imt-tquam problem. E (Rao a d ma, 1W1).
thiswereturntothecamofaueimmk hatringc outputs. U>hewx In practice, the &re& solution of the n o d equations caar had ta numerical
(3.331, we can wrib tbe sumd-squara m r function (3.34) in the form &Ecultb due to the po&biliQ of eT* being sfngular or oearly sbguk. This

1 can aria if two of the basis vwton &, show in 3.8, are nearly m h w .

IMkmtbW thb expredon wi& respect ta my and Wing tihe dmiwtive
zero gives the normal equations for the W t ~ u a r w problem in the fwm

In order ta find a mlution to (3.42) it is convenient to write it in a m
WWW.@)&T

. !) I s ,

(@%)WT = a T ~ . (svD) to find a 1501ution for the weights, A gobd inkduction to

k @ b d ~ a r r N x M a n d e l e m ~ $ ~ , W h a s d i m e a r s i o . (1992). Stab rm approach avoids p m b b due to the t m u m u h t b of nu-
elemen@ wkj, and T b - N x e d elements %. The cd round& errors, and ~t~~t6rnaticdly de&a (h mmg& a IM of nearly
in (3.43) is a square mactrix ofdimezmion M x M. Provided it is non
may i n d it; to obtain a mlutioa to Cb-43) wbieh can be written in

the above discussion, the bias pwam&ms were- tread 'w a special case

wT = 8 t ~ wig&. Wecangain intotheroledthe b k i f w e m a l P e
explicit. If WE consider the minimhwtion of (3.41) with rwpect to tbe biw
e h s alone we obtain

where at ia an M x N matrix known rs the p a e u ~ n v - of a (~olub'
Kahan, 1965; Rao and Mitm, 197l) and b given by

.t, (.T.)-l@T

Since 8 is, in gem&, a non-quare &i it does not i tdf ham a can be solved for the b h ta give
but & pseud&nvem dom have hhe properky (as is d y fio

M

~ k 0 = & - z w k j &
5 4

, 1 - .

8: Single-Liayer New& 84: Lms&spam

ta ~ m * n of a p & h h p & h i~ gim byl
the weight vector ushgjustomprrttern at atime

dw4 = -?j$a"d?* (338)

with dWc&&le m - h acti~ti011 wi, a~ ais

wdhhm 3.5, we m*the-rkmtpu@ the

sir, = l7(ak) (3.5%)

Y

'1, I' ' I 1

-ofthe wmr~unctionhr p p . b n &&&'

G(@w -T) = O

where + is defined on page 92, ~~~ of whether or not eT* Is
Gradient d-G, and I& Wstiom, ars dimmed at m* w h
ter 7, dong with 8 7 Of more mphiatitmtd optiinhtion

alP -= (ph(xn) - tf)4j(xn) = 6E4T
h k j

(3.W

where we ham ddned

=p&(xm) 4;.

I

-1 wbana<O
+1 whma>O, 1 3 . w

now turn to a ~~&US&QD. of the procedures nwd ta train the perceptma.

Figure 3.10. The perceptron mOrk w%d & hd S& d p- dme~1&,
d ~ n d $ ~ , M b p a ~ o f ~ ~ ~ ~ t s ~ p u j d a M d d a c t i -
&n function g(.). The pr- b e n b $j had t w o J d
&~vB& functious, and took inputs from E raadomly & SUM of the
*elE of the input image.

a& ~ p e m p t r o n

h the same time as Rmenblatt was developing the perceptron, Widrow

(Widrow and bhr, I%#). The Eerm d&e c o r n from ADA-
m e , and r e h a to a single prowsing unit with tlzreshold no fk -M@ (mTi

E-(w) = - c wT(#W (3.67:)
shown in Figure 3.10. the^ promsing denmh crrn be regarded 4 " ~ M

of the pemptron Is therefore given by

h

100 9: Sfngle-Layer Netwurks

3.5.2 Perceptmn learning

If we apply the pattern-bypattern gradient descent rule (3.54) to the perceptan
criterion (3.67) we obtain

I This corresponds to a very simple learning algorithm which can be summarized
as follows. Cycle through all of the patterns in the training set and test each
pattern in turn using the current set of weight values. If the pattern is correctly
classified do nothing, otherwise add the pattern vector (multiplied by q) to the
weight vector if the pattern is labelled class C1 or subtract the pattern vector
(multiplied by 9) from the weight vector if the pattern is Jabelled class C2. It is
easy t o see that this procedure tends to reduce the error since

since l)#ntnl12 > 0 arid y > 0.
For the particular case of the perceptron criterion, we see that the value of

q is in fact unimportant since a change in 7 is equivalent to a re-scding of the
weights and bias (assuming the initial parameter values are similarly resealed).
This leaves the location of the decision boundaries unchanged. To see this, recall
that the location of the decision boundary is given by (3.2), and is therefore
unchanged if all of the weights, including the bias, are rescaled by the same
constant. Thus, when minimizing the perceptron critefion, we can tdte = I
with no loss of generality. This property does not hold, however, for most other
form of error function.

In Figures 3.11-3.13 we give a simple exampIe of learning in a perceptron, f o ~
the case of one basis function so that, with biases included as specid cases of
the weights, the data points live in a *dimensional space (do, dl) with 40 = 1.

3.5.3 Perceptma convergence theorem

There is an interesting result which states that, for any data set which is linearly
separable, the learning rule in (3.68) is guaranteed t o find a solution in a finite
number of steps (Rosenblatt, 1962; Block, 1962; NiIsson, 1965; Minsky and Pa+
pert, 1969; Dude and Hart, 1973; Hand, 1981; Arbib, 1987; Hertz et ol., 1991).
This is known as the peweptmn convergence theorem. Here we give a relatively
simple proof, based on Hertz et aE. (1991).

Since we are considering a data set which is linearly separabIe, we knon'
that there exists at least one weight vector G for which all training vectors 8e
correctly classified, so that

1
3T$ntpl > 0 for all n. (3.70)

3.5: The perceptmn 101

f jwre 3.1 1. A simple example of perceptron learning, for a data set with four
patterns. Circles repraent patterns belonging to c l w C1 and squares represent
patterns belonging to class Ca. The initial decision boundary, corresponding to
the weight vector w(O), shown by the dashed curve, lea- one of the points,
at dl, incorrectly classified.

The learning process &arts with some arbitrary weight vector which, without loss
of generality, we can assume t o be the zero vector. At each step of the algorithm,
the weight vector is updated using

"here 4" is a vector which is misclassified by the perceptron. Suppose that, after
running the algorithm for some time, the number of times that each vector 4n

heen p r ~ e n t e d and misclassifi& is 7". Then the weight vector at this point
"-ill be given by

take the scalar produet of this equation with i% to give

2 T min (CTbntn)
n

= is the total number of weight updates, and the inequality
resuits from replacing each update vector by the smallest of the update vectors.

L

102 3: Single-Layer Networks

Figure 3.12. To correct for the rniscleissifrcation of 4' in Figure 3.11 we add
(minus) 4' onto w(') to give a new wejght vectur d l) , with the new decision
boundary again shown by the dashed curve. The point at 4' is now correctly
classified, but the point at &2 is now incorrectly classified.

Figure 3.13. To correct for the rnisclassification of 4' in Figure 3.12 we add
42 onto w(" to give a new weight vector d2) which classifies all the points
correctly.

b m (3.70) it then fol!ows that the value of CTw is hounded below by a function
which grows linearly with r.

Keeping this resuIt in mind, we naw turn to a consideration of the magnitude
of the weight vector w. 'From (3.71) we have

9.5: The peweptmn 103

n-here the inequality f o I l ~ ~ s from the fact that the pattern #" must have been
l,,ixl~sified, and SO w(T)T#ntn < 0. We also have (tn)2 = I since tn = il, and
, ~ , ~ i ~ < (14112, where ll~llm, i. the length of the longest input vector. Thus,
the in the value of llw]12 satisfies

a~c l : so after r weight vector updates we have

md SO the length llwll of the weight vector increases no faster than 71'~. We
now recall the previous result that GTw is bounded below by a, linear function
of 7. Since C is fixed, we see that for sufficiently large T these two results would
become incompatible. Thus r cannot grow indefinitely, and so the algorithm
must converge in a finite number of steps.

One of the difficulties with the perceptron learning rule is that, if the data
set happens not to be linearly separable, then the learning algorithm wiIl never
terminate. Furthermore, if we arbitrarily stop the learning process there is no
guarantee that the weight vector found will generalize well for new data. Various
heuristics have been proposed with a view to giving good performance on prob-
lems which are not linearly separable while still ensuring convergence when the
problem is linearly separable. For example, the value of the parameter 7 may be
made to decrease during the learning process so that the corrections gradually
hecome smaller. One approah is to take 7 = K/T where K is a constant and T is

step number, by analogy with the Robbins-Monro procedure (Section 2.4. I).
An alternative algorithm for finding good solutions on problems which are not
tinearl:, separable, called the pocket algorithm, is described in Section 9.5.1, As
""me already discussed, the issue of linear separability is a somewhat arti-
6e1al one, and it is more important t o develop [earning algorithms which can
hy ' X p ~ t e d t o give good performance across a wide range of problems, even if

means sacrificing the guarantee of perfect classification for linearly separable
Dro h

;ram wer
d salve ~r
,ppeared

3.5..! tions of the perceptmn
lYh@n ~ercept e being studied experimentally in the 1960s, it was found

they caul [any problems very readily, whereas other problems, which
k"~~rf ic ia l1~ a to be no more difficult, proved impossible to solve. A crit-

V~raisal of the capabilities of these networks, from a formal mathematical
" " ~ ~ i h t , wm given by Minsky and Papert (1969) in their book Pemptmns.

104 3: Single-Layer Networks

They showed that there are many types of problem which a perceptron cannot
in any practicaI sense, be used to solve. In this context a solution is taken to hi
a correct classification of all of the patterns in the training set.

Many recent textbooks on neural networks have summarized Minsky
Papert" contribution by pointing out that a single-layer network can only class$
data sets which are linearly separable, and hence can not solve problems such as
the XOR example considered earlier. In fact, the arguments of Minsky and Papen
are rather more subtle, and shed light on the nature of multi-layer networks in
which only one of the layers of weights is adaptive. Consider the perceptron
shinvn in Figure 3.10. The first layer of fmed (non-adaptive) processing mils
computes a set of functions $ j whose values depend on the input pattern. Eve,,
though the data set of input patterns may not be linearly separable, when viewd
in the space of original input variables, it can easily be the case that the same
set of patterns becomes linearly separable when transformed into the space
$j values. Thus a perceptron can solve a linearly inseparable problem, provided
it has an appropriate set of h t - l aye r processing elements.

The red difficulty with the perceptron arises from the fact that these pro-
cessing elements are fucd in advance and cannot be adapt& to the particular
problem (or data set) which is being considered. As a consequence of this, it turns
out that the number, or complexity, of such units must grow very rapidly (typi-
cally exponentially) with the dimensionality of the problem if the perceptmn is
t o remain capable in general of providing a solution. It is therefore necessary to
limit either the number or the complexity of the first-layer units. Minsky and
Papert discuss a range of different forms of perceptron (depending on the form
of the functions #j,.) and for each of them they provide examples of problems
which cannot be solved.

Here we consider one particular form, called a diameter-limited perceptmn,
in which we consider two-dimensional input images as shown in Figure 3.10, and
in which each of the #j takes its inputs only from within a small localized region
of the image, called a receptive field, having fixed diameter. Minsky and Papert
(1969) provide a simple geometrical proof that such a perceptron cannot sol~*a
simple problem involving the determination of whether a binary h-~-

we is simply connected. This is illustrated in Figure 3.14. We shall suppose that
connected shapes are labelled with targets +1 and that disconnected shapes hatT
targets -1. Note that the overall length of the shapes is taken to be much larger
than the rnaxlrmm diameter of the receptive fields (indicated by the dashed cir*
cles), so that no single receptive field can overlap both ends of the shape. f i r the
shape in Figure 3.14 (a), the functions 4, and the adaptive weights in the pep Id
ceptron must be such that the linear sum which form the input to the thresho
function is negative, if this figure is to be correctly classfied as 'disconnected '
In going to 3.14 (b), only the left-hand end of the shape has changed, so
receptive heids which lie in this region, and their corresponding weights, must
be such that the linear sum is increased sufficiently to make it go positive, sigce

this shape is 'connected'. Similarly, in going from 3.14 (a) to 3.24 (c) the hea'
sum must also be increased sufficiently to make it positive. However, in going

3.6: Fisher's linear discriminant

Figure 3.14. An example of a simple probbrn, involving the determination of
whether a geometrical figure is simply connected, which cannot be solved by
a perceptron whose inputs me taken from regions of limited diameter.

from 3.14 (a) to 3.14 (d), both ends of the shape have been changed in this way,
mtt so the l ines sum must be even more positive. This is inevitable since the
diameter limitation means that the response due to the two ends of the shape are
independent. Thus, the linear sum cannot be negative for the shape in 3.14 (d),
rh ich will therefore be miscl~sified.

Various alternative approaches to limiting the complexity of the firstrla~fl
units can be considered. For instance, in an order-limited perceptron, each of the
dl can take inputs only from a limited number of input pixels (which may lie
myarhere on the input image). Counter-examples similar to the one presented
ahow can be found also for these other choices of dj. These difiiculties can be
"rcumvented hy allowing the number and complexity of the # j to @OW SUR-
~ i ~ n t l p rapidly with the dimension,nality of the problem. For example, it is shown
in S~ct ion 4.2.1 that, for networks with b i n ~ inputs, there is a simple proce
d l ~ r p for constructing the @j such that any set of input patterns is guaranteed to
hp linearly separable in the space. The number af such units, however, must
?'Ow Wonent idly with the input dimensionality. Such an appromh is therefore
''''~~14- impractical for anything other than toy problems.

Practical solution to these difficulties is to allow the functions dj to be
P-d ' l~ t tve , so that they are chosen as part of the learning process. This leads to a
'O''srdcration of multi-layer adaptive networks, as discussed In Chapters 4 and 5.

Fisher's linear discriminant

the final topie of this chapter we consider a rather different approach to lin-
par discriminants, introduced by Fisher (1936). In Section 1.4 we encountered

'3 Problem of the ' c u r s of dimensionality' whereby the design of good
'lhcr becomes rapidly more difficult as the dimensionality of the input space

I06 3: Single-Layer Networks

increases. One way of dealing with thrs problem is ta pre-process the data so
as to reduce its dimensionality before applying a classification algorithm. The
Fisher discriminant aims to achieve an optimal linear dimensionality reduction,
It is therefore not strictly a discriminant itseIf, but it can eaily be used to

construct a discriminant. As well as being an important technique in its own
right, the Fisher discriminant provides insight into the representations learned
by multi-layer networks, as discussed in Section 6.6.1.

3.6.1 Two classes I
One very simple approach to dimensionality reduction, motivated by our earlier
discussion of single-layer networks, is to use a linear projection of the data onto
a onedimensional space, so that an input vector x is projected onto a value y
given by

where, as before, w is a vector of adjustabIe weight parameters. Note that this
expression does not contain any bias parameter. We shall return to this point
shortly. In general, the projection onto one dimension leads to a considerable loss
of information, and classes which are well separated in the original d-dimensional
space may become strongly overlapping in one dimension. However, by adjusting
the components of the weight vector w we can seIect a projection which maxi-
mizes the class separation. To begin with, consider a two-class problem in which
there are Nl points of class Cr and JV2 points of class Cz. The mean vectors of
the two classes are given by

We might think of defining the separation of the classes, when projected onto
w, as being the separation of the projected cIass means. This suggests that fl
might choose w so as to maximize

where I

is the class mean of the projected date Erom class Ck. However, this acpressi0'
can be made arbitrarib large simply by increasing the magnitude of w. TO so'"
this problem, we could constrain w to have unit length, so that Ci tu,Z = 1. usinB ' D
a Lagrange multiplier (Appendix C) to perform the constrained maxjrnizaoO
we then find that w o. (mz - ml). There is still a problem with this approad'

3.6: Fisher's liaear disc~minan.t

Figure 3.15. A schematic illustration of why it is important to take account of
the within-class cuvarianc~ when constructing the Fisher linear discriminant
criterion. Projection of the data onto the sl-axis leads to greater separation
of the projected class means than does projection onto the z2-axis, and yet it
leads to greater class overlap. The problem is reolved by taking account of
the within-class scatter of the data points.

ha\vever, as illustrated in Figure 3.15. This shows two classes which are well
s~parated in the original two-dimensional space (51, x2). We see that projection
onto the xl-axis gives a mu& larger separation of the projected class means
than does projection onto the xa-axis. Nevertheless, separation of the projected
dat,a is much better when the d ~ t a is projected onto the xz-axis than when it is
projected onto the xl-&s. This difficulty arises from the substantial difference

the within-class spreads along the two axis directions. The resolution proposed
hy Fisher is to rnafimize a function which represents the difference between the
Prr?iected class means, normalized by a measure of the within-class scatter aIong
the direction of w.

The projection formula (3.77) transforms the set of labelled data points in x
into a labelled set in the one-dimensional space v. The within-elass scatter of the
"*n"formed data from class Cx is described the within-class covariance, given by

?'! wp can define the total within-class covariance for the whole data set to be
"?'i. 3: -t s:. We therefore arrive a t the Fisher criterion given by

""nake the dependence on w explicit by using (3.171, (3.80) and (3.81) to
r'writr Fisher criterion in tilt. form

9: Single-Layer Networks

where S s is the between-class covariance matrix and is given by

and Sw is the total within-class covari~nce matrix, given by

Differentiating (3.83) with respect to w, we find that J(w) is maximized whsll

Rom (3.84) we see that Ssw is always in the direction of (m2 - ml). Further-
more, we do not care about the magnitude of w, onIy its direction. Thus, we can
drop any scalar factors. Multiplying both sides of (3.86) by S$ we then obtain

This is known as Fisher's linear discriminant, although strictly it is not a dis-
criminant; but rather a specific choice of direction for projection of the data down
to one dimension. Note that, if the within-class covariance is isotropic, so that
Sw is proportional to the unit matrix, we find that w is proportional to the
difference of the class means, as discussed above. The projected data can s u b
sequentIy be used to construct a discriminant, by choosing a threshold yo so
that we classify a new point as belonging to C1 if y(x) > yo! and classify it as
belonging to Cz otherwise. In doing this we note that ,t = wTx is the sum of
a set of random variables, and so we may invoke the centra! limit theorem (sep

page 37) and model the class-conditional density functions p(yJCk) using normal
distributions. The techniques of Chapter 2 can then be used to find the param
eters of the normal distributions by maximum likelihood, and the formalism of
Chapter I then gives an expression for the optimal threshold.

Once we have obtained a suitable weight vector and a threshold, the prore-
dme for deciding the class of a new vector is identical to that of the perceptron
network of Section 3.5. 1% can therefore view the Fisher criterion as a specific
procedure for choosing the weights (and subsequently the bias) in a single-laFr
network. More conventionally, however, it is regarded as a technique for dimen-
sionality reduction, a subject which is discussed at greater length in Chapter 8. In
reducing the dimensionality of the data we are discarding infomation, and this
cannot reduce (and will typically increase) the theoretical minimum achievclble
error rate. Dimensionality reduction may he worthwhile in prxtice, however,

it deviates problems associated with the curse of dimensionality. Thus, with

, finite-sized data sets, reduction of the dimensionality may we11 lead to overdl
in the performance of a clmsifrer system.

3.6.2 Relation t o the least-sp~aares appmach
The least-squares approach to the determination of a linear discriminant was
based on the god of making the network outputs as close as possible to a set of
target values. BY contrast, the Fisher criterion was derived by requiring maxi-
mum class separation in the output space. It is interesting to see the relatiomhip
hetween these two approaches. In particular, we shall show that, for the two-elms

the Fisher criterion can be obtained as a special case of least squares.
SO far we have taken the target values to be f 1 for class C1 and -1 for

class Cz. If, however, we adopt a slightly different target coding scheme then the
least-squares solution sojution for the weights becomes equivalent to the Fisher
solution (Duda and Hart, 1973). In particular, we shdl take the targets for class
C, to be NJNl, where NI is the number of patterns in class Cry and N is the
total number of patterns. This target vdue approximates the reciprocd of the
prior probability for class C1. For class Cz we shall take the targets to be - N / N 2 .

The sum-of-squares error function can be written

Setting the derivatives of E with respect t o wo and w to zero we obtain respec-
tively

(3.891, and making use of our choice of target coding scheme for the tn,
Tve obtain an expression for the bias in the form

"'here rn i s the mean of the total data set and is given by

I

110 3: Single-Layer Networks

After some straightforward algebra, and again making use of the choice of tn,
the second equation (3.90) becomes

where Sw is defined by (3.851, S B is defined by (3.841, and we have substituted
for the bias using (3.91). Using (3.84) we note that SBW is always in the direction
of (mz - ml). Thus we can write

where we have ignored irrelevant scale factors. Thus the weight vector coincides
with that found from the Fisher criterion. In addition, we have also found an I
expression for the bias value wo given by (3.91). This teUs us that a new vector
x should be classified as hebnging to class C1 if wT(x - rn) > 0 and class C2
otherwise.

3.6.3 Seveml classes

We now consider the generalization of the Fisher discriminant; to severaI classes,
and we shall assume that the dimensionality of the input space is greater than
the number of classes, so that d > c. Also, we introduce d' > 1 linear 'features'
gh = wzx, where k = 1,. . . , d'. These feature values can conveniently be grouped
together to form a vector y. Similarly, the weight vectors {wk} can be considered
to be the rows of a matrix W, so that

The generalization of the within-class covariance matrix to the case of c classes
'

foIlows from (3.85) to give

where

and

3.6: Fisher's linear discriminant 11 1

w]~ere Nk is the number of patterns in class Ck. In order to find a generalization
,f the between-class covariance matrix, we follow Duda and Hart (1973) and
consider first the total covariance matrix

where rn is the mean of the total data set

and N = ECk Nk is the total number of data points. The total covariance matrix
ran be decomposed into the sum of the within-class covariance matrix, given by
(3.96) and (3.971, pIus an additional matrix Sg which we identify as a measure
of the between-class covariance

where

These covariance matrices have been defined in the original X-space. We can now
d ~ f i n e similar matrices in the projected dl-dimensional y-space

' l ~ a i n we wish to construct a scalar which is large when the between-class CO-

Variance is Imge and when the within-class covariance is small. There are now

112 3: Single- Layer Networks I Exercises 113

many possible choices of criterion (Fukunaga, 1990). One example is given by
I

4 ~ ~ 3 (*) Consider a mixture mode1 of the form (2.71) in which t.he component

I densities are given by
J (W) = Tr (~ 2 s ~) (3.106) d

where Tr(M) denotes the trace of a matrix M. This criterion can then be rmrit- p (x j) = n P$ (1 - ~ ~ *) ~ - ~ t
(3.109)

ten as an explicit function of the projection matrix W in the form
a=l

which is equivalent to (3.22). Show t h a t the maximum likelihood solution
J(W) = 'II. {(ws~w~)-'(wsBw~)) . for the parameters Pjt is given by

Maximization of such criteria is straightforward, though somewhat involved.
and is discussed at length in Fukunaga (1990). The weight values are determined
by those eigenvectors of S $ S ~ which correspond to the d' largest eigenvalues.

There is one important result which is common to all such criteria, which is
worth emphasizing. We first note from (3.102) that SB is composed of the sum
of c matrices, each of which is an outer product of two vectors and therefore of
rank 1, In addition only (c - 1) of these matrices are independent as a result
of the constraint (3.100). Thus, S s has rank at most equal to (c - 1) and so
there are at most (c - 1) non-zero eigenvalues. This shows that the projection
down onto the (c - 1)-dimensional subspace spanned by the eigenvectors of Sp,
does not alter the value of J(W), and so we are therefore unable to find more
than (c - I) linear 'features' by this means (hkunaga, 1990). Dirnensiondlty
reduction and feature extraction are discussed at greater length in Chapter 8.

Exercises

3.1 (*) Consider EL point 2 which lies on the plane y(Z) = 0, where y(x) is given
by (3.1). By minimizing the distance Ilx - 211 with respect to 2 subject
to this constraint, show that the value of the linear discriminant function
y(x) gives a (signed) measure of the perpendicular distance L of the point
x t o the decision boundary y(x) = 0 of the form

3.2 (*) There are several possible ways in which to generalize the concept of a
linear discriminant function kom two classes to c classes. One passibiliw
would be to use (c-1) linear discriminant functions, such that yk(x) > 0 for
inputs x in class Ck and y k (x) < 0 for inputs not in class Ck. By drawing
a simple example in two dimensions for c = 3, show that this appro~l'
can lead to regions of x-space for which the classification is ambiguous-
Another approach would be t o use one discriminant function yjk(x) for
each possible pair of classes Cj and Ck, such that y j k (x) > 0 for patterns in
class Cj, and yjk(x) < O for patterns in class Ck. For c classes we would n e ~ d
c(c - l) / 2 discriminant functions. Again, by drawing a specific example
in two dimensions for c = 3, show that this approach can also Iead to
ambiguous regions.

I where P(jJx} is the posterior probability for component j corresponding
t o an input vector x and is given, from Bayes' theorem, by

and P (j) is the corresponding prior probability
1 3.4 (* *) Given a set of data points {xn) we can define the convex hull to be the

set of all point.^ x given by

where a, > 0 and C, an = 1. Consider a second set of points (an} and its
corresponding convex hull. The two sets of points will be linearly separable
if there exists a vector 8 and a scalar wo such that GTxn -t wo > 0 for d I
xn, and GTzn + wo < 0 for all sn. Sliow that, if their convex hulls intersect,
the two sets of points cannot be linearly separable, and conversely that, if
they are linearly separable, their convex hulls do not intersect.

3.5 (**) Draw all 22 = 4 dichotomies of N = 2 points in one dimension, and
hence show that the fraction of such dichotomies which are linearly sep*
rable is 1.0. By considering the binomial expansion of 2$ = (I + l)d, verib
that the summation in (3.30) does indeed give F = 1 when N = d + 1 for
any d. Similarly, by drawing all z4 = 16 dichotomies of N = 4 points in one
dimension, show that the fraction of dichotomies which are linearly sepa-
rable is 0.5. By considering the binomial expansion of zZd+' = (1 + l)2d+1,
show from (3.30) that the fraction of dichotomies which are linearly sep-
arable for N = 2(d + 1) is given by F(2d + 2,d) = 0.5 for any N. Verify
that these results are consistent with Figure 3.7.

'.6 (***I Generate and plot a set of data points in two dimensions, drawn
from two classes each of which is described by a Gaussian class-conditional
density function. Implement the gradient descent algorithm for training a
logistic discriminant, and plot the decision boundary at regular intervals

f 14 3: Singte-Layer Network8 I

I

Figure 3.16. Distribution of data in one dimension drawn from two classes,
used in Exercise 3.7.

the
rm-
I ..-"

during the training procedure on the same graph as the data. Explore
effects of choosing different values for the learning rate parameter q. Cc
pare the behaviour of the sequentid and batch weight update p r ~ c d u l , . ~
described by (3.52) and (3.54) respectively.

3.7 (* *) Consider data in one dimension drawn from W o classes having the dip
tributions shown in Figure 3.16. What is the ratio of the prior probabiIities
for the two classs? Find the linear discriminant function y(z) = tux + WQ

which rninimixs the sum-of-squares error function defined by

3,9 (*+ *) Generate a data set consisting of a small number of vectors in two
dimensions, each belonging to one of two classes. Write a numerical im-
pIementation of the perceptron learning algorithm, and plot both the data I
p i n t s and the decision boundary after every iteration. Explore the be- I I

haviour of the algorithm both for data sets whch are linearly separable
and for those which not.

g . ~ ~ (*) Use a Lagrange multiplier (Appendix C) to show that, for two cIassas,
the pojection vector which maximizes the separation of the projected class
means given by (3.791, subject to the constraint llwl12 = 1, is given by

I , 1
(I 1

w O: Ern2 - ml).
3.11 (x +) Using the definitions of the between-class and within-cIass covariance

matrices given by (3.84) and (3.85) respectively, together with (3.91) and I '
I

(3.92) and the choice of target values described in Section 3.6.2, show that
the expression (3.90) which minimizes the sum-of-squares error function I
can be written in the form (3.93).

3.12 (*) By making use of (3.98), show that the total covariance matrix ST
given by (3.99) c m be decomposed into within-class and between-class
covariance matrices as in (3.101), where the within-class covariance matrix

I I

Stv is given by (3.96) and (3.97), and the between-class covarimce matrix I ;

Ss is given by (3.102). ' I

I
I

ow
wo
ich
1. -

where the target values are t = +-I for class C1 and t = -1 for class Cz. Sh
that the decision boundary given by y(x) = 0 just fails to separate the t
classes. Would a single-layer perceptron necessarily find a solution wh
separates the two classes exactly? Justify your answer. Discuss briefly trlr

advantages and limitations of the least-squares and perceptron algorithms
in the light of these results.

3.8 (*) Prove that, for arbitrary vectors w and 9, the folIowing inequdity i-$
satisfied:

Hence, using the results (3.73) and (3.76) from the proof of the perc.eP-
tron convergence theorem given in the text, show that an upper limit on
the number of weight updates needed for convergence of the perceptron
algorithm is given by

rmax =
IIGI1211#Il$ax

min, (6 T&nfn)Z '

4

THE MULTI-LAYER PERCEPTRON

In Chapter 3, we discussed the properties of networks having a single layer of
adaptive weights. Such networks have a number of important limitations in terms
of the range of functions which they can represent. To allow for more general m a p
pings we might consider successive transformations corresponding to networks
having several layers of adaptive weights. In fact we shaIl see that networks with
just two Iayers of weights are capable of approximating any continuous functional
mapping. More generally we can consider arbitrary network diagrams (not nw-
essarily having a simple laywed structure) since any network diagram can he
converted into its corresponding mapping function. The only restriction is that
the diagram must be feed-forward, so that It contains no feedback loops. This
ensures that the network outputs can be calculated as explicit functions of the
inputs and the weights.

We begin this chapter by reviewing the representational capabilities of multi-
layered networks having either threshold or sigmoidal activation functions. Such
networks are generally called multi-layer perceptmns, even when the activation
functions are sigrnoidal. For networks having differentiable activation functions,
there exists a powerful and computationally efficient method, called e m r back-
propagation, for finding the derivatives of an error function with respect to the
weights and biases in the network. This is an important feature of such networks
since these derivatives play a central role in the majority of training algorithms
for multi-layered networks, and we therefore discuss back-propagation at some
length. We also consider a variety of techniques for evaluating and approximating
the second derivatives of an error function. These derivatives form the elements
of the Hessian matrix, which has a variety of different applications in the context
of neural networks.

4.1 Feed-forward network mappings

I n the first three sections of this chapter we consider a variety of different kinds
of f eed - fomd networ'c, and explore the limitations which exist on the mappine
which they can .genera;e. We are only concerned in this discussion with finding
fundamental restrictions on the capabilities of the networks, and so we shall for
instance assume that arbitrarily large networks can be constructed if needed. In
practice, we must deal with networks of a finite size, and th i s raises a number of
important issues which are discussed in later chapters.

4. I : Feed-jortuad network mappings

outputs
PI YF

hidden
bias unlts

zo zM

bias

Figure 4.1. An example of a feed-forward network having trvo layers of adaptive
weights. The bias parameters in the first layer are shown as weights from an
extra input having a fixed value of xo = I. Similarly, the bias parameters in the
second layer are shown BS weights from an extra hidden unit, with activation
again h e d at a = 1.

We shall view feed-forward neural networks as providing a general frrnework
for representing non-linear functional mappin@ between a set of input variables
and a set of output variables. This is achieved by representing the non-linear
function of many variables in t e r n of compositions of non-linear functions of
R single variable, called activation functions. Ewh multivariate function can be
represented in terms of a network diagram such that there is a one-to-one corre-
spondence between components of the function and the elements of the diagram.
Equally, any topology of network diagram, provided it is feed-forward, can be
translated into the corresponding mapping function. We can therefore categr~
rize difierent network functions by considering the structure of the corresponding
network diagrams.

4-1.1 Layered n e t w o ~ b

mre begin by looking at networks consisting of successive layers of daptive
"eights. As discussed in Chapter 3, singlelayer networks are based on a linear
combination of the input variables which is transformed by a non-linear w t i w
tion function. We can construct more general functions by considering networks
]'"ing successive layers of processing units, with connections running from every
unit in one layer to every unit in the next layer, but with no other connections
Permitted. Such 1ztyere.d networks are easier to analyse theoretically than more
general topologies, and can often be implemented more eficiently in a software
simulation.

An example of a layered network is shown in Figure 4.1. Note that units
which are not treated as output units are called hidden units. In this network
+,here are d inputs, M hidden units and c output units. We can write down the
malytic function corresponding to Figure 4.1 as follows. The output of the j th

118 4: The Multi-laver Perceptrola

hidden unit is obtained by first forming a weighted linear combination of the
input values, and adding a bias, to give

Here wj:) denotes s weight in the first layer, going fmm input i to hidden unit

j, and w$) denotes the bias for hidden unit j. As with the singi~laysr network
of Chapter 3, we have made the bias terms for the hidden units explicit in the
diagram of Figure 4.1 by the inclusion of an extra input variable xo whose va,1ue
is ~ermanently set at xo = 1. This can be represented analytically by rewriting
(4.1) in the form

The activation of hidden unit j is then obtained by transforming the linear sum
in (4.2) using an activation function g { -) to give

In this chapter we shdf consider two principal forms of activation function
given respectively by the Heaviside step function, and by continuous sigmoidal
functions, as introduced already in the context of single-layer networks in Sec-
tion 3.1.3.

The outputs of the network are obtained by transforming the activations of
the hidden units using a second layer of processing elements. Thus, for each
output unit k, we construct a linear combination of the outputs of the hidden
unit8 of the form

Again, we can absorb the bias into the weights to give

which can be represented diagrammatically by including an extra hidden unir
with activation z0 = 1 rls shonm in Figure 4.1. The activation of the kth output
unit is then obtained by transforming this linmr combination using a non-linear

4.1: Feed-forwad network mappings 119

Here we have used the notation a*) for the activation function of the output
kinits to emphasize that this need not be the same function as used for the
hidden units.

if we combine (4.2), (4.3), (4.5) and (4.6) we obtain an explicit expression for
ti,, function represented by the network diagram in Figure 4.1 in the

form

~ r : note that, if the activation functions for the output units are taken to be
linear, so that ;(a) = a, this functional form becomes s spwial case of the
aneralieed linear discriminant function discussed in Section 3.3, in which the
Ilasis functions are given by the particular functions zJ defined by (4.2) rtnd

(4.3). The crucial differe~lce is that here we shall regard the weight parameters
appearing in the first layer of the network, as well as those in the second layer,
as being adaptive, so that their values can be changed during the process of
n ~ t w o r k training.

Tlle network of Figure 4.1 correspmds to a transformation of the input vari-
ahies by two successive single-layer networks. It is clear that we can extend this
rlass of networks by consideri~g further successive transformations of the same
~eneral kind, corresponding to networks with extra layers of weights. Through-
ollt this hook, when we use the term Llayer network we shall be referring to
a network wieh L layers of adaptive weights. Thus we shall call the network of
Fkure 4.1 a two-layer network, while the networks of Chapter 3 are called single-
l;wer networks. It should be noted, however, that an alternative convention is
sometimes also found in the literature. This counts layers of units rather than
Ia~ers of weights, and the inputs as separate units. According to this

the networks of Chapter 3 would be caUed two-layer networks, and
network in Figure 4.1 w ~ u l d be said to have three layers. We do not recom-

mend this cemention, hmever, since it is the layers of adaptive weights which
crucial in determining the properties of the network function. Furthermore,

the circles representing inputs in a network diagram are not true processing units
their sole purpose is to represent the values of the input variables.

-4 useful technique for visudization of the weight values in a neural network
Hinton d i a g m , illustrated in Figure 4.2. E x h square in the diagram cor-

respond~ to one of the weight or bias parameters in the netwurk, and the squares
arc grouped into blocks corresponding to the parameters associated with each
'Init. The size of a squxe is proportional to the magnitude of the corresponding

L.2: Threshold units

biases

weights

weights

Figure 4.2. Example of a two-layer network which solves the XOR problem,
showing the cosr~ponding Hioton diagram. The weights in the network have
the d u e 1.0 unless indicated otherwise.

parameter, and the square is black or white according to whether the parameter
is positive or negative.

4.1.2 Geneml topologies

Since there is a direct correspondence between a network diagram and its mathe-
matical function, we can develop more general network mappings by consideriiig
more complex network diagrams. We shall, however, restrict our attention to the
case of f eed- f imad networks, These have the property that there are no feed-
back loops in the network. In general we say that a network is feed-forward if it
is possibk to attach successive numb&rs to the inputs and to all of the hidden
and output units such that each unit only receives connections from inputs or
units having a smaller number. An example of a general feed-forward network
is shown in Figure 4.3. Such networks have the property that the outputs can
be expressed as deterministic functions of the inputs, and so the whole network
represents a multivariate nan-linear functional mapping.

The procedure for translating a network diagram into the corresponding
mathematical function follows from a straightforward extension of the idea
already discussed. Thus, the output of unit k is obtained by transforming a
weighted linear sum with a non-linear activation function to give

where the sum runs over all inputs and units which send connections to unit
(and a bias parameter is included in the summation). For a given set of values
applied to the inputs of the network, successive use of (4.8) allows the activations
of all units in the network to be evaluated including those of the output units.
This process can be regarded as a forward propagatzo.m of signals through the

outputs
Yl Y2

XI
Inputs

'4

Figure 4.3. An example of a neural network having a general feed-forward
topology. Note that each unit has an associated bias parameter, which has
been omitted from the diagram for clarity.

network, In practice, there is little call to consider random networks, but there
is often considerable advantage in building a bt of structure into the network.
An example involving multiple layers of processing units, with highly restricted
and structured interconnections beheen the layers, is discussed in Section 8.7.3.

Note that, if the activation functions of all the hidden units in a network are
taken to be linear, then for my such network we can always find an equivalent
network without hidden unib. This follows from the fact that the composition of
successive linear transformations is itself a linear transformation, Note, however,
that if the number of hidden units is smaller than either the number of input or
output units, then the linear transformation which the network generates is not
the most general possible since information is lost in the dimensionality reduction
at the hidden units. In Section 8.6.2 it is shown that such networks can be related
to conventional data processing techniques such as principal component analysis.
In general, however, there is little interest in mult i-layer linear networks, and we
"all: therefore mainly consider networks for which the hidden unit activation
h~nctions are non-linear .

4.2 Threshold units

There are many possible choices for the non-linear activation functions in a multi-
layered network, and the choice of activation functions for the hidden units may
33en be different from that for the output units. This is because hidden and
r'Ut~ut units perform different robs, as is discussed at length in Sections 6.6.1
and 6.7.1. However, we begin by considering networks in which all units have
Rpaviside, or step, activation hnctions of the form

124 4: The Mdti-layer Perceptran

XI . Xd
rnputs

Figure 4.5. Topology of a neural network to demonstrate that networks with
three layers of threshold units can generate arbitrarily compIex decision bound-
aries. Biases have been omitted for clarity.

and there are no units corresponding to class C2. Using the 'AND' construction
for twc-layer networks discussed above, we now arrange that each second-layer
hidden unit generates a 1 only for inputs lying in the corresponding hypercube.
This can be done by arranging for the hyperplanes associated with the first-layer
units in the block to be digned with the sides of the hypercube. Finally, the
output unit has a bias which is set to -1 so that it computes a logicd 'OR.'
of the outputs of the second-layer hidden units. In other words the output unit
generates a 1 whenever one (or more) of the second-layer hidden units does so. If
the output unit activation is 1, this is interpreted as class C1, otherwise it is inter-
preted as class Cz. The resulting decision boundary then reflects the (arbitrary)
assignment of hypercubes to classes C1 and Cz.

The abwe existence proof demonstrates that feed-forward neural networks
with threshoId units can generate arbitrarily complex decision boundaries. The
proof is of little practical interest, however, since it requires the decision boundary
to be specified in advance, and also it will typicaIly lead to very large networks.
Although it is 'constructive' in that it provides a set of weights and threshah
which generate a given decision boundary, it does not answer the more prstic
question of how to choose an appropriate set of weights and biases for a particul
problem when we are given only a set of training examples and we do not know
in advance what 'the optimal decision boundary wi 11 be.

Returning to networks with two layers of weights, we have saIredy seen how
the AND construction for the output unit allows such a network to generate
an arbitrary simply-connected convex decision region. However, by relaxing the

Figure 4.6. Example of a non-convex decision boundary generated by a network
having two layers of threshold units. The dashec! l i n a show the hyperplmtnes
corresponding to the hidden units, and the arrows show the direction in which
the hidden unit activations make the transition from 0 to 1. The mnd-layer
weights are all set to 1, and so the numbers represent the value of the linear
sum prmnted to the output unit. By setting the output unit bias to -3.5, the
decision boulndwy represend by the soUd curve is generated.

Figure 4.7. As in Figure 4.6, but showing how a disjoint decision region
be produced. In this w e the bias on the output unit is ~ e t to -4.5.

restriction of an AND output unit, more general decision boundaries can be con-
/ "rutted (Wieland and Leightoa, 1987; Huang and Lipprnann, 1988). Figure 4.6

an example of a non-convex decision boundary, and Figure 4.7 shows a
decision region which is disjoint. Huang and Lippmann (1988) give some exam-
ples of very complex decision boundaries for networks having a two Iayers of

units.
This would seem to suggest that a network with just two layers of weights

generate arbitrary decision boundaries. This is not in fact the case (Gibson
Cowan, 1990; Blum and Li, 1991) and Figure 4.8 shorn an example of a

decision region which cmnot be produced by a network having just two I a p ~ of

126 4: The Multi-layer Perceptron

Figure 4.8. An example of a decision boundary which m o t be producal by
a network having two layers of threshold units (Gibson and Gown, 1990).

~
weights. Note, however, that any given decision boundary can be approximated
arbitrarily closely by a two-layer network having sigrnoidal activation functions,
as discussed in Section 4.3.2.

So far we have discussed procedures for generating particular forms of deci-
sion boundary. A distinct, though related, issue whether a network can classify
correctly a given set of data points which have been labelled as belonging to one
of two classes (a dichotomy). In Chapter 3 it is shown that a network having a 1
single layer of threshold units could classtfy a set of points perfectly if they were
linearly separable. This would always be the case if the number of data points
was at most equal t o d + L where d is the dirnensiondity of the input space.
Nilsson (1965) showed that, for a set of N data points, a twelayer network of
threshold units with N - 1 units in the hidden layer could exactly separate an 1

arbitrary dichotomy. Baum (1988) improved this result by showing that for N I
points in general position (i.e. excluding exact degeneracies) in d-dimensional
space, a network with IN/d hidden units in a single hidden layer could separate ~
them correctly into two classes. Here r N / d denotes the srnalIest integer which
is greater than or equal to N / d .

4.3 Sigmoidal units

We turn now to a consideration of multi-layer networks having differentiah1
activation functions, and to the probIem of representing smooth mappings bc
tween continuous variabks. In Section 3.1.3 we introduced the logistic sigrnoi8
activation function, whose outputs lie in the range (0, I), given by

Figure 4.9. Plot of the 'tanh' activation function given by (4.11)

which is plotted in Figure 3.5. We discuss the motivation for this form of acti-
vation function in Sections 3.1.3 and 6.7.1, where we show that the use of such
activation functions on the network outputs plays an important role in allowing
the outputs to be given a probabilistic interpretation.

The logistic sigmoid (4.10) is often used for the hidden units of a multi-layer
network. However, there may be some small practical advantage in using a 'tanh'
activation function of the form

which is plotted in Figure 4.9. Note that (4.11) differs from the Iogistic function
in (4. LO) only through a linear transformation. Specifically, an activation function
F(z) = tanh(E) is equivalent to an activation function g(a) = 1/ (1 + e-a) if we
apply a Iinear transformation E = a/2 to the input and a linear transfomatioa - $ = 29 - 1 to the output. Thus a neural network whose hidden units use the

activation function in (4.111 is equivalent to one with hidden units using (4.10)
but having different values for the weights and biases. Empirically, it is often
found that 'tanhkctivation functions give rise to faster convergence of training

I

algorithms than logistic functions.
In this section we shall consider networks with linear output units. As we

"ha see, this does not restrict the class of functions which such networks can
approximate. The use of sigmoid units at the outputs would limit the range of
Possible outputs to the range attainable by the sigrnoid, and in some cases this
would be undesirabIe. Even if the desired output always lay within the range
Of the sigmoid we note that the sigrnoid function g(aj is monotonic, and hence
is invertible, and so a desired output of g for a network with sigmoidd output
1Jnits is equivalent to a ~ k s i ~ e d output of g-' (y) for a network with linear output

i I

128 4: The Multi-layer Percepfwn 4.3: Sigmoidat units 129

4.3.1 Three-layernetworks
In Section 4.2 we gave a heuristic proof that a three-layer network with threshoId
activation functions could represent an arbitrary decision boundary to arbitrary
accuracy. In the same spirit we can give an andogous proof that a network with
three layers of weights and sigmoidal activation functions can approximate, to
arbitrary accuracyI any smooth mapping (Lapedes and Farber, 1988). The re

units. Note, however, that there are other reasons why we might wish to use

quired network topology has the same form as in Figure 4.5, with each group of
units in the first hidden layer again containing 2d units, where d is the dimen-
sionaIity of the input space. As we did for threshold units, we try to arrange ffor
each group to provide a non-zero output only when the input vector lies within
a small region of the input space. For this purpose it is convenient to consider
the logistic sigmoid activation function given by (4.10).

W e can illustrate the construction of the network by considering a two-
dimensional input space. In Figure 4.10 (a) we show the output from a single
unit in the first hidden layer, &en by

non-linear activation hnctions at the output units, as discussed in Chapter 6.
A sigmoidal hidden unit can approximate a linear hidden unit arbitrarily

accurately. This can be aGhieved by arranging for all of the weights feeding into

Figure 4.10. Demonstration that a network with three layers of weights, and
sjgmoidaI hidden units, can approximate a smooth multivariate mapping to
arbitrary accuracy. In (a) we see the output of a single sigmoidal unit as a
function of t w ~ input variables. Adding the outputs from two such units can
produce a ridge-Bke function (b), and adding two ridges can give a function
with a maximum (c). 'Xkmforming this function with another sigmoid giws a
localized response (d). By taking linear combinations of these localized func-
tions, we cm approximate any smooth functional mapping.

I

adding the Wo sigmoids together we obtain a ridgdike function as shown in
Figure 4.10 (6). We next construct d of these ridges with orthogonal orientations
find add them together to give a bumplike structure as shown in Figure 4.10 (c).
:Ilt,hough this has a central peak there are also many other ridges present which
stretch out t o infinity. These are removed by the action of the sigmoids of the
"and-Eayer units which effectively provide a form of soft threshold to isolate
the central bump, as shown in Figure 4.10 (d). We now appeal to the intuitive
idea (discussed more formally in Section 5.2) tha t any reasonable function CMI

h e approximated to arbitrary accuracy by a linear superposition of a sufficiently

the unit, as well as the bias, to be very small, so that the summed input lies on
the linear part of the sigmoid curve near the origin. The weights on the outputs 1
of the unit leading to the next layer of units can then be made correspondingly Il
large to re-scale the activations (with a suitable offset to the biases if necessary), I

Similarly, a sigmoidal hidden unit can be mode to approximate a step function
by setting the weights and the bias feeding into that unit to very large values.

As we shall see shortly, essentially any continuous functional mapping can be
represented to arbitrary accuracy by a network having two Iayers of weights wit.h
sigrnoidd hidden units. We therefore know that networks with extra layers of 1
processing units also have genera! approxhation capabilities since they contain
the two-layer network as a special case. This follows from the fact that the
remaining layers can be arranged to perform linear transformations as discussed
above, and the identity transformation is a special case of a linear transformation
(provided there is a ~ufficient number of hidden units so that no reduction in
dimensionality occurs). Nevertheless, it is instructive to begin with a discussion
of networks having three layers of weights.

From the discussion in Section 3.1, we see that the orientation of the sigmoid is
determined by the direction of w, its location is determined by the bias loo, and
the steepness of the sigmoid slope is determined by ~ ~ w I I . Units in the second
hidden layer form linear combinations of these sigmoidal surfaces. Consider the
combination of two such surfaces in which we choose the second sigmoid to ha"
the same orientation as the first but dispPaced from it by a short distance. 33)

(4.12) large number of localized 'bump' functions, ~rrrvided the coefficients in the linear
I

combination are appropriately chosen. This superpaition is performed by the
unit, which has a Iinear activation function.

Once again, although this is a constructive aIgorithm it is of Iittle reIevance to
Practical applications and serves mainly as an existence proof. However, the idea

representing a function rn a Iinear superposition of Iocalized bump functions
7119~e~t s that we might consider two-layer networks in which each hidden unit
emrates a bump-like function directly. Such networks are called local basis

130 4: The Multi-Saver Percept~on

function networks, and will be considered in detai1 in Chaptxr 5.

4.3.2 Two-layer networks I
We turn next to the question of the capabilities of networks having two la@rs
weights and sigmoidal hidden units. This has proven to be an important class
net;work for practical applications. The general topology is shown in Figure 4.1,
and the network function was given expIicitly in (4.7). We shall see that such
networks can approximate arbitrariIy well any functional (one-one or many-one)
continuous mapping from one finite-dimensional space to another, provided th,
number M of hidden units is sufficiently large.

A considerable number of papers have appeared in the literature discussing
this property including Funahashi (19891, Hecht-NieIsen (19891, Cybenko (198g),
Hornik et 01. (1 989), Stinchecombe and White (1989), Cotter (1990), Ito (1991),
Hornik (1991) and Kreinovich (1991). An important corollary of this result is
that , in the context of a classification problem, networks with sigmoidal non-
linemities and two layers of weights can approximate any decision boundary to
arbitrary accuracy. Thus, such networks also provide universal nun-linear dis-
criminant functions. More generally, the capability of such networks to approx-
imate general smooth functions allows them to model posterior probabilities of
class membership.

Here we outline a simple proof of the universality property (Jones, 1990; Blum
and Li, 1991). Consider the case of two input variables XI and xz , and a. singlr
output variable y (the extension to larger numbers of input or output variables
is straightforward). We know that, for any given value of XI, the desired function
y(zl, zz) can be approximated to within any given (sum-of-squares) error by 3.
Fourier decomposition in the variable 2 2 , giving rise to terms of the form

?/(XI, ~ z) z C A, (XI) cos(sxz) (4.13)
8

where the coefficients A, are functions of xl . Similarly, the coefficients themseh~s
can be expressed in terms of a Fourier series giving

We can now use the standard trigonometric identity cosacosp = $ cos(a +
0) + 4 cos(a - p) to write this as a linear combination of terms of the form
C O S (Z , I) and cos(zLl) where r , ~ = lxl + 3x2 and = lzl - 3x2. Finally, nre
note that the function cos(z) can be approximated to arbitrary accuracy hqp a
linear combination of threshold step functions. This c a n be seen by making a11
explicit construction, illustrated in Figure 4.11, for a function f (zj in terms of a
piecewise constant function, of the form

4.3: Sigmoidal units

rnear superpo- Figure 4.1 1. Approximation of a continuous function f (z) by a I'
sition of threshold step functions. This forms the basis of a simple proof that a
two-layer network having sigrnoidal hidden units and linear output units can
approximate a continuous function to arbitrary accuracy.

wherr: H (z) is the Heaviside step function. Thus we see that the i%function Y (x ~ , 221

can be expressed as a linear combination of step functions whose argumelrts are
linear combinations of zl and xz. In other words the function y(zl, x z) can be
approximated by a tw+layer network with threshold hidden unik and linear
output units. Finally, we recall that threshold activation functions can be stp-
proximated arbitrarily well by sigmoidal functions, simply by scaling the weights
and biases.

Note that this proof does not indicate whether the network can sirnultane-
011s)y approximate the derivatives of the function, since our approximation in
(4.15) has zero derivative except at discrete points at which the derivative is
'J~(Mned. A proof that twelayer networks having sigrnoidal hidden units can
'imultaneously approximate both a fnnction and its derivatives was given by
IJwnik et a/. (1 990).

As a simple illustration of the capabilities of two-layer networks with sig-
moidal hidden units we consider mappings from a single input s to a single
"'fitput y. In Figure 4.12 we show the result of training a network with five hid-
rfp n units having 'tanh' activation functions given by (4.11). The data sets each
rQnsist of 50 data, points generated by a variety of functions, and the network

a single linear output unit and was trained for 1000 epochs using the BFGS
q'Ja~i-Newton algorithm described in Section 7.1 0. We see that the same network
'"9 generate a wide variety of different functions simply by choosing d a r e n t
values for the weights and biases.

The above proofs were concerned with demonstrating that a network with a

132 4: The Multi-layer Pereeptmn

Figure 4.12. Examples of sets of data poinh (circles) together with the wrre-
sponding functions reprasented by a multi-layer perceptron network which has
been trained using the data. The data sets were generated by sampIing the
following functions: (a) x 2 , (b) sin(2rx) (c) 1x1 which ia continuous but with a
discontinuous first derivative, and (d) the step function 8(x) = sign(z), which
is discontinuous.

sufficiently Iarge number of hidden units couEd approximate a particular map-
ping. White (1990) md Gallant and (1992) considered the conditions
under which a network will actually learn a given mapping from a finite data
set, showing how the number of hidden units must grow as the size of the data
s e t grows.

If we try to approximate a given function h(x) with a network having a finite
number M of hidden units, then there will be a residual error. Jones (3992) and
Barron (1993) have shown that this error decreases as 8 (1 / M) as the number
M of hidden units is increased.

Since we knmv that, with a single hidden Iayer, we can approximate any map-
ping t o arbitrary accuracy we might wonder if there is anything to be gtined
using any other network topology, for instance one having several hidden layes
One possibility is that by using extra layers we might find more efficient approx+
imations in the sense of achieving the same bvel of accuracy with fewer weighs
and biases in total. Very IittIe is currently known about this issue. Hoareter-
later chapters discuss situations in which there are other good reasons to COP-

sider networks with more complex topologies, including networks with severa'
hidden layers, and networks with only partial connectivity between layers.

Weight-space symmetries
a two-layer network having M hidden units, with 'tanhs activation I
given by (4.11), and full connectivity in both layers. If we change the

.,, of of the weights and the bias feeding into a particulw hidden unit,
51=

for a given input pattern, the sign of the activation of the bidden unit

' I
,ill be reversed, since (4.11) is an odd function, This can be compensated by
rhxnging the sign of all of the weights leading out of that hidden unit. Thus,
b,. changhg the signs of a particular group of weights (and a bias), the input-

I '
oEcput mapping function represented by the network is unchanged, and so we
hatre found two different weight vectors whch give rise to the same mapping
function. For M hidden units, there will be M such 'sign-flip' symmetries, and
thrls any given weight vector will be one of a set 2M equivalent weight vectors
(Cben et al., 1993).

Similarly, imagine that we interchange the valum of all of the weights (and
the bias) Ieading into and out of a particular hidden unit with the corresponding
values of the weights (and bias) associated with a different hidden unit. Again,
this clearly leaves the network inpuhu tpu t mapping function unchanged, but
i t corresponds to a different choice of weight vector. For M hidden units, any
given weight vector will have M! equivalent weight vectors associated with this
interchange symmetry, corresponding to the M ! different orderings of the hidden
units (Chen et aL , 1993). The network will therefore have an overall weight-space
symmetry factor of M ! z ~ . For networks with more than two layers of weights, I

the total level of symmetry wiIl be given by the product of such factors, one for I
I

each layer of hidden units.
It turns out that these factor8 account for all of the symmetries in weight

space (except for possible accidental symmetries due to specific choices for the
I

I

might values). Furthermore, the existence of these syrnmetrins is nat a particular I

Property of the 'tanh' function, but applies to a wide range of activation functions
(Sussmann, 1992; Chen et al., 1993; AIbertini and Sontag, 1993; KlirkovA and
Kainen, 1994). In many cases, these symmetries in weight space are of Little
Practical consequence. However, we shall encounter an example in Section 10.6

we need to take them into account.

4 5 Higher-order networks
So far in this chapter we have eonaidered units for which the output is given by
" nO"-Einear activation function acting .on a l inea~. combination of the inputs of
'he form

'" have seen that networks composed of such units can in appnximate
'"' hlnctional mapping to arbitrary accuracy, and therefore constitute a univer-

of parametrized multivariate non-linear mappings. everth he less, there
IS 'tlIl . ' considerable interest in studying other forms of processing unit- Chapter 5 i

I34 4: The Multi-layer Perceptron

Figure 4.13. A onedimensional input space x with decision regions RI (which
is disjoint) and a. A linear discriminant function cannot generate the required
decision boundaries, but a quadratic discriminant y(x), shown by the solid
curve, can. The required decision rule then s i g n s an input z to class Cl if
y(x) > 0 and to cIass Cp otherwise.

for instance is devoted to a study of networks containing units whose activations
depend on the distance of an input vector from the weight vector. Here we con-
sider some extensions of the linear expression in (4.16) which therefore contain
(4.16) as a special case.

As discussed in Chapter 3, a network consisting of a single Iayer of units of
the form (4.16) can only produce decision boundaries which take the form of
piecewise hyperplanes in the input space. Such a network is therefore incapable
of generating decision regions which are concave or which are multiply connected.
Consider the one-dimensional input space x illustrated in Figure 4.13. We wish to
find a discriminant function which will divide the space into the decision regions
RI and Ra as shown. A linear discriminant function is not sufficient since the
region RI is disjoint. However, the required decision boundaries can be
by a quadratic discriminant of the form

provided the weights w2, wl and wo are chosen appropriateIy.
We can generalize this idea to higher orders than just quadratic, and

several input variabIes (Ivakhnenko, 1971; Barron and Barron, 1988). This IeRl

to higher-oder processing units (Glles and Maxwell, 1987; Ghosh and Shi
19925, also known as sigma-pi units (Rumelhart et a!., 1986). For second-order
units the g+enerdization of (4.16) takes the form

n.here the sums run over all inputs, or units, which send connections to unit j.
xs hefore, this sum is then transformed using a non-Iinear activation function to

z, = g(a,). If terms up to degree M are retained, this will be known as an
11th-order unit- Clearly (4.18) includes the conventional linear (firsborder) unit
(4.16) as a special case. The similarity t o the higher-order polynomids discussed
in Section 1.7 is clear. Note that the summations in (4.18) can be constrained
ro dlow for the permutation symmetry of the higher-order terms. For instance,
the term x,,zi, is equivdent to the term s,,x,, and so we need onIy retain one
of these in the summation. The total number of independent parameters in a
higher-order expression such as (4.18) is discussed in Exercises 1.6-1.8.

If we introduce an extra input = +I then, for an Mth-order unit we can
~bsorb all of the terms up to the Mth-order within the Mth-order term. For
instance, if we consider second-order units we can write (4.18) in the equivalent
form

with similar generalizations to higher orders.
We see that there will typically be many more weight parameters in a higher-

order unit than there are in a first-oxder unit. For example, if we consider an
input dimensionaIity of d = 10 then a first-order unit will have 11 weight param-
eters (including the bias), a second-order unit will have 66 independent weights,
and a third-order unit will have 572 independent weights. This explosion in the
number of parameters is the principal difficulty with such higher-order units.
The compensating benefit is that it is possible to arrange for the response of the
unit, to be invariant to various transformations of the input. In Section 8.7.4 it
is shown how a third-order unit can be simultaneously invariant to translations,
"tations and scalings of the input patterns when these are drawn from pixels
in a two-dimensional image. This is achiwed by imposing constraints on the
iv@ights, which also greatly reduce the number of independent parameters, and

makes the use of such units a tractable proposition. Higher-order units
arc generally used only in the first layer of a network, with subsequent layers
$ ~ i n g composed of conventional first-order units.

4-e Projection pursuit regression and other conventional techniques

?tatisticians have developed a variety of techniques for classification and r e p s -
5ion which can he regarded as complementary to the multi-layer perceptron. Here

~ i v e a brief overview of the most prominent of these approaches, and indi-
cate their relation to neural networks. Qne of the most closely related is that of

I

136 4: The Multi-layer Pemptron

projection pursuit mgegression (Friedman and Stuetzle, 1981; Huber, 1985). pot
h single output variable, the projection pursuit regression mapping can be arihep

in the form

which is remarbbly similar to a two-layer feed-forward neuraI network. The pa.
rameters uj and ujo define the projection of the input vector x onto a set
planes labelled by j = 1, . . . , M , as in the multi-layer perceptron. These Proje+
tions are transformed by non-linear 'activation functions' & j and these in turn
are linearly combined to form the output variable y. Determination of the pararrp.
eters in the made1 is done by minimizing a sum-of-squares error function. One
important difference is that each 'hidden unit' in projection pursuit regression
is allowed a different activation function, and these functions are not prescribed
in advance, but are determined from the data as part of the training procedure.

Another difierence is that typically all of the parameters in a neural neb
work are optimized simultaneously, while those in projection pursuit regression
are optimized cyclically in groups. Specifically, training in the projection pur-
suit regression network takes place for one hidden unit at a time, and for each
hidden unit the second-layer weights are optimized fist, followed by the acti-
vation function, followed by the first-layer weights. The process is repeated for
each hidden unit in turn, until a sufficiently small value for the error function is
achieved, or until some other stopping criterion is satisfied. Since the output y in
(4.20) depends linearly on the second-layer parameters, these can be optimized
by linear least-squares techniques, as discussed in Section 3.4. Optimization of
the activation functions q5j represents a probIem in one-dimensional curve-fitting
for which a variety of techniques can be used, such as cubic splines (Press e l
al., 1992). Finally, the optimization of the first-layer weights requires non-linear
techniques of the kind discussed in Chapter 7.

Several generalizations t o more than one output variable are possible (RPJ~Y~
1994) depending on whether the outputs share common basis functions &J and
if not, whether the separate basis functions $,x (where le labels the outputsi
share common projection directions. In terms of representational capabiiit?'.
can regard projection pursuit regression as a generalization of the rn~lti-la!'~
perceptron, in that the activation functions are more flexible. It is therefore "Of

surprising that projection pursuit regression should have the same 'universa1"T
proximation capabilities as multi-layer perceptrons (Dimonis and shahshaham'
1984; Jones, 1987). Projection pursuit regression is compared with multi-la"'
perceptron networks in Hwang e t a!. (1994).

Another framework for non-linear regression is the class of generalized a ddl.

tiwe models (Hastie and Tibshirani, 1990) which take the form

I 4.7: Kolmogorov's theorem 137

rllPrP the d, (-) are nodinear functions and g(.) represents the logistic sigmoid
hliiction (4.10). This is aetually a very restrictive class of models, since it does not
nllow for interactions between the input variables. Thus a function of the form

X ~ Z ? ~ fm example, cannot be modelled. They do, however, have an advantage in
of the interpretation of the trained mode1, since the individual univariate

hnctions #%(-) Can be plotted-
-4, extension of the additive modeIs which allows for interactions is given

bv the technique of multivariate adaptiue r e g ~ s s i o n splines (MARS) (Friedman,
I j ~ ~) for which the mapping function can be written

nhcre the jth basis function is given by a product of some number Kj of on+
dirnensiond spline functions q5jk (Press et ab, 1992) each of which depends on
ons of the input variables s,, where the particular input variable used in each
cnse is governed by a label ~ (k , j j . The basis functions are adaptive in that the
ntrmbcr of factors.K, , the labeb v (k , j), and the knots for the one-dimensional
sprint functions are dl determined from the data. Basis functions are added
incrcmcntally during learning, using the technique of sequentid forward selection
discussed in Section 8.5.3.

-4n alternative framework for learning non-linear multivariate mappings in-
I'Q~WS partitioning the input space into regions, and fitting a different mapping
within each region, In many such algorithms, the partitions are formed from
k!~pr~lanes which are parallel to the input variable axes, as indicated in Fig-
ure -1.14. In the simplest case the output variable is taken to be constant within
:"'h r e~ ion . A common technique is to form a binary partition in which the

cpace is divided into regions, and then each of these is divided in turn,
""0 on. This form of partitioning can then be described by a binary tree
S'F1lcturf;.. in which each I ed represents one of the regions. Successive branches

added to the tree during learning, with the locations of the hyperplanes
b n i r i ~ (let~rrnined by the data. Procedures are often also devised for pruning the
''P 5krIl~t~lre a way of controlling the effective complexity of the model. Two '' he* known algorithms of this kind are eiass$cation and wgwssion trees !y

A R ~) (Breirnan et at., 1984) and ID3 (Quinlan, 1986). A detailed discussion
'Ilesp algorithms would, however, take us too far afieid.

4.7 K ~ I r n a ~ o r w ~ s theorem
-.

"'CR is theorem due to Kolrnogorov (1957) which, although of no direct prac-
t~ r . " I Si~mificance, does have an interesting relation t a neural networks. The t h e

138 4: The Multi-Layer Perceptmn

Figure 4.14. An example of the partitioning of a space by hyperplan= which
are parallel to the wordinate me. Such partitions form the basis of a number
of algorithms for solving classification and regression problems.

rem has its origins at; the end of the nineteenth century when the mathematician
Hilbert compiled a list of 23 unsolved problems as a chdlenge for twentieth cen-
tury mathematicians (Hilbert, 1900). Hilbert's thirteenth problem concerns the
issue of whether functions of several variables can be represented in terms of
superpositions of functions of fewer variables. He conjectured that there exist
continuous functions of three variables which cannot be represented as super-
positions of functions of two variables. The conjecture was disproved by Arnold
(1 957). However, a rnuch more general result was obtained by KoImogorov (1957)
who showed that every continuous function of several variables (fur a closed and
bounded input domain) can be represented as the superposition of a small num-
ber of functions of one variabIe. Improved versions of Kolmogorov9s theorem have
been given by Sprecher (19651, Kahane (1975) and Lorentz (1976). In neural net-
work terms this theorem says that any continuous mapping y(x) from d input
variables z,: to an output variable y can be represented exactly by a three-layer
neural network having d(2d + 1) units in the first hidden layer and (2d + 1) units
in the second hidden layer. The network topology is illustrated, for the case of
a single output, in Figure 4.15. Each unit in the first hidden layer computes 8

function of one of the input variables q given by hj(zi) where j = 1,. , . ,2d + 1
and the hj are strictly monotonic functions. The activation of the j t h unit in
the second hidden layer is given by

Xl
inputs

Figuse 4.15. Network topology to implement Kolmopmv's theorem.

where 0 < Ai < 1 are constants. The output y of the network is then given by
I

where the function g is real and continuous. Note that the function g depends
on the particular function y(x) which is t o be represented, while the functions 1
hj do not. This expression can be extended to a, network with more that one
output unit simply by modifying (4.24) to give

that the theorem only guarantees the existence of a suitable network. No x-
examples of functions hj or g are known, and there is no known constructive

technique for finding them.
While Kolmogorov% theorem is remarkable, its relevance to practical neural

cnm~uting is at best limited (Girosi and Poggio, 1989; KurkovA, 1991; KcrkovB,
l992). There are two reasons for this. First, the functions h, are far from being

Indeed, it has been shown that if the functions hj are required to be
"00th then the theorem breaks down (Vitushkin, 1954). The presence of non-
"00th functions in a network wou!d l e d to problems of extreme sensitivity

140 4: The EA2LIti-lapes Perceptmn

to the input variables. Smoothness of the network mapping is an importa
property in connection with the generalization performance of a network, a, i,
discussed in greater detail in Section 9.2. The second reason is that the function
g depends on the particular function y(x) which we wish to represent. This is
the converse of the situation which we generally encounter with neural networks
UsuaIIy, we consider fixed actintion functions, and then adjust the number of

hidden units, and the d u e s of the weights and biases, to give a sufficiemtttly close
representation of the desired mapping. In Kolmogorw's theorem the number
hidden units is fixed, while the activation functions depend on the mapping. 1,
general, if we are trying to represent an arbitrary continuous function then we
cannot hope to do this exactly with a finite number of fixed activation functions
since the finite number of adjustable parmeters represents a finite number
degrees of freedom, and a general continuous function has effectively infinite]?
many degrees of freedom.

4.8 Error back-propagation
So far in this chapter we have concentrated on the representational capabilities of
multi-layer networks. We next consider how such a network can Iearn a suitable
mapping from a given data set;. As in previous chapters, learning will he based on
the definition of a suitable error function, wluch is then minimized with respect
to the wights and biases in the network.

Consider first the case of networks of threshold units. The final layer of
weights in the network can be regard& as a perceptron with inputs given by
the outputs of the last layer of hidden units. These weights could therefore be
chosen using the perceptron learning rule introduced in Chapter 3. Such an ap-
proach cannot, however, be used to determine the weights in earlier layers of
the network. Although such layers could in principle be regarded as being like
single-layer perceptrons, we have na procedure for assigning target values to their
outputs, and so the perceptron procedure cannot be applied. This is known
the credit assignment pmblem. If an output unit produces an incorrect response
when the network is presented with an input vector we have no way of determh-
ing which of the hidden units shouId be regarded as responsible for generating
the error, so there is no way of determining which weights to adjust or by hornr
much.

The solution to this credit assignment problem is relatively sirnph. If tKfe

consider a network with differentiable activation functions, then the activatiofls
of the output units become differentiable functions of both the input variables.
and of the weights and biases. If we define an error function, such as the ~ u m - 0 ~
squares error introduced in Chapter 1, which is a differentiable function of thp
network outputs, then this error is itself a differentiable function of the rveiaht5.
We can therefore evaluate the derivatives of the error with respect to the ~ e i d ~ ~ ~ ~
and these derivatives can then be used to find weight values which minimize the
error function, by using either gradient descent or one of the more
optimization methods discussed in Chapter 7. The algorithm for evaluating tk
derivatives of the error function is known as back-pmpa9ation since, as we sha

4.8: Emr back-propagation 141

see3 it to a propagation of errors backwards through the network.
The te&nique of back-propagation was popularized in a paper by Rumelhart,
Hinton and Williams (1986). However, similar ideas had been developed earlier

bT.
,umber of researchers including Werbos (1914) and Parker (1985).

' ~t should be noted that the term back-propagation is used in the neural com-
puting literature to mean a variety of different things. For instance, the multi-

perceptron architecture is sometimes called a back-propagation network.
*he term back-propagation is also used to describe the training of a muIti-layer
perceptron using gradient descent applied to a sum-of-squares error function. In
order to clarify the terminology it is useful to consider the nature of the training

more carefully. Most training algorithms involve an iterative procedure
for minimization of an error function, with adjustments t o the weights being
Inads in a sequence of steps. At each such step we can distinguish between
~0 distinct stages. In the first stage, the derivatives of the error function with

to the weights must be evaluated. As we shall see, the important con-
tribution of the back-propagation technique is in providing a computationally
&cient method for evaluating such derivatives. Since it is at this stage that
errors are propagated backwards through the network, we shall use the term
bmk-propagation specifically to describe the evaluation of derivatives. In the
second stage, the derivatives are then used to compute the adjustments; to be
made to the weights. The simplest such technique, and the one originally con-
sidered by Rumelhart et a!. (19861, involves gradient descent. It is important to
recognize that the two stages are distinct. Thus, She first stage process, narne1.y
th? propagation of errors backwards through the network in order to evaluate
d~rivatives, can be appIied to many other kinds of network and not just the
multi-layer perceptron. I t can also be applied to error functions other that just
lhe simple sum-of-squares, and to the evaluation of other derivatives such as the
Jarobian and Hessian matrices, as we shall see later in this chapter. Similarly, the
second stage of weight adjustment using the calculated derivatives can be tack-
led using a variety of optimization schemes (discussed at length in Chapter 71,

of which are substantially more powerful than simple gradient descent.

48.1 Evaluation of error function de&atives

now derive the back-propagation algorithm for a general network having
*bitrary feed-forward topology, and arbitrary differentiable non-linear activation
functions, for the case of an arbitrary differentiable error function. 'She resulting

will then be illustrated using a simple iayered network structure having
a single layer of sigmoidal hidden units and a sum-of-squares error.
. 1" a general feed-forward network, each unit computes a weighted sum of its
'"Puts of the form

"re zp i s the activation of a unit, or input, which sends a connection to unit

142 4: The Multi-layu Perceptron I
j, and w,i is the weight associated with that connection. The summation runs
over a11 units which send connections So unit j. In Section 4.1 we showed that
biases can be included in this sum by introducing an extra unit, or input, with
activation fixed at ++I. We therefore do not need to deal with biases eqlicitkym
The sum in (4.26) is transformed by a non-linear activation function g{.} to give
the activation zj of unit j in the form

Note that one or more of the variables zi in the sum in (4.26) could be an input,
in which case we shall denote it by xi. Similwly, tthe unit j in (4.27) could he an
output unit, in which case we denote its activation by yk.

As before, we shall seek to determine suitable values for the weights in the
network by minimization of an appropriate error function. Here we shall consider
error functions which cm be written as a sum, over a11 patterns in the training
set, of an error defined for each pattern separately

where n labels the patterns. Nearly all error functions of practical interest take
this form, for reasons which are explained in Chapter 6. We shall also suppose
that the error En can be expressed as a differentiable function of the network
output wriabIes so that

En = En(yl , . . . , y,). (4.29) 1
Our goal is to find a procedure for evaluating the derivatives of the error function
E with respect to the weighi;~ and biases in the network. Using (4.28) we call

express these derivatives as sums over the training set patterns of the derivatives
for each pattern separately. From ~ Q W on we shall therefore consider one pattern
at a time.

For each pattern we shall suppose that we have supplied the corresponding
input vector t o the network and calcuIated the activat.ions of all of the hidden
and output units in the network by successive application of (4.26) and (4.2:).
This process is often caIled forward ppropagation since it can be regarded as a
forward flow of information through the network.

NOW consider the evaluation of the derivative of En with respect to somP
I'

weight wj i . The outputs of the various units will depend on the i n P t

pattern n. However, in order to keep the notation uncIuttered, we shall ornit
the superscript, n from the input and activation variables. First we note that
En depends on t h e weight wj i only via the summed input a, to unit j. We can '
therefore apply the chain rule for ~ar t i a l derivatives to give

4.8: Error back-propagation 143

\t:e now introduce a useful notation 1 1 !
l 1

&re the b's are often referred to as e m r s for reasons we shall see shortly. Using
(4.26) we can write

~ubst~ituting (4.31) and (4.32) into (4.30) we then obtain ! I

Iiote that this has the same general form as obtained for single-layer networks
in Section 3.4. Equation (4.33) tells us that the required derivative is obtained I

simply by multiplying t h e value of 6 for the unit at tthe output end of the weight
by the value of z for the unit at the input end of the weight (where 3 = 1 in
the case of a bias). Thus, in order to evduate the derivatives, we need only to

I

calculate the value of hj for each hidden and output unit in the network, and 1
then apply (4.33).

For the output units the evaluation of Sk is straightforward. From the delini-
rion (4.31) we have

"here we have used (4.27) aith z k denoted by yx. In order to evaluate (4.34) we
qhstitute appropriate expressions for g'(a) and aEn/8y. This will be illustrated
l ~ i t h a simple example shortly.
TO emlnate the 6's for hidden units we again make use of the chain rule for

Partial derivatives,

~ C r e ills sum runs over all units k to which unit j sends connections. The
'rPan~ernent of units and weights is illustrated in Figure 4.16. Note that t h e
''nits labelled k coulrl include other hidden ~lni ts and/or output units. In writing

I I

Figure 4.16. Illustration of the calculation of 6j for hidden unit j by back-
propagation of the 6's from those units k to which unit j sends connections.

down (4.35) we are making use of the fact that variations in aj give rise to
variations in the error function only through variations in the variables ak. If we
now substitute the definition of 6 given by (4.31) into (4.355, and make use of
(4.26) and (4.27), we obtain the following baclo-pmpagetioa formula

which tells us that the value of 6 for a particular hidden unit can be obtained by
propagating the 6's backwards from units higher up in the network, as illustrated
in Figure 4.16. Since we already know the d u e s of the 6's for the output units,
it follows that by recursively applying (4.36) we can evaluate the 6% for all of
the hidden units in a feed-forward network, regardless of its topology.

We can summarize the back-propagation procedure for evaluating the deriva-
tives of the error En with respect to the weights in four steps:

1. Apply an input vector xn to the network and forward propagate through
the network using (4.26) and (4.27) t o find the activations of dl the hidden
and output units.

2. Evaluate the 6k for all the output units using (4.34).
3. Bxk-propagate the 6's using (4.36) t o obtain dj for each hidden unit in

the network.
4 . USE (4.33) to evaluate the required derivatives.

The derivative of the totaJ error E can then be obtained by repeating the aboi*
steps for each pattern in the training set, and then summing over d l patterns:

4.8: Emr back-pmpagation 145

the above derivation we have implicitly assumed that each hidden or output
,,,it in the network has the same activation function g(.) . The derivation is
,,.c,ily generalized, however, to allow different units to have individual activation
hmctions, simply by keeping track of which form of g(.) goes with which unit.

4.8.2 A simple erample

~ h c above derivation of the back-propag at ion procedure d l m e d for general
forms for the error function, the activation functions and the nefmork topol-
,gy. In order to illustrate the application of this algorithm, we shall consider a
particular example. This is chosen both for its simplicity and for its practical
importafi~e, since many applications of neural networks reported in, the litera-
ture make use of this type of network. Specifically, we shall consider a two-layer
network of the form illustrated in 4.1, together with a sum-of-squares
error. The output units have linear activation functions while the hidden units
have logistic sigmoid activation functions given by (4.10), and repeated here:

A useful feature of this function is that its derivative can be expressed in a
particularly simple form:

In a software implementation of the network algorithm, (4.39) represents a con-
wnient property since the derivative of the activation can be obtained efficiently
from the activation itself using two arithmetic operations.

For the standard sum-of-squares error function, the error for pattern n is
Riven by

 here pk is the response of output unit k, and t k is the corresponding target, for
" Particular input pattern xn.

Using the expressions derived above for back-propagation in a general nee-
work, together with (4.39) and (4.40), we obtain the following results. For the
n " ~ P ~ t units, the 6's are given by

146 4: The MultGlayer Perceptmn

while for units in the hidden layer the 6's are found using

where the sum runs over all output units. The derivatives with respect to the
fist-layer and second-layer weights are then given by

4.8: Error back-propagation 147

the eypression for the error function and wrote down explicit formulae for
deri&ives and then evaluated them numerically by forward propagation, we

q.o,ld to evaluate W such terms (one for each weight or bias) each requiring
o j ~ ~ w) operations. Thus, the total computational effort required to evaluate dl
rIIP derivatives would scale as O(WZ). By comparison, back-propagation allows
rhc derivatives to he evaluated in O (W) operations. This follows from the fact
I,hpt both the forward and the backward propagation phases are O(W), and the
,v,juation of the derivative using (4.33) also requires O (W) operatiom. Thus
back-propagati~n has reduced the computational complexity from O(W7 ta
#(137) for each input vector. Since the training of MLP networks, even using
back-propagation, can be very time consuming, this gain in eficiency is cruciaI.
For a total of N training patterns, the number of computational steps required

evaluate the complete error function for the whole data set is N times larger
lhan for one pattern.

The practicd importance of the 6 (W) scaling of back-propagation is anal-
ogous in some respects to that of the fast Fourier transform (FFT) algorithm
(Brigham, 1974; Press et al., 1992) which reduces the computational complex-
ity of evaluating an L-point Fourier trmsform from O(L2) to O(L log2 E). The
discovery of this algorithm led to the widespread use of Fourier transforms in a
large range of practical applications.

So Ear we have discussed the evaluation of the derivatives of the error function
with respect to the weights and biases in the network. In order to turn thls into
a learning algorithm we need some method for updating the weights based on
these derivatives. In Chapter 7 we discuss several such parameter optimization
strategies in some detail. For the moment, we consider the fixed-step gradient
descent technique introduced in Section 3.4. We have the choice of updating the
weights either after presentation of each pattern (on-line learning) or after first
summing the derivatives aver d l the patterns in the training set (batch learning).
In the former case the weights in the first layer are updated using

with analogous expressions for the second-layer weights. I "here F << 1 is a small qumtity. In a software simulation, the acuracv of the
1

Awji = - 7) b . j ~ ~ '4'441

while in the csase of batch learning the first-layer weights are updated using

4.8.3 Efidency of back-propagation

One of the most important aspects of back-propagation is its computational
efficiency. To understand this, let us examine how the number of computer QP
erations required to evaluate the derivatives of the error function scales with the
size of the network. Let W be the totaI number of weights and biases. Then a

single evaluation of the error function (for a given input pattern) would requip
O(W) operations, for suffLciently large W. This follows from the fad that, except
for a network with very sparse connections, the number of weights is typicaIll;
much greater than the number of units. Thus, the bulk of the computational
effort in forward propagation is concerned with evaluating the sums in (4.2c
with the evaluation of the activation functions representing a small merhea

2-

An alternative approach to back-propagation for computing the derivatives of
the error function is to use finite differences. This can be done by perturbing

Each term in the sum in (4.26) requires one multiplication and one additio
leading to an overall computational cost which is O(KV).

For W weights in total there are W such derivatives to evaluate. If we

each weight in turn, and approximating the derivatives by the expression

aPP~oximat.tion to the derivatives can be improved by making E smaller, until
numerical roundoff problems arise. The main problem with this approach is that
the highly desirable B(W) scaling has been lost. Each forward propagation r e
Wires D (W) steps, and there are W weights in the network each of which must
he perturbed individually, so that the overall scaling is 0(w2). H w e r , finite
differences play an impodant role in practice, since a numerical comparison of
the derivatives calculated by back-propagation with those obtained using finite
differences provides a very powerful check on the correctness of any software
m~lmen ta t ion of the back-propagation algorithm.

The accuracy of the finite differences method can be improved significantly
h~ using symmetrical cenfral diflerences of the form

148 4: The MuEti-layer Perceptmn I
In this ease the O(E) corrections cancel, as is easily verified by Taylor eaQ-
sion on the right-hand side of (4.471, and so the residual corrections are o($)
The number of computational steps is, however, roughly doubled Compared Nitd
(4.46').

I
. ,

We have seen that the derivatives of an error Function with respect to 1
weights in a network can be expressed efficiently through the relation

Instead of using the technique of central differences to evaluate the derivatives:
d l P / a w j i directly, we can use it to estimate aEn/daj since

dEn En (a, f E) - P (a j - E) -=
aaj 2~ + 0(f2)

We can then make use of (4.48) to evaluate the required derivatives. Because the
derivatives with respect to the weighb are found from (4.48) this approach is
still relatively efficient. Back-propagation requires one forward and one backward
propagation through the network, each taking O(W) steps, in order to evaluate
all of the aE/aai. By comparison, (4.49) requires 2M forward propagations,
where M is the number of hidden and output nodes. The overall scaling is there-
fore proportionaI to MW, which is typicaIly much less than the O(W2) scaling
of (4.471, but more than the O(W) scaling of back-propagation. This technique
is called node pwtu~bation (Jabri and Flower, 1991), and is closely related to the
madeline 111 learning rule (Widrow and Lehr, 1990).

In a software implementation, derivatives should be evaluated using back-
propagation, since this gives the greatest accuracy and numerical efficiency. How-
ever, the results should be compared with numerical differentiation using (4.47)
for a few test cases in order to check the correctness of the implementation.

4.9 The Jacobian matrix

We have seen how the derivatives of an error function with respect tu clra wzighCs
cam be obtained by the propagation of errors backwards through the network.
The technique of back-propagation can also be applied to the caIculation of
other derivatives. Here we consider the evaluation of the J m b i a n matrix, whose
elements are given by the derivatives of the network outputs with respect to the
inputs

where each such derivative is evaluated with a11 other inputs held iixed. Note
that the term Jacobian matrix is also sometimes used to describe the derivatives

4.9: The Jacobian m a t d 149

In general, the network mapping represented by a trained neural network will
he non- l ine~ , md so the elements of the Jacobian matrix will not be constants
but will depend on the particular input vector used. Thus (4.51) is valid only for

perturbations of the inputs, and the Jacobian itself must be r ~ v d u a t e d
for each new input vector.

The Jacobian matrix can be evaIuated using a back-propagation procedure
which is very similar to the one derived earlier for evaluating the derivatives of
an error function with respect to the weights. We start by writing the ekrnent
Jki in the form ' 1

I I

error function with r ~ s p e d t o the network weights, as calculated earlier
of
D5ing back-propagation. The Jacobian matrix pmvides a measure of the local

=itivity of the outputs to changes in each of the input variables, and is useful sen-
in

conterts in the application of neural networks. For instance, if there
known errors associated with the input variables, then the Jacobian matrix lue

Rllan~ these to be propagated through the trained network in order to estimate
their to the errors at the outputs. Thus, we have

where we have made use of (4.261, The sum in (4.52) runs over dl units j to
which the input unit i sends connections (for example, over dl units in the first
hidden layer in the layered topology considered earlier). We now write d m a
recursive bad- propagation formula to determine the derivatives dy k/aaj

I

I

where the sum tuns m r all units I to which unit j sends connections. Again, we
have made use of (4.26) and (4.27). This back-propag~tion starts at the output
"its for which, using (4.27), we have

4: The Mulglayer Perceptma 4.10: The Hessian matrix

where dxxt is the Kronecker delta symbol, and equals 1 if k = k' and 0 othenviSp,
We can therefore summarize the procedure lor evaluating the Jacobian mat%
as foliom. Apply the input vector corresponding to the point in input spwe
which the Jacobian matrix is to be found, and forward propagate in the usual
way to obtain the axtivations of all of the hidden and output units in the nets*
Next, for each row k of the Jacobian matrix, corresponding to the output unit I;,
back-propagate using the recursive relation (4.53), starting with (4.54), for a11 of
the hidden units in the network. Finally, use (4.52) to do the baek-propagation
to the inputs. The second and third steps are then repeated for each value of 4
corresponding to each row of the Jacobian matrix.

The Jacobian can also be evaluated using an alternative fanuad propagation
fomalism which can be derived in an analogous way to the back-propagation
approach given here (Exercise 4.6). Again, the implementation of such algorithm
can be checked by using numerical differentiation in the form

4.10 The Hessian matrix
We have a h m how the technique of back-propagation can be used to obtain the
first derivatives of an error function with respect to the weights in the network.
Back-propagation can also be used to evaluate the second derivatives of the error.
given by

These derivatives form the elements of the Hessian matrix, which plays an im-
portant role in many aspects of neural computing, including the following:

1. Several nowlinear optimization algorithms used for training neural net-
works are based on considerations of the second-order properties of tile
error surface, which are controlled by the Hessian matrix (Chapter 7) .

2. The Hessian forms the basis of a fast procedure for retraining a feed-
forward network following a small change in the training data (Bishop.
1991a).

3. The inverse of the Hessian has been used to identie the least signifi-
cant weights in a network as part of network 'pruning' algorithms (SK-
tion 9.5.3).

4. The inverse of the Hessian can also he used to assign error bars to the
predictions made by a trained network (Section 10.2).

..itable values for regularization parameters can be determined from the
3. "

,igendues of the Hessian (Section 10.4).
6, The determinant of the Hessian can be used to compare the relative prob-

abilities of different network models (Section 10.6).

For many of these app l i ca t i~~s , W~OUS approximation schemes have been
U F P ~ to evaluate the Hessian matrix. However, the Hessian can also be calculated
..., ,-ti v using an extension of the back-propagation technique for evaluating the
#,.-.&.. .
hr5t derivatives of the error function.

An important consideration for many applications of the Hessian is the effi-
ciency with which it can be evaluated- If there are W parameters (weights and
1 4 ~ ~ ~) in the network then the Hessian matrix has dimensions W x W and
,, the computational effort needed to evaluate the Hessian must scale at least
like 0(W2) for eaeh pattern in the data set. As we shall see, there are efficient

for evaluating the Hessian whose ~ d i n g is indeed O(W2).

1.10.1 Diagonal appro~mation

Some nf the applications for the Hessian matrix discussed above require the
inverse of the Hessian, rather than the Hessian itself. For this reason there has
been some interest in using a diagonal approximation to the Hessian, since its
inverge is trivial to evaluate. We again shall assume, as is generally the case, that
the error hnction consists of a sum of terms, one for each pattern in the data
set, so that E = C, En. The Hessian can then be obtained by considering one
pattern at a time, and then summing the results over all patterns. From (4.26)
the diagonal elements of the Hessian, for pattern n, can be written

Uring (4.26) and (4.27). the second derimtives on the right-hand side of (4.57)
can be found recursiveIy using the chain rule of differentid calculus, to give a -

hwk-propagation equation of the form

f we now
Becker ar

neglect off-diagonal elements in the second derivative terms we obtain
rd Le Cun, 1989; Le Cun et al., 1990)

Due to the neglect of off-diagonal terms on the rightrhand side of (4.591, this
"PProach only gives an approximation to the diagonat terms of the Hessian.

I54 4: T h e Multi-lager Perceptrota I
Section 7.10. I
4.10.4 Finite diflerences I
As with fi& derivatives of the error function, we can find the second derirRt.

It'% by using finite differences, with accuracy limited by the numerical precision
our computer. If we perturb each possible pair of weights in turn, we obtain at

h a i n , by using a symmetrical central differences formulation, we ensure that
the residud errors are CJ(e2) rather than O (E) . Since there are W 2 elementS
in the Hessian matrix, and since the evaluation of each element requires four
fornard propagations each needing O(W) operations (per pattern), we see that
this approach will require O(W 3) operations to evaIuate the complete Hessian.
It therefore hm very poor scaling properties, although in practice it is very useful
as a check on t h e software implementation of back-propagation methods.

A more efficient version of numerical differentiation can be found by apply
ing central. differences to the first derivatives of the error function, which are
themsejves calculated using back-propagation. This gives

Since there are now only W weights to be perturbed, md since the gradienb
can be evaluated in O(W) steps, we see that this method gives the Hessian in
e7(W2) operations.

4.10.5 Exact evaluation of the Hessian I
So far we haw considered various approximation schemes for evaluating the He+
sian matrix. We now describe an algorithm for evaluating the Hessian exactl~,
which is valid for a network of arbitrary feed-fo-d topology, of the kind il-
lustrated schematically in Figure 4.3 (Bishop, 1991a, 1992). The algorithm is
based on an extension of the technique of back-propagation used to evaluate
first derivative, and shares many of its desirable features including cornput,n-
tional efficiency. It can be applied to any differentiable error function which can
be expressed as a function of the network outputs, and to networks having
bitrary differentiable activation functions. The number of computational step'
needed to evaluate the Hessian scales like C3(W2). Similar algorithms have also
been considered by Buntine and Weigend (1993). As before, we shall consider
one pattern at a time. The complete Hessian is then obtained by summing over
all patterns.

4.1 0: The Hessian mat& 155

con the general expression (4.33) for the derivative of the error function
resPPct to an arbitrary weight wir-, which we reproduce here for convenience

%+it

DifPredi;lting this with respect to some other weight wJi we obtain

,ilere we have used (4.26). Here we have assumed that the weight ~ u j i does not
on any forward propagation path connecting unit 1 to the outputs of the

netl~ork. We shall return to this point shortly.
?laking use of (4.691, together with the relation zk = g(ak), we can write

(4.70) in the form

where we have defined the quantities

The quantities (h k i) can be evaluated by forward propagation as follows.
Issinr: t,he chain rule for partial derivatives we have

" 'h~re :,he sum runs over all units r which send connections to unit k. In fact,
r"ntrjbutions only arise from units which lie on paths connecting unit j to unit
I-. From 14-26] and (4.27) we then obtain the forward propagation equation

'"I' initial conditions for mlua t ing the {ha j j follow from the definition (4.72).
and can he stat& follows. For each unit j in the network, (except for input

for which the corresponding { h k i) are not required), set h j j = 1 and set

156 4: The Multi-loyw Perceptrun

hkj = 0 for all units k # j which do not lie on any forward propagation
starting from unit j. The remaining elements of h k j can then be found by fomW
propagation using (4.75).

SimiIarly, we can derive a back-propagation equation which allows the { b
11 S to be evaluated. We have already seen that the quantities 61 can be found by

back-propagation

Substituting this into the definition of bsj in (4.73) we obtain 1

which gives

bl) = gt'(a~)hrj x w.16. * g'(ar) x waib, (4.78)

where the sums run over all units 5 to which unit I sends connections. Note that,
in a software implementation, the first summation in (4.78) will: already have
been computed in evaluating the { b E) in (4.76).

There is one subtlety which needs to be considered. The derivative 8/daj
which appears in (4.77) arose from the derivative CJ/dwja in (4.70). This transfor-
mation, from W j i to aj, is valid provided wJ, does not appear explicitly within t,he
brackets on the sight-hand side of (4.77). In other words, the weight wji should
not lie on any of the forward-propagation paths from unit 1 to the outputs of the
network, since these are also the paths used to evaluate (5t by back-propagation.
In practice the problem is easily avoided as follows. If w,, does occur in the
sequence of back-propagations needed to evaluate ar, then we simply consider
instead the diagonally opposite element of the Hessian matrix for which this
problem will not arise (since the network has a feed-forward topology). We then
make use of the fact that the Hessian is a symmetric matrix.

The initial conditions for the back-propagation in (4.78) follow from (4.72)
and (4.731, together with the initial conditions (4.34) for the 6's, to give

whem we have defined

4.10: The Hessiam m a t d 157

 hi^ dgorithm represents a straightforward extension of the usual forward
uld backward propagation procedures used to find the first derivatives of the

function. We can summarize the algorithm in five steps:
1. Evaluate the activations of all of the hidden and output units, for a given

input pattern, by using the usual forward propagation equations. Similarly,
ompute the initial conditions for the hkj and forward propagate through
the n e ~ o r k using (4.75) to find the remaining non-zero elements of hy .

2. Evaluate Sk for the output units in the usud way. Similarly, evaluate the
Hk for dl the output units using (4.80).

3. Use the standard back-propagation equations to find bj for all hidden units
in the network. Similarly, back-propagate to find the { b l j) by using (4.78)
with initid conditions given by (4.79).

4. Evaluate the elements of the Hessian for this input pattern using (4.71).
5 . Repeat the above steps for each pattern in the training set, and then sum

to obtain the full Hessian.

In a practical impIement~tion, we substitute appropriate expressions for the
error function and the activation functions. For the sum-of-squares error function
and linear output units, for example, we have

where dkk' is the Kronecker delta symbol.

4.10.6 Exact Hessian for two-layer network

As an illustration of the above algorithm, we consider the specific case of a Iayered
network having two layers of weights, We can then use the results obtained above
to write down explicit expressions for the elements of the Hessian matrix. We
shdl use indices i and it to denote inputs, indices j and j' to denoted units in the
hidden layer, and indices k and k' to denote outputs. Using the previous results,
the Hessian matrix for this network can then be considered in three separate
blocks as follows.

1. Both weights in the second layer:

2. Both weights in the first layer:

158 4: The Multi-layer Perceptmn I
3. Om weight in each layer:

If one or both of the weights is a bias term, then the corresponding exprepsj
axe obtained simply by setting the appropriate activation(s) to 1.

4.10.7 Faat m.ultiplication by the Hessian
In some applications of the Hessian, the quantity of interest is not the Hes:
matrix H itself, but the product of H with some vector v. We have seen that
evaluation of the Hessian takes O(W2) operations, and it also requires stor
which is U(W2) . The vector Y ~ H which we wish to calcuIate itself onIy
W elements, so instead of computing the Hessian a s an intermediate step,
can instead try to find an efficient approach to evaluating V ~ H directly, which
requires only O(W) operations.

We first note that

ULIC

age
has
we

where V demtes the gradient operator in weight space. We can then estim
the right-hand side of (4.85) using finite differences to give

Thus, the quantity vTH can be found by forward propagating first with the
original weights, and then with the weights perturbed by the small vector N-

This procedure therefore takes O(W) operations. It was used by Le Cun et a/.
(1993) as part of a technique for on-line estimation of the learning rate parameter
in gradient descent.

Note that the residual error in (4.86) can again be reduced from 6 (~) to
6 (f 2) by using central differences of the form

which again scales as OIW).
The problem with a finite-difference approach is one of numerical inaccu-

racies. This can be resolved by adopting an analytic approach (M~lller, 1993a:
Pearlmutter, 1994). Suppose we write down standard forward-propagation and
back-propagation equations for the evaluation of PE. We can then apply (4.851
to these equations to give a set of forward-propagation and b a ~ k - ~ r o ~ a g a t i o n 1
equations for the evalnation of vTH. This corresponds to acting on the original
forward-propagation and back-propagation eq r~ at ions with a differential op~ra tor

1

4.10: Thdeseiudan matrix 159

.TV. Pearlmutter (1994) used the notation R{-} to denote the operator vTv
shdl follow this notation. The analysis is straightforward, and makes use

of the usud rules of differential calculus, together with the result

The technique is best illustrated with a aimpb example, and again we choose
, two-layer network with Iinear output units and a sum-of-squares error function.
.AS before, we consider the contribution t o the error function from one pattern in
the data set. The required vector is then obtained as usual by summing wer the
contribatiom from each of the patterns separately. For the two-layer network,
the forward-propagation equations are given by

We now act on these equations using the R{.) operator to obtain a set of forward
propagation equations in the form

where vji is the element of the vector v which corresponds to the weight w,i.
Qumtit ie of the form R{zj), R { a j) and are to be regarded as new
l'ariables whose values are found using the above equations.

Since we are considering a sum-of-squares error function, we have the follow-
 in^ standard back-propagation expressions:

160 4: The Mabti-layer Perceptrom I
Again we act on these equations with the R(.) operator to obtain a set of b a k
propagation equations in the form

Finally, we have the usual equations for the first derivatives of the error I

and acting on these with the R{.) operator we obtain expressions for the elements
of the vector vTH

The implementation of this algorithm involves the introduction of additional
variables ~ (a ~ } , R{q} and R(4j far the hidden units, and R(61) md ~ { y i !
for the output units. For each input pattern, the values of these quantities can
be found using the above results, and the elements of vTH we then given by
(4.101) and (4.102). An eIegant aspect of this technique is that the structure of
the equations for evaluating vT13 mirror closely those for standard forward and
backward propagation, and so software implementation is straightforward.

If desired, the technique can be used to evaluate the full Hessian matrix b?'
choosing the vector v to be given successively by a series of unit vectors of the
form (0,0,. . . , I , . . . ,0) ewh of which picks out one column of the Hessian. This
leads to a formalism which is analytically equivalent to the back-propagati~~l
procedure of Bishop (1992), as de~cribed in Section 4.10.5, though with some I
loss of efficiency in a software implementation due to redundant calculations.

I

Exercises

d.l
In section 4.4 we showed that, for networks with 'tanh' hidden unit acti-

vatio: functions, the network mapping is invariant if all of the weights and
the bas feeding intc and out of a unit have their signs changed. Demon-
strfittt. the corrwonding symmetry for hidden units with logistic sigmoida1
actisation hnc t ions.

4 . ~ (*) Cc~sider a ~ ~ o n d a r d e s network unit of the form (4.19). Use the sym-
m e t r properties of this term, together with the results of Exercises 1.7
and 1.8, to find an expression for the number of independent weight p&
ramrers and show that this is the same result as that obtained by applying
smetry consi.derations to the equivaIent form (4.18).

4.3 (k) Sh?w, for a f d -forward network with 'tanh' hidden unit activation func-
t i o n ~ and a sum-of-squares error function, that the origin in weight space
is a, rationary point of the error function.

4,4 (+) Ccs~sider a la-red network with d inputs, M hidden units and c output
unib Write dmrsl an expression for the tot a1 number of weights and biases
in t h ~ network. Consider the derivatives of the error function with respect
to th: weights for one input pattern only. Using the fact that these deriva-
tives are given equations of the form 3En/&kj = Skz,, write down an
exprasion for the nt~rnber of independent derivatives.

4.5 (*) Cc~sider a l&,-e-ered network having second-order units of the form (4.19)
in tt.5 first la~pr and conventionaE units in the remaining layers. Derive
a b ~ l - p r o p a g a t i o ~ formalism for evaluating the derivatives of the error
func;:on with respect to any weight or bias in the network. Extend the
resu! to general ,Vth-order units in the first layer.

4.6 (*) In Section 4,p. a formalism wa developed for evaluating the Jacobian
rnatrx by a process of back-propagation. Derive an alternative formalism
for c*taining the Jacobian matrix using fornard propagation equations.

4.7 (*) Gcmider a two-layer network having 20 inputs, 10 hidden units, and 5
outp.:ts, togetier with a training set of 2000 patterns. Calculate roughly
how sng it w q ~ t d t a k e to perform one evaluation of the Hessian matrix
usin: (EL) ceentnr cifferences based on direct error function evaluations; (b)
centrll d i f f e t e ~ c ~ s based on grdient evaluations using back-propagation;
(c) t-5 analyti.: =pressions given in (4.821, (4.83) and (4.84). Assume that
the ~ r k ~ t a t i o n perform 5 x lo7 floating point operations per second,
and -iat the tine +,&en to evaluate an activation function or its derivatives
can -:P neglectuf .

4.8 (*) Vcify the ikntiw (4.65) by pre- and post-multiplying both sides hy
A t3C.

4-9 (*) Erend the ~-ression (4.63) for the outer product approximation of the
Hcscln t o t . h ~ c a s e of c z I output units. Hence derive a recursive ex-
pres-iln analo!cr~s to (4.64) for incrementing the number N of patterns,
and : similar zrpression for incrementing the number c of outputs. Use
thev results, ether with the identity (4 .65) , to find sequential update

162 4: The Multi-layer Perceptron

expressions analogous (4.66) for finding the inverse of the Hessian by in-
crementally including both extra patterns and extra outputs.

4.10 (**) Verify that the results (4.82), (4.83) and (4.84) for the Hessian ma-
trix of a h e l a y e r network follow from the general expressions for ~ 4 .
culating the Hessian matrix for a network of arbitrary topology given in
Section 4.10.5.

4.11 (* *.) Derive the results (4.821, (4.83) and (4.84) for the exact evaIuation of
the Hessian matrix for a two-Iayer network by direct differentiation of the
forward-propagation and back-propagation equations.

4.12 (* * *) Write a software implementation of the forward and backward prop
agatjon equations for a twelayer network with 'tanh' hidden unit activation
function and linear output units. Generate a data set of random input and
target vectors, and set the network weights to random values. For the cmp
of a sum-of-squares error function, evaluate the derivatives of the error
with repect to the weights and biases in the network by using the ten-

tral differences expression (4.47). Compare the results with those obtained
using the back-propagation algorithm. Experiment with different values of
E , and show numerically that, for values of E in an appropriate range, t.11~

two qproaches give almost identical results. Plot graphs of the Iogarithm
of the evaluation times for these two algorithms versus the logarithm of
the number W of weights in the network, for networks having a range of
different sizes (including networks with relatively large values of W) . Hcnce
verify the scdings with W discussed in Section 4.8.

4.13 (***I Extend the software implementation of the previous exercise to in-
clude the forward and backward propagation equations for the R{.) wri-
ables, described in Section 4.10.7. Use this implementation to evaluate the
complete Hessian matrix by setting the vector v in the R(.} operator to
successive unit vectors of the form (O , O , . . . , I , . . . ,0) each of which picks
out one column of the Hessian. Also implement the central differences ap-
proach for evaluation of the Hessian given by (4.67). Show that the results
from the R{.} operator and centrd difference methods a p closely, pro-
vided f is chosen appropriately. Again, plot graphs of the logarithm of
the evduation time versus the logarithm of the number of weights in the
network, for networks having a range of difierent sizes, for both of these
approaches to evaluation of the Hessian, and verify the scalings with W- of
the two algorithms, ns discussed in the text.

4.14 (* * *) Extend further the software implementation of Exercise 4.12 by im-
plementing equations (4.82), (4.83) and (4.84) for computing the elements
of the Hessian matrix. Show that the results agree with those from the
R{.)-operator approach, and extend the graph of the previous exercise
include the logarithm of the computation times for this algorithm.

4.15 (**) Consider a feed-forward network which bas been trained to a min-
imum of some error function E, corresponding t o a set of weights Curj)<
where for convenience we have labelled a11 of the wights and biases in the

1 Exercises 163

network with a single index j. Suppose that all of the input values x a and
target values t i in the training set are perturbed by small amounts Axf and
At; respectively. This causes the minimum of the error function to change
to a new set of weight values given by {w, + Awj). Write down the Taylor
expansion of the new error function E((wj +Aw,), {xa +Ax:}, {tz +At;))
to second order in the A's. By minimizing this expression with respect to
the { A w j) , show that the new set of weights which minimizes the error
function can be calcuhted from the original set of weights by adding cor-
rections Awj which are given by solutions of the folIowing equation

I where Hlj are the elements of the Hessian matrix, and we have defined

RADIAL BASIS FUNCTIONS

The network models discussed in Chapters 3 and 4 are based on units which
compute a non-linear function of the scalar product of the input vector and a
weight vector. Here we consider the other major class of neural network model,
in which the activation of a hidden unit is determined by the distance between
the input vector and a prototype vector.

An interesting and important properky of these radiaI basis function networks
is that they form a unifying link between a number of disparate concepts as we
shdl demonstrate in this chapter, In particular, we shall motivate the use of
radial basis functions from the point of view of function approximation, regu-
Iarbation, noisy interpolation, density estimation, optimal classification theory,
and potential hfunctions.

One consequence of this unifying viewpoint is that it motivates procedures
for training radial basis function networks which can be substantially faster than
the methods used to train multi-layer perceptron networks. This follows &om the
interpretation which can be given t o the internal representations formed by the
hidden units, a d leads t o a two-stage training procedure. In the Erst stage, the
parameters governing the basis functions (corresponding to hidden units) are
determined using relatively ffat, unsupervised methods (i.e, methods which use
only the input data and not the target data). The second stage of training then
involves the determination of the final-layer weights, which requirm the solution
of a linear problem, and which is therefore also fast.

5.1 Exact interpolation

Radial basis function methods have their or i ,~s in techniques for performing
exact interpolation of a set of data points in a multi-dimensiond space (Powell.
1987). The exact interpolation problem requires every input vector to be mapped
exactly onto the corresponding target vector, and forms a convenient starting
point for our discussion of radial basis function networks.

Consider a mapping from a d-dhensiona1 input space x to a one-dimensional
target space t. The data set consists of N inptit vectors xn, together with cosre-
sponding targets tn. The goal is t o find a, function h(x) such that

h(x) = C vl wn4(llx - x"/l). (5.2)

1% recognize this as having the same form s the generalized linear discriminant
function considered in Section 3.3. The interpolation conditions (5.1) can then
be written in matrix form as

I

where t = (tn), w = (w,), and the square matrix 9 has elements @,I =
#{l/xn - xn' 11). Provided the inverse matrix @-' exists we can solve (5.3) to give

~h~ rd i a l basis function approach (Powell, 1987) introduces a set of N basis
I1 ~ l n c t i o n ~ , one for each data point, which take the form $(llx - xn 11) where #(.I

iq some non-linear function whose form will be discussed shortly Thus the nth
cuch function depends on the distance ilx - ~ ' ' 1 1 , usually taken ta be Euclidean,
b e m n x and xn. The output of the mapping is then taken to be a linear

of the basis functions

It has been shown (Micchelli, 1986) that, for a large class of functions # { a) , the
matrix iP is indeed non-singular provided the data points are distinct. When the
weights in 15.2) are set to the d u e s given by (5,4), the function h(x) represents
a continuous differentiable surface which passes exactly through each data point.

Both theoretical and empirical gtudies (Powell, 1987) show that, in the con-
text of the exact interpolation problem, many properties of the interpolating
function are relatively insensitive t o the precise form of the non-linear function
d(-). Several forms of basis function hgve been considered, the most common
being the Gaussian

"here u is a parameter whose value controls the smoothness properties of the
interpolating function. The Gaussian (5.5) is a localized basis function with the
Property that q5 -+ 0 as 1x1 + w. Another choice of basis function with the same
Property is the function

It is not, however, necessary for the functions to be localized, and other possible
choices are the thin-plate spline function

5: RQdaaI Bash finctions

4(5) = xa ln(z),

the function

$(x) = (x 2 4- c 2 y . O < p < l , (5.81

which for 0 = 1/2 is known as the multi-quadric function, the cubic

3 #(XI = x , (5.9)

and the 'linear' function

which all have the property that 4 -+ oo as x -+ oo. Note that (5.10) linear in
x = ljx - xnl) and so is still a non-linear function of the components of x. In one
dimension, it leads to a piecewise-linear interpolating function which represents
the simplest form of exact interpolation. As we shdl see, in the context of neural
network mappings there are reasons for considering localized basis functions. We
shall focus most of our attention on Gaussian basis functions since, as well as
being localized, they have a number of useful analytical properties. The technique
of radiaI b a i s functions for exact interpolation is iIlustrated in Figure 5.1 for a
simple one-input, oneoutput mapping,

The generalization to several output variabIes is straightforward. Each input
vector xn must be mapped exactly onto an output vector t" having comporlents
t';Z so that (5.1) becomes

where the hk(x) are obtained by linear superposition of the same N basis func-
tions as used for the single-output case

The weight pameters are obtained by analogy with (5.4) in the form

Note that in (5.13) the same matrix is used far each of the output functions

5.2: Radial bask function networks

Figure 5.1. A simple example of exact interpolation using radial basis func-
tions. A set of 30 data points was generated by sampling the function
y = 0.5 4- 0.4 sin(2nx), shown by the dashed curve, and adding Gaussian noise
with standard deviation 0.05. The solid curve shows the interpolating func-
tion which results kern using Gaussian basis functions of the form (5.5) with
width parameter u = 0.067 which corresponds to roughly twice the spwing of
the data points. Values for the second-layer weights were found using matrix
inversion tmhniques as discussed in the text.

5.2 Radial basis function networks

The radial basis hnction mappings discussed so far provide an interpolating
function which passes exactly through every data point. As the example in Fig-
ure 5.1 illustrates, the exact interpolating function fox noisy data is typically
a highly oscillatory function. Such interpolating functions are unde-
"rdde. As discussed in Section 1.5.1, when there is noise present on the data,
the interpolating function which gives the best generalization is one which is
?-pically much smoother and which averages over the noise on the data. An ad-
ditional limitation of the exact interpolation procedure discussed above is that
'he number of basis functions is equal to the number of patterns in the data

and so for large data sets the mapping function can become very costly t o
Pl'aluate.

BY introducing a number of modifications to the exact interpolation p r o m
'lure we obtain the radial basis function neural network model (Broomhead and

1988; Moody and Darken, 1989). This provides a smooth interpolating
f'~nction in which the number of basis functions is determined by the complexity
''[the mapping to be represented rather than by the size of the data set;. The
""Odifications which are required are as follows:

1. The number M of basis hnctions need not equal the number A' of data
points, and is typically much iess than N .

2. The centres of the basis functions are no longer constrained to he given hy

input data vectors. Tnstead, the determination of suitable centres becDrnes
part of the training process.

3. Instead of having a common width parameter C, each b ~ i s fUnction
given its own width a, whose value is also determined during trainina, "

4. Bim parmeters are included in the Iinear sum. They compensate for the
difference between the average value over the data set of the basis function
activations and the corresponding average value of the targets, as discussed
in Section 3.4.3.

When these changes are made to the exact interpolation formula (5.12)+ we
arrive at the following f o ~ m for the radial basis function neural network mapping

Tf desired, the biases wko can be absorbed into the summation by including an
extra basis function whose activation is set t~ 1. For the case of Gaussian
basis functions we have

where x is the d-dimensional input vector with elements x i , and p, is the vector
determining the centre of basis function d j and has elements Pj i . Note that
the Gaussian basis functions in (5.15) are not normalized, as was the case for
Gaussian density models in Chapter 2 for example, since any overdl factors can
be absorbed into the weights in (5.14) without loss of generality. This mapping
function can be represented as a neural network diagram as s h o w in Figure 5.2.
Note that more general topologies of radid basis function network (more than
one hidden layer for instance) are not normally considered.

In discussing the representational properties of multi-layer perceptron neb-
works in Section 4.3.1, we appealed to intuition to suggest that a linear super-
position of localized functions, as in (5.14) and (5.151, is capable of universd
approximation. Hartman et al. (1990) give a formal proof of this property for
networks with Gaussim basis functions in which the widths of the Gaussims are
treated as adjustable parameters. A more general result was obtained by Puk
and Sandberg (1991) who show that, with only mild restrictions on the form of
the kernel functions, the universal approximation property still holds. Further
generalizations of this results are given in (Park and Sandberg, 1993). As with
the corresponding proofs for multi-layer perceptron networks, these are existence
proofs which rely on the availability of an arbitrarily large number of hidden
units, and they do not offer practical procedures for constructing the networks
Nevertheless, these theorems are crucial in providing a theoretical foundation o*
which practical applications can be based with confidence.

5.2: Radial basis function networks

Xl Xd
inputs

Figure 5.2. Architecture of a radial basis function neural network, correspond-
ing to (5.14). Each basis function acts Eke a hidden unit. The l i n ~ connecting
basis function #j to the inputs represent the corresponding elements pjd of
the vector p,. The weights wk, are shown as lines from the basis functions
to the output units, and the biases are shown as weights horn an extra 'basis
function' & whose output is fwed at 1.

Girosi and Poggio (1990) have shown that radial basis function networks
possess the property of best approximation. An apprwrimatian scheme has this
property if, in the set of approximating functions (i.e. the set of functions cor-
responding to all possible choices of the adjustable parameters) there is one
function which has minimum apprmhating error for any given function to be
approximated. They also showed that this property is not shared by multi-Iayer
Perceptrons.

The Gaussian radial basis functions considered above can be generalized to
allow for arbitrary covariance matrices !Cj, as discussed for normal probability
density functions in Section 2.1.1. Thus we take the basis functions to have the
Form

Since the comrimce matrices Ej are symmetric, this means that each basis func-
"on has d(d+3)/2 independent adjustable parameters (where d is the dimension-
ality of the input space), as compared with the (d + 1) independent parameters
for the basis functions (5.15). In practice there is a trade-off to be considered
beheen using a smaller number of basis with many adjustable parameters and
a larger number of Iess flexible functions.

170 5: Radial Basis hnctions

5.3 Network training
A key aspect of radial basis function networks is the distinction between tl
roles of the first and second layers of weights. As we shall see, the basis functio1
can be interpreted in a way which allows the first-layer weights (i.e. the paran.
eters governing the basis functions) to be determined by unsupervised training
techniques. This l e d 8 to the following two-stage training procedure for training
radial bwis function network^. In the first stage the input data set {xn) alone
is used to determine the parameters of the basis functions (e-g. pJ and uj f(
the spherical Gaussian basis functions considered above). The hasis functio!
are then kept iixed while the second-layer wights are found in the second pha!
of training. Techniques for optimizing the basis functions are discussed a t length
in Section 5.9. Here we shall assume that the basis function parameters have
aIready been chosen, and we discuss the problem of optimizing the ~econd-layer
weights. Note that, if there me fewer basis functions than data points, then in
general it will: no longer possible to find a set of weight values for which the
mapping function fits the data points exactly.

We begin by considering the radial basis function network mapping in (5.14)
and we absorb the bias parameters into the wights te give

where $0 is an extra 'basis function' with activation value fixed at #o = I. This
can be written in matrix notation as

where W = (wy) and 4 = (#j). Since the basis functions are considered fixed.
the network is equivalent to a single-layer network of the kind considered in Set-
tion 3.3 in the context of classification problems, where it is termed a generalized
linear discriminant. As discussed in earlier chapters, we can optimize the weights
by minimization of a suitable error function. It is particularly convenient, as we
shall see, to consider a sum-of-squares error function given by

where t; is the target value for output unit k when the network is presented with
input vector xn. Since the error function is a, quadratic ftmction of the weightst
its minimum can be found in terms of the solution of a set of linear equations.
This problem was discussed in detail in Section 3.4.3, fiom which we see that
the weights are determined by the linear equations

5.4: Regularization theo y 171

,\-here (T) n k = f ; and (*)nj = &(xn). The formal solution for the weights is
given by

t nrllere the notation @ denotes the pseudo-inverse of 9 (Section 3.4.3). In prac-
tice, the equations (5.20) are solved using singular value decomposition, to avoid
problems due to possible ill-conditioning of the matrix @. Thus, we see that the
sKond-layer weights can be found by fast, linear matrix inversion techniques.

For the most part we shaail consider radial basis function networks in which the
dependence of the network function on the second-layer weights is Iinear, and in

the error function is given by the sum-of-squares. I t is possible to consider
the use of non-linear activation functions zkppIied to the output units, or other
choices for the error function. However, the determination of the second-layer
weights is then no longer a Iinear problem, and hence a non-linear optimization of
these weights is then required. As we h a w indicated, one of the major advantages
of radial basis function networks is the possibifity of avoiding the n e d for such
an optimization during network training.

As a simple illustration of the use of radid basis fundion networks, we return
to the data set shown in Figure 5.1 and consider the mapping obtained by using
a radial basis function network in which the number of basis functions is smaller
than the number of data points, as shown in Figure 5.3

The width parameter a in Figure 5.3 was chosen to be roughly twice the
average spacing between the basis functions. Techniques for setting the basis
function parameters, including uj , are discussed in detail in Section 5.9. Here we
?imply note the eflect of poor choices of o. Figure 5.4 shows the resuZt of choosing
too small a value for a, while the effect of having 5 too large is illustrated in
Figure 5.5.

5.4 Regularization theory

An alternative motivation for radial hasis function expansions comes from the
:hcop of regularization (Poggio and Girosi, L990a, 1990h). In Section 1.6 the
'Qchnique of regularization was introduced as a way of controlling the smoothness
Properties of a mapping function. It involves adding to the error function an extra
'"n~ wwhh is designed to penalize mappin@ which are not smooth. For simplicity
qf Rotation we shall consider networks having a single output y, so that with a
s'lm-~f-squses error, the total error function to be minimized becomes

Figure 5.3. This shows the same set of 30 data points as in Figure 5.1, together
with a network mapping (solid curve) in which the number of basis functions
has been set to 5, which is significantly fewer than the number of data points.
The centres of the baais functions have been set to a random subset of the data,
set input vectors, and the width parameters of the basis functions have been
set to a eommon value of a = 0.4, which again is roughly equal to twice the
average spacing between the centres, The second-Iayer weights are found by
minimizing a sum-of-squaws error function using singular value decomposition.

0.0
0.0 0.5 X

1.0

Figure 5.4. As in Figure 5.3, but in which the width parameter has been set
to u = 0.08. The resulting network function is insuficicntly smooth and gives
a poor reprmntation of the underlying function which generated the data.

Figure 5.5. A s in Figure 5.3, but in which the width parameter has been set to
a = 10.0. This leads ta a network function which is over-smoothed, and which
again g i m a poor repr~entation of the underlying function which generated
the data.

where P is some differential operator, and v is called a regularization parameter.
Network mapping fundions y (x) which have large curvature will tmicdly give

I

rise to large values of IpyI2 and hence to a large penalty in the totd error
function. The vdue of u controls the dative importance of the regularization
term, and hence the degree of smoothness of the function y(x).

We can solve the regularized least-squares pmblern of (5.22) by using dculus
i

of variations (Appendix D) as follows. Setting the functional derivative of (5.22) I

with respect to y (x) to zero we obtain I1

where is the adjoint differential operator to P and S(x) is the Dirw delta
function. The equations (5.23) are the EpsEe~Lagmrage equations ~orrespond'ing

(5.22). A kmal solution to these equations can be written down in terms of
the Gwen's finctiom of the operator F P , which are the functions G(x, x') whfch
satisfv

If the operator P is transrationally and rotationally invariant, then the Green's
filnctions depend only on the distance ((x - x'll, and hence they are radial f u ~

The formal solution to (5.23) can then be written as

174 5: Radial Bmis Functions I

which has the form of a linear expansion in rd ia l basis functions. Substitute
(5.25) into (5.23) and using (5.24) we obtain

Integrating over a small region around xR s h m tha t the coefficients w, satisfy

Values for the coefficients w, can be found by evaluating (5.25) at the values of
the training data points xn and substituting into (5.27). This gives the ~ a l u e s of
w, as the solutions of the lineax equation

where (G),,, = ~ (1 1 ~ " ' - x" /I), (w) ~ = wn, (t), = tn and I denotes the unit
matrix.

If the operator P is chosen t o have the particular form

where D2' = (v2)[and DzL*l = V(Qz)r , with V a d V2 denoting the gradient
and LapIwian operators respectively, then the Green's functions are Gaussiam
with width parameters r (Exercise 5.3).

We see that there is a very close similarity between this form of basis func-
tion expansion, and the one discussed in the context of exact interpolation in
Section 5.1. Here the Greens functions G(lIx - xn 11) correspond to the basis func-
tions $(lJx - xnil), and there is one such function centred on each data point in
the training set. AIso, we see that (5.28) seduces to the exact interpolation result
(5.3) when the regulaization parameter u is zero. When the regularization Pa-
rameter is greater than zero, however, we no longer have an exact interpolating
function. The effect of the regularization term is to force a smoother nettr.ork
mapping function, as illustrated in Figure 5.6.

In practice, regularization can &o be applied to rdial basis function net-
works in which the basis functions are not constrained to be centred on the data
points, and in which the number of basis functions need not equal the num17er
of data points. Also, regularization terms can be considered for which the h*ls
functions are not necessarily the Green's functions. Provided the regulari~atinn
term is a quadratic functQn of the networlc mapping, the second-layer weights

5.4: Regularization theov 175

Figure 5.6. This shows the same data set as in Figure 5.1, again with one basis
function centred on each data point, and a width parameter u = 0.067. In this
case, however, a regularization term is used, with coefficient v = 40, leading
to a smoother mapping (shown by the solid curve} which no longer g i w an
exact fit to the data, but which now gives a much better approximation to the
underlying function whjch generated the data (shown by the dashed curve).

ran again be found by the solution of a set of linear equations which minimize a
sum-of-squares error. For example, the regularizer

!)~nalizes mappings which have large curvature (Bishop, T991b). This regularizer
leads to second-layer weights which are found by solution of

9 = (4:) as before. When v = 0 (5.31) reduces to the previous result (5.20).
TEle inclusion of the regularization term adds little to the computational cost,
"rice most of the time is spent in solving the coupled linear equations (5.31).

I 176 5: Radial Basis Functions I
5.5 Noisy interpolation theory

Yet another viewpoint on the origin of radid basis function expansions comes
from the theory of interpolation of noisy data (Webb, 1994). Consider a mapping
from a single input variable x to a single output variable y in which the targe
data is generated from a smooth noisebee function h(z) but in which the inpQl
data is corrupted by additive noise. The sum-of-qu~es error, in the limit of
infhite data, takes the form

where p(x) is the probability density function of the input data, and F(E) is the
probability density function of the noise. Changing variables using 2 = x + F n~ 1
have I

A formal expression for the minimum of the error cm then be obtained using
variational techniques (Appendix D) by setting the functional derivative of E
with respect to -y(z) to zero, to give

If we consider the case of a finite number of data points {sn) drawn from
the distribution p(s), we can approximate (5.35) by

I
which we recognize as being an expansion in radid basis functions, in which
h(xn) are the expansion coefficients, and the basis functions are given by I

Sinw the function h(z) is unknown, the coefficients h(zn) should be regarded
as parameters t o be determined from the data. To do this we note that h(r)
noise-free and so we have h(zn) = t". Thus (5.36) becomes an expansion in b*Is
functions in which the coefficients are given by the target values. Note that this
form of basis function expansion differs from that introduced in (5.14) and (5.15)

5.6: Relation £0 kernel regression I77

7t-1 t hat the basis functions are normalized (Moody and Darken, 1989). Strictly
,,diking, the normalization in (5.36) would require lateral connections between
ifiereflt hidden units in a network diagram. If the distribution of the noise is
ormal, SQ that F(<) K e~p(-5~/2u'), then we obtain an expansion in Gaussian

The extension of this result to several output variables is straightforward and
gives

Note that (5.36) wilI only be a good &pproximation to (5.35) if the integrand
is sufficiently smooth. This implies that the width of the basis functions should
he large in relation to the spacing of the data, which is a useful rule of thumb
when designing networks with good generalization properties.

5,6 Relation to kernel regression

h r t h e r motivation for the use of radial basis functions for function approxima-
tion comes from the theory of kernel regression (Scott, 1992). This is a technique
for estimating re~essian functions from noisy data, based on the methods of
kernel density estimation discussed in Section 2.5.3. Consider a mapping from
an input vector x to an output vector y, and suppose we are given a set of train-
ing data {xn, tn) where n = 1,. . . , N. A complete description of the statistical
Properties of the generator of the data is given by the probability density p{x, t)
ln the joint input-target space. We can model this density by using a Parxen
kernel estimator constructed born the data set. If we consider Gaussian kernel
functions, this estimator takes the form

''!here d and c are the dirnensionalities of the input and output spaces respec-
ti'~cjv. This is illustrated schematically, for the case of one input variable and

output variable, in Figure 5.7.
AS we have already seen, the goal of learning is t o find a smooth mapping

x to y which captures the underlying systematic aspects of the data, with-
fitting the noise on the data. In Section 6.1.3 it is shown that, under m m y

the optimal mapping Is given by forming the regression, or condi-
tional average {tlx), of the target data, conditioned on the input variables. This

Figure 5.7. Schematic iIEustration of the use of a kernel estimator to model the
joint probability density jn the input-output space, The dots show the data
points, and the circles represent Gaussian kernel functions centred on the data
points, while the curve shows the regression function given by the conditional
average of t as a function of s.

can be expressed in terms of the conditional density p(tlx), and hence in term
of the joint density p(x, t), as follows:

- J - (5.41)

Jdx , t) dt
'

If we now substitute our density estimate (5.401 into (5.41) we obtain the fol-
lowing expression for the regression of the target data

C, tn exp (-fix - xR.]I2/2h2)
Y(X) =

~ne~p(-II~-~n112/2h2)

This is known as the Nadamya-Watson estimator (Nadaraya, 1964; Watson,
19641, and heen re-discovered relatively recently in the context of neural
networks (Specht, 1990; Schialer and Hartmann, 19921. We see that (5.42) h*
the form of a normalized expansion in Gaussian r is functions defined in
the input space, and should be compared with tl 15.38) obtained earlier
from the perspective of dditive noise on the inpub uaa. Each basis function 1s

centred on a data poir ients in t ision are given by
target values t". Note ct.ion pro ues for the hiddeo-t*

it, and tl
that t h i ~

le coeffic
; construd

adid bas
he form (
..A 1-I-

;he expat
vides val

5.7: Radial baais function networks for c~ussi$catboa 179

unit weights which are just given by the target data values.
olit I'@

~ l ~ i ~ can be extended by replacing the kernel estimator with an
mixture model, as discussed in Section 2.6. The parameters of the mix-

~ d 9 I
tnrp model can be found using, for instance, the EM (exppctation-rn9xirnization)

o,ithln (Section 2.6.2). For a mixture of spherical Gaussian functions, we
fils
uLul

the joint density in the form

~ ~ l l ~ ~ v i n g the same line of argument as before, we arrive at the following expres-
sion for the regression:

which can be viewed as a normalized radial basis function expansion in which
t.hc number of basis functions is typically much smaller than the number of data I

points, and in which the basis function centres are no longer constrained to
coincide with the data points. This result can be extendd to Gaussian functions
with general covariance matrices (Ghahramani and Jordan, 1994b).

5.7 Radial basis function networks for classification I

A further key insight into the nature of the radial basis function network is ob-
tained by considering the use of such networks for ~ l a ~ f r c a t i o n problems owe,
1595). Suppose we have a data set which falls into thrm classes as shown in Fig-

I 1
5.8. A multi-layer perceptron can separate the classes by using hidden units

I
I

which form hyperplanes in the input space, a s indicated in Figure 5.8{a). An
"rernative approach is to model the separate class distributions hy Iocal kernel
fnnctjons, as indicated in (b). This latter type of representation is related to the
"dial basis function network.

Suppose we model the data in each class Ck using a single kernel function,
which we write as p(xlCk). In a classification problem our goal is to model the I

?osterior probabilities p(Ck(x) for each of the classes. These probabilities can be
~htained through Bayes' theorem, using prior probabilities PI&}, as follows:

Figure 5.8. Schematic example of data points in two dimensions which fall into
three distinct classes. One way to separate the CIWB is to use hyperplanes,
shown in (a), as used in a multi-lqer perceptron. An alternative approach,
s h m in (b), is to fit each class with a kernel function, which gives the type
of representation formed by a radial basis function network.

This can be viewed as a simple form of basis function network with normalized
basis functions given by

and second-layer connections which consist of one weight from each hidden unit
ping to the corresponding output unit, with value p(Ck). The outputs of this
network represent approximations to the posterior probabiiiti~.

In most applications a single kernel function will not give a particularly good
representation of the class-conditional distributions p(xJCk). A better represen-
tation could be obtained by using a separate mixture model to represent each of
the conditional densities. However, a computationalIy more efficient approah
and one which may help to reduce the number of adjustable parameters in the
model, is to use a common pool of M basis functions, labelled by an index jb t o
represent dl of the class-conditional densities. Thus, we write

An expression for the unconditional density p(x) can be found from (5.48) bx
summing over all clm~es

5.7: Radial bat& function networks fm clmsificafion

,here we have defined priors for the basis functions given by

kg$, the quantities we are interested in are the posterior probabilities of class
These can be obtained by substituting the expressions (5.48) and

(5.50) into Bayes' theorem (5.455 to give

where we have inserted an extra factor of 1 = P (j) / P (j) into (5.52). The expres-
sion (5.53) represents a radid basis function network, in which the normalized
basis functions are given by

and the second-layer weights are given by

Thus, the activations of the basis functions can be interpreted as the posterior
Probabilities of the presence of corresponding features In the input space, and
the wights can similarly be interpreted as the posterior probabilities of dass
"embership, given the presence of the features. The activations of the hidden
unit,s in a multi-layer perceptron (with logistic sigmoid activation hnctions) can
he given a similar interpretation as posterior probabiIities of the presence of
features, as discussed in Section 6.7.1.

Note from (5.50) that the unconditional density of the input data is expressed

I 182 5: Radial Basis finctdons

in terms of a mixture model, in which the component densities are given
'9 the basis functions. This motivates the use of mixture density estimation ,, a

procedure for finding the basis function parameters, as discussed in Section 5.gqq,
I t should be emphasized that the outputs of this network also have a prwiw

interpretation as the posterior probabilities of class membership. The ability t,
interpret network outputs in this way is of central importance in the effeceik
application of neural networks, and is discussed at length in Chapter 6.

Finally, for completeness, we point out that radial basis functions are also
closely related to the method of potential functions (Aizerrnan et al., 1964; Ki-
ranjan et al., 1989). This is a way of finding a linear discriminant function from
a training set of data points, based on an andogy with electrostatics. Imagine
we p1x.e a unit of positive charge at each point in input space at which there is a
training vector from class C1, and a unit of negative charge a t each point where
there is a training vector from class Ca. These charges give rise to an e l ec t r~
static potential field which can be treated as a discriminant function. The kernel
function which is used to compute the contribution to the potential from ea&
charge need not be that of conventional e'teetrostatics, but can be some other
function of the radial distance from the data point.

5.8 Comparison with the multi-layer perceptron

Radial basis function networks and multi-layer perceptrons play very similar roles
in that they both provide techniques for approximating arbitrary non-linear func-
tional mappings between multidimensional spaces. In both cases the mappings
are expressed in terms of parametrized compositions of functions of single vari-
ables. The particular structures of the two networks are very different, however,
and so it is interesting to compare them in more detail. Some of the important
differences between the multi-Iayer perceptron and radial basis function networks
are as follows:

1. The hidden unit representations of the multi-Iayer perceptron depend on
weighted linear summations of the inputs, transformed by monotonic acti-
vation functions. Thus the activation of a hidden unit in a multi-layer per-
ceptron is constant on surfaces which consist of parallel (d- 1)-dimensional
hyperpIanes in $-dimensional input space. By contrast, the hidden units
in a radial basis function network use distance to a prototype vector fol-
Iowed by transformation with a (usually) IocaIized function. The activation
of a basis function is therefore constant on concentric (d - 1)-dimensional
hyperspheres (or more generally on (d - 1)-dimensional hyperellipsoids)

2. A multi-layer perceptron can be said to form a distributed representafion in
the space of activation values for the hidden units since, for a given input
vector, many hidden units will typically contribute t o the detenninatioll
of the output value. During training, the functions represented by the hid-
den units must be such that, when linearly comkined by the final laver
of weights, they generate the correct outputs for a range of possible inpt

1 values. The interference nnd cross-coupling between the hidden units whic

5.9: Basis function optimization 183

this results in the network training process being highly non-linear
with problems of local, minima, or nearly flat re@ons in the error function
,rising from near cancellations in the effects of different weights. This can
lea$ to very slow convergence of the training procedure even with advanced

strategies. By contrast, a radial basis function network with
localized basis fbnctions forms a representation in the space of hidden units
which is local with respect t o the input space because, for a given input
vector, typicalIy only a few hidden units will have significant activations.

3. A multi-lapr perceptron often has many layers of weights, and a com-
plex pattern of connectivity, so that not all possible weights in any given
layer are present. Also, a variety of different activation functions may be
used within the same network. A radial basis function network, however,
generally has a simple architecture consisting of two layers of weights, in
which the first layer contains the parameters of the basis functions, and
the gecond layer forms linear combinations of the activations of the basis
functions to generate the outputs.

4. All of the parameters in a multi-layer perceptron are usudIy determined
at the same time as part of a single global training strategy involving
supervised training. A radial ba~ i s function network, however, is typically
trained in two stages, with the basis functions being determined first by
unsnpervised techniques using the input data done, and the second-layer
weights subsequently being found by fast linear supervised mahods.

5.9 Basis function optimization

One of the principal advantages of radial basis function neural networks, as
cornpared with the multi-layer perceptron, is the possibility of choosing suitable
Parameters for the hidden units without having to perfom a full non-linear
o~tirnization of the network. In this section we shall discuss several possible
strategies for selecting the parameters of the basis functions. The problem of
'pIwting the appropriate number of basis functions, however, is discussed in the
context of model order selection and generalization in Chapter 9.

Ive have motivated radial basis functions from the perspectives of function
"Proximation, regularization, noisy interpolation, kernel regression, and the es-
timation of posterior dass probabilities for classification problems. All of these
"Iem~oints suggest that the basis function parameters should be chosen to form
a representation of the probability density of the input data. This leads to an
llnsupervised procedure for optimizing the basis function parameters which d e
Pends only on the input data from the training set, and which ignores any target

The basis function centres ~ c , can then be regarded as pmtotypes
"f the input vectors. In this section we discuss a number of possible strategies
For ODtirnizing the basis functions which are motivated by these considerations.

There are many potential applications for neural networks where unlabelled
I ~ P I I ~ data is plentiful, but where labelled data is in short supply. For instance,

may he easy t o collect examples of raw input data for the network, but the

184 5: Radial Basis Functions

labebelling of the data with target variables may require the time of a human ey
Pen which therefore limits the amount of data which can be labelled in a reaqonabla

time. With such applications, the *+stage training process for a radial bai8
function network can be particularly advantageous since the determination
the non-linear representation given by first layer of the network can be done
using a large quantity of unlabelled data, leaving a relatively small number of
parameters in the second layer to be determined using the labelled data. At each
s t ~ g e of the training process, we can ensure that the number of data points is
large compared with the number of parmeters to be determined, as required h,
good generalization.

One of the major potential difficulties with radial basis function network;,
however, also stems from the localized nature of the hidden unit representation.
It concerns the way in which such a network addresses the curse of dimensionality I
discussed in Section 1.4. There we saw that the number of hypercubes which are
needed to fill out a compact region of a d-dimensional space grm exponentially
with d. When the data is confined to some lower-dimensional sub-space, d is
to be interpreted as the effective dimensionality of the sub-space, known FU the
intrinsic dimensionality of the data. If the basis function centres are used to fiH
out the sub-space then the number of basis function centres will be an exponential
function of d (Hartman et al., 19901, As well EM increasing the computation time,
s large number of basis functions leads to a requirement for large numbers of
training patterns in order to ensure that the network parameters are properly
determined.

The problem is particularly severe if there are input variables which have
significant variance but which play little role in determining the appropriate
output variables. Such irrelevant inputs are not uncommon in practical applic*
tions. When the basis function centres are chosen using the input data alone,
there is no way to distinguish relevant from irreIevmt inputs. This problem fs
illustrated in Figure 5,9 where we see a variable y which is a non-linear function
of an input variable XI. We wish to use radial basis function network network
to approximate this function. The basis functions are chosen to c w m the regon
of the axis where data is observed. Suppose that a second input miable X Z

is introduced which is uncorrelated with XI. Then the number of basis functions
needed to cover the required region of input space increases dramatically in-

5.9: Bask function optimization 185

Fiere 5.9. A schematic example of a function y(x1) of m input variable X I

which has been modelled using a set of radial basis functions.

Figure 5.10. As in Figure 5.9, but in which an extra, irrelevant variable xa
has been introduced. Note that the number of basis functions, whme locations
are determined using the input data alone, has increased dramatically, even
though xz carries no useful information for determining the output variable.

dicated in Figure 5.10. If a, is independent of x2 then these extra basis functions
have no useful role in determining the value of y. Simulations using artificial data
(Hartman et al., 1990), in which 19 out of 20 input variables consisted of noise
uncorreiated with the output, showed that a multi-layer perceptron could learn
to ignore the irrelemnt inputs and obtain accurate results with a small number
of hidden units, while radial basis function networks showed large error which
decreased only slowly as the number of hidden units was increased.

Problems arising from the curse of dimensionality may be much less severe if
basis functions with f a r 1 covariance matrices are used, as in (5.I6). rather t h o

I we have provided compelIing reasons for using unsupervised methods to d+
tprmine the first-layer parameters in a radial basis function network by modelling
'he density of input data. Such method have also proven to be very powerful in

I practice. However, it should be emphasized that the optimal choice of basis func-

/ ' ion Parameters for density estimation need not be optimal far representing the
to the output variables. Figure 5.11 shows a simple example of a p r o b

i lem for which the use of density estimation to set the basis function parameters
cIparly gives a sub-optimal solution.

. ,.
spherical basis functions of the form (5.1 5) . However, the number of parameters
per basis function is then much greater.

5: Radial Basis hmctions

I

Figure 5.11. A sirnpIe example to illustrate why the use of unsupervised meth-
ods bwed on density estimation to determine the basis function parameters
need not be optima1 for approximating the target function. Data in one di-
mension (shown by the circles) is generated from a Gaussian distribution p (~)
shown by the drtshd curve. Unsupervised training of one Gaussian basis func-
tion would cauge it to be centred at x = a, giving a good approximation to
p (z j . Target values for the input data are generated from a Gaussian function
centred at b shown by the solid curve. The basis function centred at a can only
give a very poor representation of h(x) . By contrast, if the basis function were
centred at b it could represent the function h (x) exactly.

5.9.1 Subsets of data points I
One simple procedure for selecting the basis function centres pj is to set them
equal to a random subset of the input vectors from the training set, as was
done for the example shown in Figure 5.3. Clearly this is not m optimal pr*
cedure so far as density estimation is concerned, and may also lead to the use
of an unnecessarily large number of basis functions in order to achieve adequate
performance on the training data. This method is often used, however, t.o pr*
vide a set of starting values for many of the iterative adaptive procedures to be
discussed shortly. I

Another approach is to start with all data points as basis functions centre::
and then selectively remove centres in snch a way as to have minimum disrupt
on the performance of the system. Such an approach was introduced into 1

IGnearest-neighbour classification scheme by Dwijver and Kittler (1 982) 8

applied to radial basis function networks used for ~Iassification by ~ r a a i j v e l ~
and Duin (1991). A procedure for selecting a subset of the basis functions so "
to preserve the best estimator of the unconditional density is given in Fukunag
and Hayes (1989).

These techniques only set the basis function centres, and the wi m
eters gi must be chosen using some other procedure. One heuristic I i

to choose all the C T ~ to be equal and to be given by some multiple of 1,111; r tv-dRI

distance between the hasis function centres. This ensures that the hasis func

inn
ibe
:nd I

.dth para
approad
LL- ...+,k,.*

5.9: Rasfs junction opfimizetion 187

ions overlap to some d e p e and hence give a relatively smooth representation
of the distribution of training data. We might also recognize that the optimal

may be different for basis functions in different regions of input space. For
instance, the widths may be determined from the average distance of each basis
hncr,ion to its L nearest neighbours, where L is typically smdl. Such ad hoc

for choosing the basis function parameters are very Sast, and allm
, radial basis function network to be set up very quickly, but are likely to be

suboptimal.

j.g.2 Orthogonal least squares
,4 more principled approach to selecting a sub-set of the data points as basis
function centres is based on the technique of orthogonal lmt squaws. To motivate
this Bpproach consider the following procedure for selecting basis functions. We
,tut by mnsidering a network with just one basis Eunction. For each data point
In turn we set the basis function centre to the input vector for that data point,

then set the second-layer weights by pseud+inverse techniques using the
training set of N data points. The basis function centre which gives rise

to the smallest residua1 error is retained. In subsequent steps of the dgorithm,
the number of basis functions is then increased incrementaIly. If at some point in
the algorithm 1 of the data points have been selected as basis function centres,
then N - I networks are trained in which each of the remaining N - I data points
in tnrn is selected as the centre for the additiona! basis function. The extra basis
fr~nction which gives the smallest value for the residua1 sum-of-squares error is
then retained, and the algorithm proceeds to the next stage.

Such an appro& would be computationally intensive since at each step it
tvould be necessary to obtain a complete pseudeinverse solution for each possible
choice of basis functions. A much more efficient procedure for d iev ing the same
result is that of orthogonal least squaws (Chen et a!., 1989, 1991). In outline, the
akorithm involves the sequential addition of new basis functions, each centred
011 one of the data points, as described above. This is done by constructing a
Spt of orthogonal vectors in the space S spanned by the vectors of hidden unit
actil%tians for each pattern in the training set (Section 3.4.2). It is then possible
''1 calculate directly which data point should be chosen as the next basis fi~nction
rPntre in order t.o produce the greatest reduction in residual sum-of-squares error.
I f

\aIues for the second-layer weights are also determined at the same time. If the
:'k~:'~rit.hrn is continued long enough then all data points will be selected, and the
rPqidual error will be zero. In order to achieve good generalization, the algorithm
m ' l ~ t stopped before this occurs. This is the problem of model-order selection,
'"d is discussed at length in Chapters 9 and 10.

";.g. 3 CLnstering algorithms

4s an improvement on simply choosing a subset of the data points as the h i s
F1lnction centres, we can use clustering techniques to find a set of centres which

accurately reflects the distribution of the data points. Moody and Darken
rlv%l) use the K-means elzlsterr:ng algorithm, in which the number X of centres

188 5: Radial Basis Functions I
1
I must be decided in advance. The algorithm involves a simple memat ion prG

cdure, as folLows. Suppose there are N data points x* in total, and we n ~ r h
to find a set of K representative vectors pj where j = I,. . . , K. The algorithm
seeks to partition the data points {x") into K disjoint bet^ Sj Containing ,$,

. I data points, in such a way as to minimize the sum-of-squares clustering function
given by

where pj is the mean of the data points in set Sj and is given by

I The batch version of K-means (Lloyd, 1982) hegins by assigning the points at , random to K sets and then computing the mean vectors of the points in each set.
Next, each paint is re-assigned t o a new set scanding to which is the nearest 1 mean vector. The means of the sets are then recomputd. This procedure is
repeated until there is no further change in the grouping of the data points. It 1 can be shown (Linde et a]., 1980) that at each such iteration the value of J will
not increase. The cakulation of the means can also be formulated as a stochastic I
on-line process (MacQueen, 1967) Moody and Darken, 1989). In this case, the
initial centres are randomly chosen from the data points, and as each data point 1
x" is presented, the nearest pi is updated using I

?
where p7 is the learning rate parameter. Note that this is simply the Robbins-
M m procedure (Section 2.4.1) for finding the root of a regression function gilrcn
by the derivative of J with respect to pj . Once the centres of the bmis Functions
have been found in this way, the covariance matrices of the basis functions can

be set to the covariances of the points assigned to the companding cIustew- 1

Another unsupervised technique which has been used for assigning basis func-
tion centres is the Kohonen topographic feature map, also called a self-organizing
feature map {Kohunen, 1982). This algorithm leads to placement of a set of
totype vectors in input. space, each of which corresponds to a point on a regular
grid in a (usually two-dimenfiional) featuremap space. When the algorithm has
conver,aed, prototype vectors corresponding to nearby points on the feature map
grid have nearby locations in input space. This leads to a number of applications
for this algorithm including the prajeckion of data into a two-dimensional space
for visualization purposes. However, the imposition of the topographic property-
particularly if the data is not intrinsically tw+dimensional (Saction 8.6.1), may

lrad to suboptimal placement of vectors.

j,9.d Gaussian mixture d e b

;,hove already discussed a number of heuristic procedures for setting the basis
unction parameters such that the basis functions approximate the distribution of
hp input data. A more principled approach, however, is to recognize that this is
.sentially the mixture densiw estimation problem, which is discussed at length

r '-

in Seetion 2.6. The hasis functions of the neural network can be regarded as the
,mponent~ of a mixture density model, whose parameters are t o be optimized
hv iikelihood. We therefore model the density of the input data by a
mixture model of the form

where the parameters P(j) are the mixing coefficients, and bj(x) me the b*
sis functions of the network. Note that the mixing coefficients can be regmded
as prior probabilities for the data points to have been generated from the j th
component of the mixture, The likelihood function is given by

and is rnaxirnized both with respect to the mixing coefficients P (j) , and with
respect to the p a m e t e r s of the basis functions. This maximization can be per-
formed by computing the derivatives of C with respect to the pparameters and us-
ing t-hese derivatives in standard non-linear optimization algorithms (Chapter 7).
Alternatively, the parameters can be found by re-estimation procedures based
on the EM (expectation-maximization) algorithm, described in Section 2.6.2.

Once the mixture model has been optimized, the mixing coefficients P(j)
can be discarded, and the basis fhnctions then used in the radial basis function
network in which the second-layer weights are found by s u p e ~ s e d training. By
retaining the mixing coefficients, however, the density model p(x) in (5.61) can
he used to assign error bars to the network outputs, based on the depee of
novelt?j of the input vectors (Bishop, 1994b).

It is interesting to note that the K-means algorithm can be seen as a par-
t,icular limit of the EM optimization of a Gaussian mixture madel. fi0m sec-
tion 2.6.2, the EM update formula for a basis function centre is given by

]ere PC
the ba

j (x) is the posterior probability of basis function j, and is given in terms
I

sis functions and the mixing coeficients, using Raws' theorem, in the

190 5: Radial: Basis Functions

form
I

where ~ (x) is given by (5.61). Suppose we consider spherical Gaussian b*k
functions having a common width parameter a. Then the ratjo of the Posterior
probabilities of two of the basis functions, for a particular data point xn, is given

by

If we now take the limit g + 0, we see that

Thus, the probabilities for a11 of the kernels is zero except for the kernel whose
centre vector pk is closest to xn. In this limit, therefore, the EM update formula 1
(5.63) reduces to the IC-means update formula (5.59). 1

5.10 Supervised training 1
As we have already remarked, the use of unsupervised techniques to determine
the basis function parameters is not in general an optimal procedure so far as
the subsequent supervised training is concerned. The di%cult;y arises because
the setting up of the basis functions using density estimation on the input data
takes no amount of the target labels associated with that data. In order to set
the parameters of the basis functions to give optimal performance in computing I

the required network outputs we should include the target data in the training I
procedure. That is, we should perform supervised, rather than unsuperviseda
training.

The basis function parameters for regression can be found hy treating the La-
sis function centres and widths, along with the second-layer weights, as adaptivP
parameters to be determined by minimization of an error function. For the c*@
of the sum-of-squares error (5.191, and spherical Gaussian basis functions (5.15).
we obtain the following expressions for the derivatives of the error function with
respect to the basis function parameters

Exercises 191

n,hcre hi denotes the i th component of pj . These expressions for the derivatives
,,, then be used in conjunction with one of the standard optimization strategies
discussed in Chapter 7.

The setting of the basis function parameters by supervised learning represents
, non-linear optimization problem which will typically be computationally in-
rpnsive and may be prone to finding local minima of the error function. However,
provided the basis functions are reasonably well localiied, any given input vector

only generate a significant activation in a small fraction of the basis func-
[ions, and so only these functions will be significantly updated in response to that
input vector. Training procedures can therefore be speeded up significantly by
identifying the relevant basis functions and thereby avoiding unnecessary compu-
bation. Techniques for finding these units efficiently are described by Omohundro
(1987). Also, one of the unsupervised techniques described ~ b w e can be used
to initialize the basis function parameters, after which they can be 'fine tuned'
using supervised procedures. However, one of the drawbacks of supervised train-
ing of the basis functions is that there is no guarantee that they wiiI remain
localixed. Indeed, in numerical simulations it is found that a subset of the basis
Functions may evolve to have very broad responses (Moody and Darken, 1989).
Also, some of t.he main advantages of radial basis function networks, namely fa&
two-stage training, and interpretability of the hidden ~mit representation, are
lost if supervised training is adopted.

Exercises

5.1 (*) Consider a radial basis function network represented by (5.14) with
Gaussian basis functions having full covariance matrices of the form (5.16).
Derive expressions for the elements of the Jacobian matrix given by

5-2 I**) Consider a radial basis function network with spherical Gaussian basis
of the form /5.15), network outputs given by (5.17) and a sum-of-squares
error function of the form (5.19). Derive expressions for elements of the
Hessian matrix given by

wherr
can co
w e i ~ h

: w, and ur, are any two parameters in the network. Hint: the results
onvenientty be set out as six equations, one for each possible pair of

- t types (basis function centres, basis function widths, or second-layer
weights).

192 5: Radial Basis finctions

5.3 (* *) Consider the functional derivative (Appendix D) of the r e g ~ i a r i ~ ~ ~ ~ ~ ~
functional given by (5.291, with respect t o the function y(x). By u@ng
successive integration by parts, and making use of the identities

show that the operator is given by

It should be assumed that, 'boundary' terms arising from the integration
parts can be neglected. Now find the Green's fivlction G([[x - xyl) of thk
operatar, defined by (5.241, as follows. First introduce the multidimensional
Fourier transform of G, in the form

By substituting (5.74) into (5.73)- and using the following form for the
Fourier transform of the delta function

where d is the dimensionality of x and s, show that the Fourier transform
of the Green's function is given by I

Now substitute this result into (5.74) and, by using the results ~ i ~ ~ e n in I

Appendix B, show that the Green's function is given by

5.4 (*) Consider general Gaussian basis functions of the form (5.16) and s u p
that all of the basis functions in the network share a common covati8.--
matrix E. Show that the mapping represented by such a network is equir"
alent to that of a network of spherical Gaussian basis functions of the
form (5.15), with a common variance parameter a2 = 1, provided the in-
put vector x is first transformed by an appropriate linear transformation'
By making use of the results of Appendix A, find expr~ssions relating the

transformed input vector 5 and transformed basis function centres pj to
the cQrr&ponding origind vectors x and pj .

5.5
multi-layer perceptron a hidden unit has a constant activation for

input vectors which lie on a hyperplanar surface in input space given by
,T, + wo = const., while for a radial basis function network, with bzc
,is filnctions given by (5,15), a hidden unit has constant activatian on a
l,yperspheri~al surface defined by Ilx - ~ 1 1 ~ = const. Show that, for suit-
able of the parameters, these surfaces coincide If the input vectors
are to unit length, so that Ilx]l = 1. 111ustrat.e this equivalence
neometrically for vectors in a three-dimensional input space.
C)

5,6 {* * *) Write a numerical implementation of the K-means clustering algo-
rithm described in Section 5.9.3 using both the batch and on-line versions.
Illustrate the operation of the algorithm by generating data sets in two di-
mensions from a mixture of Gaussian distributions, and plotting the data
points together with the trajectories of the estimated means during the
course of the algorithm. Investigate how the results depend on the value
of K in relation to the number of Gaussian distributions, and how they
depend on the variances of the distributions in relation to their separation.
Study the performance of the on-line version of the algorithm for differ-
ent values of the learning rate parameter in (5.60), and compare the
algorithm with the batch version.

5.7 (+ * +) Implement a radial basis function network for one input variable, one
output variable and Gaussian basis functions having a common variance
parmeter u2. Generate a set of data by sampling the function h(x) =

0.5 + 0.4sin(2xx) with added Gaussian noise, and with s values taken
randomly from a uniform distribution in the interval (0,1$. Set the basis
function centres to a random subset of the x values, and use singular value
d~ornposition {Press et a&., 1992) to find the network weights which min-
imize the sum-of-squares error function. Investigate the dependence of the
network function on the number of basis function centres and on the value
of the variance parameter. Plot graphs of the form shown in Figure 5.3 to
illustrate the results.

(***I Write down an analytic expression for the regularized matrix M in
(5.32) for the case of Gaussian basis functions given by (5.1 5). Extend the
software implementation of the previous exercise to include this form of
regularization. Consider the case in which the number of basis functions
equals the number of data points and in which o is equal t o roughly twice

average separation of the input values. Investigate the effect of using
different values for the regularization coefficient A, and show that, if the
value of A is either too srnalI or too large, then the result.ing network
mapping gives a poor approximation to the function h(x} from whch the
data was generated.

ERROR FUNCTIONS

In previous chapters we have made use of the sum-of-squares error functi,
which was motivated primarily by analytical simplicity. There are many otl
possible choices of error function which can also be considered, depending
the particular application. In this chapter we shall describe a. variety of different,
error functians and discuss their relative merits.

For regression probIerns we shall see that the basic goal is to model the con-
ditional distribution of the output variables, conditioned on the input variables.
This motivates the use of a sum-of-squares error function, and several important
properties of this error function will be explored in some detaiI.

For classification problems the goal is to model the posterior probabilities of
class membership, again conditioned on the input variables. Although the sum-
of-squares error function can be used for classification (and can approximate
the posterior probabilities) we shall see that there are other, more appropriate,
error functions which can be considered. Generally speaking, Sections 6.1 to 6.4
are concerned with error functions for regression problems, while the remaining
sections are concerned prirnariIy with error functions for classification.

As we have stressed several times, the central goal in network training is not
to memorize the training data, but rather to model the unclerlying genern,tor of
the data, so that the best possible predictions for the outaut vector t can he
made when the trained network is subsequently presented Ath a new value 1
the input vector x. The most general and complete description of the generat
of the data is in terms of the probability density p(x, t) in the joint input-bar:
space. For associative prediction problems of the klnd we are considering, it
convenient t o decompose the joint probabiIity density into the product of the
conditional density of the target data, conditioned on the input data, and the
unconditional density of input data, so that

where ~(t lx) denotes the probability density of t given that x takes a pnrticuIs
value, while p{xj represents the unconditional density of x and is given IIV

The density p(x) plays an important role in several aspects of neurd networks,
induding procedures for choosing the basis function parameters in a radial basis
f,,,ction network (Section 5.9). However, for the purposes of making predictions
if t for new values of x, it ia the conditiend density p(tlx) which we need to
model-

Most of the error functions which will be considered in this chapter can be
from the principle of maximum likelihood (Section 2.2). For a set of

training data (xn, tn), the likelihood can be written as

where we have assumed that each data point (xn, tn) is drawn independently
from the same distribution, and hence we can multiply the probabilities. Instead
of maximizing the likelihood, it is generdly more convenient to minimize the
negative logarithm of the likelihood. These are equivaIent procedures, since the
negative logarithm is a, monotonic function. We therefore minimize

where E is called an ~mrfunct ion. Aa we shall see, a feed-forward neural network
can be regarded as a framework for modelling the conditional probability density
p(t lx) . The second term in (6.4) does not depend on the network parameters,
" n d so represents an additive constant which can be dropped from the error
hlnction. We therefore have

I that the error function takes the form of a sum over patterns of an error '
for eaeh pattern separately. This f o l l m ~ h r n the assumed independence of

"he data points under the given distribution. Different choices of error function
from different 8ssumptions about the form of the conditional distribution

?(tlx). For interpolation problems, the targets t consist of continuous quantities
'Vhose values we are trying to predict, whiIe for dassjfication problems they
rWesent labels defining clays membership or, more generally, estimates of the

1 Prghahilities of clms membership.

f'-l Sum-of-squares error
the case of c target variables t k where k = I, . . . , c, and suppose that

"'P distributions of the different target variables are independent, so that we can

write

We shal! further assume that the distribution of the target data is Gaussian. More
specifically, we assume that the target variable ttk is given by some dekerministic
function of x with added Gaussian noise c, so that

We now assume that the errors E (E have a normd distribution with zero mean,
and standard a deviation a which does not depend on x or on k. Thus, the
distribution of ~k is given by

We now seek to model the functions hk(x) by a neural network with outputs
yk (x; w) where w is the set of weight parameters governing the neural network
mapping, Using (6.7) and (6.8) we see that the probability distribution of target
variables is given by

where we have replaced the unknown function h k (x) by our model yk (x: w).
Together with (6.6) and (6.5) this leads to the foIlming expression for the error
function

We note that, for the purposes of error minimization, the second and third terms
on the right-hand side of (6.10) are independent of the weights w and so Can
be omitted. Similarly, the overall factor of l/a2 in the first term can also be
omitted. We then finally obtain the familiar expression for the sum-of-squares
error function

~ ~ i n g found a set of values w* for the weights which minimizes the error,
the optimum d u e for a can then by found by minimization of E in (6.10) with

to ~r. This minimization is easily performed analytically with the explicit,
,2nd intuitive, result

1 -
o2 = C -'y{y&"; w*) - t;I2

n=l k=l

which says that the optimd d u e of u2 is proportional to the residual value of
the sum-of-squares error function at its minimum. We shall return to this result
later.

We have derived the sum-of-squares error function from the principle of maxi-
mum likelihood an the assumption of Gaussian distributed target data. Of course
the use of a sum-of-squares error does not requiw the target data to have a Gaus-
sian distribution, Later in this chapter we shall consider the least-squares solution
for an example problem with a strongly non-Gaussian distribution. However, as
we shall see, if we use a sum-of-squares error, then the results we obtain cannot
distinguish between the true distribution and any other distribution having the
same mean and variance.

Note that it is sometimes convenient to assess the performance of networks
using a different error function from that used to train them. For instance, in
an interpolation problem the networks might be trained using a sum-of-squares
error function of the form

"here the sum runs over dl N patterns in the training set, whereas for network
testing it would be more convenient to use a rout-mean-square (RMS) error of
the form

"here w* denotes the weight vector of the trained network, and the sums ROW

over the N' patterns in the test set. Here Z is defined to be the average test
"t target vector

The rtMS error (6.15) has the advantage, unlike (6.14), that its d u e does not
grow with the size of the data set. If it has a value of unity then the network
is predicting the test data 'in the mem' while a value of zero means perfect
prediction of the test data.

I

6.1.1 Linear output units

The mapping function of a multi-layer perceptron or a radial basis function
network can be written in the form

where g(.) denotes the activation function of the output units, (wbj ,j) denotes the
set of weights (and biases) which connect directly to the output units, and %
denotes the set of all other weights (and biases) in the network. The derivative
of the sum-of-squares error (6.11) with respect to ak can be written as

If we choose the activation function for the output units t o be linear, g(a) = 01

then thii derivative takes a particularly simpIe form

This allows the minimization with respect to the weights (w k j) (with the weights
G held fixed) to be expressed as a linear optimization problem, which can he
solved in dosed form as discussed in Section 3.4.3. Here we shall follow a sirnilu
analysis, except that we shall find it convenient to make the bias pararnetefi
explicit and deal with them separately.

We first write the network mapping in the form

6.1: Sum-of-squaws error 199

31inimi~i~g the sum-of-squares error (6.11) with respect to the biases first, we
then obtain

*.hich can be solved explicitIy for the biases to give I '
where we have defined the following average quantities:

The result (6.23) shows that the role of the biases is to compensate for the I

difference between the averages (over the data set) of the target values, and the
weighted sums of the averages of the hidden unit outputs.

If we back-substitute the expression (6.23) into the sum-of-squares error we
obtain

I
where we hwe defined

I
,... a - n - -
tk - t k - tk, z? 3 ==Z-Z. 3 3. (6.26)

I1-e Can now minimize this error with respect to the output weights wx, t o give

- j' is Convenient at this point to introduce a matrix notation so that (T).* = £2,
' .W)kl = wkJ and (Z), = $. We can then write (6.27) in the form

where ZT denotes the transpose of 2. We can write an explicit solution f
weight matrix as Or the

W T = Z ~ T = O (6.29)

I where ~t is the pseudc-inverse of the matrix Z given by

fire we have assumed that the matrix (z ~ z) is non-singular. A more general
discussion of the properties of the pseudo-inverse can be found in Section 3.4.3,
For a singklayer network, this represents the optimal solution for the weights,
which can therefore be calculated explicitly. In the present case, howwer, this
expression for the weights depends on the activations of the hidden units which
themselves depend on the weights G. Thus, as the weights * change during
Iearning, so the optimal values for the weights (wkj,j) will also change. Never-
theless, it is still possible t o exploit the linear nature of the partid optimization
with respect to the output unit weights as part of an overall strategy for error
minimization, as discuwed in Section 7.3.

I 6.1-2 Linear sun mles

The use of a sum-of-squares error function to determine the weights in a network
with Iinear output units implies an interesting sum rule for the network outputs
(Lowe and Webb, 1991). Suppose that the target patterns used to train the
network satisfy an exact linear relation, so that for each pattern n we have

where u and uo are constants. We now show that, if the final-layer weig
are determined by the optimal least-squares procedure outlined above, then "

outputs of the network will satisfy the same linear constraint for arbitrary in1
patterns.

- Summing over all patterns n in (6.31) we find that the average target vec
t satisfies the relation uo = -uTT where the components of Z are given by (6.2
Thus, the linear relation (6.31) can be written in the form

The network outputs, given by (6.211, can be written in vector notation

Similarly, the solution for the optimal biases given by (6.23) can be written 4
I

31)

hts

w a = E - W . (6.34)

50" , ,,,sider the scalar product of y with the vector u, for an arbitrary input
Using the optirnd weights given by (6.291, together with (6.33) and

I ~.31) , we have

I '
I

uTy = uT(w0 + WZ)

= u q + UTTT(Z~)T(Z - E) (6-35)

we have used the following property of matrix transposes (A B) ~ = B=A=.
/6.32), however, it follows that

(u ~ T ~) , = uqn = uT(tn - X) = 0 (6.36)

n*here we haye used the linear constraint (6.32). Combining (6.35) aad (6.36) we
obtain

uTy = uTE (6.37)

and so the network outputs exactly satisfy the same linear sum rule as the target
data. We shall see an application of this result in the next section. Mom generally,
if a set of targets satisfies several linear constraints simultaneously, then so will
the outputs of the network (Exercise 6.3). I

6.1.3 Intepretatioa of network outputs

We next derjve m important result for the interpretation of the outputs of a aet-
work trained by minimizing a sum-of-squares error function. In particular, we

I

nil1 show that the outputs approximate the conditional averages of the target
data. This is a central result which has several important consequences for prac-
tical applications of neural networks. An understmding of its implications cm
help ta avoid some common rnjstakes, and lead to more effective USE of network
nemork techniques.

Consider the limit in which the size N of the training data set goes to
t,his limit we can replace the finite sum over patterns in the sum-of-squares

"rm with an integral of the form

6: Errur Functions I
where we have introduced an extra factor of 1/N into the definition of the sum-
of-squares error in order to make the limiting process meaningfu1, We now facto,
the joint distributions p (t k , x) into the product of the unconditional density
function for the input data p(x) , and the target data density conditional on the
input vector p(tk lx}, as in (6.11, to give I

E = {yi(x; w) - t*l2 p(tdx)p(x) d t k dx. (6.40) 1
k

Next we define the following conditional averages of the target data
I

We now write the term in brackets in (6.40) in the form I

Next we substitute (6.44) into (6.40) and make use of (6.41) and (6.42). The
second term on the right-hand side of (6.44) then vanishes as a consequence of
the integration over t k . The sum-of-squares error can then be written in the form

We now note that the second term in (6.45) is independent of the netwc
mapping function yk (x; w) and hence is independent of the network weights
For the purposes of determining the network weights by error minimization, t'
term can be neglected. Since the integrand in the fist term in (6.45) is nc
negative, the absolute minimum of the error function occurs when this first te'
vanishes, which corresponds to the following result for the network mapping

~ r l ;
W.

his --

Figure 6.1. R schematic illustration of the property (6.46) that the network
mapping which minimizes a sum-of-squares error function Is given by the con-
ditional average of the target data. Here we consider a mapping from a single
input variable x to a single target variable t . At any given value xo of the input
variable, the ~etwork output y (xo) is given by the average of t with respect to
t h e distribution p (t] x o) of the target variable, for that value of x.

where w* is the weight vector at the minimum of the error function. Equa-
tion (6.46) is a key result and says that the network mapping is given by the
conditional average of the target data, in other words by the regresston of t k

conditioned on x. This result is illustrated schematically in Figure 6.1, and by a
simple example in Figure 6.2.

Before discussing the consequences of this important result we note that it is
dependent on three key assumptions. First, the data set must be sufficiently large
that it appr-ates an infinite data set. Second, the network function yk(x; W)

must be sufficientIy genera! that there exists a choice of parameters which makes
the first term in (6.45) sufficiently small. This second requirement impIies that
:he number of adaptive weights (or equivalently the number of hidden units)
m l ~ s t he sufficiently Iarge. It is important that the two limits of Iarge data set
and large number of weights must be approached in a coupled way in order to
arhieve the desired result. This important issue is discussed in Section 9.1 in the
ro I l te~ t of generalization and the trade-off between bias and variance. The third
'aveat is that the optimization of the network parameters is performed in such
m a y as to find the appropriate minimum of the cost function. Techniques for
Parameter optimization in neural networks are discussed in Chapter 7.

Note that the derivation of the result (8.46) did not depend on the choice of
""work architecture, or even whether we were using a neural network at all. It
"RIB required that the representation for the non-linear mapping be sufficiently
yeneral. The importance of neural n e w r k s is that they provide a practical
framework for approximating arbitrary non-linear multivariate mappings, and
can therefore in principle approximate the conditional average t o arbitrary ~JZ-

curacy.

Figure 6.2. A simple exampIe of a network mapping which approximates the
conditional average of the target data (shown by the circles) generated from
the function t = x f 0.3 sin(2ns) + E where E is a random variable drawn from a
uniform distribution in the range (-0.1,O.l). The solid c u m shows the result
of training a multi-layer perceptron network with five hidden units using a sum-
of-squares error function. The network approxjmates the conditional average
of the target data, which gives a good repreentation of the function from
which the data was generated.

We can easily see why the minimum of a sum-of-squares error is given by the
average value of the target data by considering the simple error function

where a and b are constants. Differentiation of E (y) with respect tr
the minimum occurs at

In other mrds, the minimum is given by the average of the target data. Tutr
more general property (6.46) is simply the extension of this result to conditional
averages.

We can also derive (6.46) in s, more direct way as follows. If we take the sWJ-
of-squares error in the form (6.39) and set the functional derivative (Appendh
of E with respect to yk(x) to zero we obtain

6. I: Sum-of-squares error 205

The network outputs, given by the conditional averages of the target data, then
take the: form.

li make use of (6.41) we then obtain (6.46) directly The use of a functional
deri,.fiiw here is equivalent to the earlier assumption that the class of functions I

I

g d x~ is very general. For many regmion problems, the form of network mapping given by the
average (6.46) can be regarded as optimal. If the data is generated

a set of deterministic functions ht(x) with superimposed zero-mean noise
,, then the Carget data is given by

y k (~) = {tk 1 ~) = (hk(x) f . ~ k] x) = hk(x) (6'51)

since { E ~ } = 0. Thus the network has averasd over the noise on the data and
discovered the underlying deterministic function. Not all regression problems are
as simple as this, however, as we shdI see later.

Note that the first integral in (6.45) is weighted by the unconditional density
p(x). We therefore see that the network function yk (x) pays a significant penalty
for departing from the conditional average (tk lx} in regions of input space where
the density p(x) of input data is high. In regions where p(x) is small, there is
little penal@ if the network output is a poor approximation to the conditional
average. This forms the basis of a simple procedure for assigning error bars to
network predictions, based on an estimate of the density p(x} (Bishop, 1994b).

If we return to (6,451 we see that the second term can be written in the form

I
I

 here ~:(x) represents the variance of the target data, as a function of X , and
is given by

If the network mapping function is given by the conditional average (6.46), so

206 6: E m r Functions

that the first term in (6.45) vanishes, then the residual error is given by (6.52)
The value of the rmidual error is therefore be a measure of the average variance
of the target data. This is equivdent to the eartier result (6.13) obtained for a
finite data set. It should be emphasized, however, that these are biased estimates
of the variance, as discussed in Section 2.2, and so they should be treated With
care in practical applications.

We origindly derived the sum-of-squares error function from the principle
of maximum Iikelihood by assuming that the distribution of the target data
could be described by a Gaussian function with an x-dependent mean, and a
single glohal variance parameter. As we noted earlier, the sum-of-squares errs
does not require that the distribution of target variables be Gaussian. If a stlm

of-squares error is used, however, the quantities which can be determined are
the x-dependent; mean of the distribution (given by the outputs of the trained
network) and a global averaged variance (given by the residual value of the
error function at its minimum). Thus, the sum-ofsquares error function cannot,
distinguish between the true distribution, and a Gaussian distribution having
the same x-dependent mean and average variance.

6.1.4 Outer product appmximation for the Hessian

In Section 4.10.2 we discussed s particular approximation to the Hessian matrix
(the matrix of second derivatives of the error function with respect to the network
weights) for a sum-of-squares error function. This approximation is based on a
sum of outer products of first derivatives. Here we show that the approximation
is exact in the infinite data limit, provided we are at the global minimum of the
error function. Consider the error function in the form (6.45). Taking the second
derivatives with respect to two weights w, and w, we obtain

Using the result (6.46) that the outputs yk(x) of the trained network represent
the conditionaI averages of the target data, we see that the second term in (6.56')
vanishes. The Hessian is therefore given by an integral of terms involving on]?'
the products of first derivatives. For a finite data set, we can write this result in
the form

fact that a least-squares solution approximates the conditional average of
t&~get data h a an important consequence when neural networks are used

r , d y e inverse problems. Many potential applications of neural networks fall
inro this category- Examples include the analysis of spectral data, tomographic

control of industrial plant, and robot kinematics. For such prob-
Irms there exists a wel1-defined f a m a d problem which is characterized by a
h,,,ctzonal (i.e. single-valued) mapping. Often this corresponds to causality in a
&sicd system. In the case of spectral reconstructien, for example, the forward
17mhlem corresponds to the evaluation of the spectrum when the parameters
i,locations, widths and amplitudes) of the spectral lines are prescribed. In prac-

applications we generally have to solve the correspendin~: inverse problem
in whicb the roles of input and output variables are interchanged. In She c m e
of spectral analysis, this corresponds to the determination of the spectral line
parameters from an observed spectrum. For inverse problems, the mapping can
be often he multi-valued, with valves of the inputs far which there are several
valid values for the outputs. For example, there mav be several choices for the
spectral line parameters which give rise to the s&e observed spectrum. If a
least-squares approach is applied to an inverse problem, it will approximate the
conditional average of the target data, and this will frequently lead to extremely
poor performance (since the average of severd solutions is not necessarily itself
a solution).

As a simple illustration of this problem, consider the data set shown earlier
171 Figure 6.2 where we saw how a network which approximates the conditional
wrage of the target data gives a good representation of the underlying gen-
orator of the data. Suppose we now reverse the roles of the input and target
variables. Figure 6.3 shows the result of training a network of the same type as
before on the same data set, bu t with input and output variables interchanged.
The network again tries to approximate the conditional average of the target
'Iltta. but this time the conditional average gives a very poor description of the
"nerator of tlie data. The problem can be traced to the intermediate values of
.' in Figure 6.3 where the target data is multi-valued. Predictions made by the
'rainerl network in this region can he very poor. The probIern cannot be solved

modifying the network architecture or the training algorithm, since it is a
fllnrlamental comequence of using a sum-of-squares error function. For problems
I"-'olving many input and output variables, where visualization of the data is not
"'ai~htforward, it can be very difficult to ascertain whether there are regions 1 ~ f . input space for which the target data Is multi-dued. One approach to such

1 p rohl~rns is to go beyond the Gaussian description of the distribution of target
''ariables, and to find a more general model for the conditional density, as will
I"' discussed in Section 6.4.

st-squa
lata set
erchang

Figure 6.3. An illustration of the probIem which can arise when a Ie: res
approach is applied to an inverse problem. This shows the game c as
in Figure 6.2 but with the roles of input and output var iab l~ jnt ed.
The solid curve shows the result of training the same n a r d network as in
Figure 8.2, again using a sum-of-squares error. This time the network gives a
very poor fit to the data, as it again tries to represent the conditional average
of the target vduns.

We have derived the sum-of-squares error function horn the principle of maxi-
mum likelihood on the assumption of a Gaussian distribution of target data. We
can obtain more general error functions by considering a generalization of the
Gaussian distribution of the form

where r(a) is the gamma function (defined on page 28), the parameter 0 con-
trols the variance of the distribution, and the prefactor in (6.58) ensures that
J P (E) d~ = 1. For the case of R = 2 this distribution reduces to a Gaussian.
now consider the negative Iog-likelihood of a data set, given by (6.5) and (6.@1
under the distribution (6.58). Omitting irrelevant constants, we obtain an error
function of the form

6.2: Minkowski e w o ~ 209

Figure 6.4. Plot of the function ly - tiR against ly - t] for various vdues of
R. This function forms the basis for the definition of the Minkowski-R error
mwure.

called the Minkowski-R emr . This reduces to the usual sum-of-squares error
when R = 2. For the case of R = 1, the distribution function (6.58) is a Laplacian,
and the corresponding Minkowski-R measure (6.59) is called the citg block metric
(because the distance between two points on a plane measured by this metric is
equal t o the Euclidean distance covered by moving between the two points along
segments of limes parallel to the axes, as if moving along brocks in a city). More
generally, the distance metric ly - tl" is known os the LR norm. The function
j,v - tiR is plotted against ly - tl for various values of R in Figure 6.4.

The derivatives of the Minkowski-R error function with respect to the weights
in she network are given by

Thwe derivat!es can be evaluated using the standard back-propagation prow
'-lure. djscnssed in Section 4.8. Examples of the application of the Minkowski-R
"'or to networks trained using back-propagation are given in Hanson and Burr
(1988) and Burrascano (1991).

One of the potential difficulties of the standard sum-of-squares error is that it
"%ives the largest contril~utions from the points which have the largest errors.
!f there are long tails on the distributions then the solution can be dominated
hv a very smdl number of points called outliers which have particularly large
"rors. This is illustrat.ed by a simple example in Figure 6.5.

A similarly severe problem can also arise from incorrectly labelled data. For
'"stance, one single data noint for which the target value has been incorrectly
lah~lled by a large amr completely invalidate tohe least-squares solution. ~ u n t can

Figure 6.5. Example of fitting a linear polynomial through a set of noisy data
points by minimizing a sum-of-squares error. In (a) the line gives a good r e p
resentstion of the systematic aspects of the data. In (b) a single extra data
point has been added which lies we11 away from the other data points, showing
how i t dominatw the fitting of the line.

Techniques which attempt to solve this problem are referred to as mbust s t a b -
tics, and a review in the context of conventional statistical methods can be found
in Huber (1981). The use of the Minkowski error with an R value less than 2
reduces the sensitivity to outliers. For instance, with R = 1, the minimum error
solution computes the conditional median of the data, rather than the condi-
tional mean (Exercise 6.5). The reason for this can be seen by considering the
simple error

Minimizing E(y) with respect to y gives

which is satisfied when y is the median of the points (t n) (i.e, the vdue for mfhid
the same number of points tn have values greater than y a s have values fess
y). If one of the tn is taken t o some very large wlue, this has no effect on the
solution for y.

~~pt-dependent variance
6.3
, dr have assumed that the variance of the target data can be described Sr f.

\,!. a '.ing1e globai parameter o. In many practical applications, this will be a
l'oDr s8umption, and we now discuss more general models for the target data

The s u m - o f - s q ~ ~ ~ error is easily extended to allow each output to
hp described by its own variance parameter uk. More generally, we might wish to

how the variance of the data depends on the input vector x (Nix and
\\>igend, 1994). This can be done by adopting a more general description for the
,on,jitional distribution of the target data, and then writing down the negative
loFlikelihood in order to obtain a suitable error function. Thus, we write the
,,,ditiond distribution of the target variables in the form

Forming the negative logarithm of the likelihood function as before, and omitting
additive constants, we obtain

Ewe now multiply by 1/N as before, and take the infinite-data limit, we obtain
the error function in the form I

The functions uk(x) can be modelled by adding further outputs to the neural 1
network. We shall not consider this approach further, as it is a special case of
a much more general technique for modelling the full conditional distribution,
which will be discussed shortly.

An alternative approach to determining an input-dependent variance (Satch-
I

'~~11, 1994) is based on the result (6.46) that the network mapping which mini-
mizes a sum-of squares error is given by the conditional expectation of the target
data. First a network is trained in the usual way by minimizing a sum-of-squares I

War in which the t; form the targets. The outputs of this network, when p r e I
'Wed with the training data input vectors xn, correspond to the conditional
averages of the target data. These averages are subtracted from the target val-
ues and the results are then squared and used as targets for a second network I

~'hich is also trained using a sum-of-squares error function. The outputs of this 1 I
network then represent the conditional averages of { t k - { t k l ~) } ~ and thus a p
Proximate the variances u;(x) given by (6.55).

This procedure can be justified directly as follows. Consider the infinite data

limit again, for which we can write the error function in the form (6.65). lf '
again assume that the functions pk(x) and uk(x) have unlimited fle~ibilit ,~ th

give
we can first minimize E with respect to the yk by functional differentiaim lo

I

which, after some rearrangement, gives the standard result I

as before. We can similarly minimize E independently with respect to the
tions rrk(x) to give

which is eaiIy solved for ~ Z (X) to give

where we have used (6.67). We can then interpret (6.69) in terms of the two-stage
two-network approach described above, This technique is simple and can make
use of standard neural network software. Its principal limitation is that it s t i l l
assumes a Gaussian form for the distribution function (since it makes use only
of the second-order statistics of the target data).

Since these approaches are based an maximum likelihood, they will give a
biased estimate of the variances as discussed above, and so will tend to under-
estimate the true variance. In extreme cases, such methods can discover patho-
logical solutions in which the variance goes to zero, corresponding to an infinite
IikeBhood, as discussed in the context of unconditional density estimation in
Section 2.5.5.

6.4 Modelling conditional distributions

We can view the basic goal in training a feed-forward neural network as that
of modelIing the statistical properties of the generator of the data? expressed in
terms of a conditional distribution function p(tlx). For the sum-of-squares error
function, this corresponds to modeliing the conditional distribution of the target
data in terms of a Gau:sian distribution with a global variance parameter and fin

x-dependent mean. Hdweves, if the data has a complex structure, as for exampk
in Figure 6.3, then this particular choice of distribution can lead to a very poor
representation of the data. We therefore seek a general framework for modelling
conditional probability distributions.

6.4: Modelbng conditional dbtribpltdons 213

input parameter conditional
vector vector probability

density -

neural parametric
nework distribution

Fiwre 6.6. We can represent general conditional probability densities p (t 1x1
by considering a parametric model for the distribution oft whose parameters
are determined by the outputs of a neural network which takm x as its input
vector.

In Chapter 2 we discussed a number of parametric techniques for modelling
unconditional distributions. Suppose we use one of these techniques to model the
distribution p{tlO) of target variables t, where 0 denotes the set of parameters
which gwern the model distribution, If we allow'the parameters 19 to be functions
of the input vector x, then we can model conditional distributions. We can
achieve this by letting the components of B(x) be given by the outputs of a
f~ed-forward neural network which takes x as input. This leads to the combined
densit, model and neurd network structure shown in Figure 6.6. Provided we
consider a sufficiently general density model, and a sufficiently flexible network,
1l.q have a framework for approximating arbitrary conditional distributions.

For different choices of the parametric model, we obtain different represen-
rations for the conditional densities. For example, a single Gaussian model for
P (~ (B) corresponds to the procedure described above in Section 6.3. Another pos-
$Ihility is t o use a linear combination of a fixed set of kernel functions. In thi

the outputs of the network represent the coefficients in the linear combina-
tion (Bishop and Legleye, 1995), and we must ensure that the coeficients are
Positive and sum to one in order to preserve the positivity and normalization of
the conditional density. We do not discuss this approach further as it is a special
case of the more general technique which we consider next.

A powerful, general framework for modelling unconditional distributions,
baed on the use of mixture models, was introduced in Section 2.6. M i u r e
models represent a distribution in terms of a linear combination of adaptive ker-
nel functions. If we apply this technique to the problem of modelling conditional

we have

The centres pj represent location parameters, and again the notion of, non. 1 consider first the derivatives of En with respect to those network outputs
informative prhr (Exercise 10.12) suggests that these be represented directly I ,,icll correspond to the mixing coefficients a,. Using (6.77) and (6.78) we obtain
the network outputs

aE" "k
--A- -

If pjk = xrk*
(6.80)

dak @L

As before, we can construct an error function from the likelihood by u !ye note that, as a result of the softmax transformation (6.741, the value
(6.5) to give ,i nr; depends on all of the network outputs which contribute to the mixing 1 ,,.ficients, and w differentiating (6.74) we have

with $ j (t lx) given by (6.71). The minimization of this error function with respect
to the parameters of the neural network leads to a model for the conditional den-
sity of the target data. From this density function, any desired statistic involving
the output variables can in principle be computed.

En order to minimize the error function, we need to calculate the derivatives
of the error E with respect to the weights in the neural network. These can be
evaluated by using the standard back-propagation procedure, provided we obtain
suitable expressions for the derivatives of the error with respect to the outputs
of the network. Since the error function (6.77) is composed of a sum of term
E = C, En, one for each pattern, we can consider the derivatives 6; = 8En/Jzk
fox a particuIar pattern n and then fin$ the derimtives of E by summing over
all patterns. Note that, since the network output units have linear activation
functions g(a) = a, the quantities 6; can also be written as aEn/aak, and SO are
equivalent to the 'errors' introduced in the discussion of error back-propaga
in Section 4.8. These errors can be back-propagated through the network LO
the derivatives with respect to the network weights.

We have already remarked that the (p3 can be regarded as conditional denarb:
functions, with prior probabilities aj. As with the mixture models discussed in
Section 2.6, it is comenient to introduce the corresponding posterior probabili-
ties, which we obtain using Bayes?theorem,

From the chain rule we have

Combining /6.80), (6.81) and (6.82) we then obtain

Using (6.75) we have

'

bnbining these together we then obtain

where we have used (6.79).
For the derivatives corresponding to the gJ parameters we make use of (6.73)

dnd (6.78), together with (6.731, to give

From as this leads to some simplification of the subsequent analysis. Note that,
(6.78)) the posterior probabilities sum to unity:

Finally, since the parameters p,k are given directly by the z;k network out-
puts, we have, using (6.77) and (6.781, together with (6.711,

228 6: E m r Functions 6.4: Modelling conditional distributions 219

0.0
0.0 0.5 1.0

Figure 6.7. Pbt of the contours nf the conditional probabiIity density of the
target data obtained from a multi-layer perceptron network trained using the
same data as in Figure 6.3, but using the error function (6.77). The network has
three Gaussian kernel functions, and uses a twdaym multi-layer perceptror
with five ' tanh' sigmoidal units in the hidden layer, and nine outputs.

An example of the application of these techniques t o the mtimation of con-
ditional densities is given in Figure 6.7, which shows the contours of conditional
density corresponding to the data set shown in Figure 6.3.

The outputs of the neural network, and hence the parameters in the rnieure
model, are necessarily continuous single-valued functions of the input mriahl*
However, the model is able to produce a conditional density which is unirnodal for
some values of x and trirnodal for other vaEues, as in Figure 6.7, by rnodulatin'
the amplitudes of the mixing components, or priors, %(XI. T h i ~ can be seen
Figure 6.8 which shows plots of the three priors aj(z) as functions of z. It ci
be seen that for a: = 0.2 and x = 0.8 only one of the three kernels has a non-ze
prior probability. At x = 0.5, however, all three kernels have significant prior5

Once the network has been trained it can predict the conditional densi
function of the target data for any given value of the input vector. This co
ditional density represents a complete description of the generator of the data*
so far as the problem of predicting the value of the output vector is concerned-
From this density function we can cdculate more specific quantities which ma!'
he of interest in different applications. One of the simplest of these is the mean*
corresponding to the conditional average of the target data, given by

Figure 6.8. Plot of the priors ccj (x) as a function of a: for the three kernel func-
tions from the network used to plot Figure 6.7. At both small and large -values
of s, where the conditional probability density of the target data is unimodaI,
only one of the kernels has a prior probability which differs significantly from
zero. A t intermediate values of x, where the conditional density is trimodal,
the three kernels have comparable priors.

v:llere we have used (6.70) and (6,71). This is equivalent to the function corn-
Plrted by a standard network trained by Ieast squares, and so this network can
reproduce the conventional least-squares result as a special case. We can likewise
'""luate the variance of the density function about the conditional average, to
zive

' v l l q ~ ~ WE haw used (6.70), (6.71) and (6.90). This is more general than the
r" r tcs~~nding leaqt-squares result since this variance is allowed to be a general
f'rWian of x. Simi!;tr results can be obtainetl for other moments of the condi-

220 6: E m r Functions

Figure 6.9. This shows a pIot of { t lx) against x (solid curve) calculated from
the conditional density in Figure 6.7 using (6.903, together with corresponding
plots of {t 1s) f s (x) (dashed c u m) obtained using (6.92).

tional distribution, Plots of the mean and variance, obtained from the condition,
distribution in Figure 6.7, are shown in Figure 6.9.

For some applications, the distribution of the target data will consist of a lim-
ited number of distinct branches, as is the case for the data shown in Figure 6.3.
In such cases we may be interested in finding an output value corresponding to
just one of the branches (as would be the case in many controt applications for
example). The most probable branch is the one which has the greatest associated
'probability mass'. Since each component of the mixture model is normalizedT

&(tlx) dt = I, the most probable branch of the solution, assuming the C Q ~

ponents are well separated and have negligible overlap, is given by

In the mixtureof-experts model (Jacobs ef aL, 1991) this corresponds to select,in
the output of one of the component network modules. The required value o f t Is

then given by the corresponding centre pj . Figure 6.10 shows the most
branch of the solution, as a function of s, for the same network a~ used to dot
Figure 6.7.

Again, one of the limitations of using maximum likelihood techniques r
determine variance-like quantities such as the ui, is that it is biased (Section 2.2
In particular, it tends to underestimate the variance in regions where t.llere la
limited data.

6.4: Modethng conditional disfibzataons 221

Figure 6.10. Plot of the central d u e of the most probable kernel s a function
of z from the network used to pIot Figure 6.7. This gives a discontinuous
functional mapping from x to t which at every value of x Iies well inside a
region of significant probability density. The diagram should be compared with
the corresponding continuous mapping in Figure 6.3 obtained from standard
!east squares.

6-4.1 Periodic varjables

So far we have considered the problem of 'regression' for variables which live
on the red axis (-m, w}. However, a number of applications involve angle-like

I

output variables which live on a finite interval, usudly (0 , 2 ~) and which are in-
trinsically periodic. Due to the periodicity, the techniques described so far cannot

I

1~ applied directly. Here we show how the general framework discussed above
can be extended to estimate the conditional distribution p(8lx) of a periodic
miable 0, conditional on an input vector x (Bishop and Legleye, 1995).

The approach is again based on a mixture of kernel functions , but in this case
the kernel functions themselves are periodic, thereby ensuring that the overall
density function will be periodic. To motivate this approach, consider the prob
lam of modelling the distribution of a velocity vector v in two dimensions. Since

lives in a Euclidean plane, we can model the density function p (v) using a
mixture of conventional spherical Gaussian kernels, where each kernel has the
form

where (v,, v,) are the Cartesian components of Y, and (p , , py) are the compo-
"Pnts of thc centr~ p of t h e kernel. From this we can extract the conditional

222 6: Error Acnctions

distribution of the polar angle 0 of the vector v, given a value for v = I I Y ~ I , 7
is easily done with the transformation v, = ucos6, v, = vsin6, and dckl
Q0 to be the polar angle of p, EO that p, = pcosBo and p, = psine0, ,b
p = IIpII. This leads to s distribution which can be written in the form

where the normalization coefficient has been expressed in terms of the zprc
order modified Bessel function of the first kind, I. (m). The distribution (6.
is known as a circular nomal or van Mises distribution (Mardia, 1972). :
parameter m (which depends on v in our derivat;ion} is andogous t o the I

verse) variance parameter in a conventional normal distribution. Since (6.95
periodic, we can construct a general representation for the conditional dent
of a periodic variable by considering s mixture of circular normal kernels, with
parameters governed by the outputs of a neuraI network. The weights in the
network can again be found by maximizing the likelihood function defined over
a set of training data.

An example of the application of these techniques to the determination
wind direction from satellite radar scatkerometer data is given in Bishop :
Legleye (1995). This is an inverse problem in which the target data is mum-
valued. For ~roblerns involving periodic variables in which the target data is
effectively single-valued with respect to the input vector, then a single circular
normal kernel can be used.

An alternative approach to modelling conditional distributions of perin
variables is discussed in Exercise 6.8.

6.5 Estimating posterior probabilities

dic

So far in this chapter we have focused on 'regression' problems in which
target variable are continuous. We now turn to a consideration of error funrtil
for classification problems in which the target variables represent discrete cl
labels (or, more generally, the probabilities of class membership).

When we use a neural network to solve a classification problem, there are t
distinct ways in which we can view the objectives of network training. At the sim-
pler level, we can arrange for the network to represent a non-linear discriminant
function so that, when a new input vector is presented to the trained network.
the outputs provide a classification directly. The second approach, which is morP
general and more powerful, is to use the network to model the posterior proha-
bilities of class membership. TypicaIly there is one output unit for each possihIe
class, and the activation of each output unit represents the corresponding POS-

terior probability p(Ck/x), where Ck is the kth class, and x is the input vect
These probabilities can then be used in a subsequent decision-making stNe
arrive at a classification.

By arranging for the network outputs to approximate posterior probabilitl
we can exploit a number of results which are not available if the network

the
DIiS

6.5: Estimating posterior pmbabilztaes 223

as a non-linear discriminant (Richard and Lippmann, 1991). These

Jf7nimum error-rate decisions
From the discussion of optimal classification in Section 1.9 we know that, to
minimize the probability of rnisclassification, a new input vector should be
assigned to the class having the largest posterior probability. Note that the
netmork outputs need not be close to 0 or 1 if the class-conditional density
functions are overlapping. Heuristic procedures, such as applying extra
training using those patterns which fall to generate outputs close to the
target values, will be counterproductive, since this alters the distributions
and makes it less likely that the network will generate the correct Bayesian
pobabilities.

Outputs sum fo 1
Since the network outputs approximate posterior probabiIities they should
sum to unity This can be enforced explicitly as part of the choice of network
structure as we shall see. Also, the average of each network output over
a11 patterns in the training set should approximate the corresponding prior
class probabilities, since

These estimated priors can be compared with the sample estimates of the
priors obtained from the fractions of patterns in each class within the
training data set. Differences between these two estimates are an indication
that the network is not modelling the posterior probabilities accurately
(Richard and Lippmann, 1991).

:ompensating for diferent prior probabilities
In some of the conventional approaches to pattern classification discussed
in Chapter 1, the posterior probabilities were expressed through Bayes'
theorem in the form

and the prior probabilities P(Ck) and class-conditional densities p(x lCk)
I

were estimated separately. The neural network approach, by c o n t r ~ t , p r e
vides direct estimates of the posterior probabilities, Sometimes the prior I
probabilities expected when the network is in use differ from those repre- I

scnted by the training set. It is then it is a simple matter t o use Bayes'
theorem (6.97) to make the necessary corrections to the network outputs.
This is achieved simply by dividing the network outputs by the prior prob-
abilities corresponding to the training set, multiplying them by the new

6.6: Sum-of-squares for classification 225

prior probabilities, and then normalizing the results. Changes in the prior
probabilities can therefore be accommodated without re-training the net-
work. The prior probabilities for the training set may be estimated simply
by evaluating the fraction of the training set data points in each cl&A
Prior roba abilities corresponding to the network's operating avironrnent
can often be obtained very straightforwardly since only the class labels ,,,
needed and no input data is required. Aa an example, consider the prob
lem of classifying medical images into knormd' and 'tumour'. When u s d
for screening purposes, we would expect a very small prior probability ,f
'turnour'. To obtain a good variety of tumour images in the training set
would therefore require huge numbers of training examples. An alternatiw
is to increase artificially the proportion of tumour images in the trdning
set;, and then to compensate for the different priors on the test data as
described above. The prior probabilities for tumours in the general popu-
lation can be obtained horn medical statistics, without having to collect the
corraspanding images. Correction of the network outputs is then a simple
matter of multiplication and division.

Combining the outputs of several networks
Rather than using a single network to solve a complete problem, there is
often benefit in breaking the problem down inta smaller parts and treating
each part with a separate network. By dividing the network outputs by
the prior probabilities used during training, the network outputs become
likelihoods scaled by the unconditional density of the input vectors. These
scaled likelihoods can be multipIied together on the assumption that the
input vectors for the various networks are independent. Since the scaling
factor is independent of class, a classifier based on the product of scaled
likelihoods will give the same results as one based on the true likelihoods.
This approach has been svccessfully applied to problems in speech recog-
nition (Bourlard and Morgan, 1990; Singer and Lippmann, 1992).

Minimum risk
As discussed in Chapter 1, the goal of a classification system may not
always be to minimize the probability of misclassification. Different mis-
cla~sifications may carry different penalties, and we may wish to minimize
the overall loss or risk (Section 1.10). Again the medical screening appli-
cation provides a good example. It may be far more serious to rnis-classifJ'
a tumour image as normd than t o mis-classify a normal image as that of
a tumour. In this case, the posterior probabilities from the network call . .
be combined with a suitable matrix of loss coefficients to allow the mml-
mum risk decision to be made. Again, no network re-training is required to
achieve this. However, if the required loss matrix elements are known hefore
the network is trained, then it may be better to modify the error function
as will be discussed for the case of a sum-of-squares error in Section 6.6.2.

RrjPcfion t h ~ s h o l d s
In Section 1.10.1 we introduced the concept of a rejection threshold, which
is such that if all of the posterior probabilities fall below this threshold then

classification decision is made. Alternative classification techniques can
then be applied to the rejected cases. This reflects the costs associated
with making the wrong decisions balanced against the cost of alternative,
classification procedures. In the medical image classification problem, for
instance, it may be better not to try to cIassify doubtful images automati-
cally, but instead to have a human expert provide a decision. Rejection of
input vectors can be achieved in a principled way, provided the network
outputs represent posterior probabilities of class membership.

rtl subsequent sections of this chapter we show how the outputs of a network can
be interpreted approximations to posterior probabilities, prwided the error
function used for network training is carefully chosen. We also show that some
error functions allow networks to represent non-linear discriminants, even though
the output values themselves need not correspond to probabilities.

8.6 Sum-of-squares for classification

In the previous section we showed that, for a network trained by minimizing a
sum-of-squares error function, the network outputs approximate the conditional
averages of the target data

lo the case of a clasification problem, every input vector in the training set is
]ahelled by its class membership, represented by a set of target values tz . The
targets can he chosen according to a variety of schemes, but the most convenient
i~ the 1-of-c coding in which, for an input vector xn from class CL, we have

= fiki where Ski is the Kronecker delta symbol defined on page xiii. In this
'""e the target values are precisely known and the density function in target
+Pare becomes singular and can be written as

'Incp P!CI]X) is the probability that x belongs to class CI. If we now substitute
It;.Pg) into (6.98) we obtain

Co ' h a t the outputs of t h ~ network correspond to Bayesian posterior probabilities
E'i'hite, Z989; Riclrard and Lipprnann, 1991).

226 6: E ~ T Functions

If the network outputs represent probabilities, then they should lie in th,
range (0, I) and should sum to 1. For a network with linear output units, trained
by minimixing a sum-of-squares error function, it was shown in Section 6.1.2
that if the target values satisfy a linear constraint, then the network outputs will
satisfy the same constraint for an arbitrary input vector. In the case of a I-ofi,
coding scheme, the target values sum to unity for each pattern, and so the net.
work outputs will also always sum to unity. However, there is no guarantee that
they will lie in the range (0 , l) . In fact, the sum-of-squares error function is not
the most appropriate for classification problems. It was derived from maximum
likelihood on the assumption of Gaussian distributed target data. However, the
target values for a 1-of-c coding scheme are binary, and hence far from having
a Gaussian distribution. Later we discuss error measures which are more ap
propriate for classification problems. However, there are advantages in using a
sum-of-squares error, including the fact that the determination of the output
weights in a network represents a linear optimization problem. The significance
of this result for radial basis function networks was described in Chapter 5 . I&
therefore discuss the use of a sum-of-squares error for classification problems in
more detail before considering alternative choices of error function.

For a two-class problem, the 1-of-r: target coding scheme described above
leads to a network wit>h two output units, one for each class, whose attiva?,ions
represent the corresponding probabilities of class membership. An a1ternatiz.e
approach, however, is to use a single output y and a target coding which sets
tn = I if x" is from class C1 and tn = 0 if xn is from class Cz. In this case, the
distribution of target values is given by

Substituting this into (6.98) gives

and so the network output y(x) represents the posterior probability of the input
vector x belonging to class C1. The corresponding probability for class C:! is then
given by P(C2 lx) = 1 - y (x).

6.6.1 Interp~tation of hidden units

In Section 6.1.1 we derived the expression (6.29) for the fmal-layer weights which
minimizes a sum-of-squares error, for networks with linear output units. By ?l lb

stituting this result back into the error function we obtain an expression in which
the only adaptive parameters are those associated with hidden units, which Ive

denote by G . This expression sheds light on the nature of the hidden unit rely
resentation which a network learns, and indicates why multi-layer non-li11Pnr
neural networks can he effective as pattern clnssifrcation systems (Webb md
Lowe, 1990).

6.6: Sum- of-squares for clesszfication

\ffriting (6.25) in matrix notation we obtain

,\-here 2, W and T are defined on page 199. We now substitute the solution
ifi.zg) lor the optimal weights into (6,103) to give I

I

Bv using some matrix rnmipuIation (Exercise 6.9) we can write this in the form

Here ST is given by

and the components of E are defined by (6.24). We see that this can be interpreted
as the total covariance matrix for the activations at the output of the final layer
of hidden units with respect to the training data set. Similarly, Ss in (6.105) is
given by

ld~ich can be interpreted we shall see) as a form of between-class covariance
lnatrix.

Since the first term in the curly brackets in (6.105) depends only on the
target data it is independent of the remaining weights iG iin the network. Thus,
'ni11imizing the sum-of-squares error is equivalent to maximizing a particular
'Iiscriminant function defined with respect to the activations of the final-layer I

[udden units given by

'o'" that, if the matrix ST is ill-conditioned, then the inverse matrix ST' should
t ''F I 'Vla ced hy the pseudeinwrse S T . The criterion (6.108) has a clear sirnilarltyl

'" fhc Fisher discriminant function which is discussed in Section 3.6. Nothing
'"R is specific to the multi-layer perceptron, or indeed to neural networks. The
"mp result is obtained regardless of t h e functions zj (x ; %) and applies to any
Er!nprnlised linear discriminant in which the basis functions contain adaptive

parameters.
The role play& by the hidden units can now be stated as follows. The Weighls

in the find layer are djusted to produce an optimum discrimination of the
classes of input vectors by means of a linear transformation. Minimizing the
error of this linear discriminant requires that the input data undergo a
linear transformation into the space spanned by the activations of the hidden
units in such a way as to maximize the discriminant function given by (6.108)~

Further insight into the nature of the matrix Sg is obtained by considering
a pwticular target coding scheme. For the 1-ofc target coding scheme we ca,
write (6.107) in the form (Exercise 6.10)

where Nk is the number of patterns in class Ck and ?Zk is the mean activation
vector of the hidden units for dl training patterns in class Ck, and is defined by

Note that S B in (6.109) differs from the conventional between-cIass cmrian
matrix introduced in Section 3.6 by having factors of N: instead of Nk in the su
over classes. This represents a strong weighting of the feature extraction criteri~
in favour of classes with larger numbers of patterns. If there is a significant
difference between the prior probabilities for the training and test data sets,
then this effect may be undesirable, and we shdl shortly see how to correct for it
by modifying the sum-of-squares error measure. As discussed in Section 3.6, there
are several ways to generalize Fisher" origind hwclass discriminant criterion to
several classes, alE of which reduce to the original Fisher result as a special case-
In general, there is no way to decide which of these will yield the best results. For
a two-class probIem, the between-class covariance matrix given in (6.109) differs
from the conventional one only by a adtiplicative constant, so in th i s case the
network criterion is equivalent to the original Fisher expression.

In earlier work, GalIinari et at. (1988, 1991) showed that, for a network
linear processing units with a 1-of-c target coding, the minimization of a sum-(
squares error gave a set of input-tehidden weights which maximized a criteric
which took the form of a ratio of determinants of between-class and total covari-
ance matrices defined at the outputs of the hidden units. The results of 1t-ebh
and Lowe (1990) contain this result as a special case.

6.6.2 Weighted sum-of-squares

We have seen that, for networks with linear output units, minimization of a
sum-of-squares error at the network outputs maximizes a particular non-linear
feature extrwtion criterion

6.6: Sum-of-squaws for classification 229

at the hidden units. For the 1-of-c coding scheme, the corresponding between-
I

rles matrix, given by (6.109), contains coefficients which depend on
the number of patterns in ciass Ck. Thus, the hidden unit representation

obtained by maximizing this discriminant function will only be optima1 for a

Pa flicular set of prior probabilities NkJN. If the prior probabilities differ between
wining and test sets, then the feature extraction need not be optimal.

A related difficulty arises if there are different costs associated with different
mjsclassificatioes, so that a general loss matrix needs to be considered. It has
been suggested (Low and Webb, 1990, 1991) that modifications to the form of
the sum-of-squares error to take account of the loss matrix can lead to improved
feature extraction by the hidden layer, and hence t o improved classification per-
Forrnance. I

To deal with different prbr probabilities between the training set and the
test set, Lowe and Webb (1990) modify the sum-of-squares error by introducing
a weighting factor K, for each pattern n so that the error function becomes

where the weighting factors are given by
1 1

for pattern n in class C k

where F(clt) is the prior probability of class Ch for the test data, and Pk = Nk/N l1
is the corresponding (sample estimate of the) prior probability for the training
data. It is straightforward to show (Exercise 6.12) that the total covariance

I
I

'natrix ST then becomes

n.llich is the samplebased estimate of the total covariance matrix for data with
I

Prior clms probabilitim P(G). In (6.114) the E are given by

which agan is the sample-based estimate of the value which E would take for
data having the prior probabilities F(ck) . Similarly, assuming a 1-of-c target

6: Error Folnctions 6' 7: Cross-entropy for two classes

coding scheme, the between-class c m i a n c e matrix is modified to become ,rllich is a particular case of the binomial distribution called the Bernoulli d B
cribl,tian With this interpretation of the output unit activations, the likelihood

SB = x N ~ F (c ~) ~ (P - z)(E~ - E) ~ (6.1 16) uE n b s e d n g the training data set, assuming the data points me drawn indepen-
k dentlv from this distribution, is then given by

which is the sampkbxed estimate of the between-class covariance matrix f,,

data with prior probabilities PI&).
The effects if an arbitrary iosh matrix can similarly be taken into account

n

by modifying the target coding scheme so that, for a pattern n which is label]d ,$, usual, it is more convenient t o minimize the negative logarithm of the l i k e
as belonging to class Cl, the target vector has components t! = 1 - Lsk, where tihood This Ieads to the cross-entropy error function (Hopfield, 1987; Baum
Llk represents the loss in assigning a pattern from class CI to class Ch. ~h~ ,d 1frilczek, 1988; Solla et al., 1988; Ninton, 1989; Hampshire and Pearlmutter,
total cwariance matrix is unaltered, while the between-class covariance matrix 1990) in the form
becomes (Exercise 6.13) I

E = - {t" In y" + (1 - tn) In(1- yn)} . (6.120)
R

(6.117)
I \ilp r,l~all discuss the meaning of the term 'entropy' in Section 6.10. For the

moment let us consider some elementary properties of this error function. which reduces to the usual expression when Llk = 1 - bIk. Examples of the , Differentiating the error function with respect to yn we obtain
appIication of these techniques to a problem in medical prognosis artre given in ,
Lowe and Webb (1990).

6.7 Cross-entropy far twa classes

We have seen that, for a 1-of-e target coding scheme, the outputs of a network 1
trained by minimizing a sum-of-squares error function approximate the posterior
probabilities of class membership, conditioned on the input vector. However, the
sum-of-squares error was obtained from the maximum likelihood principle by
assuming the target data was generated from a smooth deterministic function
with added Gaussian noise. This is clearly a sensible starting point for regression
problems. For ~Iassification problems, however, the targets are binary variabIes,
and the Gaussian noise model does not provide a good description of their clip
tsibution. We therefore seek more appropriate choices of error function.

To start with, we consider problems involving two classes. One approach
sueh problems would be to use a network with two output units, one for each 1 class. This type of representation is discussed in Section 8.9. Here we discuss an
alternative approach in which we consider a network with s single output. Y-
would llke the value of y to represent the posterior probability P(41x) for rhus 1
C1. The posterior probability of class C2 will then by given by P(C21x) = 1 - g+
This can be achieved if we consider a target coding scheme for which t = 1 if
the input vector belongs to class C1 and E = O if it belongs to class C2. I%+ Can

combine these into a single expression, so that the probability of observing 1
target value is

p(t1x) = y t (l -

Tlie absolute minimum of the error function occurs when

yn = tn for all n. (6.122)

In Section 3.1.3 we showed that, for a network with a single output y = g(a)
"hose value is to be interpreted as a probability, it is appropriate to consider
t l l ~ logistic activation function

{'hich has the property

rJambining (6.121) and (6.124) we see that the derivative of the error with respect
'" takes t h e simple form

Here 6" is the 'error' quantik which is back-propagated through the nebopt in
order to compute the derivatives of the error function with respect to the netnrotk
weights (Seetion 4.8). Note that (6.125) has the same form as obtained for
sum-&-squares error function and linear output units. We see that thert, .

'S B natural pairing of error function and output unit activation function which .
mveg rise to this simple form for the derivative. Use of the logistic form of activation

function also leads to corresponding simplifications wben evaluating the HPssian
matrix (the matrix of second derivatives of the error function).

From (6.120) and (6.1221, the value of the cross-entropy error function at
minimum is given by

its

For the l-of-c coding scheme this vanishes. However, the error function (6.120)

6.7: Cross-entropy far two ci~~ctsses 233

is also the correct one to use wben tn is a continuous variable in the range
Figure 6.11. Plots of the classconditiond densities used to generate a data set representing the probability of the input vector xn belonging to class C, (see
to demonstrate the interpretation of network outputs a s posterior probabilities.

Section 6.10 and Exercise 6.15). In this case the minimum value (6.126) of the A total of 2000 data points were generated from these densities, using equal
error need not vanish, and so it is convenient to subtract off this value from the prior probabilities.
original error function to give a modified error of the form

Since (6.126) is independent of the network outputs this does not affect t
location of the minimum and so has no effect on network training. The modifi
error (6.127) always has its minimum at 0, irrespective of the particular traini
set.

As a simple illustration of the interpretation of network outputs as probab
ties, we consider a simple twc-class problem with one input variable in which t
class-conditional densities are given by the Gaussian mixture functions shu
in Figure 6.11. A multi-layer perceptron with five hidden units having 'tal
activation functions, and one output unit having a Iogistic sigmoid a c t i ~ t i
function, was trained by minimizing a cross-entropy error using 100 cycIef; of
the BFGS quasi-Newton algorithm (Section 7.10). The resulting network
ping function is shown, along with the true posterior probability calculated using
Bayes' theorem, in Figure 6.12.

6 -7.1 Sigmoid activation functions

.LIC-

m
lb'
on

al.. 1995). In this case we need to consider the distributions of the outputs of
the hidden units, represented here by the vector z for the two clas~m. We can
generalize the discussion by assuming that these class-conditional densities are
described by

which is a. member of the ~ n e n t i a l famdy of distributions (which includes
nlany of the common distributions as specid cases such as Gaussian, binomid,
E~moulli, Poisson, and so on). The parameters t9k and 4 control the form of the
distribution. In miting (6.128) we are implicitly assuming tha t the distributions
differ only in the paramekrs Ok and not in #. An example would be two Gaussian
djstrihutians with different means, but with common covariance matrices.

Using Bayes' theorem, we can write the posterior probability for class C1 in
ihc fom

In Section 3.1.3, the logistic sigmoid activation function was motivated for a - - 1
singlelayer network by the goal of ensuring that the network outputs represent (6.129)

posterior probabiliti~, with the assumption that the class-conditional densities
1 -I- exp(-a)

can be approximated by normal distributions. We can apply a similar argument
to the network outputs in the case of multi-layered networks (Rumelhart

"Iiich is a logistic sigmoid function, in which

Figure 6.12. The result of training a multi-layer perceptran on data generated
from the density functions in Figure 6.11. The solid curve shows the output
of the trained network as a function of the input variable x , while the dashed
curve shows the true posterior probability P(C1Jx) calculated from the class-
conditional densities using Bayes' theorem.

Using (6.128) we can write this in the form I

I 6.7: Cross-entropy far two classes 235

~ , 2 PmpeP-ties of the cross-entropy e m r

where we have defined

Thus the network output is given by a logistic sigmoid activation function acting
on a weighted linear combination of the outputs of those hidden units which send
connections to the output unit. 11

I t is dear that we can apply the above arguments to the activations of hidden I

units in a network. Provided such units use logistic sigmoid activation function5-
we can interpret their outputs as probabilities of the presence of cornspondin!:
'features' conditioned on the inputs to the units.

I

1

SilpPose we write the network output, for a particular pattern n, in the form
, = tn + cn. Then the cross-entropy error function (6.127) can be written as

,:/

E = - {tn l n (l+ Pitn) + (1 - t") ln(1 - fn/(l - tn))} (6.134)

30 t h ~ t the error function depends on the relative errors of the network outputs.
This should be compared with the sum-of-squares error function which depends
,, the (squares of the) absolute errors. Minimization of the crossentropy error
Function will therefore tend to result in similar relative errors on both small
ilnd large target values. By contrast, the sum-of-squares error function tends to
give slmilar absolute errors for each pattern, and will therefore give large relative
crrors for small output values. This suggests that the cross-entropy error function
is likely to perform better than sum-of-squares at estimating small probabilities.

For binary targets, with tR = 1 for an input vector xm from class C1 and
tn = 0 for inputs from class Cz, we can write the cross-entropy error function
(6 134) in the form

where we have used zln z -+ 0 for z -t 0. If we suppose that cn is small, then
t h ~ : erroT function becomes

~vhere we haw expanded the logarithms using ln(1 + a} 2: z and noted that if
T, E (0, I) then tn < 0 for inputs horn class C1 and E" > 0 for inputs from class
C2- The result (6.136) has the form of the Minkowski-R error function for R = 1,
di~cussed earlier. Compared to the sum-of-squares error function, this gives much

weight to smaller errors.
x e have obtained the cross-entropy function by requiring that the network

o u f ~ u t y represents the probability of an input vector x beIonging to class C1. We
'an now confirm the consistency of this requirement by considering the minimum
Of the error function for an infinitely l a r ~ data set, for which we can write (6.120)
in the form

the network function y(x) is independent of the target value t we can write
('.-137) in the form

where, as before, we have defined the conditional average of the target data

If we now set the functional derivative (Appendix D) of (6.138) with respec!
to y(x) to zero we see that the minimum of the error function occurs when

so that, as for the! sum-of-squares error, the output of the network approximats
the conditionat average of the target data for the given input vector. For the
target coding scheme which we have sbdopted we have

Substituting (6.141) into (6.139) we find

as required.

6.8 Multiple independent attributes

In all of the classification probIems which we have considered so far, the aim has
been to assign new vectors to one of c mutually exdusive cIasses. However. in
some applications we may wish to use a network to determine the probabilities
of the presence or absence of a number of attributes which need not he rnut~ldb
exclusive. In this case the network has multiple outputs, and the value of the
output variable yk represents the probability that the ktb attribute is present.
If we treat the a t t r i bu t~ as independent, then the distribution of target vabla
will satisfy

We can now use (6.118) for each of the conditional distributions t o give

6.9: Cross-entropy for multiple cslasses 237

now construct the likelihood function and take the negative logarithm in
I f , t ,.unl way, we obtain the error function in the form

,f*lth this choice of error function, the network outputs should each have a 10-
ds[ic sigmoidal activation function of the form (6.123). Again, for binary target
:ariable~ t t , this error function vanishes at its minimum. If the t! are probabil-
ities in the range (0, I), the minimum of the error will depend on the particulm
data set, and so it is convenient to subtract off this minimum value to give

which always has an absolute minimum value with respect to the {y;) of zero.

6.9 Cross-entropy for multiple classes

IF7c now return to the conventional classification problem involving mutudIy
exclusive classes, and consider the form which the error function should take
when the number of classes is greater than two. Consider a network with one
output yr, for each clus, and target data which has a I-of-c coding scheme, SO
that t; = Skr for a pattern n from class Cs. The probability of observing the set
of target values t! = Scl , given an input vector xa, is just p(Cl lx) = yl. The value
of the conditional distribution for this pattern can therefore he written as

If we form the likelihood function, and take the negative logarithm as before, we
~ h t a i n an error function of the form

absolute minimum of this error function with respect to the {YE} occurs
~l r = t; for all values of k and n, At the minimum the error function takes

'he t ~ t l ~ ~

238 6: Error h n c t i o n s 6.9: Cross-entropy fo t multiple classes 239 I
For a iqf-e coding so cheme this minimum value is 0. However, the error hnetian
(6.14e1 ir still rnlid- _ . as we shall see, when te is a continuous ~ariab)~ in thp

I
range 0.1) r e p r e a e n e t i n g the probability that input x" belongs to class C, in
this cse the minimtLr 'Irn of the error function need not vanish (it represpnts
entrop-of the distsiti - 5ution of target variables, as will be discussed shortlq-l, lt i,
then cgn.enient to Sr Flibtract off this minimum value, and hence ohtain the
functiog in the form s-

which 5 non-negati\-,~:e, and which equals zero when y t = $2 for all k and n.
now consider < the corresponding activation function which shouid he

for the o u t F r e u t units. If the output values are to be interpreted as prob
&ilitjp; they must I i i . ie in the range (0, I), and they must sum to unity. This can
be by using* q a generalization of the logistic sigmoid activation functiw
which -?kes the for-

which k known aq t: the normalbed exponential, or softmm activation firnct.ion
(Bridle. 1990). The term softrnax is used because this activation function rep

resents a smooth ver+rsion of the winner-takes-all activation model in which t b ~
unit e t h the larger4 input has output +l while all other units have output 0.
If the mponentinls i + in (6.151) are modified to have the form exp(oak), then the
winne:-*akes-all mti- .~ ivation is recovered in the limit P t m. The softrnax activ*
tion figction can b- R regarded a s a generalization of the logistic function, since
it can b written in the form

where .!:: is given b-cy

Fro,il R ~ ~ P S ' theorem, the posterior probability of class Ck is given by

sl,\,stituting (6.154) into (6.155) and rearranging we obtain

and we have defined

Thp result (6.156) represents the final layer of a network with softmax activation
functions. and shows that (~rovided the distribution (6.154) is appropriate) the
out,pi~ts can be interpreted as probabilities of class membership, conditioned on
the outputs of the hidden units.

In waluating the derivatives of the softmax error hnction we need to consider
Illf' inputs to all output units, and so we have (for pattern n)

Ar ai th the logi:->stic sigmoid, we can give a very general rnotivatiol~ fo' lbc

sofirnzx activation f <unction by considering the posterior probability that a]lid-

den u r activation vector z beiongs to class Ck. in which the class-conditions'
densirs are assum-d to belong to the family of exponential distributions of
geners form

him (6.151) we have

':l1ilp from (6.150) we have

6'E"
-- -

t k' --

a ~ k ' Yk'

"[l)s'itutina (6.161) and (6.162) into (6.160) we find

6: E m r finctiow I 6.1 0: Entropy

which is the same resuIt as found for both the sum-of-squares error (with a
linear activation function) and the two-class cross-entropy error (with a logistC
activation function). Again, we see that there is a natural pairing of error funct.ion
and activation function.

6.10 Entropy

The concept of entropy was originally developed by physieisbs in the context ,f

equilibrium thermodynamics and later extended through the development of
tistical mechanics. It was introduced into information theory by Shannon (1948).
An underatanding of basic information theory leads to further insights into the
entropy-based error measures discussed in this section. It also paves the way [or
an introduction to the minimum description length framework in Section 10.10.
Here we consider two distinct but related interpretations of entropy, the first
based on degree of disoder and the second based on infomation content.

Consider a probability density function p(z) for a single random variable z.
I t is convenient to represent the density function as a histogram in which the
x-axis has been divided into bins labelled by the integer i. Imagine constructing
the histogram by putting a total of N identical discrete objects into the bins,
such that the i th bin contains N, objects. We wish to count the number of
distinct ways in which objects can be arranged, while still giving rise to the
same histogram. Since there are N ways of choosing the first object, (N - 1)
ways of choosing the second object, and so on, there a total of N ! ways to select
the N objects. However, we do not wish to count rearrangements of objects
within a single bin. For the ith bin there are N,! such rearrangements and SO the
total number of distinct ways to arrange the objects, known as the rnultiplicit!:
is given by

The entropy is defined as (a constant times) the negative logarithm of the mtlI-

tiplicity

We now consider the limit N - oo, and make use of Stirling's approximatio"
In N ! -- N In N - N together with the relation Ci Ni = N , to give

Figure 6.13. Examples of two histograms, together with their entropy values
defined by (6.166). The histograms were generated by sampling two Gaussian
functions with variance parameters a = 0.4 and n = 0.08, and eeach contain
I000 points. Note that the more compact distribution has a lower entropy,

where pi = N,/N (as N + a) represents the probability corresponding to the i th
bin. The entropy therefore gives a measure of the number of different microstates
(arrangements of objects in the bins) which can give rise to a given macrostate
(i.?. a given set of probabilities pi). A very sharply peaked distribution has a very
low entropy, whereas if the objects are spread out over many bins the entropy is
much higher. The smallest value for the entropy is 0 and occurs when all of the
Pmbability mass is concentrated in one bin (so that one of the p, is 1 and all
+flp rest are 0). Conversely the largest entropy arises when all of the bins contain
prllral probability mays, so that pi = 1/M where M is the total number of bins.
'Shis is easily seen by maximizing (6.166) subject to the constraint Cipi = 1
' Y j V a Lagange multiplier (Appendix C). An example of two histograms, with
"hir respective entropies, is shown in Figure 6.13.
br continuous distributions (rather than histograms) we can take the limit

n-hich the number M of bins w>es to infinity, If A is the width of each bin,
' h ~ " the probability m x s in the $h bin is pi = p(zi}A, and so the entropy can
!'P W t t e n in the form

. .

S = Iim Cp(x i)~ ln Cp(xi)A}
M - m

i = l

242 6: Ewor Functions

where we have used J p (x) dx = 1. The second term on the right-hand side
diverges in the limit M -t m. In order to define a meaningful entropy measure
for continuous distributions we discard this texrn, since it is independent of prZ),
and simply use the first term on the right-hand side of (6.1681, which is called
the d i f l e ~ a t i a l entropy. This is reasonable, since if we measure the difference in
entropy between two distributions, the second term in (6,168) would cancel. For
distributions which are functions of several variables, we define the entropy to
be

where x = (xl,. . . , x d I T .
It is interesting to consider the form of distribution which gives rise to the

maximum of the entropy function. In order to find a meaningful maximum it is
necessary to constrain the variance of the distribution. For the case of a single
variable x on the infinite axis (-m, m), we maximize

subject to the constraints that the distribution be normalized and that the mean
and variance of the distribution have specified d u e s

Introducing Lagrange multipIiers XI, A2 and X3 (Appendix C) for each of the
constraints, we can use calculus of variations (Appendix D) to maximize the
functional

which leads to

2 p(z) = exp (-1 - A 1 - A 2 5 - h (x - 11)) - (6.175)

6.10: Entropy 243

can solve for the Lagrawe multipliers by back-substituting this apression
inta the constraint equations. This finally gives the expression for the maximizing

in the form

~h~~ we see that the distribution having maximum entropy, for given mean and
vRriance, is the Gaussian.

As a second viewpoint on the interpretation of entropy, let us consider the
dmount of information, or equidently the 'degree of surprise', which is obtained
when we learn that a particular event has occurred. We expect that the informa-
tion will depend on the probability p of the event, since if p = 1 then the event is
certain to occur, and there is no surprise when the event is found to occur (and
5 0 no information is received). Conversely, if the probability is low, then there
is a large degree of surprise in learning that it has occurred. We are therefore
lookine for a, measure of information a(p) which is a continuous, rnonotonicalIy u

increasing function of p and which is such that s(1) = 0. An appropriate ex-
pression can be obtained as follows. Consider two independent events A and 3,
with probabilities p~ and p s . If we h o w that both events have occurred then
the total information is S{~APB). If, however, we are first told that A has OG
curred, then the residual information on learning that B has occurred must be
q l p ~ p ~) - s (p A) , which must equal s (p B) since knowledge that A hhas occurred
should not affect the information resulting from learning that B occurred (since
t h ~ events are independent). This leads to the foIlawing condition

From this we can deduce that s(p2) = 2s(p) and by induction that s (p N) =
N s (p) for integer N. Similarly, s(p) = s (~ p l / ~] ~) = ~ s (p l / ~) and by &ension
,ip? wfi) = (M / N) s (p) . This implies that

rational z and hence, by continuity, for real x. If we define r = - logz p, so
that 3) = (1/2)21 then

It conventional to choose s(1/2) = 1. The information is then expressed in
'its (hinary digits). From now on we shall consider logarithms to base e (natural
Enm 3arithms) in which case the information is expressed in aats. We see that the

hmollnt of information is proportional to the logarithm of the probability. This
nri~Ws essentially hecause, for independent events, probabilities are multiplicative,

6.11: General conditions for outputs to be probabilities 245

whiIe information is additive.
Consider a random variable a which can take values ak with probabilities

p(ak). If a sender wishes to transmit the value of cr to a receiver, then the amount
of information (in bits) which this requires is - Inp(ak) if the variable takes th,
value ak. Thus, the expected (average) information needed to transmit the value
of a is given by

which is the entropy of the random variable cr. Thus S(a) as the average ameum
of information received when the d u e of cu is observed. The average length of
a binary message (in nats) needed to transmit the value of a is at Ieast equal to
the entropy of a. This i s known as the noiseless coding thwrena (Shannon, 1948;
Viterbi and Omura, 1979).

Returning to the case of continuous variabIes, denoted by the vector x, we
note that in practice we do not know the true distribution p{x) . If we encode the
value of x for transmission to a receiver, then we must (implicitly or explicitly)
choose a distribution g(x) from which to construct the coding. The information
needed to encode a value of x under this distribution is just - lnq(x) . If the
variable x is drawn from a true distribution p (x) then the average information
needed to encode x is given by

which is the cmss-entropy between the distributions q(x) and p(x) . ~ornparison
with (2.68) shows that this equals the negative log likelihood under the mode1
distribution q (x) when the true distribution is p(x) . It is also equal to the sum of
the KulEbd-Leibler distance between p(x) and q(x) , given by (2.70), and the
entropy of p(x} since

We can easily show that, of all possible distributions q(x) , the &ice which I
gives the smallest average information, i.e. the smallest value for the cross I
entropy, is the true distribution p(x) (Exercise 6.21). Since the entropy of P(X!
is independent of the distribution p(x), we see from (6.1 82) that minimization of
the cross-entropy is equivalent to minimization of the Kullback-Leibler distance.

We can apply the concept of cross-entropy to the training of neural netmrotks*
For a variable a which takes a discrete set of values ryk we can write (6.181) in
the fom

Consider first a network with c outputs yk (x) representing the model prababili-
for x to belong to the corresponding cImses Ck. We shall suppose that we

ha,,e a set of target variables t k representing the corresponding true probabilities.
Then the cross-entropy becomes

For a set of N data points which are assumed to be drawn independently from
, common distribution, the information is additive and hence the total cross-
entropy is given by

which can be used s an error function for network training. We see that this
form of error function is valid not only when the targets t: have a, one-of-c coding
(representing precise hodedge of the true classes of the data) but also when
they lie anywhere in the range 0 5 t; < 1, subject to the constraint xk t; = 1,
corresponding to probabilities of class membership.

For two classes, we can consider a network with a single output g represenb
E ~ F : the model probability for membership of class Cl, with corresponding true
probability t. The model probability for membership of class C2 is then 1 - y, and
the corresponding true probability is 1 - t . FolIowing the same line of argument

above we then arrive at the cross-entropy error function for two classes and
.;L' data points in the form

N
- {t' lnp(xn) -c (1 - tn) ln(1- y(xn))} . (6.186)

n=l

6.11 General conditions for outputs to be probabilities
S far, we have considered three different error measures (sum-ofisquares, cross-

F ' n ' ' ~ ~ ~ for a single output, and cross-entropy for softrnax networks) all of which
the network outputs t o be interpreted as probabilities. We may therefore

T ' "rider what conditions an error measure should satisfy in order that the net-
I?- O r k outputs have this property. The discussion given here is based on that of

'ampshire and Peaximutter (1990).

246 6: Ewor Functions

All of the error measures we are considering take the form of a sum
patterns of an error term for each pattern E = En En. We shall also take tb
error to be a sum over terms for each output unit separately. This corresponds
to the assumption that the distributions of different target variables are statis.
tically independent (which is not satisfied by the Gaussian mixture based en
considered earlier, or by the softrnax error, for instance). Thus we write

where f (-, .) is some function to be determined. We shall also assume that j
depends only on the magnitude of the difference between yk and t k , so that
f (y;, t;) = f (ly? - t: 1). In the limit of an infinite data set, we can write the
average (or expected) per-pattern error in the form

If we use a 1-sf-c target ~od ing scheme, then from (6.99) we can write the con-
ditional distribution of the target varvariabIes in the form

We now substitute (6.189) into (6.188) and evaluate the integrals over the t k
variables (which simply involves integrals of 6-functions) to give

where we have used Ck P(Cklx) = 1, and assumed that 0 5 yk 5 1 so t h a t
the modulus signs can be omitted. The condition that the average per-pattern
error in (6.190) be minimized with respect to the yk(x) is given by setting the
functional derivative of (E) (Appendix D) to zero

which gives I

6.11: Geneml conditiom for outputS to be probabilities 247 I
of the network are to represent probabilities, so that yk(x) =

~jkni;l .), then the function f must satisfy the condition

ilz5s of filnctions f which satisfies this condition is given by

This includes two important error functions which we have encountered already.
For r = 1 we obtain f (y) = y2/2 which gives the sum-of-squares error function.
similarly, for r = 0 we obtain f (y) = - ln(l - y) = - ln(l -]yl) which gives rise
to the cross-entropy error function. To see this, consider a single output and note
that f (y, t) = - En(1- ly - tl) = - ln(y) if t = 1 and f (y, f) = - ln(l - ly -ti) =
- In(Z - y) if t = 0. These can be combined into a single expression of the form

-{t In y + (1 - t) ln(1- y)). (6.195)

Summing over all outputs, as in (6.187), and then over aI1 patterns gives the
crossentropy error for multiple independent attributes in the form (6.145).

-4s an example of an error function which does not satisfy (6.193), consider
thc Minkowski-R error measure which is given by f (y) = yR. Substituting this

(8.193) gives

which is only satisfied if R. = 2, corresponding to the sum-of-squares error. For
2, the outputs of the network do not correspond to posterior probabilities.

They do. however, represent non-Iinear discriminant functions, SO that the min-
probability of mis-classification is obtained by assigning patterns to the

for which the corresponding network output is largest. To see this, substi-
' ' I t ? f (Y) = g R into the condition (6.192) satisfied by the network outputs at
'hc minimurn of the error function, to give

""w that the y i only represent the posterior probabilities when R = 2, COT-
''5~onding to the sum-of-squares error. However, the decision boundaries cor-
rr-s
, Pond to the minimum mis-classification rate discriminant for all values of R

'""'ss vk are monotonic functions of the posterior probabilities P(Ck1x).

Exercises

6.1 {*) Throughout this chapter we have considered data in which t h
input vectors x are known exactly, but the target vectors t are noisy. Consider

instead the situation in which the target data is generated from a smooth
function h(x) but where the input data is corrupted by additive noise
(Webb, 1994). Show that the sum-of-squares error, in the infinite dab
limit, can be written as

248 6: Ewor Functions

By changing variables to 1: = x i- <, and using functional differentiation
(Appendix D), show that the least squares solution is given by

Exercises 249
I

so that the optimum solution is again given by the conditional expectation
of the target data.

6.2 (*) Consider a model in which the target data is taken to hav, e the fc

ta set. HF
sions sat

E e E

layer w

where E" is drawn from a zero mean Gaussian distribution havlrle a fixed
covariance matrix E. Derive the likelihood function for a data set d r a m
from this distribution, and hence write down the error function. The use
of such an error function is called generalized least squams, and the usual
sum-of-squares error function corresponds im the special cz = 2 1
where I is the identity matrix.

6.3 (*) Consider a network with linear ooutput units whose final- eights
are obtained by minimization of a sum-of-squares error function using the
pseuddnverse matrix. Show that, if the target values for each training
pattern satisfy several Iinear constraints of the form (6.31) simultaneousl!'a
then the outputs of the trained network will satisfy the same constraints
exactly for an arbitrary input vector.

6.4 (*) Verify the normalization of the probability density function in (fi.S9).
Use the result I"(1/2) = f i to show that the Gaussian distribution i'
specid case corresponding to R = 2.

8.5 (*) Write down an expression for the Minkowski-R error function (6.59) dh
R = 1 in infinite data limit, and hence show that the network mapping
which minimizes the error is given by the conditional median of t.he target
data.

6.6 (**) Write down an expression for the conditional mixture density error
function (6.77) in the limit of an infinite da :nce, by using functional
differentiation (Appendix D), find axpres isfied by the quantities

where F(xlx) is a density function in X-space. Show that (6.201) satisfies
t,hc periodicity reqtlirement p(4 -k 2~1x1 = p(8lx). Also, show that, if the
density function F{xlx) is normalized on the intern1 (-m, m), then the
density p{B[x) will be normalized on (0,27r). The density function F(i(~lx)
can now be modelled using a mixture of Gaussians 4, (~1x1 of the form

I

1

Mrrite down the error function given by the negative logarithm of the like-
lihood of a set of data points (xn, On), and find expressions for the deriv*
tiyes of the error function with respect to the means and variances of the
Gaussian components. Assuming that the mixing coefficients aJ are deter-
mined hy a softmax function of the form (6.74$, find the derivatives of the
error function with respect to the corresponding network output variables
2.7. Note that, in a prxtical implementation, it is necessary to restrict
+he summation over L to a limited range. Since the Gaussian functions
d, (x~x) have exponentially decaying tails, this can represent an extremely
Sood approximation in almost all cases. '" (*I Using the definition of the pseudo-inverse matrix given by (6.301, verify
f r,'che rcsul t (6.105) follows from the pseudeinverse formula (6.104).

"." f*) v~r i f i that, for a 1-of c target coding scheme, the between-class covari-
"IlCp matrix given by (6.307) reduces to the form (6.109).

"" (*I Tire result (6.108) shows that minimizing a sum-ofsquares error func-
';ion for a network with linear output units, maximizes a particular non-
linrnr discriminant function defined over t h e space of activations of the

(x), pj (x) and c:(x), in terms of conditional averages, at the minimum I

of this error. Note that the constraint x, orj = 1 should be enforced by I
using n. Lagrange multiplier (Appendix C). Discuss the interpretation of 1
these expressions. I

6.7 .) Consider the circular normal distribution given by (6.95) and show that,
for 8 - do << 1, the shape of the distribution is approximately Gaussian.

e'g (+ *) In Section 6.4.1 we discussed a technique for modelling the conditional
density p(Blx) of a periodic variable 0 based on a mixture of circular normal
[jistributions. Here we investigate an alternative approach which involves
finding a transformation from the periodic variable 0 E (0 , 2 ~) to a Eu-
clidean variable x C (-m, m), and then applying the Gaussian mixture
tecllnique of Section 6.4 to the estimation of the conditional density F{8lx)
in ,y-spam (Bishop and Legleye, 1995). Consider the density hnction d%
fined by the transformation

hidden units. Show that if, instead of using 0 and 1 as the network targets,
the values 0 and 1 / a are used, where Nk is the number of Patterns in
class 4, then the between-class cwarinnce matrix, given by (6.107) b,
comes

sB = C - B)(I~ -51T (6.203)
k

where xk is defined by (6.110). This is now the standard h e t ~ e e n - ~ l ~ ~
covariance matrix as introduced in Section 3.6.

6.12 (* *) Consider a weighted sum-of-squares error function of the form (6,112)
in which the network outputs yk are given by (6.21). Show that the solutian
for the biases which minimizes the error function is given by

where we have introduced the following weighted averages

Use this result to show that the error function, with the biases set to their
optimal values, can be written in the form

1/2 where K = diag(m,), (T)hk = t:, (WIkj = wkj and (Z) , i = q, and we
have defined -

tn k - - tn k - T k j ;"zzn-zj. 3 3 (6.207)
Show that (6.206) has the same form as the error function in (6.103) but
with Z and T premultiptied by K. Hence show that the value of W which
minimizes this error function is given by

Hence show that minimization of the error (6.206) is equivalent to maa-
mization of a criterion of the form

in which

show that, for a 1-of-c target coding scheme, and for weighting factors .sn
ajven by (6.113), the to td covariance matrix ST is given by (6.114) and
3

the between-class covariance matrix SB is given by (6.116).

6-13 (*) Suppose that, in Exercise 6.11, the target values had been set to tz =
1 - Llk for a pattern n belonging class Cr, where Ldk represents the loss

with assigning such a pattern to class Ck (loss matrices are
introduced in Section 1.10). Show that the between-class covariance matrix
@en by (6.107) takes the form (6.1 17). Verify that this reduces to the form
(8.109) when Lm = 1 - 6 t k .

6.14 (*) Consider the Hessian matrix for the cross-entropy error function (6.120)
[or two classes and a single network output. Show that, in the Iirnit of an
infinite data set, the terms involving second derivatives of the network
outputs, as well as some of the terns involving first. derivatives, vanish
at the minimum of the error function as a consequence of the fact that
the network outputs equal the conditional averages of the target data. Ex-
tend this result b the cross-entropy error (6.145) corresponding to several
independent attributes.

6.15 (*) SIlow that the entropy measure in (6.1451, which was derived for targets
t k = Ol lr applies also in the case where the targets me probabilities with
values in the range (0, I). Do this by considering an extended data set in
which each pattern tz is replaced by a s e t of M patterns of which a fraction
M t t are set to 1 and the remainder are set to 0, and then applying (6.145)
to this extended data set.

6-16 (*$ Consider the error function {6.148), together with a network whose
outputs we given by a softrnax activation function (6.151), in the limit of
an infinite data set. Show that the network output functions yk(x) which
minimize the enor are given by the conditional averages of the target data
{ t k Ix). Hint: since the {Ylc] are not independent, as a result of the constraint
XI, yk = I, consider the functional derivative (Appendix D) with respect
to ak (x) instead.

'-17 (*) Consider the Hessian matrix for the error function (6.148) and a net-
work with a softmax output activation function (6.151) so that Ck yk (x) =
1. Show that the terms involving second derivatives of the network outputs
vanish in the limit of infinite data, provided the network has been trained
to a minimum of the error function. Hint: make use of the result of Exer-
cise 6.16.

I ''I9 (*) Consider a classification network in which the targets far training are
given by t; = 1 - L[k for an input vector xn from class Cl, where Lzk
are the elements of a loss matrix, as discussed in Section 1-10. Use the
general resurt yk(x) = {tklx) for the network outputs at the minimum of
t,he error function to show that the outputs are given by weighted posterior

probabilities such that selection of the largest output corresponds to th,
minimum-risk classification.

6.19 (**) Generate histograms of the k i d shown in Figure 6.13 for a dis
crete variable by sampling from a distribution consisting of a mixture ,r
two Gaussians. Evaluate numericalIy the entropy of the histograms using
(6.166) and explore the dependence of the entropy on the parameters ,f

the mixture model.
6.20 (+) Using the technique of functional differentiation (Appendix D), t,

gether with Lagrange muItipliers (Appendix C), show that the probability
densib function p (x) which maximizes the entropy

subject to the constraints

is given by

where r (a) is the gamma functian defined on page 28.
6.21 (*) Show that the choice of distribution q(x) which minimizes the cross-

entropy (6.181) is given by q(x) = p (x) . To do this, consider the functionnl
derivative (Appendix D) of (6.181) with respect to q(x) . This deri~~abi~v
needs to be evaIuated subject to the constraint

which can be imposed by using a Lagrange multiplier (Appendix C?. I
6-22 (*) By substituting (6.189) into (6.188) and evaluating the integral over ty

derive the result f6.190).

PARAMETER OPTIMIZATION ALGORITHMS

chapters, the problem of learning in neural networks has been for-
m,llated in terms of the minimization of an error function E. This error is a
function of the adaptive parameters (weights and biases) in the network, which
n.e can conveniently group together into a single W-dimensional weight vector
w with components wl . . . ww.

In Chapter 4 it was shown that, for a multi-layer perceptron, the derivatives
of an error function with respect to the network parameters can be obtained in a
computationally efficient way using back-propagation. We shall see that the use
fif such gradient information is of central importance in hding algorithms for
1~t;urork training which are sufficiently fast to be of practical use for large-scale
applications.

The problem of minimizing continuous, differentiable functions of many varj-
ahles is one which has been widely studied, and many of the conventionaI ap-
proaches t o this problem are directly applicable t o the training of neural net-
lurks. In this chapter we shall review several of the most important practical
alg~rit~hrns. One of the simplest of these is gradient descent, which has heen de-
srribed briefly in earlier chapters. Here we investigate gradient descent in more
detail, and discuss i ts limitations. We then describe a number of heuristic modifi-
cations to gradient descent which aim to improve its performance, Next we review

important class of conventional optimization algorithms based on the con-
C'Pt of conjugate gradients, including a relatively recent variation called scaled
" " j u ~ a t e gradients, 'GVe then describe the other major cIass of conventional o p
'imixattion algorithms known as quasi-Newton methods. Finally, we discuss the
PQmerhrl Levenberg-Marquardt algorithm which is applicable specifically to a
'ilm-of-squares error function. There are many standard textbooks which cover
""-linear optimization techniques, induding Polak (1971), Gill e t al. (1981),
D~nnis and Schnabel [1983}, Luenberger (1884), and Fletcher (1987).

It is sometimes argued that learning algorithms for neural networks should
"' local (in the sense of the network diagram) so that the computations needed
t

'Vdate each weight can be performed using information available locally to
!i . lat weight. This requirement may be motivated by interest in modelling biolog-
jCal neural systems or by the desire to implement network algorithms in parallel
h3rdivare. Although the locality issue is relevant both to biological plausibility
and hardware irnglementation, it represents only one facet of these issues,
Snd ~ I I C ~ more careft11 analyses are required. Since our goal is to find the most

254 7: Parameter Optimization dbgo~thms 1 7.1: E m r suaces 255 I

Figure 7.1. Geometrical picture of the error function E (w) as a surface sitting
above weight space. Points A and B represent minima of the error Funclinn.
At any point C, the local gradient of t h ~ esror surface is given by thc vector
V E .

effective techniques for pattern recognition, there is little point in introducing un-
necessary restrictions. We shall therefore regard the issue of locaIity as irrelevant
in the present context.

Most of the algorithms which are described in this chapter are ones which have
been found to have good performance in a wide range of applications. I-lourever,
different algorithms wiIl perform best on different problems and it is therefore
not possible to recommend a single universal optimization algorithm. Instead,
we highlight the relative advantages and limitations of different algorithm @

they are discussed.

7.1 Error surfaces

The problem addressed in this chapter is to find a weight vector w which min-
imizes an error function E(w) . It is useful to have a. simple geometrical pictuE
of the error minimization process, which can be obtained by viewing E(wl 11'
an e m r su~face sitting above weight space, as shown in Figure 9.1. For net-
works having a single layer of weights, linear output-unit activation functions+
and a sum-of-squares error, the error function will be a quadratic function
the weights. In this case the error surface will have a general multidimension

J

parabolic form. There is then a single minimum (or possibly a single continuum
of degenerate minima), which can be located by solution of a set of coupled line"
equations, as discussed in detail in Section 3.4.3.

However, for more general networks, in particular those with more than one
layer of adaptive weights, the error function will typically be a highly n ~ n - l i * ~ ~
function of the weights, and there may exist many minima all of which satis@

Figure 7.2. A schematic error function for a singIe parameter w , showing four
stationary points at which the local gradient of the error function vanishes.
Point A is a local minimum, point B is a local maximum, point C is a saddle-
point, and point D is the global minimum.

nrhere V E denotes the gradient of E in weight space. The minimum for which
the value of the error functian is smallest is called the global minimum while
other minima are called local minima. There may also be other points which
sal,isfy the condition (7.1) such as local maxima or saddlepoints. Any vector w
for which this condition is satisfied is called a stationary point, and the different
kinds of stationary point are illustrated schernaticaIly in Figure 7.2.

As a consequence of the non-linearity of the error function, it is not in general
Pos~ihle to find closed-form solutions for the minima. Instead, we consider alga-
rjthrns which involve a search through weight space consisting of a succession of
"pps of the form

w(~+l) = w (~ l + AW(T)

'vhpre T labels the iteration step. Different algorithms involve different choices I

the weight vector increment A W (~) , For some algorithms, such as conjugate
grarji~nts and the quai-Newton algorithms discussed later, the error function is I I

"13ranteed not to increm as a result of a change to the weights (and hopefully I

rl~crease). One potential disadvantage of such algorithms is that if they reach
" lqral minimum they will remain there forever, as there is no mechanism for 1
r h n ~ escape (as this would require a temporary increase in the error function).
Tt!p choice of initial weights far the algorithm then determines which minimum
: I i n "I~orithm will converge to. Also, the presence of saddlepoints, or regions
,#:

the Error function is very Aat, can cause some iterative algorithms to
h n r o ~ ~ 'snlck' h r extensive periods of time, thereby mimicking local minims.

algorithms can exhibit different behaviour in the neighbourhood
' 'ninimum. If ~ (~ 1 denotes the distance to the minimum at step T , then

P"ll"~rgcncc often h a the general form

256 7: Parameter Optimization Algorithms

where 1; governs the order of convergence. Values of L = 1 and L = 2 are knoQx
respectively as linear and quadratic convergence.

In Section 4.4 we discussed the high degree of symmetry which exists ,n
the weight space of a multi-layered neural network. For instance, a t w ~ l ~ ~ ~ ~
network with M hidden units exhibits a symmetry factor of 11412". Thus, for
any point in weight space, there will be ~ ! 2 ~ equivalent points which generare
the same n-rk mapping, and which therefore give rise t o the same value for the
error function. Any local or global minimum will therefore be replicated a large
number of times throughout weight space. Of course, in a practical application it
is irrelevant which of these many equivalent solutions we use. htherrnore. the
algorithms we shall be discussing make use of a local stepwise search through
weight space, and will be completely unaffected by the presence of the numerous ,
equivalent points elsewhere in weight space.

In Section 6.1.3 we showed that the sum-of-squares error function, in the
limit of an infinite data set, can be written as the sum of two terns

where pk(x; w) denotes the ac t id ion of output unit k when the network is
presented with input vector x, and (t k]x) denotes the conditional average of the
corresponding target variable given by

Since only the first term in (7.4) depends on the network weights, the
minimum of the error is obtained when yk (x; w) = { tk lx). This can be regarded
as the optimal solution, as discussed in Section 6.1.3, In practice we m u ~ r deal
with finite data sets, however. If the network is relatively complex (for instwlce
if it hm a large number of adaptive parameters) then the best generalization Per-
formance might be obtained from a local minimum, or from some other point
weight space which is not a minimum of the error. This leads t o a consider;lfio"
of techniques in which the generaIization performance is monitored as a func.
tion of time during tht. training, and the training is halted when the 0pt im1'~
generalization is achieved. Such methods are discussed briefly in Section 9-2-4-

7.2: Locaf quadratic approximation 257

7.2 Local quadratic appraximation
A onsiderable degree of insight into the optimization problem, and into the
,,,ious techniques for solving it, can be obtained by considering a local quadratic

to the error function. Consider the Taylor expansion of E(w)
some point Gi. in weight space

Rllpr.ce b is defined to be the gradient of E evaluated at 6

and the Hessian matrix H is defined by

From (1.61, the corresponding local approximation for the gradient is given by

For points w which are close to +, these expressions will give reasonabIe approx-
imations for the error and its gradient, and they form the basis for much of the
subsequent discussion of optimization algorithms.

Consider the particular case of a loceI quadratic approxjmation around a
win t w* which is a minimum of the error function. In this case there is no linear
t ~ r m , since VE = 0 at w*, and (7.6) becomes

~ ' h ~ r e the Hessian is evduated at w*. In order to interpret this geometrically,
''ilnsider the eigenvalue equat.ion for the Hessian matrix

tv: upre the ci~envectors u; form a complete orthonormal set (Appendix A) SO

: h s t

(14' ~ O V J a p a n d (w - w*) as a linear combination of the eigenvedors in the form

258 7: Pammet er Optisnixation A lgo&hms 7.3: Linear oa£put units 259

Substituting (7.13) into (?.ID), and using (7.11) and (7.12), allows the error
function to be written in the form

&nation (7.13) can be regarded as a transformation of the coordinate system
in which the origin is translated to the point w*, and the axes are rotated to
align with the eigenvectors (through the orthogonal matrix whose columns arp
the ui). This transformation is discussed in more detail in Appendix A.

A matrix H is said to be positive definite if

V'HV > 0 for all v. (7.15)
I

Since the eigenvectors (Q} form a complete set, an arbitrary vector v can be
written

I

From (7.11) and (7.12) we then have

and so H will be positive definite if all of its eigenmlues are positive. In the new
coordinate system whose basis vectors are given by the eigenvectors (ul)# the
contours of constant E artre ellipses centred on the origin, whose axes are aliglled
with the eigenvectors and whose len$hs are inversely proportional to the sclllare
roots of the eigenvlues, as indicated in Figure 7.3. For a one-dimensional weighr
space, a stationary point w' will he a minimum if

, I The corresponding result in d-dimensions is that the Hessian matrix, @vdnate0
at w*, should he positive definite (Exercise 7.1).

7.2.1 Use of gradient information

For most of the network models and error functions which arc discussed in parlier

~bptters, it is possible to evaluate the gradient of the error function relatively
efficiently, for instance by means of thc hack-propagation procedure. The us? of

Figure 7.3. In the neighbourhood of a minimum w*, the error function can
be approximated by a quadratic fundion. Contom of constant error are then
ellipses whme ax- are aligned with the eigenvectors us of the Hessian ma-
trix, with lengths that me inversely proportional to the square roots of the
corresponding eigenvectors Xi.

this gradient information can lead to significant improvements in the s p d with
which the minima of the error function can be located. We can easily see why
this is so, as folIows.

In the quadratic approximation to the error function, given in (7.61, the
error surface is specified by the quantities b and H, which contain a totaI of
iV(Ur i- 3)/2 independent terms (since the matrix H is symmetric), where W
is the dimensionality of w line, the total number of adaptive parameters in the
etwork). The location of the minimum of this quadratic approximation therefore
Ppends on u(W2) parameters, and we should not expect to be able to locate the
linimurn until we have gathered 0 (W 2) independent pieces of information. If

U'"i~ not make use of gradient information, we would expect to have to perform
at I c ~ ~ t O (W Z) function evaluations, each of which would require U { W) steps,
Thus, the computational effort needed to find the minimum would scale like
(7(itf"). I1

Y ~ Y J compare this with an algorithm which makes use of the gradient infor-
lation. Since each d u a t i o n of V E brings W items of information, we might
"De to find the minimum of the function in O(W) gradient evaluations. Using
.hack-propagation, each such evaluation takes only B(W) steps and so the min-
'mu'm could now be found in O(W2) steps. This dramatically improved scaling

W strongly suggests that gradient information should be exploited, a s is
he r the optimization algorithms discussed in this chapter. case fo

Lin~ '3 !a, output units

''di~cussed at 11en@h in Section 3.4.3, if a sum-of-squares error function is used,
"l tllc network mapping depends linearly on the weights, then the minimization

of the error function represents a linear problem, which can be solved exactly io
a single step using singular value decomposition (SVD). If we consider a
general multi-layer network with linear output units, then the dependence of the
network mapping on the find-layer weights will again be linear. This means that
the partial optimization of a sum-of-squares error function with respect to thew
weights (with all other parameters held fixed) can again be performed by lineat
methods, as discussed in Section 3.4.3. The computational effort involved in SVD
is often very much Iess than that required for general non-linear optimizatlon3
which suggests that it may be worthwhile to use linear methods for the find.
layer weights, and non-linear methods for all other parameters. This Ieads to the
following hybrid procedure for optimizing the weights In such networks (Webb
and Lowe, 1988).

Suppose the final-layer weights are collected together into a vector WL, with
the remaining weights forming a vector G. The error function can then be ex.
pressed as E(wL, G) , which is a quadratic function of WL. For any Dven value
of iG we can perform a one-step exact minimization with respect to the WL using
SVD, in which G is held fixed. We denote the optimum wr, by w ~ (3) . A con-
ventional non-linear optimization method (such as conjugate gradients, or the
quasi-Newton methods to be described later) is used t o minimize E with
to G. Every time the value of G is changed, the weights wr, are recomputed. 1%
can therefore regard the finaI layer weights w~ as evolving on a fast time-scale
compared to the remaining weights 5. Effectively, the non-linear optimization is
attempting to minimize a function E(WL(+), G) with respect to G. An ob14ous
advantage of this method is that the dimensionaIity of the effective search space
for the non-linear algorithm is reduced, and we might hope that this would re-
duce the number of training iterations which is required to find a good solution,
However, this is offset to some extent by the greater computational efiort re-
quired at each such step. Webb and Lowe (1988) show that, for some problems.
this hybrid approach can yield better solutions, or can require less cornDutation~
effort, than full non-linear optimization of the complete network.

7.4 Optimization in practice
In order to apply the algorithms described in this chapter to real
we need to addrws a variety of practical issues. Here we discuss procedures foT
initializing the wights in a network, criteria used to terrninat~ training, and
normalized error functions for assessing the performance of trained networks

All of the training algorithms which we consider in this chapter begin
initializing the weights in the network to some randomly chosen values. It-p haTT
already seen that optimization algorithms which proceed by a steady monotonir
reduction in the error function can become stuck in local minima. A suitablP
choice of initial weights is therefore potentidly important in allowing the train.
ing algorithm to produce a good set of weights, and in addition may lead "
improvements in the speed of training. Even stochastic algorithms such as flndi-
ent descent, which have the possibility of escaping from local minima, can sh~'
strong sensitivity to t h e initial conditions. Thc initialization of weights for radial

7.4: Optimization in gmcttce 261

h,15is function networks has already been dealt with in Chapter 6 . Here we shall
c,,n ourselves with multi-layer perceptrons having sigrnoidal hidden-unit ac-

~011
itvation functions.

The majority of initialization procedures in current use involve setting the
,,ights to randomly chosen small values. Random values are used in order to
aJ,oid problems due to symmetries in the network. The initid weight values are
,bosen to be small so that sigmoidal activation functions are not driven into
rhp saturation regions where g'(a) is very small (which would lead to small
TE, and consequently a very flat error surface). If the weights are too small,
honrpver, a11 of the sigmoidal activation functions will be approximately linear,

can again lead to slow training. This suggests that the summed inputs
the sigmoidal functions should be of order unity. A random initialization of

the weights requires that some choice be made for the distribution function from
which the weights are generated. We now examine the choice of this distribution
in a little more detail.

lye shall suppose that the input values to the network XI, . . . zd have been
rescaled so as to have zero mean { x i) = O and unit variance (x:) = 1, where the
notation (-) will be used to denote an average both over the training data set and
over all the choices of initial network weights. The pr6processing of input data
prior to network training, in order to achieve this normalization, is discussed
in Inore detail in Section 8.2. The weights are usudly generated from a simple
distribution, such as a spherically symmetric Gaussian, for convenience, and this
Is generally taken to have zero mean, since there is no reason to prefer any ather
swcific point in weight space. The choice of variance u2 for the distribution can
be important, hawever. For a unit in the first hidden layer, the activation is given
by ?/ = g(a) where

Sinre the choice of weight values is uncorrelated with the inputs, the average of
'! is 7er0

"inrln {LC,) = 0. Next consider the variance of a

ivhcrf! f12 is the variance of the distribution of weights, and we have used the fact

I
262 7: Pammeter Optimization Algorithms

that the weight values are uncorrelated and hence (w i ~ j l ,) = 6tja2, together,
- ""

(s:) = 1. As we have discussed already, we would like a to be of order unity ,,
that the activations of the hidden units are determined by the non-linear Part
of the sigrnoids, without saturating. From (7.21) this suggests that the standard
deviation of the distribution used to generate the initial weights should scale like
o a d-1/2. A similar argument can be applied to the weights feeding into any
other unit in the network, if we assume that the outputs of hidden units a,,
appropriately distributed.

Since a particular training run is sensitive to the initial conditions for the
weights, it is common prmtice t o train a particular network many times using
different weight initializations. This leads to a set of different networks wb--
generalization performance can be compared by making use of independent d
In this case it is possible to keep the best network and simply discard the rem
der. However, improved prediction capability can often be achieved by forn
a commiftee of networks from ~mongst the better ones found during the trail
process, as discussed in Section 9.6. The use of multiple training runs also p
a related role in building a mixture model for the distribution of weight m
in the Bayesian framework, as discussed in Section 10.7.

Wlen using non-linear optimization algorithms, some choice must be made of
when to stop the training process. Some of the possible choices are listed below:

lU>t

ata.
ain-
line

1. Stop after a fixed number of iterations. The problem with this approach
is that it is difficult to know in advance how many iterations would be
appropriate, although an approximate idea can be obtained from some
preliminary tests, If several networks are being trained (e.g. with various
numbers of hidden units) then the appropriate number of iterations mav
be different for different networks.

2. Stop when a predetermined amount of CPU (central processing unit) time
has been used. Again, it is difficult to know what constitutes a suitable
time unless some preliminary tests are performed first. Some adjustment
for different architectures may again be necessary.

3. Stop when the error function falls below some specified value. This suff@fi
from the problem that the specified vaIue may never be reached, so *me
Iirnit on CPU time may also be required.

4. Stop when the relative change in error function falls below some spec1'
fied value. This may lead to premature termination if the error function
decreases relatively slowly during some part of the training run.

5. Stop training when the error measured using an independent valjdatio"
set starts to increase. This approach is generally used as part of a strateg'
to optimize the generaIization performance of the network, and will

be

discussed further in Section 9.2.4.

In practice some combination of the above methods may be employed as part
a largeIy empirical process of parameter optimization.

Since the value of the error Function depends on the number of patterns, it '
useful to consider a. normalized error function for thc purposes of assessing the

prfnrmance of a trained network. For a sum-of-squares error, an appropriate rllaicP would be the normalized error function given by

trhrrF X is the mean of the target data over the test set (Webb et al., 1988).
*/,j, error function equals unity when the model is as good a predictor of the
t,rget data as the simple model y -= t, and equals zero if the model predicts
t j r p d&a values exactly. A value of E of 0.1 will often prove adequate for sirnpIe

problems, while For regression applications a significant.ty srnaIIer
r.alue may be needed. For reasons introduced in Chapter 1, and discussed at
gr.rater length in Chapter 9, the performance of the traiwd network should be
a.cqessed using a data set which is independent of the training data.

For classification problems, it is appropriate to test the performance of the
trained network by assmsing the number of misclassifications, or more generally
the value of the total loss (Section 1.10).

7.6 Gradient descent

One of the simpIest network training algorithms, and one which we have dready
encountered several times in previous chapters, is gradient descent, sometimes
also known as steepest descent In the batch version of gradient descent, we start
wit11 some initial guess for the weight vector (which is often chosen at random)
denoted by w(O). 5% then iteratively update the weight vector such that, at step
T . nTe move a short distance in the direction of the greatest rate of decrease of
the crror, i.e, in the direction of the negative gradient, evaluated at wcT):

Nt-b~e that the gradient is re-evaluated at each step. In the sequential, or pattern-
bflced, vcrsian of gradient descent, the error function gradient is evaluated for

one pattern at a time, and the weights updated wing

-,, l l -rp the different patterns n in the training set can be considered in sequence, or

SP1rcted at random. The parmeter 17 is called the learning rate, and, provided its
I

'"'IF is sufficiently small, we expect that, in the batch version (7.23) of gradient
~ J G - "P", the value of E will decrea~e at each successive step, eventually leading
t " "Treight vector at which the condition (7.1) is satisfied.

For t.he sequential update (7.24) we might also hope for s steady reduction
111 (a I""-'r since, for suficiently small 77, the average direction of motion in weight

TP'rcp s l l ~ ~ ~ l d approximate the negative of the loc~ l gradient. In order to study this

264 7: Parameter Opt imut ion AkgoM&ms

7.5.1 Convergence

AS we have already indicated, one of the limitations of the gradient desced
t d n i q u e is the need to choose a suitable value for the learning rate parameter
v. The problems with gradient descent do not stop there, however. Figure 7-4
depias the contours of E, for a hypothetical two-dimensional weight space. iu
which the curvature of E varies significantly with direction. At most points on the
error surface, the Iocd gradient does not point directly towards the minimumm
Gradient descent then takes many small steps to reach the minimum, and is
clearly a very inefficient procedure.

We can gain deeper insight into the nature of this problem by considering

more carefully, we note that sequential gradient descent (7.24) is reminiscent of
the Robbins-Monro procedure (Section 2.4.1) for finding the zero of a regression
Function (in this case the error function gradient). The analogy becomes precise, 1
and we are assured of convergence, if the learning rate parameter y is made t, I

7.5: Gmdient descent

decrease a t each step of the algorithm in accordance with the requirements of the
theorem (Luo, 1991). These can be satisfied by choosing v(r) cr 1 / ~ , although
such a choice leads to very slow convergence. In practice, a constant d u e of ?I is

Figure 7.4. Schematic illustration af fixed-step gradient descent for an error
function which has substantially different curvatures dong different directions.
Ellipses depict contours of constant E , so that the error surface: has the form of
a long valley. The vectors ul and ua represent the eigenvectors of the Hessian
matrix. Note that, for most points in weight space, the local negative gradient
vector -VE does not point towards the minimum of the error function. Sue
cessive steps of gradient descent can ascillate across the valley, with very slow
progress along the valley towards the minimum.

I

the quadratic approximation to the error function in the neighbourhood of the
rninimum, discussed earlier in Section 7.2. From (7.10), (7.11) and (7.13), the
gradient of the error function in this approximation cm be written as

From (7.13) we also have

oRen used as ths generally leads to better results even though the guarantee of
convergence is lost. There is still a serious difficulty with this approach, howeves.
If q is too large, the algorithm may overshoot leading to an increase in E and
possibIy to divergent osciIlations resulting in a complete breakdawn in the
rithrn. Conversely, if is chosen to be too small the search can proceed extremely
slowly, leading to very long computation times. Furthermore, the optimum value
for 7 Will typically change during the course of the minimization.

An important advantage of the sequential approach over batch methods arise
if there is a high degree of redundant information in the data set. As a simple a-
ample, suppose that we create a larger training set from the original one simply
by replicating the o~igind data set ten times. Every evaluation of E then takes
ten times as long, and so a batch algorithm will take ten times as long to find a
given solution. By contrast, the sequentid algorithm updates the weights after
each pattern presentation, and so will be unaffected by the replication of data.
Later in this chapter we describe a number of powerful optimization algorithms
(such as conjugate gradients and quasi-Newton methods) which are intrinsically
batch techniques. For such dgorithms it is still possible to gain some of the
advantages of sequentid techniques by grouping the data into blocks and pre-
senting the blocks sequentidly as if each of them was representative of the whole
data set. Some experimentation may be needed to determine a suitable size for
the bIocks.

Another potential advantage of the sequential approach is that, since it is 8

stochastic dgorithm, it has the pwsibility of escape from local minima. Later
in this chapter we shall discuss a number of algorithms which have the property
that each step of the algorithm is guaranteed not to produce an increase in the
error function. If such an algorithm finds its way into a local minimum it
typicdly remain there indefinitely.

Combining (7,251 with (7.26) and the gradient descent formula (7.23), and using
thp orthonormality relation (7.12) for the eigenvectors of the Hewian, we obtain
'he following expression for the change in r y i at each step of the gradient descent
aleorithm

1

I

which it follows that

Tbx..h @re 'old' a n d 'new' denote values before and after a weight update. Using the

"'th~normality relation (7.12) for the eigenvectars, together with (7.13), we have

266 7: Pu~ameter Optimization Algorithms

a d so at can he interpreted as the distance to the minimum aIong the directio,
ui. horn (7.28) we see that these distances evolve independently such that,
each step, the distance aIong the direction of ui is muitiplied by a factor (1 - V 4) . After a total of T steps we have

and so, provided 11 - qXtl < 1, the limit T --, cw, leads to cri = 0, which horn
(7.29) shows that w = w" and so the weight vector has reached the minirnum
of the error. Note that (7.30) demonstrates that gradient descent leads to linear
convergence in the neighbourhood of a minimum. AIso, convergence to the ~ ; t a . .

tionary point requires that all of the Xi be positive, which in turn implies that
the stationary point is indeed a minimum (Exercise 7.1).

By making 7 larger we can make the factor (l - ?Xi) smaller and hence
improve the speed of convergence. There is a limit to how large q can be made,
however. We can permit (1 - v X ~) to go negative (which gives oscillating values of
ai) but we must ensure that Il-qAiI < 1 otherwise the a, values will diverge. This
Iimits the value of q to 7 < 2/A,,, where A,, is the largest of the eigenvalues.
The rate of convergence, however, is dominated by the smallest eigenvalue, so
with q set to its largest permitted value, the convergence along the direction
corresponding to the smallest eigenvalue (the long axis of the ellipse in Figure 7.4)
will be governed by

where Amin is the smallest eigenvalue. If the ratio Ami,/X,, (whose reciprocal
is known as the condition number of the Hessian) is very small, corresponding to
highly elongated elliptical error contours as in Figure 7.4, then progress towards
the minimum will be extremely slaw. From our earlier discussion of
error surfaces, we might expect to be able t o find the minimum exactly usin::
few W (W + 3)/2 error function evaluations. Gradient descent is an extreme]!'
inefficient dgorithm for error function minimization, since the number of function
evaluations can easily be very much greater than this. Later we shall encounter
dgorithms which are guaranteed to find the minimum of a quadratic error surface
exactly in a small, fixed number of steps which is e3(W2).

The gradient descent procedure we have described so far involves taking '
succession of finite steps through weight space. We can instead imagine the e d u -
tion of the weight vector taking place continuously as a function of time 7. The
gradient descent rule is then replaced by a set of coupled non-linear ordinap*
differential equations of the form

7.5: Gradient descent 267

,here uyl represents any weight parameter in the network. These equations cor-
I,,pond to the motion of a massless particle with position vector w moving in a

P ,tential field E (w) subject to viscous drag with viscosity coefficient r]-'. They r,Cresent a set of stifldifferential equations (ones characterized by several widely
i~ifie~ering time-scales) as a consequence of the fact that the Hessian matrix of-
[,, has widely differing eipnmlues. The simple gradient descent formula (7.23)

a 'fixed-step forward Euler' technique for solving (7.321, which is a
patt,icularly inefficient approach for stiff equations. Application of specialized
techniques for solving stiff ordinary differential equations (Gear, 19Jl j to the
,,,tern in (7.32) can give significant improvements in convergence time (Owens 1 Filkin, 1989).

1.5.2 Momentam

One very simpIe technique for deding with the problem of widely differing eigen-
dues is to add a momentum term to the gradient descent; formula (Plaut ef al.,
1986). This effectively adds inertia to the motion through weight space (Exer-
cise 7.3) and smoothes out the oscillations depicted in Figure 7.4. The modified
~ r ~ d i e n t descent formula is given by

ahere p i s called the momentum parameter.
To understand the effect of the momentum term, consider first the motion

through a region of weight space for which the error surface has relatively low
curvature, as indicated in Figure 7.5. If we make the approximation that the
Eradicnt is unchanging, then we can apply (7.33) iteratively to a long series of
weight updates, and then sum the resulting arithmetic series to give

:nd we see that the result of the momentum term is to increase the effective
'"ming rate from 7~ to v / (l - p).

n?: contrast, in a region of high curvature in which the gradient descent is
"CillatorY, x indicated in Figure 7.6, successive contributions from the momen-
'"m term will tend to cancel, and the effective learning sate will be close to q.

the momentum term can lead to faster convergence towards the minimum
{V 'thout * causing divergent oscillations. A schematic illustration of the effect of
' mornenturn term is shown in Figure 7.7. From (7.35) we see that p must lie
b~t, lWen in the range 0 < p 5 1.

268 7: Parameter Optimization Algovithms

Figure 1.5. With a fixed learning rate parameter, gradient descent down a
surface with low curvature leads to successively smaller steps (linear conver-
gence). In such s situation, the effect of a momentum term is similar t o an
increase in the effective learning rate parameter,

Figure 7.6. For a situation in which successive steps of gradient descent are
oscillatory, a momentum term has little inftuence on the effective value of the
learning rate parameter.

The inclusion of mornentum generdIy leads to a significant improvement in
the performance of gradient descent. Nevertheless, the algorithm remains rela-
tively inefficient. The inclusion of momentum dso introduces a second paranjet''
P whose value needs to be chosen, in addition to that of the learning rate PB'
rameter TI.

7.5.3 Enhanced padi3nt descent

.AS we have seen, gradient descent, even with a momentum term included, is not a
particularly efficient aEgorithrn for error function minimization. There ha* been
numerous attempts in recent years to improve the performance of hayic .gradient

7.5: Gradient descent 269

1 Figure 7.7. Illustration of the effect of adding a momentum term to the gradient
descent algorithm, showing the more rapid progress along the valley of the error
function, compared with the unmodified gradient, d~oent . s h m in Figure 7.4.

The Parameter p is chosen to be slightly larger than unity (a typical value might
by p = 1.1) in order to avoid frequent occurrences of an error increase, since

'' such cases the error evduation is wasted. The parameter u is taken to be
"Enificantly less than unity (o = 0.5 is typica.1) so that the algorithm quickly
''v"s finding a step which decreases the error, again to minimize wasted
"%utation. Many variations of this heuristic are possible, such as increasing ?

I
I

I
descent for neural network training by making various ad hoc modifications.
\\e shall not attempt to review them all here as the literature is much too
extensive, and we will shortly be considering several robust, theoreticaIly well-
founded optimization algorithms. Instead we consider a few illustrative examples
of such techniques which attempt to address various deficiencies of the basic
gradient descent procedure.

One obvious problem with simple gadient descent plus momentum is that
it contains two parameters, 71 and p, whose values must be selected by trial and
error. The optimum values for these parameters will depend on the particular
problem, and will typically vary during training. We might therefore seek some
procedure for setting these automatically as part of the training algorithm. One
such approach is the bold driver technique (Vogl et al., 1988; Battiti, 1989).
Consider the situation without a momentum term first. The idea is t o check
whether the error function has actuaIly decreared after each step of the gradient
descent. If it has increased then the algorithm must have overshot the minimum
b e . the minimum along the direction of the weight change) and so the learning
rate parameter must have been too large. In this ease the weight chenge is
undone, and the learning rate is decreased. This process is repeated until a
decrease in error is found. If, however, the error decreased at a given step, then
the new weight values are accepted. However, the learning rate might have been

small, and so its value is increased. This leads to the following prescription

I
hr updating the learning rate parameter:

270 7: Pornmeter Optimization AlgoPilhms

linearly (by a fixed increment) rather than exponentially {by a fixed factor). IfnF
include momentum in the bold driver algorithm, the momentum coefficient can
be set to some fixed value (selected in an ad hoc fashion), but the weight
is usually reset along the negative gradient direction after every occurrence of an
error function increase, which is equivalent to setting the momentum coefficient
temporarily to zero (Vogl et at., 1988).

A more principled approach to setting the optimal Iearning rate paramrtw
nras introduced by Le Cun ef al. (1993). In Section 7.5.1 we showed that th,
largest value which can be used for the learning rate parameter was given by
T~~~ = 2/Xmax, where A,, is the largest eigenvalue of the Hessian matrix. It is
easily shown (Exercise 7.5) that if an arbitrary vector is alternately normalized
and then multiplied by the Bessian, it eventudly converges to A,,, times the
corresponding eigenvector. The length of this vector then gives A,, itself. E ~ L
uation of the product of the Hessian with a vector can be performed efficiently
using the R{.)-operator technique discussed in Section 4.10-7. Once a suitable
value for the learning rate has been determined, the standard gradient descent
technique is appIied.

We have already noted that the {negative) gradient vector need not point
towards the error function minimum, even for a quadratic error surface, as in-
dicated in Figure 7.4. In addition, we have seen that Iong narrow valleys in tB
error function, characterized by a Hessian matrix with widely differing eigenval-
ues, can lead to very slow progress down the valley, as a consequence of the need
to keep the learning rate small in order to avoid divergent oscillations across
the valley. One approach that has been suggested for dealing with this problem
(Jacobs, 1988) is to introduce a separate learning rate for each weight in the
network, with procedures for updating these learning rates during the training
process. The gradient descent rule then becomes

Heuristically, we might wish to increase a particular learning rate when the
derivative of E with respect to the corresponding parameter has the same s i p
on consecutive steps since this weight is moving steadily in the downhill direction.
Conversely, if the sign of the gradient changes on consecutive steps, this s iWb
oscillation, and the learning rate parameter should be decreased.

One way to implement this is to take

where

7.6: Gradient descent 271 I

where I i

and Y > O is a stepsize parameter. This prescription is c ~ l l d the deltctdelta
(since, in Jacobs (1988) the notation 6$ was used instead of gi to denote

rhe of the local gradient vector). Fbr the case of a quadratic error
~ u r face, it can be derived by minimizing the error with respect to the learning

so that 4 is an exponentially weighted average of the current and previous val-
ues of g. This aIgorithm appears to work moderately well in practice, at least
far some probIems, One of its obvious drawbacks, however, i s that it now con-
tains four parameters (8, #, K and p) if we include momentum. A more serious
difficulty is that the algorithm rests on the assumption that we can regard the
weight parameters as being relatively independent. This would be the case for a
quadratic error function if the Hessian matrix were diagonal (so that the major
axes of the ellipse in Figure 7.3 were aligned with the weight axes). In practice,
t h ~ weights in a typical neural network are strongly coupled, leading to a Hessian
matrix which is often far from diagonal. The solution to this problem lies in a
number of standard optimization algorithms which we shall discuss shortly.

Another heuristic scheme, known as quickpmp (Fahlman, 1988), also treats
the weights as if they were quasi-independent. The idea is to approximate the

surface, as a function of each of the weights, by a quadra;tic polynomial {i.e.
a Parabola), and then to use two successive evaluations of the error function, and

"evaluation of its gradient, to determine the coeficients of the polynomial. At
the next step of the iteration, the weight parameter is moved to the minimum of
'he PWhala. This leads to an expression for the weight update at step T given

(Exercise 7.7)

I

Theaig~rithm can be started using a single step of gradient descent. This arsumes
'hit, the result of the local quadratic fit is to give a parabola with a minimum.

k e a d i t leads to a psrsbola with a maximum, the algorithm can take an

prarneters [Exercise 7.6). This rule does not work well in practice since it
lead to negative values for the learning rate, which results in uphill steps,

udess the d u e of y is set very small, in which case the algorithm exhibits
I

little improvement over conventional gradient descent. A modification to the
algorithm, known as the delta-bar-delta rule is to take I

I

272 7: Parameter Optimization Algorithms I 7.6: Line search

uphill step. Also, some bound on the maximum size of step needs to be imposH
to deal with the problem of a nearly flat parabola, and several other k e s ,,,
needed in order to get the algorithm to work in practice.

7.6 Line search I
The algorithms which are described in this chapter involve taking a sequence O,P

steps through weight space. It is convenient to consider each of these steps in
two parts. First we must decide the direction in which to move, and second, n,
must decide how Ear to move in that direction. With simple gradient descent, th,
direction of each step is given by the local negative gradient of the error func.
tion, and the step size is determined by an arbitrary learning rate parameter.
We might expect that a better procedure would be to move along the direction
of the negative gradient to find the point at which the error is minimized. More
generally we can consider some search direction in weight space, and then find
the minimum of the error function along that direction. This procedure is re-
ferred to ass a line search, and it forms the basis for several algorithms which
are considerably more powerful than gradient descent. We first consider how line
searches can be implemented in practice.

Suppose that at step T in some algorithm the current weight vector i s wfr) ,
and we wish to consider a particular search direction d(') through weight space.
The minimum along the search direction then gives the next value for the weight
vector:

where the parameter A(') is chosen to minimize I
This gives us an automatic procedure for setting the step leneh, once we have
chosen the search direction.

The line search represents a one-dimensiona1 minimization problem. A simple
approach would be to proceed along the search direction in small steps, eva.Iu-
ating the error function at each new position, and stop when the error starts to
increase (Hush and Salas, 1988). It is possible, however, to find very much more
efficient approaches (Press e t al., 1992). Consider first the issue of whether
make use of gradient information in performing a line search. We have a i red '
argued that there is generally a substantial advantage to be gained from using
gradient information for the general problem of seeking the minimum of the
ror function E in the W-dimensional weight space. For the sub-problem of line
search, however, the argument is somewhat different. Since this is now a on"
dimensiond problem, both the value of the error function and the gradient of the
error function each represent just one piece of informatian. An error function cal-
culation requires one forward propagation and hence needs - 2NW oper-%tions$

Figure 7.8. An example of an error function which depends on a parameter X
governing distance along the search dimtion, showing a, minimum which has
been bracketed. The three points a < b < c a r e such that E(a) > E(b) and
E(c) > E(b) . This ensures that the minimum lies somewhere in the interval
la, cb

n,here N is the number of patterns in the data set. An error function gradient
evaluation, however, requires a forward propagation, a bmkwsbl.d propagation,
and a set of multiplications to form the derivatives. It therefore needs - 5NW
operations, although it does dlow the error function itself to be evaluated as
well. On balance, the line search is slightly more efficient if it makes use of error
hlnction evaluations only.

Each line search proceeds in two stages. The first stage is to bmcket the
minimum by finding three pohts a < h < c along the search direction such that
E(n) > E(b) and E(c) > E(b), as shown in Figure 7.8. Since the error function
is continuous, this ensures that there is a minimum somewhere in the interval
la.?) (Press et al., 1992). The second stage is to locate the minimum itself. Since
the error function is smooth and continuous, this can be achieved by a process of
Parabolic interpolation. This involves fitting a quadratic polynomial to the error
hlnction evaluated at three successive points, and then moving to the minimum
"f the parabola, as illustrated in Figure 7.9. The process can be repeated by
"2'aluating the error function at the new point, and then fitting a new parabola
t r +his point and d o of the previous points. In practice, several refinements are

included, leading to the very robust Brent's algorithm (Brent, 1973). Line-
'?arch algorithms, and termination criteria, are reviewed in Luenberger (1984).

An important issue concerns the accuracy with which the line searches are
I'erformed. Depending on the particular algorithm in which the line search is to

it may ho wa~tefr~l to invest too much computational time in evaluating
lhr minimum along each search direction to high accuracy. We shall return t o
I h i s Point later. For the moment, we make one comment regarding the limit of
hrc'lr*y which can be achieved in a line search, Kear x minimum at Xo, the
"rn"'functmion along the search direction can be approximated by

7: Parameter Optimization Algorithms

Figure 7.9. An ilIustration of the process of parabolic interpolation used to
perform line-search minimization. The solid curve depicts the error as a func-
tion of distance X along the search direction, and the error is evaluated at
three points a < b < c which are such that E(a) > E(b) and E(c) > E(b).
A parabola (shown dotted) is fitted to the three points a, b, c. The minimum
of the parabola, at d, gives an approximation to the minimum of E(A). The
process can be repeated by fitting another parabola through three points given
by d arid whichever of two of the previous points have the smallest error d u e s
(b and c in this example).

Thus A - Xo must typically be at least of the order of the square root of the
machine precision before the difference between E(X) and E(Xo) is significant.
This limits the accuracy with which the minimum can be found. For double
precision arithmetic this implies that the minimum can only be found to a relative
accuracy of approximateIy 3 x loL8. In practice is may be better to settk~ for
much lower accuracy than this.

7.7 Conjugate gradients

In the previous section we considered procedures for Iinesearch minimization
along a specified search direction. To apply line search to the problem of error
function minimization we need to choose a suitable seearch direction at each stage
of the algorithm. Suppose we have already minimized along a search direction
given by the local negative gradient vector. We might suppose that the search
direction at the next iteration should be given by the negative gradient vector
at the new position. However, the use of successive gradient vectors turns out in
general not to represent the best choice of search direction. To see why, we note
that at the minimum of the Pine search we have, from (7.44)

7.7: Conjugate gradients

Figure 7.10. After a line minimization, the new gradient is orthogonal to the
line-search direction. Thus, if the search directions are always chosen to co-
incide with the negative gradients of the error function, as indicated here,
then successive search directions will be orthogonal, md the error function
minimization will typically proceed very slowly.

which gives

where g = OE. Thus, the gradient at the new minimum is orthogonal to the
previous search direction, as illustrated geometrically in Figure 7.10. Choosing
successive search directions to be the focal (negative) gradient directions can
lead to the problem $Iready indicated in Figure 7.4 in which the search point
oscillates on suc~ssive steps while making little progress towards the minimum.
The algorithm can then take many steps to converge, even for a quadratic error
fu!~ction.

The solution to this problem lies in choosing the successive search directions
d"' such that, at each step of the algorithm, the component of the gradient
Parallel to the previous search direction, which has just been made zero, is un-
" k e d (to lowest order). This is illustrated in Figure 7.11. Suppose we have

performed a tine minimixation along the direction d('), starting from
'I1p Point w(+), to give the new point d 7 + l) . Then at the point w(7+1) we have

I" choose the next search direction d('+l) such that, dong this new direc-
tion, retain the property that the component of the gradient parallel to the
pa be^^^ search direction remains zero (to lowest order). Thus we require that

7: Pammeter OptfPmization Algorithms

Figure 7.11. This diagram illustrates the concept of conjugate directions. Sup-
pose a line search has been performed along the direction d(') starting from
the point d T 1 , to give an error minimum along the search path at the point
w('+'). The direction d('+') is said to be conjugate to the direction d(') if
the component of the gradient parallel to the direction d('), which has just
be made zero, remains zero (to lowest order) as we move along the direction
d('+U,

as shown in Figure 7.11, If we now expand (7.49) to Erst order in A, and note
that the zeroth-order term vanishes as a consequence of (7.481, we obtain

where H is the Hessian matrix evaluated at the point w(~+') . Tf the error surf=
is quadratic, thts relation holds for arbitrary values of X in (7.49) since the
Hessian matrix is constant, and higher-order terms in the expansion of (7.49)
in powers of A vanish. Search directions which satisfy (7.50) are said to be nola-
interfering or conjugate. In fwt, we shall see that it is possible to construct a
sequence of successive search directions d(') such that each direction is conjugaw
to all previous directions, up t o the dimensionality W of the search space. This
Ieads naturally to the conjugate gradient optimization dgorithm.

7.7.1 Quadratic error finctioa

In order to introduce the conjugate gradient algorithm, we foIlm Johansson et
al. (1992) and consider first the case of a quadratic error function of the form

in which the parameters b and H are constant, and H is assumed to he positi"
definite. The local gradient of this error function is given by

7.7: Conjugate gradients 277

I ufl d the error function (7.51) is minimized at the point w* given, from (7.52), by

1 Suppose we can find a set of W vectors (where W is the dimensionality of
, the weight space) which are mutually conjugate with respect to R so that

then it is easily shown that these vectors will be linearly independent if H is
psitive definite (Exercise 7.8). Such vectors therefore form a complete, but non-
,,thogorial, basis set in weight space. Suppose we are starting from some point
w,, and we wish to get t o the minimum w* of the error function. The difference
between the vectors wl and w* can be written as a linear combination of the
conjugate direction vectors in the form

Note that;, if we define

then (7.55) can be written as an iterative equation in the form

This represents a succession of steps parallel the conjugate directions, with step
Ien@hs controlled by the parameters aj.

In order to find expressions for the a's we multiply (7.55) by d : ~ and make
lfie of (7.53) give

see the significance of using mutually conjugate directions, since (7.54)
"QWS that the terms on the right-hand side of (7.58) decouple, dowing an
Cfxpii~it solution for the a's in the form

7: Parameter Optimization Algorithms

Figure 7.12. Schematic illustration of the application of the conjugate gradient
algorithm to the minimization of a tw~dirnensiond quadratic error function.
The algorithm mwes to the minimum of the error after two steps. This should
be compared with Figures 7.4 and 7.7.

Without this property, (7.58) would represent a set of coupled equations for the
at.

We can write (7.59) in a more convenient form as follows. Fkom (7.56) we
have

where we have again used the conjugacy condition (7.54). This allows the nu-
merator on the right-hand side of (7.59) to be written in the form

where gj = g(wj), and we have made use of (7.52). Thus, ai can be written in
the form

We now give a simple inductive argument to show that, if the weights afe 1
incremented using (7.57) with the D~ given by (7.62) then the g d i e n t vector
gj at the j th step is orthogonal to all previous conjugate directions. It therefore
follows that after W steps the components of the gradient along all directioos
have been made zero, and so we will have arrived at the minimum of the 1 form. This is illustrated schematically for a two-dimensional space in Figure 7-12.
To derive the orthogonality property, we note from (7.52) that I

where we have used (7.57). We now take the scaIar product of this equation with
dj, and use the definition of crj given by (7.62), to give

I

I

7.7: Conjugate gradients 279

similarly, from (7.63), we have

dE(gj+l - gj) = a j d : ~ d j = O for all k < j 5 W.

kppl~ng the technique of induction to (7.64) and (7.65) we obtain the result

that

dzgj=O f o r a l l k < j s W (7.66)

kq required.
The next problem is how to construct a set of mutually conjugate directions.

This can be achieved by selecting the first direction to be the negative gradient
dl = -gl, and then choosing each successive direction to be a linear combination
of the current gradient and the previous search direction

The coefficients Oj can be found by imposing the conjugacy condition (7.54)
which gives

In fact, it is e~tsily shown by induction (Exercise 7.9) that succcesive use of the
construction given by (7.67) and (7.68) generates a set of W mutually conjugate
directions.
From (7.67) it follows that dk is given by a linear combination of a11 previous

Radient vectors

h n q (7.66) we then have

k-1

gzgj = x TgFy for all k < j 5 W. (7.70)
1=1

Since the initial search direction is just dl = -gl, we can use (7.66) to show that
pTg3 = 0, so that the gradient at step j is orthogonal to the initid gradient. If

apply induction to 17-70) we find that the current gradient is erthogond to

280 7: Parameter Optimization Algorithms I 7.7: Conjugate gradients

dl previous gradients
1

r ee that these three expressions for p, are equivalent provided the error function .\o
is qudratic. In practice, the error fundion will not be quadratic, and
these different expressions for pg can give different results. The Polak-Etlbiere
form is generally fouad to give slightly better results than the other expressions.
This is probably due to the fact that, if the algorithm is making little progress,
,, t.hrtt successive gradient vectors are very similar, the Polak-Ribiere form gives
, small d u e for pi so that the search direction in (7.67) tends to be rwet to
the negative gradient direction, which is equivalent to restarting the conjugate
gdient procedure.

W e dso wish to avoid the use of the Hessian matrix to evaluate ajj. In fact,
;q the case of a quadratic error function, the correct value of mJ can be fouad by
erforming a line minimization along the search direction. To see this, consider a
uadratic error (7.51) as a function of the parameter a &long the search direction
j , starting at the point wj, given by

We have now developed an algorithm for finding the minimum of a general
quadratic error function in at most W steps. Starting from a randomly chosen
point wl, successive conjugate directions are constructed using (7.67) in which 1
the parameters 4 are given by (7.08). At each step the wight vector is incrp 1
ment;d dong the corresponding direction using (7.57) in which the parameter
aj is given by (7.62). I

7.7.2 The conjugate gradient algorithm

' we set; the derivative of this expression with respect to cr epud to zero we
btain

So far our discussion of conjugate gradients has been limited t o quadratic error I
functions. For a general non-quadratic error function, the error in the neighbout-
hood of a given point; will be approximately quadratic, and so we may hope that
repeated application of the above procedure will lead to effective convergence
to a minimum of the error. The step length in this procedure is governed by
the coefficient olj given by (7.62), Ebnd the search direction is determined by the
coefficient ,BJ given by (7.68). These expressions depend on the Hessian matrix
H. For a non-quadratic error function, the Hessian matrix will depend on the
current weight vector, and so will need to be re-evaluated at each step of the
algorithm. Since the evaluation of H is cornputationally costIy for non-linear
neurd networks, and since its evaluation would have t o be done repeatedly, we

'here we have used the expression in (7.52) for the local gradient in the quadratic
PProxImation. We see that the result in (7.77) is equivalent to that found in
7.62). Thus, we can replace the explicit evaluation of orj by a numerical prom
ure invoiving a line minimization dong the search direction d,.

1% have seen that, for a qnadratic error function, the conjugate gradient
[~ori thm Ends the minimum aRer at most W line minimizations, without cal-
llating the Hessian matrix. This clearly represents a significant improvement

simple gradient descent approach which could take a very large number of
'"Ps to minimize even a quadratic error function. In practice, the error function
la!' be far from quadratic. The algorithm therefore generally needs to be run
" many iterations until a sufficiently small error is obtained or until some other
''mination criterion is reached. During the running of the algorithm, the conju-

-3CV of the search directions tends to deteriorate, and so it is common practice
t ' renart the algorithm after every W steps by resetting the search vector to the

:'~atij~e @gradient direction. More sophsticated restart procedures are described
'" P o ~ r d l (1977).

The conjugate gradient algorithm has been derived on the assumption of a

would like to avoid having to use the Hessian. In fact, it turns out that the c e
efficients aj md p, c m be found without expIicit knowledge of H. This leads
the conjugate gmdimt algorithm (Hestenes and Stiefel, 1952; Press ef a!., 1992).

which is known as the Hestenes-Stdefel expression. From (7.66) and (7.67)
have

I

which, together with a further use of (7.68)) allows (7.72) to be written in the
Polak-Ribie~ form

Consider first the coefficient P,. If we substitute (7.63) into (7.68) we obtain

Similarly, we can use the orthogonality property (7.71) for the gradients to sim-
plify (7.74) further, resulting in the Fletcher-Reeves form

282 7: Parameter Optimization Algorithms

quadratic error function with a positive-definite Hessian matrix. For general non- I

linear error functions, the local Hessian matrix need not be positive definite. T~
e search dic t ions defined by the conjugate gradient algorithm need not then be

descent directions (Shanno, 1978). In practice, the use of robust Iine minimi,, 1
tion techniques ensures that the error can not increase at my step, and 6uch
algorithms are generally found to have good performance in real applications+

As we have seen, the conjugate gradient algorithm provides a minimization I

technique which requires onIy the evaluation of the error function and its deriva-
tives, and which, for a quadratic error function, is guaranteed to find the mini-
mum in at most W steps. Since the derivation has been relatively complex, ,,
now summarize the key steps of the algorithm: 1

1. Choose an initial weight vector wl .
2. Evaluate the gradient vector gl, and set the initial search direction d, = I

-%1.

7.8 Scaled conjugate gradients 1 1
We have seen how the use of a line search allows the step size in the c o n j u ~ a ~ ~
gradient algorithm to be chosen without having to evaluate the Hessian matrix 1
However, the line search itself introduces some problems. In particular, every line
minimization involves several error function evaluations, each of which is corn-
putationally expensive. Also, the linesearch procedure itself necessarily invdv*

3. At step j, minimize E(wj f a d j) with respect to n to give wj+i = wj +
a rn ind j .

4. Test to see if the stopping criterion is satisfied.
5. Evaluate the new gradient; vector gj+l.

6. Evaluate the new search direction using (7.67) in which P,: is given by the
H e e n e ~ S t i e f e l formula (7.72), the Polak-Rbiere formula (7.74) or the
Fletcher-Reeves formula (7.75).

7. Set j = j + 1 and go to 3,
I

Empirical results from the training of multi-layer pereeptron networks using
conjugate gradients can be found in Watrous (19871, Webb et al. (19881, Kramer
and Sangiownni-Vincentelli (1989), Makram-Ebeid et cnl. (1989), Barnard (1992)
and Johansson et a!. (1992).

The batch form of gradient descent with momentum, discussed in Section 7.5,
involves two arbitrary parameters A and p, where X determines the step length,
and p controls the momentum, i.e. the fraction of the previous step to be included

7.8: Scaled wnjugate gradients 283

1

~
1

p~ameter whose value determines the termination criterion for each lie I

ch. The overall perfo-ce of the algorithm can be sensitive to the value I
gear
of this parameter since a line search which is insufficiently accurate implies that
the value of oj is not being determined correctly, while, an excessively accurate

search can represent a good deal of wasted computation.
I

M$]ler (1993b) introduced the scaled conjugate gradient algorithm as a way
of alroiding the line-search procedure of conventional conjugate gredients. First,

that the Hessian matrix enters the formula (7.62) for aj only in the form
of the Hessian multiplied by a, vector d j . We saw in Section 4.10.7 that, for the
muIti-layer perceptron, and indeed for mere genera1 networks, the product of the
Hessian with an arbitrary vector could be computed efficiently, in O(W) steps
(per training pattern), by using central differences or, more accurately, by using
the ??{.)-operator technique.
This suggests that, instead of using line minimization, which typically in-

volves several error function evaluations, each of which takes O(W) operations,
me simply evaluate Hdi using the methods of Section 4.10.7. This simpIe ap-
proach fails, however, became, in the case of a non-quadratic error function, the
Hessian matrix need not be positive definite. 3h this case, the denominator in
(7.62) can become negative, and the weight update can lead to an increase in
the value of the error function. The problem can be overcome by modifying the
Hessian matrix to ensure that it is positive definite. This is achieved by adding
to the Hessian some multiple of the unit matrix, so that the Hessian becomes

in the current step. A major probIern with gradient descent is bow to determine
values for A and p, particularly since the optimum d u e s wiU typically vaW
from one iteration to the next. The conjugate gradient method can he regarded
as a form of gradient descent with momentum, in which the parameters $I and
p are determined automatically at each iteration. The effective Iearning rate is
determined by line minimization, while the momentum is determined by the
parameter in (7.121, (7.74) or (7.75) since this controls the search direction 1 1

through (7.67). I

where I is the unit matrix, and X 2 0 is a scaling coefficient. Provided X is
sufficiently large, this modified Hessian is guaranked to be positive definite. The
formu~a for the step length is then given by

v:here the suffix j on)ij reflects the fact that the optimum value for this par=-
Oter can vary from one iteration to the next. For large values of A j the step size
bpc~mes small. Techniques such as this are well known in standard optimization
tileor~, where they me called model tnrst region methods, because the model is
? f f ~ c t i v e ~ ~ only trusted in a srrlall region around the current search point. The
size of the trust region is governed by the parameter A,, so that for large A,

trust region is small. The model-trusbregion technique is considered in more
firtail in the context of the Levenberg-Marquardt algorithm later in this chapter.

1% ~ Q W have to find a way to choose an appropriate value for A,. From the
in Section 7.1.2 we know that the expression (7.79) with A, = 0 will

move the weight vector to the minimum along the search direction provided (i)
thr @ r m r function can be represented by a quadratic form, and (ii) the denomi-

284 7: Pamrneter Optimization Algorithms

nator is positive (corresponding to a positivpdefinik Hessian). If either of th ese conditions is not satisfied then the value of Aj needs t o be increased EiC~~rdi~~,~,
Consider first the problem of a Hessian which i s not positive definite, ~h~

denominator in the expression (7.79) for the Ctj cca be written as

For a positivedefinite Hessian we have bj > 0. If, however, dj < 0 then ~ v c
increase the value of Aj in order to make dj > 0. Let the raised value of A, be
caIled x j . Then the corresponding raised value of S j is given by

This will be positive if > AXj - bj /lldj 112. Mriller (1993b) chooses to set

Substituting (7.82) into (7.81) gives

which is therefore now positive. This value is used as the denominator in (7.79)
to compute the value of the stegsize parameter aj.

We now consider the effects of the local quadratic assumption. In regions
where the quadratic approximation is good, the value of Xi shouId be reducd,
while if the quadratic approximation is poor, Aj should be increased, so that the
size of the trust region reflects the accuracy of the local quadratic approxima-
tion. This can be achieved by considering the comparison parameter defined b.,'
(Fletcher, 1987)

where Eq(wj is the local quadratic approximation to the error function in the
neighbourhood of the point wj, given by

From (7.84) we see that Aj gives a measure of the accuracy of the quadratic
approximation. If Aj is close to 1 then the approximation is a good one and the
value of A can be decrea~ed. Conversely a small value of A, is an indication rhRt
Aj should be increased. Substituting (7.85) into (7.84), and using the definition

7. S: Newton's method 285

i;.62) for a,, we obtain

The value of can then be adjusted using the following prescription {Fletcher,
1987):

if Aj > 0.75 then Aj+ l = A j / 2 (7.87)

if Aj < 0.25 then ,Ij+, = 4Xj (7.88)

othemi?,e set Xj+l = A,. Note that, if Ai < O so that the step would actually
lead to an increase in the error, then the weights are not updated, but instead
the iqlue of A, is increased in accordance with (7.88), and A, is reevaluated.
Eventually an error decrease will be obtained since, for sufficiently Iarge A j , the
algorithm will be taking a small step in the direction of the negative gradient.
The two stages of increasing Xj (if necessary) to ensure that sj is positive, and
adjusting X3 according to the validity of the local quadratic approximation, are
applied in succession after each weight update.

Detailed stepby-step descriptions of the algorithm can be found in Mdler
(1993h) and Williams (1991). Results from software simulations indicate that

algorithm can sometimes offer a significant improvement in speed compared
conventional conjugate gradient algorithms.

7.9 Newton's method
In the conjugate grdient algorithm, implicit use was made of second-order in-
formation about the error surface, represented by the Iocal Hessian matrix. We
"w turn to a ~ 1 % ~ ~ of algorithms which make explicit use of the Hessian.

Using the local quadratic approximation, we can obtain directly an expression
the location of the minimum (or more generally the stationary point) of the

I

function. From (7.10) the gradient at any point w is given by

%d so the weight vector w* corresponding to the minimum of the error function I

Qfisfies

vector -Hplg is known as the Newton direction or the Newton step, and I

B r m ~ the basis for a variety of optimization strategies. Unlike the local gradient
V"r-"or, the Newton direction for a quadratic error surface, evaluated at any w,
Poirlts directiy at the minimum of the error function, as illustrated in Figure 7-13,

n.hrie 'Ve have used the Newton step formula d = -HdIg.
from the neighbourhood of a minimum, the Hessian matrix need not

,,itive definite. The problem can be resolved by adopting the model tmst

bP tn discussed earlier in Section 7.8, and described in more detail in
I

7.11. This involves adding to the Hessian a. positive-dehite symmetric
which comprises the unit matrix X times a constant factor A. Provided X

is s,ificiently luge, the new matrix ~

286 7: Parameter Optimization Alga+thms 7.1 0: Quasi-Newton methods 287

Since the quadratic approximation used to obtain (7.90) is not exact it
be necessary to apply (7.90) iteratively, with the Hessian being re-evaluated at
each new search point. From (?.go), we see that the gradient descent procedure
(7.23) corresponds to one step of the Newton formula (7.901, with the inverse
Hessian approximated by the unit matrix times q, where is the learning rate
parmeter.

There are several difficulties with such an approach, however. First, the exact
evaluation of the Hessian for non-linear networks is cornputationally demmdbg,
since it requires 6(NW2) steps, where W is the number of weights in the net-
work and N is the number of patterns in the data set. This evaluation would be
prohibitively expensive if done at each stage of an iterative algorithm. Second,
the Hessian must be inverted, which requires O(W3) steps, and so is also ma-
putationally demanding. Third, the Newton step in (7.90) may move towads a
maximum or 8 saddlepoint rather than a minimum. This occurs if the Ressianis
not positive definite, so that there exist directions of negative curvature ThuS1
the error is not guaranteed to be reduced at each iteration. Finally, the step size
predicted by (7.90) may be sufficiently large that it takes us outside t h ~ rmge
validity of the quadratic approximation. In this case the algorithm could become
unstable.

NevertheIess, by making various modifications to the full Newton rule it
be turned into a practical optimization method. Note first that, if the Hessian'
positive definite (as is the ease close to a minimum), then the Newton direction
always represents a descent direction, as can be seen by considering the

1 0 4

directional derivative of the error function in the Newton direction evalua ted st

some point w

Figure 7.13. Illustratioa of the Newton direction for a quadratic error surfwe,
The local negative gradient vector -g(w) does not in general point to-&
the minimum of the error function, whereas the Newton direction -H-lg(w)
does.

a
-E(w + Ad) = dTg = - g T ~ - ' g < 0 aA I A = ~

,ill he positive definite. The corresponding step direction is a compromise be
myen the Newton direction and the negative gradient direction. For very small

of X we recover the Newton direction, while for Iarge values of X the
direction approximates the negative gradient

This fitill leaves the problem of computing and inverting the Hessian matrix.
One approach is to approximate the Hessian by neglecting the off-diagond terms
(Becker and Le Cun, 1989; Rcotti et d., 1988). This has the advantages that the
inverse of the Hessian is trivial to compute, and the Newton update equations
(7.90) decouple into separate equations for each weight. The problem of negative
curnatures is dealt with by the simple heuristic of taking the modulus of the
second derivative. This gives a Newton update for a weight wi in the form

A is treated as a small positive constant. For the multi-layer perceptron, the
d i a ~ ~ n a i terms in the Hessian matrix can be computed by a back-propagation
Procedllr@ as discussed in Section 4.10.1. A major drawback of this approach,
9 v ~ r . is that the Hessian matrix far many neural network problems is typically
lar from diagonal.

Q uasi-Newton methods I

already argued that a direct application of the Newton method, as given b. - I ' ' g')). wou !d be computationally prohibitive since it would require ~) (N w ~)
operations to M u a t e the Hessian matrix and 0(w3) operations to compute
lh ini.erre Alternative appro&-, known as quasi-Newton or variable metric
m'hods, are based on (7.90), but instend of calculating the H w i a n directly, *' then evaluating its invene, they build up an approximation to the inverse
b'ial' owr a number of steps. As with conjugate gradients, these methods can 1 6nd minimum of a quadratic form in at most W steps, giving an overall

L i

288 7: Parameter Optimization dlgodhms

computational cost which is ~ (N w ") .
The quasi-Newton approach involves generating a sequence of matrices

which represent itlcteasingly accurate approximations to the inverse Hessian
H-', using only information on the first derivatives of the error function. ~h~
problems arising from Hessian matrices which are not positive definite are solved
by starting from a posititredefinite matrix (such BS the unit matrix) and ensuring
that the tipdate procedure is such that the approximation to the inverse Hessian
i s gumanteed to remain positive definite.

Fsom the Newton formula (7.90) we see that the weight vectors at steps
and T + 1 are related to the corresponding gradients by

which is knuwn as the quasi-Newton condition. The approximation G of the
inverse Hessian is constructed so as to satisfy this condition SO.

The two most commonly used update fofrnulae are the DaGdson-Fletcher-
Powell (QFP) and the Bmyden-Fletcher-Goldfarb-Shanno (BFGS) procedures.
Here we give only the BFGS expression, since this is generally regarded as being
superior:

where we have defined the folluwing vectors:

Derivations of this expression can be found in many standard texts on optimize
tion methods such as Polak (1971), or Luenbergei (1984). It is straightforward
to verify by direct substitution that (7.96) does indeed satisfy the quasi-Nen7ton
condition (7.95).

Initializing the procedure using the identity matrix corresponds to taking
first step in the direction of the negative gradient. At each step of the algorithm' ... c
the direction -Gg is guaranteed to he a descent direction, since the matrfx
is positive definite. However, the full Newton step given by (7.90) may take "'
search outside the range of validity of the quadratic approximation. The soiution
is to use a line-search algorithm (Section 7.6), as used with conjugate .gradients'
to find the minimum of the error function along the search direction. Th~s. the

7.10: Quasi-Newton methods 289

a(') is found by line minimization.
A significant advantage of the quasi-Newton approach over the conjugate

gradient method is that the line search does not need to be performed with
such &reat accuracy since it does not form a critical factor in the algorithm. For

gradients, the line minimizations need to be performed accurately in
order to ensure that the system of conjugate directions and orthogonal gradients
is set up correctly-

A potentia1 disadvantage of the quasi-Newton method is that it requires the
storage and update of a matrix G of size W x W. For smdl networks this is of
little consequence, but for networks with more than a few thousand weights it
could lead to prohibitive memory requirements. In such cases, techniques such
,s conjugate gradients, which require only 6 (W) storage, have a significant ad-
vantage.

For an W-dimensional quadratic form, the sequence of matrices G(') is guar-
anteed to converge exactly to the true Hessian after W steps, and the quasi-
Newton algorithm would find the exact minimum of the quadratic form after W
steps, assuming the line minimizations were performed exxtly. Results from the
application of quasi-Newton methods to the training of neural networks can be
found in Watrous (19871, Webb et at. (I9S8), and Barnard (1992).

7.10.1 Limited memom wmi-Newton methods

Shanno (197%) investigated the accuracy needed for line searches in both conju-
gate gradient and quasi-Newton algorithms, and conduded that conjugate gra-
dient algorithms require relatively accurate line searches, while quasi-Newton
methods remain robust even if the line searches are only performed to relatively
10%~ accuracy. This implies that, for conjugate gradient methods, significant com-
putational effort needs to be expended on each line minimization.

The advantage of conjugate gradient algorithms, however, is that they require
Oilv] storage rather than the 0(w2) storage needed by quasi-Newton methods.

cluestion therefore arises as to whether we can find an algorithm which uses
" l l i) storage but which does not require accurate line searches (Shanno, 1978).
'"""i?v to reduce the storage requirement of quasi-Newton methods is to replace

aPProxlrnate inverse Hessian matrix G at each step by the unit matrix. If
w F- make this substitution into the BFGS formula in (7.96), and multiply the

j'''!ltin~ approximate inverse Hessian by the current gradient g(T+ l) , we obtain
hlloaying expression for the search direction

Phpre the scalars A and 3 are defined by

weight vector is updated using 1

7: Parameter Optimization Algof i thw

vT, PT&b+l) VTg(r+l)
A = - I t - (PTV) pTv + P=V (7.102)

and the vectors p and v are defined in (7.97) and (7.98). If exact Iine searches ,,,
performed, then (7.101) produces search directions which are mutually conjugate
(Shanno, 1978). The difference compared with standard conjugate Eradiems is
that if approximate line searches are used, the algorithm remains well behavedn
As with conjugate gradients, the algorithm is restarted in the direction of the
negative gradient every W steps. This is known as the dinaited memory BFGS
algorithm, and has been applied to the problem of neural network training bv
Battiti (1989),

7.11 The Levenberg-Marquardt algorithm

Many of the optimization algorithms we have discussed up to now have been
general-purpose methods designed to work with a wide range of error functions.
We now describe an algorithm designed specifically for minimizing a sum-of-
squares error.

Consider the sum-of-squares error function in the form

where E" is the error for the n th pattern, and E is a vector with elements en.
Suppose we are currently at a point wol~ in weight space and we move to a pdnt
w,,,. If the displacement w,, - wold is small then we can expand the error
vector E to first order in a Taylor series

where we have defined the matrix Z with elements

The error function (7.104) can then be written as

If we minimize this error with respect to the new weights w,, we obtain

7.11: The Leuenberg-Maquadt algorithm 29 1

1f we neglect the second term, then the Hessian can be written in the form

ypt, that this has the sarne structure as the paeud+inverse formula for linear

n?T introduced in Section 3.4.3, as we would expect, since we are indeed
a sum-~f-squares error function for a Iinear model.

For the s ~ m - o f - ~ u a r e s error function (7.104), the elements of the Hessian

For a linear network (7.110) is exact. We therefore see that (7.108) involves the
inverse Hessian, as we might expect since it corresponds to the Newton step
applied to the linearized model in (7.105). For non-linear networks it represents
an approximation, although we note that in the Iimit of an infinite data set
the expression (7.110) is exact at the global minimum of the error function,
as discussed in Section 6.1 -4. Recall that in this approximation the Hessian is
relatively easy to compute, since first derivatives with respect to network weights
can he obtained very efficientty using back-propagation as shown in Section 4.8.3.

In principle, the update formula (7.108) could be applied iterativeIy in order
to try to minimize the error function. The problem with such an approach is that
tile step size which is given by (7.108) could turn out to be relatively large, in
which case the linear approximation (7.107) on which it is based would no longer
be ualid. In the Levenberg-Maquardt algorithm (kenberg , 1944; Marquardt,
19631, this problem is addressed by seeking to minimize the error function while
a t the same time trying to keep the step size small so as to ensure that the linear
aPPtoximation remains valid. This is achieved by considering a modified error
function of the form

I

yh~re the parameter A governs the step size. For large values of X the value of
'iwneu. - wold 1 1 2 will tend to be small. If we minimize the modified error (7.111)

respect to wnWr we obtain

take the form I

I is the unit matrix. For very small values of the parameter A we recover
the Newton formula, while for large values of L we recover standard gradient

292 7: Parameter Optimization Algorithm

descent. In this latter case the step length is determined by A-', so that it in
clear that, for sufficiently large values of A, the error will necessarily decrease
since (7.112) then generates a very small step in the direction of the negatj,,
gradient. The Levenberg-Marquardt algorithm is an example of a model t~
region approach in which the model (in this case the linearized approximation
for the error function) is trusted only within some region around the cur-,,,
search point. The size of this region is governed by the value of A.

In practice a value mwt be chosen for X and this vdue should vary approp~+
ately during the minimization process. One common approach for setting X is to
begin with some arbitrary value such as A = 0.1, and at each step monitor th,
change in error E. If the error decreases after taking the step predicted by (7.112)
the new weight vector is retained, the value of X is decreased by a factor of 10,
and the process repeated. If, however, the error increases, then X is increaed
by a factor of 10, the old weight vector is restored, and a new might update
computed. This i s repeated until a decrease in E is obtained. Comparisons .of
the Levenberg-Marquardt algorithm with other methods for training multi-layer
perceptrons are given in Webb et al. (1988).

Exercises

7.1 (*) Show that the stationary point; w* of quadratic error surface of the form
(7.10) is a unique global minimum if, and onIy if, the Hessian matrix is
positive defirtite, so that dl of its eigendues are positive.

7.2 (* *) Consider a quadratic error error function in two-dimensions of the form

Verify that X I and A2 Enre the eigenvdues of the Hessian matrix. Write a
numerical implementation of the gradient descent algorithm, and apply it
to the minimization of this error function for the case where the ratio of the
eigenvalues A2 /A1 is large (say IO:lj. Explore the convergence properti@
of the algorithm for various values of the learning rate parameter. and
verify that the largest value of 7 which still leads to a reduction in E
determined by the ratio of the two eigenvalues, as discussed in Section 7 . 5 ~ ~
Now include a momentum term and explore the convergence behaviour
a function of both the learning rate and momentum parameters. For e8
experiment, plot trajectories of the evolution of the weight vector in the
two-dimensional weight space, superimposed on contows of constant er'or'

7.3 (*) Take the continuoustime limit of (7.33) and show that leads the

following equation of motion

where

Exercises 293

and T is the continuous time variable. The equation of motion (7.114)
to the motion of a massive particle (i.e. one having inertia)

, i t h mass m moving downhill under a force -VE, subject to viscous drag
with viscosity coefficient v. This is the origin of the term 'momen tum~n
(7.3333

7.1 (+) In 17.35) we considered the effect of a momentum term on gradient de-
scent through a region of weight space in which the error function gradient
couPd be taken to be approximately constant. This was based on aurnming
an arithmetic series after an infinite number of steps. Repeat this analygis
more carefully for a finite number L of steps, by expressing the resulting
finite series as the difference of two infinite series, Hence obtain an expres-
sion for the weight vector wIL) in terms of the initid weight vector wIO),
the error gradient V E (assumed constant) and the parameters 91 and p.
Show that (7,351 is obtained in the limit L -+ m,

1.5 (*) Consider an arbitrary vector v and suppose that we first normalize v so
that IIvI[= 1 and then multiply the resulting vector by a real symmetric
matrix H. Show that, if this process of normaIization and multiplication
by H is repeated many times, the resulting vector will converge towards
Ammu,, where A,, is the largest eigenvalue of H and n,,, is the corre-
sponding eigenvector. (Assume that the initial vector v is not orthogonal
to urn,,).

7.6 (*) Consider a single-Iayer network having a mapping function given by

and a sum-oEsquares error function of the form

wlth n labels the patterns, and k labels the output units. Suppose the
Wights are updated by a grdient descent rule in which each weight wki

has its own learning rate parameter q k i , so that the value of zuki at time
step T is given by

Use the above equations to find m expression for the error at step T in
terms of the weight values at step T - 1 and the learning rate parameters
?:'. Show that the derivative of the error function with respect to is
given l y the delta-delta expression

I

294 7: Pamrneter Optimization Algorithms I

where

L A

7.7 (*) Derive the quickprop weight update formula (7.42) by following the dis)
cussion given in the text.

7.8 (k) Consider a symmetric, positive-definite W x W matrix H, and suppose
there exists a set of W mutually conjugate directions di satisfying

Show that the vectors dt must be linearly independent (i.e. that dd, cannot
be expressed as a Iinear combination of { d j) where j = I, . . . , W with

j # i}.
7.9 (*) The purpose of this, exercise is t o show by induction that if successive

search directions are constructed from (7.67) using the conjugacy condition
(7.683, that the first W such directions will dl be mutually conjugate. We
know by construction that dTHdl = O. Now suppose that d T ~ d ~ = O For
some given j < W and for aII i satisfying d < j. Since d:+lHd, = 0 by
construction, we need t o show that d>lHdi = 0 for aI1 i < j + 1. Using
(7.67) we have

d;+l~di = - g , T , l ~ d i + pjdTXldi. (7.122)

The second term in (7.122) vanishes by assumption. Show that the first
term also vanishes, by making use of (7.63) and (7.711. This completes the
proof.

7.10 (*) Verify by direct substitution that the BFGS update formula (7.961
satisfies the Newton condition (7.95).

7.1 1 (*) Verify that replacement of the approximate inverse Hessian matrix G("
by the unit matrix 1 in the BFGS formula (7.96) leads to a Newton steP
-G('*')g given by the limited memory BFGS expression (7.101).

PREPROCESSING AND FEATURE EXTRACTION

since neural networks can perform essentially arbitrary non-linear functional
between sets of variables, a single neural network could, in principle,

be used to map the raw input data directly onto the required final output values.
In practice, for all but the simplest problems, such an approach will generally
S ~ Y P poor results for a number of reasons which we shall discuss b e h . For most
applications it is necessary first to transform the data into some new represen-
tation before training a neural network. To some extent, the general-purpose
nature of a neural network mapping means that less emphasis has to be placed
on careful optimization of this pre-processing than would be the case with simple
linear techniques, for instance, Nevertheless, in many practical applications the
rlloice of pre-processing will be one of the most significant factors in determining
the performance of the final system.
h the simplest case, preprocessing may take the form of a linear transforma-

tion ofthe input data, and ~ossibly also of the output data (where i t is sometimes
?trmed post-processing). More complex pre-processing may involve red nction of
"hfe dimensionality of the input data. The fac t that such dirnensianality reduction
can kacl to improved performance may at first appear somewhat paradoxical,
s i ~ ~ ~ it cannot increase the information content of the input data, and in most
r;tSPs will reduce it. The resolution is related to the curse of dimensionality dis-
S'ls"d in Section 1.4.

Another important way in which network performance can be improved,
""'"times dramatically, is through the incorporation of prior knozuledge, which
~ F Z "'5 to relevant information which might be used to develop a solution and

yhic l l is additional to that provided by the training data. Prior knowledge can
''ti!pr he incorporated into the network structure itself or into the pre-processing
and Post-processing stages. It can also be used to modify the training process
:hr q " ~ h the use of regularization, as discussed in Sections 9.2 and 10.1.2.

-4 final aspect of data preparation arises horn the fact that real data often
"lifPrs horn a number of deficiencies such as missing input values or incorrect
tav:pt valTles,

this chapter we shall focus primarily on classification problems. It should ha ""l~hasized, however, that most of the same general principles apply equally

'Trmion problems.

8: Pre-processing and Feature Edmctdon

output

processing

network

I F] processing

inputJ data

Figure 8.1. Schematic illustration of the use of data pre-procmjng and post-
processing in conjunction with a neural network mapping.

8.1 Pre-processing and post-processing
In Chapter 1 we formulated the problem of pattern recognition in terms of a
nun-linear mapping from a set of input variables to a set of output variables. We
have already seen that a feed-forward neural network can in principle represent an
arbitrary functional mapping between spaces of many dimensions, and so it would
appew that we could use a single network to map the raw input data directly
onto the required output variables. In practice it is nearly always advantageous
to apply pre-processing transformations to the input data before it is pesentd
to a network, Similarly, the outputs of the network are often post-processed to
give the required output values. These steps are indicated in Figure 8.1. The pre-
processing and post-processing steps may consist of simple fixed transformations
determined by hand, or they may themselves involve some adaptive processes
which are driven by the data. For practical applications, data pre-processing is
often one of the most important stages in the deveIopment of solution, and the
choice of pre-processing steps can often have a significant effect on
performance.

Since the training of the neurd network may involve an iterative algorithmn
it will generally be convenient to process the whole training set using the Pre-
processing transformations, and then use this transformed data set to train the
network. With applications involving on-line learning, each new data point must
first be pre-processed before it is passed to the network. If post-proeessing of

the network outputs is used, then the target data must be transformed using
the inverse of the post-processing transformation in order to generate the target
values for the network outputs. When subsequent data is processed by the train'
network, it must f ist be passed through the pre-processing stage, then througl'
the network, and finally through the post-processing transformation.

8.1: Pre-processing and post-processing 297

one of the most important forms of preprocessing involves a reduction in I
dimensionality of the input data. At the simplest level this could involve I

discarding a subset of the original inputs. Other approaches involve forming
Iil,ear Or non-linear combinations of the original variables to generate inputs for
I,he network. Such combinations of inputs are sometimes carled features, and the

of generating them js calIed feature dmction. The principal motivation
for dimensionality reduction is that it can help to alleviate the worst effects
of the curse of dimensionality (Section 1.4). A network with fewer inputs has
f e l ~ r parameters to be determined, and these are more likely to be

Properly constrained by a data set of limited size, leading to a network with
better properties. Ln addition, a network with fewer weights may
b, faster to train.

AS a rather extreme example, consider the hypothetical character recognition
problem discussed in Section 1.1. A 256 x 256 image h a a totd of 65 536 pixels.
In the mast direct approach we could take each pixel as the input to a single large

network, which would give 65 537 adaptive weights (including the bias)
for every unit in the first hidden layer. This implies that a very large training
set would be needed to ensure that the weights were we1 determined, and this
in turn implies that huge computational resources would be needed in order to
find a suitable minimum of the error function. In practice such an approach is
clearly impractical, One technique for dimensionality reduction in this case i s
pireel averaging which involve grouping bbcks of pixeIs together and replacing
each of them with a singIe effective pixel whose grey-scale value is given by the
average of the grey-scde values of the original pixels in the block. It is clear that
information is discarded by this process, and that if the blocks of pixels are too
large, then there will be insufficient information remaining in the pixel averaged
ima~e for eRective classification. These averaged pixels are examples of featuws,
that is modified inpui;s formed from collections of the original inputs which might
hp combined in linear or non-linear ways. For an image interpretation problem

Rill often be possible to identify more appropriate features which retain more
"f the relevant information in the original image. For a medical classification
problem, such features might include various measures of textures, while for a
Pruhlem involving detecting objects in images, it might be more appropriate to
px"tact features involving geometrical parameters such as the lengths of edges
Or meas of contiguous regions.

Clearly in most situations a reduction in the dimensionality of the input v e ~ '" result in loss of information. One of the main goals in designing a good
Prec~rocessing strategy is to ensure that as much of the relevant information as
Pqssihle is retained. If too much information is lost in the pre-processing stage
!

IMn the resulting reduction in performance more than offsets any improvement
YiyiW from a reduction in dimensionality. Consider a classification problem in
I h i r h an input vector x is to be assigned to one of c classes Ck where k = 1,. . . , e.
Thq minimum probability of rnisclassification is obtained by assigning each input
vpp'or x to the class Ci. having the largest posterior probability P(Ckx) . We can

rd these probabilities as examples of features. Since there are c such features,

298 8: Pre-processing and Featwe Extraction

and since they satisfy the relation zk PICklx) = 1, we see that in principle c,
independent features are sufficient to give the optimal classifier. h practice, of
course, we will not be able to obtain these probabilities easily, otherwise we would
already have solved the problem. We may therefore need to retain a much larger
number of features in order t o ensure that we do not discard too much useful ib
formation. This discussion highlights the rather artificid distinction between the
pre-processing stage md the classification or regression stage. If we can perform
sufficiently clever pre-processing then the remaining operations become trivial.
Clearly there is a baIance to be found in the extent to which data processing $
performed in the pre-processing and post-processing stages, and the extent to
which it is performed by the network itself.

8.2 Input normalization and encoding

One of the most common forms of pre-processing consists of a simple linear
rescaling of the input variables, This is often useful if different mriables have
typical values which differ significantly. In a system monitoring a chemical plant,
for instance, two of the inputs might represent a temperature and a pressure
respectively. Depending on the units in which each of these is expressed, t h q
may have values which differ by several orders of magnitude. Furthermore, the
typical sizes of the inputs may not reflect their relative importance in determining
the required outputs.

By applying a linear transformation we can arrange for all of the inpub ta
have similar values. To do this, we treat each of the input variables independently,
and for each variabIe we calculate its mean Zi md variance c: with respect
to the training set, using

where n = 3,. . . , N labels the patterns. We then define a set of resealed variables
given by

It is easy to see that the transformed variables given by the 2; have zero me@
and unit standard deviation over the transformed training set. In the case
regression problems it is aften appropriate to apply a similar linear rescding ''
the target values.

8.5': Inpat nomalitation and encoding 299

sate that the transformation in (8.2) is linear and so, for the case of a multi-
Iflver perceptron, it is in principle redundant since it could be combined with

linear transformation in the first layer of the network. In practice, however,
input normalization ensures that all of the input and target variables are of order
,,,itv, in which case we expect that the network weights should also be d order

The weights can then be given a suitable random initialization prior to
n,work training. Without the linear rescaling, we would need to find a solution
for the weights in which some weight values had markedly different values from

others.
%ate that, in the case of a radial basis function network with sphericdly-

,,mmetric basis functions, it is particularly important to normalize the input
A .

\~~~iables so that they span similar ranges. This is a consequence of the fact
that. the activation of a basis function Is determined by the Euclidean distance I
hetween the input vector x and the basis function centre fij given by

where d is the dimensionality of the input space. If one of the input variables
h a s a much smaller range of values than the others, the value of 1' will be very
insensitive to this variable. In principle, an aItemative to normdisation of the
input data is to use basis functions with more general covariance matrices.

The simple linear rescaling in (8.2) treats the variables as independent. We
can perform a more sophisticated linear rescaling, known as whitening, which
dlows also for correlations amnm the variables (Fhkunaga, 1990). For con- -
nience we group the input variables xi into a vector x = (XI,. . . , ~ d) ~ , which has
sample mean vector and covaiance matrix with respect te the N datsk points of
t h ~ training set given by

I t introduce the eigenvalue equation for the covariance matrix

Euj = Ajuj (8.5)

we can define a vector of linearly transformed input variables given by

gn = ~ - 1 / 2 u " (~ n
(8.6)

300 8: Pre-pmcessing and Feature Extmction

whitened

- -
original

distribution

Figure 8.2. Schematic illustration of the use of the eigenvectors uj (together
with their corresponding eigendues Aj) of the covariance matrix of a distri-
bution to whiten the distribution so that its covariance matrix becomes the
unit matrix.

where we have defined

Then it is easy to verify that, in the transformed coordinates, the aaza set h a
zero mean and a covariance matrix which is given by the unit matrix. This
illustrated schematically in Figure 8.2.

8.2.1 Discwte data

30 far have discussed data which takes the form of continuous variablp~. i lk
may also have to ded with data taking on discrete values. In such cases it is
venient to distinguish between ordinal variabIes which have a natural orderiflp
and eategoncal variables which do n o t An exampie of an ordinal variable muid
be a person's age in years. Such data can simply be transformed directh
the corresponding values of a continuous variable. An example of a catWrie'
variable would be a measurement which could take one of the values rod. PHs
or blue. If these were to be represented as, for instance, the values 0.0, 0-.5 "'
1.0 of a single continuous input variable, this would impose an artificial OfiieriQP

on the data. One way around this is to use a 1-of-c coding for the inprlt
similar to that discussed for target data in classification problems in Section 6.6
In the above example this requires three input variables, with the three col*''"
represented by input values of (1,0,0) , (0,1,0) and (0,0, I).

8.3: Missing data 301

Missing data

In P ractical applications it sometimes happens that the data suffers from defi-
ciencies which should be remedied before the data is used for network training.

problem is that some of the input values may be missing from the
;,,, set for some of the pattern vectors (Little and Rubin, 1987; Little, 1992). If

quantity of data available is aztficientEy large, and the proportion of patterns
,tfectPd is small, then the simplest solution is to discard those patterns from

data set. Note that this approach is implicitly assuming that the mechanism
is responsible for the omission of data values is independent of the data
If the values which are missing depend on the data, then this approach

,,.ill modify the effective data distribution. An example would be a sensor which
always fails to produce an output signd when the signal value exceeds some
threshold.

!{;hen there is too little data to discard the deficient examples, or when the
of deficient points is too high, it becomes important to make full use

of t he information which i s potentiaI1y available from the incomplete patterns.
Consider first the problem of unconditional density estimation, for the case of a
parametric model based on a single Gaussian distribution. A common heuristic
for estimating the model parameters would be the following. The components pi
of the mean vector p are estimated from the values of x,: for a11 of the data points
for which this value is available, irrespective of whdher other input values are
present. Similarly, the (i, j) element of the covariance matrix Z1 is found using
all pairs of data points for which values of both x, and xj are available. Such an
approach, however, can lead to poor results (Ghahramani and Jordan, 1994b),

indicated in Figure 8.3,
I~arious heuristics have aIso been proposed for dealing with missing input

data in regression and classification problems. For example, it is common to 'fill
in' the missing input vajues first (Hand, 1981), and then train a feed-forward
""r't.ork using some standard method. For example, each missing value might
he replaced by the mean of the corresponding variable m r those patterns for
Iv1dcl1 i t s value is avdlable. This is prone to serious problems a s discussed above.
*'more daborate approach is to express any variable which has missing values in
'ern15 of a regression over the other variables using the available data, and then '" the regression function to fill in the missing values. Again, this approach
:C "ls to cause problems as it underestimates the covariance in the data since

the rcKresion function is noise-free.
'lissin:: data in density estimation problems can be dealt with in a princi-

'Irnd by seeking a maximum likelihood solution, and usin J the expectation-
maamiration, or EM, algorithm to deal with missing data. In Section 2.6.2, the ESr was introduced as a technique for finding maximum likelihood

for mixture models, in which hypothetical variables describing which
''"ponnnt was responsible for generating each data point were introduced and trc- 1 dtprl '~nissing data'. The EM algorithm can similarly he applied to the prob-

Or variables missing from the data itself (Ghahramani and Jordan, 1994b).

302 8: Pre-pmcessing and Feature Extraction

Figure 8.3. Schematic illustration of a set of data points in two dimensions,
For some of the data points (shown by the crosses) the values of both variables
are present, while for others (shown by the vertical Iines) only the values of
XI are known. If the mean vector of the distribution is estimated using the
available d u e s of each variable separately, then the result is a poor estimate,
as indicated by the square.

In fact the two problems can be tackled together, so that the parameters of a
mixture model can be estimated, even when there is missing data. Such tech-
niques can be applied to the determination of the basis function parameters in
a radial llasis function network, as discussed in Section 5.9.4. They can also be
used to determine the density p(x , t) in the joint input-target space. Ekom this
density, the conditional density p(t1x) can be evaluated, as can the regression
function (t lx) .

In general, missing values should be treated by integration over the cop
responding variables (Ahmad nnd Tresp, 1993), weighted by the appropriate
distribution (Exercise 8.4). This requires that the input distribution itself be
modelled. A related approach is t o fill in the missing data points with valuE
drawn at random from this distribution (Lowe and Webb, iS9Oj. I t is then PoS=
sible to generate many different 'completions' of a given input pattern which hs
missing variables. This can be regarded as a simple Monte Carko approximation
to the required integration wer the input distribution (Section 10.9).

8.4 Time series prediction

Many potential applications of neural networks involve data x = x(i) which
varies as a function of time T . The goal is often t o predict the value of x a sbo* - d
time into the future. Techniques based on feed-forward networks, of the krn

.ad described in earlier chapters, can be applied directly to such problems
the data is appropriately pre-processed first. Consider lor simplicity a singie
variable ~(7). One common approach is to sample s(r) at regular intervds
gene rat^ a series of discrete values z, 1, x , , z,+ 1 ant1 so on. can take a I

bd: Time series p d i c t i o n 303

Figure 8.4. Sampling of a time series at discrete steps can be wed to generate
a set of training data for a feed-fatward network. Successive values of the
timedependent variable ~(r), given by x,-*+I, . . . , x,, form the inputs to a
feed-forward network, and the corresponding target d u e is given by x,+l.

of d such values X,_~+I,. . . , xr to be the inputs to a feed-fomd network, and
use the next value x,+l as the target for the output of the network, as indicated
in Figure 8.4. By stepping along the time axis, we can create a training data set
consisting of many sets of input d u e s with corresponding Owget values. Once
the network has been trained, it can be presented with a set of obsemed values
a,$-d+l , . . . , s , ~ and used t o make a prediction for x , I + ~ . This is called one step
ahead prediction. If the predictions themselves are cycled around to the inputs
of the network, then predictions can be made at further points x,r+z and SO on.
This is called multi-step ahead prediction, and is typically characterized by a
rapidly increasing divergence between the predicted and observed values as the
"~mber of steps ahead is increased due to the accumulation of errors. The abwe
approach is easily generalized ta deal with several timcdependent variables in

form d a time-dependent vector x(T) .
One drawback with this technique is the need to choose the time increment

hetween successive inputs, and this may require some empirical optimization.
-Another problem is that the time series may show an underlying trend, such as
" "eadily increming d u e , with more complex structure superimposedm This can
i, remated by fitting a simple (e.g. linear) function of time to the data, and then
"Utracting off the predictions of this simple model. Such preprocessing is called
d~+t~endiag, and without it, a trained network would be forced to extrapolate

presented with new data, and would therefore have poor performance.
There is a key assumption which is implicit in this approach to time series

'Pdiction, which is that the statistical properties of the generator of the data
'b de-trending) are timeindependent. Provided this is the cme, then the pre-
'Or@ssing described above has mapped the time series problem onto a static

iuncfion approximation problem, to which a feed-forward network can be applied.

304 8: Pre-processing aand Feature Extmction

If, however, the generator of the data itself evolves with time, then this approach
is inappropriate and it becomes necessary for the network model to adapt to the
data continuously so that it can 'track' the time variation. This requires on-line
learning techniques, and raises a number of important issues, many of which are
at present largely unresolved and lie outside the scope of this book.

8.5 Feature seIection
One of the simpIest techniques for dimensionality reduction is to select a subset
af the inputs, and to discard the remainder. This approach can be useful if
there are inputs which carry little useful information for the solution of the
problem, or if there are very strong correlations between sets of inputs so that
the same information is repeated in several variables. It can be applied not only
to the original data, but also to a set of candidate features constructed by some
other means. For convenience we shall t d k of feature selection, even though the
features night simply be the original input wiabIes. Many of the idem are
equally applicable to conventional approaches to pattern recognition, and an!
covered in a number of the standard books in this area including Hand (1981),
Devijver and Kittler (1982) and Xkunaga (19901, and are reviewed in Siedlecki
and Sklansky (1988).

Any procedure for feature selection must be based on t;wo components. First,
a criterion must be defined by which it is possible to judge whether one subset of
features is better than another. Second, a systematic procedure must be found
for searching through candidate subsets of featurw. In principle the selection
criterion should be the same as wilI be used to assess the complete system (such
as misclassification rate for a classification problem or sum-of-squares error for
a regression problem). Similarly, the search procedure could simply consist of
an exhaustive search of all possibIe subsets of features since this is in general
the only approach which is guaranteed to find the optimal subset. In a
application, however, we are often forced to consider simplified selection criteria
as well as non-exhaustive search procedures in order to limit the computational
complexity of the search process. We begin with a discussion of possible selection
criteria.

8.5.1 Selection c r i t e ~ a

It is clear that the optimal subset of features selected from a given startin!: set

will depend, among other things, on the particular form of model (neural n e w r k
or otherwise) with which they are to be used. Ideally the selection criterion
be obtained by training the network on the given subset of features. and
evaluating its performance on an independent set of test data. If the newvrb
training procedure involves non-linear optimization, such an approach is liki'
to be impractical since the training and testing process would have to be i e ~ ~ ~ ~ ~
for each new choice of feature subset, and the computational requirements
become too great. It is therefore common to use a simpler model, such il.; a lac' - h the
mapping, in order to select the features, and then use these features W I ~

more sophisticated non-linear model. The simplified model is chosen so that it'@

8.5: Feature selection 305

be trained relatively quickly (using Iinear matrix methods for instance) thereby
a relatively large number of feature combinations to be explored. It

-hotll$ be emphasized, h m e r , that the feature selection and the classification io, reflession) stages should be ideally be optimized together, and that it is
because of practical constraints that we are often forced to treat them

independe~tl~-
F~~ regression problems, we can take the simple model to be a linear mapping

by a single-layer network with linear output units, which is equivalent to
multiplication with the addition of a bias vector. If the error function

jar training is given by a sum-of-squares, we can use this same me*
sure for feature selection. In this case, the optimal values for the weights and
biases in the linear mapping can be expressed in terms of a set of linear equa-
tions whose soIution can be found quickly by using singular d u e decomposition
(Section 3.4.3).

For classification problems, the selection criterion should ideally be taken to
the probability of mkctassification, or more generally as the expected total

105s or risk. This could in principle be calculated by using either parametric or
non-parametric techniques to estimate the posterior probabilities for each class
(Hand, 1981). In practice, evaluation of this criterion directly is generally too
complex, and we have to resort instead t o simpler criteria such as those based
nn class separability. We expect that a set of variables in which the classes are
best separated will be a good set of variables for input to a neural network or
other classifier. Appropriate criteria for c I ~ s separability, based on covariance
matrices, were discussed in Section 3.6 in the context of the Fisher discriminant
and its generalizations.

If we were able to use the fuIl criterion of misclassification rate, we would
W e c t that, as we reduce the number of features which are retained, the gener-
allaation performance of the system would improve (a consequence of the curse
of dimensionality) until some optimal subset of features is reached, and that if

reatures are retained the performance will degrade. One of the limitations
many simple selection criteria, such as those b ~ d on class separability, is

'liar they are incapable of modelling this phenomenon. For example, the Maha-
lanohis distance A2 (Seetion 2.1.1) always increases as extra variables are added.
In general such measures J satisfy a monotonicity property such that

X denotes a set of features, and Xt denotes a larger set of features which
the set X as a subset. Ths property is shared by criteria based on

'n"riance matrices. The inequality simply says that deleting features cannot
:illce 'he error rate. As a consequence, criteria which satisfy the monotonicity
'ns'raint cannot be used to deter* the optimum size for a set of variables

sd so cannot he used to compare sets of different sizes. However, they do offer a
hflll Way to compare sets of variables having t h e same number of elements. In

306 8: Pw-pmcess~ng and Feature Extraction

practice the removal: of features can improve the error rate when we take account
of the effects of a finite size data set. One approach to the set size problem i s to
use conventional statistical tests to measure the significance of the improvernent
in discrimination resulting from inclusion of extra variables (Hand, 1981). A,-
other approach is to apply cross-validation techniques (Section 9.8.1) to compare
models trained using different numbers of features, where the particular feature
subset used for each model is determined by one of the approaches discussed
here.

8.5.2 Search pmceduws

If we have a total of d p~ssible features, then since each feature can be present
or absent, there are a total of 2d possible feature subsets which could be consid-
ered. For a relatively small number of features we might consider simply using
exhaustive search. With 10 input variables, for example, there are 1024 possible
subsees which i t might be computationally feasible to consider. For large numbers
of input variables, however, exhaustive search becomes prohibitively expensive.
Thus with 100 inputs there are wer 1030 possible subsets, and exhaustive search
is impossible. If we have already decided that we want to extract preciseIy
features then the number of combinations of features is given by

d!
(d- 2j!i

which can be significantly smaller than 2d, but which may still be impracticdy
Iarge in many applications.

In principle it may be necessary to consider all possible subsets of features,
since combinations of variables can provide significant information which is not
avaiIable in any of the individual variabIes separately. This is illustrated for HQ

classes, and two features XI and 22, in Figure 8.5. Either feature taken atone gil*
strong overlap between the two classes, while if the two features are considered
together then the classes form well-separated clusters. A similar effect can occur
with an arbitrary number of features so that, in the most general case, the on]?
way to find the optimum subset is to perform exhaustive search.

If we are using a criterion which satisfies the monotonicity relation in 18.9)
then there exists an accelerated search procedure known as branch and b f l ~ ~ n a

(Narendra and Fukunaga, 1977). This method can also be applied in many other
areas such as cluster analysis and searching for nearest neighbours. In the present
context it will guxantee to find the best subset of given size, without needing
to evaluate d l possible subsets. To understand this technique, we begin b ~ : dis-
cussing the exhaustive search procedure, which we set out as a tree structure.
Consider an originaI set of d features si where i = 1 , . . . , d, and denote the
indices of the M = d - d katurm which have been discarded by a,. . . Y Z.\f'

where each zk can take the d u e 1,. . . ,d. However, no t.m zk should take the
same d u e , since that would represent a ~ingle feature being eliminated twice'

8.5: Feature selection 307

Figure 8.5. Example of data Erom two classes (represented by the creme and
the circles respectively) as described by two feature variables XI and xz. If the
data was described by either feature alone then there would be strong overlap
of the two c l w , while with if both features me used, m shown here, then
the classes are well separated.

Also, the order of the a ' s is irrelevant in defining the feature subset. A sufficient
condition for satisfying these constraints is that the zk should satisfy

This allows us t~ construct a search tree, as shown in Figure 8.6 for the case of
h e original features from which we wish to select a subset of two. The features
are indexed by the labels 1, 2, 3,4 , 5, and the number next to each node denotes
the feature which is eliminated at that node. Each possible subset of WO features
selected from a total of five is represented by one of the nodes at the bottom of
the tree. At the first level down from the top of the tree, the Righest value of zk
~ ~ h i c h is considered is 3, since any higher value would not allow the constraint
(8.11) t o be satisfied. SirniIar arguments are used to construct the stof the

Now suppoae that we wish to maximize a criterion J (2) and that the value
J corresponding to the node shown at A is recorded as a threshold, If at m y

point in the search an intermediate node is encountered, such as that shown
"" B, for which the value of J is smaller than the threshold, then there is no
"'4 do evaluate any of the sets which lie below this node en the tree, since,
* a cmsequence of the monotonicity relation (8.9), such nodes necessarily have
''alues of the criterion which are smaller than the threshold. Thus, the nodm
'''cr4.n as solid circles in Figure 8.6 need not be evaluated. If. at any point in the

a hal-layer node is encountered which has a larger value for the criterion,
' hen this value becomes the new threshold. The algorithm terminates when every
Gnai-~ayer node has either been evaluated or exciuded using the rnonotonieity_
''Iation. Note that, unlike exhaustive search applied to all oossible subsets of d
'*:sbles, this method requires evaluation of gor liate subsets ne of the

308 8: Pre-processing and Feature Extmction

Figure 8.6. A search tree far fer~ture subset selection, for the case of a set of
five feature variables from which we wish to pick out the optimum subset of
two vmriables. If a strictly monotonic selection criterion is being used, and a
node such as that at B is found which hm a lower value for the criterion than
some final-level node such as that at A, then all nodes below B (shown as solid
black nodes) can be eliminated from the search.

which contain rnore than ;variables. However, this is rnore than offset by t h ~
savings in not having t o evaluate final-layer subsets which are excluded using the
monotonicity property. The basic branch and bound algorithm can be modifid
to generate a tree in which nodes with smaller values of the selection criterion
tend to have larger numbers of successive branches (Fukmagsb, 1990). This can
lead t o imprwements in computational efficiency since nodes with srndler value
of the criterion are more likely to be eliminated from the search tree.

8.5.3 Sequential search techniques

The branch and bound algorithm for monotonic selection crite ;cne~alI!'

faster than exhaustive search but is &ill guaranteed to find t] ore ~ h -

set (of given size) which maximizes the criterion. In some applieanona, such a"
approach is still computationally too expensive, and we are then forced to con'
sider techniques which are significantly fmter but which may give suboptimal
solutions. The simplest method would be to select those 2 features which
individually the best (obtained by evaluating the selection criterion using On'
feature at a time). This method, however, is likely to be highly

ble. and

would O* he optimal for selection criteria which can be expresse ' sum* @'
.t **auld

the product, of the criterion evaluated for each feature individ~alu~, -11- 1

therefore only be appropriate if the features were cmpleteIy independent. .
A better approach, known as sequential forward selection, is illustrated '

Figure 8.7. The procedure begins by considering each of the variable. individudy
and selecting the one which gives the largest value lor the selection critrrionn

At

each successive stage of the algorithm, one additional feature is added to the '"'

ria is g
he feat1

2 .

unrelia
d as th€
?..

I 8.5: ~ e a t u e selection
309

Figure 8.7. Sequential forward selection illustrated for a set of four input fea-
tures, denoted by 1, 2, 3 and 4. The single best feature variable is chosen first,
and then features are added one at a time such that at each stage the variable
chosen is the one which p r o d u c ~ the greatest increase in the criterion function.

again chosen on the basis of which of the possible candidates at that stage gives
rise to the largest increase in the value of the selection criterion. One obvious
diEculty with this approach i s that, if there are two feature variables of the kind
shown in Figure 8.5, such that either feature aIone provides little discrimination,
bu t where both features together are very effective, then the forward selection
procedure may never find ths combination since either feature alone would never
be selected.

An alternative is ta start with the full set of d features and to eliminate them
One at a time. This gives rise to the technique of sequenfzal backward elimination
illustrated in Figure 8.8. At each stage of the algorithm, one feature is deleted
irotn the set, chosen from amongst dl available candidates as the one which gives
the smallest reduction in the value of the selection criterion. This overcomes the
problem with the forward selection approach highlighted above, but is still not
tuaranteed to be optimal. The backward elimination algorithm requires a greater
'lmmber of evaluations, however, since it considers numbers of features greate~
'h:in 0, qua1 to ;while the forward selection procedure considers numbers of
' a ~ s less than or equal t o d:

These algorithms can be generalized in various ways in order to allow small
: l b i ~ t ~ af features which are ~ollectively useful t o be selected (Devijver and
"ttler. 1982). For example, at the kth stage of the algorithm, we can add 1 c .

using the sequential forward algorithm and then eliminate r features "sin ,, . the sequential backwards algorithm. Clearly there are many variations on
' ! I q theme giving a range of algorithms which search a larger range of feature

"lhser, at the price of increased computation.

310 8: Pre-processing and Feature Extraction I 8.6: Principal component ataalyaia 311

Figure 8.8. Sequential backward elimination of variabla, again illustrated for
the case of four features. Starting with the complete set, features are eliminated
one at a time, such that at each stage the feature chosen for elimination is
the one corresponding to the smallest reduction in the value of the selection
criterion.

8.8 Principal component analysis

I where the vectors Ui satisfy the orthonormality relation

mprove]
lower d
space u
- 0 - 1.-

We have already discussed the problems which can wise in attempts to perform
pattern recognition in high-dimensional spaces, and the potential ii
which can be achieved by first mapping the data into a space of
sionality. In general, a reduction in the dimensionality of the input
mcompanied by a loss of some of the information which discrimina~es rle

different classes (or, more generally, which determines the target values)
goal in dimensionality reduction i s therefore to preserve as much of the re]
information as possible. We have already discussed one approach to dimel---
ality xeductian based an the selection of a subset of a given set of features or
inputs. Here we consider techniques for combining inputs together to m& a
(generally smaller) set of features. The procedures we shall discuss in this set-

t bn rely entirely on the input data itself without reference to the correspo
target data, and can be regarded as a form of ansupewised learning. Whih
are of great practical significance, the neglect of the target data infom
implies they can dso be significantly suboptimal, as we discuss in Section Fib-''

We begin our discussion of unsupervised techniques for dirnensionalitY
duction by restricting our attention to linear transformations. Our gonl is a r-
map vectors xn in a d-dimensional space (x ~ , . . . x d) onto vectors X" in an
dimensional space (zl,. . . , z M) , where M < d. We first note that the wctc
can be represented, without loss of generality, as a linear combination of Se

d orthonormal vectors u,

k4\vccu

. The
e t m t
lsion-

in which S,, is the Kronecker delta symbol defined on page xiti. Explicit expres-
sions for the coefficients z;: in (8.12) can be found by using (8.13) to give

which can be regarded as a simpb rotation of the coordinate system from the
original X'S to a new set of coordinates given by the 2's (Appendix A). Now
,,ppose that we retain only a subset M c d of the basis vectors ui, so that
, use only M coefficients q. The remaining coefficients will be replaced by
 ons st ants bi so that each vector x is approximated by an expression of the form

1 This represents a form of dimensionality reduetian since the original vfftar x
which contained d degrees of freedom must now be approximated by a new
vector z which has M < d degrees of freedom. Now consider a whoIe data set of
.W vectors xn where n = I,. . . , N . We wish to choose the basis vectors ng and
the coefficients b, such that the approximation given by (8.15), with the values
of z, determined by (8.141, gives the best approximation to the originaI vector x
on average for the whole data set. The error in the vector x" introduced by the
dimensionality reduction is given by

' j r p can then define the best approximation to be that which minimizes the sum
Of the Squares of the emors ~ v e r the whole data set. Thus, we minimize

'*here we have used the orthonormality relation (8.13). If we set the derivative '' E~ a i t h respect to bi to zero we find

312 8: Pre-pmcessing and Feature Extmctaan

where we have defined the mean vector T t o be

Using (8.14) and (8.18) we can write the sum-of-squares error (8.17)

where L: is the covariance matrix of the set of vectors {xn) a d is given by

8.6: Principal component analysis 313

Figure 8.9. Schematic illustration of principal component andysis applied to
data in two dimensions. In a linear projection down to one dimension, the
optimum choice of projection, in the sense of minimizing the sum-of-squares
error, is obtained by first subtracting off the mean 3 of the data set, and then
projecting onto the first eigenvector ul of the covariance matrix.

I

There now remains the task of minimizing EM with respect to the choice of bmis
vectors %. It is shown in Appendix E that the minimum occurs when the basis
vectors satisfy

SO that they are the eigenvectors of the covariance matrix. Note that, since the
covariance matrix is real and symmetric, its eigenvect,ors can indeed be chosen
to be orthonormal as assumed. Substituting (8.22) into (8.20), and making use
of the orthonormality relation (8.131, we obtain the value of the error criterion
at the minimum in the form

Thus, the minimum error is obtained by choosing the d - M smallest eigemalu@'
and their corresponding eigenvectors, as the ones to discard.

The linear dimensionality reduction procedure derived above is called d "'
K~lrhunea-Lohe traasfownotion or principal component analysis and is discu-
at length in Jollife (1986). Each of the eigenveaors ui is called a p r i n c i ~ ~ l 'Om:

portent. The technique is illustrated schematically in Figure 8.9 for the
data points in two dimensions,

In practice, the algorithm proceeds by first computing the mean of the
x" and then subtracting off this mean. Then the covariance matrix is cnlelllo"d

and its eigenvectors and dgenvalues are found. The eigenvectors corresponding
to she M largest eigenvalues are retained and the input vectors x" are projected
onto the eigenvectors to give the components of the transformed vectors zn in / the M-dimensional space. Thus, in Figure 8.9, each twc-dimensional data point
is transformed to a single variable zl representing the projection of the data
point onto the eigenvector ul.

The error introduced by a dimensionality reduction using principal compo-
nent analysis can be evaluated using (8.23). In some applications the original data
h= R very high dimensiondity and we wish only to retain the first few principal
components. In such cases use can be made of efficient algorithms which allow
('d~ the required eigenvectors: corresponding to the largest few eigendues, to
he ~~paluated (Press et al., 1992).

1% have considered Iinear dimensionality reduction based on the sum-of-
error criterion. It is possible to consider other criteria including data

'mariance measures and population entropy. These give rise to the same re- ' r l ~ for the optimal dimensionality reduction in terms of projections onto the
I D ' ~ n v @ ~ i ~ i s of D corresponding to the largest eigenvalues (hrkunaga, 1990).

>11 IPose , we are given a set of data vectors in a d-dimensional space, and we
' 3 Fk'ly Principal component analysis and discover that the first d' eigenvalues have

3 9 7"'fcantly larger values than the remaining d-dt eigendues. This tells US that
YIP
ET;.: 'Ista can he represented to a relatively high accuracy by projection onto the

d' eigenvectors. We therefore discover that the effective dimensiondity of
"k (1 ,.. less than the apparent dimensionalihy d, as a result of correlations
i'Yhin the data. Howwer, principal component analysis is limited by virtue of
''% a linear technique. It may therefore be unablo t o capture more complex

n'n-linrar ~orrelationq, and may therefore overestimate the true dimensionality

! 314 8: Pre-pmcessing and Feature E h c t i o n

Figure 8.10. Example of a data set in two dimensions which has an intrinsic
dimensionality d% I. The data can be specified not only in terms of the two
variables x i and x2, but also in terms of the single parameter g. However, a lin-
ear dimensionality reduction technique, such as principal component analysis,
is unable to detect the lower dimensionality.

I
of the data. This is illustrated schematically in Figure 8.10, for dab& r v ~ ~ ~ t ~ which
lie around the perimeter of a circle. Principal component analysis would give two
eigenvectors with equd eigenvalues (as a result of the symmetry of the data). En
fwt, however, the data could be described equally well by a single parameter 7
as shown. More generally, a data set in d dimensions is said to have an in trim'c
dimensionalztp equal to d' if the data lies entirely within a df-dimensional sub
space (Fukunaga, 1982).

Note that if the data is slightly noisy, then the intrinsic dimensiondity rn8Y

be increased. Figure 8.11 shows some data in two dimensions which is corrupted
by a small bvel of noise. Strictly the data now lives in a two-dimensional space*
but can nevertheless by represented to high accuracy by a single parameter.

8.6.2 Neural networks for dimensionality reduction
Multi-layer neural networks can themselves be used to perform non-linear dimen-
sionality reduction, thereby overcoming some of the limitations of linear p""cipaI
component analysis. Consider first a multi-layer pesceptron of the form show*
in Figure 8.12, having d inputs, d output units and M hidden units, with <*
(Rumelhart et al., 1986). The targets used to train the network are simpl?' the
input vectors themselves, so that the network is attempting to map each input 1

vector onto itself. Due to the reduced number of units in the first layer, a perid
reconstruction of dl input vectors is not in general possibk. The network b-9 I
trained by minimizing a sum-of-squares error of the form I

8.6: Principtl component analysis 31 5

Figure 8.11. Addition of a small Ievel of noise to data in two dimensions having
an intrinsic dimensionality of 1 can increase its intrinsic dimensionality to 2.
Nevertheless, the data can be repreented to a good approximation by a singIe
variable q and for practical purposes can be regarded as having an intrinsic
dimensionality of 1.

outputs
XI Xd

XI Xd
inputs

Figllre 8.12. An auto-associative multi-layer perceptron having two layers of
{I, *P1~hts. - Such a network is trained to map input vectors onto themseiws by
minimization of a sum-of-squares error. Even with ncm-linear units in the hid-
den layer, such a network is equivalent to linear principal component analysis.

have been omitted for clarity.

8: Pre-pweessing and Feature Extraction

Xt Xd

non-linear

non-linear

Figure 8.23. Addition of extra hidden layers of non-linear units to the network
of Figure 8.12 gives an auto-associative network which can perform a general
non-linear dimensionality reduction. Biases have been omittd for clarity.

Such a network is said to form an auto-associative mapping. Error rninirniza
in this case represents a form of unsupervised training, since no indepenr
tagst data is provided. If the hidden units have linear activations functi
then it can be shown that the error function has a unique global minimum,
that at this minimum the network performs a projection onto the M-dimensia
sub-space which is spanned by the first M principal components of the (

(Bourlard and Kamp, 1988; Baldi and Hornik, 1989). Thus, the vectors of weignts
which lead into the hidden units in Figure 8.12 form a basis set which spans the
principd sub-space. (Note, however, that these vectors need not be orthogonal
or normalized.) This result is not surprising, since both principal ~ornpos"~+
analysis and the neural network are using linear dimemionaIity reduction
are minimizing the same sum-of-squares error function.

I t might be thought that the limitations of a linear dimensionality reduc
could be overcome by using non-linear (sigmoidal) activation functions for the
hidden units in the network in Figure 8.12. However, it was shown by B U U ~ ~ ~ T ~

and Kamp (1988) that such non-linemities make no difference, and that the mini-
mum error soIution is again given by the projection onto the principal cornpol
subspace. There is therefore no advantage in using two-layer neural network
perform dimensiondity reduction. Standard techniques for principal cornpol
analysis (based on singular value decomposition) are guaranteed to give the co'-
rect solution in finite time, and also generate an ordered set of eigendues
corresponding orthonormal eigenvectors.

The situation is different, however, if additional hidden layers are
ted in the network. Consider the four-layer wtc-associative network shoarn Ln
Figure 8.13. Again the output units are linear, and the M units in the second
hidden layer can also be linear. However, the first and third hidden layers I""
sigmoidal non-linear activation functions. The notwork is again trained bv mi*-

tion
lent
om,
and
3nal
Iata
, .

l b Y Y

and

t ion

8.6: Principal component analysis 317

Figure 8.14. Geometrical interpretation of the mappings performed by the
network in Figure 8.13.

lization of the error in (8.24), We can view this network as two successive
nctional mappings F1 and Fz. The first mapping F1 projects the original d-
mensional data onto an M-dimensional sub-space S defined by the activations

ur the units in the second hidden layer. Because of the presence of the first hidden
tayer of non-linear units, this mapping is essentially arbitrary, and in particular
is not restricted to being linear. Similarly the second half of the network defines
an arbitrary functional mapping from the M-dimensional space back into the
original d-dimensional space. This has a simple geometrical interpretation, as
indicated for the case d = 3 and M = 2 in Figure 8.14. The function Fz maps
from an M-dimensional space S into a d-dimensional space and therefore defines

e way in which the space S is embedded within the original x-space. Since the
 ping Fz can be non-linear, the sub-space S can be non-planar, as indicated
the figure. The mapping F1 then defines a projection of points in the original

"-dimensional space into the M-dimensional subspace 5.
Such a network effectiveIy performs a non-lines principal component analy-

S1$. It h a the advantage of not being limited t o linear transformations, although
It contains standard principal component analysis as a special case. However,
'hP minimization of the error function is now a non-linear optimization problem,
"'"re the error function in (8.24) ig no longer a quadratic function of the network
Parameters. Computationally intensive non-linear optimization techniques must

wed (Chapter 71, and there is the risk of fmding a suboptimal local minimum
pf the error function. Also, the dimensionality of the sub-space must be specified
It' advance of training the network, so that in practice it may be necessary to
""in and compare several networks having different values of M. An example of
the nP~iication of this approach is given in Kramer (1991).

8: P r e - p m s i n g and Feature Exi!mction

Figure 8.15. An example of a simpIe ~Iassification problem for which princi-
pal component analysis would discard the discriminatory information. Tww
dimensional date is taken from two Gaussi~n classes C1 and Ca depicted by the
two ellipses. Dimensionality reduction to one dimension using principal com-
ponent analysis would give a projection of the data anto the vector ul which
would remove dl ability to discriminate the two class-. The full discrimina-
tory capability can be preserved if instead the data is projected onto the vector
uz, which is the direction which would be obtained from h e m discriminant
analysis.

We have described both linear and non-linear unsupervised techniques for di-
mensiondity reduction. These can lead to significant irnprwements in the per-
formance of subsequent regression or cIassi6cation system. It shouId be empha-
sized, however, that methods based on unsupervised techniques take no accomt
of the target data, and can therefore give results which are substantidly less
than optimal. A reduction in dimensionality generally involves the loss of some
information, and it may happen that this information is very important for the
subsequent regression or classification phase, even though it is of relatively little
importance for represent ation of the input data itself.

As a simple example, consider a classification problem involving input dats
in two dimensions taken from two Gaussian-distributed as shown in fir
ure 8.15. Principal component analysis applied to this data would give the eipP-
vectors and uz as shown. If the dimensionality of the data were to be
to one dimension using principal: component analysis, then the data waulc
projected onto the vector ul since this has the larger eigenvalue. However,
would lead to a complete loss of all discriminatory information, and the cl@

have identical distributions in the one-dimensional space. By contrast'
projection onto the vector uz would give optimal class separation with no

of

discriminatory information. Clearly this is an extreme example, and in Pactico
dimensionality reduction by unsupervised techniques can prove useful in mfl'

8.7: Invariancea and prdor knowledge

licati0nsh
gPPNote that in the example of Figure 8.15, a reduction of dirnensiondity us-
, Fisher's linear discriminant (Section 3.6) would yield the optimal projection

I tn,
,ctor u2. This is a consequence of the fact that i t takes account of the class

in selecting the projection vector. However, as we saw in Section 3.6,
, poblern with c classes, Fisher's linear technique can only find c - 1 inde-

pendent directions. For problems with few classes and high input dimensionality
may result in too drmtic a reduction of dimensionality. Techniques such

., component analysis do not suffer from this limitation and are able ,, any number of orthogonal directions up to the dimensionality of the
original space.

~t is worth noting that there is an additional link between principd com-
ponent analysis and a cIass of linear neural network models which make we of 1 of the Hebb learning rule (Hebb, 1949). This form of learning in-
volves making changes to the value of a weight parameter in proportion to the
activation values of the two units which are linked by that weight. Such net-
works can be made to perform principal component andysis of the data (Oja,
1982, 1989; Linskes, 1988; Sanger, 1989), and furthermore it can be arrmged
that the weights converge to orthonormal vectors along the principd component
directions. For practical applications, however, there would appear to be little
advantage in using such approaches compared with standard numerical analysis
techniques such as those described earlier,

1 8.7 Invarimees and prior knowledge
Throughout this book we are considering the probIem of setting up a multivariate
mapping (for regression or classification) on the basis of a set of training data.
In many practical situations we have, in addition to the data itself, some general
infomation about the form which the mapping should take or some constraints
which it should satisfy. This is referred to as pP.ior knowledge, and its inclusion

the network dmign process can often lead to substantial improvements in
Pprformance.

Il'e have allready encountered one form of prior knowledge expressed as prior
probabilities of class membership in a classification problem (Section 1.8). These
'an be taken into account in an optimal way by direct use of Bayed theorem, or by
lnrio(hcing weighting factors in a sum-of-squares error function (Section 6.6.2).

concentrate on forms of prior knowledge concerned with various kinds of
]"'"'iance. As we shall see, the required invariance properties can be built into

We-processing stage, or they can be included in the network structure itself.
the latter option does not strictly constitute part of the pre-processing, i t

!' di7cussed in this chapter for convenience.

'".1 Jnvanances
In hl ""Y practical. applications it is known that the outputs in a classification or
re0 *rPqsion problem shouId be unchanged, or inuaniant, when the input is subject
tr, , Sr io~s t,ransformatiuns. An important example is the classification of objects

320 8: Pre-processing and Fmture Edmction I 8.7: Invariances and prior knomledge 321

in two-dimensional images. A particular object shouId be assigned th
s-e

elassifrcation even if it is rotated or translated within the image or if it is linearly
scaled (corresponding to the object moving towards or away from the camerai,
Such transformations produce significant changes in the raw data (expressed
terms of the intensities at each of the pixels in the image) and yet should
rise to the same output from the classification system. We shall use this oh
recognition example to illustrate the use of invariances in neural network!
should be borne in mind, however, that the sarne general principles apply to
problem for which it is desired to incorporate invariance with respect to a st

transformations.
Broadly we can identifi three basic approaches to the construction of in,

ant classification (or regression) systems based on neural networks (Barnard
Casasent, 1991):

1. The first approach is to train a network by example. This involves
ing within the training set a sufficiently large number of examples of the
effects of the various transformations. Thus, for translation invariance, the
training set should include examples of objects at many different positions.
If suitable training data is not readily available then it can be generated by
applying the transformations to the existing data, for example by translab
ing a single image to generate several images of the sarne object at different
locations.

2. The second approach involves making a choice of pre-processing which in-
corporates the required invariance properties. If features are extracted from
the raw data which are themselves invariant, then any subsequent rep*
sion or classification system will necessarily also respect these invarianca.

3. The final option is to build the invariance properties into the network struc-
ture itself. One way to achieve this is through the use of shared weights-
and we shall consider two specific examples involving local receptive fields
and higher-order networks.

While approach 1 is relatively straightfornard, it suffers from the disadvantage
of being inefficient in requiring a substantially expanded data set. It will air0
result in a network which only approximately respects the invariance. Rlrther-
more, the network will be unable t o deal with new inputs in which the range
the transformation exceeds that encountered during training, as this represents .d
an extrapolatbn of the network inputs. Methods 2 and 3 achieve the reWr
invariance properties without needing unnecessarily large data sets. In the Cok

text of t.ranslatian invariance, for instance, a network which has been trdned
to recognize an object correctly at one position within an image can recognize
the same object correctly at any position. In contrast to a network trainpd
method 1, such a network is abie to extrapolate to new inputs if t h r

the training data primarily by virtue done of the transformation:
An alternative approach which also involves incorporating invari

~rougl~

training, but which does not require artificial expansion of the
is the

technique of tangent prop (Sirnard et a!., 1'392). Consider the ef t rans-

ey diffe
1.

ances tl
data set,
Tect of rl.

Figure 8.16. Illustration of a tw~dimensional input space showing the ef-
fect of a continuous transformation on a, particular input vector x". A one-
dimensional transformation, parametrized by the continuous variable a, ap-
plied to x" causes it to sweep out a one-dimensional manifold M . Locally, the
effect of the transformation can be approximated by the tangent vector 7".

formation on a particular input pattern vector xn. Provided the transformation
is contiiluous {such as translation or rotation, but not mirror reflection for in-
stance) then the transformed pattern wilI sweep out a manifold M within the
d-dimensional input space. This is illustrated in Figure 8.16, for the case of d = 2
for simplicity. Suppose the transformation is gwerned by a singIe parameter cr
(n.hi& might be rotation angle for instance). Then the sub-space A4 swept out

x" will be one-dimensional, and wiII be parametrized by a. Let the vector
which results from acting on xn by this transformation be denoted by s(a,xn)
~ h i c h , is defined so that s(0, xn) = xn. Then the tangent t o the curve M is given

the directional derivative T = ds/da, and the tangent vector at the point xn
1.F given by

Cader a transformation of the input vector, the network output vector will, in
yn"ral, change. The derivative of the =tivation of output unit k with respect
'q is given by

Y b ~ @ Jk, is the (k,i) element of the Jacobian matrix J, as discussed in Sec-
j ' ' ~ ~ 4-9. The result (8.26) can be used to modik the standard error function, so
'' '0 encourage local invwiance in the neighbourhood of t h e data points, by the

322 8: Pre-processing and Feature Extraction 8.7: Inwadances and prior knowledge 323 I
addition to the usual error function E of a regularization function a to giva -

${,he
re (u ,v) are Cartesian coordinates describing locations within the image,

total error function of the form
(TI, f l) represenb the intensity of the image a t location {u, v), and K(u, v) is

a kernel and is a fixed function whose form determines the particular
z = ~ + v C ! (8. under consideration. In practice, an image is specified in terms of a

i;,ite array of pixels, and so the integrals in (8.29) are replaced by discrete sums
where v is a regularization coefficient (Section 9.2) and

(8.28)
ifthen the kernel function takes the form of simple powers we have wgular mo-
,,jents which, in continuous notation, can be written

The regularization function will be zero when the network mapping function js

invariant under the transformation in the neighbourhood of each pattern vector,
and the value of the parameter v determines the balance between the network 1

MI, = J z(uI v)u1vrn du du (8.31)

fitting the training data and the network learning the invariance property.

o the r
ues intr

- -
In a practical implementation, the tangent vector 7" can be approximated hy

finite differences, by subtracting the original vector xa from the corresponding
vector after transformation using a, small value of a, and dividing by a. Some
smoothing of the data may also be required. The reguIarization function depends
on the network weights through the Jacobian J. A back-propagation formalism
for computing the derivatives of the regularizer with respect t letwork
weights is easily obtained (Exercise 8.6) by extension of the techniq odumd
in Chapter 4.

If the transformation is governed by 3; parameters (e.g. L = A lul che case
of translation in a two-dimensional image) then the space M will have dimen-
sionality L, and the corresponding regularizer is given by the sum of terms 05

the form (8.28), one for each transformation. If several transformations are con-
sidered at the same time, and the network mapping is made invariant to e d
separately, then it will be (Iocally) invariant t o combinations of the transform*
tions (Sirnard et al., 1992). A related technique, cdled fangent detaae, can be
used to build invariance properties into distancebased methods such as

'

neighbour classifiers (Sirnard ef al., 1993).

8.7.2 Invariance thmugh pre-plmcessing

1 and m are non-negative integers. We can define a corresponding set of
translation-invariarlt features, called central moments, by first subtracting off the
means of u and v

 here t = MIO/MoO and 77 = Mol/Moo. Under a translation of the image
x(u, v) - X(U + Au, v t- Av), and it is easy to verify that the moments de-
fined in (8.32) are invariant. Note that this neglects edge effects and assumes
that the integrals in (8.32) run over (-m, oo). In practice, the use of moments
in the discrete form (8.30) will give only approximate invariance under such
transformations.

Similarly. under a change of scale we have x(a, v) 4 x(au, av). We can make
t h ~ central moments invariant to scale by normdirsing them to give

The second approach which shall consider for incorporating invariance pro' 1 and again it easy to veriiy that the normalized in (8.33) are simulta-
erties into neural network mappings is by a suitable choice of p r e - p r ~ c e ~ ~ ~ ~ ~

I ?US~Y invariant to translations and scaling. Similarly, we can use the moments
One such technique involves the extraction of features from the origina1 input In 18.33) in turn to moments are s~ultaneously invariant to
data which are invariant under the requiied transformations. Such features ,,,~, and rotation (~ ~ ~ ~ ~ i ~ 8.7). F~~ instance, the quati@
oRen based on aornenb of the original data. For inputs which consist of a t."'p
dimensional image, the moments are defined by I P20 4- la02 (8.34)

this property {SehalkoE, 1989). Other forms of moments e m also be consid-
which are based on different forms for the kernel function K(u, O) (K h ~ t m -
and Hocg, 1990).

324 8: Pre-pwcessing and Featurn Extmction

Figure 8.17. Illustration of a threedimensional input space showing trajectc
ries, such as M , which patterns sweep out under the action of transformation
to which the network outputs should be invariant. A suitably chosen set c
constraints will define a, sub-spwe 7 which intersects each trajectory precise!
once. If new inputs are mapped onto this surface using the transformation
then invariance is guaranted.

One problem with the use of moments as input features is that conside
computational effort may be required for their evaluation, and this cornput
mud be repeated for each new input image. A second problem is that
of information is discarded in evaluating m y particular moment, and so
moments may be required in order to give good discrimjnation.

An alternative, related approach to invariant pre-processing is to tram
any new inputs so as to sat is^ some appropriately chosen set of constrarll~~
(Earnard and Casasent, 1991). This is illustrated schematically in Figure 8-li
for a set of oneparameter transformations. Under the action of the trans forma+
tions, each input vector sweeps out a trajectory M as discussed earlier. ThoSe
patterns whieh satisfy the constraints live on a ~ubspace 7 which intersects
trajectories. Note that the constraints must be chosen so that eaeh tra.jectQ"
intersects the constraint surface a t precisely one point. Any new input wmr
is first transformed (thus moving it along its trajectory) until it reaches "le

constraint surfwe. This transformed vector is then used as the input to the ~'1
work. As an example, suppose we wish to impose invariance to trans1 at ions "'
changes of scale. The constraints might then take the form that the zerorh a"d
first moments Moo, Mlo and Mol, given by (8.31), should have specified value. s]ati@C
Every image (for the training set or test set) is first transformed by
and scaling until the constraints are satisfied.

!raMe
ation
a lot

8.7.3 S h a d weights drue
The third approach to dealing with invarianees, discussed &we, involve ,
turing the network itself in such n way that the network mapping reVec

8.7: Invafiances and prior knowledge 325

Figure 8.18. Schematic architecture of a network for translation-invariant ob-
ject recognition in two-dimensional images. In a practical system there may
be more than two layers between the input image and the outputs.

invariances. While, stridly, this is not a form of pre-processing, it is treated here
Eor convenience. Again, we introduce this concept in the context of networks
designed for object rwognition in two-dimensional images.

Consider the network structure shown in Figure 8.18. The inputs to the net-
work are given by the intensities at each of the pixels in a two-dimensional array.
hits in the first and second layen are similarly arranged in two-dimensional
sheets to reflect the geometrical structure of the problem. Instead of having full
1"erconnections between adjacent layers, each hidden unit receives inputs only

units in a small region in the previous layer, k n m as a receptive field.
reflects the results of experiments in conventional image processing which

hav@ d~rnonstrated the advantage of extracting local features from an image and
jhtn combining them together to form higher-order features. Note that it also
Irnttates some aspects of the mammalian visual processing system. The network
yhlkcture is typically chosen so that there is some overlap between adjacent
"%P'ivp fields.

-r..

r.: ' h e technique of shared weights can then be used to build in some degree
.' invariance into the response of the network (Rumelhart et ad., ?35r;. . L@ Cun et al., 1989; Lsng et nl., 1990). In the simplest case this involves

'nti''rai"fng the weights from each receptive Beld to be equal to the eorrespond-
LP.?

from all of the receptive fields of the other units in the same layer. ?qn-.
"der an object whieh falls within receptive field shown at A in Figure 8.18,

grrt?
it, 'Pgnding to a unit in hidden layer 1, and which produces some activation

91 I
r. " that unit. If the same object falls at the corresponding position in re-

'live field B, then, = a consequence of the shared weights, the corresponding

326 8: Pw-pmcessing and Feature Eztrmction 8.7: Invariances and p ~ o r knowledge
327

unit in hidden layer 1 will have the same activation level. The units in the second
layer have fixed weights chosen so that each unit computes a simple average of
the activations of the units that fall within its receptive field. This allows units
in the. layer to be relatively insensitive to moderate translations within
the input image. However, it does presem some positional information
allowing units in higher layers to detect more complex composite feature. Typi
caIly each successive layer has fewer units than previous layers, as infomation
the spatial location of objects is gradually eliminated. This corresponds to the
use of a relatively high resolution to detect the presence of a feature in an earlier
layer, while using a lower resolution to represent the locgtion of that feature in
a subsequent layer.

In a practical network there may be several pairs of layers, with alternate
layers having b e d and adaptive weights. These gadually build up increasing
tolerance to shifts in the input image, so that the final output layer has a response
whi& is aIrnost entirely independent of the pmition of an object in the input
field.

As described so far, this network architecture has only one kind of receptive 1
field in each layer. In order to be able to extract severd different kinds of feature
is necessm to provide sevexal 'planes' of units in each hidden layer, with all
units in a given plane sharing the same weights. Weight sharing can be enforced
during learning by initializing corresponding weights to the same (random) values
and then averaging the weight changes for all of the weights in one group and
updating all of the corresponding weights by the same amount using the averaged
weight change.

Network architectures of this form have been used in the zip code recogni-
I

tion system of Le Cun e t al. (1989), and in the neocognitmn of Fukushima et a[.
(1983) and Fukushima (1988), for translation-invariant recognition of handwrit-
ten digits. I

The use of receptive fields can dramatically reduce the number of we@
present in the network compared with s fu lb connected architecture. This maker
i t practical to treat pixel values in an image directly as inputs to a nefsflk.
In addition, the use of shared weights means that the number of independent
narnrneters in the network is much less than the numbei of weighb, which allofi 1 r - - - --- -

much smaller data sets t o be used than would otherwise be necessary.

8.7.4 Higher-oder networks for encoding invariances

In Section 4.5 we introduced the concept of a higher-order network based On

units whose outputs are given by

where zi is an input, g (+) is s non-linear activation function and the m's rep
resent the weights. We have already remarked that n ~ ~ e h networks can hare '

Figure 8.19. We can impose translation invariance on a second-order nt.%Of k
if we ensure that, for each hidden unit separateIy, weights from any %i, of
points il and iz axe constrained to equd those from any other pair i { *d
where the line i:i'z can be obtained from the line i r i 2 by translation. G,

Under a tramlation, the value of the intensity in pixel il -will go from jb,riginal
irqll~e x,, to a new value xi, given by xi, = xi,. where the translrs,, ,,,

&scribed by a vector fram pixel ilt to pixel il. Thus the argumPr of the
h t i o n h n ~ t i o n g(.) in (8.36) will be invariant i f for each unit j i . he Erst
dm layer, we have

of weight parameters and are therefore impractical for r n : ~ ~ appli-
cations. (The number of independent parameters per unit is the same a for the
corresponding multivariate polynomial, and is discussed in Exerciser :, 61.8.)
However, we can exploit the structure of a higher-order network to i ~ ? ~ , , in-
variances, and at the same time reduce significantly the number of inc9,,dent
weights in the network, by using a form of weight sharing (DUB and [axwell,

has a simple geometrical interpretation as indicated in Figure 8.'. Ead,
Onit in the first hidden layer takes inputs from two pixels in the irne,) such
'' 'hose labelled il and iz in the figure. The constraint in (8.37) requi-, that ,
. f r ~ r ach unit in the first hidden layer, and for each possible pair of p ~ k q g the

the weights from m y other pair of points, such as those at i ; and. which I '" obtained from il nnd by translation, must be equal. Note t t such

I

1087: Perantonis and Lisboa, 1992). Consider the problem of incorgorat -5 trans+
lation innrianee into a higher-order network. This can be achieved b using
S~cond-order network of the form

an appromh would not work with a first-order network, since the constraint
the weights would force all weights into any given unit t o be equal. Each Unit
would therefore take as input something proportional to the average of all of
input pixel values and, while this would be translation invariant, there would be
nr, freedom left for the units to detect any structure in the irn%e. Edge effecg
as well as the discrete nature of the pixels, have been neglected here, and id
practice the invariance properties will be only approximately realized.

Higher-order networks can be made invariant to more complex transforma-
tions. Consider a general Kth-order unit

328 8: Pre-processing and Feature Extraction

Under a particular geometrical transformation, xsc,, + xtl = 5'; where the pixel
at il iS replaced by the pixel at ij. It follows that the expression in (8.38) will
invariant provided

Exercises

As well allowing invariances to be built inta the network structure, the imposi-
tion of the constraints in (8.39) can greatly reduce the number of free parameters
in the network, and thereby dramatically reduce the size of data set needed to
determine those weights.

Simultaneous translation and scale invariance can be built into a second-order
network by demanding that, for each unit in the f i s t hidden layer, and for eacb
pair of inputs il and i 2 , the weights from il and iz are constrained to equal those
from any other pair ii and ia where the pair i i i ; can be obtained from 1142

by a combination of translation and scaling. This selects all pairs of points such
that the line ii-ib is parallel to the line i l i z . There is a slight complication in
the case of scaling arising from the fact that the input image consists of discrete
pixels. If a given geometrical object is scaled by a factor X then the number of
pixels which it occupies is scaled by a, factor X2. If the image consists of black
pixels (value +I) on a white background (value 0) for instance, then the number
of active pixels will be scaled by X2, which would spoil the scale invariance The
problem can be avoided by normalizing the image, e.g. to a vector of unit length
Note that this then gives fractional values for the inputs,

If we consider simultaneous translation, rotation and scaIe invariance, SPP

that any pair of points can be mapped to any other pair by a combination of such
t r ans foa t ions . Thus a second-order network would be constrained to have *I1?
weights to my hidden unit equal, which w u l d again cause the activation of each
unit to be simply proportiona1 to the averwe of the input values. We therefore
need to go to a third-order network. In this case, each unit takes inputs fro"
three pixels in the image, and the weights must satisfy the constraint that,
every triplet of pixels, and for every hidden unit, the weights must equal tho*

Figure 8.20. Simultaneous translation, rotation and scale invariance can be
b d l t into a third-order network provided weights from triplets of points which
correspond to similar triangles, such as those ahown in (a) and (b), are con-
strained to be equal.

emanating from any other triplet which can be obtained by any combination of
rranslations, rotations and scaligs (Reid et al., 1989). This means that corr*
soonding triplets lie at the vertices of simiiar triangles, in other words triangles
which have the same values of the angles encountered in the same order when
traversing the triangle in, say, a clockwise direction. This is illustrated in Fig-
ure 8.20. Although the incorporation of constraints greatly reduces the number
of free parameters in higher-order networks, the use of such networks is not
u~idespread.

Exercises

8.1 1x1 Verify that the whitened input vector, given by (8.6), has zero mean and
a covariance matrix given by the identity matrix.

8.2 (*) Consider a radial hasis function network with spherical Gaussian basis
functions in which the jth basis function is governed by a mean pj and a
variance parameter 0; (Section 5.2). Show that the effect of applying the
whitening transformation (8.6) to the original input data is equivalent to a
special case of the same network with general Gaussian basis functions gov-
erned by a general covariance matrix Ej in which the original un-whitened
data is used. Obtain an expression for the corresponding mean jij and

covariance matrix gj in terms of the parameters of the original basis func-
tions and of the whitening transformation.

'+3 (* *) Generate sets of data points in two dimensions using a variety of distri-
butions including Gaussian (with general covariance rnatrjx) and mixtures
of Gaussians. For each data set, appIy the whitening transformation (Sec-
tion 8.2) and produce scatter plots of the data points hefore and after
transformation.

(*) Consider a trained classifier which can produce the posterior probabil-
ities P(Cklx) for a new input vector x. Suppose that some of the values
of the input vector are missing, so that x can be partitioned into a sub-
Vect,or x, of components whose values are missing, and a remaining vector

i whose d u e s are present. Show that posterior probabilities, given ,gv
the data 2, are given by

330 8: PTE-processing and Feature Edmction

8.5 (*) Consider the problem of selecting M feature variables from a total
candidate variables, Find expressions for the number of criterion function
evaluations which must be performed for (i) exhaustive search, (ii) sequen.
tial forward selection, and (iii) sequentid backward elimination. Consider
the case of choosing 10 features out of a sei of 50 candidates, and evaIuat
the corresponding expressions for the number of evaluations by these three
methods.

8.6 I**) Consider a multi-layer perceptron with arbitrary feed-forward topot
ogy, which is t o be trained by minimizing the 'tangent prop' error function
(8.27) in which the reguIariaing function is given by (8=28), Show that the
regularization term S l can be written as a sum over patterns of terms of

Exewises 331

the form

where 2) is a differential operator defined by

1 where we have defined

By acting on the forward propagation equations

zj = g(aj>% aj = c w j c z i (8.43)
2

with the operator D, show that Rn can be evaluated by forward propaga-
tion using the following equations:

where we have defined the new variables

I Write down the back-propagation equations for 6:, and hence derive a set
of back-propagation equations for the evaluation of the $:.

e,y(*) T;lk have seen that the normalized moments pam defined by (8.33) are 1 simultaneously invariant to translation and sealing. I t follows that any
combination of such moments will also satisfy the same invariances. Show
that the moment defined in (8.34) is, additionally, invariant under rotation
6 4 8 + Ad. Hint: this is most easily done by representing the moments
using polar coordinates centred on the point (E,U), so that the central
moments become I

I

Now show that the derivatives of an with respect to a weight wrr in thp

network can be written in the form

and then making use of the relation sin2 i3 -b cos2 0 = 1. Which of the
following moments are rotation invariant?

I 9.1: Bias and u a h n c e 333

LEARNING AND GENERALIZATION

As we have emphasized in several other chapters, the god of network traininR
is not to learn an exact representation of the training data itself, but ratheT
to build a statistical model of the process which generates the data, This is
important if the network is t o exhibit good generalization, that is, to make good
predictions for new inputs. In Section 1.5, we introduced the simple analogy
of curve fitting using polynomials, and showed that a polynomial with too fpK

coefficients gives poor predictions for new data, i.e. paor generalization, since
the poIynornial function has too little flexibility. Conversely, a polynomial with
too many coefficients also gives poor generdization since it fits too much of the
noise on the training data. The number of coefficients in the polynomial controls
the effective flexibility, or complexity, of the model.

This highlights the need to optimize the complexity of the model in order to
achieve the best generalization. Considerable insight into this phenomenon csln

be obtained by introducing the cclncept of the bias-variance tradeoff, in which
the generalization error is decomposed into the sum of the bias squared plus the
variance. A model which is too simple, or too inflexible, will have a large b i ~ ~ .
while one which has too much flexibiliw in relation to the particular data set
will have a large variance. Bias and variance are complementary quantities, .and
the best generdization is obtained when we have the best compromise brtw@fi
the conflicting requirements of small hias and small variance.

In order to find the optimum balance between bias and variance nppd

to have a way of controlling the effective compEexity of the model. In the cSe

of neural networks, the complexity can be varied by changing the number 'i
adaptive parameters in the network. This is called stmctuml stabilization One
way to implement this in practice is to compare a range of models having differen'
different numbers of hidden units. AIternatively, we can st& with a r e ~ f i t ~ ' ' ~ ' ~
large network and prune out the least significant connections, either by
individual weights or by removing cornplate units. Similarly, we can start rith
a small network, and add units during the learning process, with the anal ''
arriving at an optimal network structure. Yet another way to reduce varian@ ''
to combine the 0utput.j of several networks together to form a committee. .

The second principal approach to controlling the complexity of a inode' ['

through the use of regularrration which involves the addition of a penalty re"1i
to the error function. We can control the degree of regularization, Ilencc

the effective complexity of t h e model, by scaling the regularization term by

,ldiustable multiplicative parameter.
In a ~ract ical application, we have to optimize the model complexity for the

cl,,en training data set. One of the most important techniques for doing this is
,,]led cmss-validation,

In Chapter 10 we discuss the Bayesian framework which provides a com-
,,llmentary viewpoint to the one presented in this chapter. The bias-variance
,,&-off is then no longer reIevant, and we can in principle consider networks of
Rrbitral+ily high complexity without encountering over-fitting.

9.1 Bias and variance

l n section 1.5 we discussed the problem of curve fitting using polynomial func-
rlons, and we showed that there is an optimal number of coefficients for the
pol)~nonial, for a given training set, in order t o obtain the best represertation
of the underlying systematic properties of the data, and hence to obtain the
best generaIization on new data. This represents a trade-off between achieving a

fit to the training data, and obtaining a reasonably smooth function which
is not over-fitted to the data. Similar considerations apply to the problem of
tlenslty estimation, discussed in Chapter 2, where various smoothing parameters
arise which control the trade-off between smoothing the model density hnction
and fitting the data set. The same issues also arise in the supervised training of
neural networks.

A key insight into this trade-off comes from the decomposition of error into
bras and variance components (Geman et al., 1992). We begin with a mathemat-
ical treatment of the bias-variance decomposition, and then discuss its implic*
Zions.

I t is convenient to consider the particular cease of a model trained using B sum-
of-squares error function, although our conclusians will be much more general.
Alsob for notational simplicity, we shall consider a network having a single output
5 . although again this is not a significant limitation. We showed in Section 6.1.3
'hat the sum-of-squares error, in the limit of an infinite data set, can be written

the form

7 p(x) is the unconditional density of the input data, and { t (x) denotes
" conditional average, or regression, of the target data given by

334 9: Learning and Generalization I 9.1: Bias and variance 335

where ~ (t lx) is the conditional densiiy of the target variable t conditioned on the
input vector x. Similarly

I
+Z(Y(x) - EDIY (x)]){&D[Y - (t l x)) * (9a6)

{tqx) = tZP(tlx)dt.
' 9 h 3 1 in order to compute the expression in (9.5) we take the expectation of both sides

(9.6) over the ensemble of data sets D. We see thaC the third term on the
Note that the second term in (9.1) is independent of the network function side of (9.6) vanishes, and we are left with

y(x) and hence is independent of the network weights, The optimal netNork
function y(x), in the sense of minimizing the sum-of-squares error, is the one
which makes the first term in (9.1) vanish, and is given by y(x) = {t(x}. ~ h , &o[{yCx) - Itlx)121

second term represents the intrinsic noise in the data and sets a lower limit on
the error which can be achieved.

In a practical situation we must deal with the problems arising from a finit+
size data set. Suppose we consider a training set D ~0rISisting of N patterns which
we use to determine our network model y(x). NOW consider a whole ensemble of
possible data sets, each containing N patterns, and each taken from the same
fixed joint distribution p(x, t) . We have already argued that the optimal network
mapping is given by the conditional average {tlx). A measure of how close the
actual m a p p q function ~ (x) is to the desired one is given by the integrand of
the first term in (9.1):

The value of this quantity will depend on the particular data set s, on which it
is trained. We can eliminate this dependence by considering an average over the
complete ensemble of data sets, which we mite as

where ED[-] denotes the expectation, or ensemble average, and we recaIl that t h p

function y(x) depends on the particular data set D which is used for training.
Note that this expression is itself a function of x.

If the network function were always a perfect predictor of the regression func-
1

tian (t lx) then this error would be zero. As we shall see, a non-zero error can
arise for essentially two distinct reasons. It may be that the network function
is on average different from the regression function. This is caEled bim. -%Ites+
natively, i t may he that the network function is very sensitive to the
data set D, so that, at a given x, it is larger than the required value for sornP
data sets, and arnalIer for other data sets. This is cdied variance. We can mke
the decomposition into bias and variance explicit by writing (9.5) in son1exh3'
different, but mathematically equivalent, form. First we expand the term in cur1Y
brackets in (9.5) to give

(bias)* variance

It is worth studying the expressions in (9.7) closely. The bias measures the extent
I to which the average (over all data sets) of the network function differs from the
1 desired function (t lx). Conversely the variance measures the extent to which the

I

I ,&work function y(x).is sensitive to the particular choice of data set. Note that 1
the expressions for hias and variance are fundions of the input vector x. We can I I

I "so introduce corresponding average values for bias and variance by integrating
over all x. By referring back to (9.1) we see that the appropriate weighting for
FKS integration is given by the unconditional density PIX), so that

variance = - ED [{y(x) - c ~ [~ (x)]) ~] ~ (x) dx. 2 ' J (9.91

The meaning of the bias and variance terms can be iIlustrated by considering
extreme limits for the choice of functional form for y{x). We shall suppose

+hat the target data for network training is generated from a smooth function
h(x) to which zero mean random noise E is added, so that

I

that the optimal mapping function in this ease is given by {t lx) = h(x) . One
of model for y(x) would be some hred function g(x) which completely

I

Independent of the data ge t D, M indicated in Figure 9-1. It is clear that the
'"ariance term in (9.7) will vanish, since E ~ [y { x)] = g(x) = y(x). However, the
t . term will typically be high since no attention at all was paid to the data, and

v, T-'"iess we have some prior knowledge which helps us to choose the function
'lx) we are making a wild guess.

336 9: Learning and Generalization 9.1: Bias and variance 337

X 5.1.1 Miniminng bias and variance

Figure 9.1. A schematic illustration of the meaning of bias and variance. Circles
denote a set of data points which have been generated from an underlying
function h(x) (dashed curve) with the addition of noise. The goal is to try to
approximate h(x) as closely as possible. If we try to model the data by a fixed
function g(z), then the bias will generally be high while the vari 11 be

zero.

,,.hich is just the variance of the noise on the data, which could be substantial.
We see that there is a natural tradeoff between bias and variance. A function

R+hich is closely fitted to the data set will tend to have a large variance and
Ilence give a large expected error. We can decrease the variance by smoothing
+he function, but if this is taken too far then the bias becomes large and the
,pcted error is again large. This trade-off between bias and variance plays a

role in the application of neural network techniques to practical problem.
itre shall give a simple example of the dependence of bias and variance on the
?ffective model complexity in Section 9.8.2.

Figure 9.2. As in Figure 9.1, but in which a modal is used which is a simple
exact interpolant of the data points. In this case the bisa k Iow but the variancP
is high.

The opposite ahreme is to take a functim which fits the training data pep
feetlv. such as the simple exact interpolant indicated in Figure 9.2. In this '@ * ,

the bias term vanishes at the data points themseIves since

-1

and the bias will typicdly be small in the neighbourhood of the data p0inls".
variance, however, will be significant since

ifre have seen that, for any given size of data set, there is some optimal balance
between bias and variance which gives the smallest average generalization error.
rn order to improve the performance of the network further we need to be able
to reduce the bias while at the same time also reducing the variance. One way
to achieve this is to use more data points. As we increase the number of data
points we can afford to use more complex modeIs, and therefore reduce bias,
while at the same time ensuing that each model is more heavily conskrained
by the data, thereby also reducing variance. If we increase the number of data
points sufficiently rapidly in relation to the model complexity we can find a
.Yuence of models such that both bias and variance decrease. Models such as
Fred-forward neural networks can in principle provide consistent estimators of
the regression function, meaning that they can approximate the regression to
arbitrary accuracy in the limit as the number of data points goes to infinity.
This limit requires a subtle bdance of network complexity against number of

points to ensure tha t at each step both bias and variance are decreased.
Consistency has been widely studied in the context of conventional techniques

*.atistical pattern recognition. For feed-forward networks, White (1990) has
'.lln~ll how the complexity of a *layer network must grow in relation to the
'I" of the data set in order to be consistent. This does not, however, tell us the
''bm~lexity required for any given number of data points. It dso requires that the
i'arameter optimization algorithms are capable of h d i n g the global minimum of
"' ermr function. Note that, wen if both bias and variance can be reduced to
:'

"'7 the error en new data will stiIl be non-zero as a result of the intrinsic noise " "'h data given by the second term in (9.1).
In Practice we are &en limited in the number of training patterns available,

hlld in ma
ny applications this may indeed be a severe limitation. An alternative

Ip?Oach to reducing both b i a and variance becomes possible if we have some
1 "'" bowledge concerning the unknown function h(x) . Such knmiedge can be
'IQpr
. ' constrain the model function y(x) in a way which is consistent with h(x)
:hrl therefore d o s not give rise to increased bias. Note that the bias-

eprohlem implies that, for example, a simple linear model (single-layer
'lPt'")rk) might, in some applications involving relatively small data sets, give

338 9: Learning and deneral~mtion 9.2: Regularization 339 I

superior performance to a more general non-linear model (such as a multi-lay,,
network) even though the latter contains the linear model bs a special case.

9.2 Regularization
In Section 1.5 we saw that a polynomial with an excess of free coefficients tends
to generate mappings which have a lot of curvature and structure, as a result of
over-fitting to the noise on the training data. Similar behaviour dm arises with
more complex non-linear neural network models. The technique of R ~ U I W ~ ~ ~ .
tion encourages smoother network mappings by adding a penalty fl t o the error
function to give

Here E is one of the standard error functions as discussed in Chapter 6, and
the parameter u controls the extent t o which the penalty term fl influences
the form _of the solution. Training is performed by minimizing the total error
function E, which requires that the derivatives of St with respect to the network
weights can be computed efficiently. A function y(x) which provides a good fit
to the training data will give a small value for E, while one which is very smooth
will give a small value for fl. The resulting network mapping is a compromise
between fitting the data and minimizing Q. Regularization is discussed in the
context of radid basis function networks in Section 5.4, and is given a Bayesian
interpretation in Section 10.1.

In this section we shall consider various forms for the regularization term fl.
Regularization techniques have been extensively studied in the context of linear
models for y(x). For the case of one input variable z and one outDut variabi~ Y?
the class of Tikhonov regularizers takes the form

,mpiri~ally that a regulariaer of this form can lead to significant improvements
in network generalization {Hinton, 1987). Some heuristic justification for the
fleight-de~ay regulariaer can be given as folIows. We know that to produce an
,wr-fitted mapping with regions of large curvature requires relatively large d u e s
for t.he weights. For small values of the weights the network mapping represented
bv a multi-layer perceptron is approximately linear, since the central region of a
,igmoidaI activation function can be approximated by a linear trmsfomation.
B~ sing a regularizer of the form (9.151, the weights are encouraged to be smdl,

Many network training algorithms make use of the derivatives of the total
prror function with respect t o the network weights, which from (9.13) and (9.15)
$re given

Suppose that the data term E is absent and we consider training by simple ggre
dient descent in the continuoustime limit. The weight vector WIT) then evolves
with time r according to

rt-here Q is the learning rate parameter. This equation has solution
I

W(T) = w(0) exp(-qur) (9.18) l

and so all of the weights decay exponentially to zero, which is the reason for the
of the term 'weight decay'.
We can gain some further insight into the behaviour of the weight-decay

r%ularizer by considering the particular case of a quadratic error function. A
, yq""rl quadratic error can be written in the form

I
I

I 1
where h, 2 0 for r = 0,. . . , R - 1, and hn > 0 (Tikhonov and Arsenln. 19i7)'

E(w) = Eo + b'w + - w T ~ w
2 (9.19)

Regularization has also been widely studied in the contwrt of vision syatemi
(Poggio e t al., 1985).

' the H and the W C ~ O ~ b &re c o n & m . The minimum ofthis error I +

'U"c'ion occurs at the point W* which, by differentiating (9,19),
9-2.1 Weight decay

One of the simplest forms of r e~ la r i ze r is called weight decay and consists o'"' b+Hw* = 0. (9.20)
sum of the squares of the adaptive parameters in the network

LhP
Presence d the regularization term, the minimum movw to a point

1 o=-CWT horn (9.131, satisfies
2 I

bt-H%+vG=O.
where the sum runs over all weights m d biases. In ~ ~ I ' l ~ ~ l l t ~ i ~ I l ~ l cur" fittin$

(9.21)

the use this form of reglllarizer is called ridge rqression. I t h s hren fouo

I

I

340 9: Learning and Genernlization

We can better interpret the effect of the weight-decay term if we rotate the aye
in weight space 80 as to diagonalize the Hessian matrix R {Appendix A). Thh
is done by considering the eigenvector equation for the Hessian given by

We can now expand w* and iG in terms of the eigenvectors to give

Combining (9.203, (9.21) and (9.231, and using the orthonormality of the {u,),
we obtain the following relation between the minima of the original and thp
regularized error functions

The eigenvectors uj represent the principal directions of the quadratic error
surface. Along those directions for which the corresponding eigenvalues are rela-
tively large, so that Ai >> v, (9.24) shows that Gj E w;, and so the minimum of
the error function is shifted v e ~ y little, Conversely, dong directions for which the
eigenvalues are relatively small, so that A, << v , (9.24) shows that IGj 1 <<]w;Fl
and so the corresponding components of the minimum weight vector are sup
pressed. This effect is illustrated in Figure 9.3.

9.2.2 Consistency of weight decay

One of the limitations of simple weight decay in the form (9.15) is that is inmp
sistent with certain scaling properties of network mappings, To ilIustrate thk'
consider a multi-layer perceptron network having a single hidden layer and IjfleN

output units, which performs a mapping from a set of input variables x, to "'
of output variables yk. The activation of a hidden unit in the first hidden
is given by

while the activations of the output units are given by

Figure 9.3. Illustration of the effect of a simpIe weight-decay regdmizer on
a quadratic error function. The circle represents a contour along which the
weight-decay term is constant, and the ellipse represents a contour of constant
unregularized error. Note that the axes in weight space have been rotated to be
parallel with the principal axes of the original error surface, determined by the
eigenvectors of the corresponding Hessian matrix. The effect of the regdarizer
is to shift the minimum of the error function from w* to wm This reduces the
value of wl at the minimum significantly since this corresponds to a small
eigenvalue, while the value of w2, which corresponds to a large eigendue, is
hardly affected.

Then we can arrange for the mapping performed by the netmurk to be unchanged I
by making a corresponding linear transformation of the weights a d biases from
the inputs to the units in the hidden layer of the form

Suppose we perform a linear transformation on the input data of the form A

a linear transformatian of the output variables of the network of the
form

?an hc achiwed by making a transformation of the second-layer weights using

342 9: Learning and Generalization P. 2: Regularization 343

If we train one network using the original data and one network using data F,, 1
which the input and/or target variables fire transformed by one of the abw,
ear transformations, then consistency requires that we should obtah equiv:
networks which differ only by the Linear transformation of the weights as g
Any regularizer should be consistent with this property, othemise it arbitr
favours one solution over another, equ iden t one. Clearly, simple weight d
(9.15) which treats a11 weights and biases on an equal footing does not sa
this propertgf.

We therefore look for a regularizer which is invariant under the linear ti
formations (9.281, (9.291, (9.31) and (9.32). In particular, the weights sh
be scale-invariant and the biases should be shift-inva~iant. Such a regularil
given by

dats
t the
sizer

& - . S F

1 Fislre g* Exmple of data generated by sampling the f ~ t i o n h(r), d e h e d
where Wl denotes the set of weights in the first layer, Wz denotes the -+ h~ (9.341, adding Gaussian distributed random noise with standard devi-
weights in the second layer, and biases are excluded from the summations. Under I ation of 0.05. The dashed curve shows the fmction h(%) the s o ~ d curve
the linear transformations of the weights given by 19-28), (9.29)~ (9.31) and I shows the result of fitting a sadid bask function network without regdariz*
(g.32), the regularizer will remain unchanged provided the parameters vl and VZ tion. There is one Gaussian basis function for each of the 30 data points,

are suitably resealed.
the is a strongly over-fitted network mapping. (This figure is identical

In Section 3.4.3 we showed that the role of the biases in the final I ~ Y to Figure 5.1, and is reproduced here for ease of cornpmison.)

a nebork with linear outputs, trained by minimizing a sum-of-squares
function, is t o compensate for the difference between the mean (me1 the I

and adding Gaussian distributed random noise with zero mean and standard
set) of the output vector from the network and the corresponding mean * deviation = 0.05. There is one basis function centred on each data point, &nd
tmget mIues. ~t is therefore reasonable to exclude the biases from the repla the network gives a strongly over-fitted solution.

as we do not wish systematicdly to distort the mean network output- The ouLpu' 'lie now include a weight decay regularizer of the form (9.15) with the bias

is then ha the sample mem of the target data, and provides an unbispd excluded from the summation, for reasons discussed above. Figure 9.5

estimate of the true target mean.
"QWS the efiect of using regularization coefficient of = 40. ~h~ network

WeigbMecay regularizers can be motivated in the context of h e a r models mapping now much smoother and gives a ITluch c I Q S ~ ~ representation of the
the sensitivity of the model predictions to noise on the input vectorr' ''"eer'~ng function from which the data was generated (shown by the dashed

Minimizetion of this sensitiGty leads naturally to a weightdecay regularizer, i"(Umel. The degree ~ f s m ~ o t h i n g is controlled by the regularization coefficient u,

which the biases are from the sum over weights (Exercise 9.2). Thelnorr too large a of v leads to over-smoothing, illustrated for II = 1000 in
Flqure 9.6.

general case of non-Unear networks is covered in detail later, when we 'On

the training of networks with additive noise on the inputs. "4 Early stopping

9.2.3 A simple ill~stration of weight d e w I "lternative to regularization as a way of controlling the &=tive complexity of
an illustration of the use of weight decay, we return to the emmple "'"' I "t'v~rk the procedure of early #topping. The training of non-linear network

in section 5.1 of noisy sine function using a radial basis hil'ct'on to an iterative reduction of the error function defined with r%
In Figure 9.4 we show an example of a data set topther

thr

I
Pn Pect lo a set of training data. During a typical training sesion, this error

network function obtained by minimizing a sum-of-squares error. Here data " F ~ @ ~ ~ ~ ~ ~ decreaes a function of the number of iterations in the a]gorltb.

by sampling the function h(zE given by '' many of the algorithm de~cribed h Chapter 7 (such as conjugate gradients) tf,?
error is a monohnicall~ decreasing function of the iteration index. HoweVer,

h(s) = 0.5 + 0.4 sin(27rx)
(9*511 Ihc error measured with rmprt to independent data, generally a didat ion

Ohen shows a decrease at first, fallowed by an increase as the nemork starta

valldation

training

Figure 9.7. A schematic illustration of the behavjour of training and validation
set errors during a typical training session, as a function of the iteration step
r , The goal of achieving the best generalization performance suggests that
training shouId be stopped ctt the point 7 corresponding to the minimum of

~i~ 9.5. in ~igun 9.4 but with a weighMay Wulmimr md a reg- (the validatian *t error.

ularization rneffieient = 40, shuwing the much smoother network mapping
and the comondingly closer apeement with the underlying Werator of the ing process, corresponding to a steady increase in the effective complexity of the
data, shown by the dashed curve. trgning before a minimum of the trahing error has been rewhed

then represents a way of limiting the effective network complexity.
In the case of a quadratic error function, ewly stopping should give rise to

similar behaviour to regularization using a simple weight-decay term. This can
understood from Figure 9.8. The axes in weight space have been rotated to

I be parallel to the eigenvectors of the Hessiwi matrix. If, in the absence of weight
1 decay, the weight vector starts at the origin and proceeds during training along

A Path which follows the locd negative gradient vector, then the weight vector
('"1 move initially parallel to the w2 axis to a point corresponding mughty to

2nd then move towards the minimum of the error function w'. This follows
Lm the shape of the error surface and the widely diRering eigenvalues of the
hwsian. Stopping at a point near i is therefore similar to weight decay, The ' 'lationship between early stopping and weight decay can be made quantitative,

d i ~ c ~ ~ ~ e d in Exercise 9.1, thereby showing that the quantity 77) (where r is
I thp

index, and 1) is the learning rate parameter) plays the role of the
F p i Procat of the regulatization parameter v. This exercise also shows that the?

number of parameters in the network (i.e+ the number of weights whose

Figure 9,6, As in ~i~~~ 9.5 but with v = showing the
having difkr significantly from zero) grows during the mune of training.

too large a for the regdmization coefficient'
>+h '1. Carnature-d~ven smoathinq

to over-fit. paining can therefore be rtopped at the point of smallest erroT w""

Fapeck to new data, as indicated in Figure 9.7, since this gives a network

which

is expected M have the best generalization perfomance.
The behsviour of the network in this case is sometimes expiaid ,d

t i d y in terms of the effective number of degrees of freedom in the
This number is suppose to s t a r t out small and then to grow during the tf@

I$€.

i
%i seen that over-fitted sol&ns are generaI1y characterized by mappings

'lave a lot of stnleture and relatively high curvature. This provided some :flqjr

tQ!+ "' t~ t iva t ion hor weight-decay regularizers as a way of reducing the curva-
bh. O f t h e network function. A more direct approach i~ to consider a regularizer
%:'' Penalizes curvature explicitly. Since the cumtare is governed by the sec-
hhn'iorivati~es of the network function, we can consider s regularizer of the

346 9: h m i n g and GenemSizalion 9.3: flaining with nofie 347

Figure 9.8. A schematic illustration of why early stopping can gil 3r

results to weight decay in the case of a quadratic error function. Tne ellipse
shows a contour of constant error, and w* denotes the minimum of the error
function. If the weight vector starts at the origin and moves according to
the local negative gradient direction, then it will follow the path shown by
the curve. By stopping training early, a weight vector & is found which is
qualitatively similar to that obtained with a simple weight-decay regularixer
and training to the new minimum of the error, as can be seen by comparing
with Figure 9.3. A precise quantitative relationship between early stopping
and weight-decay regu1arization can be demonstrated formally for ie of

quadratic error surfaces (Exercise 9.1).

the cm

Note that this regularizer is a discrete version of the Tikhonw form (9.11).
hgularizers involving second derivatives also form the basis of the conventiond
interpolation technique of cubic splines (Wahba and Wold, 1975; De Boor, 1978).
The derivatives of (9.35) with respect to the weights for a multi-layer perceP
can be obtained by an extension of the back-propagation procedure (Bis
1993).

9.3 Training with noise

We have discussed two approaches to controlling the effective eornple.;lV
network mapping, based respectively on limiting the number of adaptive
eters and on regularization. A third approach is the technique of training "'jib
noise, which involves the addition of noise to the input vectors during the """-
ing process. For sequential training algorithms, this can be done by adding a '@' EJ

random vector t o each input pattern before it is presented to the netmrk.
that, if the patterns are being recycled, u different random vector is added

eaJl

time. For batch methods, a similar effect can be achieved by replicating
each

data point u number of times snd adding new random vectors onto each
COP>'

fleusisticd1y, we might expect that the noise will 'smear out' each data point
,,d make it difficult for the network to fit individual data points precisely, and
hence will reduce over-fitting. In practice, it has been demonstrated that training
,;th noise can indeed lead to improvements in network generalization (Sietsma

Dow, 1991). We now show that training with noise is closely related to the
technique of regularization (Bishop, 1995).

Suppose we describe the noise on the inputs by the random vector E , governed
1 , ~ some probability distribution a<). If we consider the Iimit of an infinite
lltlmber of data points, we can write the error function, in the absence of noise,
In the form

~5 discussed in Section 6.1.3. If we now consider an infinite number of copies of
each data point, each of which is perturbed by the addition of a noise vector,
then the mean error function defined over this expanded data set can be written
a.5

E e now assume that the noise amplitude b small, and expand the network I

function as a TayIor series in powers of 5 to give

noise distribution is generally chosen to have zero mean, and to be uncor-
1 between diRerent inputs. Thus we have

the parameter u represents the variance of the noise distribution. S u b
9'

itu'ing the Taylor series expansion (9.38) into the error function (9.37), and
"'lrinl: llse of (9.39) to integrate over the noise distribution, we obtain

z = ~ f v f l (9.40)

W p W F is the standard sum-of-squarm error given by (9.36), and the extra term "" qiven h,

g: Leamdng and Genemlization
I

348 9.4: Soft weight shaping 349

(9.41)
This has the form of a regularization term added to the usual sum-of-squar,
error, with the coefficient of the regutarizer determined by the noise wiance
(Webb, 1994).

Provided the noise amplitude is small, so that the neglect of higher-order
terms in the Taylor expansion is d i d , the minimization of the sum-of-squars
error with noise added to the input da ta is equivalent to the minimization 01
the regularized sum-of-spumes ermr (9.401, with a regularization term given
by (9.41), without the addition of noise. It should be noted, however, that the
second term in the regularization function (9.41) involves second derivatives of
the network function, and so evaluation of the gradients of this error with respect
to network weights will be computationally demanding. Furthermore, this term
is not positive definite, and sa the error function is not a priori bounded below,
and is therefore unsuitable for use as the basis of a training algorithm.

We now consider the minimization of the regularized error (9.40) with respect
to the network function y(x), which allows us to show that the second deriwi-
tive terms can be neglected. This result is analogous to the one obtained for the
outer product approximation for the Hessian matrix in Section 6.1.4, in which
we showed that similar second-derivative terms also vanish. Thus, we will see
that the use of the regularbation function (9.41) for network training is q u i v -
alent, for small values of the noise amplitude, to the use of a positive-definite
regularization function which is of standard Tikhonov form and which involva
only first derivatives of the network function (Bishop, 1995).

As discussed at length in Section 6.1.5, the network function which rninimi~s
the sum-of-squares error is given by the conditional average (tk (x} of the
values tk. From (9.40) we see that, in the presence of the regularization term,
the network function which minimizes the total error will have the form

NOW consider the second term in equation (9.41) which depends on the second
derivatives of the network function. Making use of the definition of the condi-
tiond average of the target data, given in equation (g.Z), we can rewrite this
term in the form

Using (9.42) we see that, to lowest order in u, this tsrm vanishes at the minimu"
of the total error function. Thus, only the first term in equation (9.41) nWd5
be retained. It should be ernphaqizd that this result is a consequence of

the

amage over the target data, and so i t does not require the individual ter@

- t k to be small, only that their (conditional) average over t k be small. '' The minimization of the sum-ofsquares error with nobe is therefore equiv-
,lent (to fir& order in v) to the minimization of a regularized sum-of-squwa
error without noise, where the regularizer, given by the first term in equation
(9.411, has the form

nrhere we have integrated out the Ck variables. Note that the regularization func-
tion in equation (9.44) is not in general equivalent to that given in equation
(9.41). However, the total regularized error in each case is minimized by the
same network function y(x), and hence by the same set of network weight vd-
ues. Thus, for the purposes of network training, we can replace the regularization
term in equation (9.41) with the one in equation (9.44). In practice, we approx-

1 imate (9.44) by a sum over a finite set of N data points of the form

'rivatives of this regularher with respect to the network weights can be found
I .-ing an extended back-propagation aIgorithm (Bishop, 1993).

This regulariser involves first derivatives of the network mapping function.
1 A related approach has been proposed by Drucker and Le Gun (1992) based

Qn a sum of derivatives of the error function itself with respect to the network 1 !Vats. This choice of regulariw leads to a computationally eficient algorithm
evaluating the padients of the regularization function with respect to the

, newark weights. The algorithm is equivalent to forward and backward propa-
tion through an extended network architecture, and is termed double back-
oPagation.

3 Soft weight sharing

'e way to reduce the effective complexity of a network with a large number
is t o constrain wights within certain groups to be equal. This is

' technique of weight shailng which was discussed in Section 8.7.3 as a way
,h'lilding translation invariance into networks used for image interpretation. " Only applicable, however, to particular problems in which the form of the

can be specified in advance. Here we consider a form of soft weight
9 (yowlan and Hinton, 1992) in which the hard constraint of equal weights

iP rp
I

Placed by a form of regularization in which groups of weights are encouraged
similar valuer. firthemore, the division of weights into groups, the mean 'VrISht

dQpy value for each group, and the spread of values within the groups, are dl
mined as part of the learning process.

350 g: Learning a d Geaemlization

As discussed at length in Chapter 6, an error function can be regarde, as
the negative logarithm of a likelihood function. Thus, the simple weight-decay
regnlarizer (9.15) represents the negative logarithm of the likelihood of the given
set of weight values under a Galmian distribution centred on the migin, To
this, consider a Gaussian of the form

Then the likelihood of the set of weight values under this distribution is g

by

where W is the total number of weights. Taking the negatiw logarithm
gives the weight-decay regularizer, up t o an irrelevmt additive constant. A
have seen, the weight-decay term has the effect of encouraging the weight vg
to form a cluster with values cbse to zero.

We can encourage the weight values to form several groups, rather than j u s ~
one group, by considering a probability distribution which is a m i d w of Gaus
sians, An introduction to Gaussian mixture models and their basic proprrties is
given in Section 2.6. The centres and variances of the Gaussian componentg
well as the mixing coefficients, will be considered as adjustable parameters t
determined as part of the learning process. Thus, we have a probability del
of the form

. -.

then

I
9.4: Soft weight sharing 351

I
 he total error function is then given by

,there v is the regularization coefficient. This error is minimized both with respect
to the weights wt and with respect to the parameters aj, pj and crj of the

model. If the weights were constant, then the parameters of the mixture
model could be determined by using the E M re-estimation procedure discussed
in Section 2.6.2. However, the distribution of weights is itself evoIving during
tI~e learning process, and so to avoid numerical instability a joint optimization is
performed simultaneously over the weights and the mixture model parameters.
p his can be done using one of the standard dgorithms, such as the conjugate
gradient or quasi-Newton methods, described in Chapter 7. The parameter v,
however, cannot be optimized in this way, since this would give w -, 0 and an
over-fitted solution, but must be found using techniques such as cross-validation
tn be discussed later.

In order to minimize the total error function it is necessary to be able to
er~luate its derivatives with respect to the various adjustable parameters. To do
this it is convenient to regard the ai's as prior probabilities, and to introduce
the corresponding posterior probabilities given by Bayes' theorem in the form

The derivatives of the total error function with rmpect to the weights are then
:hen by

I

j=I

"effect of the regularization term is thus to pull each weight towards the
where aJ are the m s n g and the co~nponent densities of the j t h Gaussian, with a force proportional to the posterior probability
Gaussians of the form jL that Gaussian for the given weight. This is precisely the kind of effect which

:!'? 4TP seeking.
1 ('

n- . of the ermr with respect t o the centres of the Gaussians are a h
"-qll!: computed to give

Forming the likelihood function in the usual way, and then taking the negsti"
logarithm, leads to a regularizing function of the form I

'''']'!l liw- a simple intuitive interpretation, since i t drives pj towards an average
q f ,

v:n ;n.

hp Wight mlues, weighted by the posterior probnhiities that the respective
'rllts we, generated by component j. Similarly, the derivatives with respect

I

352 9: Leorning and Genem#zaMon
9.5: Growing and pruning algorithms 353 I

t o the variances are given by

I='-33)
together . ,. with (9.501, (9.52) and (9.59), we then obtain the required derivatives

which drives ai towards the weighted average of the squared deviations of the
weights around the corresponding centre pj, where the weighting coefficients
are again given by the posterior probability that each weight is generated by
component j. Note that, in a practical implementation, new variables Q defined
by

are introduced, and the minimization is performed with respect to the qj. This
ensures that the parameters gj remain positive. It also has the effect of dis-
couraging pathological solutions in which one or more of the c,- goes to zero,
corresponding to a Gaussian component collapsing onto one of the weight pa-
rameter d u e s , Such solutions are discussed in more detail in the context of
Gaussian mixture models in Section 2.6. From a Bayesian perspective, the use
of a transformation of the form (9.56) can be motivated by a consideration of
noa-infomatiwe priors (Section 10,4 md Escercise 10.13).

For the derivatives with respect to the mixing coefficients a,, we need to take
account of the constr&ints

which follow from the interpretation of the a, as prior probabilities. This can be
done by expressing the mixing coefficients in terms of a set of auxilim variable
{rj) using the softmm function given by

We can now minimize the emor function with respect to the {yl). TO find the

derivatives of with respect to T~ we make use of

which follows from (9.58). Using the chdn rule in the form

in the IolXl

Rthere we have made use of xi crj = I. We see that ol,. is therefore driven towards
the average posterior probability for component j.

In practice it is necessary to take some care over the Initialization of the
weights in order to ensure that good solutions are found. One approach is to
choose the initial weights from a uniform distribution over a finite interval, and
then initialize the components q5j (w) to have means which are equally spaced over
this interval, with equal priors, and variances equal t o the spacing between the
adjacent means, This ensures that, for most of the weights, there is little initid
contribution to the error gradient from the regularization term, and so the initial
evolution af the weights is primarily data-driven. Also, the posterior probabiIities
have roughly equal contributions m r the complete set of weights, which heIps
to avoid problems due to priors going to zero early in the optimization. Results
on several test problem (Nowlan and Hinton, 1992) show that this method can
l e d to significantly better generalization than simple weight decay.

9-5 Growing and pruning algorithms
The architecture of a neural network (number of units and topology of connec-
lions) can have a significant impact on its performance in any particular ap-
plication. Various techniques have therefore been developed for optimizing the
Qhitecture, in some cases as part of the network training p r o w s itself. It js

I '"Portant to distinguish between two distinct aspects of the architecture selec-
lion problem. First, we need a systematic procedure for exploring some space of
Pnssihle architectures, and this forms the subject of this section+ Second, we need / 'One way of deciding which of the architwtures e n i d r e d should be selected.
Ibis is usually determined by the requirement of achieving the best possible
z'neralixation, and is discussed at length in Section 9.8.

Pn
The simplest approach to network strucf ure optimization iwofves exhaustive

""h through a restricted c l a ~ s of network architectures. We might for instance
the class of multi-layer perceptmns having two layers of weights with

"'l between adjacent layers and no direct input-output connections.
only a~pect of the architecture which remains to be specified is the number

hidden units, and so we train a set d networks having s range of values ' y q and select the one which gives the best value for our performance orite- ti 2' This approach can require significant computational effort and yet it only

, ~ * r f " l ~ ~ ~ ,- n very restricted c l ~ s of network models. If we expand the range of
a

354 9: Learnzng and GenemSjzetion 9.5: Growing and pruning a l g o d h m 355 I
models (by having multiple hidden layers and partial connectivity for exampin)
we quickly reach the point of having insufficient computational resources for a
complete search. Note, however, that this is the approach which i s most widely
adopted in practice. Some justification can be found in the fact that, for the h,
layer architecture, we know that we can approximate any continuous functional
mapping to arbitrary accuracy (Section 4.3) provided M is sufficiently large.

An obvious drawback of such an approach is that many different networks
have to he trained. This can in principle be avoided by considering a n e b &
which is initially relatively smdI and allowing new units and connections to b,
added during training, A simple example of this would be to consider the class
networks having two layers of weights with full connections in each layer, and to
start with a few hidden units and then add one unit at a time. Such am approach
was considered by Bello (1992) who used the weights from one nekwork as the
initial guess for training the next network (with the extra weights initialized
randornb). Techniques of this form are called growing algohthms and we shall
consider some examples for networks of threshold units, and then discuss the
cascade correlation algorithm which uses sigmoidal units.

An alternative approach is to start with a relatively large network and grad-
udly remove either connections or cornpIete units. These are known as pruning
algo~thms and we shall consider several specific examples. Note that, if weight
sharing is used, then several weights may be controlled by a single parameter,
and if the parameter is set to zero then all the corresponding weights are deleted.

A further possible approach to the design of network topology is to construct
a complex network from several simpler network modules. We consider two im-
portant examples of this, c d e d network committees and miztures of
The latter allows a problem to be decomposed automatically into a number of
sub-problems, each of which is tackled by a separate network.

9.5.1 Exact Boolean clmsifimtioa

As we emphasize at several points in this book, the goal in training a neural
network is usualIy to achieve the best generdieation on new data rather than tQ
learn the training set accurately. However, for completeness we give here a brief
review of two approaches to network construction aIgorithrns which can learn
a finite set of Boolean patterns exadly We consider networks having threshold
unib and a single output, for binary input patterns belonging to two cl@seS-

Before discussing these algorithms in detail, we need first to consider a modi-
fication to the usual perceptron learning algorithm known as the pocket aboriihnt
(Gallant, 1986b) designed to deal with data sets which are not linearly separable+
The simple perceptron learning algorithm (Section 3.5) is guaranteed to findRn
exact classification of the training data set if it is linearly separable. If the dat'
set is not linearly separable, then the algorithm does not converge. The pole t
algorithm involves retaining a copy ('in one's pocket') of the set of weight. wllicb It
has so far survived unchmged for the longest number of pattern presentations'.
e m be shown that, for a sufficiently long training time, this gives, with probahl'-
ity arbitrarily clme to unity, the set of weight values which produces the

Figure 9.9. The tiling algorithm buiIds a network in successive layers. In each
I layer, the first unit added is the master unit (shown as the heavier circle)

1 which plays a special role. Sumwive layers are fully connected, and there are
no other interconnections in the network.

I
possible number of miaclassifications. Note, howwer, that no upper bound on the

I
training time needed for this to occur is known.

The tiling algorithm (Mezard and Nadal, 1989) builds a network in successive
leyers with each layer having fewer units than the previous layer, as indicated
m Figure 9.9. Note that the only interconnections in the network are between
adjacent layers. W h e n a new layer is constructed, a single unit, cdled the master
unit, is added and trained using the pocket algorithm. One requirement for the
"twork is that each layer must form a 'faithful' representation of the data set,

I in other words t;wo input patterns which bebng to different classes must not
1 mapped onto the same pattern of activations in any layer, otherwise it will

I

I
hp impossible for successive layers to separate them. This is achieved by adding
further ancilIav units to the layer, ane at a time, leaving the weights to the
m*ter unit and any other ancillary units in that layer fixed. The geometrical

I inrer~retation of this procedure is indicated in Figure 9.10, If the representation

I

" ai\n stage is not faithful then there must exist patterns from different classes
'''.'hich give rise to the same set of activations in that layer. The group of dI I .
'"ut patterns which give rise to those activations are identified and an extra
"''cllary unit is added and trained (again using the pocket algorithm) on that
up '"'JP- The process of searching for ambiguities, and adding ancillary units, is

:pcat@d until the representation is faithful. The whole process is repeated with .hn next layer. It can be shown that at each layer the master unit produces fewer

mi'ciasifications than the master unit in the previous layer. Thus, eventually
'" of the master units produces correct classification of all of the patterns, and '" algorithm converges with a network of finite size.

I f r p next consider the upstart algorithm (Frean, 1990) which is also guaranteed

356 9: Learning and Genemlization 9.5: Gruwing and pmniag algorithms 357 I

Figure 9.10. IlIustration of the role of the anciIlary units in the tiling algo-
rithm. The circles and crosses represent the patterns of activations of units in
a particular layer when the network is presented with input pattern from two
different classes. The master unit in the next layer {whose decision boundary k
represented by the solid line) is trained to find the best linear separator of the
classes, and then ancillary units (with decision boundmi- given by the dashed
lines) are added so as to separate those patterns which are misdassified.

to find a finite network which gives complete classification of a finite data set.
However, it builds the network by adding extra units between existing units
and the inputs, as indicated In Figure 9.11. All units take their inputs directly
from the inpnts to the network, and have binary threshold =tivation functions.
The algorithm begins by training a single unit using the pocket algorithm. This
'parent' unit will typically mi&classi& some of the patterns, and so two 'offspring'
units are added, one to deal with the patterns for which the parent is incorrect]?
off, and the other to deal with the patterns for which the parent is incorrwtly
on. These units are connected to their parent with sufficiently large negativ
positive weights respectiveIy that they can reverse the output of the parent
they are activated. The weights to the parent are frozen and the ofispri~
trained to produce the correct output for the corresponding incorrect pat
while at the same time not spoiling the classification of the patterns which
correct. The algorithm is called upstart because the offspring correct the mi!
of their parents! We can always choose the weights and bias of an ofFsprinI
such that it only generates a non-zero output for one particular pattern, aIlc

will then reduce the number of errors of the parent by one. In practice, the
are trained by the pocket algorithm and may do much better than just culLL-
one pattern. Once trained, the offspring weights are hozen, and they becomc
pa-rents for another layer of offspring, and so on.

Since the addition of each offspring unit reduces the number of errors
of

its parent by at least one, it i s clear that the network must eventually c1*5ir

, Figure 9.11. The upstart algorithm adds new offspring units, at A md B,
to correct the mistakes made by the patent unit. The offspring themelves
generate offspring units, leading eventually to a network having a binary tree
structure.

all patterns correctly using a finite number of units. This occurs because the
number of mistakes which successive offspring have to correct diminishes until
eventually an offspring gets all of its patterns correct, which implies that its
parent produces the correct patterns, and so on all the way back up the network
to the output unit. The b a l network has the form of a binmy tree, although
some branchm might be missing if they are not needed. However, this architecture

I can be reorganized into a tw*layer network by removing the output connections
I

I from the units and moving all units into a single hidden layer (leaving their input
connections unchanged), A new output unit is then created, and new hidden-te i

I Output connections added, These connections can be learned with the perceptron
algorithm or found by expIicit construction in a way which guarantees correct
dasification of all patterns (Frean, 1990). In simulations it is found that the 1 upstart algorithm produces networks having fewer units than those found with
the tiling algorithm. Other algorithms for tackling the Boolean classification
Problem have been described by Gallant (1986a), Nadd (1989) and Marchand 1 f i ~ l . (1wa).

diflerent approach to network eonstruetion, applicable to problems with con-
' ' " Q ~ S output variables, is known as cascade-correlation (Fahlrnan and Lebiere,

and is based on networks of sigmoidal hidden units. The form of the net-
s "'k architecture is shown in Figure 9.12. To begin with there are no hidden

'lnits, and every input is connected to w r y output unit by adjustable con-
?'c'ions (the crosses in Figure 9.12). The output units may be linear or may
barre Sigmoidai non-linearities depending on the application. At this stage the

pk has a single layer of weights and can be trained by a number of dif-
ent algorithms, as discussed in Chapters 3 and 7. Fahlman and LeMere use

?he rluickprop algorithm (Section 7.5.3). The network is trained for a period of

'Irne governed by some user-defined parameter (whose value is set empirically)
I

358 9: Leorning and Generalization I 9.5: Gmwing aad pmntng algorithm 359

I

Figure 9.12. Architecture of the cascade-correlation network. Large circles de-
note processing units, small circles denote inputs, and the bias input js shown
in black. Squares represent weights which are trained and then frozen, while
the omsss show weights which are retrained after the addition of each hidden 1
unit. Bidden unit HI is added first, and then hidden unit Hz, and so on.

v
C I
\

U I
<\ Y

inputs

x2 0
\I *\ C

and then a sigmoidd hdden unit is added to the network. This is followed $
further network training, alternating with the addition of hidden units, until n
sufficiently small error is *hieved. The addition of hidden units is done in such
a way that, at each stage of the algorithm, only a singklayer system is being
trained. Each new hidden unit takes inputs from all of the inputs to the netv~rk
plus the outputs of all existing hidden units, leding t o the cascade st,ructure of
Fimre 9.12. The hidden unit weights are first determined, and then t.he unit 15

added to the network. These weights are found by maximizing the correlation
between the output of the unit and the residual error of the network out~ut-5
prior to the addition of that unit. This correlation (s t u d y the covariance) iS
defined by

XI -9

where cx = (pk - t ~) is the error of network output k, and z denotes the Ol t t~ ' '

of the unit given by I

,.here the sum runs over al1 inputs and all existing hidden units. In (9.62) the
rollowing average quantities are defined over the whole training set

xo a-

I

The derivative of S with respect to the weights of the new hidden unit are easily
found in the form

*,here the sign corresponds t o the sign of the covariance inside the modulus bars
ill (9.62). These derimtivas can then be used with the quickprop algorithm to
optimize the weights for the new hidden unit. Once this has been done the unit

dded to the network and is connected to all output units by adaptive weights.
"klI output-layer weights are now retrained (with all hidden unit weights fixed).
Again, this cormponds to a singklayer training problem, and is perfarmed us-
ing quickprop. These singlelayer training problems can be expected to converge
very rapidly. For linear output units, the output-layer weights, which minimize
a sum-of-squares error, can be found quickly by pseudo-inverse techniques (Sec-
tion 3.4.3). Note that, because the hidden unit weights are never changed, the
activations of the: hidden units (for each of the input vectors from the train-
ing set) can be evaluated once for the whok of the training set, and these values
re-used repeatedly in the remainder of the algorithm, saving considerable compu-
tational effort. Benchmark results from this dgorithm can be found in Fahlman

Lebiere (1990).

=J

g.5.3 Saliency of weights

turn now to pruning algorithms which start with a relatively large network
""hen remove connections in order to arrive at a suitable network architec-
ture. Several of the approaches to network pruning are based on the following
general procedure. First, a relatively large network is trained using one of the
"Ward t r h i n g dgorithms. This network might for instance have a high degree
rJFcOnnectivity. Then the network is examined to assess the relative importance
r'r the weights, and the least important are deleted. Typically this is followed by

further training of the pruned nefmork, and the procedure of pruning and
tr'l"% may be repeated for several cycles. Clea~ly, there are various choices to
1 , ~ made concerning how much training is applied at each stage, what fraction

" the weights are pruned and so on. Usually these choices are made on a heuris- ''' bkqis. The most important consideration, however, is how to decide which
k'i~hts should be removed.

In the c m of simple models it may be clear in which order the parameters
ihotild be deleted. With s polynomial, for instance, the higher-order coefficients

*I
,"\

360 9: Learning and Gmemtization I 9.5: Growing and pnrning algorithms 361

would generally he deleted first since we expect the function we are tryjr
represent to be relatively smooth. In the case of a neural network i t is not o b
a p&ri which weights will be the least significant. We therefore need :
measure of the relative importance, or saliency, of different weights.

The simplest concept of sdiency is to suppose that small weights aK

important than large weights, and to use the magnitude Iwl of a weight vall
a measure of its importance. Such an approach clearly requires that the i
and output variables are normalized appropriately (Section 8.2). Howevet, ,k

has little theoretical motivation, and performs poorly in practice. 'lVe Consider
instead how to find a measure of saliency with a more principled justification,

Since network training is defined in terms of the minimization of an error func-
tion, it is natural to use the same: error function to find a definition of salieng
In particular, we could define the saliency of a weight as the change in the error
function which results from deletion (setting to zero) of that weight. This could
be implemented by direct evaluation, so that, for each weight in the (trai
network in turn, the weight is temporarily set to zero and the error fun1
re-evaluated. However, such an approach would be computationally deman
(Exercise 9.17).

Consider instead the change in the error function due to small changes in
the values of the weights (Le CUR ef ab, 1990). If the e i g h t wi is changed to
wi + Swi then the corresponding change in the error function E is given by

where the Hij are the elements of the Hessian matrix

1 , Choose a relatively large initial network architecture.
2 . p a i n the network in the usual way until some stopping criterion is satisfied.
3, Compute the second derivatives Hz, for each of the weights, and hence

I evaluate the saliencies H,,w,2/2.
3, Sort the weights by saliency and delete some of tlie low-saliency weights.
5 Go to 2 and repeat until some ovt3ralI stopping criterion is reached. L .

rllis approach to weight elimination has been termed optimal brain damage

\

I
Le Cun et al., 1990). In an application to the problem of recognition of hand-

,,itten zip codes, the technique allowed the number of free parameters in a

I n p b ~ r k to be reduced by about a factor of 4 (from a network initially hav-
ing over 10 000 free parameters) while giving a small increase in generalization
pformance and a substantial increase in the speed of the trained network.

The assumption that the Hessian for a network is diagonal, however, is fre-
quently a poor one. A procedure for determining the saliency of weights, known
as optimal bwin surgeom, which does not make the assumption of a diagonal Hes-
sian, was introduced by Hassibi and Stork (1993). This method also computes
corrections to the remaining weights after deletion of a particular weight and
so reduces the need for network retraining during the pruning phase. Suppose
a weight wi is to be s e t to zero. The remaining weights are then adjusted so as
FO minimize the increase in error resuIting from the deletion. We can write the I
total change in the weight vector in the form 6w. Again, assuming the network 1
a already trained to a minimum of the error function, and neglecting third-order I
terms, the change in the error resulting from this change to the weight vector I

be written I

If we assume that the training process has converged, then the first tern1 in 1
(9.66) wiIl vanish. Le Cun et al. (1990) approximate the Besian by discarding
the non-diagonal terms. Techniques for calculating the diagonal terms of thp
Hessian far a multi-Iayer perceptron were described in Section 4.10.1. Neglecting
the higher-order terms in the expansion then reduces (9.66) to the form

The change in the weight vector must satisfy

If a weight having an initial d u e wi is set to zero, then the increase in error
will be given approximately by (9.68) with 6wi = w., and so the saliency value
of the weights are given approximately by the quantities Hiiwi /2 . A practical
implementation would typically consist of the following steps:

 here ei is a unit vector in weight space parallel to the wi axis. We need to
find the 6w which minimizes 6E in (9.691, subject to the constraint (9.70).
'his is most easily done by introducing a Lagrange multiplier (Exercise 9.8 and
b e n d i x C), giving the following result for the optimal change in the weight
%?tor

d t h corresponding value for the increase in the error in the form

362 9: Learning and Genemlization 1 9.5: Growing and pmning algofithms 363

Figure 9.13. A schematic illustration of the error contours for a network havinI
a non-diagonal Hessian matrix, for two of the weights wl and wa. The network
is initially trained to the error minimum at w". Weight pruning based on the
magnitude of the weights would take the weight vector to the point A by
elimination of the smaller weight w2. Conversely, optimal brain damage leads
to removal of wl and moves the weight vector to B. Finally, optimal brair
surgeon removes wl and also computes a correction to the remaining weigh1
wz and hence m e w the weight vector to C.

Note that, if the Hessian is in fact diagonal, then these resuIts reduce to the
corresponding results for the optima1 brain damage technique discussed above.
The inverse Hessian is evaIuated using the sequential technique discussed in
Section 4.10.3 which is itself based on the outer product approximation for the
Hessian, discussed in Section 4.10.2. In a practical implementation, the optimal
brain surgeon algorithm proceeds by the following steps:

I. Dain a relatively large network to a minimum of the error function.
2. Evaluate the inverse Hessian H-'.
3. Evaluate SEi for each value of i using (9.72) and select the value of i which

gives the smallest increase in error.
4. Update all of the weighb in the network using the weight change evdu

from (9.71).
5. Go to 3 and repeat until some stopping criterion is reached.

p.5.4 Weight elimination

In section 9.2-1 we discussed the use of a sirnpIe weight-decay term as a form of
replarization, Do give a total error function of the form

 his regularization term favours small weights, and so network training based on
of (9.73) will tend to reduce the magnitude of those weights which

Me not contributing significantly to a reduction in the error E. One procedure for
weights from a network would therefore be t o train the network using

the regularized error (9.73), and then remove weights whose values fall below
some threshold.

One of the difficulties of the sirnple penalty term in (9.73), from the point of
view of network pruning, is that it tends to favour many smdl weights rather

I than a few large ones. To see this, consider two weights wl and u r ~ feeding
into a unit from identical inputs, so that the weights are performing redundant
tasks. The unregularized error E will be identical if we have two equal weights
rnl = wz = w/2, or if we have one larger weight wl = w, and one zero weight
U ~ Z = 0. In the first case, the weight-decay term xi w: = w 2 / 2 while in the
second case Ci w: = w2.

This problem can be overcome by using a modified decay term of the form
I (Hanson and Pratt, 1989; Lang and Hinton, 1990; Weigend et al., 1990)

A conparisen of pruning by weight magnitude, optimal brdn damage an(
ma1 brain surgeon is shown schematically in Figure 9.13. Note that the mlg"'
changes are evaluated in the quadratic approximation. Since the true error func*
tioa will be non-quadratic, it wilI be necessary to retrain the network after "
period of weight pruning. Simulation results confirm that the optimal brain sup
geon technique is superior to optima1 brain damage which is in turn superior '@
magnitude-based pruning (Le Cun et aL, 1990; Ha~sibi and Stork, 1993).

where 8 is a parameter which sets a scaIe and is usually chosen to be of order
u"Q. Use of this form of regularizer has been called weight elimznetion. As shown
in Exercise 9.9, for weight values somewhat larger than CJ this pen& term wiIl

favour a few large weights rather than many smdl ones, and so is more
likely to eliminate weights born the network than b the simple weight-decay
'9'" in (9.73). This leads to a form of network pruning which is combied with
'Ii@ training proems itself, rather than alternating with it. In practice weight
'"Iues will typically not be reduced to zero, but it would be possible to remove
"'khts completeIy if their values fell below some small threshold. Note that this
" ~ r i t h m involves the scale parameter u? whose value must he chosen by hand.

' , ' .5 Node prunim+q

lnrkad of pruning individual weights from a network we can prune complete
''"'f~. and several techniques for achieving this have been suggested. Mozer and
"&sky (1989) adopt an algorithm based on alternate phases of training and
r'moval of unit,. This requires a measure of the saliency s, of a unit, of which
L h ~ most natural definition would be the increase in the error function (measured

364 9: Learning and Genemlization 9.6: Committees of netwerkz 365 I
with respect to the training set) as a result of deleting a unit j

s j = E(without unit j) - E(with unit j) . I$
As with individual weights, such a measure is reIatively slow to evaluate sin
requires a complete pass through the data set for each unit, although it is c ~ f
less computationally expensive to repeat the error measurement for each
than it is for each weight. To find a convenient approximation, we can intro,
a factor a, which multiplies the summed input to each unit (except the ou
units), so that the forward propagation equations become

where the activation function g(.) is defined such that g(0) = 0, as would fit
case for g(a) = tanha, for example. Then with ~ r j = O the unit is absent,
with a j = 1 the unit is present. Then (9.75) can be written as

whkh can then be approximated by the derivative with respect to aj:

These derivatives are easily evaluated using an extension of the back-propaga
dgorithm (Exercise 9.10). Note that the % do not actually appear in the for7

propagation equations, but are introduced simply as a convenient way to d ~ !
and evaluate, the sj. In order to make this approach work in practice, M
and Smolensky (1989) found they had to use a Minkowski-R error with R
(Section 6.21, together with an exponentially weighted running average estir
of sj to smooth out fluctuations. Other forms of node-pruning algorithm 1
been considered by Hanson and Pratt (19891, Chauvin (1989) and Ji et a/. (15

ce it,
: a r l ~
unit

var d
fine,
naPF

I

9.6 Committees of networks

I t is common practice in the application of neural networks to train many difi'*-
ent candidate networks and then to select the best, on the basis of performanCP

1
on an independent validation set for instance, and to keep only this network "d
to discard the rmt. There are two disadvantages with such an approacll. First'
dl of the effort involved in training the remaining networks is w a s t d . swond' ...*
the generalization performance on the validation set has- a randor 10

due to the noise on the data, and so the network which had best pe nc

[he vaIidation set might not be the one with the best performance on new test I

data.
These drawbacks can be overcome by combining the networks together to

brrn a committee (Perrone and Cooper, 1993; Perrone, 1994). The importance of
,uch an approach is that it can lead to significant improvements in the predictions
,, new data, while involving Iittle additional computational effort. In fact the

of a committee can be better than the performance of the best single
fl,trvork used in isolation. For notational convenience we consider networks with a

output y, although the generalization to several outputs is straightforward.
Suppose we have a set of L trained network models yt(x) where i = I, . . . , L.
This set might contain networks having different numbers of hidden units, or
,,etworks with the same architecture but trained to different local minima of
the error function. It might even include different kinds of network models or

mixture of network and conventional modeIs. We denote the true regression
function which we are seeking to approximate by h(x). Then we can write the
mapping function of each network as the desired function plus an error:

The average sum-of-squares error for model yi(x) can be written as
I

shere E[.] denotes the expectation, and corresponds to an integration over x I
weighted by the unconditional density of x so that

I

From (9.80) the average error made by the networks acting individually i s given
hv

We now introduce a simple form of committee. This involves taking the out-
D"t of the committee to be the average of the outputs of the L networks which
"'mprise the committee. Thus, we write the committee prediction in the form

I@ error due tc, the committee can then be written as

L
p~jzed committee prediction given by a weighted combination of the predictions
of the members of the form

n=l

L
IE we now make the assumption that the errors ~ i (x) have zero mean and ,,,
uncorrelated, so that

t=1 then, using (9.82), we can relate the committee error (9.84) to the average error
of the networks acting separately as follows: &ere the parameters, ar wilI be determined shortly. We now introduce the error

r matrix C with dements given by

This represents the apparently rather dramatic result that the sum-of-squares This allows the error due to the generalized committee to be written as
error can he reduced by a factor of L simply by averaging the predictions of
L networks. In practice, the reduction in error is generally much srndler than EGEN = & [(YGEN(X) - h (~)) '] (9.92)
this, because the errors E ~ (x) of different models are typically highly correlated.
and so assumption (9-85) does not hold. However, we can easily show that the
committee averaging process cannot produce an increase in the expected error (9.93)
by making use of Cauchy's inequality in the form

which gives the result

ECOM I EAV.

u'e can now determine optimal values for the a, by minimization of EGEN. In
"der to find a non-trivial minimum (i.e, a solution other than at = 0 for dl i)

(9.88) nre need to constrain the ai. This is most naturally done by requiring

Typically, some useful reduction in error is generally obtained, and the method I
L

has the &vantage of being trivial to implement, There is a significant reduction = 1. (9.SS)
in processing speed far new data, but in many appZications this will be i r ~ l e v a ~ ' 2=1

The reduction in error can be viewed as arising from reduced vazjance
to the averaging over many solutions. This suggests tha t the members of 1' '" . for the form of this form of constraint d l 1 be discussed &~rtly.
committee should not individually be chosen to have optimal trade-off betnren a Lagrange multiplier (Appendix C) to enforce this constraint, we sw
bias and variance, hut should have relatively smaller bias, since the extra rhat the minimum of (8.94) occurs when

can be removed by averaging.
The simple committee discussed so far involves averaging the predi~ti~fl ' L

the individual networks. However, we might expect that some members 0 f the

committee will typically make better predictions than other members. We would
therefore expect to be A l e to reduce the e m r still further if we give &re"@'
weight to some committee members than to others. Thus, we consider rt gener-

2Cajcij+x = O
3=1

has the solution

I 9.7: Mixtures of experts 369 368 9: Learning and GenemGzabion

relative to the committee prediction itself. As a result of the minus
front of the second term on the right-hand side of (9.102) we see that, 1"

lqTe call increase the spread of predictions of the committee members without
jncreasing the errors of the individual members themselves, then the committee
,rror wiIl decrease. Furthermore, since this term is strictly negative, we can use
1?,80), (9.82) ~ n d (9.102), together with a, = 1 JL, to give

We can find the value of X by substituting (9.97) into the constraint equ,
(9.95), which gives the solution for She a, in the form

in keeping with (9.88) and (9.101).
One problem with the constraint (9.95) is that it does not prevent the weight-

ing coefficients in the committee from adopting large negative and positive values
hence giving extreme predictions from the committee even when each mem-

ber of the committee might he making sensible predictions. We might therefore
, ~ e k to constrain the coefficients further by insisting that, for each value of x, we
have I l n l i n (~) I yCEN(x) 5 ~ m a x (~) - This condition can be satisfied in general I

by requiring that a, > 0 and C, cr, = 1 (Exercise 9.12). The minimization of the
committee crror subject to these two constraints is now a more difficult problem, l
and can be tackled using techniques of linear programming (Press e t a!,, 1992).

The usefulness of committee averaging is not limited to the sum-ofsquares
error, but applies to any error function which is convex (Exercise 9.13). Sec-
tion 10.7 shows how the concept of a committee arises naturally in a Bayesian
framework.

Substituting (9.98) into (9.94) we find that the value of the error at the minin
is given by

In summary, to set up this generdized committee, we train L network mot
and then compute the correlation matrix C using a, finitesample approxirns
to (9.91) given by

9.7 Mixtures of experts I
where tn is the target value corresponding to input vector xn. We then find C - I ,

evaluate the ai using (9.98), and then use (9.89) to make new predictions.
Since the generdized committee (9.89) is a special case of the simple aver

committee (9.83) we have the inequality

Consider the problem of learning a mapping in which the form of the mapping is
different for different regions of the input space. Although a single homogeneous
n~twork could be applied to this problem, we might expect that the t a ~ k would
h~ m d e easier if we assigned different 'expert' networks to tackle each of the
{iifferent regions, and then used an extra 'gating' network, which also sees the

vector, to decide which of the experts should be used to determine the
"'ltput.

If the problem has an obvious decomposition of this form, then it may be
!iQssihle to design the network architecture by hand. However, a more powerful
and more general approach would be to discover a suitable decomposition as
Ytt of the Iearning process. This is achieved by the m i x t w ~ e - o f - e q e h model

et al., 19911, whose architecture is shown in Figure 9.14. All of the
nxPert nefmorks, as well as the gating network, are trained together. The goal
r"F the training procedure is to have the gating network learn an appropriate
'''.composition of the input space into different regions, with one of the expert

I
""~vorks responsible for generating the outputs for input vectors falling within
"Wh region.

The key is in thc definition of the error function, which has a similar form
that discussed in Section 6.4 in the context of the problem of modelling con-

'age

The generalization error of a committee can be decomposed into m e sun
two terms (Exercise 9.11) ta give (Krogh and Vedelsby, 1995)

which is somewhat a~alogous to the bias-variance decomposition discussed
Section 9.1. The first term depends onIy on the errors of individuaI networksq
while the second term depends on the spread of predictions of the committ@

9: Learning and Generalization

output

network network network Q T 9 J
Figure 9.14. Architecture of the mixtwe-of-experts modular network. The gat-
ing network acts as a switch and, for any given input vector, decides which of
the expert networks will be used t o determine the output.

ditional distributions, and it will be assumed that the reader is dready famil
with this material. T h e error function is given by the negative logarithm of I
likelihood with respect to a probability distribution given by a mixture of
Gaussians of the form

where the &(tlx) are Gaussian functions given by

iar 1

4l.3

These Gaussian functions have means p, (x) which are functions of the inr
vector x, and are taken to have unit covariance matrices. There is one expest
network for each Gaussian, and the output of the ith expert network is a w-c~O'

representing the corresponding mean p,(x) where x is the input vertor. The
mixing coefficients at (x) are determined by the outputs yi sf the gating n e w r k
through a softmax activation function

Thus, the gating network has one output for each of the expert; networks,
indicated in Figure 9.34. This model differs from tha t discussed in Section 6.4 in

9.8: Model order selection 371

wo minor respects. First, the variance parameters of the Gaussians here are set
to unity, whereas they were taken to be general functions of the input vector x
in Section 6.4, although is it clearIy straightforward to incorporate more generd
~ ~ ~ l s i a n functions into the present model. Second, different networks are used
to model the pCL,(x) and cri(x) here, whereas a single network was considered in
section 6.4-

The mixture-of-experts network is trained by minimizing the error function
(9.104) simultaneously with respect t o the weights in all of the expert networks

in the gating network. When the trained network is used to make predictions
;For new inputs, the input vector is presented to the gating network and the largest
output is used to select one of the expert networks. The input vector is then
pesented to this expert network whose output pi (x) represents the prediction
of the complete system for this input. This corresponds to the selection of the
most probable branch of the conditional distribution on the assumption of weakly
n~-erlapping Gaussians, as discussed on page 220.

It was also shown in Section 6.4 that the use of an error function based on a
mixture of Gaussims Ieads to an automatic soft clustering of the target vectors
into groups associated with the Gaussian components. In the context of the
mixtureof-experts atcbitecture it therefore leads to an automatic decomposition
of the problem into distinct sub-tasks, each of which is effectively assigned to
one of the network modules.

Jacobs et al. (1991) demonstrate the performance of this algorithm on a
w w ~ l recognition probIem and show that it discovers a sensibb decomposition
of the mapping. Jordan and Jacobs (1994) extend the mixt;ur+of-experts model
~ I V considering a hierarchical system in which each expert network c m itself
consist of a mixtureof-experts mode1 compIete with its own gating network.
This can be repeated at any number of levels, leading to a tree structure. The
hierarchical architecture then allows simple linear networks to be used for the
experts at the leaves of the tree, while still allowing the overall system to have
flexible modelling cap~bilities. Jordan m d Jacobs (1994) have shown that the
EM algorithm (Section 2.6.2) can be extended to provide an effective training
mechanism for such networks.

9-8 Model order selection
In this book, we have focused on the minimization of an error function as the

technique for determining d u e s for the free parameters (the weights and
hi-) in a neural network. Such nn approach, however, is unable to determine
"h optimum number of such parameters (or equivalently the optimum size of
n e h r k) , because an increase in the number of parameters in a network will

I FPnerally aIlow a smaller value of the ermr to be found. Our goal is to find a
" h r k which gives good predictions for new data, and this is typicdly not

network whit& giver the smallest error with respect to the training data. In
tradcoff between bias and variance discussed in Section 9.1, we saw that

is an optimal degree of complexity in a network model for a given data
"h Networks with too Iittle flexibility will smooth out some of the underlying

372 9: Learning land Genemlization I 9.8: Model order selection 373

structure in the data (corresponding to high bias), while networks which are I,,
complex will over-fit the data (corresponding to high variance). In either c ~ ~ .
the performance of the network on new data will be poor.

Similar considerations apply to the problem of determining the values
continuous parameters such as the regularization coefficient u in a regularized
error function of the form

Too large a value for v leads to a network with large bias (unless the regnl~,
tion function happens to be completely consistent with the underlying strut
of the data) while too small a, value aIIows the network solution to have
high a variance. This was illustrated in Figures 9.4, 9.5 and 9.6. Again, di
minimization of cannot be used to find the optimum value for Y , since
gives v = 0 and an over-fitted solution,

We shall assume that the goal is to find a network having the best gent
ization performance. This is usually the most difficult part of any pattern re
nition problem, and is the one which typically limits the practicd applicatic
neural networks. In some cases, however, other criteria might also be import
For instance, speed of operation on a serial computer wiIl be governed by
size of the network, and we might be prepwed to trade some generalization
pabiIity in return for a smaller network. We shall not discuss these possihil
further, but instead focus exclusiveIy on the problem of generdisation.

r of
,ant.
the

I ca-
ities

9.8.1 Cross-validation

Since our goal is to find the network having the best performanc ,w d
the simplest approwh to the comparison of different networks is to evaluate
error function using data which is independent of that used for training. Various
networks are trained by minimization of an appropriate error function defined
with respect to a training data set. The performance of the networks is t h ~ n
compared by evaluating the error function using an independent validation
and the network having the smallest error with respect to the validation
is selected. This approach is called the hold out method Since this proce(
can itself lead to some over-fitting to the validation set, the perf1 e of
seIected network should be confirmed by measuring its performa a t
independent set of data called a test set.

The appIication of this technique is iIlustrated in Figure 9.15 using the sNlr'-

radial basis function example as used in plotting Figures 9.4, 9.5 and 9.6. He@
we have plotted the error on the training set, as well as the generalization enu*
measured with respect to an independent validation set, as functions of
logarithm of the regularization coefficient v. As expected, the training error
decreases steadily with decreasing v while the validation error shows a minimUn"
at a value of in u 1 3.7, and thereafter increases with decreasing u. Figure 9.5
was platted using this optimum value of u, and confirms the expectation that the
mapping with the best generalization is one which is closest to the undrrb'id

ata,
the

set.
ser

luw
the

hird

I I 1 I

(X lo3)

validation

1

/ - #
training - , 0

-

I I I 1

Figure 9.15. Plat of training and validation set errors versus the logarithm
of the regularization coefficient, for the example used to plot Figure 9.4. A
validation set of 1000 points was used to obtain a good estimate of the gen-
eralization error. The validation error shows a minimum at lnv 12: 3.7, which
was the value used to plot Figure 9.5.

function from which the data was generated (shown by the dashed curve in
Figure 9.5).

This example also provides a convenient opportunity to demonstrate the de-
pendence of bias and variance on the effective network complexity. The values of
the average bias and variance were estimated using knowledge of the true under-
lying generator of the data, given by the sine function h(x) in (9.34). For each
mlue of In v, 100 data e t s , each containing 30 points, were generated by sam-
pling h (s) and adding noise. A radial basis function network (with 30 Gaussian
basis functions, one centred on each data point as before) was then trained on
each of the data sets to give a mapping y, (x) where i = 1, . . . ,100. The average
r B ~ ~ n s e of the networks is given by

' Estimates of the integrated and variance are then given by

374 9: Learning and Gencmlizafion S.8: M d e l d e r selection 375

lnv

Figure 9.16. PIots of -timated (biasj2 and variance as functions of the log-
arithm of the regularization mefficient v fox the radial basis function model
used to plot Figure 9-15. Also shown is the sum of (bias)' and variance which
shows a minimum at a value close to the minimum of the validation error in
Figure 9.15.

variance = E{yi(xn) - g (~ ") } ~ .
Tt

100 ,
* = I

Figure 9.16 shows the (biasI2 and the variance of the radial basis function model
as functions of In Y. The minimum of the sum of (hlasI2 and variance occurs at
a value of lnv close to that at which the minimum validation error occurs in
Figure 9.15 as expected.

In practice, the availability of labelled data may be severely limited and
we may not be able to afford the Iumry of keeping aside part of the data set
for model comparison purposes. In such cmes we can adopt the procedure of
cross-whdation (Stone, 1974, 1978; Wahba and Wold, 1975). Here we divide t hp
training set at random into S distinct segments. We then train a network using
data from S - 1 of the segments and test its performance, by evaluating the error
function, using the remaining segment. This process is repeated for each of thp
5' possible choices for the segment which is omitted from the training proces*
and the test errors averaged over dl S results. The partitioning of the data set is
illustrated in Figure 9.17. Such a procedure allows us to use a high
the available data (a fraction 1 - 1/S) to train the networks, while also making
use of all data points in evaluating the cross-validation error. The d i s a d w t g e
of such an approach is that it ~ a u i r e s the training process to be repeated S times
which in some circumstances ad to a requireme rge amounts of
processing time. A typicd chc might be S = 10, 1 if data is wry

could 1e.
)ice for S

bnt for la
dthougk

[run 2 - * - -

Figure 9.17. Schematic illustration of the partitioning of a data set into S seg-
ments for use in cros+validation. A network is trained S times, each time using
a version of the data set in which one of the segments (shown shaded) is omit-
ted. Each trained network is then tested on the data from the segment which
was omitted during training, and the results averaged over all S networks.

scarce we could go to the extreme limit of S = N for a. data set with N data
points, which involves N separate training runs per network, each using { N - 1)
data points. This limit is known as the leave-one-out method.

9.8.2 Stacked genemlization
In Section 9.6 we discugsed the use of committees as a way of combining the pre-
dictions of several trdned networks, and we saw how this could lead to reduced
errors. The committee techniques are based only on the training data, however,
and so do not directly address the issue of model complexity optimization. Con-
versely, techniques such as cross-validation represent a winner-takes-all strategy I

in which only the best network is retained. The method of stacked genemlizatioa
(Wol~ert, 1992) provides a way of combining trained networks together which
uses partitioning of the data set (in a similar way to crossrvalidation) to find an
Overall system with usually improved generalization performance.

Consider the modular network system shown in Figure 9.18. Here we see a set
of M 'level-0' networks Afp to flM whose outputs are combined using a 'level-1'
RPtWork N1. The idea is to train the level-0 networks first and then examine their
behaviour when generalizing. This provides a new training set which is used to
train the level-1 network.

The specific procedure for setting up the stacked generalization system is as
follows. Let the complete set of available data be denoted by O. We first leave

a single data point from D as a validation point, and treat the remainder
D as a training set. All level-0 networks are then trained using the training

I

Partition and their outputs are measured using the validation data point. This
generates a single pattern for a new data set which will be used to train the

1 1
' ~ 1 - 1 network H< The inputs of this pattern consist of the outputs of all the ' level-O networks, and the target value is the corresponding target value from the

i Original full data set. This process is now repeated with a different choice for

376 9: Learning and Genemlization 9.9: Vapnik-Chervonenkis dimension 377 I

Figure 9.18. Stacked generalization combines the outputs of several 'level-0'
networks fl, . . . using a 'level-1' network N1 to give the final output.
The level-1 network corrects for the biases exhibited by the level-0 networks.

the data point which is kept mide. After cycling through the full data set of
N points we have N patterns in the new data set, which is now used to train
NL. Finally, all of the level-0 networks are r+trained using the hll data set D.
Predictions on new data can now be made by presenting new input vectors to the
level-0 networks and taking their outputs as the inputs to the level-I network,
whose output constitutes the predicted output. Wolpert (1992) gives arguments
to suggest that the level-0 networks should contain a wide variety of different
models, while the level-1 network should provide a relatively smooth function
and hence should have s relatively simple structure.

There are many possible miartions of stacked generalization. For instance, if
the data set is large, or if the level-0 networks are computationally intensive to

model which is too complex will have a large vaIue for the criterion because the
complexity term is large. The minimum value for the criterion then represents
;, tradeoff between these two competing effects. For a sum-of-squares error a
wical form for such a criterion would be

where E is the value of the sum-of-squares error with respect to the training set
after training is compIete, N is the total, number of data points in the training I

set, W is the number of adjustable parmeters (weights) in the model, and a2 is
I

the variance of the noise on the data (which must be estimated).
Moody (1992) has generalized such criteria to deaI with non-Iinear models

and to allow for the presence of a regularization term. By performing a Iocal
linearization of the network mapping function he obtains a criterion, cdled the

prediction e m r , of the form I

where y is the effectawe number of parameters in the network, which for linear
networks is given by

train, we might have aside a larger fraction of D than just a single data point where A, are the eigenvalues of the Hessian matrix of the unregularized error
when training the level-0 networks. Stwhng can also be applied in a slightly evaluated at the error minimum, and Y is the regularization coefficient. The I
modified form to improve the generalization of a single network, and it can also
be extendd to more than two levels of networks (Wolpert, 1992).

form of y in (9.1 14) should be compared to the expression for the minimum of
the regularized error given by (9.24). The reason that y is the effective number I

9.8.3 Complexitp criteria

In conventional statistics, various criteria have been developed, &en in the con-
tact of linear models, for assessing the generalbation performance of trained
models without the use of validation data. These include the C,-statistic (Male
lows, 19731, the final prediction error (Akaike, 1969), the Akaike information
criterion (Akaike, 1973) and the predicted squared error (Barren, 1984). Such
criteria take the general form of a prediction error (PE) which consists of the
sum of two terms

PE = training error + complexity term (9.111)

where the complexity term represents a penalty which grows as the number
free parameters in the model grows. Thus, if the model is too simple it wifl
a large wlue for the criterion because the residual training error is large, w l

of Parameters is that eigenvalues which satisfgr A i >> u contribute 1 to the sum
in /9.114), while eigenvalues which satisfy X i << v contribute 0 t o the sum. We
"41 not discuss the orMn of this criterion here, since we give a more general
ascussion From the Bayesian perspective in Chapter 10.

9.9 Vapnik-Chervonenkis dimension

useful insight into generalization is obtained by considering the worst-
performance for a particular trained network. The theory of this has been

developed mainly in the context of nehvorks with binary inputs (Baum and
Haussier, 1989; Abu-Mostafa, 1989 Hertz et al., 1991). For simplicity we consider
"*arks having a single binary output.

i Suppose that the input vectors are generated from some probability distri-
I hution P(x) and that the target data is given by a (noiseless) function h(x). For
I given model y(x), we can define the average generalization ability g(y) to

3 78 9: Learning a d Generalizetion

I I

I 9.9: Vapnik-Chervonenkk dimension 379 I

be the probability that y(x) = h{x) for the given distribution P(x). This says
that, if we pick an input vector x at random from the distribution PIX), then
the probability that the two functions will agree is given by g(y).

In practice, we cannot calculake g(g) directly because we do not know the
4

true probability distribution P(x) , nor do we know the function h(x) . What we
log* A

typically do instead is to train a. network using a set of N training patterns to
give a network function y(x; w), and then measure the fraction of the training
set which the network correctly classifies, which we shall denote by g g ~ (3). In
the limit of an infinite data set N 4 m we would expect to find gw(y) -+ g (~) ,
by definition of g(y). However, for a finite-size training set the network func-
tion y(x; w) will be partly tuned to the particular training set (the problem of
over-fitting) and so we would expect grv(y) > g(y). For instance, the network

4, N

might learn the training set perfectly, so that g ~ (y) = I, and yet the predictive Figure 9.N. General form of the growth function A(N) shown as a pIot of
performance on new data dram from the same distribution might be poor so Log, A versus N . The function initially grows like 2" up to some critical num-
that g(y) << I. We say that qN(y } is a biased estimate of g (~) , since it is system- of Patterns, given by N = dvc, at which point the growth slows to become

atically different from the true value. It gives an over-optimistic estimate of the a power law. The value dvc is called the Vapnik-Chervonenkis dimension.

generalization perfo~mmce of the network.
If we now consider the set of dl functions (y) which the network can im-

plement, we can study the maximum discrepancy which can occur between the
generalization performance a t i m a t d from the sample of size N and the true
generalization g(y) , given by

as this gives a worst-case measure of generahation performance. Given a smau
quantity 6 , a. theorem due to Vapnik and Chervonenkis (1971) gives an upper
bound on the probability of the difference in (9.115) exceeding E, given by

(dichotomies) which can be implemented by the network on a set, of N input 1
vectors xn, where n = 1,. . . , N. The number of potential different patterns is
2", and if our network could represent all of these then A (N) = 2N. In this I

case, it is clear that we cannot make the right-hand side of (9.116) smaller by
increasing N. In practice, our network will have a finite capacity, and so for
large enough N it will not be capable of representing a11 possible 2* patterns,
The general form of the function A(N) is shown in Figure 9.19. For small N it
sows like 2N, which says that the network can store exactly dl of the training
Patterns. Beyond some critical number of patterns, however, the growth starts to
"ow down. This criticaI number of patterns, denoted dvc, is called the Vapnik-
aermonenkis dimension, or VC dimension (Blurrier et aL, 1989; Abu-Mostah,
1989) and is a property of the particular network. In f ~ t , it can be shown
(cover, 1965; Vapnik and Chervo~enkis, 1871) that the function A(N) is either

equal to !lN for all N , or is bounded above by the relation

where A(N) is known as the growth function and will be discussed shortIy.
Since this result applies to any of the functions y which can be implementd

by the network, we can apply it to the particular function y (x; w) obtained from
training the network on the given data set. Then (9.116) gives an upper bound
on the discrepancy between our estimate gN(y) of the predieti r and 'Ir
true generalization performance g(y). Our aim is to make this t s small
possible (i.e. make the righthand side of (9.116) as small as I), and "
can seek to do this by increasing the number N of training patterns. SUPPP"
for instance that we obtained perfect results (zero residual error) on the m i n m g
data, so that g N (y) = 1. Then, for a given value of r i f we could reduce the rigb"
hand side of (9.116) to a small value 6 = 0.05, say, we would be 95% certain that

. .

on err0
round a
mssible

9 (~) > 1 -
The function A(N) in (9.116) gives the number d distinct binary !31nftionr

this now has only polynomial growth, it is dear that we can make the
ri~l~ht-hand side of (8.116) arbitrarily small by making N sufficiently large. This
" a" intuitively reasonable result. If there are so few pstterns that the network
*ahbore them all perfectly, we cannot expect it to generalize. Only when the
?'-k has ~uecemfully leamed a number of patterns which is much larger than
:'s Intrinsic storage capacity for random patterns (as measured by dvc) will the

1 r t - n f W ~ r k have captured some of the structure in the data, and only then can
vrJ expect it to generalize to new data. Consider a set of data points which are

59erated at random. The only way to learn all of the patterns in such a data
-?t . for the network to store the training patterns individually, which requires

"tw~ork with dvC > N . Fm such data set. we cannot expect to find a network

which generalizes.
The above results give us some idea of how many patterns we need to USE

train a network in order to get good generalization performance in terms of the
VC dimension of the network. Baum and Haussler (1989) considered
feed-forward networks of threshald units. For a network having a total 0 1
units, and a total of W weights (including biases), they gave an upper bounc
the VC dimension in the form

where e is the base of natural logarithms. They used this to show that, if st
number N of patterns, given by

can be learned by the network such that a fraction 1 - ~ 1 2 are correctly classif
where Q < E 5 1/8, then there is a high probability that the network will corsel
classify a fraction 1 - E of future examples drawn from the same distributio~

They also considered the case of networks having two layers of thresf
units, and were able to h d a lower bound on the VC dimension in the form

where IM/2] denotes the largest integer which is Jess than or equal to M/2,
and d is the number of inputs. For large two-layer networks we typically haw
Md -- W (since most of the weights are in the first layer). From this they d e r i d
the approximate rule of thumb that to classify correctly a fraction 1 - 6 of new
examples requires a number of patterns at least equal to

Thus, for E = 0.1 this suggests that we need around ten times as many train
patterns as there are weights jn the network.

The VC dimension gives worst-case bounds on generalization. In particu
it only considers which functions can in principle be implemented by the
work. Thus, it does not depend, for instance, on the presence or absence
regularizing function, since such a function does not cempIeteIy rule out an!'
of weight values. We might hope: that in practice we would achieve good P
alization with fewer training patterns than the number predicted using the
dimension.

Exercises

9.1 (**) Consider a quadratic error function of the form

J
Exercises

where w* represents the minimum, and the Hessian matrix H is positive
definite and constant. Suppose the initial weight vector is w(O) is chosen
to be at the origin, and is updated using simple gradient descent

where r denotes the step number, and 7 is the learning rate (which is
assumed to be small). Show that, after r steps, the components d the
weight vector paraIlel to the eigenvectors of H can be written

where wj = wTuj, and Uj and Xj are the eigenvectors and eigenvalues
respectively of H so that

Huj = Aiuj. (9.125)

Show that, as r + cx, this gives w(') + w* as expected, provided 11 -
qXjl < 1. Now suppose that training is halted after a finite number T

of steps. Show that the components of the weight vector parallel to the
eigenvectors of the Hessian satis&

w 1 < 1w;l when 5 < (q-r)-'. (9.127) I

Compare this result to the corresponding result (9.24) obtained using reg-
ularization with simple weight decay, and hence show that (~r) -"s anal-
ogous to the regularization parameter v. The above results also show that
the effective number of parameters in the network, as defined by (9.1141,
grows as the training progresses.

'*2 (1) Consider a linear network model with outputs

and a sum-of-squares error function of the form

1 where n labels the patterns from the training set, and t; denotes the target
values. Suppose that random noise, with components E*, is added to the i

9: Learning and Generalization

input vectors. By averaging over the noise and assuming { E *) = 0 and
{%t j) = 6,v show that this is equivalent to the use of a weight-decay
regularization term, with the biases wko omitted, and noisefree data.

9.3 (+ *) Chauvin (1989) considered a reguIariser given by the sum of the square
of the activations of a11 the hidden units in the network. By using the. chain
rule of calculus, derive a back-propagation algorithm for computing the
derivativar of such an error function with respect to the weights and biasef:
in the network.

9.4 (**) Consider the cross-entropy error function, in the Iimit of an infinit0
data set, given by

(9.130)
Following a similar argument to that given in Section 9.3 for the case of a
sum-of-squares error function, show that the addition of noise to the inputs
during training is equivalent to the use of a regularizer of the form

In Section 6.7.2 it was shown that, at the minimum of the unregtllarized
error function, the network output approximates the conditional average
of the target data. Use this result to show that the second-derivative term
in /9.131), as well. as the second term in square brackets, vanishes.

9.5 (* A) &peat Exercise 9.4 for the case of the log-likelihood error function of
the form

E = - // ta yk(x)p(t* lx)p(x) dx dtr (9.1321
k

where the network outputs are given by the softmax function (Section 6.9'
so that xk pk(x) = 1. Again, derive the form of the regularizer, and sho-'.
using the resuIt of Exercise 6.16, that the second-derivative term can bp
neglected when finding the minimum of the regularized error. Hence find
the final form of the regularization function.

9.6 (*) Consider a regularized error function of the form

and suppose that the unregularized error E is minimized by a weight vecfl"
w*. Show that, if the regularization eoeficient v is srndl, the weight vector
G which minimizes the regularized error can be written in the Form

Exercises 383

where the gradient VSt and the Hessian H = VVE are evaluated at w =
w*.

9.7 (*) Consider a multi-layer perceptron network with W weights and a tsain-
ing set with N patterns. Find approximate expressions for the number of
computational steps required to evaluate the saliency of the weights by
(i) temporary deletion of each weight in turn followed by reevaluation of
the error function; {ii) use of the 'optimal brain damage' expression Hiiw?
for the saliency of the weights in which the diagonal approximation for
the Hessian matrix is used (Section 4.10.1); (iii) use of the 'optima1 brain
surgeon' expression (9.72) together with the sequential update procedure
for evaluating the inverse of the Hessian (Section 4.10.3). Evaluate these
expressions for the case W = 300 and N = 5000.

9.8 (+I Use Lagrmge multipliers (Appendix C) to verify that minimization of
(9.69), subject to the constraint (9.70), leads to the results (9.71) and
(9.72) for the change to the weight vector and the increase in error function
respectively, for the 'optimal brain surgeon' technique.

9.9 (* *) Consider the modified weight-decay term in (9.74) for the case of two
weights wr and wa which receive identical inputs and which feed the same
unit (so that the weights perform redundant tasks). Change variables to
s = (wl t w2)/G and a = w Z / w I . Show analytically that, for fixed s, the
value a = 1 is a stationary point of the weight-decay term. Plot graphs of
the value of the weight-decay term as a function of cr for various values of
s. Hence show that, for s = 1 the regularization term has a single minimum
as a function of a at a E 0.5, while for s = 2 there J e hvo minima at
a = 0 and a -t m. We therefore see that, for weight values larger than
the characteristic scale 6, the modified weighbdecay term in (9.74) has the
desired effect of encouraging a few larger weights in preference to several
srnaIIer ones,

9,10 (*) Derive a set of back-propagation equations for evaluation of the deriva,
tives in (9.78), for a network of general feed-forward topology having for-
Ward propagat ion equations given by (S ,761.
(*) Consider a committee defined by (9.89) in which the coefficients satisfy
the constraint (9.95). Verify the decomposition of the committee general-
ization error given by (9.102).
(*) Consider a committee network of the form

where yi[x) denote the functions corresponding to the individual networks
in the committee. Suppose that, in order to ensure that the committee
Predictions remain within sensible limits, we require

384 9: Learning and Genemlkotion

ymin(x) and y,,(x) are the minimum and maximum outputs of an,.
members of the committee for that value of x. Show that, if the requirement
(9.136) is to be satisfied for any set of network fumtions { y i (x)) , then the
necessary and sufficient conditions on the ai are given by

9.13 (*) Use Jensen's inequality (Exercise 2.13) to show that any error function
E(y) which is a convex function of the network output y will satisfy the
following inequality for committees of networks

where ECoM and EAV are defined in Section 9.6.
9.14 (*) Use the result (9.119) to estimate typical numbers of patterns needed

to get good generalization (better than, say, 95% correct on new data) in
networks having d = 10 inputs and M = 30 threshold hidden units.

BAYESIAN TECHNIQUES

In this chapter we consider the application of Bayesian inference techniques to
neural networks. A simple example of the Bayesian approwh was described in
Section 2.3 where we considered the problem of inferring the mean of a one-
dimensional Gaussian distribution from a set of training data. In the context of
neural networks, Bayesian methods offer a number of important features includ-
ing the following:

1. The conventional training method of error minimization arises from a par-
ticular approximation to the Bayesian approach. I

2. Regularization can be given a natural interpretation in the Bayesian frame-
work.

3. For regression problems, error bars, or confidence intervals, can be assigned
to the predictions generated by a network.

4. Bayesian methods allow the d u e s of ~egularieation coefficients to be se-
lected ming only the training data, without the need to use geparate train-
ing and validation data. Furthermore, the Bayesian approach allows rela-
tively large numbers of regularization coefficients to be used, which would

I

be computationally prohibitive if their d u e s had to be optimized using
cross-validation. I

5 . Similarly, the Bayesian approach allows different models (a.g. networks
with different numbets of hidden units, or different netmork types such as
multi-layer perceptrons and radid basis function networks) to be compared
using only the training data. More generally, it provides an objective and
principled framework for dealing with the issues of model complexity which
avoids many of the problems which arise when using maximum likelihood.

6. Bayesian methods dIow choices t o be made about where in input space new
data should be collected in order that it be the most informative (MacKay,
1992~). Such use of the model itself to guide the collection of data during
training is known as active learning.

7. The relative importance of different inputs can be determined using the

1 Bayesian technique of automatic relevance determination (MacKay, 1994a,
19955; Neal, 1994), based on the use of a separate regularization coeffi-
cient for each input. If a particular coefficient acquires a large value, this I
indicates that the corresponding input is irrelevant and can be eliminated.

386 10: Bayesian Techniques 10.1: Bayesian learning of network weights 387

Note that, in order to focus on the more basic issues, topics 6 and 7 will not b,
discussed further.

Ln earlier chapters network training was based on maximum likelihood which
is equivalent to minimization of an error function. We emphasized that, within
this framework, a more complex model is typically better able to fit the training
data, but that this does not necessarily mean that it will give a smaIler error
with respect to new data. Models which are either too simple or too compIeX
will give reIativeIy poor approximations t o the underlying process from which
the data is generated. This was discussed in terms of the bias-variance trade-
off in Section 9.1. It is therefore not clear, from the training error alone, which
made1 will give the best generalization, and so we resorted to partitioning of the
data set to select an appropriate level of cornplexity~ through such techniques
as crossvalidation (Section 9.8.1). The Bayesian approach, however, treats the
issue of model complexity very differently, and in particular it allows dl of the
available data to be used for 'training'.

To gain some insight into how this comes about, consider a hypothetical ex-
ample of three different models, 'HI, 7 i 2 and ?t3, which we suppose have stedily
increasing flexibility, corresponding for instance to a steadily increasing number
of hidden units. Thus, each model consists of a specification of the network archi-
tecture (number of units, type of activation function, etc.) and is governed by a
number of adaptive parameters. By varying the values of these parameters, each
model can represent a range of input-output functions. The more complex mod-
els, with a greater number of hidden units for instance, can represent a peater
range of such functions. Suppose we have a set of input vectors (x', . . . , x"). and
a, corresponding set of target vectors D (tl,. . . , tN). We can then consider 1

posterior probability for each of the models, given the observed data set D. Frl
Bayes' theorem this probability can be written in the form

The quantity p (H i) represents a prior probability for model H i . If we have
particular reason to prefer one model over another, then we would assign e9
priors to all of the models. Since the denominator p(D) does not depend
the model, we see that different models can be compared by evaluating p(~lHil-
which is called the evidence for the model Hi 19Ba). This is illustratd
schernsticaliy in Figure 10.1, where we see that the evidence favours models which
are neither too simple nor too complex.

This indicates that the Bayesian approach could be used to select a particilir
model for which the evidence is largest. We might expect that the model nrirh
the greatest evidence is also the one which will have the best generalization per-
formance, and we shall discuss this issue in some detail in Section 10.6. H O W ~ V ~ ' :

as we s h d see in Section 10.7, the correct Bayesian approach is to make USE
ot

the complete set of models. Predicted outputs for new input vectors are obtainod

Figure 10.1. Schematic example of three modeIs, XI, W2 and R3, which have
successively greater complexity, showing the probability (known es the evi-
dence) of different data sets D given each model F&. We see that more com-
plex modeIs can describe a greater range of data sets. Note, however, that the
distributions are normalized. Thus, when a particular data set DO is observed,
the model Hz has a greater evidence than either the simpler model R1 or the
more complex model 3 3 .

by performing a weighted sum over the predictions of dl the models, where the
weighting coefficients depend on the evidence. More probable models therefore
contribute more strongly t o the predicted output. Since the evidence can be
evaluated using the training data, we see that Bayesian methods are able to deal
tvith the issue of model complexity, without the need to use cross-validation.

An impofiant concept in Bayesim inference is that of mrsrginalizatioa, which
hvolves integrating out unwanted variables. Suppose we are discussing a model
Nith two variables w and a. Then the most complete description of these variables
is in terms of the joint distribution p (u , o) . If we are interested only in the
distribution of w then we should integrate out r~ as foIlows:

rhus the predictive distribution for w is obtained by averaging the conditional
'fisttibution p(ur/a) with a weighting factor given by the distribution p(a) . We
'hall encounter several examples of marginalization later in this chapter.

'O.1 Bayesian learning of network weights

'Ike first problem we shall address is that of learning the weights in a neural
" h r k on the basis of a set of training data. In previous chapters we have
'"'d maimurn likelihood techniques (equivalent to the minimization of an error

388 10: Bayesian Technipes

function) which attempt to find a single set of values for the network weight!
By contrast, the Bayesian approach considers a probability distribution funct
over weight space, representing the relative degrees of belief in different val
for the weight vector. This function is initially set to some prior distributi
Once the data has been observed, it can be converted to a posterior d i~t r ibut i~
through the use of Bayes' theorem. The posterior distribution can then be use
to evaluate the predictions of the trained network for new values of the inpk
variables, as will be discussed in Section 10.2.

The use of Bayesian learning to infer parameter values from a set of train
data was introduced in Section 2.3 in the context of parametric density e
mation. There we gave a simple illustration which involved inferring the m8
of a Gaussian distribution. We shall see that the more complex problem of
ferring the weights in a neural network proceeds in an analogous manner.
simplicity of notation, we shall consider networks having a single output v
able y, although the extension to many output variables is straightforward. M
of the discussion in this chapter will concern function approximation proble
for the case of noise-free input data and noisy target data. The applicat
of Bayesian methods to classification problems wijl be discussed briefly in Sec-
tion 10.3. Bayesian inference for nois+free data has, been studied by Sibisi (1991),
and the problem of interpolating data with noise on both dependent and inde-
pendent variables has been discussed in the context of straight-line fitting '
Gull (1 988a).

ion
ues
on.

cut,

in-
For
art

10.1,l Dastribution of weights

We begin by considering the problem of training a network in which the ar
tecture (number of Iayers, number of hidden units, choice of activation functi
dc.) is given. In the conventional maximum likelihood appromh, a single 'b--
Set of weight d u e s is determined by minimization of a suitable error function
In the Bayesian framework, however, we consider a probability distribution over
weight values. In the absence of any data, this is described by a prior distribution
which we shall denote by p(w), and whose form we shall discuss shortly. Here
w (wl,. . . , w w) denotes the vector of adaptive weight (and bias) parametes
Let the target data from the training set be denoted by D - (tl, . . . , t N) . O I ~ C ~
we observe the data D we can write down an expression for the posteri0~ PO'
ability distribution for the weights, which we denote by p(wlD), using BavE
theorem

chi-
'ens

pstl

where the denominator is a normalization factor which can be written

10.1: Bayesian learning of network weights 389

which ensures that the left-hand side of (10.3) gives unity when integrated
,ver all weight space. As we ahdl see shortly, the quantity p(Dlw), which rep-
resents a model for the noise process on the target data, corresponds to the
likelihood function encountered in previous chapters.

Since the data set consists of input as we11 as target data, the input values
strictly be included in Bayes' theorem (10.3) which should therefore be

n+tten in the form

&ere X denotes the set of input vectors (xl,. . . , x N) . As we have already noted
in chapters, however, feed-forward networks trained by supervised lear-
ing do not in generd model the distribution p(x) of the input data. Thus X
always appears as a conditioning variable on the right-hand side of the proba-
bilities in (10.5). We shall therefore continue t o omit it from now on in order to
simplify the notation.

The picture of learning provided by the Bayesian formalism is as follows. We
start with some prior distribution over the weights given by p(w) . Since we gen-
erally have little idea at this stage of what the weight; values should be, the prior
might express some rather general properties such as smoothness of the net-
work function, but will otherwise leave the weight values fairly unconstrained.
The prior will therefore typically be a rather b r o d distribution, as indicated
schematicalIy in Figure 10.2. Once we have observed the data, this prior dis-
tribution can be converted to a posterior distribution using Bayes' theorem In
the form (10.3). This posterior distribution will be more compact, a~ indicated
in Figure 10.2, expressing the fact that we have learned something about the
extent to which different weight values are consistent with the observed data, In
order to evaluate the posterior distribution we need to provide expressions for
the prior distribution p(w) and for the likelihood function p(Dlw).

l0.1.2 Gaussian pear
4 first consider the prior probability distribution for the weights. This distri-
bution should refleet any prior knowledge we have about the form of network

we expect to find. In general, we can write this distribution as an ex-
ponential of the form

1
P(W) = - e x ~ (- a E w 1 (10.6)

zw (a)

shere Zw(a) is a normalization factor given by

10: Bayesian Techniques

Figure 10.2. Schematic plot of the prior distribution of weights p (w) and the
posterior distribution p(wlD) which arise in the Bayesian inference of network
parameters. The most probable weight vector w ~ p corresponds to the max-
imum of the posterior distribution. In practice the posterior distribution will
t y p i d y have a complex structure with many local maxima.

which ensures that j'p(wj dw = I. The role of the parameter a will be considered
shortly.

The discussion of bias and variance in Section 9.1 indicates that a smooth
network function will typically have better generdization than one which is over-
fitted to the training data (assuming that the underlying function which we wish
to approximate i s indeed smooth). This is one of the motivations for regulariza-
tion techniques designed to encourage smooth network mappings. Such mappings
can be achieved by favouring small values for the network weights, and this sug-
gests the following simple form for Ew

where W is the totd number of weights and biases in the network. This tor*
sponds Go the use of a simple weight-decay regularizer, as we shall see shod1?
and gives a prior distribution of the form

Thus, when llwll is large, Ew is large, snd p (w) is small, and so this choice
prior distribution says that we expect the weight values to be small rather ths"
large,

Since the parameter a itself controls the distribution of other pamete'
(weights and bimes), it is called a hyperparameter. To begin with, we

@

10.1: Bagesian learning of network weights

Figure 10.3. A simple data set consisting of two points horn class C1 (c i r c l ~)
and two points from cIass C2 (crosses), used to illustrate Bayesian learning in
neural networks. The numbers show the order in which the data points are
presented to the network.

sume that the value of a is known. We shall discuss how to treat a as part of
the learning process in Sections 10.4 and 10.5. A major advantage of the prior
in (10.9) is that it is a Gaussian function, which simplifies some of the andy-
sis. Thus, the evaluation of the normalization coefficient &(a) using (10.7) is
st mightforward, and gives

Many other choices for the prior p(w) can also be considered. Williams (1995)
discusses a Laplacim prior of the form (10.6) with Ew = z, lwi/. Several
0 t h possibilities, including entropy-based priors, are discussed in Buntine md
't7@i~md (1991). The appropriate selection of priors for very large networks is
discussed by Neal (1 994).

10-1.3 Example of Bayesian learning

illustrate the concept of Bayesian learning in neural networks by considering
a simple example of a single-layer network applied to a clasificatiort problem.
'he input vectors are two-dimensional x = (XI, xz), and the data set consists of

data points, two from each of two classes, as illustrated in Figure 10.3. The
"twork model has a single layer of weights, with a single logistic output given

10: Baymian Techniques

Figure 10.4. Plot of a Gaussian prior shown as a surface over a two-dimensional
weight space (wl , w2).

Note that the weight vector w = {w l , u2) is twc-dimensional, and that there is nu
bias parameter. We shall choose a Gaussian prior distribution for the weighk..
given by (10.9), in which the parameter a is given a fixed value of a = 1. A
surface plot of this prior, as a function of the weight parameters wl and wz, is
shown in Figure 10.4.

horn Section 6.7.1, we know that the output y (x; w} of the network in (10.11 1

can he interpreted as the probability of membership of class Cl, given the input
vector X. The probability of membership of class C2 is then (1 - y). If we assump
that the target values are independent and identically distributed, the likelihood
hnction p(Dlw} in Bayes' theorem (10.3) will be given by a product of facton4
one for each data point, where each factor is either y or (1 - y) according f'l

whether the data point is from class C1 or C2.
First, suppose we just consider the data points labelled (i) and (ii) in Fis:

ure 10.3, Then we can calculate the posterior distribution of weights using BaY6
theorem (10.3). The resulting distribution is plotted in Figure 10.5. W e can up
derstand the form of this distribution by first noting that the network functi0'
in (10.11) represents a sigmoidal ridge in which the value y = 0.5 (the decisicfi
boundary for minimum probability of rnisclassifieation) is given by a line
through the origin in Figure 10.3. The f x o weight parameters w l and I.UZ contry;
the orientation of this line and the slope of the sigmoid. Patterns (i) and (j l '

cause weight vectors from approximately half of weight space to have extremA!

I 10.1: Bayesian learning of network weights 393

Figure 10.5. Plot of the posterior distribution obtained horn the prior in Fig-
ure 10.4, using patterns (i) and (i i) from Figure 10.3. (Note that there is a
change of vertical scale compared to Figure 10.4.)

Figure 10.6. Plot of the posterior distribution obtained after using all four
Patterns from Figure 10.3. (Note that for convenience there is again a change
of vertical scale compared to previous figures.)

probabilities as they represent 'decision surfaces' with the wrong orient*
'Ion The remaining weight vectors are largely unaffected and so the shape of the
Ft"rior distribution in the corresponding region of weight space then reflects
hat of the prior distribution in Figure 10.4.

If we now include all four patterns from Figure 10.3, we obtain the posterior
ilfstrihution shown in Figure 10.6. As a result of the way patterns (iii) and
ii*) W-F labelled, there is now no decision boundary which classifies d l four

394 10: Bayesian Techniques 10.1: Baqesian learning of network weights 395

points perfectly. The most probable solution is one in which the sigmoid has a to give
particular orientation and slope, and solutions which differ significantly from this
have much lower probability. The posterior distribution of weights is therefore
relatively narrow.

10.1.4 Gaussian noise model
For the n~oment we shall treat P as a fixed, known constant. We shall return

we turn now to more general architectures of feed-forward and to a to the problem of determining this parameter as part of the learning process in
consideration of 'regression' problems. Later we shdI return to a discussion of Sections 10.4 and 10.5.
Bayesian methods for classification.

In general, we can write the likelihood function in Bayes' theorem (10.3) in 10.1.5 Posterior distribution of weight values
the form Once we have chosen a prior distribution, and an expression for the likelihood

1 function, we can use B a p ' theorem in the form (10.3) and (16.4) to find the
p(Dlw) = zoo ~xP(-PED) (10.12) posterior distribution of the weights. Using our general expressions (10.6) and

(10.12) we obtain the posterior distribution in the form

where ED is an error function, md p is another example of a hyperpaxameter
which will be discussed shortly. The function Zn(P) is a norrna1ixal;ion factor

L 1
p(wlD) = - exp(-PED - [YEW) = - exp(-S(w)) zs (10.17)

zs I
given by

where
ZD(B) = / ~P(-BED) d~ (10.13)

where dD = $ dtl . . . d t N represents an integration over the target variables. md
1

As in Section 6.1, we shdl assume that the target data is generated from a
smooth function with additive zero-mean Gaussian noise, so that the probabil
of observing a data value t for a given input vector x would be z~(%@) = / ~ X P (- P E D - o E w) dw. (10.19)

p(t l r , w) cx srp (-${y(x;w) - t)' (10.14 Consider first the problem of finding the weight vector w ~ p corresponding t o
maximum of the posterior distribution. This can be found by minimizing the I

"Qative logarithm of (10.17) with respect to the weights. Since the normalizing
where ~ (x ; w) represents s network fundion g m m h g the mean ofthe distribu- factor 2s in (10.17) is independent of the weights, we see that this is equivalent
tion, w represents the corresponding network weight vector, and the parameter to minimizing S(w) given by (10.18). For the particular prior distribution given
4 controis the variance of the noise. Provided tohe data points are drawn jndP (10.9) and noise model given by (10.15), this can be written in the form
pendently from this distribution, we have

R= l
''Te that, apart from an overall rnuItiplicative factor, this is precisely the

N (10,15j 1 "sua1 sum-of-squares error function with a weight-decay regularisation term, as
d l r e u ~ e d in Section 9.2.1. Note that, if we are only interested in finding the

n=l '"ight vector which minimizes this error function, the effective value of the
r'~ularization parameter (the coefficient of the regularizing term) depends only

The (10.13) GaussiP.n for the nteg norrns~ization ale which are factor easily ZD(B) evaluated is then (Appendix the produd 01 Orb the ratio ~ / B S since an overall multiplicative factor is unimportant.
The most probable value for the weight vector, denoted by w ~ p , corresponds I

396 10: Bayesian Techniques 10.1: Bayesian lmnting of network weights 397

to the maximum of the posterior probability, or equivalently to the minimum
the right-hand side in (10.20). If we consider a succession of training sets with
increasing numbers N of patterns then we see that the first term in (10.20)
grows with N while the second term does not. If n: and p are fixed, then as fi
increases, the first term becomes more and more dominant, until eventudly the
second term becomes insignificant;. The maximum likelihood solution is then a
very good approximation to the most probable solution W M ~ . Conversely, for
very small data sets the prior term plays an important role in determining the
Iocation of the most; probable solution,

10.1.6 Consistent priors

We have seen that a quadratic prior, consisting of a sum over all weights (and
biases) in the network, corresponds to a simple weight-decay regularizer. In Sec-
tion 9.2.2, we showed that this regulariaer has an intrinsic inconsistency with
the known scaling properties of network mappings. This led to a consideration
of weight-decay regularizers in which there is a different regularization coefficient
for weights in different layers, and in which biases are excluded. For a t w ~ I ~ . y e r
network, this suggests a prior of the form

analysis in Exercises 10.5 to 10.8.

10.1.7 Gaussian appm~rnation to the posterior dwt~but iom
Given our particular choices for the noise model and the prior, the expressions
(10.17) and (10.20) defining the posterior distribution are exact (although in gen-
eral the normalization coefficient Zs (a, p) cannot be evaluated analytically). In
pactice we wish to evaluate the probability distribution of network predictions,
s well as the evidences for the hyperparameters and for the model. These re-
quire integrations over weqht space, and in order to make these integrals anal*
ically tractable, we need to introduce some simplifying approximations. MacKay
(f 992d) uses a Gaussian approximation for the posterior distribution. This is ob-
tained by considering the Taylor expmsion of S(w) around its minimum value
and retaining terms up to second order so that

where the linear term has vanished since we are expanding mound a minimum
of S(w). Here A is the Hessian matrix of the total (regularized) error function,
with elements given by

where Wr denotes the set of weights in the first layer, W2 denotes the set of = PVVEE' + aI. (10.25)
weights in the second layer, and biases are excluded from the summations.
that priors of ehi form are impmper (they cannot be normalized) since the A of exact and approximate methods for evaluating the Hessian of the
parameters are unconstrained. The use of improper priors can lead to difficul- ,rmr function E~ were discussed in section 4,10.
ties in selecting regularization coefficients and in mode1 comparison within tht- The expansion (10.24) ieds t o a posterior distribution which is now a ~a~~
Bayesian framework, since the corresponding evidence is zero. It is therefore sian hnction of the weights, by
common to include separate priors for the biases.

More generally, we can consider priors in which the weights are divided into 1
any number of groups Wk so that -S(wMp) - -AW=AAW

2) (10.26)

where

(10.21) 'here Aw = w - WMP, and 2;. is the normalization constant appropriate to
'he Gaussian approximation. Some partial justification for this appioximation

t
Comes from the result of Walker (1969), which says that, under very general eir-
Cumstances, a posterior distribution will tend to a Gaussian in the limit where

Ihe number of data points goes to infinity. Far very large data sets we might
(10.23' expect the Gaussian approximation to be a good one. However, the pri- 1 1 ~ 1 1 : = c TIJ2* ma^ motivation for the Gaussian approximation is that it allows a great deal

w E W ~ p r o ~ e s s to be made analytically. Later we shall discuss techniques based on
of

F~~ simplicity of exposition, we shall continue to use a Gaussian priUr 'Tarkov chain Monte Car10 integration which avoid this approximation.
Using the results given in Appendix B, it is now straightfornard to evaluate the form (10.9). q-he extension of the Bayesian analysis to account 'Or 'I1' rn"'C

fhc normalination factor 2;. for this Gaussian approximation, in terms of the
prior (10.22) is straightforward, nnd the reader Led through the

drt~rminant of the matrix A, to give

10: Bayesian Techniques 10.2: DisMbutdon of f~tulork outputs 399

For a general non-linear network mapping function y(x; w), e.g. a multi-lam
perceptron, these may be numerous Iocal minima of the error function, some of
which may be associated with summetries in the network. For instance, if we con-
sider a multi-layer perceptron with two layers of weights, M hidden units, and
anti-symmetric hidden unit activation functions (e.g. the 'ta~nh' function), then
each distinct local minimum belongs to a family of 2 M ~ ! equivalent minima, as
discussed in Section 4.4. The weight vectors corresponding to these different min-
ima are related by transformations which interchange the hidden units and reflect
the signs of the weights associated with individual hidden units. There may be
several famiIies of such minima, where the different families are non-equivdent
and are not related by symmetry transformations. The single-Gaussian approx-
imation given by (10.26) dearly does not take multiple minima into count.
One approach is to approximate the posterior distribution by a sum of Gaus-
sian~, once centred on each of the minima (MacKay, 1992d), and we shall see
how to make use of this approximation in Section 10.7.

by the Hessian matrix A) is sufficiently narrow that we may approximate the
network fundion y(x; w) by its linear expansion around WMP

~ (x ; w) = Y (x; WMP) S. gT&w (10.30)

where

g V W Y I ~ ~ ~ a (10.32)

This allows us to write (10.29) in the form

where YMP Y(X; W M ~) . The integral in (10.32) is easily evaluated (Exer-
cises 10.1 and 10.2) to give a Gaussian distribution of the form

10.2 Distribution of network outputs (10.33)

As we have seen, in the Bayesian formalism a 'trained' network is described in
terms of the posterior probability distribution of weight values. If we present a where we have restored the normalization factor explicitly. This distribution has
new input vector to such a network, then the distribution of weights gives rise a mean given by y ~ p , and a variance given by
to a distribution of network outputs. In addition, there will be a contribution to
the output distribution arising from the assumed Gaussian noise on the output I
variables. Here we shall calculate the distribution of output values, using t.he

5; = - + g T ~ - l g .
P

(10.34)

single-Gaussian approximation introduced above.
Using the rules of proba'oility, we can write the distribution of outputs, for a We can interpret the standard deviation at of the predictive distribution for t

given input vector x, in the form an error bar on the mean value y ~ p . This error bar h~ t w ~ contributions, one
arising from the intrinsic noise on the target data, corresponding to the first term

p(tlx7 w)p(wlD) dw (10.281
in (10.34), and one arising from the width of the posterior distribution of the
"etwork weights, corresponding to the second term in (10.34). When the noise

is large, so that P is smalI, the noise term dominates, as indicated in
where p(wlD) is the posterior distribution of weights. The distribution p(t1x7 W) F i ~ u r e 10.7. For a small noise amplitude (large value of P) the variance of the
is simply the model for the distribution of noise on the target data, for a fued Output distribution is dominated by the contribution from the variance of the
value of the weight vector, and is given by (10.14). Posterior distribution of weights, as shown in Figure 10.8.

In order to evaluate this distribution we shdl make use of the Gaussian 1% see that tlze Bayesian formalism allows us to calculate error bars on
approximation (10.26) for the posterior distribution of weights, together the network outputs, instead of just providing a single 'best guess' output. In
the expression (10.14) for the distribution of network outputs. This gives " Praictical implementation, we first find the most probable weights w ~ p by

minimizing the regularized error function S(w). We can then assign error bars

p(tlx, D) a / exp (-f{t - ~ (x ; w)12) , (- ~ A ~ T A A ~ to this network function by evaluating the Hessian matrix and using (10.34).
ilethods for the exact evaluation of the Hessian, as well as useful approximations,

discussed in Section 4.10.

where have droppe$ any constant factors (i.e. factors independent of '1'
addition, we shall assume that the width of the posterior distribution (determin

10: Bayesian Techniques 10.2: D i s ~ b u t i o n of network outputs

Figure 10.7. The distribution of network outputs in the Bap ian formapism is
determined both by the posterior distribution of network weights p(wlD) and
by the variance p-' due to the intrinsic noise on the data. When the posterior
distribution of weights is very nmow in relation to the noise variance, as shown
here, the width of the distribution of network outputs is determined primarily
by the noise.

Figure 10.8. As in Figure 10.7, but with a posterior distribution for the weights
which is relatively broad in comparison with the intrinsic noise on the data,
showing how the width of the distribution over network outputs is now domi-
nated by the distribution of network weights.

Figure 10.9. A simple example of the application of Bayesian methods to a
'regression"roblem. Here 30 data points have been generated by sampling
the function (10.35), and the network consists of a muhi-layer perceptron with
four hidden units having 'tanh' activation functions, and one Iinear output
unit. The solid curve shours the network function with the weight vector set
to w ~ p corresponding to the maximum of the posterior distribution, and the
dashed curves represent the &2ut error bars from (10.34). Notice how the error
bars are Iarger in regions of low data density.

10.2.1 Example of Bapesian regression

As a simple illustration of the appIication of Bayesian techniques to a 'regression'
prohlem, we consider a one-input one-output example involving data generated
from the snlooth function

!{'ith additive Gaussian noise having a standard deviation of o = 0.05. Values for
" were generated by sampling a Gaussian mixture distribution having two well-
separated components. A prior of the form (10.21) was used, and values of cr and
8 were chosen by an on-line re-estimation procedure described in Section 10.4.

The network mapping corresponding to the most c rob able weight d u e s is
~ h o f f ~ n in Figure 10.9, together with the &2ut error bars given by (20.34). WTe see
'hat the width of the error bar depends on the local density of input data, with
'he error bars increasing in magnitude in regions of input space having tow data
'Iensity. In this exampie the Hessian matrix was evaluated using exact analytica1
techniques, as discussed in Section 4.10.

402 10: Bayesian Techniques

10.2.2 Generalized linear networks

In Section 3.3 we discussed models having a single layer of adaptive weights, ,,
that, for linear output units, the network mapping function is s linear function
of the weights. Such models can be written in the form

If we continue to use a Gaussian noise model and a Gaussian prior on the weights,
then the total error function is given by

and hence is a quadratic function of the weights. Thus, the posterior distribution
of weights is exactly Gaussian, ,end only has a single maximum rather than the
multiple maxima which can arise with non-linear models. The most probable
might vector w ~ p is described by a set of linear equations, which ate easily
solved using the techniques described in Section 3.4.3. The network function can
then be written, without approximation, in the form

where AW = w - W M ~ as before. Also, the Hessian matrix A is given exactly
by the outer product expression (Section 4.10.2) in the form

where I i s the unit matrix. The distribution of network outputs is then given tly
a Gaussian integral of the form

which can be evaluated in the same way as (10.32) to give a distribution for
which is Gaussian with mean y ~ p and variance

10.3: Application to classijficatiola problems 403

10.3 Application to classification probIems

We now return briefly to a discussion of the application of Bayesian methods t o
classification problems. Following MacKay (1992b) we consider problems involv-
ing two classes. Aa discussed in Section 6.7, the likelihood function for the data
given by

where G is the cross-entropy error function, given by I
G(Dlw) = - Eft" ln ~ (x ") t (1 - tn) In(l - y(xn))]. (10.43)

n

The distribution (10.42) has the correct normalization since the target data t"
take the values 0 or 1, and so the normalization 'integral' becomes a sum of
terms each of which is the product of factors of the form I I

1 I
exp(ln y) + exp(In(1- y)) = p + (1 - y) = 1.

Note that there is no equivalent of the constant 0. This is because the targets are
assumed to provide perfect dass labels, and so there is no uncertainty associated
with their values.

As discussed in Section 6.7.1, I t is appropriate to choose an output activation
function given by the logistic sigmoid of the form

where a. = wizj is the weighted linear sum feeding into the output unit. This 1
activation function allows the network output to be interpreted as the probability I

I I

P(Cllx) that an input vector x belongs t o class CL.
Again, we can introduce a prior distribution for the network weights in terms
a regularization term Ew, so that the posterior distribution becomes

As before, this distribution can be approximated by a Gaussian centred on the
maximum posterior weight vector w ~ p

404 10: Bayesian Techniques

where 22 is the normalization constant appropriate to the Gaussian approxim
tion, and Aw = w - w ~ p .

The probabiIity of membership of class CI for a new input vector x is giv,
in the Bayesian framework by an integration over the distribution of netwo
weights of the form

In the case of regression problems, the distribution of network outputs givr
by (10.33) is a Gaussian with mean pMp(x) = p(x; w ~ p) , SO that the margin;
ized output corresponding to (10.49) coincides with the predictions made
using the most probable weight vector alone (provided the posterior distribu
is sufficiently narrow that we can approximate y as; a function of w by a lil
function in the neighhourhood of the most probable weight vector). For ctassifica-
tion problems, however, this result does not hoId, since the network function call

no longer be approximated by a linear function of the network weights as it con-
sequence of the sigmoidal activation function y = g(a) on the network outp '

The process of marginaIiaation then introduces some important modification
the predictions made by the network.

MajcKay (1992b) assumes that a (rather than y) is locally a linear func~t--
of the weights

a(x; W) = ~ M P (x) t g T (x) ~ w (10.50)

where Aw = w - w ~ p . The distribution of a then takes the form

where 6(-) is the Dirac delta-Function. We now use the Gaussian approximafiL--
(10.47) for the posterior distribution p(wlD). Since the delta-function eonstr~il''
requires that Aw be linearly related to a, and since the posterior weight distrl-
buiion is Gaussian, the distribution of n will also he Gaussian. The mean afld
variance of this Gaussian distribution are easily e&uated (Exercise 10.3) t , ~ @

10.3: Application to clmsificat8on problems 405

where the variance s2 is given by

s2(x) = g T ~ - " g .

We then have

where plajx, D) is given by (10.53) and g(a) is given by (10.45). Since the in-
tegral ((10.56) does not have an analytic solution, MacKay (1992b) suggests the
following approximation

where

and s2 is defined by (10.54).
Now compwe the ~Iassification decisions obtained using the marginalized

output given by (10.56) with those obtained using the output m p = g (a ~ p)
corresponding to the most probable weight vector. If the output is used to classify
the network input so as to minimize the probability of miaclassification, then
the decision boundary corresponds to a network output of 0.5 (Section 1.8.1).
For the most probable output mp = ~ (a ~ ~) , the form of the logistic sigmoid
activation function (10.45) shows that g ~ p = 0.5 co~responds to a(x, WMP) = 0.
For the marginalized output (10.56) the decision boundary P(C1 lx, D) = 0.5 also
cQrresponds to a(x, wMp) = 0. This follows From (10.56) together with the fact
that g(a) - 0.5 is anti-symmetric while the Gaussian (10.53) is symmetric. Thus,
if the marginalized outputs are used t o classify new inputs directly on the bmis
Ofthe most probable class they will give the same results as would be obtained

using most probable outputs alone.
However, if a more complex Ioss matrix is introduced or if a 'reject option"

is included (Section 1.10), then marginalization can have a significant effect on
decisions made by the network. The effects of marginalization for a simple

tk+class ~roblern are shown schematically in Figures 10.10 and 10.11 for the

10: Bayesian Techniques

Figure 10.10. A schematic pIot of the posterior distribution of weights showing
the most probable weight vector WMP, and also two other weight vectars
and w(') taken kom the posterior distribution.

case of a single-layer network. Figure 10.10 shows the posterior distributic
network weights, and Figures 10.11 (a}-(c) show examples of the network
puts obtained by choosing weight vedors from varions points in the post,..,,
distribution. The effect of marginalization (integration of the predictions over
the posterior distribution) is shown in Figure 10.11 (d). Note that the decision
boundary (corresponding to the central y = 0.5 line) is the same as for Fig-
ure 10.11 (a).

10.4 The evidence framework for a: and P
So far in this chapter, we have assumed that the d u e s of the hyperparamet
a and p are known. For most applications, however, we will have little idea
suitable values for a and 0 (in some cases we may have an idea of the no
level p). The treatment of hyperparameters involves Occam's razor (Section 1
since the values of hyperparameters which give the best fit to the training di
in a maximum likelihood setting represent over-complex or over-flexible mod
which do not give the best generalization.

As we have discussed already, the correct Bayesian treatment for parameb
such as CY and 8, whose values are unknown, is to integrate them out of a
predictions. For example, the posterior distribution of network weights is giv

by

ers
of

ise

10.4: The eddcnce jmmework for a and p 407

Figure 10.11. Schematic illustration of data from two classes (represented by
circles and crosses) showing the predictions made by a classifier with a single
layer of weights and a logistic sigmoid output unit. (a) shows the predictions
made by the network with the weights set to their mast probable values WMP.

The three lines correspond to network outputs of 0.1, 0.5 and 0.9, A point such
tts C, which is well outside the region containing the training data, is classified
with great confidence by this network. (b) and (c) show predictions made by
the weight vectors corresponding to w(') and w (~) in Figure 10.10. Notice how
the point C is classified differently by these two networks. Cd) shows the effects
of marginaIizing over the distribution of weights given in Figure 10.10. We see
that the probability contours spread out in regions where there is little data.
The point C is now assigned a probability cIose to 0.5 as we would expect.

Note that we have extended our notation to include dependencies on a and P
Wplicitly in the various probabifity densities. Two approaches to the treatment
of hyperparmeters have been discussed in the literature. One of these performs
the integrals over CY and analytically, and will be discussed in Section 10.5.
An dternative approach, known as the evidence rappwxicimatian, has been $is
Cussed by MacKay ((1992a, 1992d) and wilI be considered first, This framework
is based on techniques developed by Gull (1988b, 1989) and SkilLing (1991). It is
COmputationally equivalent to the type II marimurn likelihood (MLII) method
Of conventional statistics (Berger, 1985).

Let us suppose that the posterior probability distribution p (a , PID) for the
hyperparameters in (10.59) is sharply peaked around their most probable values

408 10: Bayesian Techniques 10.4: The evidence fmmework for a and 0 409

aMp and &p. Then (10.59) can be written

This says that we should find the values of the hyperparameters which maximize
the posterior probability, and then perform the remaining calculations with the
hyperparameters set to these values. We shall discuss the validity of this approx-
imation later, when we consider the alternative approach of exact integration.

In order t o h d a M p and p ~ p , we need to evaluated the posterior distribution
of a and /3. This is given by

which requires a choice for the prior p (a , PI. Since this represents a prior over the
hyperparameters, it is sometime called a hyperprior. The distribution of weight
parameters, for example, is governed by a parameter a which itself is described
by a distribution. Schemes such as this are called hierarchical models and can be
extended to m y number of levels. If we have no idea of what would be suitable
values for a and p, then we should choose a prior which in some sense gives
equal. weight to all possible values. Such priors are called non-infomatiue and are
discussed at length in Berger (1985). They often have the characteristic that they
cannot; be normalized since the integral of the prior diverges. Priors for whlch
this is the case are cdled ampmper. An example would be a prior for a parameter
a which is taken to be uniform over an infinite interval (0, m). In fact, a and P
are examples of scale panmeters since they determine the scde of 1 1 w12 and of
the noise respectively. Non-informative priors for scale parameters are generdl~
chosen to be uniform on a logarithmic scale as discussed in Exercise 10.13.

For the moment we shall suppose that the hyperprior p(a, P) is chosen to be
very insensitive to the values of a and p to reflect the fact that we have little idea
of suitable values for these quantities. Later we shall discuss more formally horn'
to choose suitable hyperpriors. Since the denominator in (10.62) is independent
of a and 0, we see that the maximum-posterior values for these hyperpxameters
are found by maximizing the likelihood term p(Dla, 0). This term is called
evidence for a and 0.

Mote that the Bayesian analysis is proceeding in a hierarchical fashion. The
first level involves the determination of the distribution of weight values.
the second level we are seeking the distribution of hyperparameter values- The
evidenee p(Dlu, 0) at this lwel of the hierarchy is given by the denominator
Bayes' theorem (10.3) from the previous level.

We can easily express the evidence in terms of quantities which we ha*

evaluated already. If we make the dependences on a and P explicit, then we can
%.rite (10.4) in the form

where we have made use of the fact that the prior is independent of 0 and
the likelihood function is independent; of a. Using the exponential forms (10.6)
and (10.12) for the prior and likelihood distributions, together with (10.18) and
(10.19), we can then write this in the form

For our particular choices of noise model and prior on the weights, we have
already evaluated ZD and Zw in (10.16) and (10.10) respectively. If we make
the Gaussian approximation for the posterior distribution of the weights, then
Zs is given by (10.27). The log of the evidence is then given by

1% first consider the problem of finding the maximum with respect to a. In
order t o differentiate In]A/ with respect to or we first write A = H 4- aI, where

= pVVED is the Hessian of the unregnlarized error function. If { X i) (where
1 = 1,. . . , W) denote the eigenvalues of H, then A has eigenvalues Xi + a and
n7(: have

10: Bayesian Techniques

where the last step foIlows from the fact that the eigenvalues of A-' are (Xi +
rr}-l. Note that this derivation has implicitly assumed that the eigenvalues A,
do not themselves depend on cu. For an error function Eo, which is exactly a
quadratic function of the weights (as is the case for a linear network and a sum-
of-squares error function), the Hessian will be constant and this assumption will
be exact. For non-linear network models, the Hessian H will be a function of w.
Since the Hessian is evaluated at WMP, and since WMP depends on a, we see that
the result (10.68) actualiy neglects terms involving dAi /da (MacKay, 1992a).

With this approximation, the maximization of (10.67) with respect to a is
then straightforward with the result that, at the maximum,

where the quantity -j is defined by

This result can be given a simple and elegant interpretation (Gull, 1989). In the
absence of any data, the most probable weight vector would be zero, and E$" =

0. The value of E E ~ represents the extent to which the weights are driven away
from this value by the data. If we assume for the moment that the eigenvalues
A, are positive then the quantity nl, = Ai /(A+ -I- a) is a quantity which lies in the
range 0 to 1. This can be interpreted geometrically if we imagine rotating the axes
of weight space to dign them with the eigenvectors of H as shown schematic all^
in Figure 10.12. Directions for which X i >> a will give a contribution close to
one in the sum in (10.30) and the corresponding component of the weight vector
is determined primarily by the data. Conversely, directions for which A, <<
will make a small contribution t o the sum, and the corresponding component of
the weight vector is determined primarily by the prior and hence is reduced to

a small vahe. (See also the discussions of weight-decay regularization and earl?
stopping in Sections 9.2.1 and 9.2.4 respectively). Thus y measures the effective
number of weights whose values are controlled by the data rather than by the xlp
prior. Such weights are called well-detemined pa~anaeters. The quantity 2aE1r
can be regarded as a X2 (Press et al., 1992) for the weights since it can be mitter'
in the form Ci w?/o$ where u& = I/a. The criterion (10.70) then says that
x& = -y so that the X2 for the weights is given by the number of well-determined
parameters. Note that, since w ~ p corresponds t o the minimum of S(w) rather
than the minimum of E D (w) , t h e Hessian H = /3VVEa is not evaluated fit th'

10.4: The evidence framework for a and P

1 -wMP likelihood

Figure 10.12. Schematic diagram of two directions in weight space after rot*
tion of the axes to dign with the eigenvectors of H. The circle shows a contour
of Ew while the ellipse shows a contour of ED. In the direction wl the eigen-
value A1 is small compared with a and so the quantity Al/(hl +a) is: close to
zero. In the direction w2 the eigenvalue A2 is large compared with a and so
the quantity A2/(& + a) is close ta 1.

minimum of ED, and so there is no guarantw that the eigenm1uw Xi will be
positive.

We next consider the maximization of (10.67) with respect to 8. Since Ai are
the cigenvalues of H = /3VVED it follows that A i is directly proportional to ,d
anand hence

Thus we have

This leads to the foIlowing condition satisfied at the maximum of (10.67) with
to 0:

412 10: Bagtesian Techniques 10.4: The evidence framework jm ar and 0 413

N Again we can regard 2PE0 = (tn - y(xn; w)) ~ /a;, where 0; = I j D , as a
X2 for the data term. Thus at the optimum value of f l we have X& = N - y. For
every well-determined parameter, the data error is reduced by one unit, and the
weight error is increased by one unit. From (10.18), (10.69) and (10.73) we see
that the total error S(w}, evaluated at w ~ p , satisfies the relation 2SMp = N .

So far our analysis has assumed that the posterior distribution is described
by a single Gaussian function of the weights. As we have already observed, how-
ever, this is not an adequate description of the posterior distribution in the case
of non-linear networks since there are many minima present in the regularized
error fundion S(w). The approach adopted by MacKay (19926) is to note that
we are using a particular set of weights w ~ p to make predictions, correspond-
ing to a particular local minimum of s (~) . Thus, we can set the values of n
and /3 appropriately for this particular solution, noting that different minima
may require different values for these hyperparameters. The integral in (10.64)
should therefore be interpreted not as an integraI over the whole of weight space,
but simply as an integral in the neighboushood of the particular bcal minimum
being considered. By considering a Gaussian approximation ta the posterior dis-
tribution in the neighbourhood of thii minimum, we then arrive at the formalism
for determining a and P derived above. Later we shall discuss how to deal with
multiple minima.

In a practical implementation of this approach, we need to find the optimum
a and p as well as the optimum weight vector WMP. A simple approach to this
problem is to use a standard iterative training algorithm, of the kind described
in Chapter 7, to find w ~ p , whiIe periodically reestimating the vdues of a and
p using

which follow from (10.69) and (10.73). The current estimates of a and P are used
to evaluate the quantities an the right-hand sides of (10.74) and (10.75), and the
procedure is started hy mahng some initial guess for the values of a and P.

The evidence approach to the determination of a and f l is ilIustrated using
the same regression example as in Figure 10.9. The graph shown in Figure 10.13
was obtained by W g P to its known true vaIue, and shows a plot of y and 2 a E ~
versus Ina. The d u e of was found by eduating the Hessian matrix using
exact analytic methods described in Section 4.10, and then finding its eigenmltre
spectrum. Figure 10.14 shows the corresponding plot of the log evidence for fi
versus En a. Comparison of Figures 10.13 and 10.14 shows that the maximum of
the evidence occurs approximately when the condition 2aEw = y is satisfied-

As a very rough approximation, we can assume that all of the weight pararsl-
et-ers are well determined sa that y = W, a s we would expect t o be the caqe it
we have large quantities of data so that N >> W . In this caye the re-estimatiofl

Figure 10.13. This shows a plot of the quantities 7 and 2aEw versus Ina for
the example problem shown in Figure 10.9. The parameter P is set to its true
d u e .

FIgure 10.14. This shows a plot of the log evidence for a versus tna, corre-
swonding t o the plots in Figure 10.13. Comparison with Figure 10.13 shows
that the maximum of the evidence occurs approximately when the condition
2aEw = 7 is satisfied. Again the value of 0 is set to its true value.

10: Bayesian Techniques 10.5: Integration over hyperpammetiers 417

where r is the standard gamma function (defined an page 28). The integration
over p can be performed in exactly the same way with the result

We can now write down the exact (rather than approximate) un-normalized
posterior distribution of the weights. The negative logarithm of this posterior,
corresponding to an error function, then takes the form

The form (10.89) should be contrasted with the form of the log posterior of
the weights for the case in which a and 0 are assumed to be known. From (10.17)
this latter form can be written

- lnp(w1D) = @ED 4- aEw + csnst. (1 0 . g ~)

Note that the gradient of (10.90) is given by

The gradient of (10.89) can be written in an andogous form as

where we have defined

a,R = W/2Ew

P e ~ = N/2Eon

Thus, minimization of the error function of (10.89) could he implemented *
a minimization of (10.90) in which the values of Pefi and nes are continu~ush'

tipdated using the re-estimation formulae (10.93) and (10.94) (MacKay, 1994b;
Williams, 1995). Notice that this corresponds precisely to the approximatjon
(10.76) and (10.77) to the evidence approach.

10.5.1 Integmtian versus maximization

pormafly, Bayesian inference requires that we integrate over the hyperpararne-
ters. In practice, one technique which we have considered above, which MacKay
(1994b) refers to as the 'MAP' approach (for muximum posterior) is to perform
this integration analytically. An a1t;ernative approach is to use the evidence ap-
proximation, which involves finding the values of the hyperparameters which
maximize the evidence, and then performing subsequent; analysis with the hy-
perparameters fixed to these values. Since the exact integration is so easily per-
formed, it might appear that this should be the preferred approach (IlTolpert,
1993). As well as being exact, it has the advantage of saving the significant com-
putationaI effort of the evidence approximation, which has to be repeated afresh
for each new data set.

However, MacKay (1994b) hay argued that in practice the evidence approx-
imation will often be expected to give superior results. The reason that this
could in principle be the case, even though formally we shonId integrate over
the hyperparameters, is that in practice with exact integration the remainder
of the Bayesian analysis cannot be carried through without introducing further
approximations, and these subsequent approximations can lead to much greater
inaccuracies than the evidence approach.

Consider the regularization parameter a. We have already seen that the 'effec-
tive' value for this parmeter differs between the evidence and MAP approaches

Thus, the MAP method effectively estimates an cy based on the total number
of parameters, while the evidence method makes use of the number of well-
(letermined parameters. MacKay (1994b) attributes this difference to a bias in
the MAP approach which is andogous to the distinction between g~ and U N - 1

(Section 2.2).
The MAP approach gives an expression (10.89) for the exact posterior d i a

rrihution of the weights. In order to make use of this expression in practice,
however, it is necessary to make some approximations. Typically, this .~rould
in~~olve finding the maximum posterior weight vector w ~ p by a standard non-
linear optimization algorithm, and then fitting a Gaussian approximation around
'his value (Buntine and Wigend, 1991). Clearly the MAP method is capable of
finding a true value for w ~ p , and so the value found within the evidence a p
proximation must be in error (to the extent that the two approaches differ).
'Towever, MacICay (1994b) has argued that the Gaussian approximation found
t9 the evidence approach finds a better representation for most of the U O ~ U ~ I !

l the posterior probability distribution than does the MAP approach. Since

418 1 0: Bayesian Techniques 10,ei: Bayesian model comparjson 419

the error bars around the most probable a and P determhed from the evidence
approximation are given by (10.84) and (1 0.&1), we expect the evidence approx,
imation to be vdid when y >> I and N - y >> I. A more thorough discussion
of the conditions for the validity of the evidence approximation are given in
MatKay (1 994b).

10.6 Bayesian model comparison
So far we have considered Bayesian methods for finding the most probable out-
puts from a neural network, for estimating error bars on these outputs, and
for setting the valves of regularization coefficients and noise parameters. Our
final application for Bayesian methods is to the comparison of different models.
As we have already indicated, the Bayesian formalism automatically penalizes
highly complex models and so is able to pick out an optimal model without re-
sorting to the use of independent data as in methods such as cross-validation
(Section 9,8.1).

Suppose we have a set of models Xi, which might for example include multi-
layer perceptron networks with various numbers of hidden units, radial basis
hnction networks and linear models. From Bayes' theorem we can write down
the posterior probabilities of the various models 'FI,, once we have observed the
training data set D, in the form

where P (X I) is the prior probability assigned to model 'H,, and the quantity
p(DIXi) , referred to as the evidence for 3.1i (MacKay, 1992a). This evidence is
precisely the denominator in (10.62) in which we have made the conditional
dependence on the model Xi explicit. If we have no reason to assign different
priors to different models, then we can compare the relative of
different models on the basis of their evidence. Again, we note the hierarchical
nature of this Bayesian framework, with the evidence at this level being givcfl
by the denominator of Bayes' theorem at the previous Ievel.

We can provide a simple interpretation of the evidence, and the way it penal-
izes complex models, as follows (MacKay, 1992a). First, we write the evidence
in the form

Now consider a single weight parameter w. If the posterior distribution is shar~l? '
peaked in weight space around the most probable value w ~ p , then we can a P
proximate the integral by the value at the maximum times the width A ~ ~ o a t e t i ~ '

of the peak

Figure 10.15. An iIlustration of the Occam factor which arises in the formal-
ism For Bayesian model comparison. The prior probability p(wl7-l) is taken
to be uniform over some large region Aw,,,~,,. When the data arrives this ml-
lapses to a posterior distribution p(wlD, 3E) with a width A W , , ~ ~ ~ . The ratio
Awpo.tertor/Awprior represents the Occam factor which penalizes the mode1 for
having the particular posterior distribution of weights.

as indicated in Figure 10.15. If we take the prior to be uniform over some large
interval hwprior then (10.98) becomes

The first term on the right-hand side is the likelihood evaluated for the most
probable weight values, while the second term, which is referred to as an Occam
factor and which has value < 1, penalizes the network for having this particular
Posterior distribution of weights. For a model with many parameters, each will
generate a similm Occam factor and so the evidence will be correspondingly
'educed. Similarly a model in which the parameters have to be finely tuned will
also be penalized with a smaIl Occam factor. A model which has a large best-fit
likelihood will receive a large contribution to the evidence. However, if the model
i~ also very complex then the Occam factor wiIl be very small. The model with
the largest evidence will be determined by the balance between needing large
likelihood (to fit the data well) and needing a relatively large Occam faetor (so
that the model is not too camplex).
We can evaluate the evidence more precisely as fallaws. We first write

The quantity p(D/a, P , 3-11] is just the evidence for a and 0 which we considered
"rlies (with the dependence on the model again made explicit). Integration over

1

420 10: Beyesiam Techniques

a and p is easily performed using the Gaussian approximation for the distributioll
p(Dla, 0 , Ri) introduced in Section 10.4, in which the variance parameters are
given by (10.81) and (10.84). Consider the integration over P. From (10.78) this
can be written in the form

where we have taken the prior distribution for In /3 t o be constant wet some larg~
region 1nR which encompasses PMP as well as most of the probability mmass of
the Gaussian distribution, A similar argument a p p l i ~ to the parameter a. Thus
we have

We can obtain an expression for lnp(DlcrMp, PMp, X i) by using (10.67) and set-

ting a = a ~ p and @ = DM=.
The result (10.67) was obtained by integrating over the posterior distribution

p(wlD,h',) represented by a single Gaussian. As we have already remarked.
for any given configuration of the weights (corresponding to the mean of t,he
Gaussian) there are many equivalent weight vectors related by symmetries OF
the network. Here we consider a tw~layer network having M hidden units, so
that the degree of redundancy is given by zM M! a s discussed in Section 4.4. The
Occam factor which we are trying to estimate depends on the ratio of the volume
of the posterior distribution in weight space to the volume of the prior. Since our
expression for the prior (a Gaussian centred on the origin) already takes x c o ~ m t
of the many equivalent configurations, we must ensure that our expression for
the posterior also takes these into account. Thus, we must include an extra factor
of 2 M M ! in (10.102). Note that this implicitly assumes that there is negligillle
overlap between the Gaussian functions centred on each such minimum. We shall
discuss shortly what to do about the presence of other minima which cannot be
related to the current minimum by symmetry transformations.

Rather than evaluate the evidence (10.102) it is more convenienx ru consider
its logarithm. Expressions for o1,~ and a!., are given by (10.81) and
respectively. Omitting terms which are the same for different networks.

the''

obtain

10.6: Bayesian model compra~son 421 I

The new quantity which we need to evaluate here is the determinant of the
Hessian matrix A.

In practice the accurate evaluation of the evidence can prove t o be very
difficult. One of the reasons for this is that the Hessian is given by the product
of the eigenvalues and so is very sensitive to such errors. This was not the case
for the evaluation of y used in the optimization of a and p since y depends
on the sum of the eigenvdues and so is less sensitive to errors in the small
eigenvalues. hrthermore, the determinant of the Hessian, which measures the
volume of the posterior distribution, will be dominated by the mall eigenvalues
since these correspond to directions in which the distribution is relatively broad.
One approach is to take all eigenvalues which are below some (arbitrary) cut-off
E and reglue them by the value 6. A check should then be made to determine if
the resulting model comparisons are sensitive to the value of this cut-off. Clearly
such an approach is far from satisfactory, and serves to highlight the difficulty of
determining the model evidence within the Gaussian approximation framework.

Since the Bayesian approach to model comparison incorporates a mechanism
for penaIizing over-complex models, we might expect that the model with the
largest evidence would give the best results on unseen data, in other words that
it would have the best generalization properties. MacKay (19S2d) and Thodberg
(1993) both report observing empirical {anti) correlation between model evidence 1
and generalization error. However, this orrelation is far from perfect. Although
we expect some correlation between a model having high evidence and the model
@neralixing well, the evidence is not measuring the same thing as generalization
Performance. In particular, we can identify several distinctions between these
quantities:

1. The test error is measured on a finite data set and so is a noisy quantity.
2. The evidence provides a quantitative measure of the relative probabilities

of different models. Although one particular model may have the highest
probability, there may be other models for which the roba ability is stiIl
significant. Thus the model with the highest evidence will not necessarily
give the best performance. We shall return to this point shortly when we
discuss committees of networks.

3. If we had two different models which happened to give rise to the same
most-probable interpolant, then they would necessariiy have the same gen-
eralization performance, but the more complex model would have a larger
Occam factor and hence would have a smaller evidence. Thus, for two mod-
els which make the same predictions, the Bayesian approach b u r s the 1
simpler model. I

422 10: Bayesian Techniques 10.7: Committees of networks 423

4. The generalization error, in the form considered above, is measured using
a network with weights set to the maximum of the posterior distribution.
The evidence, however, takes account of the complete posterior distribution
around the most probable value. (As we noted in Section 10.3, however, for
the case of s Gaussian posterior distribution, and with a local linearization
of the network function, the integration over the posterior has no effect on
the network predictions.)

5. The Bayesian analysis implicitly assumes that the set of models under
consideration contains the 'truth' as a particular case. If all of the models
are poorly matched to the problem then the relative evidences of different
models may be misleading. MacKay (1992d) argues that a poor correlation
between evidence and generalization error can be used to infer the presence
of limitations in the models.

An additional reason why the correlation between evidence and test error may
be poor is that there will be inaccuracies in evaluating the evidence. These arise
from the use of a Gaussian approximation to the posterior distribution, and
are particularly important if the Hessian matrix has one or more very small
eigenvalues, as discussed above.

Further insight into the issue of model complexity in the Bayesian frame-
work has been provided by Neal (1994) who has argued that, provided the com-
plete Bayesian analysis is performed without approximation, there is no need
to limit the complexity of a model even when there is relatively little training
data available. Many red-world applications of neural networks (for example
the recognition of handwritten characters) involve a multitude of compIications
and we do not expect them to be accurately d v e d by a simple network having
a few hidden units. Neal (1994) was therefore led to consider the behaviour of
priors over weights in the limit as the number of hidden units tends to infmity.
He showed that, provided the parameters governing the priors are scaled appro-
priately with the number of units, the resulting prior distributions aver network
functions are well behaved in this limit. Such priors could in principle permit the
use of very large networks. In practice, we may wish to limit the complexity in
order to ensure that Gaussian assumptions are valid, or that Monte Carlo tech-
niques (discussed in Section 10.9) can produce acceptable answers in reasonable
computational time.

10.7 Committees of networks

In Section 9.6 we discussed techniques for combining several network 'modules'
together in order to obtain improved performance. Here we shall see how such
committees of networks arise naturaIly in the Bayesian framework. I n e n we
evaluated the evidence in (10.103) we took account of the multiple solutions due
to symmetries in the network. We did not, however, allow for the presence of
multipIe, non-equimlent minima. If we train our network several times starting
from different random initial weight confi~rat ions then we will typically discaver
severaI such solutions. We can then model the posterior distribution using a scf

of Gaussians, one centred on each local minimum, in which we assume that there
is negligible overlap between the Gaussians.

Consider the predictions made by such a posterior distribution when the
network is presented with a new input vector. The posterior distribution of the
weights can be represented as

where denotes one of the non-equivalent minima and all of its symmetric
equivalents. This distribution is used to determine other quantities by integration
over the wlioIe of weight space. For instance, the mean output predicted by the
committee is given by

where ri denotes the region of weight space surrounding the ith local minimum,
and 3; is the corresponding network prediction averaged over this region. Here we
have assumed that there is negligible overIap between the distributions centred
on each minimum. From (10.105) we see that the predicted output is just a linear
combination of the predictions made by each of the networks corresponding to
distinct Iocal minima, weighted by the posterior probability of that solution.
Note that, strictly speaking, in a practical implementation the weighting for
each minimum should be adjusted according to the probability of that minimum
being found by the paticular parameter optimization algorithm being used,
with minima which are more likely to he discovered receiving less weight. For
large problems such an approach is infeasible, however, since each minimum will
tvpically only he seen once so that determination of the probabilities of finding
the minima will not be possible.

We can extend this result further by consideriw different models 'Hi, such as
networks with different numbers of hidden units or different kinds of models. In
the same way that variables such as hyperparameters are integrated out of the
model, so if our model space consists of several distinct models, then Bayesian
inference requires that, instead of just picking the most probable model, we

424 10: Bayesian Techniques

should sum over all models. The distribution of some quantily Q, given a data
set D, can be written

which again is a linear combination of the predictions made by each model sep
arateIy) where the weighting coefficients are given by the posterior probabilities
of the models. We can compute the weighting coefficients. by evaluating the
evidences, multiplying by the model priors, and then normalizing so that the
coefficients sum to I.

Committees bring two advantages. First they can lead to improved general-
ization, as was noted in Section 9.6. This is to be expected since the extension
from a single Gaussian to a Gaussian mixture provides a more accurate model
for the posterior distribution of weights. The second benefit of considering a
committee is that the spread of predictions between members of the committee
makes a contribution to the estimated error bars on our predictions in addition
to those identified already, leading t o more accurate estimation of error bars.

In practice, the direct application of such procedures generally leads to poor
results since the integral over the Gaussian approximation to the posterior gives
only a poor estimation of the evidence (Thodberg, 1993). A more pragmatic
approach is to use the evidence simply as a rough indicator, and to select a
committee of neeworks whose members have reasonably high evidence, and then
form linear, or non-Iinear, combinations of the outputs of the committee mem-
bers using techniques discussed in Section 9.6. Indeed, the method of stacked
generalization (Section 9.8.2) can be viewed here as a cross-validatary approach
to estimating the posterior probabilities of the members of the committee.

10,8 Practical impIementation of Bayesian techniques

Since we have covered a lot of ground in our discussion of Bayesian methodst
we summarize here the main steps needed to implement thase technique for
practical applications. We restrict attention to the evidence framework with the
use of Gaussian approximations.

1. Choose initial values for the hyperparametem a and 6. laitialize the weights

I in the network using values drawn from the prior distribution.
2. Train the network using s standard non-linear optimization algorithm

(Chapter 7) to minimize the t o t d error function S(w).
3. Every few cycles of the algorithm, re-estimate values for u and @ usiog

(10.74) and (10.75), with y calculated using (10.70). This requires emlun
tion of the Hessian matrix (Section 4.10) and evaluation of its eigenvalUe I

spectrum.

10.9: Monte Carlo methods 425

4. Repeat steps 1-3 for different random initial choices for the network weights
in order to find different local minima. In principIe, a check should be
made that the different solutions are not simply related by a symmetry
transformation of the network (Section 4.4).

5. Repeat steps 1-4 for a selection of different network models, and compare
their evidences using (10.103). Eigenvalues which are smaller than a cutoff
value are omitted from the sum in evaluating the log determinant of the
Hessian. If a committee of networks is to be used it is probably best to
choose a selection of the better networks on the basis of their evidences,
but then to use the techniques of Section 9.6 to compute suitable weighting
coeficients.

Examples of the prwticd application of Bayesian techniques are given in Thod-
berg (1993) and MacKay (1995b).

10.9 Monte Car lo methods

In the conventional (maximum likelihood) approach to network training, the bulk
of the computational effort is concerned with optimi.zcation, in order ta find the
minimum of an error function. By contrast, in the Bayesian approach, the cen-
tral operations require integration over multi-dimensional spaces. For example,
the evaluation of the distribution of network outputs involves an integral over
weight space given by (10.28). SimiEarly, the evahation of the evidence for the
hyperparameters also involves an integral over weight space given by (10.64). So
far in this chapter, we have concentrated on the use of a Gaussian approximation
for the posterior distribution of the weights, which allows these integrals to be
performed anaEyticalIy. This also allows the problem of integration to be replaced
again with one of optimization (needed to find the mean of the Gaussian dis-
tribution}. If we wish to avoid the Gaussian approximation then we might seek
numerical techniques for evaluating the corresponding integrals directly.

Many standard numerical integration techniques, which can be used success-
fdly for integrations over a small number of variables, are totally unsuitable for
integrds of the kind we are considering, which involve integration over spaces
of hundreds or thousands of weight parameters. For instance, if we try to sam-
ple weight space on some regular grid then, since the number of grid points
grows exponentially with the dimensionality (see the discussion of the 'curse of
dimensionality' in Section 1.41, the computational effort would be prohibitive.
'I'e resort instead to various forms of random sampling of points in weight space.
Such methods are called Monte Carlo techniques.

The integraIs we wish to evaluate take the form

where P (~] D) represents posterior distribution of the weights, and P(w) is some
'nk'l;cgrand. The basic idea is to approximate (10.107) with the finite sum

426 10: Bayesian Techniques f 0.9: Monte Carlo methods 427

ing an integral using (10.108) may be much larger than if the vectors had been
independent.

-
2 = 1

As it stands, such an approach does not yet achieve the desired aim of sam-
~1in.g preferentially the regions where p(wlD) is large. This can be achieved by

where iwi) represents a sample of weight vectors generated from the distribution a modification to the procedure, known as the Metmpolzs algorithm (Metropolis p (w l ~) . The key difficulty is that in general it is very difficult t o generate a set
e t a(, 1953), which was developed to study the statistical mechanics of physical

of vectors having the required distribution. systems. The idea is to make candidate steps of the form (10.111), but to re-
One appro& would be to consider some simpler distribution dw) from ject a proportion of the steps which lead to a reduction in the value of p(wlD).

which we easily generate suitable vectors. we can then write
This must be done with great care, however, in order to ensure that resulting
sample of weight vectors represents the required distribution. In the Metropolis
algorithm this is achieved by using the following criterion:

which makes use of the fact that we can easily evaluate p(wl D), even thou5,, wc

cannot easily generate vectors having this distribution. In fact we cannot even
normalize p(wlD), and so we should modify (10.109) slightly and use

where jT(wilD) is the un-normalized distrihution. This approach, which is called
importance sampling, does not solve our problem, because for neural networks
the value of p(wlD) is typically very small except in extremely narrow regions
of weight space. Thus, for any simple choice of q(w), most of the vectors will fall
in regions where p(wlD) is small, and so a prohibitively large sample of vector;
would be required to build up an accurate approximation to the integral.

We must therefore face the task of generating a sample of vectors w reprewn-
tative of the distribution p(w ID). To do this effectively, we must search through
weight space to find regions where p(wlD) is reasonably large. This can be done
by considering a sequence of vectors, where each successive vector depends On
the previous vector as well as having a random component. Such techniques nrC
called Markov chain Monte Carlo methods, and are reviewed in Neal (1993). Ti'e
simplest example is a mndom walk in which at successive steps we have

where e is some small random vector. chosen for instance from a spherical GaU'
sian distribution having a small variance parameter. Note that suecessivP ~~''''
generated in this way will no longer be independent. As a result of this cJpp"-
dence, the number of vectors needed to achieve a given accuracy in app

soxi mat'

if p(wneWP) > P C W O I ~ ID) accept

if p(w,,,,]D) < ~ (w d d ID) accept with probability ~ C ~ n e w l D) (10.112)
P (W ~ ID) '

In terms of an error function E = - Inp, this can be expressed as

if En,, < Eold accept
(10.1 13)

if Enew > accept with probability exp {-(,I&,, - Eold)}.
I

The candidate steps are generated in a way which satisfies the principle of de-
tailed balance. This requires that, if the current vector is w ~ , the probability of
generating a candidate vector w2 must be the same as the probability of gener- !
ating wl the candidate vector if the current vector is w2. The random walk
formula (10.11 I), for example, with s governed by spherical Gaussian distribu-

I tion, clearly satisfies this property. The Metropolis algorithm has been used with
3eat success in many applications. In the case of the Bayesian integrals needed
for neural networks, however, it can still prove to be deficient due to the strong
correlations in the posterior distribution, as illustrated in Figure 10.16.

This problem can be tackled by taking account of information concerning the
F'adient of p(wJD) and using this to choose search directions which favour re- I
gens of high posterior probability. For neural networks, the gradient information
'"easily obtained using back-propagation. Again, great care must be taken to
?"sure that the gradient information is used in sueh a way that the distribution
Of weight vectors which is generated corresponds to the required distribution. I

Procedure for achieving this, known as h y b d Monte Carlo, wils developed
1 'v Duane et ai. (1987), and was applied to the Bayesian treatment of neural

"h0rks by Neal (1992, 1994). I
O m of the potential difficulties which still remains is the tendency for such

*'Qrithrns to spend a long time in the neighbourhood of poor local maxima of

I Probability (corresponding to local minima of the regularized error function),
'I" so fail to discover good maxima which make a much more significant mntri-
'''hion to the integral. A standard technique for improving t h e situation is called I

428 10: Bayesian Techniq~ses

Figure 10.16. When the standard Metropolis algorithm is applied to the e d -
uation of integrals in the Bayesian treatment of neural networks, a large prc-
portion of the candidate steps are rejected due to the high correlations in the
posterior distribution. Starting from the point wold, almost all potential steps
(shown by the arrows) will lead to a decrease in p(w[D). This probiem becomes
even more severe in spaces of higher dimensionality.

simulated annealing (following an analogy with physical systems) introdliced by
Kirkpatrick et al, (1983). For the standard Metropolis algorithm, this is achieved
by modifying (10.113) to give

if En, < Eold accept

if En,, > Eold accept with probability exp

where T is a parameter generally referred to as temperature. This algorithnl
leads to a sequence of vectors which ~ p p t o t i c a l l y represent the distribution
exp{- E(wlD) JT) . For T = I we recover the desired distribut.ion. For T >> 1.
however, the system can explore weight space much more freely, and can readily
escape from local error function minima. Simulated annealing involves starting
with a large value for T and then gradually reducing its value during the course
of the simulation, giving the system a much better chance to settle into a region
of high probability. The application of simul~tt?d annealing to the Monte Carla
algorithm for the Bayesian treatment of neural networks ha? been considered I??'
Neal (1992, 1994) although was not found to be essential.

By using the hybrid Monte Carlo algorithm it is possible to generate a suitai-lr
sample of weight vectors wi for practical applications of neural networks
reasonable computational time. For agiven test input vector x, the corrcsponf~ill~
network predictions y(x; w,) represent a sample from the distribution p(ylx,
This allows the uncertainties on the network outputs, associated with a w'~'
input vector, to be assessed. The estimation of the erridence, how~vcr, remains I'

difficult problem. Anot-her significant problem with Monte Carlo rnct hods is tlkr

10.10: Minimum description length. 429

difficulty in defining a suitable termination criterion. Despite these drawbacks,
Monte CarIo techniques offer a promising approach to Bayesian inference in the
context of neural networks.

10.10 Minimum description Iength

An alternative framework for discussing model complexity is provided by the
minimum description length principle (Ttissanen, 1978). Although conceptually
very different, this approach leads to a formdisrn which is essentially identical to
the Bayesian one. Imagine that a 'sender' wishes to transmit a data set D to a
'receiver', as indicated in Figure 10.17, using a message of the shortest possible
length {where the length of the message might be measured by the number of
bits, for instance). One approach would he simply to transmit a suitably encoded
form of the data set itself using some fixed coding scheme with the assumption
that the data points are independent. However, if there are systematic aspects to
the data, the details of which are not known to the receiver in advance of seeing
the data, then we wouId expect to be able to use a shorter message if we first
transmit information specifying some model 7-1 which captures those aspects,
using a message of length L('FI), and then send a secand message specifying how
the actual data set differs from that predicted by the model. We can regard
L(1-l) as a measure of the complexity of the model, since a more complex model
will require more information to describe it. The message needed to send the
discrepancy information has length denoted by L(D/3-C), which can be viewed as
an error term. We shall suppose that the input data values are known already to
the receiver, since we are not trying t o predict the input data, only the output
data. Thus the total length of the rnwsage which is sent is given by

description length = L(DIR) + L(H) (10.115) - v
error complexity

We can see that the goal of choosing the shortest description length leads t o
a natural form of Occam's razor. A very simple model will be a poor predictor
of the data, and so the errors will be large and th is wiII lead to a large error
term in (10.1 15). Allowing for a more complex model can lead to a reduction in
the ermr contribution, but too complex a model will require a lot of information
to specify and hence wil1 lead to a Iarge complexity term in (10.115). Intuitively
Tk'e expect the shortest description length to occur when the model H gives an
accurate representation of the statistical process which generated the data, and
x7': also expect that , on average, this model will have the best generalization
Properties.

In Section 6.10 we showed that, to transmit information about a quantity s
efficiently, a sender and receiver shouId agree on a suitable probability distribu-
tion p(x) . The minimum amount of information, in bits, needed t o transmit the
val~rc of x is then giver1 by - log2p(r). If p(x) happens to be the true distribution
for 5 then this minimum amount of informat !or1 will take a srnxIler value t l r ~ ~ n for

10: Bayesian Technique8

sender receiver

Figure 10.17. Illustration of the concept of minimum description length. A
data set D can be transmitted from a sender to a receiver by first sending a
prescription for a model 7-1, using a message of length L(7-I), and then transmit-
ting the discrepancies between the data predicted by Fl and the actual data,
which represents a message of length LIDI'FE). The principle of minimum de-
scription length then selects as optimal that mode1 which minimizes the total
information transmitted.

any other choice of distribution. For convenience we shall measure information
using logarithms to base e in which case the information, given by - lnp(s), is
measured in 'nats'. This allows us to write the description length in (10.115) in
the form

description length = - In p(DI'H) - lnp(3-1) = - l n ~ (z I D) - l n ~ (D) (10.116)

so that the description length is equivalent, up to an additive constant - InplD),
to the negative logarithm of the posterior probability of the model given the data
set.

We now consider the problem of determining the values for the weights in
a network model. Suppose that we consider a particular weight vector, which
we can regard as a 'most probable' set of weights. The cost of transmitting the
weights and the data given the model can be written as the sum of two terms

where the second term on the right-hand side represents the cost of specifying
the weights, and the first term is the cost of specifying the data for given values
of the weights (i.e. the cost of specifying the errors between the true values far
the data and the values predicted by the model with the weighk set to the gix7efl
values). In order to transmit this information, the sender and receiver need to
agree on specific forms for the distributions. Suppose we mods1 the distributio*'
of the weights as a zero mean Gaussian with variance a-"

where W is the total number of weight pnrarneters. Similarly let us suppose that
we model the distributioi~ of errors by a Gaussian with variance 0 - I rentred "I'

the prediction ~ (x ; w) made by the model

10.10: Minimum desception length 431

Figure 10.18. When a continuous variable x is encoded to some finite precision
6 x under a distribution p (x) , the information required to describe the value of
the variable is given by the negative logarithm of the probability mass under
the distribution, shown by the shaded region.

Then the description Iength (10.117) can be written in the form

which we recognize as the standard sum-of-squares error function with a weight-
decay regularizer.

An additional consideration for continuous variables, which we have so far
ignored, is the precision with which they are encoded. We cannot specify a con-
tinuous quantity 3: exactly since that would require an infinite message leneh,
so instead we aptxi& its d u e to within some small tolerance 6s. The message
len@h needed to do this is given by the negative logarithm of the probability
mass within this range of uncertainty, as indicated in Figure 10.18. If the tol-
erance Sx is sufficiently small, then this probability mass is given to a good
approximation by p{z)Sx.

For the data term In p(D (w, 1-11 the additional contribution from the precision
6D of the variables represents an i r r e l m t constant. For the weights, hawever,
the precision plays an important role, since if the weights are specified t o a low
Precisian they can be transmitted with a shorter message, but the errors on
the data will then typicdly be larger and hence will need a longer message to
transmit them. Again, there is a trade-off, which leads to an optimal level of
Precision for the weights. For the case of Gaussim distributions, the calculations
can be made explicitly (Wallace and Freeman, 1987). The optimal precision far
the weights is re1atd to the posterior uncertainty in the parameters given by

432 10: Bayesian Techniques

Am' where A = -VVp(wlD, 3-1). The value of the description length with the
parameters set to their optimal values, and the weight precision set to its optimal
value, is then equivaIent to the Bayesian evidence given by (10.67).

So far we have considered the situation in which a 'most probable' set of
weight values is transmitted. As we have seen, however, the Bayesian approach
requires that; we consider not just a single set of weights, but a posterior probabii-
ity distribution of weights. One way to see how this arises within the description-
length framework is through the 'bits back' argument of Hinton and van Camp
(1993). Suppose the sender and receiver have already agreed on some prior dis-
tribution p(w1l-l). The sender uses the data set D to compute the posterior d i s
tribution and then picks a weight vector from this distribution, to within some
very fine tolerance 6w, using a string of random bits. This weight vector can be
communicated to the receiver by encoding with respect to the prior, with a de-
scription length of - In (p(w13-1) bw). Having sent the weight vector, the data can
then be transmitted with description length - ln(p(Dlw, 31)6D). Once the data
has been received, the receiver can then run the same training algorithm as used
by the sender and hence compute the posterior distribution. The receiver can
then deduce the string of random bits which were used by the sender to pick the
weight vector from the posterior distribution. Since these bits could be used to
communicate some other, quite unrelated, message, they should not be included
in the description length cost. Thus, there is a 'refund' in the description lensh
given by t In{p{wlD, 31-)bw), which is just the length of the hit string needed
to ~ i c k the weight vector from the posterior distribution with precision Sw. The
net description length is therefore given by

where we have used Bayes' theorem. This is the correct description length for
encoding the data, given the model, t o precision SD.

In this chapter we have considered two approaches to determining the poste-
rior distribution of the weights. The first is to find the maximum of the posterior
distribution, and then to fit a Gaussian function centred on this maximum. The
second approach is to express the posterior distribution in terms of a sample
of representative vectors, generatd using Monte Carlo techniques. We end this
chapter by discussing briefly a third approach, known as ensemble learning, which
again assumes a Gaussian distribution, but in which the mean and the variance
are allowed to evolve during the learning process (Binton and van Camp, 1993)-
Learning can be expressed in terms of a minimization of the ~ullback-Leibler
distance (Section 2.5.5) between the model distribution and the true posterior.
In general this is not computationally tractable. However, for two-layer networks
with linear output units, and with the assumption that the covariance rnatrh
of the model distribution is diagonal, the required derivatives can be evaluated

to any desired precision. The hope is that the resulting distribution, which need
no longer be centred on the most probable weights, might give a better repre
sentation of the posterior distribution. A potentially important limitation of this
approach, however, is the neglect of off-diagonal terms in the model distribution.

Exercises

10.1 (**) Consider a Gaussim distribution af the form

and show that this distribution has mean T and variance cr2 so that

Using these resuIts, show that the mean of the distribution (10.32) is given
by y ~ p and that its variance is given by (10.34). (Hint: in each case evaluate
the integral over t first, and then evaluate the integral over w using the
techniques of Appendix B).

10.2 (*A) Use the results derived in Appendix B to evaIuate the integral in
(10.32) directly, Do this by expanding the square in the exponent and
collecting together the terms which are quadratic in Aw. Then use the
result (B.22) to show that the distribution can be written as a Gaussian
of the form

in which the mean i s given by

and the variance is given by

Simplify this expression for the variance by multiplying numerator and
denominator by the factor

434 10: Bayesian Techniques Exercises 435

where I is the unit matrix. Hence, using the general result (BC)-' =
C-IB-I, show that the variance can be written in the form

10.3 (**) Use the results (10.123) and (10,124), together with the results ob-
tained in Appendix 3, to show that the mean of the distribution (10.521,
with p(wlD) given by (10.471, is given by a ~ p and that the variance is
given by (10.54).

10.4 I**) The expressions (10.126) and (10.129) for the mean and variance of
the distribution of target values were derived after linearizing the netwo
mapping function around the most probable weights, using (10.30). Co
sider this expansion taken to next order:

where G = VVyl,, . By using (10.123) and (10.124) with p(tJD) given 1
(10.32), and neglecting terms which are quartic in Aw, derive the followil
results for the mean and variance of the distribution of target values:

10.6 (*) Consider a red, symmetric matrix A, whose elements depend on some
parmeter a. Rorn the results given in Appendix A, we can diagondize A
by using the eigenvector equation in the form

and then defining the matrix V G (vl,. . . , vw) so that VTAV = D where
D = diag(q3,. . . , T ~) . Ue this result, together with the fact that V is an
orthogonal matrix so that VTv = WT = I, to show that

10.7 (**I For the weight prior (10.133) considered in Exercise 10.5, find an.
expression for the logarithm of the evidence p(Dl{ak), P) analogous to
the expression given by (10.67). Use the resuIt (10.137) to show that the
following conditions are satisfied when this log evidence is maximized with
respect to and ak:

10.5 (*) The next four exercises develop the extension of the Bayesian formalism
to the case of more general prior distributions given by (10.22) in which
the weights are partitioned into groups labelled by k . First, show that the
prior (10.22) can be written

where I k is a matrix whose elements are all zero, except for some elements
on the leading diagonal Jii = 1 where i corresponds to a weight from g o u p
k. Show that the normalization coefficient Zw is given by

where Wk is the number of weights in group k. Verify that the distribution
of network outputs is again given by (1 0.331, with variance given by (10.34
in which the Hessian matrix A is given by

where y z Ck r k , 2Ewk = W ~ I ~ W , and

Here q, are the eigenvalues of A as in (10.136) with A given by (10.135).
Verify that, if all of the weights are included in the prior, and all of the
caeficients aft: are constrained to a single common value a, then these
results reduce to the ones presented in the text for the simple weighb
decay prior (10.9). We see that the use of the more general prior (10.133)
requires the eigenvectors of the Hessian to be computed, as well as the
eigenvalues. The use of the standard weight-decay prior (10.9) requires
only the eigenvalues, Ieding to a saving of computational effort (Press et
al., 1992).

10.8 (* *) By using the results of the previous exercise, together with (10.79)
and analogous expressions for the variances U E ~ , , ~ , show that the Gaussian
approximation for the evidence p(D\(ak), P) around the most probable
values has variances given approximately by

436 10: Bayesian Techniques

Hence show that the contribution to the logarithm of the model evidence
arising from the distribution of values of ah and P is given by

.10.9 (*I Show that, for the logistic sigmoid $(a) given by (10.45), the function
g(a) - 0.5 is =ti-symmetric. Hence show that the marginalized network
output P(Cl lx, D) given by (10.56) is equal t o 0.5 when aMp(x] = 0.

10,10 (* **) Consider the approximation (10.57) to the integral in (10.56). In-
vestigate the accuracy of this approximation by evaluating (10.56) using
numerical integration (Press et al., 1992) with g(a) given by (10.45) and
p(arD) given by (10.53). Plot a graph of P(Cllx, D) versus aMp for s2 = 4
by numerical integration of (10.56). Similarly, plot a graph of P(Cl lx, D)
obtained by evaluating the approximation (10.571, and also plot the differ-
ence between these two graphs on a suitably expanded vertical scde.

10.11 (* *) Consider the Gaussian approximation for the distribution of 0 given
by (10.78), and the andogous result for p(DI In a), in which the variances
are given by (10.81) and (10.84). In these expressions, any correlation be-
tween a and p was neglected. Show that the reciprocal of the OR-diagonal
term in the inverse covariance matrix for the more generd Gaussian dis-
tribution p(DI In a, In 0) is given by

Evaluate this term using the expression for the Iog evidence given by (10.67)
together with the results (10.68) and (10.71). Show that this term is neg-
Iigible compared to the diagonal terms, and hence that the assumption of
separable distributions for In a and In f l is justified.

10.12 (*) Consider a probability density for a vector x, which is parametrized
by a vector 8. If the density takes the form

then 0 is said to be a location parameter. An exmpIe would be the mean
vector in a normal distribution. We can obtain a, non-informative prior
p(0) for the location parameter by the following argument {Berger, 1985)-
Suppose that instead of observing x we observed xt = x t c where C is
a constant (this corresponds t o a simple shift of the origin of the coordi-
nate system). Then the density of this new variable is f (xf - 8') where
8' = 0 -I- c. Since this has the same structure as the original density, it is

natural to require that the choice of prior be independent of this change in
coordinates. Thus we have

where p'(Bf) is the prior for O', and A is an arbitrary region of B-space.
Show that (10.146) requires that the prior must have the form p (0) =

const. This ia an improper prior, since it cannot be normalized, and it is
conventional to take p(0) = 2.

10.13 (*) If a probability density can be written in the form

then s is known as a smk parameter, An example would be the standard
deviation parameter u in a normal distribution of the form

We wish to find a non-informative prior p(s) for the scale parameter s
(Berger, 1985). Suppose that instead of observing x we observe x' = cx
where c is a constant. Show that the density for x' takes the form I

where sf = cs. Since this has the same structure as (10.147) we require
that the prior for s', which we denote by py(sf) be the same as the prior
for s. Thus we have

(10.150)

where A = (a, b) is any interval in (0, m). Show that this implies that the
prior should take the form p(s) E 11s. Hence show that the prior for Ins
is constant. This is an improper prior, since it cannot be normalized, and
it is conventional to take p(s) = l/s.

10.14 (*) Consider the predictive distribution for a network output variable
given by (10.28) and suppose we approximate the integration over weight
space by using the Monte Carlo expression (10.108). Show that, for a noise
model given by the Gaussian (10.14), the mean and variance of the distri-
bution p(t lx, D) are given by

438 10: Bayesian Techniques

Figure 10.19. An illustration of the technique of i+ejection sampling for gener-
ating d u e s from a distribution p(w1.Q). Values are generated from a simpler
distribution governed by the function f (w) which satisfies f (w) 2 p(w1D).
These values are accepted with probabiIity governed by the ratio p(w ID)/ f (w)
as describd in the tat.

10.15 (** *) This exercise is concerned with the implementation of a simple
Monte Cario method for finding the most probable network interpolant
and for estimating corresponding error bars. It is based on the technique
of rejection sampling (Devroye, 1986; Press et al., 1992) for generating a
random sample from a complex distribution. Consider the probbm of gen-
erating values for a single variable w from a distribution p(w1D). We shall
suppose that evaluating p(wlD) is straightforward, while generating values
of w directly from this distribution is not. Consider a function f (w) which
satisfies f (w) 2 p(urlD) for all w as shown in Figure 10.19, and suppme
that vaIues of w are generated at random with a distribution proportional
to f (w) . Verify that, if these values are accepted with probability given
by the ratio p(wjD)/f (v) then the accepted d u e s will be governed by
the distribution p(w1D). (Hint: one way to do this is to use Figure 10.19
and to show the result geometrically.) We now apply this technique to
the generation of might vectors from the posterior distribution of network
weights. Suppose we choose f (w) = Ap(w) where A is a constmt and
p(w) is the prior weight distribution. Consider a likelihood function given
by (10.12) and use Bayes' theorem in the fonn (10.3) to show that the con-
dition f (w) ? p(wlD) can be satisfied by choosing A-' = ZDP(D) where
p(D) is the denominator in (10.3). Hence show that might vectors can be
generated &om the posterior distribution simply by selecting them f r o r
the prior and then accepting them with probability given by e x p (- P E ~)
Implement this numerically for a sirnpEe regression ~roblem by consider-
ing a single-input single-output two-layer network with sigmoidaI bidder
units and a linear output unit, together with a data set consisting of
more than ten data points. Generate weight vectors from a Gaussian prior
given by (10.9) with a fixed suitably-chosen value of a, and select them

Exercises 439

with a likelihood function e x p (- P E ~) having a h e d value of P and a
sum-of-squares error ED until around 10 or 20 weight vectors have been
accepted. Techniques for generating numbers with a Gaussian distribution
are described in Press et aE. (1992). Plot the corresponding set of network
functions on the same graph, together with the original data points. Use
the resuits of Exercise 10.14 to plot on a separate graph the Monte Carlo
estimates of the mean of the predictive distribution, as well as the error
bars, as functions of the input variable x. Note that rejection sampling is
not suitable as a practical technique for large-scde problems since the time
required by this algorithm grows exponentially with the number of data
points.

A: S p m e t d c Matrices 441

APPENDIX A

SYMMETRIC MATRICES

In several chapters we need to consider the properties of real, symmetric matri-
ces. Examples include Hessian matrices (whose elements are given by the second
derivatives of an error function with respect to the network weights) and covari-
ance matrices for Gaussian distributions. Symmetric matrices have the property
that Aij = Aj,, or equivalently A~ = A where denotes the transpose of A.

The inverse of a symmetric matrix is aIso symmetric. To see this we start
from the definition of the inverse given by A-'A = I where I is the unit matrix,
and then use the general result that, for any two matrices A and B, we have
(ABST = B=A=. This gives AT(A-I]T = I which, together with the symmetry
property AT = A, shows that (A - ') ~ = A-' as required.

Eigenvec tor equation

We begin by considering the eigenvector equation for a symmetric matrix in the
form

where A is a W x W matrix, and k = 1,. . . , W. The eigenvector equations (A.1)
represent a set of coupled linear algebraic equations for the components uk, of
the eigenvectors, and can be written in matrix notation as

where D is a. diagonal matrix whose elements consist of the eigenvalues Ak

and U is a matrix whose columns consist of the eigenvectors u k . The neeessar?'
and sufficient condition for the set of simultmeous equations represented b!'
(A.2) to have a solution is that the determinant of the matrix of coefficient?
vanishes, so that

Since this is an Wth order equation it has precisely W roots.
We can show that the eigenvectors can be chosen to form an orthonormal

set, as follows. For any pair of eigenvectors uj and u k , it follows from (A.1) that

Subtracting these two equations, and using the symmetry property of A we find

Thus, for Ah # Xj, the eigenvectors must be orthogonal. If Ak = Xj, then any
linear combination of the eigenvectors uj and uk will also be an eigenvector, and
this can be used to choose orthogonal linear combinations. A total of W orthog-
onal eigenmctors can be found, corresponding to the W solutions of (A.43. Note
that, if uk is an eigenvector with eigenvalue Xk, then Puk is also an eigenvector,
for any non-zero pl, and has the same eigendue. This property can be used to
normalize the eigenvectors t o unit length, so that they become an orthonormal
set satisfying

If we multiply (A.1) by A-' we obtain

so we see that A-l has the same eigenvectors as A but with reciprocal eigenvaI-
ues.

Diagonalisat ion

The matrix A can be dtagonalized using the matrix U. From (A.1) and (A.8) it
follows that

where D is defmed by (A.3). h m (A.8) it follows that the matrix U is orthog-
onal, in other words it satisfies

Consider a vector x which is transformed by the orthogonal matrix U to give
a new vector

442 A: Symmet~c Matrices A: Symmetric Matrices
443

% = tSTx. (A.12) from (A.16) that the surfaces of constmt F (x) are hyperellipsoids, with principal
axes having lengths propmtional to A;''~.

As a consequence of the orthogonality property (A . l l) , the length of the ve~tor
is preserved by this transformation:

Similarly, the angle between two vectors is also preserved

Thus, the effect of multiplication by uT is equinlent to a rigid rotation of the
coordinate syskem.

General quadratic form

There are several points in the book where we need to consider quadratic h n c -
tions of the form

where A is an arbitrary matrix. Note that we can, without Ims of generality,
assume that the matrix A is symmetric, since any anti-symmetric component
would vanish on the right-hand side of (A. 15). We can diagonalize this quadratic
form by using the orthogond matrix U, whose columns are the eigenvectors of
A, as follows:

where we have used (A.10), (A.11) and (A.12).
A matrix A is said to be po~itiue defmite if V*AV > O for any non-zero

vector Y. It follows from (A.l) and (A.8) that the eigendues of a positice
definite matrix are all positive, since

If the matrix A in the quadratic form (A.15) is positive definite, then i t follo~*

APPENDIX B

GAUSSIAN INTEGRALS

One variable
We begin by evaluating the following Gaussian integral

This is easiIy done by considering the square of the integral, and then transform-
ing to polar coordinates:

where we have changed variables first using x = T cosd, y = rsinB and then
using rZ = u. W n g the square root we finally obtain

Several variables

Consider the evaluation of the W-dimensiona1 Gaussian integral

B: Gazlssian Integrals 445 I
where A is a W x W real symmetric matrix, w is a W-dimensional vector, and
the integration is over the whole of w-space. In order to evaluate this integral it
is convenient to consider the eigenvector equation for A in the form

Since A is real an$ symmetric, we can choose the eigenvectors to form a complete
orthonormal set

as discussed in Appendix A. We can then expand the vector w as a linear com-
bination of the eigenvectoss

The integration over the weight values dwI . . . dww can now be replaced by an
integration aver d a l . . . dow. The Jacobian of this change of variables is given
by

where u k i is the ith element of the vector uk , and 'det' denotes the determinant.
The uk i are also the elements of a matrix U whose coJumns are given by the uk ,
and which is an orthogonal matrix, i.e. it satisfies uTU = I, since its columns
are orthonormal. Thus

and hence) J1 = 1. Using the orthonormality of the u k we have

The various integrals over the ak now decouple, and so we can write

Using the result (B.3) we obtain

B: Gaussian Integrals

Since the determinant of a matrix is given by the product of its eigenvalues,

we finally obtain

Inclusion of Hnear term

In deriving the distribution of network outputs within the Bayesian framework in
Exercise 10.2, we need t o consider a more general form of the Gaussian integral,
which has an additional linear term, of the form

Again, it is convenient to work in terms of the eigenvectors of A. We first define
hk to be the projections of h onto the eigenvectors

This again leads to a set of decoupled integrals over the ak of the form

Completing the square in the exponent, we have

B: Gaussian Integmls 447

If we now apply A-' to both sides of (B.5) we see that A-' has the same
eigenvectors as A, but with eigendues A;':

A-'U~ = XL'U~ . (B.20)

Thus, using (B.6) and (3.161, we see that

J-4 hTA-'h = -
k Xk'

Using this result in (B.19) we obtain our final result:

Iw = (2 ~) ~ / ' l ~ l - ' / ~ exp

If we now change integration variables to Ek = ak - hk /Ak, we again obtain A

product of integrals which can be evaluated using (3.3) to give

APPENDIX C

LAGRANGE MULTIPLIERS

The technique of h p n g e multipliers, also sometimes called undeteained mul-
tipliers, is used t o find the stationary points of a function of several variables
subject to one or more constraints.

Consider the problem of finding the minimum of a function f (xl, x2) subject
to a constraint relating sl and sz which we write in the form

One approach would be to solve the constraint equation (C.1) and thus express
sz as a function of X I in the form x2 = h (x l) . Thii can then be substituted into
f (z ~ , x z) to give a function of X I alone of the form f (xr, h (x l)) . The maximum
with respect to XI could then be found by differentiation in the usual way, to
give the stationary value x;Rin, with the corresponding value of z 2 given by
xpn = h(xFin).

One problem with this approach is tha t it may be dificult t o find an analytic
solution of the constraint equation which allows 2 2 to be expressed as an explicit
function of X I . Also, this approach treats and xg differently and so spoils the
natural symmetry between these variables.

A more eIegaat, and often simpler, approach is based on the introduction of
a parameter A called a Lagrange multiplier. We motivate this technique from
a geometrical perspective. Consider the case of d variabfes X I , . . . , xd which we
can, group into a vector x. The constraint equation g(x) = 0 then represents a
surface in x-space as indicated in Figure C.1. At any point P on the constraint
surface, the gradient of the function f (x) is given by the vector V f . To find
the stationary point of f (x) within the surface we can compute the component
Vll f of V f which lies in the surface, and then set VIF f = 0. Consider the Taylor
expansion of the function g(x) when we move a short distance from the point x
in the form

If the point x + E is chosen to lie within the surface then we have g(x + E) = g(x)
and hence E=V~(X) = 0. Thus we see that the vector Vg is normal to the surface
g(x) = 0. We can then obtain the component Vll f which lies in the surface b ~ '
adding to V f some muItiple of the normal vector Vg so that

Figure C.1. A geometrical picture of the technique of Lagrange multipIiexs.
The gradient of a function f (x) at a point P is given by a vector Vf. We
wish to find the component of this vector lying within the constraint surface
g(x) = 0. This can be done by gubtracting from Vf an appropriate rnuItipie
of the vector normal to the constraint surface, given by Vg.

where A is a Lagrange mmuItipIier. It is convenient to introduce the Lagrmgian
function given by

W e then see that the vector VL is given by the right-hand side of (C.3) and so
the required stationarity condition is given by setting VL = 0. Furthermore, the
condition aL/aA = O leads to the constraint equation g(x) = 0.

Thus to fmd the minimum of a function f (x) subject to the constraint
g (x) = 0 we define the Lagrangian function given by (C,4) and we then find the
stationary point of L(x, A) with respect both to x and A. For a ddimensional
vector x this gives dl + 1 equations which determine both the stationary point;
x* and the value of A. If we are only interested in x* then we can eliminate X
from the stationarity equations without needing to find its value (hence the term
'undetermined multiplier').

As a, simple example, suppose we wish to find the stationary point of the
function f (xl, x 2) E x l x ~ subject to the constraint g (x 1 , xz) = XI + z2 - 1 = 0.
The corresponding Lagrangian function is given by

The conditions for (C.5) to be stationary with respect to X I , X Z , and A then give
the following coupled equations:

450 C: Lagmrsge Multipliers

Solution of these equations gives the s tat ionq point as (XI, xz) = (+,$).
This technique can be applied directly t o functions of more than two variables

Similarly it can be applied when there are several constraints simpIy by using one
Lagrange multiplier hk for each of the constraints gkfx) = 0 and constructing a
Lagrangian function of the form

This Lagrangian is then minimized with respect to x and {Ak). Extensions to
constrained functional derivatives (Appendix Dl are similarly straightforward.

A more formal discussion of the technique of Lagrange multipliers can be
found in Dixon (1972, pages 8&93).

APPENDIX D

CALCULUS OF VARIATIONS

At several points in this book we make use of the technique of functional difley-
entiation, also known as calculus of vacmP-iations. Here we give a brief introduction
to this topic, using an analogy to conventional differentiation. We can regard a
function f (x) as a transformation which takes x as input, and which generates
f as output. For this function we can define its derivative d f / d x by considering
the change in f (x) when the value of x is changed by a small amount 62 so that

A function of many variables f (sr,. . . , xd) can be regarded as a transformation
which depends on a discrete set of independent variables. For such a function we

i
have

" a f af = C --asi + o(ax2).
i=l

ax ,

In the same way, we can consider a functional, written as E [f] , which takes
a function f (x) as input and returns a scalar value E. As an example of a
functional, consider I

so that the value of E [f] depends on the particular choice of the function f (z).
The concept of a functional derivative arises when we consider how much E [f]
changes when we make a small change 6f (x) to the function f (x), where Sf (x)
is a function of x which has small magnitude everywhere but which is otherwise
arbitrary. We denote the functional derivative: of E [f] with respect to f (x) by
6E/6 f (x), and define i t by the folIowing relation:

APPENDIX E

PRJNCIPAL COMPONENTS

In Section 8.6, we showed that the optimal h a ; dimensionality reduction pro-
cedure (in the sense of least squares) was determined by minimization of the
following function:

where E is the covariance matrix defined by (8.2 1). W e now show that the solu-
tion t o this probrem can be expressed in terms of the eigenvectors and eigenvalues
of 32.

It is clear that (E.l) has a non-trivial minimum with respect to the only if
we impose some constraint. A suitable constraint is obtained by requiring the ur
to be orthonormal, and c m be taken into account by the use of a set of Lagrange
multipliers p,j (Appendix C). We therefore minimize the hnction

This is conveniently written in matrix notation in the form

where M is a matrix with elements pi,, U is a matrix whose columns consist of
the eigenvectors ui, and I is the unit matrix. If we minimize (E.3) with respect
to U we obtain

By definition, the m~tr ix E js symmetric. Also, the matrix M can be taken to bp

symmetric without loss of generality, since the matrix U V is symmetric as is
the unit matrix I, and hence any anti-symmetric component in M would vanish
in (E.3). Thus, we can write (E.4) in the form

EU = UM. CE.5)

Since, by construction, U has orthonorma1 columns, it is an orthogonal matrix
satisfying UTu = I. Thus we can write (E.5) in the equiwlent form

Clearly one solution of this equation is to choose M to be diagonal so that the
columns of U are the eigenvectors of E and the elements of M are its eigenvalues.
However, this is not the only possible solution. Consider an arbitrary solution of
(E.5). The eigenvector equation for M can be written

where A is a diagonal matrix of eigenvalues. Since M is symmetric, the eigen-
vector matrix Q can be chosen to have orthonormal columns. Thus !I! is an
orthogonal matrix satisfying ilrT* = I. From (E.7) we then have

Substituting (E.6) into (E.8) we obtain

where we have defined

Using eqT = I we can write

Thus, an arbitrary solution to (E.6) can be obtained from the particular solution
fJ by application of an orthogonal transformation given by I. We now note that
the value of the criterion EM is invariant under this transformation since

456 E: Principal Components

where we have used the fact that the trace is invariant t o cyclic permutations
of its argument, together with 5PT* = I. Since dl of the possible solutions
give the same value for the residual error EM, we can choose whichever is mosl
convenient. We therefore choose the solution given by 6 since, from (E.95, this
has columns which are the eigenvectors of E,

REFERENCES

Abu-Mostafa, U. S. (1 989). The Vapnik-Chervonenkis dimension: information
versus complexity in learning, Neural Computation 1 (3), 31 2-3 17.

Ahmad, S. and V. Tresp (1993). Some solutions to the missing feature problem
in vision. In S. J. Kanson, J. D. Cowm, and C . L. Giles (Eds.), Advances
in Neural Iszfownation Processing System, Volume 5, pp. 393-400. San
Mateo, CA: Morgan Kaufmann.

Aizerman, M. A., E. M. Braverman, and L. I. k o n o e r (1964). The prob*
bility problem of pattern recognition learning and the method of potential
functions. Automation and Remote Control 25, 1175-1190.

Aknike, H. (1969). Fitting autore;ressive models for prediction. Annals of the
Institute of Statistical Mathematics 21, 243-247.

Akaike, H. (1973). Information theory and an extension of the maximum like-
lihood principle. In B. N. Petrw and F. Cs6ki (Eds.), 2nd International
Spmposium on Infomation Theory, pp. 267-281. Tsahkadsov, Armenia,
USSR.

Albertini, F. and E. D. Sontag (1993). For neural networks, function deter-
mines form. Neuml Networks 6 /+?), 975-990.

Anderson, J. A. (1982). Logistic discrimination. In P. R. Krishnaiah and L. N.
Kana1 (Eds.), Classification, Pattern Recognition and Reduction of Dimen-
sionality, Volume 2 of Handbook of Statistics, pp. 169-191, Amsterdam:
North Holland.

Anderson, J. A. and E. Rosenfeld (Eds.) (1988). Neurocomputing: Foundations
of Research. Cambridge, M A MIT Press.

Anderson, T. W. (1958). An Introduction to Multivariate Statistical Analy3is.
New York: John Wiley.

Arbib, M. A. (1987). Bmins, Machines, and Mathematics (Second 4.). New
York: S pr inger-Verlag .

Arnold, V. I. (1957). On functions of three variables. Doklady Akademiia Nauk
SSSR 114 (41, 679-681.

Baldi, P. and K. Hornik (1989). Neural networks and principal compc-
nent analysis: learning from examples without local minima. Neanzl Net-
W O T ~ S 2 (11, 53-58.

Barnard, E. (1992). Optimization for training neural nets. IEEE Transactions
o n Neuml Networks 3 (Z), 232-240.

Barnard, E. a~ ld D. Casmnt (1991). Invariance and neural nets. IEEE Trens-
nctzons on Neural Networks 2 (5) , 498-508.

Darron, A. n. (1984). Predicted squared error: a criterion for automatic model
selection. In S. J . Farlow (Ed.), Self-0qnn.izing AJethods in. Modelling, Vol-

References 459

ume 54 of Statistics: Textbooks and Monographs, pp. 87-103. New York:
Marcel Dekker.

Barron, A. R. (1993). Universal approximation bounds for superposition of
a sigmoidal function. IEEE Punsactions on Information Theoy 39 (3),
930-945.

Barron, A. R. and R. L. Barron (1988). Statistical learning networks: a unify-
ing view. In E. J. Wegrnan, D. T. Gantz, and J. J. Miller (Eds.), Cornput-
zng Science and Statistics: 20th Spmp03ium on the Interface, pp. 192-203.
Fairfax, Virginia: American Statistical Association.

Battiti, R. (1989). Accelerated backpropagation learning: two optimization
methods. Complex Systems 3, 331-342.

Baun, E. B. (1988). On the capabilities of muhilayer perceptrons. Journal of
Complexity 4 , 193-215.

Baum, E. 3- and D. Haussler (1989). What size net gives d i d generalization?
Neural Computation 1 (I), 151-160.

Baurn, E. B. and F. Wilczek (1988). Supervised barning of probability distri-
butions by neural networks. In D. 2. Anderson (Ed.), Neural Information
Processing Systems, pp. 52-61. New Yerk: American Institute of Physics.

Becker, S. and Y. Le Cun (1989). Improving the convergence of back-
propagation learning with second order methods. In D. Touretzky, G. E.
Binton, and T. J . Sejnowski {Eds.), Pmceedisags of the 1988 Connectionist
Models S~mmer School, pp. 29-37. San Mateo, CA: Morgan Kaufmann.

Bellman, R, (1961). Adaptive Contmb Processes: A Guaded Tour. New Jersey:
Princeton University Press.

BeIlo, ha. G. (1992). Enhanced training algorithms, and integrated train-
ing/architecture selection for multilayer perceptron networks. IEEE ?Turn-
actions on Neuml Netwods 3 (6$, 864-875.

Berger, J. 0. (1985). Statistical Decision Theoy and Bayesian Analysis (SK-
ond ed.). New York: Springer-Vedag.

Bishop, C. M. (1991a). A fast procedure for retraining the multilayer percep-
tron. International Journal of Neural Systems 2 (3), 229-236.

Bishop, C. M. (1991 b). Improving the generdization properties of radial basis
function neural networks. Neuml Compufation 3 (4)) 579-588.

Bishop, C. M. (1992). Exact cdculation of the Hessian matrix for the multi-
layer perceptron. Neumll Computation 4 (45, 494-501.

Bishop, C. M. (1993). Curvature-driven smoothing: a, learnhg algorithm for
feedforward networks. IEEE %nsactiom on Neuml fitworks 4 / 5) , 882-
884.

Bishop, C. M. (1994a). Mixture density networks. Technical Report N ~ R G
4288, Neural Computing Research Group, Aston University, ~iminghanl.
UK.

Bishop, C. M. (1994b). Novelty detection and neural network validation. IEE
Proceedings: Vision, Image and Signal Processing 141 (41, 217-222. special

issue an applications of neural networks.
Bishop, C. M. (1995). Training with noise is e q u i d n t to Tikhonov reguIar-

ization. Neural Computation 7 (11, 108-116.
Bishop, C. M. and C. Legleye (1995). Estimating conditional probability densi-

ties for periodic variables. In D. S. Tonretzky, G. Tesauro, and T. K. h e n
(Eds.), Advances in Nezsml lafornation Processing Systems, Volume 7.
Cambridge MA: MIT Press. In press.

BIock, H. D. (1962). The perceptron: a model for brain functioning. Reviews
of Modem Physics 34 (I), 123-135. Reprinted in Anderson and Rosenfeld
(1988).

Blurn, E. K. and L. K. Li (1991). Approximation theory and feedforward
networks. Neuml Networks 4 (4), 511-515.

Blum , J. R. (1954). Multidimensional stochastic approximation methods. An-
nals of Mathematid Statistics 25, 737-744.

Blurrier, A., A. Ehrenfeucht, D. Haussler, and M. K. Warmuth (1989). Learn-
ability and the Vapnik-Chervonenki dimension. Journal of the Association
for Computing Machinery 36 (41, 929-965.

BourEard, B. and Y. Kamp (1988). Aut*association by multiIayer perceptrons
and singular value decomposition. Biological Cybernetics 59, 291-294.

Bourlard, B. and N. Morgan (1990). A continuous speech recognitian system
embedding MLP into HMM. In D. S, Touretzky (Ed.), Advances in Neuml
Infomation Processing System&, Volume 2, pp. 186-193. San Mateo, CA:
Morgan Kaufmann.

Breiman, L., J. H. Friedman, R. A. Olshen, and C. J. Stone (1984). Class$-
attion and regression trees. Blemont, C A Wadsworth.

Brent, R. I?. (1973). Algo~thnts for Minimization without De~vatzves. Engle
wood Cliffs, NJ: PrenticeHalI.

Bridle, J. S. (1990). Probabilistic interpretation of feedforward classification
network outputs, with relationships to statistical pattern recognition. In
F. Fogelman Soulih and J. Herault (Eds.}, Neummputing: Algorithms,
Amhitectures and Applications, pp, 227-236. New York: Springer-VesIag.

Brigham, E. 0. (1974). T h e Fast Fourier ~ n s f o m . Engelwood CIiffs:
Prentice-HaI1.

Broomhead, D. S. and D. Lowe (1988). Multivariable functional interpolation
and adaptive networks. Complex Systems 2, 321-355.

Buntine, W. L. and A. S. Weigend (1991). Bayesian back-propagation. Corn-
plex Systems 5, 603-643.

Buntine, W. L, and A. S. Weigend (1993). Computing second derivatives
in feed-forward networks: a review. IEEE Transactions on Neuml Net-
works 5 (31, 48CT488.

Burrascano, P. {1991). A norm selection criterion for the generahzed delta
rule. IEEE Tm~sacEions on Neural Networks 2 (I), 125-130.

460 References References 461

Chauvin, Y. (1989). A back-propagation algorithm with optimal use of hidden
units. In D. S , Touretxky (Ed.), Advances in Neuvu'al Infomation Processing
Spstems, Volume 1, pp. 519-526. San Mateo, CA: Morgan Kaufmann.

Chen, A. M., K. Lu, and R. Hecht-Nielsen (1993). On the geometry of feedfor-
ward neural network error surfaces. Neuml Compp~tation 5 (61, 910-927.

Chen, S., S. A. Billings, and W. Luo (1989). OrthogonaI least squares meth-
ods and their application to non-hear system identification. International
Journal of Controt 50 (51, 1873-1896.

Chen, S., C. F. N. Cowan, and P. M. Grant (1991). Orthogonal least squares
learning algorithm for radial basis function networks. IEEE Transactions
on Neural Networks 2 (21, 302-309.

Cheng, B. and D. M. Titterington (1994). Neural networks: a review from a
statistical perspective. Statistical Science 9 (I), 2-54.

Cotter, N. E. (1990). The Stone-Weierstrass theorem and its application to
neural networks. IEEE Tramasactions on Neuml Networks 1 (4), 290-295.

Cover, T. M. (1965). Geometrical and statistical properties of systems of linear
inequalities with applications in pattern recognition. IEEE Yhnsactions on
Electronic Computers 14, 326-334.

Cox, R. T. (1946). Probability, frequency and reasonable expectation. Amer-
ican Journal of Physics 14 (I), 1-13.

Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function.
Mathematics of Control, Signals and Systems 2, 304-314.

Day, N. E. (1969). Estimating the components of a mixture of norrnd distri-
butions. BiornetP-ika 56 (3), 463-474.

De Boor, C. (1978). A Pmctical Guide to Splines. New York: Springer-Verlag.
Dempster, A. P., N. M. Laird, and D. B. Rubin (1977). Maximum likelihood

from incomplete data via the EM algorithm. Journal ofthe Ropd Statzsticad
Society, B 39 (I), 1-38.

Dennis, J. E, and R. B. Schnabel(1983). Nurne~cal Methods for ~nconstrained
Optimization and Nonlinear Equations. Englewood Cliffs, NJ: Prentice-
Hall.

Devijver, P. A. and J. Kittler (1982). Pattern R~ecognitzon: A Statistical AP-
pmach. Englewood Cliffs, NJ: Prentice-Hdl.

Devroye, L. (1986). Non-Uniform Random Vap-iate Generation. New York:
Springer-Verlag.

Disconis, P. and M. Shahshahani (1984). On nonlinear fnnctions of linear corn"
binakions, SIAM Jonmal of Scienctifific and Statistical Computing 5 (117
175-1 91.

Dixon, L. C . W. (1972). Nonlinear Optimimtion. London: English Universities
Press.

Drucker, R. and Y. Le Cun (1992). Improving generalization perfor-
mance using double back-propagation. IEEE Thnsactions on Neuml Neb
works 3 (6), 991-997.

Duane, S., A. D. Kennedy, B. J. Pendleton, and D. Roweth (1987). Hybrid
Monte Carlo. Physits Letters B 195 (21, 216-222.

Duda, R. 0. and P. E. Hart (1973). Paftem CTlassification and Scene Analyeis.
New York: John Wiby.

FahIrnan, S . E. (1 988). Faster-learning variations on back-propagation: an em-
pirical study. In D. nuretzky, G. E. Hinton, and T. J. Sejnowski (Eds.),
Proceedings of the 1988 Connectionist Models Swnmer School, pp. 38-51.
San Mateo, CA: Morgan Kaufmann.

Fahlrnan, S. E. and C. Lebiere (1990). The cascade-correlation learning archi-
tecture. In D. S. Towetzky (W.), Advances in Neural Infomation Process-
ing Sy~tems, Volume 2, pp. 524-532. Sm Mateo, C A Morgan Kaufrnann.

Fisher, R. A= (1936). The use of multiple measurements in taxonomic prob-
lems, Annals of Eugenics 7,179-188. Reprinted in Con~bu t ions to Math-
ematical Statistics, John Wiley: New York (1950).

Fletcher, R. (1987). Pmctical: Methods of Optimization (Second ed .). New
York: John Wiley.

Fkean, M. (1990). The upstart algorithm: a method for constructing and train-
ing feedforward neural networks. N e u d Computation 2 (21, 198-209.

Friedman, J. H. (1991). Multivariate adaptive regression splines (with discus-
sion). Annals of Statistics 19 (I), 1-14.

Friedman, J. H. and W. Stuetzle (1981). Projection pursuit regression. Journal
of the American Statistical Association 76 (376), 81 7-823.

hkunaga, K. (1982). Intrinsic dimensionality extraction. In P. R. Krishnaiah
and L. N. Kanal (Ms.), Clmsification, Pattem Recognition and Reduc-
tion of Dimensionality, Volume 2 of Randbook of Statistics, pp. 347-360.
Amsterdam: North Holland.

fikunaga, K. (1990). Intp-oducfioa to Statidid Pattern Recognition (Second
ed.) . San Diego: Academic Press.

fikunaga, K. and R. R. Hayes (1989). The reduced Parsen classifier. IEEE
Thnsactions on Pat tem Analysis and Machine Inteldigence 11 (4), 423-
425.

Fukunaga, K. and P. M. Narendra (1975). A branch and bound algorithm
for computing k-nearest neighbors. IEEE lhnsactions on Computers 24,
750-753.

Fukushima, K. (1988), Neocognitron: a hierarchical neural network capable of
visual pattern recognition. Neural Networks 1 (2), 119-1 30.

Fukushima, K., S. Miyake, and T. Ito (1983). Neocognitron: a neural network
model for a mechanism of visual pattern recognition. IEEE %n.sacCions
on Systems, Man, and Cybernetics 13, 826-834.

Funahashi, K. (1989). On the approximate realization of continuous mappings
by neural networks. Neuml Networks 2 (31, 183-192.

Gallant, A. R . and H. m i t e (1992). On learning the derivatives of an unknown
mapping with multilayer feedforward networks. Neuml Networks 5 (I) ,

464 References References 465

Hilbert, D. (1900). Mathematische problerne. Nachrichten der Akadeaie der
Wissenschaften Gottiagen, 29IT329.

Hinton, G. E. (1987). Learning translation invariant recognition in rnassiveIy
parallel networks. In J. W. de Bakker, A. J. Nijman, and P. C. Tsebaven
(Eds.), Proceedings PARLE Conference on PeralleI Architectures and Lan-
guages Europe, pp. 1-13. Berlin: Springer-Verlag.

Binton, G . E. (1989). Connectionist learning procedures. Arta'f;cial Intelli-
gence 40, 185-234.

Binton, G. E. and D. van C m p (1993). Keeping neural networks simple by
minimizing the description length of the weights. In Pmceedings of the
Sixth Annual Conference on Computational Learning Theory, pp. 5-13.

Bopfield, J . 3. (1987). Learning algorithms and probability distributions in
feed-forward and feed-back networks. Proceedings of the National Academy
of Sciences 84, 8429-8433.

Hornik, K. (1991). Approximation capabilities of rnultilayer feedforward net-
works. Neurral Networks 4 (2)) 251-257.

Hornik, K., M. Stinchcornbe, and H. White (1989). Multilayer feedforward
networks are universal approximators. Neunal Networks 2 (5) , 359-366.

Hornik, K., M. Stinchcornbe, and H. White (1990). Universal approximation
of an unknown mapping and its derimtives using rnultiIayer feedforward
networks. Neural Networks 3 (5) , 551-560.

Huang, W. Y. and R. P. Lippmann (1988). Neurd net and traditional clas-
sifiers. In D. Z. Anderson (Ed.), Neural Infomation Processing Systems,
pp. 387-396. New York: American Institute of Physics.

Buber, P. J. (1981). Robust Statistics. New York: John Wiley.
Huber, P. J, (1985). Projection pursuit. Annals of Statistics 13 (21, 435-475.
Hush, D. R, and J. M. Salas (1988). Improving the learning rate of back-

propagation with the gradient reuse algorithm. In IEEE International
Conference on NeumE Network, Volume 1, pp. 441-447. San Diego, CA:
IEEE.

Rmng, J. N., S. R. Lay, M. Maerhler, R. D. Martin, and J. Schirnert (1994).
Regression modelling in back-propagation and projection pursuit learning.
IEEE Transactions en Neural Netulorks 6 (31, 342-353.

Ito, Y . (1991). Representation of functions by superpositions of a step or sig-
moid function and their appjications to neurar network theory. Neural Net-
WO&S 4 (31, 385-394.

Ivakhnenko, A. G= (1 971). Polynomial t hmry of complex systems, IEEE %ns-
actzons on Systems, Man, and Cybernetics 1 (4), 364-378.

Jabri, M. and B. Flower (1991). Weight perturbation: an optimal architec-
ture and learning technique for analog VLSl feedforward and recurrent
multilayer networks. Neuml Computation 3 (41, 5 4 6 5 6 5 .

Jacobs, R. A. (1988). Increased rates of convergence through learning rate
adaptation. NeuraI Networks 1 (4), 295307.

Jacobs, R. A., M. I. Jordan, S. J. Nowlan, and G . E. Hinton (1991). Adaptive
mixtures of locd experts. Neural Computation 3 (I), 79-87,

Japes, E. T. (1986). Bayesian methods: general background. In J. H. Justice
(Ed.), Mdmarn Entrop9 and Bayesian Methods in Applied Statistics, pp.
1-25. Cambridge University Press.

Ji, C., R. R. Snapp, and D. Psdtis (1990). Generalizing smoothness constraints
from discrete samples. Neuml Computation 2 (21, 188-197.

Johansson, E. M., F. U. Dowla, and D. M. Goodman (1992). Backpropagation
learning for multilayes feedforward neural networks using the conjugate
gradient method. International Journal of Neural Systems 2 (41, 291-301.

Jollife, I. T. (1986). Principal Component Analysis. New York: Springer-
Verlag.

Jones, L. K. (1987). On a conjecture of Huber concerning the convergence of
projection pursuit regression. Annals of Statistdm 15 (21, 880-882.

Jones, L. K. (1990). Constructive approximations for neural networks by sig-
moidal functions. Proceedings of the IEEE 78 (lo), 158G1589.

Jones, L. K. (1992). A simple lemma on greedy approximation in Bilbert space
and convergence rates for projection pursuit regression and neural network
training. Annals of Statistics 20 (11, 608-613.

Jordan, M. I, and R. A. Jacobs (1994). Bierarchicd mixtures of experts and
the EM algorithm. Neuml Computation 6 (21, 181-214.

Kahane, J. P. (1975). Sur 1e theoreme de superposition de KoIrnogorov. Journal
of App~oximation T h e o ~ 13, 229-234.

Kailath, T. (1 980). Linear Systems. Englewood Cliffs, N J: Prentice-Hall.
Khotanzad, A. and Y. H. Hong (1990). Invariant image recognition by Zernike

moments. IEEE Tkansectaons on Pattern Anaiysh and Machine Intelli-
gence 12 (5), 489497.

Kiefer, J . and J, Wolfowitz (1952). Stochastic estimation of the maximum of
a regression function. Annals of Mathematical Statistics 23, 462-466.

Kirkpatrick, S., C. D. Gelatt, and M. P. Vecchi (1983). Optimization by sim-
ulated annealing. Science 220 (45981, 671-680.

Kohonen, T. (1982). Self-organized formation of topologically correct feature
maps. Biological Cybernetics 43,5969. Reprinted in Anderson and Rosen-
feld (1988).

Kolrnogorov, A. N. (1957). On the representation of continuous functions of
several miabIes by superposition of continuous functions of one variable
and addition. Doklady Akademiia iVQuk SSSR 114 (5) , 953-956.

Kraaijveld, M. and R. Duin (1991). GeneraIization capabilities of minimal
kernel-based networks. In Pmceedzngs of the International Joint Confer-
ence on Neural Networks, Volume I, pp. 843-848. New York: IEEE.

Kramer, A. H. and A. Sangimnni-Vincentelli (1989). Efficient parallel leam-
ing algorithms for neural networks. In D. S. Touretzky (Ed.), Advances in

466 References

Neslml Infomation Processzng Spstems, Volume 1, pp. 40-48. San Mateo,
CA: Morgan Kaufmann.

Kramer, M. A. (1991). Nonlinear principal component anaIysis using autoas-
sociative neural networks. AIme Journal 37 (2), 233-243.

Kreinovich, V. Y. (1991). Arbitrary nonlinearity is sufficient to represent a11
functions by neural networks: a theorem. Neural Networks 4 (3), 381-383.

Krogh, A. and J. Vedelsby (1995). Neural network ensembles, cross validation
and active learning. In D. S. Touretzky, G. Tesauro, and T. K. Leen (EMS.),
Advances in Neural Information Processing Systems, Volume 7. Cambridge
MA: MIT Press. In press.

KulIback, 5. (1959). Infomation Theory and Statistics. New York: Dover Pub-
lications.

Kullback, S. and R. A. Leibler (1951). On information and sufficiency, Annals
of Mathematical Statistics 22, 79-86.

KCrkovi, V. (1991). Kolmogorov's theorem is relevant. Neural Computa-
tion 3 /4), 617-622.

Kfirkovb, V. (1992). Kolmogorov% theorem and multilayer neurd networks.
Neural IVeCworh 5 (3), 501-506.

Kurkov6, V. and P. C. Kainen (1994). F'unctionaIly equivalent feed-forward
neural networks. Neural Computation 6 (33, 543-558.

Lang, K. J. and G. E. Hinton (1990). Dimensionality reduction and prior
knowledge in Eset recognition. In D. S. Touretaky (Ed.), Advances in
Neural InfomaEEon Processing Systems, Volume 2, pp. 178-185. San M*
teo, CA: Morgan Kaufmann.

Lang, K. J., A. H. Waibel, and G. E. Binton (1990). A timedelay neural
network architecture for isolated word recognition. Nesml Netguorh 3 (11,
23-43.

Lapedes, A. and R. Farber (1988). How neural nets work. In D. 5. Anderson
(Ed.), Neural Information Processing Systems, pp. 442-456. New York:
American Institute of Physics.

Le Cun, Y., B. Boser, J. 3. Denker, D. Henderson, R. E. Howard, W. Hubbard,
and L. D. Jackel (1989). Backpropagation applied to handwritten zip code
recognition. Ncurnl Computation 1 (41, 541-551.

Le Gun, Y., J. S. Denker, and S. A. Solla (1990). Optimal brain damage. In
D. S. Touretzky (EX), Advances in Neural Infomation Pmessing Sys-
t e m , Volume 2, pp. 598605. San Mateo, CA: Morgan Kaufmann.

Le Cun, Y., P. Y. Sirnard, and B. Pearlmutter (1993). Automatic learning
rate mmaximization by on-line estimation of the Hessian's eigenvectors. In
S. J. Hanson, J. D. Cowan, and C. L. Giles (Eds.), Advances zn ~ e u d
Infomation Processing Syxtems, Volume 5, pp. 156-163. San Mateo, CA:
Morgan Kaufmann.

Levenberg, K. (1944). A method for the solution of certain non-linear problems
in least squares. Quarterly Journal of Applied Mathematics I1 (21,164-168.

Lewis, P, M. and C. L. Coates (1967). Threshold Logic. New York: John Wiley.
Linde, Y., A. Buzo, and R. M. Gray (1980). An algorithm for vector quantizer

design. IEEE Fi-nnsactzons on Communications 28 (I), 84-95.
Linsker, R. (1988). Self-organization in a perceptual network. IEEE Com-

puter 21, 105-117.
Lippmann, R. P. (1987). An introduction to computing with neural nets. IEEE

ASSP Magazine, April, 422 .
Little, R. J. A. (1992). Regression with missing X's: a review. Journal of the

American Statistical Assaciation 87 /420), 1227-1 237.
Little, R. J. A. and D. B. Rubin (1987). Statistical Analysis with Missing Data.

New York: John Wiley.
Liu, Y. (1994). Robust parameter estimation and mode1 selection for neurd

network regression. In J. D. Cawan, G. Tesauro, and J. Alspeckor (Eds.),
Advances in Neuml Infamution Processing Systems, Volume 6, pp. 192-
199. Sm Mateo, CA: Morgan Kaufmann.

Lloyd, S. P. (1982). Least squares quantization in PCM. IEEE iPransactions
on Informafion Theorg, 28 (21, 129-137.

Lonstaff, I. D. and J. F. Cross (1987). A pattern recognition approach to
understanding the multi-layer perceptron. Pattern Recognition Letitem 5,
315-319.

Lorentz, G. G. (1976). On the 13th problem of Hidbert. In Pmceedings of
Spr~nposia in Pure Mathematics, pp. 419-429. Providence, M: American
Mat hematicd Society.

h w e , D. (1995). R d i d bmis function networks. In M. A. Arbib (Ed.), The
Handbook of Emin Theory and Neuml Networks. Cambridge, MA: MIT
Press. To be published.

Lowe, D. and A. R. Webb (1990). Fzploiting prior knowledge in network op-
timization: an illustration from medical prognosis. Network: Computation
in Neural Systems 1 (31, 294-323.

Lorn, D. and A. R. Webb (1991). Optimized feature extraction and the Bayes
decision in feed-forward classifier networks. IEEE Tbansactions on Pattern
Analysis and Machine Intelligence 13 (41, 355-364.

Luenberger, D. G . (1984). Linear and Nonlinear Programming (Second ed.) .
Reading, MA: Addison-Wesley.

Luo, 5. Q. (1991). On the convergence of the LMS algorithm with adaptive
learning rate for linear feedforward networks. Neural Computation 3 (21,
226-245.

Luttrell, S. I?. (1994). Partitioned mixture distribution: an adaptive Bayesian
network for 1 ow-level image processing. IEE Proceedings on Vision, Inaage
and Signal Processing 141 (43, 251-260.

MacKay, D. J. C. (1992a). Bayesian interpolation. Neuml Computation 4 (31,
415-447.

References 471

Niranjan, M., A. J. Robinson, and F. FalIside (1989). Pattern recognition with
potential functions in the context of neural networks. In M. Pietikiiinen
and J. 3tiining (Eds.), Pmceedings Sixth Scandinavian Confe~nce on Im-
age Analysis, Oulu, Finland, Volume 1, pp. 96-1 03. Pattern ;Recognition
Society of Finland.

Nix, A. D. and A. S. Weigend (1994). Estimating the mean m d variance of the
target probability distribution. Tn Pmceedings of the JEEE International
Conference on Neural Networks, Volume 1, pp. 5560. New York: IEEE.

Nowlan, S. J. and G. E. Hinton (1992). Simplifying neural networks by soft
weight sharing. Neuml Computation 4 (41, 473-493.

Oja, E. (1982). A simplified neuron model as a principaI component analyzer.
Journal of Mathematical Biology 15, 267-273.

Oja, E. (1989). Neural networks, principal components, and subspaces. Inte.r-
national Journal of Neural Systems 1 (11, 61-68.

Omohundro, S . M . (1987). Efficient algorithms with neural network behaviour.
Complex Spstems 1,273-347.

Owens, A. J. and D. L. Filkin (1989). Efficient training of the backpropaga-
tion network by solving a system of stiff ordinary differential equations.
In Pmceedings of t h e International Joint Conference on Neural networks,
Volume 2, pp. 381-386. San Diego: IEEE.

Park, J. and I. W. Smdberg (1991). Universal approximation using radid
basis function networks. Neusml Computation 3 (21, 246-257.

Park, 3. and I. W. Sandberg (1993). Approximation and radid basis function
networks. Neural Computation 5 (2), 305-316.

Parker, D. B. (1985). Learning logic. Technical Report TR-47, Cambridge,
MA: MIT Center for Research in Computational Economics and Manage-
ment Science.

Parzen, E. (1962). On estimation of a probability density function and mode.
Annals of Mathematical Statistzcs 33, 106.51076.

Pearlmutter, B. A. (1994). Fast exact multiplication by the Hessian. Neural
Computation 6 (11, 147-160.

Perantonis, S. J. and P. J. G. Lisboa (1992). Ranslation, rotation, and scale
invariant pattern recognition by high-order neural networks and moment
classifiers. IEEE T'runsactions on Neural Networks 3 (2), 241-251.

Perrone, M. P. (1994). General averaging results for convex optimization. In
M. C. Mazer et al. (Eds.), Proceedings 1993 Connectionist Models Summer
School, pp. 364-371. Hillsdale, NJ: Lawrence Erlbaum.

Perrone, M. P. sbnd L. N. Cooper (1993). When networks disagree: ensemble
methods for hybrid neural networks. In R. J. Mamrnone (Ed.), A & F C ~ ~ '
Neural Networks for Speech and Vision, pp. 126-142. London: Chapman

' & Hall.
Plaut, D., S. Nowlan, and G . E. Hinton (1986). Experiments on learning b!:

back propagation. Technical Report CMU-CS-86-126, Department of Corn+

puter Science, Carnegie Melloa University, Pittsburgh, PA.
Poggio, T. and F. Girosi (1990a). Networks for approximation and learning.

Proceedings of the IEEE 78 (91, 1481-1497.
Poggio, T. and F. Girosi (1990b). Regularization algorithms for learning that

are equivalent to multilayer networks. Science 247, 978-982.
Poggio, T., V. Torre, and C. Koch (1985). Computational vision and regular-

ization theory. Nataw 3317 @), 314-319.
PoIak, E. (1971). Compi.ttatzoaa1 Methods in Optimization: A Unified Ap-

proach. New York: Academic Press.
PoweI1, M. ;I. D. (1977). Restart procedures for the conjugate gradient method.

Mathemeticab Pmgmmming 12, 241-254.
Powell, M. J. D. (1987). Radial basis functions for multivariable interpolation:

a review. In J . C. Mason and M. G. Cox (Eds.), Algorithms for Approb-
mation, pp. 143-167. Oxford: Clarendon Press.

Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery (1992).
Numerical Recipes in C: The Art of Scientific Computing (Second ed.).
Cambridge University Press,

Quinlan, 3. R. (1986). Induction of decision trees. Machine Learning I, 81-106.
Rao, C. R. and S. K. Mitra, (1971). Generalized Inverse of Matrices and It5

Applications. New York: John Wiley.
Redner, R. A. and H. F. Walker (1984). Mixkyre densitim, maximum likelihood

and the EM algorithm. SIAM Rezview 26' (21, 195-239.
h i d , M. B., L. Spirkovska, and E. Ochoa (1989). Rapid training of higher-

order neural networks for invariant pattern recognition. Pn Proceedings of
the Internationat Joint Conference on Neural Netzl~a~ks, Volume 1, pp.
689-692. San Diego, C A IEEE.

Richard, M . D. and R. P. Lipprnann (1991). Neural network classifiers estimate
Bayesian a-posteriori probabilities, Neuml Computation 3 (4), 461-483.

Ricotti, L. P., S. Ragazzini, and G . Martinelli (1988). Learning of word stress in
a sub-optimal secondorder backpropagation neural network. In Pmceedings
of the IEEE International Conference an Neural Networks, Volume 1, pp.
355-361. San Diego, CA: LEEE.

Ripley, B. D. (1994). Neural networks and related methods for classification.
Journal of the Royal Statistical Society, B 56 (3), 409-456.

Rissanen, J. (1978). Modelling by shortest data description. Aufomatica 14,
465-471.

Robbins, H. and S. Monro (1951). A stochastic approximation method. Annals
of Mathematical Statistics 22, 400-407.

Rosenblatt, F. (1962). Principles of Ne~mdynamics: Pexeptmns and the The-
ory of Brain Mechanisms. Wrrshington DC: Spartan.

Rosenblatt, M. (1956). Rerna~ks on some nonparmetric estimates of a density
function. Annals of Mathematical Statistics 27, 832-837.

472 References

Rumelhart, D. E., R. Durbin, R. Golden, and Y. Chauvin (1995), Backpropa,
gation: the basic theory. In Y, Chauvin and D. E. Rumelhart (Eds.), Back-
propagation: Theory, Architectures, and Applications, pp. 1-34. Hillsdale,
NJ: Lawrence Erlbaum.

Rumelhart, D. E., G. E. Hinton, and R. J. Williams (1986). Learning internal
representations by error propagation. In D. E. Rumelhart, 3. L. McClej-
land, and the PDP Research Group (Eds.), Pamllel Rist~bzdted Process-
ing: Explorations in the Micmstmctuw of Cognition, Volume 1: Founda-
tions, pp. 318-362. Cambridge, MA: MIT Press. Reprinted in Anderson
and Rosenfeld (1988).

Sanger, T. D. (1989). Optimal unsupervised learning in a single-layer linear
feed- forward neural network. Neuml Networks 2 (6), 45S473.

Satchwel!, C. (1994). Neural networks for stochastic problems: more than one
outcome for the input space. Presentation at the Neural Computing Ap-
plications Forum conference, Aston University, September.

Schalkuff, R. J. (1989). Digital Image Processing and Computer Vision. New
York: John Wiley.

Schider, H. and U. Kartrnann (1992). Mapping neural network derived from
the Parxen window estimator. Nmml Networks 5 (61, 903-909.

Scott, D. W. (19921, Multivdate Density Estinaation: Theory, Practice, and
Visualization. New York: John Wiley.

Shanno, D. F. (1978). Conjugate gradient methods with inexact searches.
Mathematics of Operations Research 3 (3), 244-256.

Shannon, C. E. (1948). A mathematical theory of communication. The Be31
System Technical Journal 27 (3), 379-423 and 623-656,

Sibisi, S. (1991). Bayesian interpolation. In W. T. Grmdy and L. H. Schick
(Eds.), M u m u m entmpy and Bayesian methods, Lammze, 1990, pp. 349-
355, Dordrecht: KIuwex.

Siedlecki, W. and J. Sklansky (1988). On automatic feature selection. Inter-
national Journal of Pattern Rewgnition and ArCificiaE Intelligence 2 (2),
197-220.

Sietsma, J. and R. J. F. Dow (1991). Creating artificial neural networks that
generalize. NezdmI Networh 4 (I), 67-79.

Silverman, B . W. (1986). Density Estimation for Statetics and Data Analy§is.
London: Chapman & Hdl.

Sirnard, P., Y. Le Cun, and J. Denker (1993). Eficient pattern recognition
using a new transformation distance. In S. J. H-n, J. D. Cowan+ and
C. L. Giles (Eds.), Advances in Neuml Information Processing Systems,
Volume 5, pp. 5 M 8 . San Mateo, CA: Morgan Kaufmann.

Sirnard, P., B. Victorri, Y. Le Cun, and J. Denker (1992). Tangent prop -
a formalism for specifying selected invariances in an adaptive network. In
J. E. Moody, S. J. Hanson, and R. P. Lippmann (Eds.), Advances in ~ e u m l

References 473

Infomation Pmcessing Systems, Volume 4, pp. 895-903. San Mateo, CA:
Morgan Kaufmam.

Singer, E. and R. P. L i p p m w (1992). Improved hidden Mwkov model speech
recognition using radiaI basis function networks. In J. E. Moody, S. J. Han-
son, and R. P. Lippmann (Eds.), Advances in Neural Infomation Pmcess-
ing Systems, Volume 4, pp. 159-166. San Mateo, CA: Morgan Kaufmann.

Skilling, J. (1991). On parameter estimation and quantified MaxEnt. In W. T.
Grandy and L. H. Schick (Eds.), Maximum Entropy and Bayesian Methods,
Laramie, 1990, pp. 267-2'73. Dordrecht: KIuwer.

Solla, S. A., E. Levin, and M. Fleisher (1988). Accelerated learning in layered
neural networks. Complex Systems 2, 625440.

Specht, D. F. (1990). Probabilistic neural networks. Nez6rul Networks 3 (I) ,
109-118.

Spxecher, D. A. (1965). On the structure of continuous functions of several
variables. ~ n s a c t i o n s of the American Mathematical Society 115, 340-
355.

Stinchecombe, M. and H. White (1989). Universal approximation using feed-
forward networks with non-sigmoid hidden layer activation functions. In
Proceedings of the International Joint Confewnce om Neural Networks, Vol-
ume I, pp. 613-618. S a n Diego: IEEE.

Stone, M. (1974). Cross-validatory choice and assessment of statistical predic-
tions. Journal of the Royal Statistical Society, B 36 (11, 111-147.

Stone, M. (1978). Cross-validation: A review, Math. Operatioasfo~sch. Statist.
Ser. Statistics 9 (I), 127-139.

Sussmann, H. J. (1992). Uniqueness of the weights for minima1 feedforward
nets with a given input-output map. Neuml Networks 5 (41, 589-593.

Tatsuoka, M. M. (1 971). Mult iva~ate Analysis: Techniques for Educational
and Psychologiml Research. New York: John Wiley.

Thodberg, H. H. (1993). Ace of Bayes: application of neural networks with
pruning. Technical Report 1132E, The Danish Meat Research Institute,
Maglegaardsvej 2, DK-4000 Roskilde, Denmark.

Tikhonov, A. N. and V. Y. Arsenin (1977). Solutions of nGPosed Problems.
Washington, DC: V. H. Winston.

Titterington, D. M., A. F. M. Smith, and U. E. Makov (1985). Statistical
Analysis of Fznife Mixture Distribatioas. New York: John Wiley,

T&v&n, H. G. C. (1991). A neural network approach to statiskicd pattern clas-
sification by 'semiparametric' estimation of probability density functions.
IEEE Thnsactions on Neuml Networks 2 (3) , 366-377.

Vapnik, V. N. and A. Y . Chervonenkis (1971). On the uniform convergence of
relative frequencies of events to their probabilities. Theow of Probability
and its Applications 16 (21, 264-280,

Viterbj, A. J. and J . K. Omura (1979). P ~ n c i p k s of &@tab Communication
and Coding. New York: McGrm-Rill,

Vitushkin, A. G. (1954). On HiIbert's thirteenth problem. Doklady Akademiia
Nauk SSSR 95, 701-704.

Vogl, T. P., J. K. Mangis, A. K. Rigler, W. T. Zink, and D. L. h n (1988).
Accelerating the convergence of the back-propagation met hod. Biologicat
Cybernetics 59, 257-263.

Wahbs, G. and S. Wold (1975). A completely automatic French curve: fitting
spline functions by cross-didation. Cornmunimtions in Statistics, Sesies
A 4 (I), 1-17.

Walker, A. M. (1969). On the asymptotic behaviour of posterior distributions.
Journal of the Royal Stat&ical Society, B 31 (I), 80-88.

Wallace, C. S. and P. R. ??reernan (1987). Estimation and inference by compact
coding. Journal of the Royal Statistical Society, B 49 (3), 240-265.

Watrous, R. L. (1987). Learning algorithms for connectionist networks: applied
gradient methods of nonlinear optimization. In Pmceedings IEEE Fir3t
Iatemational Confewnce on Neural Networks, Volume 2, pp. 6E9-627. San
Diego: IEEE.

Watson, G. S. (1964). Smooth regression analysis. SanMyE: The Indian J o u -
aal of Statistics. Series A 26, 359-372.

Webb, A. R. (1994). Functional approximation by feed-forward networks: a
least-squares approach to generalisation. IEEE fiawactions on Neural
Networks 5 (3), 363-371.

Webb, A. R. and D. h w e (1988). A hybrid optimisation strategy for adaptive
feed-forward layered networks. RSRE Memorandum 4193, Royal Signals
and W a r Establishment, St Andrew Road, MaIvern, UK.

Webb, A. R. and D. Lowe (1990). The optimised internal representation of mul-
tilayer classifier networks performs nonlinear discriminant analysis. Neuwl
N e t w o ~ h 3 (4), 367-375.

Webb, A. R., D. h w e , and M. D. Bedworth (1988). A comparison of non-linear
optimisation strategies for feed- forward adaptive layered networks. aSRE
Memorandum 4157, Royal Signals and Radar Establishment, St Andrew's
R o d , Malvern, UK.

Weigend, A. S., B. A. Huberman, and D. E. Rumelhart (1990). Predicting
the future: a connectionist approach. International JoumaE of Neural SV-
tems 1 (31, 193-209.

Werbos, P. J. (1974). Beyond regression: new tools for prediction and analysis
in the behavioural sciences. Ph.D, thesis, Harvard University, Boston, MA.

White, H. (1989). Learning in artificial neural networks: a statistical perspec-
tive. Neural Cornputatson L (41, 425-464.

White, H. (1990). Connectionist nonparametric regression: multiiayer feed-
forward networks can learn arbitrary mappings. Neural Networks 3 (51-
535-549.

Widrow, B. and M. E. Hoff (1960). Adaptive switchhg circuits. In IRE
WESCON Convention Record, Volume 4, pp. 9G-104. New York. hprint,ed

References- 475

in Anderson and Rosenfeld (1988).
Widrow, B. and M. A. Lehr (1990). 30 years of adaptive neural networks: per-

ceptron, madeline, and backpropagation. Proceedings of the IEEE 78 (91,
1415-1442.

WieIand, A. and R. highton (1987). Geometric analysis of neural network
capabilities. In Proceedings of the First IEEE Infernational Conference on
Neuml Networks, Volume 3, pp. 385-392. San Diego, CA: IEEE.

Williams, P. M. (1991). A Marqnardt algorithm for choosing the step-size
in backpropagation learning with conjugate gradients. Technicd Report
CSRP 299, University of Sussex, Brighton, UK.

Williams, P. M. (1995). Bayesian regularization and pruning using a Laplace
prior, Neuml Computation 7 (I}, 111-143.

Wolpert , D. H. (1992). Stacked generalization. Neuml Networks 5 (21, 241-
259.

Wolpert, D, H. (1993). On the use of evidence in neural networks. In S. J.
Hanson, J. D. Cowan, and C, L. Giles (Eds.), Advanms in NeumE Infoma-
tion Processing Systems, Volume 5 , pp, 539-546. San Mateo, CA: Morgan
Kaufrnann.

1-of-c coding scheme, 225, 300

activation function, 82
Heaviside, 84, 121-122
logistic sigmoid, 82
tanh, 127

active learning, 385
addine, 98
addine learning mIe, 97
adaptive parameters, see weighta
additive modela, 136-137
adjoint operator, 173, 453
Akaike information criterion, 376
ARD, Jee automatic relevance determina-

tion
asymmetric divergence, see K u l l b d -

LRibler distance
autma4sociative network, 316
automatic relevance determination, 385

back-propagation, 140-148
efficiency, 146-147
taminology, 141

backward elimination, 309
basis functions, 88, 165
batch learning, 263
Bayes' theorem, 17-23
Bayesian inference, 42-46
Bayesian statisti-, 21
Bernoulli distribution, 84

INDEX

best approximation property, 169
between-class covariance matrix, 108
BFGS algorithm, 288
bias

statistical, 41, 333-338, 373-374
bias parameter, 78
as extra weight, 80, 118

bi&s-~~iance trade-off, 333-338, 373-374
binomial distribution, 52
biological models, 8b84
bits, 243
'bits back' argument, 432
bold driver algorithm, 269

minimum, 273
ound algorithm, 306
t hm, 273

bra
bra
Brt

cketing a I

.nch and b
mt's algori

CART, see clmification and regression
t m

cascade correlation, 357-359
categorical variablem, 300
central differenem, 147, 154
central limit theorem, 37
central moments, 323
chi-squared statistic, 41.0
circular normal distribution, 222
city-block metric, 209
cleconditional probability, 18, 61
cl&fication, 5
classification and regreasion t m n , 137
clustering algorithms, 187-189
committea of networh, 364-369, 422-424
complete data, 69
aomplexity, 14-15
complexity criteria, 976-377
condition number, 166
conditional average of target data, 202
conditional median, 210
mnditional probability, 17, 194, 212-222
confidence intemals, 385
conjugate gradients, 274-282
conjugate prior, 43
consistent -timatom, 337
consistent priors, 396397
convex decision region, 80-81, I23
convex function, 75, 369
convex hull, 113
covariance matrix, 35, 108, 111
C,-statistic, 376
credit assignment problem, 140
cross-entropy, 244
crosa-entmpy error function

independent attributes, 236-237
multiple clams, 237-240
two clams, 230-232

cr-validation, 372-375
c u m of dimensionality, 7-9, 51, 297
curvature, 15, 175
curvatur~drlven smoothing, 345-346

data set, 2
Dav~dson-FEetcher-Pme1l algorithm, 288
de-trending, 303
decision boundary, 4

decision making, 20 feed-forward networks, 120-121
dccision regions, 24 final prediction error, 376
decision surface, see decision boundary
degrees of Freedom, 11
delta-bas-delta algorithm, 270-271
density estimation

and radial basis functions, 183-185
kernel methods, 53-55, 177
non-parametric, 33
parametric, 33
Parzen windows, 53
semi-parametric, 33, 60

detailed balance, 427
diameter-limited perceptron, 104
dichotomy, 86
differential entropy, 242
dimensionality reduction, 296-298
discrete data, 300
discriminant function, 25-27
distributed representation, 182
double bsck-propagation, 349

early stopping, 343-345
relation ta weight decay, 380-381

effective number of parameters, 377, 410
efficiency of back-propagation, 146-147
EM algorithm, 65-72, 301

relation to K-means, 169-190
ensembEe learning, 432-433
entropy, 240-245

differential, 242
equivalent minima, 133, 256, 398
error back-propagation, 140-1 48

efficiency, 146-147
terminology, 142

error bars, 289, 399
error function

convex, 369
error surfaces, 254-256
Euler-Lagrange equations, 173
evidence, 386, 408, 418
evidence approximation, 407
exact interpolation, 164-166
exclusive-OR, 86, 104
expectation, 22, 46
expectation maximization dgorithrn, see

EM algorithm
expected loss, 27

fast multiplication by Hesaian, 158-160
fast re-training, 150, 162-163
feature extraction, 6, 297
features, 2

finite differences, 147, 158
Fisher's discriminant. 105-112, 227

relation to least-squares, 109-110
Fletcher-Reeves formula, 280
forward problems, 207
forward propagation, 142
forward selection, 308
frequentist statistics, 21
function approximation, 6
functio~ral, 451

Gaussian, 34-38
baais functions, 165
mixture model, 189-390, 350
prior, 389-391

generalization, 2, 11
and evidence, 421-422

generalized additive models, 136-137
generalized lead squares, 248
generalized linear discriminant, 8&-89
generalized linear network, 402
generalized prediction error, 377
global minimum, 255
gradient descent, 263-272

batch, 263
convergence, 264-267
pattern-baaed, 263

Green's function, 173
growing aIgorithma, 353-359
growth function, 378

Heaviside activation function, 121-1 22
Heavis~de step function, 84
Hebb rule, 319
Hessian matrix, 150-160

central differences, 154
diagonal appmximation, 151-152
exact edna t ion , 154-158, 160
fast multiplication by, 158-160
finite differences, 154
inverse, 153-154
outer product approximation, 152-153,

206
positive definite, 258
two-layer network, 157-158

Heatenea-Stiefel formula, 280
hidden units, 16, 117

interpretation, 226-228, 234
hierarchical models, 408
higher-order network, 133-135, 161, 326-

329
Hinton diagram, 119

histograms, 3, 50-51
hold out method, 372
hybrid Monte Carlo, 427
hybrid optimization dgorithm, 259-280
hyperparameter, 390
hyperprior, 408

ID3, 137
importance sampling, 426
impreper prior, 396, 408
incomplete data, 61, 69
inference, 20
input normdization, 298-300
intrinsic dimensionality, 313-314
invariance, 6, 320, 323
inverse Hessian, 153-154
inverse problems, 207

Jacobian matrix, 148-150
J-n's inequality, 66, 75
joint probability, 17

K-means algorithm, 187-189
arr limit of EM, 18s190

K-nearest-neigh bourn, 55-57
classification rule, 57

Karhunen-L&ve transformation, 312
kernel density estimation, 53-55
kernel function, 53

periodic, 221
kernel regression, 177-179
Kiefer-Wolfowitx algorithm, 48
Kohonen topographic mapping, 188
Kolmogorov's theorem, 137-140
KuIlback-Leibfer distance, 59, 244

Lagrange rnultipliera, 448-450
Laplacian distribution, 209, 392
layered networks, 117-1 20

counting convention, 119
linear, 121

learning, see training
learning-rate parameter, 263
leave-one-out method, 375
Levenberg-Marquardt algorithm, 290-292
Levenberg-Mquardt approximation,

152, 206
Lwenberg-Marquardt approximation, 206
likelihood function, 23, 40

singularities, 58, 63
limited memory BFGS algorithm, 28S290
line search techniques, 272-274
linear discriminants, 38, 77-85
linear separability, 85-88

Iinsm sum rules, 20P2IH
local learning algorithms, 253-254
local minims, 255
localized bmb functions, 165
location parameter, 216, 436-437
logistic discrimination, 82-85
logistic aigrnoid, 82, 232-234
loss matrix, 27
LR norm, 209

madeline III learning rule, 148
Mahatanobis distance, 35
marginal distribution, 37
marginalization, 387
Markov chain Monte Carlo, 426
MARS, see multivariate adaptive regres-

sion splines
maximum likelihood, 195

for Gaussian, 40-42
for mixture model, 62-73
ML-11, 407
relation to Bayea, 45

McCuIloch and Pitts neumn model, 83-84
mean of distribution, 34-35
Metropolis dgorithm, 427
minimum description length, 429433
minimum risk decisions, 27, 224
Minkowski error function, 208-210
rnialabelled data, 209
missing data, 301-302
missing valuw, 69
mixing parameters, 60
mixture models, 59-73, 212-222
mixture of experta, 214, 369-371
MLII , 407
MLP, see multi-layer perceptron
model order sel-tion, 371-377
model trust region, 283, 287, 291-292
moments, 322-324
momentum, 267-268
Monte Carlo methods, 425-429
multi-layer perceptron, I16

and radial basis functions, 1@-183
multi-quadric function, 166
multi-atep ahead prediction, 303
multivariate adaptive ~egresaien splines,

137

Nadaraya-Watson estimator, I f 8
nats, 243, 430
nearest-neighbour rule, 57
neocognitron, 326
network diagram, 62, 79, 117, 168

480 index

neuron, 83-84
Newton direction, 285
Newton's method, 285-287
node perturbation, 148
node pruning, 363-364
noiseless coding theorem, 244
non-informative prior, 408, 436-437
non-interfering, see conjugate
non-linear principal component analysis,

317
non-parametric density estimation, 33
normal distribution, 34-38
normal equations, 91
normalized exponential, see suftmax
novelty, 189
numerical differentiation, 147-148

Occam factor, 419
Occam's razor, 14, 406, 429
one-stepahead prediction, 303
optimal brain damage, 361
optf ma1 brain surgeon, 361
order of oanwgence, 256
order-limited perceptmn, 105
ordinal variables, 300
orthogonal least squarw, 187
outer product Hessian, 206
outliers, 209
over-fitting, 11

parametric density estimation, 33
Panen estimator, 53, 177
pattern recognition, 1

statistical, 17
pattern-based learning, 263
perceptron, 84, 98-105

convergence theorem, 100-103
diameter-limited, 104
learning algorithm, 100
order-limited, 105

perceptson criterion, 99
periodic variables, 221-222
pixel averaging, 297
pocket algorithm, 103, 354
Polak-Ribiere formula, 280
pdynomial

carve f i t t ing, 9-13
higher-order, 16, 30

positive-definite Hessian, 258
post-processing, 296
posterior distribution, 389
posterior probability, 18

in mixture model, 61

potential functions, 182
PPR, see projection pursuit regression
pre-processing, 6, 296-298
predicted squared error, 376
principal componenta, 310-313, 4 5 4 6 5 6
prior

conjugate, 43
consistency, 396-397
entropic, 391
improper, 396, 408
in mixture model, 61
knowledge, 6, 295
non-informative, 408, 436-437
probability, 17

probability
conditional, 17
density, 21
joint, 17
poatwior, 18
prior, 17

processing units, 80
projection pursuit regression, 135-136
prototypes, 39, 183
pruning algorithms, 354
pswd~inverse, 92-95

quasi-Newton methods, 281-290
quickprop algorithm, 271-272

7t-operator, 158-160
radial basis functions

best apprmimation, 169
clustering algorithms, 187-189
density estimation, 171-179, 183-185
exact interpolation, 164-166
for clwification, 179-182
Gaussian mixtures, 18s390
Hessian matrix, 191
Jacobian matrix, 191
network training, 17&171
neural networks, 167-169
noisy interpolation, 175-177
orthogonal least squares, 187
regularization, 111-115
relation to multi-layer perceptron, 182-

183
supervised training, 190-191

random walk, 426
RBF, nee radial basis functions
re-estimation formulae, 412, 417
retraining of network, 150, 162-163
receptive field. 104, 325
regression, 5
regreanion function, 47, 203

regular moments, 323
regularization, 15, 171-175, 338-353, 385

weight decay, 338-343, 395
reinforcement learning, 10
reject aption, 28
rejection sampling, 43&439
rejection threshold, 28
reproducing densities, 43
ridge regression, 338
risk, 27
RMS error, 197
Robbins-Monro algorithm, 4 6 4 9
robot kinematics, 207
robust statistics, 210
root-mean-square ermr, 197
rotation invariance, 320, 323

saddlepoints, 255
saliency of weights, 360
sample, 2, 426

average, 4 1
scale invariance, 6, 320, 323
scale parameter, 215, 408, 437
scaled conjugate gradients, 282-285
search direction, 272

Fletcher-Reeves, 280
HestenesStiefel, 280
Polak-Ribiere, 280

self-organizing feature map, 188
semi-parametric density estimation, 33, 60
sequentid backward elimination, 309
sequential forward selection, 308
sequentid learning, 46-49, 263
shared weights, 324-326
sigrnoid activation function, 82, 232-234
simply-connected decision regions, 50-81
simulated anneaiing, 428
singular value decomposition, 93, 171, 260
smoothing parameter, 57-59
smoothness of mapping, 171-173
soft weight sharing, 349-353
softmax, 215, 238-240
spectral analysis, 207
spline funct~on, 165
stacked generalization, 375-376, 424
standard deviation, 34
stationary points, 255
statistical bias, 41, 333338, 373-374
statistical independence, 36
steepest descent, see gradient descent
stif differential equations, 267
stochastic parameter estimation, 46-49,

72-73

stopping criteria, 262
strict interpotation, see exact interpolation
structural stabilization, 332
sum-of-squares error function, 89-97, 19.5-

207
for classification, 225-230

supervised learning, 10
radial baais functions, 190-191

SVD, aee singular value decomposition
symmetries

weight space, 133, 256
synapses, 84

tangent distance, 322
tangent prop, 320-322
tanh activation function, 127
target values, 9
temperature parameter, 4281
template, 39, 122
test error functions, 262-263
test set, 10, 312
thin-plate spline function, 165
threshold, 78
threshold activation function, 121-1 7"
threshold logic functions, 87
Tikhonov regularization, 338
tiling algerithm, 355
timeseries prediction, 302-304
tomography, 207
topographic mapping, 188
total covariance matrix, 111
training set, 5, 372
tranglation invariance, 6, 320, 323
type I1 maximum likelihood, 407

undetermined multipliers, see Lagrange
multipliers

unsupervised learning, 10, 318-319
upstart algorithm, 355-357

validation set, 372
Vapnik-Chervonenkis dimension, see VC

dimension
variable-metric methods, 287-290
variance

parameter, 34-35, 73-74
statistical, 333-338, 373-374

YC dimension, 377-380
von Mises distribution, 222

weight decay, 338-343
and pruning, 363
consistency, 34S342

weight elimination, 363

weight initialization, 26S262
weight space, 254

symmetries, 133, 256
weight vector, 253
weights, 5
well-determined parametem, 430

whitening transformation, 299-300
Widrow-Hoff learning rule, 97
within-dass cwariance matrix, 108

XOR, see exclusive-OR

	PatternRecognitionCover.jpg
	PrefaceAndContents001.jpg
	PrefaceAndContents002.jpg
	PrefaceAndContents003.jpg
	PrefaceAndContents004.jpg
	PrefaceAndContents005.jpg
	PrefaceAndContents006.jpg
	PrefaceAndContents007.jpg
	PrefaceAndContents008.jpg
	Page000-001.jpg
	Page002-003.jpg
	Page004-005.jpg
	Page006-007.jpg
	Page008-009.jpg
	Page010-011.jpg
	Page012-013.jpg
	Page014-015.jpg
	Page016-017.jpg
	Page018-019.jpg
	Page020-021.jpg
	Page022-023.jpg
	Page024-025.jpg
	Page026-027.jpg
	Page028-029.jpg
	Page030-031.jpg
	Page032-033.jpg
	Page034-035.jpg
	Page036-037.jpg
	Page038-039.jpg
	Page040-041.jpg
	Page042-043.jpg
	Page044-045.jpg
	Page046-047.jpg
	Page048-049.jpg
	Page050-051.jpg
	Page052-053.jpg
	Page054-055.jpg
	Page056-057.jpg
	Page058-059.jpg
	Page060-061.jpg
	Page062-063.jpg
	Page064-065.jpg
	Page066-067.jpg
	Page068-069.jpg
	Page070-071.jpg
	Page072-073.jpg
	Page074-075.jpg
	Page076-077.jpg
	Page078-079.jpg
	Page080-081.jpg
	Page082-083.jpg
	Page084-085.jpg
	Page086-087.jpg
	Page088-089.jpg
	Page090-091.jpg
	Page092-093.jpg
	Page094-095.jpg
	Page096-097.jpg
	Page098-099.jpg
	Page100-101.jpg
	Page102-103.jpg
	Page104-105.jpg
	Page106-107.jpg
	Page108-109.jpg
	Page110-111.jpg
	Page112-113.jpg
	Page114-115.jpg
	Page116-117.jpg
	Page118-119.jpg
	Page120-121.jpg
	Page122-123.jpg
	Page124-125.jpg
	Page126-127.jpg
	Page128-129.jpg
	Page130-131.jpg
	Page132-133.jpg
	Page134-135.jpg
	Page136-137.jpg
	Page138-139.jpg
	Page140-141.jpg
	Page142-143.jpg
	Page144-145.jpg
	Page146-147.jpg
	Page148-149.jpg
	Page150-151.jpg
	Page152-153.jpg
	Page154-155.jpg
	Page156-157.jpg
	Page158-159.jpg
	Page160-161.jpg
	Page162-163.jpg
	Page164-165.jpg
	Page166-167.jpg
	Page168-169.jpg
	Page170-171.jpg
	Page172-173.jpg
	Page174-175.jpg
	Page176-177.jpg
	Page178-179.jpg
	Page180-181.jpg
	Page182-183.jpg
	Page184-185.jpg
	Page186-187.jpg
	Page188-189.jpg
	Page190-191.jpg
	Page192-193.jpg
	Page194-195.jpg
	Page196-197.jpg
	Page198-199.jpg
	Page200-201.jpg
	Page202-203.jpg
	Page204-205.jpg
	Page206-207.jpg
	Page208-209.jpg
	Page210-211.jpg
	Page212-213.jpg
	Page214-215.jpg
	Page216-217.jpg
	Page218-219.jpg
	Page220-221.jpg
	Page222-223.jpg
	Page224-225.jpg
	Page226-227.jpg
	Page228-229.jpg
	Page230-231.jpg
	Page232-233.jpg
	Page234-235.jpg
	Page236-237.jpg
	Page238-239.jpg
	Page240-241.jpg
	Page242-243.jpg
	Page244-245.jpg
	Page246-247.jpg
	Page248-249.jpg
	Page250-251.jpg
	Page252-253.jpg
	Page254-255.jpg
	Page256-257.jpg
	Page258-259.jpg
	Page260-261.jpg
	Page262-263.jpg
	Page264-265.jpg
	Page266-267.jpg
	Page268-269.jpg
	Page270-271.jpg
	Page272-273.jpg
	Page274-275.jpg
	Page276-277.jpg
	Page278-279.jpg
	Page280-281.jpg
	Page282-283.jpg
	Page284-285.jpg
	Page286-287.jpg
	Page288-289.jpg
	Page290-291.jpg
	Page292-293.jpg
	Page294-295.jpg
	Page296-297.jpg
	Page298-299.jpg
	Page300-301.jpg
	Page302-303.jpg
	Page304-305.jpg
	Page306-307.jpg
	Page308-309.jpg
	Page310-311.jpg
	Page312-313.jpg
	Page314-315.jpg
	Page316-317.jpg
	Page318-319.jpg
	Page320-321.jpg
	Page322-323.jpg
	Page324-325.jpg
	Page326-327.jpg
	Page328-329.jpg
	Page330-331.jpg
	Page332-333.jpg
	Page334-335.jpg
	Page336-337.jpg
	Page338-339.jpg
	Page340-341.jpg
	Page342-343.jpg
	Page344-345.jpg
	Page346-347.jpg
	Page348-349.jpg
	Page350-351.jpg
	Page352-353.jpg
	Page354-355.jpg
	Page356-357.jpg
	Page358-359.jpg
	Page360-361.jpg
	Page362-363.jpg
	Page364-365.jpg
	Page366-367.jpg
	Page368-369.jpg
	Page370-371.jpg
	Page372-373.jpg
	Page374-375.jpg
	Page376-377.jpg
	Page378-379.jpg
	Page380-381.jpg
	Page382-383.jpg
	Page384-385.jpg
	Page386-387.jpg
	Page388-389.jpg
	Page390-391.jpg
	Page392-393.jpg
	Page394-395.jpg
	Page396-397.jpg
	Page398-399.jpg
	Page400-401.jpg
	Page402-403.jpg
	Page404-405.jpg
	Page406-407.jpg
	Page408-409.jpg
	Page410-411.jpg
	Page412-413.jpg
	Page414-415.jpg
	Page416-417.jpg
	Page418-419.jpg
	Page420-421.jpg
	Page422-423.jpg
	Page424-425.jpg
	Page426-427.jpg
	Page428-429.jpg
	Page430-431.jpg
	Page432-433.jpg
	Page434-435.jpg
	Page436-437.jpg
	Page438-439.jpg
	Page440-441.jpg
	Page442-443.jpg
	Page444-445.jpg
	Page446-447.jpg
	Page448-449.jpg
	Page450-451.jpg
	Page452-453.jpg
	Page454-455.jpg
	Page456-457.jpg
	Page458-459.jpg
	Page460-461.jpg
	Page462-463.jpg
	Page464-465.jpg
	Page466-467.jpg
	Page468-469.jpg
	Page470-471.jpg
	Page472-473.jpg
	Page474-475.jpg
	Page476-477.jpg
	Page478-479.jpg
	Page480-481.jpg
	Page482-483.jpg

