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hpt snd bow to &me a ~uitable ermr fimction for the output. 
~t~~&ngn~ftheinweasingmaturityoftbefield thatlnstbodswhieh~ae - justEd by vague appeals lo their neuron-lib qualib can now be given a 
a hundati~n. Ultimately, we d.bope that a better &stistical un- 
d e  of neural m r k  will Mp us undastsnd bon tbe brain 
&hrdy  works, but until that dsy &=-it is tO know w b  OW a- 

d models work and h , ~  to use1- -vdy to solve imp&mt p r d d  
pmblems. 
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Introduction 
In recent years newd computing has emerged m a practical technology, with 
suc& applications in many fields. The majority of these appEication8 me 
concerned with problems in pattern recogmition, and make use of feed-fomad 
n-k architectures such as the multi-law perceptma. and the radial basis 
function network. Alm, it has dm h m e  widely ackwwledged that success 
ful tbpplicatbm of neural wmputiag require a principled, r b e r  than ad h, 
approach. My aim in writing this book has been to provide a mote h u e d  
treatment of neural networks than previously a d b l e ,  which reflects these d e  
velopments. By deliberately concentraing on the pattern reclognition asp& of 
neural networks, it has became possible to  treat many important tupiw in mrach 
greater depth. For emmpIe, d&Q estimation, error functions, p w h r  o p  
thnbation Wrikbms, data pwprrrce&g, and Bayesian methods are emh the 
eubject of an entire chapter. 

I From the perspective of pattern recopition, neural networks can be regarded 
as an exhmii of the many mnventsonal tdmiqueg which have h e n  dewloped 
over e m d  d d m .  I n d d ,  thia book indudes &&om of mverd concern in 
conventional statistical pattern recogmition which I regard a;s essential for a deax 
understding of neural networh. Mare m v e  treatments of k h w  topica can 
be found in the mmy on statbtid p&@m m p i t b n ,  including Duda and 
Em% (1973), &d (1981), Devijver Fbnd Kittler (1982), and lhkuaag~~ (1990). 
Recent review d c l w  by Ripley (1994) and C h q  and Tittmhgwn (1994) have 
I& emphasized the statistical underp- of n e d  mtworb. ' Hktorically, m y  concepts in neural computing have been inspired by studiw 
&' i610gical n h r k s .  The m v e  of statistical pattern m i o n ,  how- i t  W , dm rr much more direct and principled route to many of the same con- 
-. For example, the sum-and-threshold model of a neumn arise8 naturally as 
Waptfmal d i w i m b n t  b & i n  needed to dhtbguhh two classes whose distri- 

me n o d  with equal d c e  mahioes. Similariy, the fan&= logistic 
function needed to allow the output of a network to be 
ility? when the distribution of bidden unit actbations b 

er of the exponential family. 
& i a n t  mumption which is made throughout the book is that the pro- 

m@&- - give- to the data do not t h e d v e a  evolve with time. W q u a s  
ddiktgtdkb mn-sWhary sources d data are not so highly devebped, nor so 
m a 4  rn ~ & ~ & t + p w b h .  Fkthmmme, the hues  ddiwsed 

w f t b  t;his book rm&i q * ' & i * m & I h . ~ h  pf t&e tdtwbal mq& 
cation of non-&a~omrity. X't &auld b mid that tBfa W c t l e a r  h m  not meam 
W ~ ~ m ~ l n g ~ p ~ o f t i m m r i w a r e d u d e d . T b e k e y  



X pmQ= m &: 

I a*@n .frif w e  is tb time e ~ c m  of the && of etatidl0.l pattern recognition, induding pro~ililtm,, d m  a&& A' 
but ~ -1- proms which. generam tb h is -0- Bayrasp C h ~ ~  

Chap- % d& .Rlith the! p m b h  of tbepwbi&y &&Mion of 
a of &a, -and - a- pmm&ic and mpn-parmc metho&, 
a s ~ m d i s r m s s i m o m ~ t ~ e 8 ~ 0 a ~ ~ b u t i o ~ .  
b i d e  from being .of .considerable practical importlytce h, M - w, the 
c0naept;a of p m b b w  dedty&m&m we ta of 
~ t i n g *  

~ ~ r h  h a m  a single l qw  of adaptive wdghk~ m in ' C h a p h 3 . ~ t h o u g h s l r h n & m r h a b s n h ~ ~ U I . e m ~ n &  
mrb,.*~ WI plag imporhant role in p d c d  appli-, md & 
m ~ ~ ~ ~ a l ~ a n d ~ ~ h m c h ~ a p p ~ b ~ ~ t o . ~  
p m a l  m k  s w u ~  

4 m d a  a ~ m p d m s h e  tmimmt of tb.mdti4qw p e m p u ,  
and d e h h ~ % h e  k h @ e  of ermr bd-propagation and its -.ag a 
general bmmmk far evaluating derbt lwin mult i -w  *h.  he E&a -- which playg a central role h many apwation 
as weIIas.inBaJllleaian-, haIeob&dat leagik 

An -Pb=tw, &pzwCb to J!ep-* gen'3ml nm& 
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ r I E g , a s r d - i ~ ~ ~  
Chapter 5. T h e  nehmk are mi- firom -d m~ 
hence pmid~-am+g k b m o r k . h h g  8-a of app-. 

Several dihen t  eror  fun&one cm he u d  f61. tr9aaing; d m m b ,  
and t h e  me bfhtd, a d  th& p r o - I m 1  in mw 6, % &+ 

under WM network outpuk- .be-, w p&bab~f'ies m 
-, d the c [brpespor i**~  ofhidhrmi6,*ti0n8 is.& 
d d e x e d e d  

c h a p t e r 7 ~ ~ n l l a r ~ p o f ~ ~ i m ~ , ~ t ~ ~ ~  *he 
~ ~ ~ O f t h e ~ ~ i n a ~ i n ~ ~ f o x ~ x k ~ .  &nPb 
~ ~ ~ , ~ ~ n ~ d e s e s l l t n l t h m m n e n t o m , h ~ m ~ t s ~ ,  

~ m ~ o f t b e h e l p ~  t o ~ i v & e s o m e o f  t h e m p w m f d  
--, t~ and q & N m b  methode. 
- llOne- Of tk met h@mt fa&m fa deterafinfng,the su- of a pr- 

C h a w  9 pMdes a number of high& into the p m b h  of + d o g  
and d=&#& m d d s , f o r  &hs&g k h  cdzd h e  of modd order & Overview of the b p t e r s  tion- The W d the bb-vmianne t r a d e 4  is introdud, snd m d  
u q m  fof tdMI Muding r q u h t i o n ,  -<& 

The e h a p ~  d k m  t h & ~ & ~ ~ ~ & . o f - e  m h h m  a B- 
perspecti=. As d l  rn p d d h g  a more fundamental view of learning in neural 

B- almwh* to.pxacthl produm for E d p h g  



- h = & e k p - & f & - & e d ~ d & & d h  S u ~ a & t ~ ~ d & ~ ~ ~ ~ . h o t h e r ~ i t ~ s ~ ~  
e&@cWS. ~ ~ l t h e w a i a h t e ~ a d n g l e i n d a x . u k ~ ~ ~ w h e r a k m f n r m 1 ~ ~ ~  
, . - 4 9 l a - d ~ m : d e r M i n & a p m , d W w  andWhthetot.l n d m d * b . ~ h a w r i a b l a s w ~  h.*& 
& & ~ d £ @ & k k ~ d ~ ~ ~ ~ ~ ~ f i = ,  ~ ~ 8 t ' - t o ~ ~ ~ ~ w w b o q a e l e m s n t s m m p ~ d o f t h e ~ ~  (a- 
& % m B ' a f l f a t W a S , a a d p ~ , ~ ~ .  - F ~ Y  a d h  W w  parametem) in tbe nstwark. 
.., &:a ~ b b p p b  ~ i a  ha&&& =hi& h W e b  h provide d T4en-m 6, ~ ~ n s v a l ~ ~ d e l f s ~ b a l , h ~ ~  
&-to a ~i- r a & e r ~ & 6 0 m g h  4 ofthe W d d  d d  

I 
I 4 ~ = 1 i f f = f  a a d 6 , , , = a ~ . S ~ 1 ~ t h e n o t ~ ~ ( ~ ) d ~ ~  

O& of the eu4jwt .  1 Dirac ddh fun*, which hm the. mp&w 6(s) = 0 for 0 # 0 and 

k-m oe 

I I 
~ ~ b ~ 9 f i f l d a ~ w ~ . . l e ~ ~ ~ I ~ ~ a  J-qz)& = I. 

of pmd p i d p b  $B E o ~ , ~ ~ . w d a - ,  for -* v, 
& w, while upper-ewe bold a ~ c b  @ M, denote 

& * ~ f l g t C Y ~ ~ a f - r  
d 

&om a ~ r y ' w ~ ~ ~ * % r k  6 0  -- n b ( z i ) .  
wridda are i n d d  by Itmeraw ip1 

Uaerl * M ~ O *  OCC- qw&tb jn b k  
re listed bdw: 

c n m k  d ~ u t p ~ h i  of e h  
ck & h h  
d number ofhputs 
E errorfmcth 
E[Q] -&tion of a r&mn mhble Q 
r ( . )  mvatioa function 

a fnpnthM 

M , m - M Q . N d  h t  3, ~$[~)y.to-the:-* 
* ~ * f J m ~ d h ; e r M b ~ o P % ( ,  # t b a t ~ ~ ~ - ~ ~  

n: 0uQut Unit label 

~ " ~ : ~ ~ ~ p m e m ~ * m ~ ~  w.139. M mmberofhiddenunifs 

& & l @ & & & ~ ~ & ~ ~ , @ r ' ~ %  yk#& &mwb 4 n p d m ~  

d'& - m , K ~ . ; * & k y ~ * > e  #&@r$f~J t& debttxhe l m m b  ~ a f p a ~  

& q , p & ~ x t $ r d l w ~ * ~ k I ~ * - r i -  I P(-) pmbablility 

#mcowwk*-  ' 
) mbabiity &&ty function 

% ~ ~ ( & @ & D ) f ~ p * , ~ ~ ~ - ~ -  I Earget value *, qfJ d e n W ! a b ~ o f * ~ f f % ) .  aquare--& 
r t;im~sbegin~malgoritbms 

la tbe aiakdion E[Q] 1hb& d e m b  tb (i~e. -1 of*=&- ' W -of-aadbhhanetwork 
x netarorkinpyt~~~3able 
II getwork otltput m k b l e  
2 wtimbn of hidden unit 

hgwAthmtobases 
,,kc ; w e t o b a s s 2  
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Figure 1.1. rllustration of twu hypothethl images reprmnting: handwritten 
d o a s  of the chm&xm 'a' and '6'. Each image. is d d b e d  by an array of 
pixel values st which r w  h m  0 to 1 according to the &tion d the pivel 
square occupied by b k k  ink. 

superscript T denotes the transpase. In comidering this m p l e  we 
a number of detailed practical considerations which would have to be 
in a red implementation, and focus instead on the underlying imues. 

The gud in thb W i c a t i o n  problem is to develop an algorithm 
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1.9: m@&.&n @hd m#h 

n and 

d e s h b y y k  where h = l,.,,,c Thw, ifwe 
of the alpbaw, we dght c o d e r  26 output 

%lk = w) f14 

a,(whpse txctual d a b  f ~ ~ - A ~ a l ~ k m d d , d t h e ~  
d the d u a  b e ~ e d e i m ~ b m a ~ d m b f o r ~ h e  

. . r ~ - k m  for yc~w],  andfur- 

dEeparcmk?ts .  The p 
ontheh&#offhedata 

. , 
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1.4: The mm of d i m -  

Figure 1.4. The majority of n d  metwlork -na the 
input vmhbles ~r,...,sa to ba f imdkmd by m e  form o f ~ p ~  
bgive anew & ofvdabIesZ~, ..., &. Thaw are thentrmtd astheinputs 
b t h e n d n € f h o x k ,  w ~ o u t p n ~ ~ ~ t e d b y ~ l , . . . , y , .  

The curse of d i m e n d o e  



~igure1.5. Olaewaytoepecifya~ingfPomaoGdimenswnalspsoesl,.. . , x d  

to an output d a b l e  y b to divide the input a* into a number of &, w Af 

indicated k e  for the cam of $ = 3, and to & the d m  of y for ewh of 3 ( ~ ) = l v o + ~ r ~ + * * . + m ~ r ~  =Cturd. 
the &. The major problem with thia s p w  is that the number of &, f -0 

(1.2) 

and hence the m u n k  of data points r w w ,  exp0nmw 
with d, a phenomenon h a  as the 'curse of -on&@'. 

(&h, 1961). If we are forced to m r k  with a limited qusntitp. of data, ss m, 

similar to in$erpoLation. 
Although the effects of d i i o d i ~  are gemrally not as severe BS th ~ f w , a n d w ~ t h e p s t ~ ~ ~ b e f & j  

~ f - h n o f t h e ~ ~ s w  
w- This th& the of 



valuw Eor the network outputa, is c d d  
p&em the value of the 

learning, called ?l&@mnmf 
is supplied as to whether the 
actual desired dum are 
will not be discusmi further. 

Wahvei&md&t 
point. E m  functbu play an important role in tbe we of neural networks, $ 
the whlu of Cham 6 is dwoted to a d e h W  -on of their prop& 
T b m w e s b a l l ~ h m t h e ~ d ~ ~ m f u x l c t b n c a n b e d  
wmemepmtd &&istied prhciph, prwided WR make &ain m p  
thepmperkiegof~~dak WeWakro~igate&herfomofem>r  
which areappmprbte whm kbe mumptiom are mt d i d .  

We+bhd&a tb WW~ZEB of polynomial curve fitding by 
sptheW %q xlrhkb $.Intended to capture some of the b d c  pm& 
of reJht0 ats.,usedh pa*- =ph pm-. s w c d l y ,  
trahiug d&a &om I I 

by 88mphg thehmdicm h(s) at equal ~ o f r  sad then ad- 4 
w i t i ~  r ~amsim *tion (~ectioul 2.1.1) baviug etrndard 4 

a = O . a S . ~ f o r ~ & a ~ i n t a m d u e f i o r t h e m i s e ~ ~ ~  
Q ~ A M p ~ o f ~ d a t a & o f W i n p ~ r & ~  
thstthedaWexhibi&anunderlybg~wgsct ,  mpre&dinWl-  
by the funddon h(z), but is corrupted wttb random noise. The central $ 



F i g u r e 1 . 7 . T h k ~ h o ~ ~ t h e ~ e d a t a & a s i n ~  1.6, but tbistimefittdby 
a cubic (Ad = 3) polynomial, showing the sigdfimtly i m p d  8ppdxmtion 
to h(x) a c b i d  by this more flexible functton. I 

-.- #w 

~ ~ ~ r e l . ~ . ~ e r e s u l t o f f i t t i n g t h e ~ d & t a & a s i n F i g u r e 1 . 6 ~ a 1 0 t h -  . 
order (M = 10) polynomisl. This g h 3  a perfect fit to the 'mining data, but 
at the expeme of a W i o n  which hsa large &one, a d  whi& t h d m  r 
mvm a poorer r e p d o n  of the generator fimction h(s) thaa did the cubic 1 1 

removled. Figure 1.9 
M d & a s e t , a s a  
training & errm d m a s d  ~teadily as the order of the polpornid 
test set error, however, reaches a W u m  at M = 3, thereak 
as the order of the polynomial is h d .  

therefore reachm 

Figure 1.9. Plots of the FW3 error (1.5) a ~ i  a function of the order of the poly- 
nomial for both tr- and tet &, for the a ~ ~ m p b e  problem considered in 

p-us three figurw. Th error with q e c t  to the training set d- 
notonidly with M, while tfte error in making p r e d k h w  for new data (as 

by the W e )  h a m i n i m u m a t  M = 3 .  



jq to amgs fM& model, w- gh-w separation of the trw &ta. - I -. - - - - 
.! @ rrw'PAmi:-' - . . 

I I ' 4  

C 

~ * ~ @ - , *  .* *m 

~ ~ ~ h ~ ~ ~ ~ i P ~ 3 * 4 * 9 3  

* * ~ ~ l a . ~ ~ ~ ~ Z l e c o m 6 ~  
n qfgqenc~af m d d y  bm dab &, 

a b a n d * - d  

b r y * W ~ * ~ 1 1 + h e ~  



a polpomid to higher dimdons. Thus, Eof d input variable, and again one 
output variable, we d d  wmider higher-order pol~rnamials up to, say, order ai 
gi- by I 

d d d d d d  

y = + C ~ j ; e h  + C C wr,sxi,ri + C C W ~ I , ~ X ~ X * S X & .  (14) 
41-1 ii=l i s 4  il=l ha1 h-1 I 

For an Mth-order polynomial of thi kind, the number of independent adj 
parameters wodd grow Zike dM (Exercise 1-81, While thisl now has a 
lerw dependence on d, rather than the exponentid dependmce of the 

in p o l y n d )  were well deWmimd. 

general Mth-order polynumisl. W e  devote Chap- 4 and 5 to a st 

I 



Figure 1.13. D& frogl the of Figure 1.2 re-ted as en array. 
~ h e ~ m d b % ~ ~ ~ m d o f t h e e v a l u e s X ~  sndmhimage 
ieaaaipd t o o n e o f t b e t w o U C ~  orC2.Themmberddo@indceU 
r e p ~ ~ t h s n v m b e r ~ ~ a ~ t h e m ~ p m d i n g v d r u r b ~ l s n d t h s  
mnwpodbg  W W, Various probaWh me d d d  in the text in terms 
d & f r s a i o n a f p o i n t s f a l l i n g i n d i f f d ~ ~ o f  themmy. 

belaqe~ to olaas a. It is given by the fr&c&n ofthe imagaa in ruw CI whlch 
i a c e l l ~ ~  ( I n t h e E d t o f a n ~ ~ u m b e t o f ~ } .  

W e e  notF: that; %& fraction ~f the total number of images which 
dl (&,.$) iagWnbytbe bacEionof thenumber of- in row Ck 
MI i n , d  (&, X1j &e. the ikiictfon of the totd number of lmagas which 

The i8 & i p i d e &  h writing the joint probability in the form 

where P(&(X4) is ths prebabilily that the is C k  @verb kht 
value of &Us in the d x'. The wtity p(Xi) 

er d u e  Xt 1itb reap& to the whole d a b  &, 
memberahp,andL~re@-hythehtsonofthe  
which fdl into ophunn Xi. The two m p d o n s  Eor the joht prabab 
and (1.10) must, h m t  be e q d .  Thw, wz can mibe 

~ e ~ l x ~ j  +~eapy: = 1.. 

pun) into: (1.1.2) -wg.bb%&h 
.'a 
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a new image with feature d m  A, as shawPl in m e  1.14, it ah& 
-ed to  clw Cis 

In m m  wxs the prior prob.ltBiI&ie can be eetimhd dire& bm the tr 
ing data iblf Howem, it ,wa&mw happens (oRen by design) that the &a 
~ m o f ~ p l e s ~ o m ~ ~ c ~ i n ~ ~ d a ~ & ~ r ~ t l  
prob&itim & when our tr&d pattern mgdtion&8kem is appM 
new data. Gs an -ple1 mnBider the problem of a &ti 

guish bemeen normal tissue (W C1) and tumom Ca) on medical X-n 
uw ill  mas^ m. h &d & ~ t b k k S  * m y  kIlOW thi 

in the general p@Wwl the praborbiliy d obwm4n.g a turnour is 1' 
we should we prior pmbbilities of P(G) = and P(&) = 0,Ol. I 

aentatiw of tmwl without having to me a huge number of images in totjj 

.. 7 7  , . * 
One a p m  ~ b p ~ . A ~ @ a a k  t b a r e  dors d u d e  the 

d ~ p d . , ~ ~ W ~  and > W - p t h  wba;bW RWMY and then 
&he them using B-' theorem to @v& pw@riur prob&%W, whit& can 
then be wed W t a l ~  new dt&~&W appmd is to &ate 
the postdm probbility fmckbs dinccly. A. we W ~ a e  In Chapter B* 
ouQ~ufs of a mural mhvotk can be MeqmM BS [ a p p r m  to) pm&rior 
probabith, pmided the mar function wed to Win the m k w d ~  is I 
S&on 1.10 we &dl dim88 more gene 
mept d a lam mlxb. 

event will not occur (w3kh infermd- 
o f b w , t h e n b m d v a l u e s  
B a p '  theorem then providee w 
a t e  tbese ptobabilitih when we 



abiity density functions, which we write in the farm p(x(Ck) The histogr- 1 
plotted in Figure 1.2 efbbively @de unnonmbd~  discmthd -timates of ' 
the m functione PCX~CX) md p@\&j. 

If t b  me d variables XI ,  ..., xd, we may group tberu a w c b r  x = 
(XI,. . - , x ~ ) ~  m ~ m d b g t o a p a i e t  ina m o d  M. W i b t t t i i  
of values of x can be dmcribd by probability d d Q  firnetion p(x(x), such that 
the prababilitg- of x lying in a region 72 of x s p a  ia given by 

We d&e the q w t d m ,  or m$d (i.a average) value, of a function Qb) 
with rsepect to a grobabiJiW d e d t y  p(x) to be 

1 

q b  th.e mal is, over the, whole of X-QBC~. For a finis set of data psinq 
2.: ....,,? &,,dnam &om tBe distribution p(x), the wectation can be r p g r d  

the m . G m  th &a pow 
\ 

- 1 
1 N 

E[Q] = / ~ ( x ) l i ( x ) d x =  -EQ(X")~ -1 

1.8.4 Baues' &eowm in g d  
&r ~ n t i n u ~  &les I% pflm prohbIliti- C P M ~  b -bind with the 
conditionat demiit~ to giM the pasterior plobabiliti~ P(Cklx) using B a q  
thqom~, &hi& c m  now be written in the form i 

Rare p(x) is the uneondiliond density function, that is the density function 
x lrrespectiveuftb d m ,  and is gieab 



formula for the p r p #  Qf oompwhg pogterior pmhbil ih.  Thm, we can 
(1.21) to writ% the mihion (1.25)'311 tbs form 

A m r a  c k ~ e r  
tn one of c A. We 

but m y  iW be divided IntQ sever4 disjoint regim all of which are 

whers P(x E lZL Cz) i~ the joint prohbilisf of x bbeing k g ~ ~ 3  to 
the h e  class being Ca. Thus, if p(xjCl)P(dl) > p(sl&)P(&) for a 
&odd choose the &ow I t 1  azld &! such that x Is in RI, shce t 
e d m  contrlhticm to the emr. We mgnb this as the d e & h  
(1.26) far d h h i n g  the prubab'iQ of &d&cation. The same 
seen graphically in w e  1.15, in which mkkdfiwtiun errors w e  
W e d  region.. By choosing the d & i  bo 
at whi& the two distributions c m  ( 8 h m  



~ 4 x 1  =~(xICk)pIClc).  

Sinee it is only the relathe magnituda of the discrimiaant functions 
i m p d t  in d e t e m  the we vk{x) by !7(yk(x))3 w 
is any monotonic £unction, and the d&ms of the c l d e r  will not be 
By taking lageyithms for emmple, we mdd write ow dhcrhhnt fun 
theform 

gk(x) = hp(x)Ck) + Inp(Ck)- 

lk (4 = ~f(4- 

The locatlow of the d&&ion bupdgjris are therefore u n a f f d  by 
t r & d u n s  of the dimkdnmt  function^. 

~ b c r ~ t  hnctions far t w d a w  de&m problems brrdikd~ @38) 

$44 = YI(X~ - 

a x l d ~ ~ e n c r w w t h e r u l e h t x i 9 ~ e d t 0 ~ C r 8 y ( x ) > 0 m d ~  
C2 if y(x) < 0. From the remarks a b m  ik Eo11m C h a t  we em urre several 
for y(x] Muding 

pix) = P(CL~X) - ~ ( ~ 2 l x T  

I 



1.10.1 RejeCtim thmhoktiB 
In gaerd we expect must of the dda&cation errors to occur in thorn regi~m 

1 
of x-space where the lug& of the m i r  probabili* is rdaki& lm, since 
there is then a strong overlap bebvwn d&rent c b m .  In some appli&iom 
it may be b& not to make a cMcat ion decision in such eases. TW is 
sornetkm called the reject option. Ebr the m d d  dadiykion problem fior 
example, it may be b&ter not to rely on an automatic cldhation ip- 

doubtful cam, but to h m  these c h d k d  instead by a human m. We thea 
wive at the Wowing p d u e  4 

I 

" T ~ Q ~ ~ )  I"8' < r,  then reject x 

where 6 ia a thmhdd in the rmge (0,l). The Iarm the d u e  of 8, the kxvw 
poi* d 1  be c M e d .  One way in which the Rjed option can be used is to 

d@&p 6 rekdivdy simple but fast clasl* to mn. the bnlk of the 
Wwe e p w ,  while having the remaining regions to  a more mpWicatad system 
w w h  might @Wlvel~ slow. I 

The!r@elst @ i o n  be applied ta neural mtwarIcs by maklDg use of tM 
EMII~) ~ he #bwsd.  lo Chapter 6, *hi& the outpucb: of a correctly trained 
network .apprdma% hy&m p a o r  probabilittes. 

I 

~ r c i s e s  

1.1 (*] The fmk four auerd4a &ore the Uure of common Wtim wha  
d d n g  with spaces of many dim&= In Appendh B it is s b  

I 

Consider tke foIIowiag identity ~1~ the tranaformdion tmm CN 
to wlar E O O T ~  

! 

where Sd 18 the s& area of the unit sphere in d dimensions. By 
m of (1,411 show a t  .- > .  . , 

2dl2 
I Sd = - 

f ( 4 2 )  

where r(z) i~ the garnms, hction d @ d  

,a ae mults r(i) = 1 r13/2) = =/a, that (1.43) nsduces 
tothed----whend=2andd=3. 

Using the mult (I+#), show that the volsmg of a h y p q k a  of rdiua 
iin&dimen&nsisgha by 



a 

Q d 

iz=l*i i#=l 
I 

Thus, we see that AT) k m  ayg0n-1 m y  from its 
F w i t h I ~ d e a . ~ i n c e o ~ ~ a t l 8 s p e ~ w e ~ t h a t & o f t h s  
pr&abiity mm ie concentmW in a thin &elI at rathw. By Eontrast, 
note that the vaIu'8 of the probaablQ density ihdf is erxp(d/z] tima w g 9 ~  
at theorigin tbm at t h e r a d i u ~ ~ ,  as 6 s n b s s a n B e o m ~ g ~ ( x )  in 
(1.49) h llx\12 = 0 with p(x) for llxllP = P = 0% Thus, the buk of the 
groM1Iity maas is lomted in a different part of qm £ram the r a m  of % r 1 ~ , t ~ ~ ~  XG - * ' (I*$? 
w & d W t y d d t Y  I< 1' . 

I I , B ~  w w  of ths ilumd-wam emr f~nc t~on  (1.31, using the 
,*:oftas p o l p d  in &2), dmv that vdu- of the PW* 

ahm4&st the * htepad$mt p ~ -  paf&,m whi& 
at M mi&&,'* - > 

*.,we y&h t n b b i h  the pna are gim W =~~~~ of the ' I F  

f&Wingiaa:*@fm w-usequaaions d t 

M a ( 4 q  = Cn(i, 6 1  M- i). 

wberewehwede&ned 

n n 

1.8 (*) Cawids W mo&hrder tern in a w - m d e r  polynomial in d 
m d m ,  @- bg. 



rn , '  

Heme, wing the q e s s i o n  (l.691, show by induction that 

which correqond ta wical small-scde and &adium-e . . appucatmm. 
, 1. --.- - I 

2 

PROBABILFTY DENSITY ESWATION 

b(Yeds'iG function. The methods we d&ibe ca$ be 
f l ~  by considering eacb of tbe c h  Ch Sn turn, and t b  c b r ~  

a 2 1, Then, wtssumiag th&t (1.6!2) hold$ ,Order 
at M + 1. U* stidhg's a p p d i 9 n  . the . chapter we ~ I S W  the mblem of modelling a g r o b a b i i  depaity 

1, p;iven a finite m b a  of& IM& xn. sa = l . . . . . ~  dm- fmm 
@mrd a& (M 5 3) p l ~ m i s l  itr 
f he totd n&& of Wep 

*) ~ d p g m  txre have 6 bax CO~- 8 apples m1.4 d& then be & 
m d  bm c d & h g  10 apph and 2 or-. po~terior prababilieies gorrmpon& to 

itY esthukhn cw a h  be.wpfied ta unlabrrUed data (that b data with- 
I(*.) & n s ~ ~ ~ 1 1 - ~ ~ a m d 6 ,  wWw%n@ dass l a M )  where it has a n w b a  of a p f l c a ~ .  h the of 

Q 5 (&)l/Z. &e 

~tltp~bs of a t&& mural n e h r k  

' - J  - '  

I (*) y e  that the ma-ri& dsddon &&on (1.39) ~u~ to 
d e  & &%) fir mirLimkhg the pmbsbility of misd=@don w - 

to the data a&. The drmu of rmch 
of PacaXwtrlc function  cham^ m@t be 

of the h~ d d @  By m-, 
r n W c ~ t p M c  a t i o a  h not gssume a particular 

W be d e e d  entirely 
problem that the number 

p, 1994b). 
gbpter  6, Mniques for deu4t.y estimhn am mmbhd with neuraf 
*odela to prwide s general f r m m r k  hr d e l l l a g  m d i t i d  demity 
P* 
~piy cwidelc three a~ternatim appmachs~ to density &oa  he 
mese involve8 m t h  methods In which a specific. ftwtional fmm 
bhsi ty  model is is. Thfs contains a number of ~ a t a m h  which 

n, to achieve the bast of both worlds by allowing avery 
' f u n d i o d  farms in which the number of daptive pmmehre can 
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m o w  for conditional &nsiw &mation, as discussed m h w  in Chapter 6. 
It should be emphabd that accurate modelling of probability densities from 

finite data & in spaces of figh,dimemion&iy (where high could be as low ae 
d = 10) h, in general, extmndy dil5cult. In Exercise 1.4 it was shown that most 

I 
of the pdability IIWW mciated with a G w i a n  dhtribution in a space of high 
dim40nalIty occm in a thin shell at lwge rdw. With a ihib data &, there 
may be few, if my, data points &abed with the region of high probab'ity 
density near the or@ This is mother example of the 'curse of dimemiodity' 
discussed In Section 1.4. 

The kechniqum described in this chapter are not only of great interest in 
their own right, but they also p M e  WI &lent introduction to many of the 
central issues which must be d d r d  when using neural networks in practical 
q&c&mns. More extensive ~~SCU&OIIS of d m  estimation can be found iq 

arad Ha& (1973), Ti-gton et dr (19851, Silverman (1986), McLachlw 
and B e d  (19882, Wunaga (1990) and Scott (1992). I 
&,&ww @.&&&d a p p d m  tu dendty mtimati011 b to r e p  

the pwbbiX4y density p(x) ,in term of a qecific functional form wbich mnt 
aimrmnbo d.&&&le ~ a d m s .  The d u a  of the p r a r & m b  um 

3 
opmkd*'* $be best:,fSf to *he 
pmafnWc m&M fs the n m d  ;or 
0 f ~ e n t ' d s ' t r ~ ~  anrl 
basic principles of p&1'ametric density esthWion, we shd firnit our dkmd 
to normal distributions. 

W e  sbaIl dm describe the two principal khdgues for determining the 
rmmtem of the model distribution, known rmpectiveIy as -mum @el& 
md Bayesian inferem. As an illustration of the Baymian approach, we mnsi 
the problem of hdhg the mean of a normal Wxibutio~ Bayesian metha 
atw c g u i d d  in C h q d q  10 where they are applied to the rnore m 

for on-line learning in which the data  due^ arrive sequentially and m w  
discarded as soon as they are W. 

The normal density function, for the case of a single .rrtt$iabb, can be writken iJ8 
the form 

c& t h ~  mean andt va 

lk 

d y  be v d e d  using tk resuh derived in Appendix B. The mem a ~ d  
ce af tbe on$dIm&onal n ~ r m d  dhtribution s q  

1 Ax) = (%)d , l~q l l z  mp{-~(x-p)T~-l(x-p)) (2.4) 

1x1 is the detmnhetnt sf 2. The pm-r in (2,4) m a  that 
= I , m c a n ~ a i n b e ~ u s i n , g ~ e m d b d ~ i n A p p e n d i x B ,  
function p(x) is gmmed by the paramems p md B, which sat* 

P = &I4 (2-51 

= & i [ ~ - f i ) b - ~ ) Y *  C2.61 

t a n3atrix, md @er&re kw d(d + 1)/2 
n t s . T h m ~ & o d i a d e ~ ~ e ~ s i n p , a n d m  the 



Figure 2.1. A n o d  disttibution in taro m o m  is govend by a mean 
vector p and a wmianm matrix with mmf~ and u*, and correspond- 
h g  &envalues XI and b. The ellipes carresponds to a m n ~ u  of mnstant 
probability d d t y  en which the bnaity is p d e f  by a hrotor e-'p than it is 
at &4 point p, 

It is s0-a m n v d d  to mrqider a simplif~ed form of Gaussian 
bution in which the obvaxiance matrix is diagonal, 

2 (Elij = 4jflj, 

which reduces the total n u m b  of independent parameters in the distd 
to 2d. In this case the conbum of cod& d d t y  are hypmd-s wit 
prip.dpd directions $igned with the coordinate ares. The components of x 
then said to be ataj!j&idly independent since the distribution dx  can be 
a4 C b e  product of the distributions lor each Of the mmponents mparatel 
fop 
* P' 5 - 

= Ud*,. 
*& 

h u W l e r * p ~ ~ m c b ~ o ~ b s e h a a d e g a ~  =.fard5i 
thenm~dgs~smetrwa.huthBt~Q+>.TgB-&of  
. & s r e t h e n ~ ~ ~ A ~ & t . O f t h e h ~ ~ t i o n  , 

, , s b W n i n ~ g u r e 2 l . ~ * ~ b ~ . ~ ~ ~ > >  
~ m l e W 4  they aha C h d Y  hwe.w p-w. 

Figure 2,2. S u r h e  plat of a n o d  distribution in two d h w h  for a diw- 
oslal cwaFianoe matrix governed by a w e  vrrriance parameter 2. Y. Iru 

~t *tivelly simple analytical p!!&ies allowing msng. naef~l mdts 
to be o b w e d  explicitly. Fw iastwe, my moment of the -bution can 
be m p W  as a fanction of o f  anand E. 

. The mtnd limit thmm states that, under rather general c i r c ~ ~ ~ ,  
the mean of M random variabla tends to be W b u t e d  ~ ~ y ,  in the 

t ~ M h d s b W t y . T h e & m n ~ I s t h a t ~ ~ o e o f m y  
v a h b b  should mt bomb&+. A mwmm appbtioe is to the sum 
set of variables dram independently fropi the - dktdbution. In 

.practice, mnvqga~ce tan& to be very rapid, so that for values d M rn 
smdl as 10 the apgrmhation to a no& disW&i~n can be ,good. 
We might hope that me-- of mtudly o m  pkmomena have 

I I .- T ,1) ' 1  1 1 1 '  I !I . 
, Under any non-shqgh hear ~ ~ 1 1  of the coordinate system, 

the M @ ~ h o b i s  distance k e e ~  b quadratic form d renab p m w  
d&te. Thus, &er mch a tradamaioxr, the distrihtion is again sod, 
but with djfhent man md @wariaace p ~ ~ .  

. The mfgmd dendtim of 8 d M b u t h n ,  obtain& by integrating 
' 

jout some oftbe vdables, are h w e I ' y e s  normal. SMhrIy, the M t i o n a l  
d W b ,  ohbind by setting some of the he&h tcr fixed duersI are a h  

> dwd. 
b. There exists a linegt trmdomation wM& diagonaihes the mvarhce ma- =; T& Ids to a new c o m ~  -, b a d  on the eigenwcbrs of 
&a %he w h b k  are &atistically independent, m th& the M t y  

I a 

i 
II 



h p r a m ,  the main reason for c h w  a normal distribution is usually its 
d y t i i a l  simpl'ityb I 
2.1.3 D$scr4mhad f inctha 
In Seetion 1.9.1 we intmduced the A t  of a discriminant fundion, and 
how it wdd be r e b d  to the &p&dogd d d t y  fusctia through Bay+ 
theorem. This led to a ~ ~ ~ i m  of dfscrinainant function given by 

where Ck denotes the Ieth h, and pick) denote .the cormqondxng 
ability. E&h new input vgdor x is adgned t6 the c h s  CI, which gives 
value for t h ~  conaponding dhxhd&t gk{x]. This choice of chss&cation 
rion minimirrAFl the probability of miaddca t ion .  If each of the elm-condit 
d d t y  fundiom p(xJCk) in (2.11) is taka ta be an independent normal d 
bution, then fcom (2+4) we have 

where we have dropped constant Wms. The decision boundaries, at0 
yk(x) = g,(x), are thedow geuerstl q u w  flmctbns in ~~0 

An import& BimpWatbn omma if the mvm5mm &CES for the 
h are qd, so that Ck = E. Than the lEbl tenma me claas hdeped 
may be dropped from (2.12). 'Similarly, t4e quahatic term xTZ-'x is 
independent and can be dropped. S i  T: 19 a m e t r i c  ma*, its in 
dw be symmetric (Appendix A). It therefore %Horn that xx8-'pk = 
' S h i a @ ~ $ ~ a & p f ~ f u n c t i o a 8 w ~ c a n b e w r l t ; t e n i a ~ e f 0 r m  

where 

The functiom in (213) are MI emmpb of IWT diaicrMnw@, Sia* k h w  
l i n a  function@ of x. Decision bottridaries, wrrespondmg to %;e{x) = yj(%), 

rmirimafor d o f t h a ~ s s  mequad, and in additiondlofthe 
~tatkkically Independent, EQ t& E becoma a diagonal matrix. 

the elmindependent term -d In c h s  been dropped. If the b e s  have 
P& jprobabilitia P(Ch) then the decision rule takes a m~ulatly simple 
-the Euclidean mstancetoe~ofthedaasmeam and wign 

the class with the war& mean. In this case the mean vwbm act 
or mifotppes md the W o n  rule rorresponds to simple template 

ties are not equal then tbis template matching rule 
by (2.16). The concept of a prototype a z k s  

&died enaprmertsk form for adensityfunetionp(x),thenmtstsge is 
bmila Wdvefor the pmmetm. In this mion the nexE 
M y  the hm prindgal sppr* to this problem, h r e B F  

Weam Ahhow t h m  met- 
to - r=1% - %Rmm4iw 

b b d  * Q P ~ W  ~ U W  FOB 
functiotl derM fmm b *&ling d&& 
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the parametem are described by a p m W i  distribution. This 

a ~ o d  WW mti* -I8, we 
~ S u f f w E w m m r n e d e f i c i ~ , ~ ~ ~ ~  

N * k h * m a a ~ r ~ d - d a 1 1 ~ 1 ~ 3 % 1 ~ ~ ~ ~ ~ ~ ~  
p(#lO) = n p(Pl8) = L(8) x dm from. (2.19) md (2.20L 

rp=l  

I '  ' 

N 
E = -IDIC(B) = -Clnpfi)p) 

n=l 

and to h d  a minimum of E. This is equivalent to m d m b i i  C 



-8.4. ~ t i c i l l ~ n o f ~ ~ f o r a ~ 8 .  The: 
p & ~ & t n ~ ~ w r W b ~ i n ~ r m ~ O f v a l u ~ w h I & B ~  
~ , b ~ m e b a ; P e ! o ~ a n y ~ a n d i s t y p i ~ ~ ~ . ~ ~  
haw o w .  thg a;& X ,  we can &ke the wmapdbg p t *  
& t a i b a t i o a & n g . ~ ~ .  Sinaeswnevd~ofthepar~rnetmw3ll~ . .  m o , ~ * ~ d a t a h ~ w w ~ ~ * ~ ~ t i  1 
~WlernammrthanthepriorW- . . I  

, I 
in -a1 netmrks. ~ n .  this oad, the wnaequen~~~ are potaatidy 
miom, as a d of @ mvqh &ger number of p~rarmW8 which haw 

9.3 Bayesian bferems 

84: Bswsian wrfemw 43 

dafnition of c o n d i M  probability dens+-, we can tbgn wEite 

81x1 = ~ ( ~ 1 4  XIp(BlX1. (2.W 

r, bow eve^, is hihpendrtnt of % &w $*.is just ti* form 
&mi@, and Is m m p l e b l y ' ~ ~  once the durn d the 

8 have been &. Wi t M r e  have 

H 
~(xle) = n9(xnle) 

Yb=l 
(2-81 

tb EkeUood function introduced in (2.17). Using Bayd the- 
write the pmkior didxibution for 8 in the form 



mogt commonly encomtmd example, 
In order to illustrab the technique of 3 

example Involving a o n + h d i o n a l  bput 
x. We &dl suppose tkak the dab is gener 
which the standard dwi&ion u is d 
mean p of the dhtributian, given &set, 
the prim density for p to be a n o w  d 
deviation 00, given by 

Thisesrprwse~prior~ledgeofthemean p, mdmifwearewry 
os to ita d u e  we would choose a large d u e  for oo. Once we have o 
gim set of N data points, we can &late the posterior 
p N ( p j x ~ ,  . . . , xNo) using B~yes' theorem. It is imwrtant to 
between the distribution of x, which we am trying to model, and the 
po(p} and p~@lX), which d d b e  our u&ainty in the d u e  of p. Xn 
p h u h r  example, dl of these dktributiollat me m d .  

Using (2.28) we a n  write the pmbrior didributron ia the form 

PN(PIX) = * fi P(Zn]P)- pix> ,, 
Then, using the form (2.1) for the normal disfxibution for p(xlp), it is str 
forw&d to &ow (Exerdbe 2.6) Ehat the po&erior distribution pN(plX) ig 
normal, with mean p~ and h o e  u5 given by 

whem f h the sample mean 



mlution. For a h i t d  number of o ~ o n s ,  however, the two a p p d e a  
tend to give somewhat wmt mdh. 

There are several other a p p d e 8  b the problem of parameter mtimatio 
w h i h  we do not have space to discuss in detail here. One technique which 
worthy of mention, however, is that of sequential psrau&m estimation, shoe 
underpine a number of dgor&hm wed in adaptive n e d  network. 

Sequential methods for gman~&& &-ion make use ofitmakive t 
to update the parmeter dm @a new data paints or o ~ t i o n s  are wq 
They play an imp~rt+mt role in pa&- recognition for a number of reasom. F 
they & not require tlxe w a g e  of a complete data set &ce each daka point 
be discarded once& b b e e n  used, .and sothey can p r o v e d  wben I 
volums of data are adable .  Secwd, they can be used fbr 'on-line' 1 
red-time d ~ t i w  sptmu. Finally, if the nnderlyhg proms w W  
the data ha9 a stow h e  -tion, the pmm& vahres can Apt to 'tr 
bebaviog of the sys+m. 

la simple. . c m  it m y  be pdb1e  to take a m d a r d  'batch' Mnique 
,md ~ep~8h2 .out the COntFib~tb from the 

data point tu give a wqmtid up-date for& For i n s tmi  £rom the 
lhdihood expmsion for the mean of B n o r 4  Wbut ion ,  g i n  by 

W e ~ f h a t i t i s o & a ~ b s t m t h e d u w o f , @ a n d  N, andso& 
poiut is used once d can then he discarded. Note that the contribution of 
~llc&# data point decreas@ m a comwuenm of the I/(N + 1) co& 
Although this.heuristic pm&m mm reamrllrb]RI we wadd like to frnd 
f o d  assunace that it wilI converge m t W r i l y .  To do this, we turn 
more general view of sque& parameter w k b t i m .  

2.4.1 The Robbim-Mm dg~ri&tn 4 
The ikative firmula of (237) is a p&ar aampb of a mom general 
&re for fm&g the roots of functiom whi& are dsfined ~tocb t i t dy .  Co 
pairofrandomvmhblmgand 6 w h i e b m 3 0 0 ~ ,  a s i d c & d i n F i  
Theweragevalueofgfor ~ ~ u e o f % d & n e a a E u n ~  f(6j 

@ ] i s ~ h ~ k h e ~ ~ a f a  
' S b , ~ r w h ~ o P j ~ # ) & ~ ~ ~ & e  

~ . f ~ & ~ p t . o ~ ~ f o r  
fm@om'arap gim by Whim and Mdam Elg69. 

&d,- tab&$ 

ElkJ - f )al@] (2.39) 

as.  he ~ o b b d ~ ~ m  ~ M & W  
s quence of w c m  @mates for the root given by 

@N+I = @N + &N~(@N) (2.401 

g obtained when 9 t h  the Wue 

k Q N = O  
N-00 



the root Be- with probability 1 (bbbhs and Mom, 1951). For a Elimple proof 
WB mdt, S W  Fbkuz1~a (1m). 

The fmt mndi- ( 
in magnitude m that the pmcw 
copditim (2,42) ensura tlsat the 
eventually found. The hd c o d  
h a s ~ ~ m W f b e n 0  

demeshrrvealso 
we em 53fmlslaethe 

update method using t 
~ d ~ u e 8 i s g i ~  byamiut~anaf 

where we barve introduced an extra fhdm of J / N ,  which a k m  ua 
limit N 4 m and hence obtain the expectation 

E [i lnp(zl8)] = 0. 

h the Rnbbina-Mom formula (2.40) this tan be solved using an 
scheme of the form 



1 

I 
I 

h 

I 

I 
i 

Figure 2.8. An illustration of the hisbogrm approach to d d b  &tion. X 
set of t&ty &t+ poi& - generated by sampling a density function givm by 
the sum of &a normal Wbutions with means = 0.3, pa = 0.8, standard 
devia~om = = 0.1, and ampzituda of 0.7' and 0.3 ~ e c t i d y .  The 
origbl distribution L &own by the dmhed m, and the hb-am -tima& , 
are &awn by the d i d  cunw. The number M of histogram bins within the 1 
given interval dderminea the width of the bins, which in turn mntrols the ; 
smoothness of the d d t y .  

technique called K-nesl.est-ne@bolffs and show how this approach c 
both for density estimation and to provide chihation d&iow d 
d l y ,  we consider the role of the smoothing parmeters which govern 
of moethnm of the &ima.ted density and which arise in any non-par 
technique. Determination of suitable durn £or such paramhers is an im 
part of the density &hation process. 

2.5.1 Histogmm 
The basic problem of non-~ametric density &bation is pery 
set of data points, we wish to model the probability distribution 
the data, without making any prior assumption about the form o 
functin ( ~ c e p t  for some general smooth- prop&, which we 
shortly). In Section 1.1 we mnsided a W g m m  of hypothetical 



If wv have N data points drawn independently from p(x) then the probab 
WKofthemflfdwitbintbe~~Rispimbytbebinomialh 

Pr(W = 
Ni p X ( ~ - p ) ~ - ~ .  W t e M , p m i d e d ~ V i h W ~ w I & h N , d g t  

R! (N - K)! way ( D u b  md Kwt, 1973). 

P - K/N. 
Tf we assnme that pcx) is conthu~us wd d m  not vary appreciably over 
region 'R, then we can appmxbmte (2.49) ,by 

where V rS the volume of 'R, and x i~ some poiat lylng inaide 'R. b (2 
and (2.52) we obtain the intuitive muk 

K 
p(x) = -. w 

~ ~ d w i t y ~ b t r s :  
l s ideh,withdcubeamtd 

I 



In general, if the kernel functions 

H(u) 2 0 

and 



Figure 2.10. The K-nearest-neighbow a p p r d  to density estimation, again 
wing the same data as in Figure 2.8, for various dm of K, 

I If h is too large there may be regions of x-space in wbich tbe dimate  is d 
smoothed. Mucing h m y ,  h-, lead t6 problem h regions of h e r  ded 
where tbe model densiw will become noisy. Thus, the optimum choice of h I 

he a function of position. This difEcalty is addressed in the IC-mme&neigh& 
approach to d e d w  estimation. 

We again return to (263) as our &mting point, but we now k K and d 
the volume V to vary, Thus, we consider a small hyperephere centred at a fi 
x, md dow the radius of the sphere to grow until it coataim precisely K B 
pointa. The estimate of the density at the point x is then given by (2.531, wl 
V f the d u m e  of the sphere. In Figure 2.10 we &ow the result of the K - n 4  ' neighbow appro*, for the same data sat as ussd in Figures 2.8 md 2.8, foi 
v a ; l u ~ K = 2 0 , 8 a n d I . W e ~ h t K ~ a s a m o o t h i n g p a r ~ a n d t  
there is an optimum choice hr the d u e  of K. 

I One didvantage of the K-nearest-neighbour technique is that the reguh 
I d m a t e  is not a true probability density since ib integral over dl x-space 

we. A disadmtage of both kernel and K-nearest-neighbow methods L'1 
all of the tr- data points must be retained. This might led to probled 
computer storage, and can require large amounts of processing to evaluat;e 
density for new Twlu~ of x. More sophisticated wmions of these algorithm 

I Lov fewer data points to  be used (Hart, 1sBB; Gates, 1972; Hand and Batch 
19781. There dm &st tree search technique8 which speed up the process fm 

57 

encornpassea K poinh imespdive of the'i class label, Sup- 
fvolme V ,  comhimKk points f m m & s C k .  Then wecm use 
appraimatbm for the cdebss-csonditional densities ha the form 

ion4 d d l y  capl be similarly estimated from 

?bpmbab'Ilikyof . a new vector x, it shalild 
~ ~ ~ r w w h i c h ~ ~ K i . l a g a t . T h h i ~ i m r m .  



B p  2.11. l k m p b  of the d e & h  born produced b3f the wa.mt- 
neigbbour W e n  rule. Note that the boundary ia p i w m h  h-, with 
& h ~ t ~ ~ t h e p e r p e ~ ~ b e t m P e e n ~ & t a  
* W r m @ m ! l t q ~ ~ .  

bqhI go Chd the m& domity % no& end sensitive to tbe individual d: 
p o w ,  @band *e m d&ed mom pis&? in W i n  9.1). Thachc 
of a suitable d u e  fbr &e ~ma&hb@ par&- d ~ t W  b the pmblem 
ehoasiag the number of tens. in a po1yn~mi.d used in c u m  fitting,= 
in S d o n  1.5, Similar smoothing parameters will appear in our dbC 
neural networtce For instance, t l ~  number of hidden unih in a layerad fe 
fnrwatd network can phy a sindm mh to the number of terms in er polpwm 

It is important to mahe that we m o t  simply pick the value of the smaa 
ing pamm&er which gim the kg& d u e  for the likelhod, ras the l i i  
c a  h p  be Incremdinal&t&by&osllngever m m k v a l u e ~ h r , '  
a m o d h g  pmwmbr. h d e r  fat instance the c a ~  of kernel &matom. 7 
likelihood function' caa bewri€tm as 

where p ( 4 . .  .) is given by (2.68) for the w x  of G a ~ s h  kern&. It is ea; 
vedied that uncombined rnuimidion of L(h) M s  to h + 0 so that 
readking d d t y  &hate c o n a h  of a delta fundion at each data point, % 
rn d d W  ~~* 

The god in selecting moothhg parameters is tu produce a model &r' 
p r o W i a e n s i t J r w h k h i s m b w p d e t a G h e (  

, Ic is a h ~ ~ * , h m  ~ f m q d  

%& h&hm madeta 69 

1 N 
E[-h4=- lim - x h f l x n )  

N - N - X  

= - / ~ X I I ~ . ~ X I  dx (2.68) 

g d a s a m e ~ o f k h e ~ ~ w h i c h t h e m o d e l d e n s i t y  
agree, When F(K) = p(x) this masme has a midual value 

- J p(x) p(x) 

w, the mtmm of p(x) (Section 6.10). It is mmaient to subtrwt 
idual value to give a meamre of the 'dice' beWen p(x) and g(x) 

$(XI L=- p(x)ln-ck 
*(XI . (2.70) 

1; Kullback, 1969). It Is shown (Emrdm 2.10) th& 
if, and only if, the two d m  -barn eqd. N& 

rie with respect to the ~ W O  pmbabili~ &&iutbns. Thb is 
mare importast fdr the model disbributhn E(xl to  be c b  

butbn p(x) in regiom where dats is more I%& be found. 
.70) ie weighted by the true Wbution.  
ity &imd&n problem we me &dore  bed w&h the 
suitable value for the m t h i n g  parametar. This is an 

and very important, Issue w h i  is concerned with 
of complexlp, or Mb'i, of 8 model for a given 

consider th18 problem in the hnework d density e k h  
~nas im until Ghrmptm 9 and 10, where we wider the 
context of neural network mod&. There we shall disc- 

with m d d  c o m p k i t y ,  b a d  rwpectidy on 
03. 



the d m i @  function, which might be very di&m~t from the true d d e  Usually 
however, parametric models allow the demity M i o n  to be evaluated 
rapidly for new values of the input vector. Non-parametric methods, by conbad 

number of m h b b  in the model g r m  directly witb the number o 
points. This leads to m&ls which can be very slow to d u a h  
vectors. 

function, called a rnktum mdeb As well as providing powerful 
dm~ity =timation, mixture modeis h d  important applications 
of n w a l  networks, for m p 1 e  in cd igw ihg  the bash functions m r 
hct3an nehvmk~ ((Section 5 4 ,  in techniques for conditional densiq 

In the non-parametric ked-based appro& to  density &hation, the 
sity fimction was represented as a W&r superposition of kernel £unctions, 
one kernel mtd on each dat,g,point. Hew we d d e r  models in which the 
sity function L again form& from a linear wmbinakion of bask hctions, 
where the number M of basis functions is treated as a parmeter of the 
and is typically much less than the number N of data p W .  We t h e e  
our model for the density as a linear mmbin~tion of component densities p 
in the form 

114 

P ( X )  = ~(xJj)pb)+ 
j-1 

ion. We shdl PU) the prior pmb&iZity d the data point hadug b m  
at& fnnn ramponefit j of the mixime, Thee prim are chosen to =ti& 

iy, the component M t y  functiom p(x( j) are nomabed so that 

of the oornponaks j b first 
a data point is g m & d  

imporfmt ptoperty of such 
d ~ t y ~ o n , t h e y ~  

p1wided the model 
er of compoamts, aad provided the pmmhm of 

ation and a true 

&-the link with prhr pmbabilitim a d  conditional deesitim, we 
kbe mmqmncbg p s t h  probabilitim, which we can a p r w  

in &he fom 



212. ofthe m h t m  madel (2.71) h term of a network 
'hiagkm. ,For G&wku component dmwith pCx@) given by (2.7'T), tbe lhm 
+&ii$j *e h&t& m to the corn- p(xbA) d the d t m m t s  pjg 
.m&&@&n&jg m w  h&am pi. . .  I , ' . , . ,  L 

lndIvidud eompx,nent d+es given by Gawsb d i d u t i o n  functiot~~. 
W further -me th& the eeu&m e d  have a covwhce maM whi! 
,me w&r multiple of the id* ma* so that Elj = 41 (where I L 
identi@ matrix) axrd hence 

b w , t h e , w q ~ 8 ~ ~ s l r a I l a d b ~ ~ ~ ~ ~ d a ~  
wmpomt densih having f@ c p r ~  W i c m  as d k d  in W d  2 
&t the 90tlWxk of pametric djWhWns. 

T h k n W & e d e l c a  b e . ~ i n W n s n f a n W w r k d k g r a  
&own in Figme 12.12. Tb% b simply e dl$h~rmm~& repm&&ion! of s:m 
h c d  function, in Chis cme the xnWm model Txl(2.71). 9u& c&gr&m p 
pw4icuk1.y usrafpl when mllgid&g1&in* nead wMuds s t m x t u ~ ,  8s: 
d in la* ,&phm. 



representhg the mixing parameters in bmna of a set of M a d b y  wriab: 
I91 that 

The transformation given by (2.81) is called the s o f h m  hlidon, or no& 
exponentid, and ensures that, for -rxr 5 3; 5 oo, the wnstrdnts (2.72) a 
(2.73) are satided as raqubed for probabilities. We can now perfom an uric( 

strained minimieation of the i3rMr function with respect to the ( ~ ~ 1 .  To find i 
derivative8 of E with respect lm 7j we we of 

which hllows h m  (2.81), Using the chrain rule in the £om 

together with (2.75) snd (2.781, we then obtain the required derivatives is.1 
f i  a 

I 

(a 
' I  

' B R ~  m W e  iq& WB of [2.?&). T&,wnpI& set sf dwi* d 
1 

fundioli wah r€&pm tb, the ~~W d** the'dd, @= by Pm), L 
a o d ( 2 6 4 ) , ~ t b i a b e u s a d i a C b s n a n - l i r a e s r o ~ ~ n ~ ~ ~ ~  
in-f t o p ~ e p r a e d i c a l t c c h d ~ f Q r ~ ~ m i n i m a o f t b e $ I  .1 

-.- 
a&~ rep- the intuitive result that the vmbce of the jth component 

by the miame of the data with raspect to the mean of that component, 
weighted with the pmtehr probabilities. Finally, the derivative fn P 
to zero we obtain 

(2.87) 

%he mdmum l ikebod mlutiaa, the prior p r o b a b i  fot the jth 
b &en by the pwkior pmbabilittes for tbt componmt, ~~ 
EM a l g o a m  

6) and (2.8'1) pmide u d d  im@t into 
dufion, do not provide a direct 

. h fact they reprmnt h i i y  ma-linear 
since kb pamdam occur implicitly on the rigbhmd dda 
. T h e y h , ~ , ~ t h a t w e m i g h t s e e k ~ i t m ~  

e G w b  mixhim model, which we shall call 

hr the pmamdm, which 
whkh we might hope thb d u e  d the 

smak. These ptarameter valm then become the 'old' dues, 
ia repeahd. We BWI &ow that, provided some care L taken 

which the updtttes m prfhnd, an dgorithm of W form cm 

YII .,-, : 



I 
I *) 2: Pmhbilitg Demitg E t W ~ t h  

can write tb in the form 

whm the lfiet factor inaide the bra;clteta is simply the ihtity. We now 
of Jmsm's ineqdity (Exercb 213) ybch ,+p &t, @m* + of 
Aj ~Osuchthat Cjh = 1, 

1 Sics the p m b W t k  (jld h the merator of (2-8s) sum to d t y ,  - 
can b y  the mle of the Xf in (2.903. This giw 3. -tic plot of the error fuoctioa E as a hcthn of the new 

~ f ~ o f ~ ~ a m h o f t h e m i x t u w m o d e l . n e - ~ ~ +  

ofthis qqw bond. 

(2-94) 
the rigbe-hmd side in ( 

e dmintiye8 of (2.W) with fo PBWGj) fo ESO IWQW 

(2.95) 

I 
I A can be faund by multiplying both d& of (2.95) by 

g = - C C ~'(jlx") h {p"(j)pM(x"lj)) Pd( j lxn)  = 1 we o b ~  
* s for the p&rmmtera 

I Pgy = i ~ ~ d ~ ~ x n ) .  
- '  I ? . - \  8 m C L  



Figure 2.14. Example of the appWiw of the EM i d p i t h  to mixture den- 
sity -tian &wing 1000 d&ta points- drawn from a diatribu%ha whih is 
uniform b i d e  an 8hnuJ.m region. 

sides of th& expremions. Thew ahodd be compared with 
m u m  likelihood rBsuleS (2185)-(2.87). The algorithm is  r 
include Gaussian functbm with full c o v w h c e  -. 

As a simple m p l e  of the use of the EM algorithm 
we consider a set of 1000 data points generated from a 
uniform within an imn&-shapd region, ae shown in Figwe 2.14 A G 
mixture model, with seven comgonenb of the form (2.77), was then 
this data The initial m&u&ion of the model is shown in F i  2. 
20 cyclea of the EM algorithm the G d m m  had evolved to the form 
in F i e  2.16. The correspondhg conbum of probability density are 
FigG 2.17. 

e t  iato the EM algorithm can be 
earlier remarks concerning the simikities be- 
the reprmentath for the mcmditional d- in a 
the latter -, the data points xn all carry a d m  label i n d i a  
p o n d  density function was responsible for g e n e r e  them. This 
cl-ditional d e w  f u n d  to 
found by rnaximbhg the IWihood 

S & i a 2 2 W  the cormwonding 
ghmq- & m'(2~19) & " br F 

.m , . 

L 

0.0 0.5 1 .o 
2.15. This a h  the initial murat ion  of aaven G& &a& 

in the rage  (1, M) s p e w  which mrnponed 
+paw. The n-ye log-&elhod (or e m  
piobIeqTi '-7 p-y* valy5SI is given by 



E(amP = - h , p m P  

N 
= - C l n ~ ( ~ ,  I") 

-1 

N I 
= -CiU{~~(i")d"(zlz"Tf. 

-1 

respect to the paramekrs of the component distributloll~. The 

B**ae- ~*hcwsiww-~=bare %16*D 

*m-* &&a & k0i.n m ' 2 " 1 &  

M M N 

E I P m * ]  = C ..* C Fmp nP"ld(Pl~n). (2,102) 
zi=l aH=1 n=l 

@mnient to r e d &  F P  fmm (2,101) fn the equivalent h m  

N W 
, p m ~  = - JJP In { ~ l i l ~ ~ ( x ~ l j ) l .  

n=rl j=1 

subatit* (2.103) into (2.1[12), and paform the sulns wer the {zn) 
by M&& me of the identity 



JzmE&a % 

M 

C p""d(Ixn) = 1. 
-1 

Tbts gives the expectation of the complete-data EMhood in the form o use t h i ~  as an apprdmaion for the q d .  Al-~Pe-Ity, the psrramehm 
lY M 

E[PmJ'] = - cPdd(j[*~) In <PW(j)flm(.Se:*I j ) )  . 
n=l j=l 1 PO'lfl) 1 +, = 

PO.l#+') ;iP (2.111) 

We m nate that (2.M6) is identi4 to (2.92). T~IIS* m'mimiz&m of (2. 
lea& ta the form Of the EM algorithm derived &we. 

25.3 St- estipndim ofwmrnekm 
As a W d  approach %a the d ~ t i o ~  of the parmew 
ture model we cowid@ the technique of &&&ie omline op 
1991), &pin wb ~98ek to minimize the error fuadian, but now we suppo 
the d a b  points are arriving one ak rs time gnd we wish t~ find a sequentid the farm (2.1) far the normal distribution in one -on, trnd 
scheme, Cansider $he minimum-error expm&011(2,85) fur the mean pj 
jth mpbnent  of the &me for a d t a  set mntbthg d N wta 

~f = 
pdilxn)xn 

z:=lwt*l - 

(2.18) are given by (2.21) and (2.22). 
p;"' = fir + #+I - pT) 

where ths p w ~ r  ny is given by 



being dstenninsd the data, w that the sstima~ of the vmianoe/ 1:10(*) B~alteCchingmaphsofIn~mdx-I vsrifgtheiaequalttyhzss-1 
with mt;y if9 aud only if, x = I. Cob this regult by dif&-ation 
of lnz - ( x  - 1). Hs~e shm. that the Kullbad-Leibler d-e (2.m) 
s a M m  L 2 0 with qualib if, and only if, the two W i b u t i w  are qud. 

',U(*) &nsid&r tro dkre te  probability dWibution8 pr and pr that 
I C i~ i  = 1 and C,P~ = I* m e m ~ n d i p g d i ~ ~  d ~ ~ o f t h e  

KulJb&-Leibier dhbme crm be written 

h By differentiating (2.114) with mpeet to qi, and mgWeg use of g lkgrw 
multiplier (Appanh O) to mure that the comtrsint pr = 1 is sawed, 
~ t b ~ t h i s d ~ ~ c e i s ~ f a h e n ~ i  = p j f o r a l l d , d t h a t t h e  
wrmonding d u e  for the distance h zero. 
(*) Using the mult (2.105), veriIy the identi& (2.104). 
(**) In ~~ the mnmrgence prop-qtia of the EM algorithm m made 
uee of Jen~en's iwqualiw for cooonvex functhm. We can dehe a convex 
betion j{x) as one for WW evety c h d  hs m or below the gnph of 
the funtion (a chord bang a staight line whirh mm& two pohb on the 
mph of the function). This is ilIwtrW in Figure 2.l&. Use &is ddmition 
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tbediscriminant~ons*dusethetraioingdata8ettadetermine~ 
dues  far the pmwnehrs. h this =tion we consider miow frmos of 1 

I diabimnt, and disims their propert*. 
II 

: 3.1.1 Two c l w m  
We begin by considering the bmcategory cla&&ation problem 
welxxtroducedtbeconoeptof~&' " t hctim ~ ( x )  such t 
xisa&gnedtochC1 ify(x) > 0 and t o c b &  ify(x) <O.  
&ice of d i m h i n d  function is one WE& h h e a  in the cornpa& 
&ad whkb can therefare be writtea as 

remite (3.1) in the form 

- 
- 1  

onding to p(x) = 0, in a tam 
vector w, whish can be rep 

output 

-""-.-". 

Qfa&wk&mjn&u& ftmckh~sla-rtafttork 

- 1 



3.1.2 S d  
beextended to the-of c c l m  by 

d*ck~ftbehm 

A new point x is then i d &  to elam Ck if ya(x) > pj(x) for all j # k. 
decision boundary separating dw.& fmm eLass C, is given bygn(x) = & 
which, for linear d* ' ' ts, cmra@ads to a hgpwplans of the form 

By adom d t h  our earlier rmdb for the single drscrrrmnant 
. , ,  (3.1), we ma tti 

the n d  ko the dtxidon boundary is giw by the diff6mnce the t! 
weight wctaxh, and that the peqendicuk ~WJW of tbe dsdsion bounds 
EFomkheodghiPr~by 

The mdticlssa linsar discriminant function (3.4) csn be ~xpressed in 
a neural w p k  t i i i  as in ~ i g u r e  3.3. T& circles at the tad 
the diagram, corrsspl 
mmceBsim units, and 

A ~ O ~  gk(~) h (3.4) 
the dhrhbant ful 

;ding t.0 

the &u 
the h 
atton d 

- r 

aa a ftow of infirm* from the inputs to ebe outputs, E d  output yk(q 
~~ with s w+dght vector wk and bibs- w ~ .  We exprm the ne 
outpub in tmw of the mmpmmts of the h e v e c t m s  {wh) to give I 
TbeneaehliaehFigure3.3mnnectinganinputitoanoutput k mrrsspol 
aweigh+, -ter wH. Asbefore,wecanregsrdthe bias parametem ss 
w e i g h ~ ~ m a n e x t r a i e p u t s ~ = 1 , m ~  , I I 

Once the netwwk is trained, a new vecbr is W d  by A& ,> it . 4 
Cnmrta d ' S k  m p m  o&put unit &htion~, a 

t i :  L h m r  IldpcrifnOad fPmeSiOtlS 

Figure 3.3. Repmatation of multiple linear d k h h a n t  functions uk(x) ae 
a neural n e h r k  diagram h a v i  c output units. Again, Ehe biasss are rep- 
sented tsweighCfrorn an extrainput & = 1, 

e o f d g c i a i o n b m d & h ' p r d d b y a m u l ~ h ~  
mdxB b&lie~nde&hnm&n~ therxlweq 

~ t h w n l r m s t ~ l i e i a m g i m ~ . I t ~  
r s g i o n s m a t b e d m p l y ~ ~ d ~ .  

and~whichbothlieintheregion~~mshowrmin 
which l i e  on the b e  joining d md fl can be written 



So br we have considered *ant hlctions which me 
tiom of the hpnt M I = .  There are =al. mp in WE& 
be generaIid, and here we consider the use of a m~Unar 
actsonthehe8~sumtogiveaCU ' ' t fbndion for the two-clw pro 
of the form 

whereg(.) b a e d  sin a & ~ ~ s n d i s ~ a U y ~ t o  be 
tonic. The fwm (3.10) h stIU regarded ess a hear  d h h b n t  since the d 

&ure of gC). 
A a a m a t i v a t i a n f o r W s f a m o f d i s c h h m t , 4 & a ~ w M  

in which the k c a d t t i o d  d d t i e s  am given by Ga- distributions ~ 
~ u a l ~ & ~ E 1 = E a = E , ~ W  I 

Usbg Barn' theorem, the pahior  probabiliitg of menhemhip 
-by. 

where 



a biolagical n m u s  system. Again this takes the form (3.10) with an ac 
function which is the Heaviside step function 

In this model the hpub xi repwent the level of &ivity of other n e m  
connect to the neumn being modelled, the &ts w* represent the stre. 
the i n t e r c o ~ i o n s ,  d d  sympm, M m e n  the neurons, and tbe biaa 
m n t a  the thrmhold for the neuron to 'h'. Although this model has it8 
in biology, it b dear that it can equally well be motivated within the &a 
of s t a t i d  pattern recognition. Network of bhreshold units were 9tu 
Rmenbhtt (1962) under the name ~ p b . 0 ~  md by Widrow and H f  
who called them &tines. They will be discussed in detail in Section 3.1 

Nata that it is 80m- convenient ta regr)rd the linear ~~ 
a ts specid case d the more general b m  (3.10). In this case &e made 
tg ham a linear activation function, which Jn fact is just the identity g(# 

discriminants, and the logistic activation function, a h  ariee in a 
way whezt we 00@4er input p&t,eras in wl$& the va&bla me binary 
4 xi can take only the d u e s  0 or 1). Let denate the probabil 
the input xi t a k  the d u e  +I when the input vector is drawn from t 
Ck. The correspo~1dhg pmbab'i  *hat xi = 0 0 then given by 1 - PM. 
d i n e  t h e  together to mite tbe probabii  for xi to take either of ita 
values in the form 

wbich is called a B e m d f  distribution. Ewe now - m e  that the inpnt x 
EIW ~~y independent, we OW the prababiliw for the compfe 
vector as the pmduct of the pro'babiliiim for wh of the componmts 

~ ~ n o w d f r o m ~ h a ~ l  thatwecaawritaa--k . . the prnbability d mIscl&Qhg new inputs in the form 
b 

3.6 Linear s-mbdiby 

which theweights a d  biasam gisenby 

i=l 

We have already seen that, hr two & a m  with n o d y  distributed b 
ditional densitb, the postdor pmb&rJitiw can be obtained &om the linear 

applying a W t i c  &v&ion f u & ~  A s h k  W E  h o b  
mdi distribution. C o d e r  a of Mependent b i i  vmi& 

c l ~ n d i W  densities ghen by (3.221, If WE subtit& 
(3-12) we agdn obtain a dngblayer network structure, with a hgistic 

n function, of the form 

P(C1lx) = g(wTx + ~ u o )  

g(a) is given by (3.16) and 

P(C2) +In- wo = ch- 
i I - %  P(G2) 

in W o n  6.7.1. 

and we might well 



L 

F i  3.6. The exdusbOR pbkm wn~iste of four pa- in a two- 
d t m ~ . p e a r . b a m . I t & d a a ~ p b w m p b d a p m U a w h i c b '  
is pot IinsarIy e l e ,  Figure 3.7'. Plot of the fra*tion F(N,d) of the dichotomi~~ of N data 

- in d dimeaeiom which am linearly separ&Le, M a frubction of N/(d  + I), hr 
, v s s i o u s ~ e ~ o f  d.  

w h e n N < d + l  

is pl* as a function of N/(d  + 1) in Figure 3.7 hr d = 1, d = 20 and 

- r 4  

4 of all podble binary inprxt wcbw of l& d, 

utjon used to gemrake the random 

I I 



Iarrgely idwant. We are primarily hkmbed in ddgdng systems with 
generalidion perbmmq so that they give tbe great& accuracy when 
sented with prevtou81y unseen data, hthmnoce ,  problem such as XOR 
parity involve 1emhg the compbte B& of all pmib1e input paterm, so 
wncept of generalieation does not even apply Fhdy,  they ham the 
that the small& p d b l e  change in the input pattern produces 
aible chesalge in the output. Mwt practbd W r n  recognition pro 
o p p d b  dmmteristic, m that mall dugm m the inputs do not, for th 
pwt, produce large ehaage~ in the outptl*, md hence the mapping rep 
by the network elmuid be relatively smooth. 

Consider the problm of two normally-distributed cl 
ance matrim, d h d  in Section 2.1 -3. Since the c h  
is entirely pwsible that a finite kmd data set drawn from 
lDat be fineaa1y ~ p a r ~ b I e .  Emver,  we know 
is in kt hear. A shgbhpr network can 

rt may mt *parate 
training data exactly. 

The key d d e r a t i o n  c b n m s  the choice of an appropriate d 
! h c t b n  for the partfdar problem in hand. This may involve a com 
of prior knowledge of the generd form which the dution should t 
with an gmphical comparimn of the ~ ~ c e  of alterdive mo 
h e s  are considered in more &dl in C h p W s  8 ,9  and 10. Here we 
note that singlelayer networks cormpond to a m y  narrow 
d i r r c r h h m t  functions, and in many practical situations may not rep 
optimal choice. N w e r h h ,  dngbhyer 
.tiad importance in prcwidmg a benchark again& whidh the 
more complex multi-layer mtworb can be d. The fact t 
-rks can often be trained very quickly, as shown in Section 3.4, 
particular dmt* over more cromplex m h o r k  sbucturw which 
d d e r t h l e  mpytatlond effort to train. 

$3 G e n e ~ a k d  linear d i e c r i t s  
O n e w a y t Q ~ ~ t B e ~ ~ t   om, m a t o  
fmge of p d L  deidon bound-, is to transform the inp 
s& :of M predehed nm-linew functiow 4, (x), mmstima 
awl 4 b  to p e p m a t  the output a~ a W&r combination 

M 

udxl = Cw*l#*(x) + W m .  
i=l 

This now represents a much hgm claw of. 
Chapters 4 and 5,  for a mitable choiw of 

/ in (3.32) can appmxhmk any e o n m u h l  

5.4: Lemt-sgUun% td*e# 

acy. A g & , w e ~ d m r b  t b e b k  asspecfalcam of khewejghtsby 
an extra basis function & = 1, SO that 

M 

y*(.)= Cww4j(x). 
f d  

assumed that the barsis 4 j ( ~ )  a ~ e  bed, indvdently d the 
4 and 5 dismw multi-byer neural networks, m a y  of whi& can 

adhd d k r b b n t  ~ o n s  oftbe form (3.321, but in whieh 
the training proms. 

&ecbapteriscomni%d 
with a M o n  of 

regEmiw1 problems. 
exist ather, more 

~ f u n c t i ~ i 8 , ~ a t ~ i n ~ t e r 6 .  

; ', *, ? . . , + :..- 



5-0 

con&ained to lie in the mb-spwe S, as shown in Figure 3.8. By 
valued3 of the weights wj we can &rage the location of gsubject to 

squases error (3.34) csa rnow be'writkn fa khe form 

M 
16 

1 E = -  Cror$,j-f 
jdd 

mhbhe t b  expmion a h  mpt  t~ weights wj WB find 
- -, - - 
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3.4.3 Ps&hume solution then it mn be shown that the limit alwap dshI and thak this lhmhg value 
W e  now p r o d  to h d  an exact mlution. to the Imt-tquam problem. E (Rao a d  ma, 1W1). 
thiswereturntothecamofaueimmk hatringc outputs. U&gthewx In practice, the &re& solution of the n o d  equations caar had ta numerical 
(3.331, we can wrib tbe sumd-squara m r  function (3.34) in the form &Ecultb due to  the po&biliQ of eT* being sfngular or oearly sbguk. This 

1 can aria if two of the basis vwton &, show in 3.8, are nearly m h w .  

IMkmtbW thb expredon wi& respect ta my and Wing tihe dmiwtive 
zero gives the normal equations for the W t ~ u a r w  problem in the fwm 

In order ta find a mlution to (3.42) it is convenient to write it in a m 
WWW.@)&T 

. ! ) I  s ,  

(@%)WT = a T ~ .  (svD) to find a 1501ution for the weights, A gobd inkduction to 

k @ b d ~ a r r N x M a n d e l e m ~ $ ~ , W h a s d i m e a r s i o  . (1992). Stab rm approach avoids p m b b  due to the t m u m u h t b  of nu- 
elemen@ wkj, and T b - N x e d elements %. The cd round& errors, and ~t~~t6rnaticdly de&a (h mmg& a IM of nearly 
in (3.43) is a square mactrix ofdimezmion M x M. Provided it is non 
may i n d  it; to obtain a mlutioa to Cb-43) wbieh can be written in 

the above discussion, the bias pwam&ms were- tread 'w a special case 

wT = 8 t ~  wig&. Wecangain intotheroledthe b k i f w e m a l P e  
explicit. If WE consider the minimhwtion of (3.41) with rwpect to tbe biw 
e h s  alone we obtain 

where at ia an M x N matrix known rs the p a e u ~ n v -  of a (~olub'  
Kahan, 1965; Rao and Mitm, 197l) and b given by 

.t, (.T.)-l@T 

Since 8 is, in gem&, a non-quare &i it does not i tdf ham a can be solved for the b h  ta give 
but & pseud&nvem dom have hhe properky (as is d y  fio 

M 

~ k 0  = & - z w k j &  
5 4  

, 1 - .  
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ta ~ m * n  of a p & h h  p & h  i~ gim byl 
the weight vector ushgjustomprrttern at atime 

dw4 = -?j$a"d?* (338) 

with dWc&&le m - h  acti~ti011 wi, a~ ais 

wdhhm 3.5, we m*the-rkmtpu@ the 

sir, = l7(ak) (3.5%) 

Y 

'1, I' ' I 1  

-ofthe wmr~unctionhr p p . b n  &&&' 

G(@w -T) = O  

where + is defined on page 92, ~~~ of whether or not eT* Is 
Gradient d-G, and I& Wstiom, ars dimmed at m* w h  
ter 7, dong with 8 7 Of more mphiatitmtd optiinhtion 

alP -= (ph(xn) - tf)4j(xn) = 6E4T 
h k  j 

(3.W 

where we ham ddned 

=p&(xm) 4;. 

I 



-1 wbana<O 
+1 whma>O, 1 3 . w  

now turn to a ~~&US&QD. of the procedures nwd ta train the perceptma. 

Figure 3.10. The perceptron mOrk w%d & hd S& d p- dme~1&, 
d ~ n d $ ~ , M b p a ~ o f ~ ~ ~ ~ t s ~ p u j d a M d d a c t i -  
&n function g(.). The pr- b e n b  $j had t w o J d  
&~vB& functious, and took inputs from E raadomly & SUM of the 
*elE of the input image. 

a& ~ p e m p t r o n  

h the same time as Rmenblatt was developing the perceptron, Widrow 

(Widrow and bhr, I%#). The Eerm d&e c o r n  from ADA- 
m e ,  and r e h a  to a single prowsing unit with tlzreshold no fk -M@ (mTi 

E-(w) = - c wT(#W (3.67:) 
shown in Figure 3.10.  the^ promsing denmh crrn be regarded 4 " ~  M 

of the pemptron Is therefore given by 

h 
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3.5.2 Perceptmn learning 

If we apply the pattern-bypattern gradient descent rule (3.54) to the perceptan 
criterion (3.67) we obtain 

I This corresponds to  a very simple learning algorithm which can be summarized 
as follows. Cycle through all of the patterns in the training set and test each 
pattern in turn using the current set of weight values. If the pattern is correctly 
classified do nothing, otherwise add the pattern vector (multiplied by q )  to the 
weight vector if the pattern is labelled class C1 or subtract the pattern vector 
(multiplied by 9) from the weight vector if the pattern is Jabelled class C2. It is 
easy t o  see that this procedure tends to reduce the error since 

since l)#ntnl12 > 0 arid y > 0. 
For the particular case of the perceptron criterion, we see that the value of 

q is in fact unimportant since a change in 7 is equivalent to a re-scding of the 
weights and bias (assuming the initial parameter values are similarly resealed). 
This leaves the location of the decision boundaries unchanged. To see this, recall 
that the location of the decision boundary is given by (3.2), and is therefore 
unchanged if all of the weights, including the bias, are rescaled by the same 
constant. Thus, when minimizing the perceptron critefion, we can tdte = I 
with no loss of generality. This property does not hold, however, for most other 
form of error function. 

In Figures 3.11-3.13 we give a simple exampIe of learning in a perceptron, f o ~  
the case of one basis function so that, with biases included as specid cases of 
the weights, the data points live in a *dimensional space (do, dl) with 40 = 1. 

3.5.3 Perceptma convergence theorem 

There is an interesting result which states that, for any data set which is linearly 
separable, the learning rule in (3.68) is guaranteed t o  find a solution in a finite 
number of steps (Rosenblatt, 1962; Block, 1962; NiIsson, 1965; Minsky and Pa+ 
pert, 1969; Dude and Hart, 1973; Hand, 1981; Arbib, 1987; Hertz et ol., 1991). 
This is known as the peweptmn convergence theorem. Here we give a relatively 
simple proof, based on Hertz et aE. (1991). 

Since we are considering a data set which is linearly separabIe, we knon' 
that there exists at least one weight vector G for which all training vectors 8e 
correctly classified, so that 

1 
3T$ntpl > 0 for all n. (3.70) 

3.5: The perceptmn 101 

f jwre 3.1 1. A simple example of perceptron learning, for a data set with four 
patterns. Circles repraent patterns belonging to c l w  C1 and squares represent 
patterns belonging to class Ca. The initial decision boundary, corresponding to 
the weight vector w(O), shown by the dashed curve, lea- one of the points, 
at dl, incorrectly classified. 

The learning process &arts with some arbitrary weight vector which, without loss 
of generality, we can assume t o  be the zero vector. At each step of the algorithm, 
the weight vector is updated using 

"here 4" is a vector which is misclassified by the perceptron. Suppose that, after 
running the algorithm for some time, the number of times that each vector 4n 

heen p r ~ e n t e d  and misclassifi& is 7". Then the weight vector at this point 
"-ill be given by 

take the scalar produet of this equation with i% to give 

2 T min (CTbntn) 
n 

= is the total number of weight updates, and the inequality 
resuits from replacing each update vector by the smallest of the update vectors. 

L 
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Figure 3.12. To correct for the rniscleissifrcation of 4' in Figure 3.11 we add 
(minus) 4' onto w(') to give a new wejght vectur d l ) ,  with the new decision 
boundary again shown by the dashed curve. The point at 4' is now correctly 
classified, but the  point at &2 is now incorrectly classified. 

Figure 3.13. To correct for the rnisclassification of 4' in Figure 3.12 we add 
42 onto w(" to give a new weight vector d2) which classifies all the points 
correctly. 

b m  (3.70) it then fol!ows that the value of CTw is hounded below by a function 
which grows linearly with r. 

Keeping this resuIt in mind, we naw turn to a consideration of the magnitude 
of the weight vector w. 'From (3.71) we have 

9.5: The peweptmn 103 

n-here the inequality f o I l ~ ~ s  from the fact that the pattern #" must have been 
l,,ixl~sified, and SO w(T)T#ntn < 0. We also have (tn)2 = I since tn = il, and 
, ~ , ~ i ~  < (14112, where ll~llm, i. the length of the longest input vector. Thus, 
the in the value of llw]12 satisfies 

a~c l :  so after r weight vector updates we have 

md SO the length llwll of the weight vector increases no faster than 71'~. We 
now recall the previous result that GTw is bounded below by a, linear function 
of 7. Since C is fixed, we see that for sufficiently large T these two results would 
become incompatible. Thus r cannot grow indefinitely, and so the algorithm 
must  converge in a finite number of steps. 

One of the difficulties with the perceptron learning rule is that, if the data 
set happens not to be linearly separable, then the learning algorithm wiIl never 
terminate. Furthermore, if we arbitrarily stop the learning process there is no 
guarantee that the weight vector found will generalize well for new data. Various 
heuristics have been proposed with a view to giving good performance on prob- 
lems which are not linearly separable while still ensuring convergence when the 
problem is linearly separable. For example, the value of the parameter 7 may be 
made to decrease during the learning process so that the corrections gradually 
hecome smaller. One approah is to take 7 = K/T where K is a constant and T is 

step number, by analogy with the Robbins-Monro procedure (Section 2.4. I). 
An alternative algorithm for finding good solutions on problems which are not 
tinearl:, separable, called the pocket algorithm, is described in Section 9.5.1, As 
""me already discussed, the issue of linear separability is a somewhat arti- 
6e1al one, and it is more important t o  develop [earning algorithms which can 
hy ' X p ~ t e d  t o  give good performance across a wide range of problems, even if 

means sacrificing the guarantee of perfect classification for linearly separable 
Dro h 

;ram wer 
d salve ~r 
,ppeared 

3.5..! tions of the perceptmn 
lYh@n ~ercept e being studied experimentally in the 1960s, it was found 

they caul [any problems very readily, whereas other problems, which 
k"~~rf ic ia l1~  a to be no more difficult, proved impossible to solve. A crit- 

V~raisal of the capabilities of these networks, from a formal mathematical 
" " ~ ~ i h t ,  wm given by Minsky and Papert (1969) in their book Pemptmns. 
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They showed that there are many types of problem which a perceptron cannot 
in any practicaI sense, be used to solve. In this context a solution is taken to hi 
a correct classification of all of the patterns in the training set. 

Many recent textbooks on neural networks have summarized Minsky 
Papert" contribution by pointing out that a single-layer network can only class$ 
data sets which are linearly separable, and hence can not solve problems such as 
the XOR example considered earlier. In fact, the arguments of Minsky and Papen 
are rather more subtle, and shed light on the nature of multi-layer networks in 
which only one of the layers of weights is adaptive. Consider the perceptron 
shinvn in Figure 3.10. The first layer of fmed (non-adaptive) processing mils 
computes a set of functions $ j  whose values depend on the input pattern. Eve,, 
though the data set of input patterns may not be linearly separable, when viewd 
in the space of original input variables, it can easily be the case that the same 
set of patterns becomes linearly separable when transformed into the space 
$j values. Thus a perceptron can solve a linearly inseparable problem, provided 
it has an appropriate set of h t - l aye r  processing elements. 

The red  difficulty with the perceptron arises from the fact that these pro- 
cessing elements are fucd in advance and cannot be adapt& to the particular 
problem (or data set) which is being considered. As a consequence of this, it turns 
out that the number, or complexity, of such units must grow very rapidly (typi- 
cally exponentially) with the dimensionality of the problem if the perceptmn is 
t o  remain capable in general of providing a solution. It is therefore necessary to 
limit either the number or the complexity of the first-layer units. Minsky and 
Papert discuss a range of different forms of perceptron (depending on the form 
of the functions #j,.)  and for each of them they provide examples of problems 
which cannot be solved. 

Here we consider one particular form, called a diameter-limited perceptmn, 
in which we consider two-dimensional input images as shown in Figure 3.10, and 
in which each of the #j takes its inputs only from within a small localized region 
of the image, called a receptive field, having fixed diameter. Minsky and Papert 
(1969) provide a simple geometrical proof that such a perceptron cannot sol~*a 
simple problem involving the determination of whether a binary h-~- 

we is simply connected. This is illustrated in Figure 3.14. We shall suppose that 
connected shapes are labelled with targets +1 and that disconnected shapes hatT 
targets -1. Note that the overall length of the shapes is taken to be much larger 
than the rnaxlrmm diameter of the receptive fields (indicated by the dashed cir* 
cles), so that no single receptive field can overlap both ends of the shape. f i r  the 
shape in Figure 3.14 (a), the functions 4, and the adaptive weights in the pep Id 
ceptron must be such that the linear sum which form the input to the thresho 
function is negative, if this figure is to be correctly classfied as 'disconnected ' 
In going to 3.14 (b), only the left-hand end of the shape has changed, so 
receptive heids which lie in this region, and their corresponding weights, must 
be such that the linear sum is increased sufficiently to make it go positive, sigce 

this shape is 'connected'. Similarly, in going from 3.14 (a) to  3.24 (c) the hea' 
sum must also be increased sufficiently to make it positive. However, in going 
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Figure 3.14. An example of a simple probbrn, involving the determination of 
whether a geometrical figure is simply connected, which cannot be solved by 
a perceptron whose inputs me taken from regions of limited diameter. 

from 3.14 (a) to  3.14 (d), both ends of the shape have been changed in this way, 
mtt so the l ines sum must be even more positive. This is inevitable since the 
diameter limitation means that the response due to the two ends of the shape are 
independent. Thus, the linear sum cannot be negative for the shape in 3.14 (d), 
rh ich  will therefore be miscl~sified. 

Various alternative approaches to limiting the complexity of the firstrla~fl 
units can be considered. For instance, in an order-limited perceptron, each of the 
dl can take inputs only from a limited number of input pixels (which may lie 
myarhere on the input image). Counter-examples similar to the one presented 
ahow can be found also for these other choices of dj. These difiiculties can be 
"rcumvented hy allowing the number and complexity of the # j  to  @OW SUR- 
~ i ~ n t l p  rapidly with the dimension,nality of the problem. For example, it is shown 
in S~ct ion  4.2.1 that, for networks with b i n ~  inputs, there is a simple proce 
d l ~ r p  for constructing the @j such that any set of input patterns is guaranteed to 
hp linearly separable in the space. The number af such units, however, must 
?'Ow Wonent  idly with the input dimensionality. Such an appromh is therefore 
''''~~14- impractical for anything other than toy problems. 

Practical solution to these difficulties is to allow the functions dj to  be 
P-d ' l~ t tve ,  so that they are chosen as part of the learning process. This leads to a 
'O''srdcration of multi-layer adaptive networks, as discussed In Chapters 4 and 5. 

Fisher's linear discriminant 

the final topie of this chapter we consider a rather different approach to lin- 
par discriminants, introduced by Fisher (1936). In Section 1.4 we encountered 

'3 Problem of the ' c u r s  of dimensionality' whereby the design of good 
'lhcr becomes rapidly more difficult as the dimensionality of the input space 
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increases. One way of dealing with thrs problem is ta pre-process the data so 
as to  reduce its dimensionality before applying a classification algorithm. The 
Fisher discriminant aims to achieve an optimal linear dimensionality reduction, 
It is therefore not strictly a discriminant itseIf, but it can eaily be used to 

construct a discriminant. As well as being an important technique in its own 
right, the Fisher discriminant provides insight into the representations learned 
by multi-layer networks, as discussed in Section 6.6.1. 

3.6.1 Two classes I 
One very simple approach to dimensionality reduction, motivated by our earlier 
discussion of single-layer networks, is to use a linear projection of the data onto 
a onedimensional space, so that an input vector x is projected onto a value y 
given by 

where, as before, w is a vector of adjustabIe weight parameters. Note that this 
expression does not contain any bias parameter. We shall return to this point 
shortly. In general, the projection onto one dimension leads to a considerable loss 
of information, and classes which are well separated in the original d-dimensional 
space may become strongly overlapping in one dimension. However, by adjusting 
the components of the weight vector w we can seIect a projection which maxi- 
mizes the class separation. To begin with, consider a two-class problem in which 
there are Nl points of class Cr and JV2 points of class Cz. The mean vectors of 
the two classes are given by 

We might think of defining the separation of the classes, when projected onto 
w, as being the separation of the projected cIass means. This suggests that fl 
might choose w so as to maximize 

where I 

is the class mean of the projected date Erom class Ck. However, this acpressi0' 
can be made arbitrarib large simply by increasing the magnitude of w. TO so'" 
this problem, we could constrain w to have unit length, so that Ci tu,Z = 1. usinB ' D 
a Lagrange multiplier (Appendix C) to perform the constrained maxjrnizaoO 
we then find that w o. (mz - ml).  There is still a problem with this approad' 
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Figure 3.15. A schematic illustration of why it is  important to take account of 
the within-class cuvarianc~ when constructing the Fisher linear discriminant 
criterion. Projection of the data onto the sl-axis leads to greater separation 
of the projected class means than does projection onto the z2-axis, and yet it 
leads to greater class overlap. The problem is reolved by taking account of 
the within-class scatter of the data points. 

ha\vever, as illustrated in Figure 3.15. This shows two classes which are well 
s~parated in the original two-dimensional space (51, x2). We see that projection 
onto the xl-axis gives a mu& larger separation of the projected class means 
than does projection onto the xa-axis. Nevertheless, separation of the projected 
dat,a is much better when the d ~ t a  is projected onto the xz-axis than when it is 
projected onto the xl-&s. This difficulty arises from the substantial difference 

the within-class spreads along the two axis directions. The resolution proposed 
hy Fisher is to rnafimize a function which represents the difference between the 
Prr?iected class means, normalized by a measure of the within-class scatter aIong 
the direction of w. 

The projection formula (3.77) transforms the set of labelled data points in x 
into a labelled set in the one-dimensional space v. The within-elass scatter of the 
"*n"formed data from class Cx is described the within-class covariance, given by 

?'! wp can define the total within-class covariance for the whole data set to be 
"?'i. 3: -t s:. We therefore arrive a t  the Fisher criterion given by 

""nake the dependence on w explicit by using (3.171, (3.80) and (3.81) to 
r'writr Fisher criterion in tilt. form 
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where S s  is the between-class covariance matrix and is given by 

and Sw is the total within-class covari~nce matrix, given by 

Differentiating (3.83) with respect to w, we find that J(w) is maximized whsll 

Rom (3.84) we see that Ssw is always in the direction of (m2 - ml). Further- 
more, we do not care about the magnitude of w, onIy its direction. Thus, we can 
drop any scalar factors. Multiplying both sides of (3.86) by S$ we then obtain 

This is known as Fisher's linear discriminant, although strictly it is not a dis- 
criminant; but rather a specific choice of direction for projection of the data down 
to one dimension. Note that, if the within-class covariance is isotropic, so that 
Sw is proportional to the unit matrix, we find that w is proportional to the 
difference of the class means, as discussed above. The projected data can s u b  
sequentIy be used to construct a discriminant, by choosing a threshold yo so 
that we classify a new point as belonging to C1 if y(x) > yo! and classify it as 
belonging to Cz otherwise. In doing this we note that ,t = wTx is the sum of 
a set of random variables, and so we may invoke the centra! limit theorem (sep 

page 37) and model the class-conditional density functions p(yJCk) using normal 
distributions. The techniques of Chapter 2 can then be used to find the  param 
eters of the normal distributions by maximum likelihood, and the formalism of 
Chapter I then gives an expression for the optimal threshold. 

Once we have obtained a suitable weight vector and a threshold, the prore- 
dme for deciding the class of a new vector is identical to that of the perceptron 
network of Section 3.5. 1% can therefore view the Fisher criterion as a specific 
procedure for choosing the weights (and subsequently the bias) in a single-laFr 
network. More conventionally, however, it is regarded as a technique for dimen- 
sionality reduction, a subject which is discussed at greater length in Chapter 8. In 
reducing the dimensionality of the data we are discarding infomation, and this 
cannot reduce (and will typically increase) the theoretical minimum achievclble 
error rate. Dimensionality reduction may he worthwhile in prxtice, however, 

it deviates problems associated with the curse of dimensionality. Thus, with 

, finite-sized data sets, reduction of the dimensionality may we11 lead to overdl 
in the performance of a clmsifrer system. 

3.6.2 Relation t o  the least-sp~aares appmach 
The least-squares approach to the determination of a linear discriminant was 
based on the god of making the network outputs as close as possible to a set of 
target values. BY contrast, the Fisher criterion was derived by requiring maxi- 
mum class separation in the output space. It is interesting to see the relatiomhip 
hetween these two approaches. In particular, we shall show that, for the two-elms 

the Fisher criterion can be obtained as a special case of least squares. 
SO far we have taken the target values to be f 1 for class C1 and -1 for 

class Cz. If, however, we adopt a slightly different target coding scheme then the 
least-squares solution sojution for the weights becomes equivalent to the Fisher 
solution (Duda and Hart, 1973). In particular, we shdl  take the targets for class 
C, to be NJNl,  where NI is the number of patterns in class Cry and N is the 
total number of patterns. This target vdue approximates the reciprocd of the 
prior probability for class C1. For class Cz we shall take the targets to be - N / N 2 .  

The sum-of-squares error function can be written 

Setting the derivatives of E with respect t o  wo and w to zero we obtain respec- 
tively 

(3.891, and making use of our choice of target coding scheme for the tn, 
Tve obtain an expression for the bias in the form 

"'here rn i s  the mean of the total data set and is given by 
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After some straightforward algebra, and again making use of the choice of tn, 
the second equation (3.90) becomes 

where Sw is defined by (3.851, S B  is defined by (3.841, and we have substituted 
for the bias using (3.91). Using (3.84) we note that SBW is always in the direction 
of (mz - ml). Thus we can write 

where we have ignored irrelevant scale factors. Thus the weight vector coincides 
with that found from the Fisher criterion. In addition, we have also found an I 
expression for the bias value wo given by (3.91). This teUs us that  a new vector 
x should be classified as hebnging to class C1 if wT(x - rn) > 0 and class C2 
otherwise. 

3.6.3 Seveml classes 

We now consider the generalization of the Fisher discriminant; to severaI classes, 
and we shall assume that the dimensionality of the input space is greater than 
the number of classes, so that d > c. Also, we introduce d' > 1 linear 'features' 
gh = wzx, where k = 1,. . . , d'. These feature values can conveniently be grouped 
together to form a vector y. Similarly, the weight vectors {wk} can be considered 
to be the  rows of a matrix W, so that 

The generalization of the within-class covariance matrix to the case of c classes 
' 

foIlows from (3.85) to give 

where 

and 

3.6: Fisher's linear discriminant 11 1 

w]~ere Nk is the number of patterns in class Ck. In order to find a generalization 
,f the between-class covariance matrix, we follow Duda and Hart (1973) and 
consider first the total covariance matrix 

where rn is the mean of the total data set 

and N = ECk Nk is the total number of data points. The total covariance matrix 
ran be decomposed into the sum of the within-class covariance matrix, given by 
(3.96) and (3.971, pIus an additional matrix Sg which we identify as a measure 
of the between-class covariance 

where 

These covariance matrices have been defined in the original X-space. We can now 
d ~ f i n e  similar matrices in the projected dl-dimensional y-space 

' l ~ a i n  we wish to construct a scalar which is large when the between-class CO- 

Variance is Imge and when the within-class covariance is small. There are now 
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many possible choices of criterion (Fukunaga, 1990). One example is given by 
I 

4 ~ ~ 3  (*) Consider a mixture mode1 of the form (2.71) in which t.he component 

I densities are given by 
J ( W )  = Tr ( ~ 2 s ~ )  (3.106) d 

where Tr(M) denotes the trace of a matrix M. This criterion can then be rmrit- p ( x  j) = n P$ (1 - ~ ~ * ) ~ - ~ t  
(3.109) 

ten as an explicit function of the projection matrix W in the form 
a=l 

which is equivalent to (3.22). Show t h a t  the maximum likelihood solution 
J(W) = 'II. {(ws~w~)-'(wsBw~)) . for the parameters Pjt is given by 

Maximization of such criteria is straightforward, though somewhat involved. 
and is discussed at length in Fukunaga (1990). The weight values are determined 
by those eigenvectors of S $ S ~  which correspond to the d' largest eigenvalues. 

There is one important result which is common to all such criteria, which is 
worth emphasizing. We first note from (3.102) that SB is composed of the sum 
of c matrices, each of which is an outer product of two vectors and therefore of 
rank 1, In addition only (c - 1) of these matrices are independent as a result 
of the constraint (3.100). Thus, S s  has rank at most equal to ( c  - 1) and so 
there are at most (c - 1) non-zero eigenvalues. This shows that the projection 
down onto the (c - 1)-dimensional subspace spanned by the eigenvectors of Sp, 
does not alter the value of J(W), and so we are therefore unable to find more 
than (c  - I) linear 'features' by this means (hkunaga, 1990). Dirnensiondlty 
reduction and feature extraction are discussed at greater length in Chapter 8. 

Exercises 

3.1 (*) Consider EL point 2 which lies on the plane y(Z) = 0, where y(x) is given 
by (3.1). By minimizing the distance Ilx - 211 with respect to 2 subject 
to this constraint, show that the value of the linear discriminant function 
y(x) gives a (signed) measure of the perpendicular distance L of the point 
x t o  the decision boundary y(x) = 0 of the form 

3.2 (*) There are several possible ways in which to generalize the concept of a 
linear discriminant function kom two classes to c classes. One passibiliw 
would be to use (c-1) linear discriminant functions, such that yk(x)  > 0 for 
inputs x in class Ck and y k ( x )  < 0 for inputs not in class Ck. By drawing 
a simple example in two dimensions for c = 3, show that this appro~l'  
can lead to regions of x-space for which the classification is ambiguous- 
Another approach would be t o  use one discriminant function yjk(x) for 
each possible pair of classes Cj and Ck, such that y j k  (x) > 0 for patterns in 
class Cj, and yjk(x) < O for patterns in class Ck. For c classes we would n e ~ d  
c(c - l ) / 2  discriminant functions. Again, by drawing a specific example 
in two dimensions for c = 3, show that this approach can also Iead to 
ambiguous regions. 

I where P( jJx}  is the posterior probability for component j corresponding 
t o  an input vector x and is given, from Bayes' theorem, by 

and P ( j )  is the corresponding prior probability 
1 3.4 (* *) Given a set of data points {xn) we can define the convex hull to be the 

set of all  point.^ x given by 

where a, > 0 and C, an = 1. Consider a second set of points (an}  and its 
corresponding convex hull. The two sets of points will be linearly separable 
if there exists a vector 8 and a scalar wo such that GTxn -t wo > 0 for d I  
xn, and GTzn + wo < 0 for all sn. Sliow that, if their convex hulls intersect, 
the two sets of points cannot be linearly separable, and conversely that, if 
they are linearly separable, their convex hulls do not intersect. 

3.5 (**) Draw all 22 = 4 dichotomies of N = 2 points in one dimension, and 
hence show that the fraction of such dichotomies which are linearly sep* 
rable is 1.0. By considering the binomial expansion of 2$ = (I + l)d, verib 
that the summation in (3.30) does indeed give F = 1 when N = d + 1 for 
any d. Similarly, by drawing all z4 = 16 dichotomies of N = 4 points in one 
dimension, show that the fraction of dichotomies which are linearly sepa- 
rable is 0.5. By considering the binomial expansion of zZd+' = (1 + l)2d+1, 
show from (3.30) that the fraction of dichotomies which are linearly sep- 
arable for N = 2(d + 1) is given by F(2d + 2,d) = 0.5 for any N. Verify 
that these results are consistent with Figure 3.7. 

'.6 (***I Generate and plot a set of data points in two dimensions, drawn 
from two classes each of which is described by a Gaussian class-conditional 
density function. Implement the gradient descent algorithm for training a 
logistic discriminant, and plot the decision boundary at regular intervals 
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I 

Figure 3.16. Distribution of data in one dimension drawn from two classes, 
used in Exercise 3.7. 

the 
rm- 
I ..-" 

during the training procedure on the same graph as the data. Explore 
effects of choosing different values for the learning rate parameter q. Cc 
pare the behaviour of the sequentid and batch weight update p r ~ c d u l , . ~  
described by (3.52) and (3.54) respectively. 

3.7 (* *) Consider data in one dimension drawn from W o  classes having the dip 
tributions shown in Figure 3.16. What is the ratio of the prior probabiIities 
for the two classs? Find the linear discriminant function y(z) = tux + WQ 

which rninimixs the sum-of-squares error function defined by 

3,9 (*+ *) Generate a data set consisting of a small number of vectors in two 
dimensions, each belonging to one of two classes. Write a numerical im- 
pIementation of the perceptron learning algorithm, and plot both the data I 
p i n t s  and the decision boundary after every iteration. Explore the be- I I 

haviour of the algorithm both for data sets whch are linearly separable 
and for those which not. 

g . ~ ~  (*) Use a Lagrange multiplier (Appendix C) to show that, for two cIassas, 
the pojection vector which maximizes the separation of the projected class 
means given by (3.791, subject to the constraint llwl12 = 1, is given by 

I ,  1 
( I  1 

w O: Ern2 - ml). 
3.11 (x +) Using the definitions of the between-class and within-cIass covariance 

matrices given by (3.84) and (3.85) respectively, together with (3.91) and I ' 
I 

(3.92) and the choice of target values described in Section 3.6.2, show that 
the expression (3.90) which minimizes the sum-of-squares error function I 
can be written in the form (3.93). 

3.12 (*) By making use of (3.98), show that the total covariance matrix ST 
given by (3.99) c m  be decomposed into within-class and between-class 
covariance matrices as in (3.101), where the within-class covariance matrix 

I I 

Stv is given by (3.96) and (3.97), and the between-class covarimce matrix I ;  

Ss is given by (3.102). ' I  

I 
I 

ow 
wo 
ich 
1. - 

where the target values are t = +-I for class C1 and t = -1 for class Cz. Sh 
that the decision boundary given by y(x) = 0 just fails to separate the t 
classes. Would a single-layer perceptron necessarily find a solution wh 
separates the two classes exactly? Justify your answer. Discuss briefly trlr 

advantages and limitations of the least-squares and perceptron algorithms 
in the light of these results. 

3.8 (*) Prove that, for arbitrary vectors w and 9, the folIowing inequdity i-$ 
satisfied: 

Hence, using the results (3.73) and (3.76) from the proof of the perc.eP- 
tron convergence theorem given in the text, show that an upper limit on 
the number of weight updates needed for convergence of the perceptron 
algorithm is given by 

rmax = 
IIGI1211#Il$ax 

min, (6 T&nfn)Z  ' 
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THE MULTI-LAYER PERCEPTRON 

In Chapter 3, we discussed the properties of networks having a single layer of 
adaptive weights. Such networks have a number of important limitations in terms 
of the range of functions which they can represent. To allow for more general m a p  
pings we might consider successive transformations corresponding to networks 
having several layers of adaptive weights. In fact we shaIl see that networks with 
just two Iayers of weights are capable of approximating any continuous functional 
mapping. More generally we can consider arbitrary network diagrams (not nw- 
essarily having a simple laywed structure) since any network diagram can he 
converted into its corresponding mapping function. The only restriction is that 
the diagram must be feed-forward, so that It contains no feedback loops. This 
ensures that the network outputs can be calculated as explicit functions of the 
inputs and the weights. 

We begin this chapter by reviewing the representational capabilities of multi- 
layered networks having either threshold or sigmoidal activation functions. Such 
networks are generally called multi-layer perceptmns, even when the activation 
functions are sigrnoidal. For networks having differentiable activation functions, 
there exists a powerful and computationally efficient method, called e m r  back- 
propagation, for finding the derivatives of an error function with respect to the 
weights and biases in the network. This is an important feature of such networks 
since these derivatives play a central role in the majority of training algorithms 
for multi-layered networks, and we therefore discuss back-propagation at some 
length. We also consider a variety of techniques for evaluating and approximating 
the second derivatives of an error function. These derivatives form the elements 
of the Hessian matrix, which has a variety of different applications in the context 
of neural networks. 

4.1 Feed-forward network mappings 

I n  the first three sections of this chapter we consider a variety of different kinds 
of f eed - fomd  networ'c, and explore the limitations which exist on the mappine 
which they can .genera;e. We are only concerned in this discussion with finding 
fundamental restrictions on the capabilities of the networks, and so we shall for 
instance assume that arbitrarily large networks can be constructed if needed. In 
practice, we must deal with networks of a finite size, and th i s  raises a number of 
important issues which are discussed in later chapters. 

4. I :  Feed-jortuad network mappings 

outputs 
PI YF 

hidden 
bias unlts 

zo zM 

bias 

Figure 4.1. An example of a feed-forward network having trvo layers of adaptive 
weights. The bias parameters in the first layer are shown as weights from an 
extra input having a fixed value of xo = I. Similarly, the bias parameters in the 
second layer are shown BS weights from an extra hidden unit, with activation 
again h e d  at a = 1. 

We shall view feed-forward neural networks as providing a general frrnework 
for representing non-linear functional mappin@ between a set of input variables 
and a set of output variables. This is achieved by representing the non-linear 
function of many variables in t e r n  of compositions of non-linear functions of 
R single variable, called activation functions. Ewh multivariate function can be 
represented in terms of a network diagram such that there is a one-to-one corre- 
spondence between components of the function and the elements of the diagram. 
Equally, any topology of network diagram, provided it is feed-forward, can be 
translated into the corresponding mapping function. We can therefore categr~ 
rize difierent network functions by considering the structure of the corresponding 
network diagrams. 

4-1.1 Layered n e t w o ~ b  

mre begin by looking at networks consisting of successive layers of daptive 
"eights. As discussed in Chapter 3, singlelayer networks are based on a linear 
combination of the input variables which is transformed by a non-linear w t i w  
tion function. We can construct more general functions by considering networks 
]'"ing successive layers of processing units, with connections running from every 
unit in one layer to every unit in the next layer, but with no other connections 
Permitted. Such 1ztyere.d networks are easier to analyse theoretically than more 
general topologies, and can often be implemented more eficiently in a software 
simulation. 

An example of a layered network is shown in Figure 4.1. Note that units 
which are not treated as output units are called hidden units. In this network 
+,here are d inputs, M hidden units and c output units. We can write down the 
malytic function corresponding to Figure 4.1 as follows. The output of the j th  
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hidden unit is obtained by first forming a weighted linear combination of the 
input values, and adding a bias, to give 

Here wj:)  denotes s weight in the first layer, going fmm input i to hidden unit 

j, and w$) denotes the bias for hidden unit j. As with the singi~laysr network 
of Chapter 3, we have made the bias terms for the hidden units explicit in the 
diagram of Figure 4.1 by the inclusion of an extra input variable xo whose va,1ue 
is ~ermanently set at xo = 1. This can be represented analytically by rewriting 
(4.1) in the form 

The activation of hidden unit j is then obtained by transforming the linear sum 
in (4.2) using an activation function g { - )  to give 

In this chapter we shdf consider two principal forms of activation function 
given respectively by the Heaviside step function, and by continuous sigmoidal 
functions, as introduced already in the context of single-layer networks in Sec- 
tion 3.1.3. 

The outputs of the network are obtained by transforming the activations of 
the hidden units using a second layer of processing elements. Thus, for each 
output unit k, we construct a linear combination of the outputs of the hidden 
unit8 of the form 

Again, we can absorb the bias into the weights to give 

which can be represented diagrammatically by including an extra hidden unir 
with activation z0 = 1 rls shonm in Figure 4.1. The activation of the kth output 
unit is then obtained by transforming this linmr combination using a non-linear 
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Here we have used the notation a*) for the activation function of the output 
kinits to emphasize that this need not be the same function as used for the 
hidden units. 

if we combine (4.2), (4.3), (4.5) and (4.6) we obtain an explicit expression for 
ti,, function represented by the network diagram in Figure 4.1 in the 

form 

~ r :  note that, if the activation functions for the output units are taken to be 
linear, so that ;(a) = a, this functional form becomes s spwial case of the 
aneralieed linear discriminant function discussed in Section 3.3, in which the 
Ilasis functions are given by the particular functions zJ defined by (4.2) rtnd 

(4.3). The crucial differe~lce is that here we shall regard the weight parameters 
appearing in the first layer of the network, as well as those in the second layer, 
as being adaptive, so that their values can be changed during the process of 
n ~ t w o r k  training. 

Tlle network of Figure 4.1 correspmds to a transformation of the input vari- 
ahies by two successive single-layer networks. It is clear that we can extend this 
rlass of networks by consideri~g further successive transformations of the same 
~eneral kind, corresponding to networks with extra layers of weights. Through- 
ollt this hook, when we use the term Llayer network we shall be referring to 
a network wieh L layers of adaptive weights. Thus we shall call the network of 
Fkure 4.1 a two-layer network, while the networks of Chapter 3 are called single- 
l;wer networks. It should be noted, however, that an alternative convention is 
sometimes also found in the literature. This counts layers of units rather than 
Ia~ers of weights, and the inputs as separate units. According to this 

the networks of Chapter 3 would be caUed two-layer networks, and 
network in Figure 4.1 w ~ u l d  be said to have three layers. We do not recom- 

mend this cemention, hmever, since it is the layers of adaptive weights which 
crucial in determining the properties of the network function. Furthermore, 

the circles representing inputs in a network diagram are not true processing units 
their sole purpose is to represent the values of the input variables. 

-4 useful technique for visudization of the weight values in a neural network 
Hinton d i a g m ,  illustrated in Figure 4.2. E x h  square in the diagram cor- 

respond~ to one of the weight or bias parameters in the netwurk, and the squares 
arc grouped into blocks corresponding to the parameters associated with each 
'Init. The size of a squxe is proportional to the magnitude of the corresponding 
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biases 

weights 

weights 

Figure 4.2. Example of a two-layer network which solves the XOR problem, 
showing the cosr~ponding Hioton diagram. The weights in the network have 
the d u e  1.0 unless indicated otherwise. 

parameter, and the square is black or white according to whether the parameter 
is positive or negative. 

4.1.2 Geneml topologies 

Since there is a direct correspondence between a network diagram and its mathe- 
matical function, we can develop more general network mappings by consideriiig 
more complex network diagrams. We shall, however, restrict our attention to the 
case of f eed- f imad  networks, These have the property that there are no feed- 
back loops in the network. In general we say that a network is feed-forward if it 
is possibk to attach successive numb&rs to the inputs and to all of the hidden 
and output units such that each unit only receives connections from inputs or 
units having a smaller number. An example of a general feed-forward network 
is shown in Figure 4.3. Such networks have the property that the outputs can 
be expressed as deterministic functions of the inputs, and so the whole network 
represents a multivariate nan-linear functional mapping. 

The procedure for translating a network diagram into the corresponding 
mathematical function follows from a straightforward extension of the idea 
already discussed. Thus, the output of unit k is obtained by transforming a 
weighted linear sum with a non-linear activation function to give 

where the sum runs over all inputs and units which send connections to unit 
(and a bias parameter is included in the summation). For a given set of values 
applied to the inputs of the network, successive use of (4.8) allows the activations 
of all units in the network to be evaluated including those of the output units. 
This process can be regarded as a forward propagatzo.m of signals through the  

outputs 
Yl Y2 

XI 
Inputs 

'4 

Figure 4.3. An example of a neural network having a general feed-forward 
topology. Note that each unit has an associated bias parameter, which has 
been omitted from the diagram for clarity. 

network, In practice, there is little call to consider random networks, but there 
is often considerable advantage in building a bt of structure into the network. 
An example involving multiple layers of processing units, with highly restricted 
and structured interconnections beheen the layers, is discussed in Section 8.7.3. 

Note that, if the activation functions of all the hidden units in a network are 
taken to be linear, then for my such network we can always find an equivalent 
network without hidden unib. This follows from the fact that the composition of 
successive linear transformations is itself a linear transformation, Note, however, 
that if the number of hidden units is smaller than either the number of input or 
output units, then the linear transformation which the network generates is not 
the most general possible since information is lost in the dimensionality reduction 
at the hidden units. In Section 8.6.2 it is shown that such networks can be related 
to conventional data processing techniques such as principal component analysis. 
In general, however, there is little interest in mult i-layer linear networks, and we 
"all: therefore mainly consider networks for which the hidden unit activation 
h~nctions are non-linear . 

4.2 Threshold units 

There are many possible choices for the non-linear activation functions in a multi- 
layered network, and the choice of activation functions for the hidden units may 
33en be different from that for the output units. This is because hidden and 
r'Ut~ut units perform different robs, as is discussed at length in Sections 6.6.1 
and 6.7.1. However, we begin by considering networks in which all units have 
Rpaviside, or step, activation hnctions of the form 
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XI . Xd 
rnputs 

Figure 4.5. Topology of a neural network to demonstrate that networks with 
three layers of threshold units can generate arbitrarily compIex decision bound- 
aries. Biases have been omitted for clarity. 

and there are no units corresponding to class C2. Using the 'AND' construction 
for twc-layer networks discussed above, we now arrange that each second-layer 
hidden unit generates a 1 only for inputs lying in the corresponding hypercube. 
This can be done by arranging for the hyperplanes associated with the first-layer 
units in the block to be digned with the sides of the hypercube. Finally, the 
output unit has a bias which is set to -1 so that it computes a logicd 'OR.' 
of the outputs of the second-layer hidden units. In other words the output unit 
generates a 1 whenever one (or more) of the second-layer hidden units does so. If 
the output unit activation is 1, this is interpreted as class C1, otherwise it is inter- 
preted as class Cz. The resulting decision boundary then reflects the (arbitrary) 
assignment of hypercubes to classes C1 and Cz. 

The abwe existence proof demonstrates that feed-forward neural networks 
with threshoId units can generate arbitrarily complex decision boundaries. The 
proof is of little practical interest, however, since it requires the decision boundary 
to be specified in advance, and also it will typicaIly lead to very large networks. 
Although it is 'constructive' in that it provides a set of weights and threshah 
which generate a given decision boundary, it does not answer the more prstic 
question of how to choose an appropriate set of weights and biases for a particul 
problem when we are given only a set of training examples and we do not know 
in advance what 'the optimal decision boundary wi 11 be. 

Returning to networks with two layers of weights, we have saIredy seen how 
the AND construction for the output unit allows such a network to generate 
an arbitrary simply-connected convex decision region. However, by relaxing the 

Figure 4.6. Example of a non-convex decision boundary generated by a network 
having two layers of threshold units. The dashec! l i n a  show the hyperplmtnes 
corresponding to the hidden units, and the arrows show the direction in which 
the hidden unit activations make the transition from 0 to 1. The mnd-layer 
weights are all set to 1, and so the numbers represent the value of the linear 
sum prmnted to the output unit. By setting the output unit bias to -3.5, the 
decision boulndwy represend by the soUd curve is generated. 

Figure 4.7. As in Figure 4.6, but showing how a disjoint decision region 
be produced. In this w e  the bias on the output unit is ~ e t  to -4.5. 

restriction of an AND output unit, more general decision boundaries can be con- 
/ "rutted (Wieland and Leightoa, 1987; Huang and Lipprnann, 1988). Figure 4.6 

an example of a non-convex decision boundary, and Figure 4.7 shows a 
decision region which is disjoint. Huang and Lippmann (1988) give some exam- 
ples of very complex decision boundaries for networks having a two Iayers of 

units. 
This would seem to suggest that a network with just two layers of weights 

generate arbitrary decision boundaries. This is not in fact the case (Gibson 
Cowan, 1990; Blum and Li, 1991) and Figure 4.8 shorn an example of a 

decision region which cmnot be produced by a network having just two I a p ~  of 
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Figure 4.8. An example of a decision boundary which m o t  be producal by 
a network having two layers of threshold units (Gibson and Gown, 1990). 

~ 
weights. Note, however, that any given decision boundary can be approximated 
arbitrarily closely by a two-layer network having sigrnoidal activation functions, 
as discussed in Section 4.3.2. 

So far we have discussed procedures for generating particular forms of deci- 
sion boundary. A distinct, though related, issue whether a network can classify 
correctly a given set of data points which have been labelled as belonging to one 
of two classes (a dichotomy). In Chapter 3 it is shown that a network having a 1 
single layer of threshold units could classtfy a set of points perfectly if they were 
linearly separable. This would always be the case if the number of data points 
was at most equal t o  d + L where d is the dirnensiondity of the input space. 
Nilsson (1965) showed that, for a set of N data points, a twelayer network of 
threshold units with N - 1 units in the hidden layer could exactly separate an 1 

arbitrary dichotomy. Baum (1988) improved this result by showing that for N I 
points in general position (i.e. excluding exact degeneracies) in d-dimensional 
space, a network with IN/d hidden units in a single hidden layer could separate ~ 
them correctly into two classes. Here r N / d  denotes the srnalIest integer which 
is greater than or equal to N / d .  

4.3 Sigmoidal units 

We turn now to a consideration of multi-layer networks having differentiah1 
activation functions, and to the probIem of representing smooth mappings bc 
tween continuous variabks. In Section 3.1.3 we introduced the logistic sigrnoi8 
activation function, whose outputs lie in the range (0, I), given by 

Figure 4.9. Plot of the 'tanh' activation function given by (4.11) 

which is plotted in Figure 3.5. We discuss the motivation for this form of acti- 
vation function in Sections 3.1.3 and 6.7.1, where we show that the use of such 
activation functions on the network outputs plays an important role in allowing 
the outputs to be given a probabilistic interpretation. 

The logistic sigmoid (4.10) is often used for the hidden units of a multi-layer 
network. However, there may be some small practical advantage in using a 'tanh' 
activation function of the form 

which is plotted in Figure 4.9. Note that  (4.11) differs from the Iogistic function 
in (4. LO) only through a linear transformation. Specifically, an activation function 
F(z) = tanh(E) is equivalent to an activation function g(a) = 1/ (1 + e-a) if we 
apply a Iinear transformation E = a/2 to the input and a linear transfomatioa - $ = 29 - 1 to the output. Thus a neural network whose hidden units use the 

activation function in (4.111 is equivalent to one with hidden units using (4.10) 
but having different values for the weights and biases. Empirically, it is often 
found that 'tanhkctivation functions give rise to faster convergence of training 

I 

algorithms than logistic functions. 
In this section we shall consider networks with linear output units. As we 

"ha see, this does not restrict the class of functions which such networks can 
approximate. The use of sigmoid units at the outputs would limit the range of 
Possible outputs to the range attainable by the sigrnoid, and in some cases this 
would be undesirabIe. Even if the desired output always lay within the range 
Of the sigmoid we note that the sigrnoid function g(aj is monotonic, and hence 
is invertible, and so a desired output of g for a network with sigmoidd output 
1Jnits is equivalent to a ~ k s i ~ e d  output of g-' (y) for a network with linear output 

i I 
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4.3.1 Three-layernetworks 
In Section 4.2 we gave a heuristic proof that a three-layer network with threshoId 
activation functions could represent an arbitrary decision boundary to arbitrary 
accuracy. In the same spirit we can give an andogous proof that a network with 
three layers of weights and sigmoidal activation functions can approximate, to  
arbitrary accuracyI any smooth mapping (Lapedes and Farber, 1988). The re 

units. Note, however, that there are other reasons why we might wish to use 

quired network topology has the same form as in Figure 4.5, with each group of 
units in the first hidden layer again containing 2d units, where d is the dimen- 
sionaIity of the input space. As we did for threshold units, we try to arrange ffor 
each group to provide a non-zero output only when the input vector lies within 
a small region of the input space. For this purpose it is convenient to consider 
the logistic sigmoid activation function given by (4.10). 

W e  can illustrate the construction of the network by considering a two- 
dimensional input space. In Figure 4.10 (a) we show the output from a single 
unit in the first hidden layer, &en by 

non-linear activation hnctions at the output units, as discussed in Chapter 6. 
A sigmoidal hidden unit can approximate a linear hidden unit arbitrarily 

accurately. This can be aGhieved by arranging for all of the weights feeding into 

Figure 4.10. Demonstration that a network with three layers of weights, and 
sjgmoidaI hidden units, can approximate a smooth multivariate mapping to 
arbitrary accuracy. In (a) we see the output of a single sigmoidal unit as a 
function of t w ~  input variables. Adding the outputs from two such units can 
produce a ridge-Bke function (b), and adding two ridges can give a function 
with a maximum (c). 'Xkmforming this function with another sigmoid giws a 
localized response (d). By taking linear combinations of these localized func- 
tions, we cm approximate any smooth functional mapping. 

I 

adding the Wo sigmoids together we obtain a ridgdike function as shown in 
Figure 4.10 (6).  We next construct d of these ridges with orthogonal orientations 
find add them together to give a bumplike structure as shown in Figure 4.10 (c). 
:Ilt,hough this has a central peak there are also many other ridges present which 
stretch out t o  infinity. These are removed by the action of the sigmoids of the 
"and-Eayer units which effectively provide a form of soft threshold to isolate 
the central bump, as shown in Figure 4.10 (d). We now appeal to the intuitive 
idea (discussed more formally in Section 5.2) tha t  any reasonable function CMI 

h e  approximated to arbitrary accuracy by a linear superposition of a sufficiently 

the unit, as well as the bias, to be very small, so that the summed input lies on 
the linear part of the sigmoid curve near the origin. The weights on the outputs 1 
of the unit leading to the next layer of units can then be made correspondingly Il 
large to re-scale the activations (with a suitable offset to the biases if necessary), I 

Similarly, a sigmoidal hidden unit can be mode to approximate a step function 
by setting the weights and the bias feeding into that unit to very large values. 

As we shall see shortly, essentially any continuous functional mapping can be 
represented to arbitrary accuracy by a network having two Iayers of weights wit.h 
sigrnoidd hidden units. We therefore know that networks with extra layers of 1 
processing units also have genera! approxhation capabilities since they contain 
the two-layer network as a special case. This follows from the fact that the 
remaining layers can be arranged to perform linear transformations as discussed 
above, and the identity transformation is a special case of a linear transformation 
(provided there is a ~ufficient number of hidden units so that no reduction in 
dimensionality occurs). Nevertheless, it is instructive to begin with a discussion 
of networks having three layers of weights. 

From the discussion in Section 3.1, we see that the orientation of the sigmoid is 
determined by the direction of w, its location is determined by the bias loo, and 
the steepness of the sigmoid slope is determined by ~ ~ w I I .  Units in the second 
hidden layer form linear combinations of these sigmoidal surfaces. Consider the 
combination of two such surfaces in which we choose the second sigmoid to ha" 
the same orientation as the first but dispPaced from it by a short distance. 33) 

(4.12) large number of localized 'bump' functions, ~rrrvided the coefficients in the linear 
I 

combination are appropriately chosen. This superpaition is performed by the 
unit, which has a Iinear activation function. 

Once again, although this is a constructive aIgorithm it is of Iittle reIevance to 
Practical applications and serves mainly as an existence proof. However, the idea 

representing a function rn a Iinear superposition of Iocalized bump functions 
7119~e~t s  that we might consider two-layer networks in which each hidden unit 
emrates a bump-like function directly. Such networks are called local basis 
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function networks, and will be considered in detai1 in Chaptxr 5. 

4.3.2 Two-layer networks I 
We turn next to the question of the capabilities of networks having two la@rs 
weights and sigmoidal hidden units. This has proven to be an important class 
net;work for practical applications. The general topology is shown in Figure 4.1, 
and the network function was given expIicitly in (4.7). We shall see that such 
networks can approximate arbitrariIy well any functional (one-one or many-one) 
continuous mapping from one finite-dimensional space to another, provided th, 
number M of hidden units is sufficiently large. 

A considerable number of papers have appeared in the literature discussing 
this property including Funahashi (19891, Hecht-NieIsen (19891, Cybenko (198g), 
Hornik et 01. (1 989), Stinchecombe and White (1989), Cotter (1990), Ito (1991), 
Hornik (1991) and Kreinovich (1991). An important corollary of this result is 
that ,  in the context of a classification problem, networks with sigmoidal non- 
linemities and two layers of weights can approximate any decision boundary to 
arbitrary accuracy. Thus, such networks also provide universal nun-linear dis- 
criminant functions. More generally, the capability of such networks to approx- 
imate general smooth functions allows them to model posterior probabilities of 
class membership. 

Here we outline a simple proof of the universality property (Jones, 1990; Blum 
and Li, 1991). Consider the case of two input variables XI and xz ,  and a. singlr 
output variable y (the extension to larger numbers of input or output variables 
is straightforward). We know that, for any given value of XI, the desired function 
y(zl, zz) can be approximated to within any given (sum-of-squares) error by 3. 
Fourier decomposition in the variable 2 2 ,  giving rise to terms of the form 

?/(XI, ~ z )  z C A, (XI ) cos(sxz) (4.13) 
8 

where the coefficients A, are functions of xl . Similarly, the coefficients themseh~s 
can be expressed in terms of a Fourier series giving 

We can now use the standard trigonometric identity cosacosp = $ cos(a + 
0) + 4 cos(a - p) to  write this as a linear combination of terms of the form 
C O S ( Z , I )  and cos(zLl) where r , ~  = lxl  + 3x2 and = lzl - 3x2. Finally, nre 
note that the function cos(z) can be approximated to arbitrary accuracy hqp a 
linear combination of threshold step functions. This c a n  be seen by making a11 
explicit construction, illustrated in Figure 4.11, for a function f (zj in terms of a 
piecewise constant function, of the form 

4.3: Sigmoidal units 

rnear superpo- Figure 4.1 1. Approximation of a continuous function f ( z )  by a I' 
sition of threshold step functions. This forms the basis of a simple proof that a 
two-layer network having sigrnoidal hidden units and linear output units can 
approximate a continuous function to arbitrary accuracy. 

wherr: H ( z )  is the Heaviside step function. Thus we see that the i%function Y ( x ~ ,  221 

can be expressed as a linear combination of step functions whose argumelrts are 
linear combinations of zl and xz. In other words the function y(zl, x z )  can be 
approximated by a tw+layer network with threshold hidden unik and linear 
output units. Finally, we recall that threshold activation functions can be stp- 
proximated arbitrarily well by sigmoidal functions, simply by scaling the weights 
and biases. 

Note that this proof does not indicate whether the network can sirnultane- 
011s)y approximate the derivatives of the function, since our approximation in 
(4.15) has zero derivative except at discrete points at which the derivative is 
'J~(Mned. A proof that twelayer networks having sigrnoidal hidden units can 
'imultaneously approximate both a fnnction and its derivatives was given by 
IJwnik et a/. (1 990). 

As a simple illustration of the capabilities of two-layer networks with sig- 
moidal hidden units we consider mappings from a single input s to a single 
"'fitput y. In Figure 4.12 we show the result of training a network with five hid- 
rfp  n units having 'tanh' activation functions given by (4.11). The data sets each 
rQnsist of 50 data, points generated by a variety of functions, and the network 

a single linear output unit and was trained for 1000 epochs using the BFGS 
q'Ja~i-Newton algorithm described in Section 7.1 0. We see that the same network 
'"9 generate a wide variety of different functions simply by choosing d a r e n t  
values for the weights and biases. 

The above proofs were concerned with demonstrating that a network with a 
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Figure 4.12. Examples of sets of data poinh (circles) together with the wrre- 
sponding functions reprasented by a multi-layer perceptron network which has 
been trained using the data. The data sets were generated by sampIing the 
following functions: (a) x 2 ,  (b) sin(2rx) (c) 1x1 which ia continuous but with a 
discontinuous first derivative, and (d) the step function 8(x) = sign(z), which 
is discontinuous. 

sufficiently Iarge number of hidden units couEd approximate a particular map- 
ping. White (1990) md Gallant and (1992) considered the conditions 
under which a network will actually learn a given mapping from a finite data 
set, showing how the number of hidden units must grow as the size of the data 
s e t  grows. 

If we try to approximate a given function h(x)  with a network having a finite 
number M of hidden units, then there will be a residual error. Jones (3992) and  
Barron (1993) have shown that this error decreases as 8 ( 1 / M )  as the number 
M of hidden units is increased. 

Since we knmv that, with a single hidden Iayer, we can approximate any map- 
ping t o  arbitrary accuracy we might wonder if there is anything to be gtined 
using any other network topology, for instance one having several hidden layes 
One possibility is that by using extra layers we might find more efficient approx+ 
imations in the sense of achieving the same bvel of accuracy with fewer weighs 
and biases in total. Very IittIe is currently known about this issue. Hoareter- 
later chapters discuss situations in which there are other good reasons to COP- 

sider networks with more complex topologies, including networks with severa' 
hidden layers, and networks with only partial connectivity between layers. 

Weight-space symmetries 
a two-layer network having M hidden units, with 'tanhs activation I 
given by (4.11), and full connectivity in both layers. If we change the 

.,, of of the weights and the bias feeding into a particulw hidden unit, 
51= 

for a given input pattern, the sign of the activation of the bidden unit 

' I 
,ill be reversed, since (4.11) is an odd function, This can be compensated by 
rhxnging the sign of all of the weights leading out of that hidden unit. Thus, 
b,. changhg the signs of a particular group of weights (and a bias), the input- 

I ' 
oEcput mapping function represented by the network is unchanged, and so we 
hatre found two different weight vectors whch give rise to the same mapping 
function. For M hidden units, there will be M such 'sign-flip' symmetries, and 
thrls any given weight vector will be one of a set 2M equivalent weight vectors 
(Cben et al., 1993). 

Similarly, imagine that we interchange the valum of all of the weights (and 
the bias) Ieading into and out of a particular hidden unit with the corresponding 
values of the weights (and bias) associated with a different hidden unit. Again, 
this clearly leaves the network inpuhu tpu t  mapping function unchanged, but 
i t corresponds to a different choice of weight vector. For M hidden units, any 
given weight vector will have M! equivalent weight vectors associated with this 
interchange symmetry, corresponding to the M !  different orderings of the hidden 
units (Chen et  aL , 1993). The network will therefore have an overall weight-space 
symmetry factor of M ! z ~ .  For networks with more than two layers of weights, I 

the total level of symmetry wiIl be given by the product of such factors, one for I 
I 

each layer of hidden units. 
It turns out that these factor8 account for all of the symmetries in weight 

space (except for possible accidental symmetries due to specific choices for the 
I 

I 

might values). Furthermore, the existence of these syrnmetrins is nat a particular I 

Property of the 'tanh' function, but applies to a wide range of activation functions 
(Sussmann, 1992; Chen et al., 1993; AIbertini and Sontag, 1993; KlirkovA and 
Kainen, 1994). In many cases, these symmetries in weight space are of Little 
Practical consequence. However, we shall encounter an example in Section 10.6 

we need to take them into account. 

4 5  Higher-order networks 
So far in this chapter we have eonaidered units for which the output is given by 
" nO"-Einear activation function acting .on a l inea~. combination of the inputs of 
'he form 

'" have seen that networks composed of such units can in appnximate 
'"' hlnctional mapping to arbitrary accuracy, and therefore constitute a univer- 

of parametrized multivariate non-linear mappings.  everth he less, there 
IS 'tlIl . ' considerable interest in studying other forms of processing unit- Chapter 5 i 
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Figure 4.13. A onedimensional input space x with decision regions RI (which 
is disjoint) and a. A linear discriminant function cannot generate the required 
decision boundaries, but a quadratic discriminant y(x), shown by the solid 
curve, can. The required decision rule then s i g n s  an input z to class Cl if 
y(x) > 0 and to cIass Cp otherwise. 

for instance is devoted to  a study of networks containing units whose activations 
depend on the distance of an input vector from the weight vector. Here we con- 
sider some extensions of the  linear expression in (4.16) which therefore contain 
(4.16) as a special case. 

As discussed in Chapter 3, a network consisting of a single Iayer of units of 
the form (4.16) can only produce decision boundaries which take the form of 
piecewise hyperplanes in the input space. Such a network is therefore incapable 
of generating decision regions which are concave or which are multiply connected. 
Consider the one-dimensional input space x illustrated in Figure 4.13. We wish to  
find a discriminant function which will divide the space into the decision regions 
RI and Ra as shown. A linear discriminant function is not sufficient since the 
region RI is disjoint. However, the required decision boundaries can be 
by a quadratic discriminant of the form 

provided the weights w2, wl and wo are chosen appropriateIy. 
We can generalize this idea to higher orders than just quadratic, and 

several input variabIes (Ivakhnenko, 1971; Barron and Barron, 1988). This IeRl 

to higher-oder processing units (Glles and Maxwell, 1987; Ghosh and Shi 
19925, also known as sigma-pi units (Rumelhart et a!., 1986). For second-order 
units the g+enerdization of (4.16) takes the form 

n.here the sums run over all inputs, or units, which send connections to unit j. 
xs hefore, this sum is then transformed using a non-Iinear activation function to 

z, = g(a,). If terms up to degree M are retained, this will be known as an 
11th-order unit- Clearly (4.18) includes the conventional linear (firsborder) unit 
(4.16) as a special case. The similarity t o  the higher-order polynomids discussed 
in Section 1.7 is clear. Note that the summations in (4.18) can be constrained 
ro dlow for the permutation symmetry of the higher-order terms. For instance, 
the term x,,zi, is equivdent to the term s,,x,, and so we need onIy retain one 
of these in the summation. The total number of independent parameters in a 
higher-order expression such as (4.18) is discussed in Exercises 1.6-1.8. 

If we introduce an extra input = +I then, for an Mth-order unit we can 
~bsorb all of the terms up to  the Mth-order within the Mth-order term. For 
instance, if we consider second-order units we can write (4.18) in the equivalent 
form 

with similar generalizations to higher orders. 
We see that there will typically be many more weight parameters in a higher- 

order unit than there are in a first-oxder unit. For example, if we consider an 
input dimensionaIity of d = 10 then a first-order unit will have 11 weight param- 
eters (including the bias), a second-order unit will have 66 independent weights, 
and a third-order unit will have 572 independent weights. This explosion in the  
number of parameters is the principal difficulty with such higher-order units. 
The compensating benefit is that it is possible to  arrange for the response of the 
unit, to be invariant to various transformations of the input. In Section 8.7.4 it 
is shown how a third-order unit can be simultaneously invariant to translations, 
"tations and scalings of the input patterns when these are drawn from pixels 
in a two-dimensional image. This is achiwed by imposing constraints on the 
iv@ights, which also greatly reduce the number of independent parameters, and 

makes the use of such units a tractable proposition. Higher-order units 
arc generally used only in the first layer of a network, with subsequent layers 
$ ~ i n g  composed of conventional first-order units. 

4-e  Projection pursuit regression and other conventional techniques 

?tatisticians have developed a variety of techniques for classification and r e p s -  
5ion which can he regarded as complementary to the multi-layer perceptron. Here 

~ i v e  a brief overview of the most prominent of these approaches, and indi- 
cate their relation to neural networks. Qne of the most closely related is that of 

I 
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projection pursuit mgegression (Friedman and Stuetzle, 1981; Huber, 1985). pot 
h single output variable, the projection pursuit regression mapping can be arihep 

in the form 

which is remarbbly similar to a two-layer feed-forward neuraI network. The pa. 
rameters uj and ujo define the projection of the input vector x onto a set 
planes labelled by j = 1, . . . , M ,  as in the multi-layer perceptron. These Proje+ 
tions are transformed by non-linear 'activation functions' & j  and these in turn 
are linearly combined to form the output variable y. Determination of the pararrp. 
eters in the made1 is done by minimizing a sum-of-squares error function. One 
important difference is that each 'hidden unit' in projection pursuit regression 
is allowed a different activation function, and these functions are not prescribed 
in advance, but are determined from the data as part of the training procedure. 

Another difierence is that  typically all of the parameters in a neural neb 
work are optimized simultaneously, while those in projection pursuit regression 
are optimized cyclically in groups. Specifically, training in the projection pur- 
suit regression network takes place for one hidden unit at a time, and for each 
hidden unit the second-layer weights are optimized fist, followed by the acti- 
vation function, followed by the first-layer weights. The process is repeated for 
each hidden unit in turn, until a sufficiently small value for the error function is 
achieved, or until some other stopping criterion is satisfied. Since the output  y in 
(4.20) depends linearly on the second-layer parameters, these can be optimized 
by linear least-squares techniques, as discussed in Section 3.4. Optimization of 
the activation functions q5j represents a probIem in one-dimensional curve-fitting 
for which a variety of techniques can be used, such as cubic splines (Press e l  
al., 1992). Finally, the optimization of the first-layer weights requires non-linear 
techniques of the kind discussed in Chapter 7. 

Several generalizations t o  more than one output variable are possible (RPJ~Y~ 
1994) depending on whether the outputs share common basis functions &J and 
if not, whether the separate basis functions $,x (where le labels the outputsi 
share common projection directions. In terms of representational capabiiit?'. 
can regard projection pursuit regression as a generalization of the rn~lti-la!'~ 
perceptron, in that the activation functions are more flexible. It is therefore "Of 

surprising that projection pursuit regression should have the same 'universa1"T 
proximation capabilities as multi-layer perceptrons (Dimonis and shahshaham' 
1984; Jones, 1987). Projection pursuit regression is compared with multi-la"' 
perceptron networks in Hwang e t  a!. (1994). 

Another framework for non-linear regression is the class of generalized a ddl. 

tiwe models (Hastie and Tibshirani, 1990) which take the form 
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rllPrP the d, ( - )  are nodinear  functions and g(.) represents the logistic sigmoid 
hliiction (4.10). This is aetually a very restrictive class of models, since it does not 
nllow for interactions between the input variables. Thus a function of the form 

X ~ Z ? ~  fm example, cannot be modelled. They do, however, have an advantage in 
of the interpretation of the trained mode1, since the individual univariate 

hnctions #%(-) Can be plotted- 
-4, extension of the additive modeIs which allows for interactions is given 

bv the technique of multivariate adaptiue r e g ~ s s i o n  splines (MARS) (Friedman, 
I j ~ ~ )  for which the mapping function can be written 

nhcre the jth basis function is given by a product of some number Kj of on+ 
dirnensiond spline functions q5jk (Press et  ab, 1992) each of which depends on 
ons of the input variables s,, where the particular input variable used in each 
cnse is governed by a label ~ ( k ,  j j .  The basis functions are adaptive in that the 
ntrmbcr of factors.K, , the labeb v ( k ,  j), and the knots for the one-dimensional 
sprint functions are dl determined from the data. Basis functions are added 
incrcmcntally during learning, using the technique of sequentid forward selection 
discussed in Section 8.5.3. 

-4n alternative framework for learning non-linear multivariate mappings in- 
I'Q~WS partitioning the input space into regions, and fitting a different mapping 
within each region, In many such algorithms, the partitions are formed from 
k!~pr~lanes  which are parallel to the input variable axes, as indicated in Fig- 
ure -1.14. In the simplest case the output variable is taken to be constant within 
:"'h r e~ ion .  A common technique is to form a binary partition in which the 

cpace is divided into regions, and then each of these is divided in turn, 
""0 on. This form of partitioning can then be described by a binary tree 
S'F1lcturf;.. in which each I ed  represents one of the regions. Successive branches 

added to the tree during learning, with the locations of the hyperplanes 
b n i r i ~  (let~rrnined by the data. Procedures are often also devised for pruning the 
''P 5krIl~t~lre a way of controlling the effective complexity of the model. Two '' he* known algorithms of this kind are eiass$cation and wgwssion trees !y 

A R ~ )  (Breirnan et at., 1984) and ID3 (Quinlan, 1986). A detailed discussion 
'Ilesp algorithms would, however, take us too far afieid. 

4.7 K ~ I r n a ~ o r w ~ s  theorem 
-. 

"'CR is theorem due to Kolrnogorov (1957) which, although of no direct prac- 
t~ r .  " I Si~mificance, does have an interesting relation t a  neural networks. The t h e  
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Figure 4.14. An example of the partitioning of a space by hyperplan= which 
are parallel to the wordinate me. Such partitions form the basis of a number 
of algorithms for solving classification and regression problems. 

rem has its origins at; the end of the nineteenth century when the mathematician 
Hilbert compiled a list of 23 unsolved problems as a chdlenge for twentieth cen- 
tury mathematicians (Hilbert, 1900). Hilbert's thirteenth problem concerns the 
issue of whether functions of several variables can be represented in terms of 
superpositions of functions of fewer variables. He conjectured that there exist 
continuous functions of three variables which cannot be represented as super- 
positions of functions of two variables. The conjecture was disproved by Arnold 
(1 957). However, a rnuch more general result was obtained by KoImogorov (1957) 
who showed that every continuous function of several variables (fur a closed and 
bounded input domain) can be represented as the superposition of a small num- 
ber of functions of one variabIe. Improved versions of Kolmogorov9s theorem have 
been given by Sprecher (19651, Kahane (1975) and Lorentz ( 1976). In neural net- 
work terms this theorem says that any continuous mapping y(x) from d input 
variables z,: to an output variable y can be represented exactly by a three-layer 
neural network having d(2d + 1) units in the first hidden layer and (2d + 1) units 
in the second hidden layer. The network topology is illustrated, for the case of 
a single output, in Figure 4.15. Each unit in the first hidden layer computes 8 

function of one of the input variables q given by hj(zi)  where j = 1,. , . ,2d + 1 
and the hj are strictly monotonic functions. The activation of the j t h  unit in 
the second hidden layer is given by 

Xl 
inputs 

Figuse 4.15. Network topology to  implement Kolmopmv's theorem. 

where 0 < Ai < 1 are constants. The output y of the network is then given by 
I 

where the function g is real and continuous. Note that the function g depends 
on the particular function y(x) which is t o  be represented, while the functions 1 
hj do not. This expression can be extended to a, network with more that one 
output unit simply by modifying (4.24) to give 

that the theorem only guarantees the existence of a suitable network. No x- 
examples of functions hj  or g are known, and there is no known constructive 

technique for finding them. 
While Kolmogorov% theorem is remarkable, its relevance to practical neural 

cnm~uting is at best limited (Girosi and Poggio, 1989; KurkovA, 1991; KcrkovB, 
l992). There are two reasons for this. First, the functions h, are far from being 

Indeed, it has been shown that if the functions hj are required to be 
"00th then the theorem breaks down (Vitushkin, 1954). The presence of non- 
"00th functions in a network wou!d l e d  to problems of extreme sensitivity 
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to the input variables. Smoothness of the network mapping is an importa 
property in connection with the generalization performance of a network, a, i, 
discussed in greater detail in Section 9.2. The second reason is that the function 
g depends on the particular function y(x) which we wish to represent. This is 
the converse of the situation which we generally encounter with neural networks 
UsuaIIy, we consider fixed actintion functions, and then adjust the number of 

hidden units, and the d u e s  of the weights and biases, to give a sufficiemtttly close 
representation of the desired mapping. In Kolmogorw's theorem the number 
hidden units is fixed, while the activation functions depend on the mapping. 1, 
general, if we are trying to represent an arbitrary continuous function then we 
cannot hope to do this exactly with a finite number of fixed activation functions 
since the finite number of adjustable parmeters represents a finite number 
degrees of freedom, and a general continuous function has effectively infinite]? 
many degrees of freedom. 

4.8 Error back-propagation 
So far in this chapter we have concentrated on the representational capabilities of 
multi-layer networks. We next consider how such a network can Iearn a suitable 
mapping from a given data set;. As in previous chapters, learning will he based on 
the definition of a suitable error function, wluch is then minimized with respect 
to the wights and biases in the network. 

Consider first the case of networks of threshold units. The final layer of 
weights in the network can be regard& as a perceptron with inputs given by 
the outputs of the last layer of hidden units. These weights could therefore be 
chosen using the perceptron learning rule introduced in Chapter 3. Such an ap- 
proach cannot, however, be used to determine the weights in earlier layers of 
the network. Although such layers could in principle be regarded as being like 
single-layer perceptrons, we have na procedure for assigning target values to their 
outputs, and so the perceptron procedure cannot be applied. This is known 
the credit assignment pmblem. If an output unit produces an incorrect response 
when the network is presented with an input vector we have no way of determh- 
ing which of the hidden units shouId be regarded as responsible for generating 
the error, so there is no way of determining which weights to adjust or by hornr 
much. 

The solution to this credit assignment problem is relatively sirnph. If tKfe 

consider a network with differentiable activation functions, then the activatiofls 
of the output units become differentiable functions of both the input variables. 
and of the weights and biases. If we define an error function, such as the ~ u m - 0 ~  
squares error introduced in Chapter 1, which is a differentiable function of thp 
network outputs, then this error is itself a differentiable function of the rveiaht5. 
We can therefore evaluate the derivatives of the error with respect to the ~ e i d ~ ~ ~ ~  
and these derivatives can then be used to find weight values which minimize the  
error function, by using either gradient descent or one of the more 
optimization methods discussed in Chapter 7. The algorithm for evaluating tk 
derivatives of the error function is known as back-pmpa9ation since, as we sha 
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see3 it to a propagation of errors backwards through the network. 
The te&nique of back-propagation was popularized in a paper by Rumelhart, 
Hinton and Williams (1986). However, similar ideas had been developed earlier 

bT. 
,umber of researchers including Werbos (1914) and Parker (1985). 

' ~t should be noted that the term back-propagation is used in the neural com- 
puting literature to mean a variety of different things. For instance, the multi- 

perceptron architecture is sometimes called a back-propagation network. 
*he term back-propagation is also used to describe the training of a muIti-layer 
perceptron using gradient descent applied to a sum-of-squares error function. In 
order to clarify the terminology it is useful to consider the nature of the training 

more carefully. Most training algorithms involve an iterative procedure 
for minimization of an error function, with adjustments t o  the weights being 
Inads in a sequence of steps. At each such step we can distinguish between 
~0 distinct stages. In the first stage, the derivatives of the error function with 

to the weights must be evaluated. As we shall see, the important con- 
tribution of the back-propagation technique is in providing a computationally 
&cient method for evaluating such derivatives. Since it is at this stage that 
errors are propagated backwards through the network, we shall use the term 
bmk-propagation specifically to describe the evaluation of derivatives. In the 
second stage, the derivatives are then used to compute the adjustments; to be 
made to the weights. The simplest such technique, and the one originally con- 
sidered by Rumelhart et  a!. (19861, involves gradient descent. It is important to 
recognize that the two stages are distinct. Thus, She first stage process, narne1.y 
th? propagation of errors backwards through the network in order to evaluate 
d~rivatives, can be appIied to many other kinds of network and not just the 
multi-layer perceptron. I t  can also be applied to error functions other that just 
lhe simple sum-of-squares, and to the evaluation of other derivatives such as the 
Jarobian and Hessian matrices, as we shall see later in this chapter. Similarly, the 
second stage of weight adjustment using the calculated derivatives can be tack- 
led using a variety of optimization schemes (discussed at length in Chapter 71, 

of which are substantially more powerful than simple gradient descent. 

48.1 Evaluation of error  function de&atives 

now derive the back-propagation algorithm for a general network having 
*bitrary feed-forward topology, and arbitrary differentiable non-linear activation 
functions, for the case of an arbitrary differentiable error function. 'She resulting 

will then be illustrated using a simple iayered network structure having 
a single layer of sigmoidal hidden units and a sum-of-squares error. 
. 1" a general feed-forward network, each unit computes a weighted sum of its 
'"Puts of the form 

"re zp i s  the activation of a unit, or input, which sends a connection to unit 
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j, and w,i is the weight associated with that connection. The summation runs 
over a11 units which send connections So unit j. In Section 4.1 we showed that 
biases can be included in this sum by introducing an extra unit, or input, with 
activation fixed at ++I. We therefore do not need to deal with biases eqlicitkym 
The sum in (4.26) is transformed by a non-linear activation function g{.}  to give 
the activation zj of unit j in the form 

Note that one or more of the variables zi in the sum in (4.26) could be an input, 
in which case we shall denote it by xi. Similwly, tthe unit j in (4.27) could he an 
output unit, in which case we denote its activation by yk. 

As before, we shall seek to determine suitable values for the weights in the 
network by minimization of an appropriate error function. Here we shall consider 
error functions which cm be written as a sum, over a11 patterns in the training 
set, of an error defined for each pattern separately 

where n labels the patterns. Nearly all error functions of practical interest take 
this  form, for reasons which are explained in Chapter 6. We shall also suppose 
that the error En can be expressed as a differentiable function of the network 
output wriabIes so that 

En = En(yl , .  . . , y,). (4.29) 1 
Our goal is to find a procedure for evaluating the derivatives of the error function 
E with respect to the weighi;~ and biases in the network. Using (4.28) we call 

express these derivatives as sums over the training set patterns of the derivatives 
for each pattern separately. From ~ Q W  on we shall therefore consider one pattern 
at a time. 

For each pattern we shall suppose that we have supplied the corresponding 
input vector t o  the network and calcuIated the activat.ions of all of the hidden 
and output units in the network by successive application of (4.26) and (4.2:). 
This process is often caIled forward ppropagation since it can be regarded as a 
forward flow of information through the network. 

NOW consider the evaluation of the derivative of En with respect to somP 
I' 

weight wj i .  The outputs of the various units will depend on the i n P t  

pattern n. However, in order to keep the notation uncIuttered, we shall ornit 
the superscript, n from the input and activation variables. First we note that 
En depends on t h e  weight wj i  only via the summed input a, to unit j. We can ' 
therefore apply the chain rule for ~ar t i a l  derivatives to give 

4.8: Error back-propagation 143 

\t:e now introduce a useful notation 1 1  ! 
l 1  

&re the b's are often referred to as e m r s  for reasons we shall see shortly. Using 
(4.26) we can write 

~ubst~ituting (4.31) and (4.32) into (4.30) we then obtain ! I  

Iiote that this has the same general form as obtained for single-layer networks 
in Section 3.4. Equation (4.33) tells us that the required derivative is obtained I 

simply by multiplying t h e  value of 6 for the unit at tthe output end of the weight 
by the value of z for the unit at the input end of the weight (where 3 = 1 in 
the case of a bias). Thus, in order to evduate the derivatives, we need only to 

I 

calculate the value of hj for each hidden and output unit in the network, and 1 
then apply (4.33). 

For the output units the evaluation of Sk is straightforward. From the delini- 
rion (4.31) we have 

"here we have used (4.27) aith z k  denoted by yx. In order to evaluate (4.34) we 
qhstitute appropriate expressions for g'(a) and aEn/8y. This will be illustrated 
l ~ i t h  a simple example shortly. 
TO emlnate the 6's for hidden units we again make use of the chain rule for 

Partial derivatives, 

~ C r e  ills sum runs over all units k to which unit j sends connections. The 
'rPan~ernent of units and weights is illustrated in Figure 4.16. Note that t h e  
''nits labelled k coulrl include other hidden ~lni ts  and/or output units. In writing 

I I 



Figure 4.16. Illustration of the calculation of 6j for hidden unit j by back- 
propagation of the 6's from those units k to which unit j sends connections. 

down (4.35) we are making use of the fact that variations in aj give rise to 
variations in the error function only through variations in the variables ak. If we 
now substitute the definition of 6 given by (4.31) into (4.355, and make use of 
(4.26) and (4.27), we obtain the following baclo-pmpagetioa formula 

which tells us that the value of 6 for a particular hidden unit can be obtained by 
propagating the 6's backwards from units higher up in the network, as illustrated 
in Figure 4.16. Since we already know the d u e s  of the 6's for the output units, 
it follows that by recursively applying (4.36) we can evaluate the 6% for all of 
the hidden units in a feed-forward network, regardless of its topology. 

We can summarize the back-propagation procedure for evaluating the deriva- 
tives of the error En with respect to the weights in four steps: 

1. Apply an input vector xn to the network and forward propagate through 
the network using (4.26) and (4.27) t o  find the activations of dl the hidden 
and output units. 

2. Evaluate the 6k for all the output units using (4.34). 
3. Bxk-propagate the 6's using (4.36) t o  obtain dj for each hidden unit in 

the network. 
4 .  USE (4.33) to evaluate the required derivatives. 

The derivative of the totaJ error E can then be obtained by repeating the aboi* 
steps for each pattern in the training set, and then summing over d l  patterns: 
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the above derivation we have implicitly assumed that each hidden or output 
,,,it in the network has the same activation function g( . ) .  The derivation is 
,,.c,ily generalized, however, to allow different units to have individual activation 
hmctions, simply by keeping track of which form of g(.)  goes with which unit. 

4.8.2 A simple erample 

~ h c  above derivation of the back-propag at ion procedure d l m e d  for general 
forms for the error function, the activation functions and the nefmork topol- 
,gy. In order to illustrate the application of this algorithm, we shall consider a 
particular example. This is chosen both for its simplicity and for its practical 
importafi~e, since many applications of neural networks reported in, the litera- 
ture make use of this type of network. Specifically, we shall consider a two-layer 
network of the form illustrated in 4.1, together with a sum-of-squares 
error. The output units have linear activation functions while the hidden units 
have logistic sigmoid activation functions given by (4.10), and repeated here: 

A useful feature of this function is that its derivative can be expressed in a 
particularly simple form: 

In a software implementation of the network algorithm, (4.39) represents a con- 
wnient property since the derivative of the activation can be obtained efficiently 
from the activation itself using two arithmetic operations. 

For the standard sum-of-squares error function, the error for pattern n is 
Riven by 

 here pk is the response of output unit k, and t k  is the corresponding target, for 
" Particular input pattern xn. 

Using the expressions derived above for back-propagation in a general nee- 
work, together with (4.39) and (4.40), we obtain the following results. For the 
n " ~ P ~ t  units, the 6's are given by 
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while for units in the hidden layer the 6's are found using 

where the sum runs over all output units. The derivatives with respect to the 
fist-layer and second-layer weights are then given by 
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the eypression for the error function and wrote down explicit formulae for 
deri&ives and then evaluated them numerically by forward propagation, we 

q.o,ld to evaluate W such terms (one for each weight or bias) each requiring 
o j ~ ~ w )  operations. Thus, the total computational effort required to evaluate dl 
rIIP derivatives would scale as O( WZ). By comparison, back-propagation allows 
rhc derivatives to he evaluated in O ( W )  operations. This follows from the fact 
I,hpt both the forward and the backward propagation phases are O( W), and the 
,v,juation of the derivative using (4.33) also requires O ( W )  operatiom. Thus 
back-propagati~n has reduced the computational complexity from O(W7 ta 
#(137) for each input vector. Since the training of MLP networks, even using 
back-propagation, can be very time consuming, this gain in eficiency is cruciaI. 
For a total of N training patterns, the number of computational steps required 

evaluate the complete error function for the whole data set is N times larger 
lhan for one pattern. 

The practicd importance of the 6 ( W )  scaling of back-propagation is anal- 
ogous in some respects to that of the fast Fourier transform (FFT) algorithm 
(Brigham, 1974; Press et al., 1992) which reduces the computational complex- 
ity of evaluating an L-point Fourier trmsform from O(L2) to O( L log2 E). The 
discovery of this algorithm led to the widespread use of Fourier transforms in a 
large range of practical applications. 

So Ear we have discussed the evaluation of the derivatives of the error function 
with respect to the weights and biases in the network. In order to turn thls into 
a learning algorithm we need some method for updating the weights based on 
these derivatives. In Chapter 7 we discuss several such parameter optimization 
strategies in some detail. For the moment, we consider the fixed-step gradient 
descent technique introduced in Section 3.4. We have the choice of updating the 
weights either after presentation of each pattern (on-line learning) or after first 
summing the derivatives aver d l  the patterns in the training set (batch learning). 
In the former case the weights in the first layer are updated using 

with analogous expressions for the second-layer weights. I "here F << 1 is a small qumtity. In a software simulation, the acuracv of the 
1 

Awji = - 7 ) b . j ~ ~  '4'441 

while in the csase of batch learning the first-layer weights are updated using 

4.8.3 Efidency of back-propagation 

One of the most important aspects of back-propagation is its computational 
efficiency. To understand this, let us examine how the number of computer QP 
erations required to evaluate the derivatives of the error function scales with the 
size of the network. Let W be the totaI number of weights and biases. Then a 

single evaluation of the error function (for a given input pattern) would requip 
O(W)  operations, for suffLciently large W. This follows from the fad that, except 
for a network with very sparse connections, the number of weights is  typicaIll; 
much greater than the number of units. Thus, the bulk of the computational 
effort in forward propagation is concerned with evaluating the sums in (4.2c 
with the evaluation of the activation functions representing a small merhea 

2- 

An alternative approach to back-propagation for computing the derivatives of 
the error function is to use finite differences. This can be done by perturbing 

Each term in the sum in (4.26) requires one multiplication and one additio 
leading to an overall computational cost which is O(KV). 

For W weights in total there are W such derivatives to evaluate. If we 

each weight in turn, and approximating the derivatives by the expression 

aPP~oximat.tion to the derivatives can be improved by making E smaller, until 
numerical roundoff problems arise. The main problem with this approach is that 
the highly desirable B(W) scaling has been lost. Each forward propagation r e  
Wires D ( W )  steps, and there are W weights in the network each of which must 
he perturbed individually, so that the overall scaling is 0(w2). H w e r ,  finite 
differences play an impodant role in practice, since a numerical comparison of 
the derivatives calculated by back-propagation with those obtained using finite 
differences provides a very powerful check on the correctness of any software 
m~lmen ta t ion  of the back-propagation algorithm. 

The accuracy of the finite differences method can be improved significantly 
h~ using symmetrical cenfral diflerences of the form 
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In this ease the O(E)  corrections cancel, as is easily verified by Taylor eaQ- 
sion on the right-hand side of (4.471, and so the residual corrections are o($) 
The number of computational steps is, however, roughly doubled Compared Nitd 
(4.46'). 

I 
. , 

We have seen that the derivatives of an error Function with respect to 1 
weights in a network can be expressed efficiently through the relation 

Instead of using the technique of central differences to evaluate the derivatives: 
d l P / a w j i  directly, we can use it to estimate aEn/daj  since 

dEn En (a, f E )  - P ( a j  - E )  -= 
aaj 2~ + 0(f2) 

We can then make use of (4.48) to evaluate the required derivatives. Because the 
derivatives with respect to the weighb are found from (4.48) this approach is 
still relatively efficient. Back-propagation requires one forward and one backward 
propagation through the network, each taking O(W) steps, in order to evaluate 
all of the aE/aai. By comparison, (4.49) requires 2M forward propagations, 
where M is the number of hidden and output nodes. The overall scaling is there- 
fore proportionaI to MW, which is typicaIly much less than the O(W2)  scaling 
of (4.471, but more than the O(W)  scaling of back-propagation. This technique 
is called node pwtu~bation (Jabri and Flower, 1991), and is closely related to the 
madeline 111 learning rule (Widrow and Lehr, 1990). 

In a software implementation, derivatives should be evaluated using back- 
propagation, since this gives the greatest accuracy and numerical efficiency. How- 
ever, the results should be compared with numerical differentiation using (4.47) 
for a few test cases in order to check the correctness of the implementation. 

4.9 The Jacobian matrix 

We have seen how the derivatives of an error function with respect tu clra wzighCs 
cam be obtained by the propagation of errors backwards through the network. 
The technique of back-propagation can also be applied to the caIculation of 
other derivatives. Here we consider the evaluation of the J m b i a n  matrix, whose 
elements are given by the derivatives of the network outputs with respect to the  
inputs 

where each such derivative is evaluated with a11 other inputs held iixed. Note 
that  the term Jacobian matrix is also sometimes used to describe the derivatives 
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In general, the network mapping represented by a trained neural network will 
he non- l ine~ ,  md so the elements of the Jacobian matrix will not be constants 
but will depend on the particular input vector used. Thus (4.51) is valid only for 

perturbations of the inputs, and the Jacobian itself must be r ~ v d u a t e d  
for each new input vector. 

The Jacobian matrix can be evaIuated using a back-propagation procedure 
which is very similar to the one derived earlier for evaluating the derivatives of 
an error function with respect to the weights. We start by writing the ekrnent 
Jki  in the form ' 1 

I I 

error function with r ~ s p e d  t o  the network weights, as calculated earlier 
of 
D5ing back-propagation. The Jacobian matrix pmvides a measure of the local 

=itivity of the outputs to changes in each of the input variables, and is useful sen- 
in 

conterts in the application of neural networks. For instance, if there 
known errors associated with the input variables, then the Jacobian matrix lue 

Rllan~ these to be propagated through the trained network in order to estimate 
their to the errors at the outputs. Thus, we have 

where we have made use of (4.261, The sum in (4.52) runs over dl units j to 
which the input unit i sends connections (for example, over dl units in the first 
hidden layer in the layered topology considered earlier). We now write d m  a 
recursive bad-  propagation formula to determine the derivatives dy k/aaj 

I 

I 

where the sum tuns m r  all units I to which unit j sends connections. Again, we 
have made use of (4.26) and (4.27). This back-propag~tion starts at the output 
"its for which, using (4.27), we have 
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where dxxt is the Kronecker delta symbol, and equals 1 if k = k' and 0 othenviSp, 
We can therefore summarize the procedure lor evaluating the Jacobian mat% 
as foliom. Apply the input vector corresponding to the point in input spwe 
which the Jacobian matrix is to be found, and forward propagate in the usual 
way to  obtain the axtivations of all of the hidden and output units in the nets* 
Next, for each row k of the Jacobian matrix, corresponding to the output unit I;, 
back-propagate using the recursive relation (4.53), starting with (4.54), for a11 of 
the hidden units in the network. Finally, use (4.52) to  do the baek-propagation 
to  the inputs. The second and third steps are then repeated for each value of 4 
corresponding to each row of the Jacobian matrix. 

The Jacobian can also be evaluated using an alternative fanuad propagation 
fomalism which can be derived in an analogous way to the back-propagation 
approach given here (Exercise 4.6). Again, the implementation of such algorithm 
can be checked by using numerical differentiation in the form 

4.10 The Hessian matrix 
We have a h m  how the technique of back-propagation can be used to obtain the 
first derivatives of an error function with respect to the weights in the network. 
Back-propagation can also be used to evaluate the second derivatives of the error. 
given by 

These derivatives form the elements of the Hessian matrix, which plays an im- 
portant role in many aspects of neural computing, including the following: 

1. Several nowlinear optimization algorithms used for training neural net- 
works are based on considerations of the second-order properties of tile 
error surface, which are controlled by the Hessian matrix (Chapter 7 ) .  

2. The Hessian forms the basis of a fast procedure for retraining a feed- 
forward network following a small change in the training data (Bishop. 
1991a). 

3. The inverse of the Hessian has been used to identie the least signifi- 
cant weights in a network as part of network 'pruning' algorithms (SK-  
tion 9.5.3). 

4. The inverse of the Hessian can also he used to assign error bars to the 
predictions made by a trained network (Section 10.2). 

..itable values for regularization parameters can be determined from the 
3.  " 

,igendues of the Hessian (Section 10.4). 
6, The determinant of the Hessian can be used to compare the relative prob- 

abilities of different network models (Section 10.6). 

For many of these app l i ca t i~~s ,  W~OUS approximation schemes have been 
U F P ~  to evaluate the Hessian matrix. However, the Hessian can also be calculated 
..., ,-ti v using an extension of the back-propagation technique for evaluating the 
#,.-.&.. . 
hr5t derivatives of the error function. 

An important consideration for many applications of the Hessian is the effi- 
ciency with which it can be evaluated- If there are W parameters (weights and 
1 4 ~ ~ ~ )  in the network then the Hessian matrix has dimensions W x W and 
,, the computational effort needed to evaluate the Hessian must scale at least 
like 0(W2) for eaeh pattern in the data set. As we shall see, there are efficient 

for evaluating the Hessian whose ~ d i n g  is indeed O(W2). 

1.10.1 Diagonal appro~mation 

Some nf the applications for the Hessian matrix discussed above require the 
inverse of the Hessian, rather than the Hessian itself. For this reason there has 
been some interest in using a diagonal approximation to the Hessian, since its 
inverge is trivial to evaluate. We again shall assume, as is generally the case, that 
the error hnction consists of a sum of terms, one for each pattern in the data 
set, so that E = C,  En. The Hessian can then be obtained by considering one 
pattern at a time, and then summing the results over all patterns. From (4.26) 
the diagonal elements of the Hessian, for pattern n, can be written 

Uring (4.26) and (4.27). the second derimtives on the right-hand side of (4.57) 
can be found recursiveIy using the chain rule of differentid calculus, to give a - 

hwk-propagation equation of the form 

f we now 
Becker ar 

neglect off-diagonal elements in the second derivative terms we obtain 
rd Le Cun, 1989; Le Cun et al., 1990) 

Due to the neglect of off-diagonal terms on the rightrhand side of (4.591, this 
"PProach only gives an approximation to the diagonat terms of the Hessian. 
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Section 7.10. I 
4.10.4 Finite diflerences I 
As with fi& derivatives of the error function, we can find the second derirRt. 

It'% by using finite differences, with accuracy limited by the numerical precision 
our computer. If we perturb each possible pair of weights in turn, we obtain at 

h a i n ,  by using a symmetrical central differences formulation, we ensure that 
the residud errors are CJ(e2) rather than O ( E ) .  Since there are W 2  elementS 
in the Hessian matrix, and since the evaluation of each element requires four 
fornard propagations each needing O(W) operations (per pattern), we see that 
this approach will require O( W 3 )  operations to evaIuate the complete Hessian. 
It therefore hm very poor scaling properties, although in practice it is very useful 
as a check on t h e  software implementation of back-propagation methods. 

A more efficient version of numerical differentiation can be found by apply 
ing central. differences to the first derivatives of the error function, which are 
themsejves calculated using back-propagation. This gives 

Since there are now only W weights to be perturbed, md since the gradienb 
can be evaluated in O(W)  steps, we see that this method gives the Hessian in 
e7(W2) operations. 

4.10.5 Exact evaluation of the Hessian I 
So far we haw considered various approximation schemes for evaluating the He+ 
sian matrix. We now describe an algorithm for evaluating the Hessian exactl~, 
which is valid for a network of arbitrary feed-fo-d topology, of the kind il- 
lustrated schematically in Figure 4.3 (Bishop, 1991a, 1992). The algorithm is 
based on an extension of the technique of back-propagation used to evaluate 
first derivative, and shares many of its desirable features including cornput,n- 
tional efficiency. It can be applied to any differentiable error function which can 
be expressed as a function of the network outputs, and to networks having 
bitrary differentiable activation functions. The number of computational step' 
needed to evaluate the Hessian scales like C3(W2). Similar algorithms have also 
been considered by Buntine and Weigend (1993). As before, we shall consider 
one pattern at a time. The complete Hessian is then obtained by summing over 
all patterns. 
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con the general expression (4.33) for the derivative of the error function 
resPPct to an arbitrary weight wir-, which we reproduce here for convenience 

%+it 

DifPredi;lting this with respect to  some other weight wJi we obtain 

,ilere we have used (4.26). Here we have assumed that the weight ~ u j i  does not 
on any forward propagation path connecting unit 1 to  the outputs of the 

netl~ork. We shall return to this point shortly. 
?laking use of (4.691, together with the relation zk = g(ak), we can write 

(4.70) in the form 

where we have defined the quantities 

The quantities ( h k i )  can be evaluated by forward propagation as follows. 
Issinr: t,he chain rule for partial derivatives we have 

" 'h~re :,he sum runs over all units r which send connections to  unit k. In fact, 
r"ntrjbutions only arise from units which lie on paths connecting unit j to unit 
I-. From 14-26] and (4.27) we then obtain the forward propagation equation 

'"I' initial conditions for mlua t ing  the {ha j j  follow from the definition (4.72). 
and can he stat& follows. For each unit j in the network, (except for input 

for which the corresponding { h k i )  are not required), set h j j  = 1 and set 
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hkj = 0 for all units k # j which do not lie on any forward propagation 
starting from unit j. The remaining elements of h k j  can then be found by fomW 
propagation using (4.75). 

SimiIarly, we can derive a back-propagation equation which allows the { b  
11 S to be evaluated. We have already seen that the quantities 61 can be found by 

back-propagation 

Substituting this into the definition of bsj  in (4.73) we obtain 1 

which gives 

bl) = gt'(a~)hrj x w.16. * g'(ar) x waib, (4.78) 

where the sums run over all units 5 to which unit I sends connections. Note that, 
in a software implementation, the first summation in (4.78) will: already have 
been computed in evaluating the { b E )  in (4.76). 

There is one subtlety which needs to be considered. The derivative 8/daj 
which appears in (4.77) arose from the derivative CJ/dwja in (4.70). This transfor- 
mation, from W j i  to aj, is valid provided wJ, does not appear explicitly within t,he 
brackets on the sight-hand side of (4.77). In other words, the weight wji  should 
not lie on any of the forward-propagation paths from unit 1 to the outputs of the 
network, since these are also the paths used to evaluate (5t by back-propagation. 
In practice the problem is easily avoided as follows. If w,, does occur in the 
sequence of back-propagations needed to evaluate ar, then we simply consider 
instead the diagonally opposite element of the Hessian matrix for which this 
problem will not arise (since the network has a feed-forward topology). We then 
make use of the fact that the Hessian is a symmetric matrix. 

The initial conditions for the back-propagation in (4.78) follow from (4.72) 
and (4.731, together with the initial conditions (4.34) for the 6's, to give 

whem we have defined 
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 hi^ dgorithm represents a straightforward extension of the usual forward 
uld backward propagation procedures used to find the first derivatives of the 

function. We can summarize the algorithm in five steps: 
1. Evaluate the activations of all of the hidden and output units, for a given 

input pattern, by using the usual forward propagation equations. Similarly, 
ompute the initial conditions for the hkj and forward propagate through 
the n e ~ o r k  using (4.75) to find the remaining non-zero elements of hy . 

2. Evaluate Sk for the output units in the usud way. Similarly, evaluate the 
Hk for dl the output units using (4.80). 

3. Use the standard back-propagation equations to find bj for all hidden units 
in the network. Similarly, back-propagate to  find the { b l j )  by using (4.78) 
with initid conditions given by (4.79). 

4. Evaluate the elements of the Hessian for this input pattern using (4.71). 
5 .  Repeat the above steps for each pattern in the training set, and then sum 

to  obtain the full Hessian. 

In a practical impIement~tion, we substitute appropriate expressions for the 
error function and the activation functions. For the sum-of-squares error function 
and linear output units, for example, we have 

where dkk' is the Kronecker delta symbol. 

4.10.6 Exact Hessian for two-layer network 

As an illustration of the above algorithm, we consider the specific case of a Iayered 
network having two layers of weights, We can then use the results obtained above 
to write down explicit expressions for the elements of the Hessian matrix. We 
shdl use indices i and it to denote inputs, indices j and j' to denoted units in the 
hidden layer, and indices k and k' to denote outputs. Using the previous results, 
the Hessian matrix for this network can then be considered in three separate 
blocks as  follows. 

1. Both weights in the second layer: 

2. Both weights in the first layer: 
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3. Om weight in each layer: 

If one or both of the weights is a bias term, then the corresponding exprepsj 
axe obtained simply by setting the appropriate activation(s) to 1. 

4.10.7 Faat m.ultiplication by the Hessian 
In some applications of the Hessian, the quantity of interest is not the Hes: 
matrix H itself, but the product of H with some vector v. We have seen that 
evaluation of the Hessian takes O(W2) operations, and it also requires stor 
which is U(W2) .  The vector Y ~ H  which we wish to calcuIate itself onIy 
W elements, so instead of computing the Hessian a s  an intermediate step, 
can instead try to find an efficient approach to evaluating V ~ H  directly, which 
requires only O(W) operations. 

We first note that 

ULIC 

age 
has 
we 

where V demtes the gradient operator in weight space. We can then estim 
the right-hand side of (4.85) using finite differences to give 

Thus, the quantity vTH can be found by forward propagating first with the 
original weights, and then with the weights perturbed by the small vector N- 

This procedure therefore takes O(W) operations. It was used by Le Cun et a/. 
(1993) as part of a technique for on-line estimation of the learning rate parameter 
in gradient descent. 

Note that the residual error in (4.86) can again be reduced from 6 ( ~ )  to 
6 ( f 2 )  by using central differences of the form 

which again scales as OIW). 
The problem with a finite-difference approach is one of numerical inaccu- 

racies. This can be resolved by adopting an analytic approach (M~lller, 1993a: 
Pearlmutter, 1994). Suppose we write down standard forward-propagation and 
back-propagation equations for the evaluation of PE. We can then apply (4.851 
to these equations to give a set of forward-propagation and b a ~ k - ~ r o ~ a g a t i o n  1 
equations for the evalnation of vTH. This corresponds to acting on the original 
forward-propagation and back-propagation eq r~ at ions with a differential op~ra tor  

1 
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.TV. Pearlmutter (1994) used the notation R{-} to denote the operator vTv 
shdl follow this notation. The analysis is straightforward, and makes use 

of the usud rules of differential calculus, together with the result 

The technique is best illustrated with a aimpb example, and again we choose 
, two-layer network with Iinear output units and a sum-of-squares error function. 
.AS before, we consider the contribution t o  the error function from one pattern in 
the data set. The required vector is then obtained as usual by summing wer the 
contribatiom from each of the patterns separately. For the two-layer network, 
the forward-propagation equations are given by 

We now act on these equations using the R{.) operator to obtain a set of forward 
propagation equations in the form 

where vji is the element of the vector v which corresponds to the weight w,i. 
Qumtit ie  of the form R{zj), R { a j )  and are to be regarded as new 
l'ariables whose values are found using the above equations. 

Since we are considering a sum-of-squares error function, we have the follow- 
 in^ standard back-propagation expressions: 
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Again we act on these equations with the R(.) operator to obtain a set of b a k  
propagation equations in the form 

Finally, we have the usual equations for the first derivatives of the error I 

and acting on these with the R{.) operator we obtain expressions for the elements 
of the vector vTH 

The implementation of this algorithm involves the introduction of additional 
variables ~ ( a ~ } ,  R{q} and R(4j  far the hidden units, and R(61) md ~ { y i !  
for the output units. For each input pattern, the values of these quantities can 
be found using the above results, and the elements of vTH we then given by 
(4.101) and (4.102). An eIegant aspect of this technique is that the structure of 
the equations for evaluating vT13 mirror closely those for standard forward and 
backward propagation, and so software implementation is straightforward. 

If desired, the technique can be used to evaluate the full Hessian matrix b?' 
choosing the vector v to be given successively by a series of unit vectors of the 
form (0,0,. . . , I , .  . . ,0) ewh of which picks out one column of the Hessian. This 
leads to a formalism which is analytically equivalent to the back-propagati~~l 
procedure of Bishop (1992), as de~cribed in Section 4.10.5, though with some I 
loss of efficiency in a software implementation due to redundant calculations. 

I 

Exercises 

d.l 
In section 4.4 we showed that, for networks with 'tanh' hidden unit acti- 

vatio: functions, the network mapping is invariant if all of the weights and 
the bas feeding intc and out of a unit have their signs changed. Demon- 
strfittt. the corrwonding  symmetry for hidden units with logistic sigmoida1 
actisation hnc t  ions. 

4 . ~  (*) Cc~sider a ~ ~ o n d a r d e s  network unit of the form (4.19). Use the sym- 
m e t r  properties of this term, together with the results of Exercises 1.7 
and 1.8, to find an expression for the number of independent weight p& 
ramrers and show that this is the same result as that obtained by applying 
smetry consi.derations to the equivaIent form (4.18). 

4.3 (k) Sh?w, for a f d  -forward network with 'tanh' hidden unit activation func- 
t i o n ~  and a sum-of-squares error function, that the origin in weight space 
is a, rationary point of the error function. 

4,4 (+) Ccs~sider a la-red network with d inputs, M hidden units and c output 
unib Write dmrsl an expression for the tot a1 number of weights and biases 
in t h ~  network. Consider the derivatives of the error function with respect 
to th: weights for one input pattern only. Using the fact that these deriva- 
tives are given equations of the form 3En/&kj = Skz,, write down an 
exprasion for the nt~rnber of independent derivatives. 

4.5 (*) Cc~sider a l&,-e-ered network having second-order units of the form (4.19) 
in tt.5 first la~pr and conventionaE units in the remaining layers. Derive 
a b ~ l - p r o p a g a t i o ~  formalism for evaluating the derivatives of the error 
func;:on with respect to any weight or bias in the network. Extend the 
resu! to general ,Vth-order units in the first layer. 

4.6 (*) In Section 4,p. a formalism wa developed for evaluating the Jacobian 
rnatrx by a process of back-propagation. Derive an alternative formalism 
for c*taining the Jacobian matrix using fornard propagation equations. 

4.7 (*) Gcmider a two-layer network having 20 inputs, 10 hidden units, and 5 
outp.:ts, togetier with a training set of 2000 patterns. Calculate roughly 
how sng it w q ~ t d  t a k e  to perform one evaluation of the Hessian matrix 
usin: (EL) ceentnr cifferences based on direct error function evaluations; (b) 
centrll d i f f e t e ~ c ~ s  based on grdient  evaluations using back-propagation; 
(c) t-5 analyti.: =pressions given in (4.821, (4.83) and (4.84). Assume that 
the ~ r k ~ t a t i o n  perform 5 x lo7 floating point operations per second, 
and -iat the  tine +,&en to evaluate an activation function or its derivatives 
can -:P neglectuf . 

4.8 (*) Vcify the ikntiw (4.65) by pre- and post-multiplying both sides hy 
A t3C. 

4-9 (*) Erend the ~-ression (4.63) for the outer product approximation of the 
Hcscln t o  t . h ~  c a s e  of c z I output units. Hence derive a recursive ex- 
pres-iln analo!cr~s to (4.64) for incrementing the number N of patterns, 
and : similar zrpression for incrementing the number c of outputs. Use 
thev results,  ether with the identity (4 .65) ,  to find sequential update 
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expressions analogous (4.66) for finding the inverse of the Hessian by in- 
crementally including both extra patterns and extra outputs. 

4.10 (**) Verify that the results (4.82), (4.83) and (4.84) for the Hessian ma- 
trix of a h e l a y e r  network follow from the general expressions for ~ 4 .  
culating the Hessian matrix for a network of arbitrary topology given in 
Section 4.10.5. 

4.11 (* *.) Derive the results (4.821, (4.83) and (4.84) for the exact evaIuation of 
the Hessian matrix for a two-Iayer network by direct differentiation of the 
forward-propagation and back-propagation equations. 

4.12 (* * *) Write a software implementation of the forward and backward prop 
agatjon equations for a twelayer network with 'tanh' hidden unit activation 
function and linear output units. Generate a data set of random input and 
target vectors, and set the network weights to random values. For the cmp 
of a sum-of-squares error function, evaluate the derivatives of the error 
with repect to the weights and biases in the network by using the ten- 

tral differences expression (4.47). Compare the results with those obtained 
using the back-propagation algorithm. Experiment with different values of 
E ,  and show numerically that, for values of E in an appropriate range, t.11~ 

two qproaches give almost identical results. Plot graphs of the Iogarithm 
of the evaluation times for these two algorithms versus the logarithm of 
the number W of weights in the network, for networks having a range of 
different sizes (including networks with relatively large values of W ) .  Hcnce 
verify the scdings with W discussed in Section 4.8. 

4.13 (***I Extend the software implementation of the previous exercise to in- 
clude the forward and backward propagation equations for the R{.) wri- 
ables, described in Section 4.10.7. Use this implementation to evaluate the 
complete Hessian matrix by setting the vector v in the R(.} operator to 
successive unit vectors of the form ( O , O , .  . . , I , .  . . ,0) each of which picks 
out one column of the Hessian. Also implement the central differences ap- 
proach for evaluation of the Hessian given by (4.67). Show that the results 
from the R{.} operator and centrd difference methods a p  closely, pro- 
vided f is chosen appropriately. Again, plot graphs of the logarithm of 
the evduation time versus the logarithm of the number of weights in the  
network, for networks having a range of difierent sizes, for both of these 
approaches to evaluation of the Hessian, and verify the scalings with W- of 
the two algorithms, ns discussed in the text. 

4.14 (* * *) Extend further the software implementation of Exercise 4.12 by im- 
plementing equations (4.82), (4.83) and (4.84) for computing the elements 
of the Hessian matrix. Show that the results agree with those from the 
R{.)-operator approach, and extend the graph of the previous exercise 
include the logarithm of the computation times for this algorithm. 

4.15 (**) Consider a feed-forward network which bas been trained to a min- 
imum of some error function E, corresponding t o  a set of weights Curj)< 
where for convenience we have labelled a11 of the wights and biases in the 
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network with a single index j. Suppose that all of the input values x a  and 
target values t i  in the training set are perturbed by small amounts Axf and 
At; respectively. This causes the minimum of the error function to change 
to a new set of weight values given by {w, + Awj). Write down the Taylor 
expansion of the new error function E((wj  +Aw,), {xa +Ax:}, {tz +At;)) 
to  second order in the A's. By minimizing this expression with respect to 
the { A w j ) ,  show that the new set of weights which minimizes the error 
function can be calcuhted from the original set of weights by adding cor- 
rections Awj which are given by solutions of the folIowing equation 

I where Hlj are the elements of the Hessian matrix, and we have defined 



RADIAL BASIS FUNCTIONS 

The network models discussed in Chapters 3 and 4 are based on units which 
compute a non-linear function of the scalar product of the input vector and a 
weight vector. Here we consider the other major class of neural network model, 
in which the activation of a hidden unit is determined by the distance between 
the input vector and a prototype vector. 

An interesting and important properky of these radiaI basis function networks 
is that they form a unifying link between a number of disparate concepts as we 
shdl  demonstrate in this chapter, In particular, we shall motivate the use of 
radial basis functions from the point of view of function approximation, regu- 
Iarbation, noisy interpolation, density estimation, optimal classification theory, 
and potential hfunctions. 

One consequence of this unifying viewpoint is that it motivates procedures 
for training radial basis function networks which can be substantially faster than 
the methods used to train multi-layer perceptron networks. This follows &om the 
interpretation which can be given t o  the internal representations formed by the 
hidden units, a d  leads t o  a two-stage training procedure. In the Erst stage, the 
parameters governing the basis functions (corresponding to hidden units) are 
determined using relatively ffat, unsupervised methods (i.e, methods which use 
only the input data and not the target data). The second stage of training then 
involves the determination of the final-layer weights, which requirm the solution 
of a linear problem, and which is therefore also fast. 

5.1 Exact interpolation 

Radial basis function methods have their or i ,~s  in techniques for performing 
exact interpolation of a set of data points in a multi-dimensiond space (Powell. 
1987). The exact interpolation problem requires every input vector to be mapped 
exactly onto the corresponding target vector, and forms a convenient starting 
point for our discussion of radial basis function networks. 

Consider a mapping from a d-dhensiona1 input space x to a one-dimensional 
target space t. The data set consists of N inptit vectors xn, together with cosre- 
sponding targets tn. The goal is t o  find a, function h(x)  such that 

h(x)  = C vl wn4(llx - x"/l). (5.2)  

1% recognize this as having the same form s the generalized linear discriminant 
function considered in Section 3.3. The interpolation conditions (5.1) can then 
be written in matrix form as 

I 

where t = (tn), w = (w,), and the square matrix 9 has elements @,I = 
#{l/xn - xn' 11). Provided the inverse matrix @-' exists we can solve (5.3) to give 

~h~ rd i a l  basis function approach (Powell, 1987) introduces a set of N basis 
I1 ~ l n c t i o n ~ ,  one for each data point, which take the form $(llx - xn 11) where #(.I 

iq some non-linear function whose form will be discussed shortly Thus the nth 
cuch function depends on the distance ilx - ~ ' ' 1 1 ,  usually taken ta be Euclidean, 
b e m n  x and xn. The output of the mapping is then taken to be a linear 

of the basis functions 

It has been shown (Micchelli, 1986) that, for a large class of functions # { a ) ,  the 
matrix iP is indeed non-singular provided the data points are distinct. When the 
weights in 15.2) are set to the d u e s  given by (5,4), the function h(x)  represents 
a continuous differentiable surface which passes exactly through each data point. 

Both theoretical and empirical gtudies (Powell, 1987) show that, in the con- 
text of the exact interpolation problem, many properties of the interpolating 
function are relatively insensitive t o  the precise form of the non-linear function 
d(-). Several forms of basis function hgve been considered, the most common 
being the Gaussian 

"here u is a parameter whose value controls the smoothness properties of the 
interpolating function. The Gaussian (5.5) is a localized basis function with the 
Property that q5 -+ 0 as 1x1 + w. Another choice of basis function with the same 
Property is the function 

It is not, however, necessary for the functions to be localized, and other possible 
choices are the thin-plate spline function 
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4(5) = xa ln(z), 

the function 

$(x) = ( x 2  4- c 2 y .  O < p < l ,  (5.81 

which for 0 = 1/2 is known as the multi-quadric function, the cubic 

3 #(XI = x , (5.9) 

and the 'linear' function 

which all have the property that 4 -+ oo as x -+ oo. Note that (5.10) linear in 
x = ljx - xnl) and so is still a non-linear function of the components of x. In one 
dimension, it leads to a piecewise-linear interpolating function which represents 
the simplest form of exact interpolation. As we shdl see, in the context of neural 
network mappings there are reasons for considering localized basis functions. We 
shall focus most of our attention on Gaussian basis functions since, as well as 
being localized, they have a number of useful analytical properties. The technique 
of radiaI b a i s  functions for exact interpolation is iIlustrated in Figure 5.1 for a 
simple one-input, oneoutput mapping, 

The generalization to several output variabIes is straightforward. Each input 
vector xn must be mapped exactly onto an output vector t" having comporlents 
t';Z so that (5.1) becomes 

where the hk(x) are obtained by linear superposition of the same N basis func- 
tions as used for the single-output case 

The weight pameters are obtained by analogy with (5.4) in the form 

Note that in (5.13) the same matrix is used far each of the output functions 

5.2: Radial bask function networks 

Figure 5.1. A simple example of exact interpolation using radial basis func- 
tions. A set of 30 data points was generated by sampling the function 
y = 0.5 4- 0.4 sin(2nx), shown by the dashed curve, and adding Gaussian noise 
with standard deviation 0.05. The solid curve shows the interpolating func- 
tion which results kern using Gaussian basis functions of the form (5.5) with 
width parameter u = 0.067 which corresponds to roughly twice the spwing of 
the data points. Values for the second-layer weights were found using matrix 
inversion tmhniques as discussed in the text. 

5.2 Radial basis function networks 

The radial basis hnction mappings discussed so far provide an interpolating 
function which passes exactly through every data point. As the example in Fig- 
ure 5.1 illustrates, the exact interpolating function fox noisy data is typically 
a highly oscillatory function. Such interpolating functions are unde- 
"rdde. As discussed in Section 1.5.1, when there is noise present on the data, 
the interpolating function which gives the best generalization is one which is 
?-pically much smoother and which averages over the noise on the data. An ad- 
ditional limitation of the exact interpolation procedure discussed above is that 
'he number of basis functions is equal to the number of patterns in the data 

and so for large data sets the mapping function can become very costly t o  
Pl'aluate. 

BY introducing a number of modifications to the exact interpolation p r o m  
'lure we obtain the radial basis function neural network model (Broomhead and 

1988; Moody and Darken, 1989). This provides a smooth interpolating 
f'~nction in which the number of basis functions is determined by the complexity 
''[ the mapping to be represented rather than by the size of the data set;. The 
""Odifications which are required are as follows: 

1. The number M of basis hnctions need not equal the number A' of data 
points, and is typically much iess than N .  

2. The centres of the basis functions are no longer constrained to he given hy 



input data vectors. Tnstead, the determination of suitable centres becDrnes 
part of the training process. 

3. Instead of having a common width parameter C, each b ~ i s  fUnction 
given its own width a, whose value is also determined during trainina, " 

4. Bim parmeters  are included in the Iinear sum. They compensate for the 
difference between the average value over the data set of the basis function 
activations and the corresponding average value of the targets, as discussed 
in Section 3.4.3. 

When these changes are made to the exact interpolation formula (5.12)+ we 
arrive at the following f o ~ m  for the radial basis function neural network mapping 

Tf desired, the biases wko can be absorbed into the summation by including an 
extra basis function whose activation is set t~ 1. For the case of Gaussian 
basis functions we have 

where x is the d-dimensional input vector with elements x i ,  and p, is the vector 
determining the centre of basis function d j  and has elements Pj i .  Note that 
the Gaussian basis functions in (5.15) are not normalized, as was the case for 
Gaussian density models in Chapter 2 for example, since any overdl factors can 
be absorbed into the weights in (5.14) without loss of generality. This mapping 
function can be represented as a neural network diagram as s h o w  in Figure 5.2. 
Note that more general topologies of radid basis function network (more than 
one hidden layer for instance) are not normally considered. 

In discussing the representational properties of multi-layer perceptron neb- 
works in Section 4.3.1, we appealed to  intuition to suggest that a linear super- 
position of localized functions, as in (5.14) and (5.151, is capable of universd 
approximation. Hartman et al. (1990) give a formal proof of this property for 
networks with Gaussim basis functions in which the widths of the Gaussims are 
treated as adjustable parameters. A more general result was obtained by Puk 
and Sandberg (1991) who show that, with only mild restrictions on the form of 
the kernel functions, the universal approximation property still holds. Further 
generalizations of this results are given in (Park and Sandberg, 1993). As with 
the corresponding proofs for multi-layer perceptron networks, these are existence 
proofs which rely on the availability of an arbitrarily large number of hidden 
units, and they do not offer practical procedures for constructing the networks 
Nevertheless, these theorems are crucial in providing a theoretical foundation o* 
which practical applications can be based with confidence. 

5.2: Radial basis function networks 

Xl Xd 
inputs 

Figure 5.2. Architecture of a radial basis function neural network, correspond- 
ing to (5.14). Each basis function acts Eke a hidden unit. The l i n ~  connecting 
basis function #j to the inputs represent the corresponding elements pjd of 
the vector p,. The weights wk, are shown as lines from the basis functions 
to the output units, and the biases are shown as weights horn an extra 'basis 
function' & whose output is fwed at 1. 

Girosi and Poggio (1990) have shown that radial basis function networks 
possess the property of best approximation. An apprwrimatian scheme has this 
property if, in the set of approximating functions (i.e. the set of functions cor- 
responding to all possible choices of the adjustable parameters) there is one 
function which has minimum apprmhating error for any given function to be 
approximated. They also showed that this property is not shared by multi-Iayer 
Perceptrons. 

The Gaussian radial basis functions considered above can be generalized to 
allow for arbitrary covariance matrices !Cj, as discussed for normal probability 
density functions in Section 2.1.1. Thus we take the basis functions to have the 
Form 

Since the comrimce matrices Ej are symmetric, this means that each basis func- 
"on has d(d+3)/2 independent adjustable parameters (where d is the dimension- 
ality of the input space), as compared with the (d + 1) independent parameters 
for the basis functions (5.15). In practice there is a trade-off to be considered 
beheen using a smaller number of basis with many adjustable parameters and 
a larger number of Iess flexible functions. 
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5.3 Network training 
A key aspect of radial basis function networks is the distinction between tl 
roles of the first and second layers of weights. As we shall see, the basis functio1 
can be interpreted in a way which allows the first-layer weights (i.e. the paran. 
eters governing the basis functions) to be determined by unsupervised training 
techniques. This l e d 8  to the following two-stage training procedure for training 
radial bwis function  network^. In the first stage the input data set {xn) alone 
is used to determine the parameters of the basis functions (e-g. pJ and uj f( 
the spherical Gaussian basis functions considered above). The hasis functio! 
are then kept iixed while the second-layer wights are found in the second pha! 
of training. Techniques for optimizing the basis functions are discussed a t  length 
in Section 5.9. Here we shall assume that the basis function parameters have 
aIready been chosen, and we discuss the problem of optimizing the ~econd-layer 
weights. Note that, if there me fewer basis functions than data points, then in 
general it will: no longer possible to find a set of weight values for which the 
mapping function fits the data points exactly. 

We begin by considering the radial basis function network mapping in (5.14) 
and we absorb the bias parameters into the wights te give 

where $0 is an extra 'basis function' with activation value fixed at #o = I. This 
can be written in matrix notation as 

where W = (wy ) and 4 = (#j). Since the basis functions are considered fixed. 
the network is equivalent to a single-layer network of the kind considered in Set- 
tion 3.3 in the context of classification problems, where it is termed a generalized 
linear discriminant. As discussed in earlier chapters, we can optimize the weights 
by minimization of a suitable error function. It is particularly convenient, as we 
shall see, to consider a sum-of-squares error function given by 

where t; is the target value for output unit k when the network is presented with 
input vector xn. Since the error function is a, quadratic ftmction of the weightst 
its minimum can be found in terms of the solution of a set of linear equations. 
This problem was discussed in detail in Section 3.4.3, fiom which we see that 
the weights are determined by the linear equations 
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,\-here ( T ) n k  = f ;  and (*)nj = &(xn). The formal solution for the weights is 
given by 

t nrllere the notation @ denotes the pseudo-inverse of 9 (Section 3.4.3). In prac- 
tice, the equations (5.20) are solved using singular value decomposition, to  avoid 
problems due to possible ill-conditioning of the matrix @. Thus, we see that the 
sKond-layer weights can be found by fast, linear matrix inversion techniques. 

For the most part we shaail consider radial basis function networks in which the 
dependence of the network function on the second-layer weights is Iinear, and in 

the error function is given by the sum-of-squares. I t  is possible to consider 
the use of non-linear activation functions zkppIied to the output units, or other 
choices for the error function. However, the determination of the second-layer 
weights is then no longer a Iinear problem, and hence a non-linear optimization of 
these weights is then required. As we h a w  indicated, one of the major advantages 
of radial basis function networks is the possibifity of avoiding the n e d  for such 
an optimization during network training. 

As a simple illustration of the use of radid basis fundion networks, we return 
to the data set shown in Figure 5.1 and consider the mapping obtained by using 
a radial basis function network in which the number of basis functions is smaller 
than the number of data points, as shown in Figure 5.3 

The width parameter a in Figure 5.3 was chosen to be roughly twice the 
average spacing between the basis functions. Techniques for setting the basis 
function parameters, including uj ,  are discussed in detail in Section 5.9. Here we 
?imply note the eflect of poor choices of o. Figure 5.4 shows the resuZt of choosing 
too small a value for a, while the effect of having 5 too large is illustrated in 
Figure 5.5. 

5.4 Regularization theory 

An alternative motivation for radial hasis function expansions comes from the 
:hcop of regularization (Poggio and Girosi, L990a, 1990h). In Section 1.6 the 
'Qchnique of regularization was introduced as a way of controlling the smoothness 
Properties of a mapping function. It involves adding to the error function an extra 
'"n~ wwhh is designed to penalize mappin@ which are not smooth. For simplicity 
qf Rotation we shall consider networks having a single output y, so that with a 
s'lm-~f-squses error, the total error function to be minimized becomes 



Figure 5.3. This shows the same set of 30 data points as in Figure 5.1, together 
with a network mapping (solid curve) in which the number of basis functions 
has been set to  5,  which is significantly fewer than the number of data points. 
The centres of the baais functions have been set to a random subset of the data, 
set input vectors, and the width parameters of the basis functions have been 
set to a eommon value of a = 0.4, which again is  roughly equal to twice the 
average spacing between the centres, The second-Iayer weights are  found by 
minimizing a sum-of-squaws error function using singular value decomposition. 

0.0 
0.0 0.5 X 

1.0 

Figure 5.4. As in Figure 5.3, but in which the width parameter has been set 
to u = 0.08. The resulting network function is insuficicntly smooth and gives 
a poor reprmntation of the underlying function which generated the data. 

Figure 5.5. A s  in Figure 5.3, but in which the width parameter has been set to 
a = 10.0. This leads ta a network function which is over-smoothed, and which 
again g i m  a poor repr~entation of the underlying function which generated 
the data. 

where P is some differential operator, and v is called a regularization parameter. 
Network mapping fundions y (x) which have large curvature will tmicdly give 

I 

rise to  large values of IpyI2 and hence to a large penalty in the totd error 
function. The vdue of u controls the dative importance of the regularization 
term, and hence the degree of smoothness of the function y(x). 

We can solve the regularized least-squares pmblern of (5.22) by using dculus 
i 

of variations (Appendix D) as follows. Setting the functional derivative of (5.22) I 

with respect to y (x) to zero we obtain I1 

where is the adjoint differential operator to P and S(x) is the Dirw delta 
function. The equations (5.23) are the EpsEe~Lagmrage equations ~orrespond'ing 

(5.22). A kmal solution to these equations can be written down in terms of 
the Gwen's finctiom of the operator F P ,  which are the functions G(x, x') whfch 
satisfv 

If the operator P is transrationally and rotationally invariant, then the Green's 
filnctions depend only on the distance ((x - x'll, and hence they are radial f u ~  

The formal solution to (5.23) can then be written as 
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which has the form of a linear expansion in rd ia l  basis functions. Substitute 
(5.25) into (5.23) and using (5.24) we obtain 

Integrating over a small region around xR s h m  tha t  the coefficients w, satisfy 

Values for the coefficients w, can be found by evaluating (5.25) at the values of 
the training data points xn and substituting into (5.27). This gives the ~ a l u e s  of 
w, as the solutions of the lineax equation 

where (G),,, = ~ ( 1 1 ~ " '  - x" /I), ( w ) ~  = wn, (t), = tn and I denotes the unit 
matrix. 

If the operator P is chosen t o  have the particular form 

where D2' = (v2)[ and DzL*l = V(Qz)r ,  with V a d  V2 denoting the gradient 
and LapIwian operators respectively, then the Green's functions are Gaussiam 
with width parameters r (Exercise 5.3). 

We see that there is a very close similarity between this form of basis func- 
tion expansion, and the one discussed in the context of exact interpolation in 
Section 5.1. Here the Greens functions G(lIx - xn 11) correspond to the basis func- 
tions $(lJx - xnil), and there is one such function centred on each data point in 
the training set. AIso, we see that (5.28) seduces to the exact interpolation result 
(5.3) when the regulaization parameter u is zero. When the regularization Pa- 
rameter is greater than zero, however, we no longer have an exact interpolating 
function. The effect of the regularization term is to force a smoother nettr.ork 
mapping function, as illustrated in Figure 5.6. 

In practice, regularization can &o be applied to rdial basis function net- 
works in which the basis functions are not constrained to  be centred on the data 
points, and in which the number of basis functions need not equal the num17er 
of data points. Also, regularization terms can be considered for which the h*ls 
functions are not necessarily the Green's functions. Provided the regulari~atinn 
term is a quadratic functQn of the networlc mapping, the second-layer weights 
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Figure 5.6. This shows the same data set as in Figure 5.1, again with one basis 
function centred on each data point, and a width parameter u = 0.067. In this 
case, however, a regularization term is used, with coefficient v = 40, leading 
to a smoother mapping (shown by the solid curve} which no longer g i w  an 
exact fit to the  data, but which now gives a much better approximation to the 
underlying function whjch generated the data (shown by the dashed curve). 

ran again be found by the solution of a set of linear equations which minimize a 
sum-of-squares error. For example, the regularizer 

!)~nalizes mappings which have large curvature (Bishop, T991b). This regularizer 
leads to second-layer weights which are found by solution of 

9 = (4:) as before. When v = 0 (5.31) reduces to the previous result (5.20). 
TEle inclusion of the regularization term adds little to the computational cost, 
"rice most of the time is spent in solving the coupled linear equations (5.31). 
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5.5 Noisy interpolation theory 

Yet another viewpoint on the origin of radid basis function expansions comes 
from the theory of interpolation of noisy data (Webb, 1994). Consider a mapping 
from a single input variable x to a single output variable y in which the targe 
data is generated from a smooth noisebee function h(z) but in which the inpQl 
data is corrupted by additive noise. The sum-of-qu~es error, in the limit of 
infhite data, takes the form 

where p(x)  is the probability density function of the input data, and F(E) is the  
probability density function of the noise. Changing variables using 2 = x + F n~ 1 
have I 

A formal expression for the minimum of the error cm then be obtained using 
variational techniques (Appendix D) by setting the functional derivative of E 
with respect to -y(z) to zero, to give 

If we consider the case of a finite number of data points {sn) drawn from 
the distribution p(s), we can approximate (5.35) by 

I 
which we recognize as being an expansion in radid basis functions, in which 
h(xn) are the expansion coefficients, and the basis functions are given by I 

Sinw the function h(z)  is unknown, the coefficients h(zn) should be regarded 
as parameters t o  be determined from the data. To do this we note that h( r )  
noise-free and so we have h(zn) = t". Thus (5.36) becomes an expansion in b*Is 
functions in which the coefficients are given by the target values. Note that this 
form of basis function expansion differs from that introduced in (5.14) and (5.15) 
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7t-1 t hat the basis functions are normalized (Moody and Darken, 1989). Strictly 
,,diking, the normalization in (5.36) would require lateral connections between 
ifiereflt hidden units in a network diagram. If the distribution of the noise is 
ormal, SQ that F(<) K e~p(-5~/2u'), then we obtain an expansion in Gaussian 

The extension of this result to several output variables is straightforward and 
gives 

Note that (5.36) wilI only be a good &pproximation to (5.35) if the integrand 
is sufficiently smooth. This implies that  the width of the basis functions should 
he large in relation to the spacing of the data, which is a useful rule of thumb 
when designing networks with good generalization properties. 

5,6 Relation to kernel regression 

h r t h e r  motivation for the use of radial basis functions for function approxima- 
tion comes from the theory of kernel regression (Scott, 1992). This is a technique 
for estimating re~essian functions from noisy data, based on the methods of 
kernel density estimation discussed in Section 2.5.3. Consider a mapping from 
an input vector x to an output vector y, and suppose we are given a set of train- 
ing data {xn, tn) where n = 1,. . . , N. A complete description of the statistical 
Properties of the generator of the data is given by the probability density p{x,  t) 
ln the joint input-target space. We can model this density by using a Parxen 
kernel estimator constructed born the data set. If we consider Gaussian kernel 
functions, this estimator takes the form 

''!here d and c are the dirnensionalities of the input and output spaces respec- 
ti'~cjv. This is illustrated schematically, for the case of one input variable and 

output variable, in Figure 5.7. 
AS we have already seen, the goal of learning is t o  find a smooth mapping 

x to y which captures the underlying systematic aspects of the data, with- 
fitting the noise on the data. In Section 6.1.3 it is shown that,  under m m y  

the optimal mapping Is given by forming the regression, or condi- 
tional average {tlx), of the target data, conditioned on the input variables. This 



Figure 5.7. Schematic iIEustration of the use of a kernel estimator to model the 
joint probability density jn the input-output space, The dots show the data 
points, and the circles represent Gaussian kernel functions centred on the data 
points, while the curve shows the regression function given by the conditional 
average of t as a function of s. 

can be expressed in terms of the conditional density p(tlx),  and hence in term 
of the joint density p(x, t), as follows: 

- J  - (5.41) 

Jdx ,  t) dt 
' 

If we now substitute our density estimate (5.401 into (5.41) we obtain the fol- 
lowing expression for the regression of the target data 

C,  tn exp (-fix - xR.]I2/2h2) 
Y(X) = 

~ne~p(-II~-~n112/2h2) 

This is known as the Nadamya-Watson estimator (Nadaraya, 1964; Watson, 
19641, and heen re-discovered relatively recently in the context of neural 
networks (Specht, 1990; Schialer and Hartmann, 19921. We see that (5.42) h* 
the form of a normalized expansion in Gaussian r is functions defined in 
the input space, and should be compared with tl 15.38) obtained earlier 
from the perspective of dditive noise on the inpub uaa. Each basis function 1s 
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unit weights which are just given by the target data values. 
olit I'@ 

~ l ~ i ~  can be extended by replacing the kernel estimator with an 
mixture model, as discussed in Section 2.6. The parameters of the mix- 

~ d 9 I  
tnrp model can be found using, for instance, the EM (exppctation-rn9xirnization) 

o,ithln (Section 2.6.2). For a mixture of spherical Gaussian functions, we 
fils 
uLul 

the joint density in the form 

~ ~ l l ~ ~ v i n g  the same line of argument as before, we arrive at the following expres- 
sion for the regression: 

which can be viewed as a normalized radial basis function expansion in which 
t.hc number of basis functions is typically much smaller than the number of data I 

points, and in which the basis function centres are no longer constrained to 
coincide with the data points. This result can be extendd to Gaussian functions 
with general covariance matrices (Ghahramani and Jordan, 1994b). 

5.7 Radial basis function networks for classification I 

A further key insight into the nature of the radial basis function network is ob- 
tained by considering the use of such networks for ~ l a ~ f r c a t i o n  problems    owe, 
1595). Suppose we have a data set which falls into thrm classes as shown in Fig- 

I 1 
5.8. A multi-layer perceptron can separate the classes by using hidden units 

I 
I 

which form hyperplanes in the input space, a s  indicated in Figure 5.8{a). An 
"rernative approach is to model the separate class distributions hy Iocal kernel 
fnnctjons, as indicated in (b). This latter type of representation is related to the 
"dial basis function network. 

Suppose we model the data in each class Ck using a single kernel function, 
which we write as p(xlCk). In a classification problem our goal is to model the I 

?osterior probabilities p(Ck(x) for each of the classes. These probabilities can be 
~htained through Bayes' theorem, using prior probabilities PI&}, as follows: 



Figure 5.8. Schematic example of data points in two dimensions which fall into 
three distinct classes. One way to separate the CIWB is to use hyperplanes, 
shown in (a), as used in a multi-lqer perceptron. An alternative approach, 
s h m  in (b), is to fit each class with a kernel function, which gives the type 
of representation formed by a radial basis function network. 

This can be viewed as a simple form of basis function network with normalized 
basis functions given by 

and second-layer connections which consist of one weight from each hidden unit 
ping to the corresponding output unit, with value p(Ck). The outputs of this 
network represent approximations to the posterior probabiiiti~. 

In most applications a single kernel function will not give a particularly good 
representation of the class-conditional distributions p(xJCk). A better represen- 
tation could be obtained by using a separate mixture model to represent each of 
the conditional densities. However, a computationalIy more efficient approah 
and one which may help to reduce the number of adjustable parameters in the 
model, is to use a common pool of M basis functions, labelled by an index jb t o  
represent dl of the class-conditional densities. Thus, we write 

An expression for the unconditional density p(x)  can be found from (5.48) bx 
summing over all clm~es 
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,here we have defined priors for the basis functions given by 

kg$, the quantities we are interested in are the posterior probabilities of class 
These can be obtained by substituting the expressions (5.48) and 

(5.50) into Bayes' theorem (5.455 to give 

where we have inserted an extra factor of 1 = P ( j ) / P ( j )  into (5.52). The expres- 
sion (5.53) represents a radid basis function network, in which the normalized 
basis functions are given by 

and the second-layer weights are given by 

Thus, the activations of the basis functions can be interpreted as the posterior 
Probabilities of the presence of corresponding features In the input space, and 
the wights can similarly be interpreted as the posterior probabilities of dass 
"embership, given the presence of the features. The activations of the hidden 
unit,s in a multi-layer perceptron (with logistic sigmoid activation hnctions) can 
he given a similar interpretation as posterior probabiIities of the presence of 
features, as discussed in Section 6.7.1. 

Note from (5.50) that  the unconditional density of the input data is expressed 
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in terms of a mixture model, in which the component densities are given 
'9 the basis functions. This motivates the use of mixture density estimation ,, a 

procedure for finding the basis function parameters, as discussed in Section 5.gqq, 
I t  should be emphasized that the outputs of this network also have a prwiw 

interpretation as the posterior probabilities of class membership. The ability t, 
interpret network outputs in this way is of central importance in the effeceik 
application of neural networks, and is discussed at length in Chapter 6. 

Finally, for completeness, we point out that radial basis functions are also 
closely related to the method of potential functions (Aizerrnan et al., 1964; Ki- 
ranjan et al., 1989). This is a way of finding a linear discriminant function from 
a training set of data points, based on an andogy with electrostatics. Imagine 
we p1x.e a unit of positive charge at each point in input space at which there is a 
training vector from class C1, and a unit of negative charge a t  each point where 
there is a training vector from class Ca. These charges give rise to an e l ec t r~  
static potential field which can be treated as a discriminant function. The kernel 
function which is used to compute the contribution to the potential from ea& 
charge need not be that of conventional e'teetrostatics, but can be some other 
function of the radial distance from the data point. 

5.8 Comparison with the multi-layer perceptron 

Radial basis function networks and multi-layer perceptrons play very similar roles 
in that they both provide techniques for approximating arbitrary non-linear func- 
tional mappings between multidimensional spaces. In both cases the mappings 
are expressed in terms of parametrized compositions of functions of single vari- 
ables. The particular structures of the two networks are very different, however, 
and so it is interesting to compare them in more detail. Some of the important 
differences between the multi-Iayer perceptron and radial basis function networks 
are as follows: 

1. The hidden unit representations of the multi-Iayer perceptron depend on 
weighted linear summations of the inputs, transformed by monotonic acti- 
vation functions. Thus the activation of a hidden unit in a multi-layer per- 
ceptron is constant on surfaces which consist of parallel (d- 1)-dimensional 
hyperpIanes in $-dimensional input space. By contrast, the hidden units 
in a radial basis function network use distance to a prototype vector fol- 
Iowed by transformation with a (usually) IocaIized function. The activation 
of a basis function is therefore constant on concentric (d - 1)-dimensional 
hyperspheres (or more generally on (d  - 1)-dimensional hyperellipsoids) 

2. A multi-layer perceptron can be said to form a distributed representafion in 
the space of activation values for the hidden units since, for a given input 
vector, many hidden units will typically contribute t o  the detenninatioll 
of the output value. During training, the functions represented by the hid- 
den units must be such that, when linearly comkined by the final laver 
of weights, they generate the correct outputs for a range of possible inpt 

1 values. The interference nnd cross-coupling between the hidden units whic 
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this results in the network training process being highly non-linear 
with problems of local, minima, or nearly flat re@ons in the error function 
,rising from near cancellations in the effects of different weights. This can 
lea$ to very slow convergence of the training procedure even with advanced 

strategies. By contrast, a radial basis function network with 
localized basis fbnctions forms a representation in the space of hidden units 
which is local with respect t o  the input space because, for a given input 
vector, typicalIy only a few hidden units will have significant activations. 

3. A multi-lapr perceptron often has many layers of weights, and a com- 
plex pattern of connectivity, so that not all possible weights in any given 
layer are present. Also, a variety of different activation functions may be 
used within the same network. A radial basis function network, however, 
generally has a simple architecture consisting of two layers of weights, in 
which the first layer contains the parameters of the basis functions, and 
the gecond layer forms linear combinations of the activations of the basis 
functions to generate the outputs. 

4. All of the parameters in a multi-layer perceptron are usudIy determined 
at the same time as part of a single global training strategy involving 
supervised training. A radial ba~ i s  function network, however, is typically 
trained in two stages, with the basis functions being determined first by 
unsnpervised techniques using the input data done, and the second-layer 
weights subsequently being found by fast linear supervised mahods. 

5.9 Basis function optimization 

One of the principal advantages of radial basis function neural networks, as 
cornpared with the multi-layer perceptron, is the possibility of choosing suitable 
Parameters for the hidden units without having to perfom a full non-linear 
o~tirnization of the network. In this section we shall discuss several possible 
strategies for selecting the parameters of the basis functions. The problem of 
'pIwting the appropriate number of basis functions, however, is discussed in the 
context of model order selection and generalization in Chapter 9. 

Ive have motivated radial basis functions from the perspectives of function 
"Proximation, regularization, noisy interpolation, kernel regression, and the es- 
timation of posterior dass probabilities for classification problems. All of these 
"Iem~oints suggest that the basis function parameters should be chosen to form 
a representation of the probability density of the input data. This leads to an 
llnsupervised procedure for optimizing the basis function parameters which d e  
Pends only on the input data from the  training set, and which ignores any target 

The basis function centres ~ c ,  can then be regarded as pmtotypes 
"f the input vectors. In this section we discuss a number of possible strategies 
For ODtirnizing the basis functions which are motivated by these considerations. 

There are many potential applications for neural networks where unlabelled 
I ~ P I I ~  data is plentiful, but where labelled data is in short supply. For instance, 

may he easy t o  collect examples of raw input data for the network, but the 
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labebelling of the data with target variables may require the time of a human ey 
Pen which therefore limits the amount of data which can be labelled in a reaqonabla 

time. With such applications, the *+stage training process for a radial bai8 
function network can be particularly advantageous since the determination 
the non-linear representation given by first layer of the network can be done 
using a large quantity of unlabelled data, leaving a relatively small number of 
parameters in the second layer to be determined using the labelled data. At each 
s t ~ g e  of the training process, we can ensure that the number of data points is 
large compared with the number of parmeters to be determined, as required h, 
good generalization. 

One of the major potential difficulties with radial basis function network;, 
however, also stems from the localized nature of the hidden unit representation. 
It concerns the way in which such a network addresses the curse of dimensionality I 
discussed in Section 1.4. There we saw that the number of hypercubes which are 
needed to fill out a compact region of a d-dimensional space grm exponentially 
with d. When the data is confined to some lower-dimensional sub-space, d is 
to be interpreted as the effective dimensionality of the sub-space, known FU the 
intrinsic dimensionality of the data. If the basis function centres are used to fiH 
out the sub-space then the number of basis function centres will be an exponential 
function of d (Hartman et  al., 19901, As well EM increasing the computation time, 
s large number of basis functions leads to a requirement for large numbers of 
training patterns in order to ensure that the network parameters are properly 
determined. 

The problem is particularly severe if there are input variables which have 
significant variance but which play little role in determining the appropriate 
output variables. Such irrelevant inputs are not uncommon in practical applic* 
tions. When the basis function centres are chosen using the input data alone, 
there is no way to distinguish relevant from irreIevmt inputs. This problem fs 
illustrated in Figure 5,9 where we see a variable y which is a non-linear function 
of an input variable XI. We wish to use radial basis function network network 
to approximate this function. The basis functions are chosen to c w m  the regon 
of the axis where data is observed. Suppose that a second input miable X Z  

is introduced which is uncorrelated with XI. Then the number of basis functions 
needed to cover the required region of input space increases dramatically in- 
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Fiere  5.9. A schematic example of a function y(x1) of m input variable X I  

which has been modelled using a set of radial basis functions. 

Figure 5.10. As in Figure 5.9, but in which an extra, irrelevant variable xa 
has been introduced. Note that the number of basis functions, whme locations 
are determined using the input data alone, has increased dramatically, even 
though xz carries no useful information for determining the output variable. 

dicated in Figure 5.10. If a, is independent of x2 then these extra basis functions 
have no useful role in determining the value of y. Simulations using artificial data 
(Hartman et  al., 1990), in which 19 out of 20 input variables consisted of noise 
uncorreiated with the output, showed that a multi-layer perceptron could learn 
to ignore the irrelemnt inputs and obtain accurate results with a small number 
of hidden units, while radial basis function networks showed large error which 
decreased only slowly as the number of hidden units was increased. 

Problems arising from the curse of dimensionality may be much less severe if 
basis functions with f a r 1  covariance matrices are used, as in (5.I6). rather t h o  

I we have provided compelIing reasons for using unsupervised methods to d+ 
tprmine the first-layer parameters in a radial basis function network by modelling 
'he density of input data. Such method have also proven to be very powerful in 

I practice. However, it should be emphasized that the optimal choice of basis func- 

/ ' ion  Parameters for density estimation need not be optimal far representing the 
to  the output variables. Figure 5.11 shows a simple example of a p r o b  

i lem for which the use of density estimation to set the basis function parameters 
cIparly gives a sub-optimal solution. 

. ,. 
spherical basis functions of the form (5.1 5 ) .  However, the number of parameters 
per basis function is then much greater. 
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I 

Figure 5.11. A sirnpIe example to illustrate why the use of unsupervised meth- 
ods bwed on density estimation to determine the basis function parameters 
need not be optima1 for approximating the target function. Data in one di- 
mension (shown by the circles) is generated from a Gaussian distribution p ( ~ )  
shown by the drtshd curve. Unsupervised training of one Gaussian basis func- 
tion would cauge it to be centred at x = a, giving a good approximation to 
p ( z j .  Target values for the input data are generated from a Gaussian function 
centred at b shown by the solid curve. The basis function centred at a can only 
give a very poor representation of h(x) .  By contrast, if the basis function were 
centred at b it could represent the function h ( x )  exactly. 

5.9.1 Subsets of data points I 
One simple procedure for selecting the basis function centres pj is to set them 
equal to a random subset of the input vectors from the training set, as was 
done for the example shown in Figure 5.3. Clearly this is not m optimal pr* 
cedure so far as density estimation is concerned, and may also lead to the use 
of an unnecessarily large number of basis functions in order to achieve adequate 
performance on the training data. This method is often used, however, t.o pr* 
vide a set of starting values for many of the iterative adaptive procedures to be 
discussed shortly. I 

Another approach is to start with all data points as basis functions centre:: 
and then selectively remove centres in snch a way as to have minimum disrupt 
on the performance of the system. Such an approach was introduced into 1 

IGnearest-neighbour classification scheme by Dwijver and Kittler (1 982) 8 

applied to radial basis function networks used for ~Iassification by ~ r a a i j v e l ~  
and Duin (1991). A procedure for selecting a subset of the basis functions so " 
to preserve the best estimator of the unconditional density is given in Fukunag 
and Hayes (1989). 

These techniques only set the basis function centres, and the wi m 
eters gi must be chosen using some other procedure. One heuristic I i 

to  choose all the C T ~  to be equal and to be given by some multiple of 1,111; r tv-dRI  

distance between the hasis function centres. This ensures that the hasis func 

inn 
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:nd I 
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ions overlap to some d e p e  and hence give a relatively smooth representation 
of the distribution of training data. We might also recognize that the optimal 

may be different for basis functions in different regions of input space. For 
instance, the widths may be determined from the average distance of each basis 
hncr,ion to  its L nearest neighbours, where L is typically smdl. Such ad hoc 

for choosing the basis function parameters are very Sast, and allm 
, radial basis function network to be set up very quickly, but are likely to be 

suboptimal. 

j.g.2 Orthogonal least squares 
,4 more principled approach to selecting a sub-set of the data points as basis 
function centres is based on the technique of orthogonal lmt squaws. To motivate 
this Bpproach consider the following procedure for selecting basis functions. We 
,tut by mnsidering a network with just one basis Eunction. For each data point 
In turn we set the basis function centre to the input vector for that data point, 

then set the second-layer weights by pseud+inverse techniques using the 
training set of N data points. The basis function centre which gives rise 

to the smallest residua1 error is retained. In subsequent steps of the dgorithm, 
the number of basis functions is then increased incrementaIly. If at some point in 
the algorithm 1 of the data points have been selected as basis function centres, 
then N - I  networks are trained in which each of the remaining N - I data points 
in tnrn is selected as the centre for the additiona! basis function. The extra basis 
fr~nction which gives the smallest value for the residua1 sum-of-squares error is 
then retained, and the algorithm proceeds to the next stage. 

Such an appro& would be computationally intensive since at each step it 
tvould be necessary to obtain a complete pseudeinverse solution for each possible 
choice of basis functions. A much more efficient procedure for d iev ing  the same 
result is that of orthogonal least squaws (Chen et  a!., 1989, 1991). In outline, the 
akorithm involves the sequential addition of new basis functions, each centred 
011 one of the data points, as described above. This is done by constructing a 
Spt of orthogonal vectors in the space S spanned by the vectors of hidden unit 
actil%tians for each pattern in the training set (Section 3.4.2). It is then possible 
''1 calculate directly which data point should be chosen as the next basis fi~nction 
rPntre in order t.o produce the greatest reduction in residual sum-of-squares error. 
I f  

\aIues for the second-layer weights are also determined at the same time. If the 
:'k~:'~rit.hrn is continued long enough then all data points will be selected, and the 
rPqidual error will be zero. In order to achieve good generalization, the algorithm 
m ' l ~ t  stopped before this occurs. This is the problem of model-order selection, 
'"d is discussed at length in Chapters 9 and 10. 

";.g. 3 CLnstering algorithms 

4s an improvement on simply choosing a subset of the data points as the h i s  
F1lnction centres, we can use clustering techniques to find a set of centres which 

accurately reflects the distribution of the data points. Moody and Darken 
rlv%l) use the K-means elzlsterr:ng algorithm, in which the number X of centres 
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1 
I must be decided in advance. The algorithm involves a simple memat ion  prG 

cdure, as folLows. Suppose there are N data points x* in total, and we n ~ r h  
to find a set of K representative vectors pj where j = I,. . . , K. The algorithm 
seeks to partition the data points {x") into K disjoint  bet^ Sj Containing ,$, 

. I data points, in such a way as to minimize the sum-of-squares clustering function 
given by 

where pj is the mean of the data points in set Sj and is given by 

I The batch version of K-means (Lloyd, 1982) hegins by assigning the points at , random to K sets and then computing the mean vectors of the points in each set. 
Next, each paint is re-assigned t o  a new set scanding to which is the nearest 1 mean vector. The means of the sets are then recomputd. This procedure is 
repeated until there is no further change in the grouping of the data points. It 1 can be shown (Linde et  a]., 1980) that at each such iteration the value of J will 
not increase. The cakulation of the means can also be formulated as a stochastic I 
on-line process (MacQueen, 1967) Moody and Darken, 1989). In this case, the 
initial centres are randomly chosen from the data points, and as each data point 1 
x" is presented, the nearest pi is updated using I 

? 
where p7 is the learning rate parameter. Note that this is simply the Robbins- 
M m  procedure (Section 2.4.1) for finding the root of a regression function gilrcn 
by the derivative of J with respect to pj .  Once the centres of the bmis Functions 
have been found in this way, the covariance matrices of the basis functions can 

be set to the covariances of the points assigned to the companding cIustew- 1 

Another unsupervised technique which has been used for assigning basis func- 
tion centres is the Kohonen topographic feature map, also called a self-organizing 
feature map {Kohunen, 1982). This algorithm leads to placement of a set of 
totype vectors in input. space, each of which corresponds to a point on a regular 
grid in a (usually two-dimenfiional) featuremap space. When the algorithm has 
conver,aed, prototype vectors corresponding to nearby points on the feature map 
grid have nearby locations in input space. This leads to a number of applications 
for this algorithm including the prajeckion of data into a two-dimensional space 
for visualization purposes. However, the imposition of the topographic property- 
particularly if the data is not intrinsically tw+dimensional (Saction 8.6.1), may 

lrad to  suboptimal placement of vectors. 

j,9.d Gaussian mixture d e b  

;,hove already discussed a number of heuristic procedures for setting the basis 
unction parameters such that the basis functions approximate the distribution of 
hp input data. A more principled approach, however, is to recognize that this is 
.sentially the mixture densiw estimation problem, which is discussed at length 

r '- 

in Seetion 2.6. The hasis functions of the neural network can be regarded as the 
,mponent~ of a mixture density model, whose parameters are t o  be optimized 
hv iikelihood. We therefore model the density of the input data by a 
mixture model of the form 

where the parameters P(j )  are the mixing coefficients, and bj(x) me the b* 
sis functions of the network. Note that the mixing coefficients can be regmded 
as prior probabilities for the data points to have been generated from the j th  
component of the mixture, The likelihood function is given by 

and is rnaxirnized both with respect to the mixing coefficients P ( j ) ,  and with 
respect to  the p a m e t e r s  of the basis functions. This maximization can be per- 
formed by computing the derivatives of C with respect to the pparameters and us- 
ing t-hese derivatives in standard non-linear optimization algorithms (Chapter 7). 
Alternatively, the parameters can be found by re-estimation procedures based 
on the EM (expectation-maximization) algorithm, described in Section 2.6.2. 

Once the mixture model has been optimized, the mixing coefficients P(j)  
can be discarded, and the basis fhnctions then used in the radial basis function 
network in which the second-layer weights are found by s u p e ~ s e d  training. By 
retaining the mixing coefficients, however, the density model p(x)  in (5.61) can 
he used to assign error bars to the network outputs, based on the depee of 
novelt?j of the input vectors (Bishop, 1994b). 

It is interesting to  note that the K-means algorithm can be seen as a par- 
t,icular limit of the EM optimization of a Gaussian mixture madel. fi0m sec- 
tion 2.6.2, the EM update formula for a basis function centre is given by 

]ere PC 
the ba 

j ( x )  is the posterior probability of basis function j, and is given in terms 
I 

sis functions and the mixing coeficients, using Raws' theorem, in the 
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form 
I 

where ~ ( x )  is given by (5.61). Suppose we consider spherical Gaussian b*k 
functions having a common width parameter a. Then the ratjo of the Posterior 
probabilities of two of the basis functions, for a particular data point xn, is given 

by 

If we now take the limit g +  0, we see that 

Thus, the probabilities for a11 of the  kernels is zero except for the kernel whose 
centre vector pk is closest to xn. In this limit, therefore, the EM update formula 1 
(5.63) reduces to the IC-means update formula (5.59). 1 

5.10 Supervised training 1 
As we have already remarked, the use of unsupervised techniques to determine 
the basis function parameters is not in general an optimal procedure so far as 
the subsequent supervised training is concerned. The di%cult;y arises because 
the setting up of the basis functions using density estimation on the input data 
takes no amount of the target labels associated with that data. In order to set 
the parameters of the basis functions to give optimal performance in computing I 

the required network outputs we should include the target data in the training I 
procedure. That is, we should perform supervised, rather than unsuperviseda 
training. 

The basis function parameters for regression can be found hy treating the La- 
sis function centres and widths, along with the second-layer weights, as adaptivP 
parameters to be determined by minimization of an error function. For the c*@ 
of the sum-of-squares error (5.191, and spherical Gaussian basis functions (5.15). 
we obtain the following expressions for the  derivatives of the error function with 
respect to the basis function parameters 
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n,hcre hi denotes the i th  component of pj .  These expressions for the derivatives 
,,, then be used in conjunction with one of the standard optimization strategies 
discussed in Chapter 7. 

The setting of the basis function parameters by supervised learning represents 
, non-linear optimization problem which will typically be computationally in- 
rpnsive and may be prone to finding local minima of the error function. However, 
provided the basis functions are reasonably well localiied, any given input vector 

only generate a significant activation in a small fraction of the basis func- 
[ions, and so only these functions will be significantly updated in response to that 
input vector. Training procedures can therefore be speeded up significantly by 
identifying the relevant basis functions and thereby avoiding unnecessary compu- 
bation. Techniques for finding these units efficiently are described by Omohundro 
(1987). Also, one of the unsupervised techniques described ~ b w e  can be used 
to initialize the basis function parameters, after which they can be 'fine tuned' 
using supervised procedures. However, one of the drawbacks of supervised train- 
ing of the basis functions is that there is no guarantee that they wiiI remain 
localixed. Indeed, in numerical simulations it is found that a subset of the basis 
Functions may evolve to have very broad responses (Moody and Darken, 1989). 
Also, some of t.he main advantages of radial basis function networks, namely fa& 
two-stage training, and interpretability of the hidden ~mit  representation, are 
lost if supervised training is adopted. 

Exercises 

5.1 (*) Consider a radial basis function network represented by (5.14) with 
Gaussian basis functions having full covariance matrices of the form (5.16). 
Derive expressions for the elements of the Jacobian matrix given by 

5-2 I**) Consider a radial basis function network with spherical Gaussian basis 
of the form /5.15), network outputs given by (5.17) and a sum-of-squares 
error function of the form (5.19). Derive expressions for elements of the 
Hessian matrix given by 

wherr 
can co 
w e i ~ h  

: w, and ur, are any two parameters in the network. Hint: the results 
onvenientty be set out as six equations, one for each possible pair of 

- t types (basis function centres, basis function widths, or second-layer 
weights). 
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5.3 (* *) Consider the functional derivative (Appendix D) of the r e g ~ i a r i ~ ~ ~ ~ ~ ~  
functional given by (5.291, with respect t o  the function y(x). By u@ng 
successive integration by parts, and making use of the identities 

show that the operator is given by 

It should be assumed that, 'boundary' terms arising from the integration 
parts can be neglected. Now find the Green's fivlction G([[x - xyl) of thk 
operatar, defined by (5.241, as follows. First introduce the multidimensional 
Fourier transform of G, in the form 

By substituting (5.74) into (5.73)- and using the following form for the 
Fourier transform of the delta function 

where d is the dimensionality of x and s, show that the Fourier transform 
of the Green's function is given by I 

Now substitute this result into (5.74) and, by using the results ~ i ~ ~ e n  in I 

Appendix B, show that the Green's function is given by 

5.4 (*) Consider general Gaussian basis functions of the form (5.16) and s u p  
that all of the basis functions in the network share a common covati8.-- 
matrix E. Show that the mapping represented by such a network is equir" 
alent to that of a network of spherical Gaussian basis functions of the 
form (5.15), with a common variance parameter a2 = 1, provided the in- 
put vector x is first transformed by an appropriate linear transformation' 
By making use of the results of Appendix A, find expr~ssions relating the 

transformed input vector 5 and transformed basis function centres pj to 
the cQrr&ponding origind vectors x and pj .  

5.5 
multi-layer perceptron a hidden unit has a constant activation for 

input vectors which lie on a hyperplanar surface in input space given by 
,T, + wo = const., while for a radial basis function network, with bzc 
,is filnctions given by (5,15), a hidden unit has constant activatian on a 
l,yperspheri~al surface defined by Ilx - ~ 1 1 ~  = const. Show that, for suit- 
able of the parameters, these surfaces coincide If the input vectors 
are to unit length, so that Ilx]l = 1. 111ustrat.e this equivalence 
neometrically for vectors in a three-dimensional input space. 
C)  

5,6 {* * *) Write a numerical implementation of the K-means clustering algo- 
rithm described in Section 5.9.3 using both the batch and on-line versions. 
Illustrate the operation of the algorithm by generating data sets in two di- 
mensions from a mixture of Gaussian distributions, and plotting the data 
points together with the trajectories of the estimated means during the 
course of the algorithm. Investigate how the results depend on the value 
of K in relation to the number of Gaussian distributions, and how they 
depend on the variances of the distributions in relation to their separation. 
Study the performance of the on-line version of the algorithm for differ- 
ent values of the learning rate parameter in (5.60), and compare the 
algorithm with the batch version. 

5.7 (+ * +) Implement a radial basis function network for one input variable, one 
output variable and Gaussian basis functions having a common variance 
parmeter u2. Generate a set of data by sampling the function h(x) = 

0.5 + 0.4sin(2xx) with added Gaussian noise, and with s values taken 
randomly from a uniform distribution in the interval (0,1$. Set the basis 
function centres to a random subset of the x values, and use singular value 
d~ornposition {Press et a&., 1992) to find the network weights which min- 
imize the sum-of-squares error function. Investigate the dependence of the 
network function on the number of basis function centres and on the value 
of the variance parameter. Plot graphs of the form shown in Figure 5.3 to 
illustrate the results. 

(***I Write down an analytic expression for the regularized matrix M in 
(5.32) for the case of Gaussian basis functions given by (5.1 5). Extend the 
software implementation of the previous exercise to include this form of 
regularization. Consider the case in which the number of basis functions 
equals the number of data points and in which o is equal t o  roughly twice 

average separation of the input values. Investigate the effect of using 
different values for the regularization coefficient A, and show that, if the 
value of A is either too srnalI or too large, then the result.ing network 
mapping gives a poor approximation to the function h(x}  from whch the 
data was generated. 



ERROR FUNCTIONS 

In previous chapters we have made use of the sum-of-squares error functi, 
which was motivated primarily by analytical simplicity. There are many otl 
possible choices of error function which can also be considered, depending 
the particular application. In this chapter we shall describe a. variety of different, 
error functians and discuss their relative merits. 

For regression probIerns we shall see that the basic goal is to model the con- 
ditional distribution of the output variables, conditioned on the input variables. 
This motivates the use of a sum-of-squares error function, and several important 
properties of this error function will be explored in some detaiI. 

For classification problems the goal is to model the posterior probabilities of 
class membership, again conditioned on the input variables. Although the sum- 
of-squares error function can be used for classification (and can approximate 
the posterior probabilities) we shall see that there are other, more appropriate, 
error functions which can be considered. Generally speaking, Sections 6.1 to 6.4 
are concerned with error functions for regression problems, while the remaining 
sections are concerned prirnariIy with error functions for classification. 

As we have stressed several times, the central goal in network training is not 
to memorize the training data, but rather to model the unclerlying genern,tor of 
the data, so that the best possible predictions for the outaut vector t can he 
made when the trained network is subsequently presented Ath a new value 1 
the input vector x. The most general and complete description of the generat 
of the data is in terms of the probability density p(x,  t) in the joint input-bar: 
space. For associative prediction problems of the klnd we are considering, it 
convenient t o  decompose the joint probabiIity density into the product of the 
conditional density of the target data, conditioned on the input data, and the 
unconditional density of input data, so that 

where ~(t lx)  denotes the probability density of t given that x takes a pnrticuIs 
value, while p{xj represents the unconditional density of x and is given IIV 

The density p(x)  plays an important role in several aspects of neurd networks, 
induding procedures for choosing the basis function parameters in a radial basis 
f,,,ction network (Section 5.9). However, for the purposes of making predictions 
if t for new values of x, it ia the conditiend density p(tlx) which we need to 
model- 

Most of the error functions which will be considered in this chapter can be 
from the principle of maximum likelihood (Section 2.2). For a set of 

training data (xn, tn), the likelihood can be written as 

where we have assumed that each data point (xn, tn) is drawn independently 
from the same distribution, and hence we can multiply the probabilities. Instead 
of maximizing the likelihood, it is generdly more convenient to minimize the 
negative logarithm of the likelihood. These are equivaIent procedures, since the 
negative logarithm is a, monotonic function. We therefore minimize 

where E is called an ~mrfunct ion. Aa we shall see, a feed-forward neural network 
can be regarded as a framework for modelling the conditional probability density 
p(t lx) .  The second term in (6.4) does not depend on the network parameters, 
" n d  so represents an additive constant which can be dropped from the error 
hlnction. We therefore have 

I that the error function takes the form of a sum over patterns of an error ' 
for eaeh pattern separately. This f o l l m ~  h r n  the assumed independence of 

"he data points under the given distribution. Different choices of error function 
from different 8ssumptions about the form of the conditional distribution 

?(tlx). For interpolation problems, the targets t consist of continuous quantities 
'Vhose values we are trying to predict, whiIe for dassjfication problems they 
rWesent labels defining clays membership or, more generally, estimates of the 

1 Prghahilities of clms membership. 

f'-l Sum-of-squares error 
the case of c target variables t k  where k = I, .  . . , c, and suppose that 

"'P distributions of the different target variables are independent, so that we can 



write 

We shal! further assume that  the distribution of the target data is Gaussian. More 
specifically, we assume that the target variable ttk is given by some dekerministic 
function of x with added Gaussian noise c, so that 

We now assume that the errors E ( E  have a normd distribution with zero mean, 
and standard a deviation a which does not depend on x or on k. Thus, the 
distribution of ~k is given by 

We now seek to  model the functions hk(x) by a neural network with outputs 
yk (x; w) where w is the set of weight parameters governing the neural network 
mapping, Using (6.7) and (6.8) we see that the probability distribution of target 
variables is given by 

where we have replaced the unknown function h k  (x) by our model yk (x: w). 
Together with (6.6) and (6.5) this leads to the foIlming expression for the error 
function 

We note that, for the purposes of error minimization, the second and third terms 
on the right-hand side of (6.10) are independent of the weights w and so Can 
be omitted. Similarly, the overall factor of l/a2 in the first term can also be 
omitted. We then finally obtain the familiar expression for the sum-of-squares 
error function 

~ ~ i n g  found a set of values w* for the weights which minimizes the error, 
the optimum d u e  for a can then by found by minimization of E in (6.10) with 

to ~r.  This minimization is easily performed analytically with the explicit, 
,2nd intuitive, result 

1 - 
o2 = C -'y{y&"; w*) - t;I2 

n=l k=l 

which says that the optimd d u e  of u2 is proportional to the residual value of 
the sum-of-squares error function at its minimum. We shall return to this result 
later. 

We have derived the sum-of-squares error function from the principle of maxi- 
mum likelihood an the assumption of Gaussian distributed target data. Of course 
the use of a sum-of-squares error does not requiw the target data to  have a Gaus- 
sian distribution, Later in this chapter we shall consider the least-squares solution 
for an example problem with a strongly non-Gaussian distribution. However, as 
we shall see, if we use a sum-of-squares error, then the results we obtain cannot 
distinguish between the true distribution and any other distribution having the 
same mean and variance. 

Note that it is sometimes convenient to assess the performance of networks 
using a different error function from that used to train them. For instance, in 
an interpolation problem the networks might be trained using a sum-of-squares 
error function of the form 

"here the sum runs over dl N patterns in the training set, whereas for network 
testing it would be more convenient to use a rout-mean-square (RMS) error of 
the form 

"here w* denotes the weight vector of the trained network, and the sums ROW 

over the N' patterns in the test set. Here Z is defined to be the average test 
"t target vector 



The rtMS error (6.15) has the advantage, unlike (6.14), that its d u e  does not 
grow with the size of the data set. If it has a value of unity then the network 
is predicting the test data 'in the mem' while a value of zero means perfect 
prediction of the test data. 

I 

6.1.1 Linear output units 

The mapping function of a multi-layer perceptron or a radial basis function 
network can be written in the form 

where g( . )  denotes the activation function of the output units, (wbj ,j) denotes the 
set of weights (and biases) which connect directly to  the output units, and % 
denotes the set of all other weights (and biases) in the network. The derivative 
of the sum-of-squares error (6.11) with respect to ak can be written as 

If we choose the activation function for the output units t o  be linear, g(a) = 01 

then thii derivative takes a particularly simpIe form 

This allows the minimization with respect to the weights ( w k  j) (with the weights 
G held fixed) to be expressed as a linear optimization problem, which can he 
solved in dosed form as discussed in Section 3.4.3. Here we shall follow a sirnilu 
analysis, except that we shall find it convenient to make the bias pararnetefi 
explicit and deal with them separately. 

We first write the network mapping in the form 
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31inimi~i~g the sum-of-squares error (6.11) with respect to the biases first, we 
then obtain 

*.hich can be solved explicitIy for the biases to give I ' 
where we have defined the following average quantities: 

The result (6.23) shows that the role of the biases is to compensate for the I 

difference between the averages (over the data set) of the target values, and the 
weighted sums of the averages of the hidden unit outputs. 

If we back-substitute the expression (6.23) into the sum-of-squares error we 
obtain 

I 
where we hwe  defined 

I 
,... a - n  - - 
tk - t k  - tk, z? 3 ==Z-Z.  3 3. (6.26) 

I1-e Can now minimize this error with respect to the output weights wx, t o  give 

- j' is Convenient at this point to introduce a matrix notation so that  (T).* = £2, 
' .W)kl = wkJ and (Z), = $. We can then write (6.27) in the form 



where ZT denotes the transpose of 2. We can write an explicit solution f 
weight matrix as Or the 

W T = Z ~ T = O  (6.29) 

I where ~t is the pseudc-inverse of the matrix Z given by 

fire we have assumed that the matrix ( z ~ z )  is non-singular. A more general 
discussion of the properties of the pseudo-inverse can be found in Section 3.4.3, 
For a singklayer network, this represents the optimal solution for the weights, 
which can therefore be calculated explicitly. In the present case, howwer, this 
expression for the weights depends on the activations of the hidden units which 
themselves depend on the weights G. Thus, as the weights * change during 
Iearning, so the optimal values for the weights (wkj,j) will also change. Never- 
theless, it is still possible t o  exploit the linear nature of the partid optimization 
with respect to the output unit weights as part of an overall strategy for error 
minimization, as discuwed in Section 7.3. 

I 6.1-2 Linear sun mles 

The use of a sum-of-squares error function to  determine the weights in a network 
with Iinear output units implies an interesting sum rule for the network outputs 
(Lowe and Webb, 1991). Suppose that the target patterns used to train the 
network satisfy an exact linear relation, so that for each pattern n we have 

where u and uo are constants. We now show that, if the final-layer weig 
are determined by the optimal least-squares procedure outlined above, then " 

outputs of the network will satisfy the same linear constraint for arbitrary in1 
patterns. 

- Summing over all patterns n in (6.31) we find that the average target vec 
t satisfies the relation uo = -uTT where the components of Z are given by (6.2 
Thus, the linear relation (6.31) can be written in the form 

The network outputs, given by (6.211, can be written in vector notation 

Similarly, the solution for the optimal biases given by (6.23) can be written 4 
I 

31) 

hts 

w a = E - W .  (6.34) 

50" , ,,,sider the scalar product of y with the vector u, for an arbitrary input 
Using the optirnd weights given by (6.291, together with (6.33) and 

I ~.31) ,  we have 

I ' 
I 

uTy = uT(w0 + WZ) 

= u q  + UTTT(Z~)T(Z - E )  (6-35) 

we have used the following property of matrix transposes ( A B ) ~  = B=A=. 
/6.32), however, it follows that 

( u ~ T ~ ) ,  = uqn = uT(tn - X) = 0 (6.36) 

n*here we haye used the linear constraint (6.32). Combining (6.35) aad (6.36) we 
obtain 

uTy = uTE (6.37) 

and so the network outputs exactly satisfy the same linear sum rule as the target 
data. We shall see an application of this result in the next section. Mom generally, 
if a set of targets satisfies several linear constraints simultaneously, then so will 
the outputs of the network (Exercise 6.3). I 

6.1.3 Intepretatioa of network outputs 

We next derjve m important result for the interpretation of the outputs of a aet- 
work trained by minimizing a sum-of-squares error function. In particular, we 

I 

nil1 show that the outputs approximate the conditional averages of the target 
data. This is a central result which has several important consequences for prac- 
tical applications of neural networks. An understmding of its implications cm 
help ta avoid some common rnjstakes, and lead to more effective USE of network 
nemork techniques. 

Consider the limit in which the size N of the training data set goes to 
t,his limit we can replace the finite sum over patterns in the sum-of-squares 

"rm with an integral of the form 
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where we have introduced an extra factor of 1/N into the definition of the sum- 
of-squares error in order to make the limiting process meaningfu1, We now facto, 
the joint distributions p ( t k , x )  into the product of the unconditional density 
function for the input data p(x) ,  and the target data density conditional on the 
input vector p(tk lx}, as in (6.11, to give I 

E = {yi(x;  w) - t*l2 p(tdx)p(x) d t k  dx.  (6.40) 1 
k 

Next we define the following conditional averages of the target data 
I 

We now write the term in brackets in (6.40) in the form I 

Next we substitute (6.44) into (6.40) and make use of (6.41) and (6.42). The 
second term on the right-hand side of (6.44) then vanishes as a consequence of 
the integration over t k .  The sum-of-squares error can then be written in the form 

We now note that  the second term in (6.45) is independent of the netwc 
mapping function yk (x; w) and hence is independent of the network weights 
For the purposes of determining the network weights by error minimization, t' 
term can be neglected. Since the integrand in the fist term in (6.45) is nc 
negative, the absolute minimum of the error function occurs when this first te' 
vanishes, which corresponds to the following result for the network mapping 

~ r l ;  
W. 

his -- 

Figure 6.1. R schematic illustration of the property (6.46) that the network 
mapping which minimizes a sum-of-squares error function Is given by the con- 
ditional average of the target data. Here we consider a mapping from a single 
input variable x to a single target variable t .  At any given value xo of the input 
variable, the ~etwork output y (xo) is given by the average of t with respect to 
t h e  distribution p ( t ] x o )  of the target variable, for that  value of x. 

where w* is the weight vector at  the minimum of the error function. Equa- 
tion (6.46) is a key result and says that the network mapping is given by the 
conditional average of the target data, in other words by the regresston of t k  

conditioned on x. This result is illustrated schematically in Figure 6.1, and by a 
simple example in Figure 6.2. 

Before discussing the consequences of this important result we note that it is 
dependent on three key assumptions. First, the data set must be sufficiently large 
that it appr-ates an infinite data set. Second, the network function yk(x;  W) 

must be sufficientIy genera! that there exists a choice of parameters which makes 
the first term in (6.45) sufficiently small. This second requirement impIies that 
:he number of adaptive weights (or equivalently the number of hidden units) 
m l ~ s t  he sufficiently Iarge. It is important that the two limits of Iarge data set 
and large number of weights must be approached in a coupled way in order to 
arhieve the desired result. This important issue is discussed in Section 9.1 in the 
ro I l te~ t  of generalization and the trade-off between bias and variance. The third 
'aveat is that the optimization of the network parameters is performed in such 
m a y  as to find the appropriate minimum of the cost function. Techniques for 
Parameter optimization in neural networks are discussed in Chapter 7. 

Note that  the derivation of the result (8.46) did not depend on the choice of 
""work architecture, or even whether we were using a neural network at all. It  
"RIB required that the representation for the non-linear mapping be sufficiently 
yeneral. The importance of neural n e w r k s  is that they provide a practical 
framework for approximating arbitrary non-linear multivariate mappings, and 
can therefore in principle approximate the conditional average t o  arbitrary ~JZ- 

curacy. 



Figure 6.2. A simple exampIe of a network mapping which approximates the 
conditional average of the target data (shown by the circles) generated from 
the function t = x f 0.3 sin(2ns) + E where E is a random variable drawn from a 
uniform distribution in the range (-0.1,O.l). The solid c u m  shows the result 
of training a multi-layer perceptron network with five hidden units using a sum- 
of-squares error function. The network approxjmates the conditional average 
of the target data, which gives a good repreentation of  the function from 
which the data was generated. 

We can easily see why the minimum of a sum-of-squares error is given by the 
average value of the target data by considering the simple error function 

where a and b are constants. Differentiation of E ( y )  with respect tr 
the minimum occurs at 

In other mrds,  the minimum is given by the average of the target data. Tutr 
more general property (6.46) is simply the extension of this result to conditional 
averages. 

We can also derive (6.46) in s, more direct way as follows. If we take the sWJ- 
of-squares error in the form (6.39) and set the functional derivative (Appendh 
of E with respect to yk(x) to  zero we obtain 
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The network outputs, given by the conditional averages of the target data, then 
take the: form. 

li make use of (6.41) we then obtain (6.46) directly The use of a functional 
deri,.fiiw here is equivalent to the earlier assumption that the class of functions I 

I 

g d  x~ is very general. For many regmion problems, the form of network mapping given by the 
average (6.46) can be regarded as optimal. If the data is generated 

a set of deterministic functions ht(x) with superimposed zero-mean noise 
,, then the Carget data is given by 

y k ( ~ )  = {tk 1 ~ )  = (hk(x) f . ~ k ] x )  = hk(x) (6'51) 

since { E ~ }  = 0. Thus the network has averasd over the noise on the data and 
discovered the underlying deterministic function. Not all regression problems are 
as simple as this, however, as we shdI see later. 

Note that the first integral in (6.45) is weighted by the unconditional density 
p(x). We therefore see that the network function yk (x) pays a significant penalty 
for departing from the conditional average ( tk  lx} in regions of input space where 
the density p(x)  of input data is high. In regions where p(x)  is small, there is 
little penal@ if the network output is a poor approximation to the conditional 
average. This forms the basis of a simple procedure for assigning error bars to 
network predictions, based on an estimate of the density p(x} (Bishop, 1994b). 

If we return to (6,451 we see that the second term can be written in the form 

I 
I 

 here ~:(x) represents the variance of the target data, as a function of X ,  and 
is given by 

If the network mapping function is given by the conditional average (6.46), so 
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that the first term in (6.45) vanishes, then the residual error is given by (6.52) 
The value of the rmidual error is therefore be a measure of the average variance 
of the target data. This is equivdent to  the eartier result (6.13) obtained for a 
finite data set. It should be emphasized, however, that these are biased estimates 
of the variance, as discussed in Section 2.2, and so they should be treated With 
care in practical applications. 

We origindly derived the sum-of-squares error function from the principle 
of maximum Iikelihood by assuming that the distribution of the target data 
could be described by a Gaussian function with an x-dependent mean, and a 
single glohal variance parameter. As we noted earlier, the sum-of-squares errs 
does not require that the distribution of target variables be Gaussian. If a stlm 

of-squares error is used, however, the quantities which can be determined are 
the x-dependent; mean of the distribution (given by the outputs of the trained 
network) and a global averaged variance (given by the residual value of the 
error function at its minimum). Thus, the sum-ofsquares error function cannot, 
distinguish between the true distribution, and a Gaussian distribution having 
the same x-dependent mean and average variance. 

6.1.4 Outer product appmximation for the Hessian 

In Section 4.10.2 we discussed s particular approximation to the Hessian matrix 
(the matrix of second derivatives of the error function with respect to the network 
weights) for a sum-of-squares error function. This approximation is based on a 
sum of outer products of first derivatives. Here we show that the approximation 
is exact in the infinite data limit, provided we are at the global minimum of the 
error function. Consider the error function in the form (6.45). Taking the second 
derivatives with respect to two weights w, and w, we obtain 

Using the result (6.46) that the outputs yk(x) of the trained network represent 
the conditionaI averages of the target data, we see that the second term in (6.56') 
vanishes. The Hessian is therefore given by an integral of terms involving on]?' 
the products of first derivatives. For a finite data set, we can write this result in 
the form 

fact that a least-squares solution approximates the conditional average of 
t&~get data h a  an important consequence when neural networks are used 

r ,  d y e  inverse problems. Many potential applications of neural networks fall 
inro this category- Examples include the analysis of spectral data, tomographic 

control of industrial plant, and robot kinematics. For such prob- 
Irms there exists a wel1-defined f a m a d  problem which is characterized by a 
h,,,ctzonal (i.e. single-valued) mapping. Often this corresponds to causality in a 
&sicd system. In the case of spectral reconstructien, for example, the forward 
17mhlem corresponds to the evaluation of the spectrum when the parameters 
i,locations, widths and amplitudes) of the spectral lines are prescribed. In prac- 

applications we generally have to solve the correspendin~: inverse problem 
in whicb the roles of input and output variables are interchanged. In She c m e  
of spectral analysis, this corresponds to the determination of the spectral line 
parameters from an observed spectrum. For inverse problems, the mapping can 
be often he multi-valued, with valves of the inputs far which there are several 
valid values for the outputs. For example, there mav be several choices for the 
spectral line parameters which give rise to the s&e observed spectrum. If a 
least-squares approach is applied to an inverse problem, it will approximate the 
conditional average of the target data, and this will frequently lead to extremely 
poor performance (since the average of severd solutions is not necessarily itself 
a solution). 

As a simple illustration of this problem, consider the data set shown earlier 
171 Figure 6.2 where we saw how a network which approximates the conditional 
wrage of the target data gives a good representation of the underlying gen- 
orator of the data. Suppose we now reverse the roles of the input and target 
variables. Figure 6.3 shows the result of training a network of the same type as 
before on the same data set, bu t  with input and output variables interchanged. 
The network again tries to approximate the conditional average of the target 
'Iltta. but this time the conditional average gives a very poor description of the 
"nerator of tlie data. The problem can be traced to the intermediate values of 
.' in Figure 6.3 where the target data is multi-valued. Predictions made by the 
'rainerl network in this region can he very poor. The probIern cannot be solved 

modifying the network architecture or the  training algorithm, since it is a 
fllnrlamental comequence of using a sum-of-squares error function. For problems 
I"-'olving many input and output variables, where visualization of the data is not 
"'ai~htforward, it can be very difficult to ascertain whether there are regions 1 ~ f .  input space for which the target data Is multi-dued. One approach to such 

1 p rohl~rns is to go beyond the Gaussian description of the distribution of target 
''ariables, and to find a more general model for the conditional density, as will 
I"' discussed in Section 6.4. 
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Figure 6.3. An illustration of the probIem which can arise when a Ie: res 
approach is  applied to an inverse problem. This shows the game c as 
in Figure 6.2 but with the roles of input and output var iab l~  jnt ed. 
The solid curve shows the result of training the same n a r d  network as in 
Figure 8.2, again using a sum-of-squares error. This time the network gives a 
very poor fit to the data, as it again tries to represent the conditional average 
of the target vduns. 

We have derived the sum-of-squares error function horn the principle of maxi- 
mum likelihood on the assumption of a Gaussian distribution of target data. We 
can obtain more general error functions by considering a generalization of the 
Gaussian distribution of the form 

where r(a) is the gamma function (defined on page 28), the parameter 0 con- 
trols the variance of the distribution, and the prefactor in (6.58) ensures that 
J P ( E )  d~ = 1. For the case of R = 2 this distribution reduces to a Gaussian. 
now consider the negative Iog-likelihood of a data set, given by (6.5) and (6.@1 
under the distribution (6.58). Omitting irrelevant constants, we obtain an error 
function of the form 
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Figure 6.4. Plot of the function ly - tiR against ly - t ]  for various vdues of 
R. This function forms the basis for the definition of the Minkowski-R error 
mwure.  

called the Minkowski-R emr .  This reduces to the usual sum-of-squares error 
when R = 2. For the case of R = 1, the distribution function (6.58) is a Laplacian, 
and the corresponding Minkowski-R measure (6.59) is called the citg block metric 
(because the distance between two points on a plane measured by this metric is 
equal t o  the Euclidean distance covered by moving between the two points along 
segments of limes parallel to the axes, as if moving along brocks in a city). More 
generally, the distance metric ly - tl" is known os the LR norm. The function 
j,v - tiR is plotted against ly - tl for various values of R in Figure 6.4. 

The derivatives of the Minkowski-R error function with respect to  the weights 
in she network are given by 

Thwe derivat!es can be evaluated using the standard back-propagation prow 
'-lure. djscnssed in Section 4.8. Examples of the application of the Minkowski-R 
"'or to networks trained using back-propagation are given in Hanson and Burr 
(1988) and Burrascano (1991). 

One of the potential difficulties of the standard sum-of-squares error is that it 
"%ives the largest contril~utions from the points which have the largest errors. 
!f there are long tails on the distributions then the solution can be dominated 
hv a very smdl number of points called outliers which have particularly large 
"rors. This is illustrat.ed by a simple example in Figure 6.5. 

A similarly severe problem can also arise from incorrectly labelled data. For 
'"stance, one single data noint for which the target value has been incorrectly 
lah~lled by a large amr completely invalidate tohe least-squares solution. ~ u n t  can 



Figure 6.5. Example of fitting a linear polynomial through a set of noisy data 
points by minimizing a sum-of-squares error. In (a) the line gives a good r e p  
resentstion of the systematic aspects of the data. In (b) a single extra data 
point has been added which lies we11 away from the other data points, showing 
how i t  dominatw the  fitting of the line. 

Techniques which attempt to solve this problem are referred to as mbust s t a b -  
tics, and a review in the context of conventional statistical methods can be found 
in Huber (1981). The use of the Minkowski error with an R value less than 2 
reduces the sensitivity to outliers. For instance, with R = 1, the minimum error 
solution computes the conditional median of the data, rather than the condi- 
tional mean (Exercise 6.5). The reason for this can be seen by considering the 
simple error 

Minimizing E(y)  with respect to y gives 

which is satisfied when y is the median of the points ( t n )  (i.e, the vdue for mfhid 
the same number of points tn have values greater than y a s  have values fess 
y). If one of the tn is taken t o  some very large wlue, this has no effect on the 
solution for y. 

~~pt-dependent variance 
6.3 
, dr have assumed that the variance of the target data can be described Sr f. 

\,!. a '.ing1e globai parameter o. In  many practical applications, this will be a 
l'oDr s8umption, and we now discuss more general models for the target data 

The s u m - o f - s q ~ ~ ~  error is easily extended to allow each output to 
hp described by its own variance parameter uk. More generally, we might wish to 

how the variance of the data depends on the input vector x (Nix and 
\\>igend, 1994). This can be done by adopting a more general description for the 
,on,jitional distribution of the target data, and then writing down the negative 
loFlikelihood in order to obtain a suitable error function. Thus, we write the 
,,,ditiond distribution of the target variables in the form 

Forming the negative logarithm of the likelihood function as before, and omitting 
additive constants, we obtain 

Ewe now multiply by 1/N as before, and take the infinite-data limit, we obtain 
the error function in the form I 

The functions uk(x) can be modelled by adding further outputs to the neural 1 
network. We shall not consider this approach further, as it is a special case of 
a much more general technique for modelling the full conditional distribution, 
which will be discussed shortly. 

An alternative approach to determining an input-dependent variance (Satch- 
I 

'~~11, 1994) is based on the result (6.46) that the network mapping which mini- 
mizes a sum-of squares error is given by the conditional expectation of the target 
data. First a network is trained in the usual way by minimizing a sum-of-squares I 

War in which the t; form the targets. The outputs of this network, when p r e  I 
'Wed with the training data input vectors xn, correspond to the conditional 
averages of the target data. These averages are subtracted from the target val- 
ues and the results are then squared and used as targets for a second network I 

~'hich is also trained using a sum-of-squares error function. The outputs of this 1 I 
network then represent the conditional averages of { t k  - { t k l ~ ) } ~  and thus a p  
Proximate the variances u;(x)  given by (6.55). 

This procedure can be justified directly as follows. Consider the infinite data 



limit again, for which we can write the error function in the form (6.65). lf ' 
again assume that the functions pk(x)  and uk(x)  have unlimited fle~ibilit ,~ th 

give 
we can first minimize E with respect to the yk by functional differentiaim lo 

I 

which, after some rearrangement, gives the standard result I 

as before. We can similarly minimize E independently with respect to the 
tions rrk(x) to give 

which is eaiIy solved for ~ Z ( X )  to give 

where we have used (6.67). We can then interpret (6.69) in terms of the two-stage 
two-network approach described above, This technique is simple and can make 
use of standard neural network software. Its principal limitation is that it s t i l l  
assumes a Gaussian form for the distribution function (since it makes use only 
of the second-order statistics of the target data). 

Since these approaches are based an maximum likelihood, they will give a 
biased estimate of the variances as discussed above, and so will tend to under- 
estimate the true variance. In extreme cases, such methods can discover patho- 
logical solutions in which the variance goes to zero, corresponding to an infinite 
IikeBhood, as discussed in the context of unconditional density estimation in 
Section 2.5.5. 

6.4 Modelling conditional distributions 

We can view the basic goal in training a feed-forward neural network as that 
of modelIing the statistical properties of the generator of the data? expressed in 
terms of a conditional distribution function p(tlx). For the sum-of-squares error 
function, this corresponds to modeliing the conditional distribution of the target 
data in terms of a Gau:sian distribution with a global variance parameter and fin 

x-dependent mean. Hdweves, if the data has a complex structure, as for exampk 
in Figure 6.3, then this particular choice of distribution can lead to a very poor 
representation of the data. We therefore seek a general framework for modelling 
conditional probability distributions. 
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input parameter conditional 
vector vector probability 

density - 

neural parametric 
nework distribution 

Fiwre 6.6. We can represent general conditional probability densities p ( t  1x1 
by considering a parametric model for the distribution oft whose parameters 
are determined by the outputs of a neural network which takm x as its input 
vector. 

In Chapter 2 we discussed a number of parametric techniques for modelling 
unconditional distributions. Suppose we use one of these techniques to  model the 
distribution p{tlO) of target variables t, where 0 denotes the set of parameters 
which gwern the model distribution, If we allow'the parameters 19 to be functions 
of the input vector x, then we can model conditional distributions. We can 
achieve this by letting the components of B(x) be given by the outputs of a 
f~ed-forward neural network which takes x as input. This leads to the combined 
densit, model and neurd network structure shown in Figure 6.6. Provided we 
consider a sufficiently general density model, and a sufficiently flexible network, 
1l.q have a framework for approximating arbitrary conditional distributions. 

For different choices of the parametric model, we obtain different represen- 
rations for the conditional densities. For example, a single Gaussian model for 
P ( ~ ( B )  corresponds to the procedure described above in Section 6.3. Another pos- 
$Ihility is t o  use a linear combination of a fixed set of kernel functions. In  thi 

the outputs of the network represent the coefficients in the linear combina- 
tion (Bishop and Legleye, 1995), and we must ensure that the coeficients are 
Positive and sum to one in order to preserve the positivity and normalization of 
the conditional density. We do not discuss this approach further as it is a special 
case of the more general technique which we consider next. 

A powerful, general framework for modelling unconditional distributions, 
baed  on the use of mixture models, was introduced in Section 2.6. M i u r e  
models represent a distribution in terms of a linear combination of adaptive ker- 
nel functions. If we apply this technique to the problem of modelling conditional 

we have 





The centres pj represent location parameters, and again the notion of, non. 1 consider first the derivatives of En with respect to those network outputs 
informative prhr (Exercise 10.12) suggests that these be represented directly I ,,icll correspond to the mixing coefficients a,. Using (6.77) and (6.78) we obtain 
the network outputs 

aE" "k 
--A- - 

If pjk = xrk*  
(6.80) 

dak @L 

As before, we can construct an error function from the likelihood by u !ye note that, as a result of the softmax transformation (6.741, the value 
(6.5) to give ,i nr; depends on all of the network outputs which contribute to the mixing 1 ,,.ficients, and w differentiating (6.74) we have 

with $ j  (t lx) given by (6.71). The minimization of this error function with respect 
to the parameters of the neural network leads to a model for the conditional den- 
sity of the target data. From this density function, any desired statistic involving 
the output variables can in principle be computed. 

En order to minimize the error function, we need to calculate the derivatives 
of the error E with respect to the weights in the neural network. These can be 
evaluated by using the standard back-propagation procedure, provided we obtain 
suitable expressions for the derivatives of the error with respect to the outputs 
of the network. Since the error function (6.77) is composed of a sum of term 
E = C, En, one for each pattern, we can consider the derivatives 6; = 8En/Jzk 
fox a particuIar pattern n and then fin$ the derimtives of E by summing over 
all patterns. Note that,  since the network output units have linear activation 
functions g(a) = a, the quantities 6; can also be written as aEn/aak, and SO are 
equivalent to the 'errors' introduced in the discussion of error back-propaga 
in Section 4.8. These errors can be back-propagated through the network LO 
the derivatives with respect to the network weights. 

We have already remarked that the (p3 can be regarded as conditional denarb: 
functions, with prior probabilities aj. As with the mixture models discussed in 
Section 2.6, it is comenient to introduce the corresponding posterior probabili- 
ties, which we obtain using Bayes?theorem, 

From the chain rule we have 

Combining /6.80), (6.81) and (6.82) we then obtain 

Using (6.75) we have 

' 

bnbining these together we then obtain 

where we have used (6.79). 
For the derivatives corresponding to the gJ parameters we make use of (6.73) 

dnd (6.78), together with (6.731, to give 

From as this leads to some simplification of the subsequent analysis. Note that, 
(6.78)) the posterior probabilities sum to unity: 

Finally, since the parameters p,k are given directly by the z;k network out- 
puts, we have, using (6.77) and (6.781, together with (6.711, 
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0.0 
0.0 0.5 1.0 

Figure 6.7. Pbt of the contours nf the conditional probabiIity density of the 
target data obtained from a multi-layer perceptron network trained using the 
same data as in Figure 6.3, but using the error function (6.77). The network has 
three Gaussian kernel functions, and uses a twdaym multi-layer perceptror 
with five ' tanh' sigmoidal units in the hidden layer, and nine outputs. 

An example of the application of these techniques t o  the mtimation of con- 
ditional densities is given in Figure 6.7, which shows the contours of conditional 
density corresponding to the data set shown in Figure 6.3. 

The outputs of the neural network, and hence the parameters in the rnieure 
model, are necessarily continuous single-valued functions of the input mriahl* 
However, the model is able to produce a conditional density which is unirnodal for 
some values of x and trirnodal for other vaEues, as in Figure 6.7, by rnodulatin' 
the amplitudes of the mixing components, or priors, %(XI. T h i ~  can be seen 
Figure 6.8 which shows plots of the three priors aj(z) as functions of z. It ci 
be seen that for a: = 0.2 and x = 0.8 only one of the three kernels has a non-ze 
prior probability. At  x = 0.5, however, all three kernels have significant prior5 

Once the network has been trained it can predict the conditional densi 
function of the target data for any given value of the input vector. This co 
ditional density represents a complete description of the generator of the data* 
so far as the problem of predicting the value of the output vector is concerned- 
From this density function we can cdculate more specific quantities which ma!' 
he of interest in different applications. One of the simplest of these is the mean* 
corresponding to the conditional average of the target data, given by 

Figure 6.8. Plot of the priors ccj (x) as a function of a: for the  three kernel func- 
tions from the network used to plot Figure 6.7. At both small and large -values 
of s, where the conditional probability density of the target data is unimodaI, 
only one of the kernels has a prior probability which differs significantly from 
zero. A t  intermediate values of x, where the conditional density is trimodal, 
the three kernels have comparable priors. 

v:llere we have used (6.70) and (6,71). This is equivalent to the function corn- 
Plrted by a standard network trained by Ieast squares, and so this network can 
reproduce the conventional least-squares result as a special case. We can likewise 
'""luate the variance of the density function about the conditional average, to 
zive 

' v l l q ~ ~  WE haw used (6.70), (6.71) and (6.90). This is more general than the 
r" r tcs~~nding  leaqt-squares result since this variance is allowed to  be a general 
f'rWian of x. Simi!;tr results can be obtainetl for other moments of the condi- 
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Figure 6.9. This shows a pIot of { t lx)  against x (solid curve) calculated from 
the conditional density in Figure 6.7 using (6.903, together with corresponding 
plots of {t 1s) f s (x) (dashed c u m )  obtained using (6.92). 

tional distribution, Plots of the mean and variance, obtained from the condition, 
distribution in Figure 6.7, are shown in Figure 6.9. 

For some applications, the distribution of the target data will consist of a lim- 
ited number of distinct branches, as is the case for the data shown in Figure 6.3. 
In such cases we may be interested in finding an output value corresponding to  
just one of the branches (as would be the case in many controt applications for 
example). The most probable branch is the one which has the greatest associated 
'probability mass'. Since each component of the mixture model is normalizedT 

&(tlx) dt = I, the most probable branch of the solution, assuming the  C Q ~  

ponents are well separated and have negligible overlap, is given by 

In the mixtureof-experts model (Jacobs ef aL, 1991) this corresponds to select,in 
the output of one of the component network modules. The required value o f t  Is 

then given by the corresponding centre pj .  Figure 6.10 shows the most 
branch of the solution, as a function of s, for the same network a~ used to dot 
Figure 6.7. 

Again, one of the limitations of using maximum likelihood techniques r 
determine variance-like quantities such as the ui,  is that it is biased (Section 2.2 
In particular, it tends to underestimate the variance in regions where t.llere la 
limited data. 
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Figure 6.10. Plot of the central d u e  of the most probable kernel s a function 
of z from the network used to pIot Figure 6.7. This gives a discontinuous 
functional mapping from x to t which at every value of x Iies well inside a 
region of significant probability density. The diagram should be compared with 
the corresponding continuous mapping in Figure 6.3 obtained from standard 
!east squares. 

6-4.1 Periodic varjables 

So far we have considered the problem of 'regression' for variables which live 
on the red axis (-m, w}. However, a number of applications involve angle-like 

I 

output variables which live on a finite interval, usudly ( 0 , 2 ~ )  and which are in- 
trinsically periodic. Due to the periodicity, the techniques described so far cannot 

I 

1~ applied directly. Here we show how the general framework discussed above 
can be extended to estimate the conditional distribution p(8lx) of a periodic 
miable 0, conditional on an input vector x (Bishop and Legleye, 1995). 

The approach is again based on a mixture of kernel functions , but in this case 
the kernel functions themselves are periodic, thereby ensuring that the overall 
density function will be periodic. To motivate this approach, consider the prob 
lam of modelling the distribution of a velocity vector v in two dimensions. Since 

lives in a Euclidean plane, we can model the density function p ( v )  using a 
mixture of conventional spherical Gaussian kernels, where each kernel has the 
form 

where (v,, v,) are the Cartesian components of Y, and ( p , ,  py) are the compo- 
"Pnts of thc centr~ p of t h e  kernel. From this we can extract the conditional 
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distribution of the polar angle 0 of the vector v, given a value for v = I I Y ~ I ,  7 
is easily done with the transformation v, = ucos6, v, = vsin6, and dckl 
Q0 to be the polar angle of p, EO that p, = pcosBo and p, = psine0, ,b 
p = IIpII. This leads to s distribution which can be written in the form 

where the normalization coefficient has been expressed in terms of the zprc 
order modified Bessel function of the first kind, I. (m). The distribution (6. 
is known as a circular nomal or van Mises distribution (Mardia, 1972). : 
parameter m (which depends on v in our derivat;ion} is andogous t o  the I 

verse) variance parameter in a conventional normal distribution. Since (6.95 
periodic, we can construct a general representation for the conditional dent 
of a periodic variable by considering s mixture of circular normal kernels, with 
parameters governed by the outputs of a neuraI network. The weights in the 
network can again be found by maximizing the likelihood function defined over 
a set of training data. 

An example of the application of these techniques to the determination 
wind direction from satellite radar scatkerometer data is given in Bishop : 
Legleye (1995). This is an inverse problem in which the target data is mum- 
valued. For ~roblerns involving periodic variables in which the target data is 
effectively single-valued with respect to the input vector, then a single circular 
normal kernel can be used. 

An alternative approach to  modelling conditional distributions of perin 
variables is discussed in Exercise 6.8. 

6.5 Estimating posterior probabilities 

dic 

So far in this chapter we have focused on 'regression' problems in which 
target variable are continuous. We now turn to a consideration of error funrtil 
for classification problems in which the target variables represent discrete cl 
labels (or, more generally, the probabilities of class membership). 

When we use a neural network to solve a classification problem, there are t 
distinct ways in which we can view the objectives of network training. At the sim- 
pler level, we can arrange for the network to represent a non-linear discriminant 
function so that, when a new input vector is presented to the trained network. 
the outputs provide a classification directly. The second approach, which is morP 
general and more powerful, is to use the network to model the posterior proha- 
bilities of class membership. TypicaIly there is one output unit for each possihIe 
class, and the activation of each output unit represents the corresponding POS- 

terior probability p(Ck/x), where Ck is the kth class, and x is the input vect 
These probabilities can then be used in a subsequent decision-making stNe 
arrive at a classification. 

By arranging for the network outputs to approximate posterior probabilitl 
we can exploit a number of results which are not available if the network 

the 
DIiS 
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as a non-linear discriminant (Richard and Lippmann, 1991). These 

Jf7nimum error-rate decisions 
From the discussion of optimal classification in Section 1.9 we know that, to 
minimize the probability of rnisclassification, a new input vector should be 
assigned to the class having the largest posterior probability. Note that  the 
netmork outputs need not be close to 0 or 1 if the class-conditional density 
functions are overlapping. Heuristic procedures, such as applying extra 
training using those patterns which fall to generate outputs close to the 
target values, will be counterproductive, since this alters the distributions 
and makes it less likely that the network will generate the correct Bayesian 
pobabilities. 

Outputs sum fo 1 
Since the network outputs approximate posterior probabiIities they should 
sum to unity This can be enforced explicitly as part of the choice of network 
structure as we shall see. Also, the average of each network output over 
a11 patterns in the training set should approximate the corresponding prior 
class probabilities, since 

These estimated priors can be compared with the sample estimates of the 
priors obtained from the fractions of patterns in each class within the 
training data set. Differences between these two estimates are an indication 
that the network is not modelling the posterior probabilities accurately 
(Richard and Lippmann, 1991). 

:ompensating for diferent prior probabilities 
In some of the conventional approaches to pattern classification discussed 
in Chapter 1, the posterior probabilities were expressed through Bayes' 
theorem in the form 

and the prior probabilities P(Ck) and class-conditional densities p(x lCk) 
I 

were estimated separately. The neural network approach, by c o n t r ~ t ,  p r e  
vides direct estimates of the posterior probabilities, Sometimes the prior I 
probabilities expected when the network is in use differ from those repre- I 

scnted by the training set. It is then it is a simple matter t o  use Bayes' 
theorem (6.97) to make the necessary corrections to the network outputs. 
This is achieved simply by dividing the network outputs by the prior prob- 
abilities corresponding to the training set, multiplying them by the new 
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prior probabilities, and then normalizing the results. Changes in the prior 
probabilities can therefore be accommodated without re-training the net- 
work. The prior probabilities for the training set may be estimated simply 
by evaluating the fraction of the training set data points in each cl&A 
Prior  roba abilities corresponding to  the network's operating avironrnent 
can often be obtained very straightforwardly since only the class labels ,,, 
needed and no input data is required. Aa an example, consider the prob 
lem of classifying medical images into knormd' and 'tumour'. When u s d  
for screening purposes, we would expect a very small prior probability ,f 
'turnour'. To obtain a good variety of tumour images in the training set 
would therefore require huge numbers of training examples. An alternatiw 
is to increase artificially the proportion of tumour images in the trdning 
set;, and then to compensate for the different priors on the test data as 
described above. The prior probabilities for tumours in the general popu- 
lation can be obtained horn medical statistics, without having to collect the 
corraspanding images. Correction of the network outputs is then a simple 
matter of multiplication and division. 

Combining the outputs of several networks 
Rather than using a single network to  solve a complete problem, there is 
often benefit in breaking the problem down inta smaller parts and treating 
each part with a separate network. By dividing the network outputs by 
the prior probabilities used during training, the network outputs become 
likelihoods scaled by the unconditional density of the input vectors. These 
scaled likelihoods can be multipIied together on the assumption that the 
input vectors for the various networks are independent. Since the scaling 
factor is independent of class, a classifier based on the product of scaled 
likelihoods will give the same results as one based on the true likelihoods. 
This approach has been svccessfully applied to problems in speech recog- 
nition (Bourlard and Morgan, 1990; Singer and Lippmann, 1992). 

Minimum risk 
As discussed in Chapter 1, the goal of a classification system may not 
always be to minimize the probability of misclassification. Different mis- 
cla~sifications may carry different penalties, and we may wish to minimize 
the  overall loss or risk (Section 1.10). Again the medical screening appli- 
cation provides a good example. It may be far more serious to rnis-classifJ' 
a tumour image as normd than t o  mis-classify a normal image as that of 
a tumour. In this case, the posterior probabilities from the network call . . 
be combined with a suitable matrix of loss coefficients to allow the mml- 
mum risk decision to be made. Again, no network re-training is required to 
achieve this. However, if the required loss matrix elements are known hefore 
the network is trained, then it may be better to modify the error function 
as will be discussed for the case of a sum-of-squares error in Section 6.6.2. 

RrjPcfion t h ~ s h o l d s  
In Section 1.10.1 we introduced the concept of a rejection threshold, which 
is such that if all of the posterior probabilities fall below this threshold then 

classification decision is made. Alternative classification techniques can 
then be applied to the rejected cases. This reflects the costs associated 
with making the wrong decisions balanced against the cost of alternative, 
classification procedures. In the medical image classification problem, for 
instance, it may be better not to try to cIassify doubtful images automati- 
cally, but instead to have a human expert provide a decision. Rejection of 
input vectors can be achieved in a principled way, provided the network 
outputs represent posterior probabilities of class membership. 

rtl subsequent sections of this chapter we show how the outputs of a network can 
be interpreted approximations to posterior probabilities, prwided the error 
function used for network training is carefully chosen. We also show that some 
error functions allow networks to represent non-linear discriminants, even though 
the output values themselves need not correspond to probabilities. 

8.6 Sum-of-squares for classification 

In the previous section we showed that, for a network trained by minimizing a 
sum-of-squares error function, the network outputs approximate the conditional 
averages of the target data 

lo the case of a clasification problem, every input vector in the training set is 
]ahelled by its class membership, represented by a set of target values tz .  The 
targets can he chosen according to a variety of schemes, but the most convenient 
i~ the 1-of-c coding in which, for an input vector xn from class CL, we have 

= fiki where Ski is the Kronecker delta symbol defined on page xiii. In this 
'""e the target values are precisely known and the density function in target 
+Pare becomes singular and can be written as 

'Incp P!CI]X) is the probability that x belongs to class CI. If we now substitute 
It;.Pg) into (6.98) we obtain 

Co ' h a t  the outputs of t h ~  network correspond to Bayesian posterior probabilities 
E'i'hite, Z989; Riclrard and Lipprnann, 1991). 
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If the network outputs represent probabilities, then they should lie in th, 
range (0, I )  and should sum to 1. For a network with linear output units, trained 
by minimixing a sum-of-squares error function, it was shown in  Section 6.1.2 
that if the target values satisfy a linear constraint, then the network outputs will 
satisfy the same constraint for an arbitrary input vector. In the case of a I-ofi, 
coding scheme, the  target values sum to unity for each pattern, and so the net. 
work outputs will also always sum to  unity. However, there is no guarantee that 
they will lie in the range (0 , l ) .  In fact, the sum-of-squares error function is not 
the most appropriate for classification problems. It was derived from maximum 
likelihood on the assumption of Gaussian distributed target data. However, the  
target values for a 1-of-c coding scheme are binary, and hence far from having 
a Gaussian distribution. Later we discuss error measures which are more ap 
propriate for classification problems. However, there are advantages in using a 
sum-of-squares error, including the fact that the determination of the output 
weights in a network represents a linear optimization problem. The significance 
of this result for radial basis function networks was described in Chapter 5 .  I& 
therefore discuss the use of a sum-of-squares error for classification problems in 
more detail before considering alternative choices of error function. 

For a two-class problem, the 1-of-r: target coding scheme described above 
leads to a network wit>h two output units, one for each class, whose attiva?,ions 
represent the corresponding probabilities of class membership. An a1ternatiz.e 
approach, however, is to use a single output y and a target coding which sets 
tn = I if x" is from class C1 and tn = 0 if xn is from class Cz. In this case, the 
distribution of target values is given by 

Substituting this into (6.98) gives 

and so the network output y(x) represents the posterior probability of the input 
vector x belonging to class C1. The corresponding probability for class C:! is then 
given by P(C2 lx) = 1 - y (x). 

6.6.1 Interp~tation of hidden units 

In Section 6.1.1 we derived the expression (6.29) for the fmal-layer weights which 
minimizes a sum-of-squares error, for networks with linear output units. By ?l lb  

stituting this result back into the error function we obtain an expression in which 
the only adaptive parameters are those associated with hidden units, which Ive 

denote by G .  This expression sheds light on the nature of the hidden unit rely 
resentation which a network learns, and indicates why multi-layer non-li11Pnr 
neural networks can he effective as pattern clnssifrcation systems (Webb md 
Lowe, 1990). 
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\ffriting (6.25) in matrix notation we obtain 

,\-here 2, W and T are defined on page 199. We now substitute the solution 
ifi.zg) lor the optimal weights into (6,103) to give I 

I 

Bv using some matrix rnmipuIation (Exercise 6.9) we can write this in the form 

Here ST is given by 

and the components of E are defined by (6.24). We see that this can be interpreted 
as the total covariance matrix for the activations at the output of the final layer 
of hidden units with respect to  the training data set. Similarly, Ss in (6.105) is 
given by 

ld~ich  can be interpreted we shall see) as a form of between-class covariance 
lnatrix. 

Since the first term in the  curly brackets in (6.105) depends only on the 
target data it is independent of the remaining weights iG iin the network. Thus, 
'ni11imizing the sum-of-squares error is equivalent to maximizing a particular 
'Iiscriminant function defined with respect to the activations of the final-layer I 

[udden units given by 

'o'" that,  if the matrix ST is ill-conditioned, then the inverse matrix ST' should 
t ''F I 'Vla ced hy the pseudeinwrse S T .  The criterion (6.108) has a clear sirnilarltyl 

'" fhc Fisher discriminant function which is discussed in Section 3.6. Nothing 
'"R is specific to the multi-layer perceptron, or indeed to neural networks. The 
"mp result is obtained regardless of t h e  functions zj ( x ;  %) and applies to any 
Er!nprnlised linear discriminant in which the basis functions contain adaptive 



parameters. 
The role play& by the hidden units can now be stated as follows. The Weighls 

in the find layer are djusted to produce an optimum discrimination of the 
classes of input vectors by means of a linear transformation. Minimizing the 
error of this linear discriminant requires that the input data undergo a 
linear transformation into the space spanned by the activations of the hidden 
units in such a way as to maximize the discriminant function given by (6.108)~ 

Further insight into the nature of the matrix Sg is obtained by considering 
a pwticular target coding scheme. For the 1-ofc target coding scheme we ca, 
write (6.107) in the form (Exercise 6.10) 

where Nk is the number of patterns in class Ck and ?Zk is the mean activation 
vector of the hidden units for dl training patterns in class Ck, and is defined by 

Note that S B  in (6.109) differs from the conventional between-cIass cmrian 
matrix introduced in Section 3.6 by having factors of N: instead of Nk in the su 
over classes. This represents a strong weighting of the feature extraction criteri~ 
in favour of classes with larger numbers of patterns. If there is a significant 
difference between the prior probabilities for the training and test data sets, 
then this effect may be undesirable, and we shdl shortly see how to correct for it 
by modifying the sum-of-squares error measure. As discussed in Section 3.6, there 
are several ways to generalize Fisher" origind hwclass discriminant criterion to  
several classes, alE of which reduce to the original Fisher result as a special case- 
In general, there is no way to decide which of these will yield the best results. For 
a two-class probIem, the between-class covariance matrix given in (6.109) differs 
from the  conventional one only by a adtiplicative constant, so in th i s  case the 
network criterion is equivalent to the original Fisher expression. 

In earlier work, GalIinari et at. (1988, 1991) showed that, for a network 
linear processing units with a 1-of-c target coding, the minimization of a sum-( 
squares error gave a set of input-tehidden weights which maximized a criteric 
which took the form of a ratio of determinants of between-class and total covari- 
ance matrices defined at the outputs of the hidden units. The results of 1t-ebh 
and Lowe (1990) contain this result as a special case. 

6.6.2 Weighted sum-of-squares 

We have seen that, for networks with linear output units, minimization of a 
sum-of-squares error at the network outputs maximizes a particular non-linear 
feature extrwtion criterion 
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at the hidden units. For the 1-of-c coding scheme, the corresponding between- 
I 

rles matrix, given by (6.109), contains coefficients which depend on 
the number of patterns in ciass Ck. Thus, the hidden unit representation 

obtained by maximizing this discriminant function will only be optima1 for a 

Pa flicular set of prior probabilities NkJN. If the prior probabilities differ between 
wining and test sets, then the feature extraction need not be optimal. 

A related difficulty arises if there are different costs associated with different 
mjsclassificatioes, so that a general loss matrix needs to be considered. It has 
been suggested (Low and Webb, 1990, 1991) that modifications to the form of 
the sum-of-squares error to take account of the loss matrix can lead to improved 
feature extraction by the hidden layer, and hence t o  improved classification per- 
Forrnance. I 

To deal with different prbr probabilities between the training set and the 
test set, Lowe and Webb (1990) modify the sum-of-squares error by introducing 
a weighting factor K, for each pattern n so that the error function becomes 

where the weighting factors are given by 
1 1  

for pattern n in class C k  

where F(clt)  is the prior probability of class Ch for the test data, and Pk = Nk/N l1 
is the corresponding (sample estimate of the) prior probability for the training 
data. It is straightforward to show (Exercise 6.12) that the total covariance 

I 
I 

'natrix ST then becomes 

n.llich is the samplebased estimate of the total covariance matrix for data with 
I 

Prior clms probabilitim P(G). In (6.114) the E are given by 

which agan is the sample-based estimate of the value which E would take for 
data having the prior probabilities F(ck) .  Similarly, assuming a 1-of-c target 
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coding scheme, the between-class c m i a n c e  matrix is modified to become ,rllich is a particular case of the binomial distribution called the Bernoulli d B  
cribl,tian With this interpretation of the output unit activations, the likelihood 

SB = x N ~ F ( c ~ ) ~ ( P  - z)(E~ - E ) ~  (6.1 16) uE n b s e d n g  the training data set, assuming the data points me drawn indepen- 
k dentlv from this distribution, is then given by 

which is the sampkbxed estimate of the between-class covariance matrix f,, 

data with prior probabilities PI&). 
The effects if an arbitrary iosh matrix can similarly be taken into account 

n 

by modifying the target coding scheme so that, for a pattern n which is label]d ,$, usual, it is more convenient t o  minimize the negative logarithm of the l i k e  
as belonging to class Cl, the target vector has components t! = 1 - Lsk, where tihood This Ieads to the cross-entropy error function (Hopfield, 1987; Baum 
Llk  represents the loss in assigning a pattern from class CI  to class Ch. ~h~ ,d 1frilczek, 1988; Solla et al., 1988; Ninton, 1989; Hampshire and Pearlmutter, 
total cwariance matrix is unaltered, while the between-class covariance matrix 1990) in the form 
becomes (Exercise 6.13) I 

E = - {t" In y" + (1 - tn) In(1- yn)} . (6.120) 
R 

(6.117) 
I \ilp r,l~all discuss the meaning of the term 'entropy' in Section 6.10. For the 

moment let us consider some elementary properties of this error function. which reduces to the usual expression when Llk = 1 - bIk. Examples of the , Differentiating the error function with respect to yn we obtain 
appIication of these techniques to a problem in medical prognosis artre given in , 
Lowe and Webb (1990). 

6.7 Cross-entropy far twa classes 

We have seen that, for a 1-of-e target coding scheme, the outputs of a network 1 
trained by minimizing a sum-of-squares error function approximate the posterior 
probabilities of class membership, conditioned on the input vector. However, the 
sum-of-squares error was obtained from the maximum likelihood principle by 
assuming the target data was generated from a smooth deterministic function 
with added Gaussian noise. This is clearly a sensible starting point for regression 
problems. For ~Iassification problems, however, the targets are binary variabIes, 
and the Gaussian noise model does not provide a good description of their clip 
tsibution. We therefore seek more appropriate choices of error function. 

To start with, we consider problems involving two classes. One approach 
sueh problems would be to use a network with two output units, one for each 1 class. This type of representation is discussed in Section 8.9. Here we discuss an 
alternative approach in which we consider a network with s single output. Y- 
would llke the value of y to represent the posterior probability P(41x) for rhus 1 
C1. The posterior probability of class C2 will then by given by P(C21x) = 1 - g+ 
This can be achieved if we consider a target coding scheme for which t = 1 if 
the input vector belongs to class C1 and E = O if it belongs to class C2. I%+ Can 

combine these into a single expression, so that the probability of observing 1 
target value is 

p(t1x) = y t ( l  - 

Tlie absolute minimum of the error function occurs when 

yn = tn for all n. (6.122) 

In Section 3.1.3 we showed that,  for a network with a single output y = g(a )  
"hose value is to be interpreted as a probability, it is appropriate to  consider 
t l l ~  logistic activation function 

{'hich has the property 

rJambining (6.121) and (6.124) we see that the derivative of the error with respect 
'" takes t h e  simple form 



Here 6" is the 'error' quantik which is back-propagated through the nebopt in 
order to compute the derivatives of the error function with respect to the netnrotk 
weights (Seetion 4.8). Note that (6.125) has the same form as obtained for 
sum-&-squares error function and linear output units. We see that  thert, . 

'S B natural pairing of error function and output unit activation function which . 
mveg rise to this simple form for the derivative. Use of the logistic form of activation 

function also leads to corresponding simplifications wben evaluating the HPssian 
matrix (the matrix of second derivatives of the error function). 

From (6.120) and (6.1221, the value of the cross-entropy error function at 
minimum is given by 

its 

For the l-of-c coding scheme this vanishes. However, the error function (6.120) 

6.7: Cross-entropy far two ci~~ctsses 233 

is also the correct one to use wben tn is a continuous variable in the range 
Figure 6.11. Plots of the classconditiond densities used to generate a data set representing the probability of the input vector xn belonging to class C, (see 
to demonstrate the interpretation of network outputs a s  posterior probabilities. 

Section 6.10 and Exercise 6.15). In this case the minimum value (6.126) of the A total of 2000 data points were generated from these densities, using equal 
error need not vanish, and so it is convenient to subtract off this value from the prior probabilities. 
original error function to give a modified error of the form 

Since (6.126) is independent of the network outputs this does not affect t 
location of the minimum and so has no effect on network training. The modifi 
error (6.127) always has its minimum at 0, irrespective of the particular traini 
set. 

As a simple illustration of the interpretation of network outputs as probab 
ties, we consider a simple twc-class problem with one input variable in which t 
class-conditional densities are given by the Gaussian mixture functions shu 
in Figure 6.11. A multi-layer perceptron with five hidden units having 'tal 
activation functions, and one output unit having a Iogistic sigmoid a c t i ~ t i  
function, was trained by minimizing a cross-entropy error using 100 cycIef; of 
the BFGS quasi-Newton algorithm (Section 7.10). The resulting network 
ping function is shown, along with the true posterior probability calculated using 
Bayes' theorem, in Figure 6.12. 

6 -7.1 Sigmoid activation functions 

.LIC- 

m 
lb' 
on 

al.. 1995). In this case we need to consider the distributions of the outputs of 
the hidden units, represented here by the vector z for the two clas~m. We can 
generalize the discussion by assuming that these class-conditional densities are 
described by 

which is a. member of the ~ n e n t i a l  famdy of distributions (which includes 
nlany of the common distributions as specid cases such as Gaussian, binomid, 
E~moulli, Poisson, and so on). The parameters t9k and 4 control the form of the 
distribution. In miting (6.128) we are implicitly assuming tha t  the distributions 
differ only in the paramekrs Ok and not in #. An example would be two Gaussian 
djstrihutians with different means, but with common covariance matrices. 

Using Bayes' theorem, we can write the posterior probability for class C1 in 
ihc fom 

In Section 3.1.3, the logistic sigmoid activation function was motivated for a - - 1 
singlelayer network by the goal of ensuring that the network outputs represent (6.129) 

posterior probabiliti~, with the assumption that the class-conditional densities 
1 -I- exp(-a) 

can be approximated by normal distributions. We can apply a similar argument 
to the network outputs in the case of multi-layered networks (Rumelhart 

"Iiich is a logistic sigmoid function, in which 



Figure 6.12. The result of training a multi-layer perceptran on data generated 
from the density functions in Figure 6.11. The solid curve shows the output 
of the trained network as a function of the input variable x ,  while the dashed 
curve shows the true posterior probability P(C1Jx)  calculated from the class- 
conditional densities using Bayes' theorem. 

Using (6.128) we can write this in the form I 
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~ , 2  PmpeP-ties of the cross-entropy e m r  

where we have defined 

Thus the network output is given by a logistic sigmoid activation function acting 
on a weighted linear combination of the outputs of those hidden units which send 
connections to the output unit. 11 

I t  is dear that we can apply the above arguments to the activations of hidden I 

units in a network. Provided such units use logistic sigmoid activation function5- 
we can interpret their outputs as probabilities of the presence of cornspondin!: 
'features' conditioned on the inputs to the units. 

I 

1 

SilpPose we write the network output, for a particular pattern n, in the form 
, = tn + cn. Then the cross-entropy error function (6.127) can be written as 

,:/ 

E = - {tn l n ( l+  Pitn) + (1 - t") ln(1 - fn/(l - tn))} (6.134) 

30 t h ~ t  the error function depends on the relative errors of the network outputs. 
This should be compared with the sum-of-squares error function which depends 
,, the (squares of the) absolute errors. Minimization of the crossentropy error 
Function will therefore tend to result in similar relative errors on both small 
ilnd large target values. By contrast, the sum-of-squares error function tends to 
give slmilar absolute errors for each pattern, and will therefore give large relative 
crrors for small output values. This suggests that  the cross-entropy error function 
is likely to perform better than sum-of-squares at estimating small probabilities. 

For binary targets, with tR = 1 for an input vector xm from class C1 and 
tn = 0 for inputs from class Cz, we can write the cross-entropy error function 
(6 134) in the form 

where we have used zln z -+ 0 for z -t 0. If we suppose that  cn is small, then 
t h ~ :  erroT function becomes 

~vhere we haw expanded the logarithms using ln(1 + a} 2: z and noted that if 
T, E (0, I) then tn < 0 for inputs horn class C1 and E" > 0 for inputs from class 
C2- The result (6.136) has the form of the Minkowski-R error function for R = 1, 
di~cussed earlier. Compared to the sum-of-squares error function, this gives much 

weight to smaller errors. 
x e  have obtained the cross-entropy function by requiring that the network 

o u f ~ u t  y represents the probability of an input vector x beIonging to class C1. We 
'an now confirm the consistency of this requirement by considering the minimum 
Of the error function for an infinitely l a r ~  data set, for which we can write (6.120) 
in the form 

the network function y(x) is independent of the target value t we can write 
('.-137) in the form 



where, as before, we have defined the conditional average of the target data 

If we now set the functional derivative (Appendix D) of (6.138) with respec! 
to y(x) to zero we see that the minimum of the error function occurs when 

so that, as for the! sum-of-squares error, the output of the network approximats 
the conditionat average of the target data for the given input vector. For the 
target coding scheme which we have sbdopted we have 

Substituting (6.141) into (6.139) we find 

as required. 

6.8 Multiple independent attributes 

In all of the classification probIems which we have considered so far, the aim has 
been to  assign new vectors to  one of c mutually exdusive cIasses. However. in 
some applications we may wish to use a network to determine the probabilities 
of the presence or absence of a number of attributes which need not he rnut~ldb 
exclusive. In this case the network has multiple outputs, and the value of the 
output variable yk represents the probability that the ktb attribute is present. 
If we treat the a t t r i bu t~  as independent, then the distribution of target vabla 
will satisfy 

We can now use (6.118) for each of the conditional distributions t o  give 
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now construct the likelihood function and take the negative logarithm in 
I f ,  t ,.unl way, we obtain the error function in the form 

,f*lth this choice of error function, the network outputs should each have a 10- 
ds[ic sigmoidal activation function of the form (6.123). Again, for binary target 
:ariable~ t t ,  this error function vanishes at its minimum. If the t! are probabil- 
ities in the range (0, I), the minimum of the error will depend on the particulm 
data set, and so it is convenient to subtract off this minimum value to give 

which always has an absolute minimum value with respect to the {y;) of zero. 

6.9 Cross-entropy for multiple classes 

IF7c now return to the conventional classification problem involving mutudIy 
exclusive classes, and consider the form which the error function should take 
when the number of classes is greater than two. Consider a network with one 
output yr, for each clus, and target data which has a I-of-c coding scheme, SO 
that t; = Skr for a pattern n from class Cs. The probability of observing the set 
of target values t! = Scl ,  given an input vector xa, is just p(Cl lx) = yl. The value 
of the conditional distribution for this pattern can therefore he written as 

If we form the likelihood function, and take the negative logarithm as before, we 
~ h t a i n  an error function of the form 

absolute minimum of this error function with respect to the {YE} occurs 
~l r  = t; for all values of k and n, At the minimum the error function takes 

'he t ~ t l ~ ~  
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For a iqf-e coding so cheme this minimum value is 0. However, the error hnetian 
(6.14e1 ir still rnlid- _ . as we shall see, when te is a continuous ~ariab)~ in thp 

I 
range 0.1) r e p r e a e n e t i n g  the probability that input x" belongs to class C, in 
this cse the minimtLr 'Irn of the error function need not vanish (it represpnts 
entrop-of the distsiti - 5ution of target variables, as will be discussed shortlq-l, lt i, 
then cgn.enient to  Sr Flibtract off this minimum value, and hence ohtain the 
functiog in the form s- 

which 5 non-negati\-,~:e, and which equals zero when y t  = $2 for all k and n. 
now consider < the corresponding activation function which shouid he 

for the o u t F r e u t  units. If the output values are to be interpreted as prob 
&ilitjp; they must I i i  . ie in the range (0, I),  and they must sum to unity. This can 
be by using* q a generalization of the logistic sigmoid activation functiw 
which -?kes the for- 

which k known aq t: the normalbed exponential, or softmm activation firnct.ion 
(Bridle. 1990). The term softrnax is used because this activation function rep 

resents a smooth ver+rsion of the winner-takes-all activation model in which t b ~  
unit e t h  the larger4 input has output +l while all other units have output 0. 
If the mponentinls i + in (6.151) are modified to have the form exp(oak),  then the 
winne:-*akes-all mti- .~ ivation is recovered in the limit P t m. The softrnax activ* 
tion figction can b- R regarded a s  a generalization of the logistic function, since 
it can b written in the form 

where .!:: is given b-cy 

Fro,il R ~ ~ P S '  theorem, the posterior probability of class Ck is given by 

sl,\,stituting (6.154) into (6.155) and rearranging we obtain 

and we have defined 

Thp result (6.156) represents the final layer of a network with softmax activation 
functions. and shows that (~rovided the distribution (6.154) is appropriate) the 
out,pi~ts can be interpreted as probabilities of class membership, conditioned on 
the outputs of the hidden units. 

In waluating the derivatives of the softmax error hnction we need to consider 
Illf' inputs to all output units, and so we have (for pattern n) 

Ar ai th  the logi:->stic sigmoid, we can give a very general rnotivatiol~ fo' lbc 

sofirnzx activation f <unction by considering the posterior probability that a ]lid- 

den u r  activation vector z beiongs to class Ck. in which the class-conditions' 
densirs are assum-d to belong to the family of exponential distributions of 
geners form 

him (6.151) we have 

':l1ilp from (6.150) we have 

6'E" 
-- - 

t k' -- 

a ~ k '  Yk' 

"[l)s'itutina (6.161) and (6.162) into (6.160) we find 
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which is the same resuIt as found for both the sum-of-squares error (with a 
linear activation function) and the two-class cross-entropy error (with a logistC 
activation function). Again, we see that there is a natural pairing of error funct.ion 
and activation function. 

6.10 Entropy 

The concept of entropy was originally developed by physieisbs in the context ,f 

equilibrium thermodynamics and later extended through the development of 
tistical mechanics. It was introduced into information theory by Shannon (1948). 
An underatanding of basic information theory leads to further insights into the 
entropy-based error measures discussed in this section. It also paves the way [or 
an introduction to the minimum description length framework in Section 10.10. 
Here we consider two distinct but related interpretations of entropy, the first 
based on degree of disoder and the second based on infomation content. 

Consider a probability density function p(z) for a single random variable z. 
I t  is convenient to represent the density function as a histogram in which the 
x-axis has been divided into bins labelled by the integer i. Imagine constructing 
the histogram by putting a total of N identical discrete objects into the bins, 
such that the i th bin contains N, objects. We wish to count the number of 
distinct ways in which objects can be arranged, while still giving rise to the 
same histogram. Since there are N ways of choosing the first object, ( N  - 1) 
ways of choosing the second object, and so on, there a total of N !  ways to  select 
the N objects. However, we do not wish to count rearrangements of objects 
within a single bin. For the ith bin there are N,! such rearrangements and SO the 
total number of distinct ways to arrange the objects, known as the rnultiplicit!: 
is given by 

The entropy is defined as (a constant times) the negative logarithm of the mtlI- 

tiplicity 

We now consider the limit N - oo, and make use of Stirling's approximatio" 
In N !  -- N In N - N together with the relation Ci Ni = N ,  to give 

Figure 6.13. Examples of two histograms, together with their entropy values 
defined by (6.166). The histograms were generated by sampling two Gaussian 
functions with variance parameters a = 0.4 and n = 0.08, and eeach contain 
I000 points. Note that the more compact distribution has a lower entropy, 

where pi = N,/N (as N + a) represents the probability corresponding to the i th  
bin. The entropy therefore gives a measure of the number of different microstates 
(arrangements of objects in the bins) which can give rise to a given macrostate 
(i.?. a given set of probabilities pi). A very sharply peaked distribution has a very 
low entropy, whereas if the objects are spread out over many bins the entropy is 
much higher. The smallest value for the entropy is 0 and occurs when all of the 
Pmbability mass is concentrated in one bin (so that one of the p, is 1 and all 
+flp rest are 0). Conversely the largest entropy arises when all of the bins contain 
prllral probability mays, so that pi = 1/M where M is the total number of bins. 
'Shis is easily seen by maximizing (6.166) subject to the constraint Cipi = 1 
' Y j V  a Lagange multiplier (Appendix C). An example of two histograms, with 
"hir respective entropies, is shown in Figure 6.13. 
br continuous distributions (rather than histograms) we can take the limit 

n-hich the number M of bins w>es to infinity, If A is the width of each bin, 
' h ~ "  the probability m x s  in the $h bin is pi = p(zi}A, and so the entropy can 
!'P W t t e n  in the form 

. . 

S = Iim Cp(x i )~  ln Cp(xi)A} 
M - m  

i = l  



242 6: Ewor Functions 

where we have used J p ( x )  dx = 1. The second term on the right-hand side 
diverges in the limit M -t m. In order to define a meaningful entropy measure 
for continuous distributions we discard this texrn, since it is independent of prZ), 
and simply use the first term on the right-hand side of (6.1681, which is called 
the d i f l e ~ a t i a l  entropy. This is reasonable, since if we measure the difference in 
entropy between two distributions, the second term in (6,168) would cancel. For 
distributions which are functions of several variables, we define the entropy to 
be 

where x = (xl,. . . , x d I T .  
It is interesting to consider the form of distribution which gives rise to the 

maximum of the entropy function. In order to find a meaningful maximum it is 
necessary to constrain the variance of the distribution. For the case of a single 
variable x on the infinite axis (-m, m), we maximize 

subject to the constraints that the distribution be normalized and that the mean 
and variance of the distribution have specified d u e s  

Introducing Lagrange multipIiers XI, A2 and X3 (Appendix C) for each of the 
constraints, we can use calculus of variations (Appendix D) to maximize the 
functional 

which leads to 

2 p(z )  = exp (-1 - A 1  - A 2 5  - h ( x  - 11) ) - (6.175) 
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can solve for the Lagrawe multipliers by back-substituting this apression 
inta the constraint equations. This finally gives the expression for the maximizing 

in the form 

~h~~ we see that the distribution having maximum entropy, for given mean and 
vRriance, is the Gaussian. 

As a second viewpoint on the interpretation of entropy, let us consider the 
dmount of information, or equidently the 'degree of surprise', which is obtained 
when we learn that a particular event has occurred. We expect that the informa- 
tion will depend on the probability p of the event, since if p = 1 then the event is 
certain to occur, and there is no surprise when the event is found to occur (and 
5 0  no information is received). Conversely, if the probability is low, then there 
is a large degree of surprise in learning that it has occurred. We are therefore 
lookine for a, measure of information a(p) which is a continuous, rnonotonicalIy u 

increasing function of p and which is such that s(1) = 0. An appropriate ex- 
pression can be obtained as follows. Consider two independent events A and 3, 
with probabilities p~ and p s .  If we h o w  that both events have occurred then 
the total information is S{~APB). If, however, we are first told that A has OG 
curred, then the residual information on learning that B has occurred must be 
q l p ~ p ~ )  - s ( p A ) ,  which must equal s ( p B )  since knowledge that A hhas occurred 
should not affect the information resulting from learning that B occurred (since 
t h ~  events are independent). This leads to the foIlawing condition 

From this we can deduce that s(p2) = 2s(p)  and by induction that s ( p N )  = 
N s ( p )  for integer N. Similarly, s(p) = s ( ~ p l / ~ ] ~ )  = ~ s ( p l / ~ )  and by &ension 
,ip? wfi ) = ( M / N ) s ( p ) .  This implies that 

rational z and hence, by continuity, for real x. If we define r = - logz p, so 
that 3) = (1/2)21 then 

It conventional to choose s(1/2) = 1. The information is then expressed in 
'its (hinary digits). From now on we shall consider logarithms to base e (natural 
Enm 3arithms) in which case the information is expressed in aats. We see that the 

hmollnt of information is proportional to the logarithm of the probability. This 
nri~Ws essentially hecause, for independent events, probabilities are multiplicative, 
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whiIe information is additive. 
Consider a random variable a which can take values ak with probabilities 

p(ak). If a sender wishes to transmit the value of cr to a receiver, then the amount 
of information (in bits) which this requires is - Inp(ak) if the variable takes th, 
value ak. Thus, the expected (average) information needed to transmit the value 
of a is given by 

which is the entropy of the random variable cr. Thus S(a )  as the average ameum 
of information received when the d u e  of cu is observed. The average length of 
a binary message (in nats) needed to transmit the value of a is at Ieast equal to  
the entropy of a. This i s  known as the noiseless coding thwrena (Shannon, 1948; 
Viterbi and Omura, 1979). 

Returning to the case of continuous variabIes, denoted by the vector x, we 
note that in practice we do not know the true distribution p{x) .  If we encode the 
value of x for transmission to a receiver, then we must (implicitly or explicitly) 
choose a distribution g(x) from which to construct the coding. The information 
needed to encode a value of x under this distribution is just - lnq(x) .  If the 
variable x is drawn from a true distribution p (x )  then the average information 
needed to encode x is given by 

which is the cmss-entropy between the distributions q(x) and p(x) .  ~ornparison 
with (2.68) shows that this equals the negative log likelihood under the mode1 
distribution q ( x )  when the true distribution is p(x) .  It is also equal to the sum of 
the KulEbd-Leibler distance between p(x) and q(x) ,  given by (2.70), and the 
entropy of p(x}  since 

We can easily show that, of all possible distributions q(x) ,  the &ice which I 
gives the smallest average information, i.e. the smallest value for the cross I 
entropy, is the true distribution p(x) (Exercise 6.21). Since the entropy of P(X! 
is independent of the distribution p(x), we see from (6.1 82) that minimization of 
the cross-entropy is equivalent to minimization of the Kullback-Leibler distance. 

We can apply the concept of cross-entropy to the training of neural netmrotks* 
For a variable a which takes a discrete set of values ryk we can write (6.181) in 
the fom 

Consider first a network with c outputs yk (x) representing the model prababili- 
for x to belong to the corresponding cImses Ck. We shall suppose that we 

ha,,e a set of target variables t k  representing the corresponding true probabilities. 
Then the cross-entropy becomes 

For a set of N data points which are assumed to be drawn independently from 
, common distribution, the information is additive and hence the total cross- 
entropy is given by 

which can be used s an error function for network training. We see that this 
form of error function is valid not only when the targets t: have a, one-of-c coding 
(representing precise hodedge of the true classes of the data) but also when 
they lie anywhere in the range 0 5 t; < 1, subject to the constraint xk t; = 1, 
corresponding to probabilities of class membership. 

For two classes, we can consider a network with a single output g represenb 
E ~ F :  the model probability for membership of class Cl, with corresponding true 
probability t. The model probability for membership of class C2 is then 1 - y, and 
the corresponding true probability is 1 - t .  FolIowing the same line of argument 

above we then arrive at the cross-entropy error function for two classes and 
.;L' data points in the form 

N 
- {t' lnp(xn) -c (1 - tn )  ln(1- y(xn))} . (6.186) 

n=l 

6.11 General conditions for outputs to be probabilities 
S far, we have considered three different error measures (sum-ofisquares, cross- 

F ' n ' ' ~ ~ ~  for a single output, and cross-entropy for softrnax networks) all of which 
the network outputs t o  be interpreted as probabilities. We may therefore 

T ' "rider what conditions an error measure should satisfy in order that  the net- 
I?- O r k  outputs have this property. The discussion given here is based on that of 

'ampshire and Peaximutter (1990). 
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All of the error measures we are considering take the form of a sum 
patterns of an error term for each pattern E = En En. We shall also take tb 
error to be a sum over terms for each output unit separately. This corresponds 
to the assumption that the distributions of different target variables are statis. 
tically independent (which is not satisfied by the Gaussian mixture based en 
considered earlier, or by the softrnax error, for instance). Thus we write 

where f (-, .) is some function to be determined. We shall also assume that j 
depends only on the magnitude of the difference between yk and t k ,  so that 
f (y;, t;) = f (ly? - t: 1). In the limit of an infinite data set, we can write the  
average (or expected) per-pattern error in the form 

If we use a 1-sf-c target ~od ing  scheme, then from (6.99) we can write the con- 
ditional distribution of the target varvariabIes in the form 

We now substitute (6.189) into (6.188) and evaluate the integrals over the t k  
variables (which simply involves integrals of 6-functions) to give 

where we have used Ck P(Cklx) = 1, and assumed that 0 5 yk 5 1 so t h a t  
the modulus signs can be omitted. The condition that the average per-pattern 
error in (6.190) be minimized with respect to the yk(x) is given by setting the  
functional derivative of ( E )  (Appendix D) to  zero 

which gives I 
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of the network are to represent probabilities, so that yk(x) = 

~jkni;l .), then the function f must satisfy the condition 

ilz5s of filnctions f which satisfies this condition is given by 

This includes two important error functions which we have encountered already. 
For r = 1 we obtain f (y) = y2/2 which gives the sum-of-squares error function. 
similarly, for r = 0 we obtain f (y) = - ln(l - y) = - ln(l  - ]yl) which gives rise 
to  the cross-entropy error function. To see this, consider a single output and note 
that f (y, t) = - En(1- ly - tl) = - ln(y) if t = 1 and f (y, f) = - ln(l - ly -ti) = 
- In(Z - y) if t = 0. These can be combined into a single expression of the form 

-{t In y + (1 - t )  ln(1- y)). (6.195) 

Summing over all outputs, as in (6.187), and then over aI1 patterns gives the 
crossentropy error for multiple independent attributes in the form (6.145). 

-4s an example of an error function which does not satisfy (6.193), consider 
thc Minkowski-R error measure which is given by f (y) = yR. Substituting this 

(8.193) gives 

which is only satisfied if R. = 2, corresponding to the sum-of-squares error. For 
# 2,  the outputs of the network do not correspond to posterior probabilities. 

They do. however, represent non-Iinear discriminant functions, SO that the min- 
probability of mis-classification is obtained by assigning patterns to the 

for which the corresponding network output is largest. To see this, substi- 
' ' I t ?  f (Y) = g R  into the condition (6.192) satisfied by the network outputs at 
'hc minimurn of the error function, to give 

""w that the y i  only represent the posterior probabilities when R = 2, COT- 
''5~onding to the sum-of-squares error. However, the decision boundaries cor- 
rr-s 
, Pond to the minimum mis-classification rate discriminant for all values of R 

'""'ss vk are monotonic functions of the posterior probabilities P(Ck1x). 



Exercises 

6.1 {*) Throughout this chapter we have considered data in which t h  
input vectors x are known exactly, but the target vectors t are noisy. Consider 

instead the situation in which the target data is generated from a smooth 
function h(x) but where the input data is corrupted by additive noise 
(Webb, 1994). Show that the sum-of-squares error, in the infinite dab 
limit, can be written as 
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By changing variables to 1: = x i- <, and using functional differentiation 
(Appendix D), show that the least squares solution is given by 

Exercises 249 
I 

so that the optimum solution is again given by the conditional expectation 
of the target data. 

6.2 (*) Consider a model in which the target data is taken to hav, e the fc 

ta set. HF 
sions sat 

E e  E 

layer w 

where E" is drawn from a zero mean Gaussian distribution havlrle a fixed 
covariance matrix E. Derive the likelihood function for a data  set d r a m  
from this distribution, and hence write down the error function. The use 
of such an error function is called generalized least squams, and the  usual 
sum-of-squares error function corresponds im the special cz = 2 1  
where I is the identity matrix. 

6.3 (*) Consider a network with linear ooutput units whose final- eights 
are obtained by minimization of a sum-of-squares error function using the 
pseuddnverse matrix. Show that, if the target values for each training 
pattern satisfy several Iinear constraints of the form (6.31) simultaneousl!'a 
then the outputs of the trained network will satisfy the same constraints 
exactly for an arbitrary input vector. 

6.4 (*) Verify the normalization of the probability density function in (fi.S9). 
Use the result I"(1/2) = f i  to show that the Gaussian distribution i' 
specid case corresponding to R = 2. 

8.5 (*) Write down an expression for the Minkowski-R error function (6.59) dh 
R = 1 in infinite data limit, and hence show that the network mapping 
which minimizes the error is given by the conditional median of t.he target 
data. 

6.6 (**) Write down an expression for the conditional mixture density error 
function (6.77) in the limit of an infinite da  :nce, by using functional 
differentiation (Appendix D), find axpres isfied by the quantities 

where F(xlx) is a density function in X-space. Show that (6.201) satisfies 
t,hc periodicity reqtlirement p(4 -k 2~1x1 = p(8lx).  Also, show that, if the 
density function F{xlx) is normalized on the intern1 (-m, m), then the 
density p{B[x) will be normalized on (0,27r). The density function F(i(~lx) 
can now be modelled using a mixture of Gaussians 4, (~1x1 of the form 

I 

1 

Mrrite down the error function given by the negative logarithm of the like- 
lihood of a set of data points (xn, On), and find expressions for the deriv* 
tiyes of the error function with respect to the means and variances of the 
Gaussian components. Assuming that the mixing coefficients aJ are deter- 
mined hy a softmax function of the form (6.74$, find the derivatives of the 
error function with respect to the corresponding network output variables 
2.7. Note that, in a prxtical implementation, it is necessary to restrict 
+he summation over L to  a limited range. Since the Gaussian functions 
d, (x~x) have exponentially decaying tails, this can represent an extremely 
Sood approximation in almost all cases. '" (*I Using the definition of the pseudo-inverse matrix given by (6.301, verify 
f r,'che rcsul t (6.105) follows from the pseudeinverse formula (6.104). 

"." f*) v~r i f i  that, for a 1-of c target coding scheme, the between-class covari- 
"IlCp matrix given by (6.307) reduces to the form (6.109). 

"" (*I Tire result (6.108) shows that minimizing a sum-ofsquares error func- 
';ion for a network with linear output units, maximizes a particular non- 
linrnr discriminant function defined over t h e  space of activations of the 

(x), pj (x) and c:(x), in terms of conditional averages, at the minimum I 

of this error. Note that the constraint x, orj = 1 should be enforced by I 
using n. Lagrange multiplier (Appendix C). Discuss the interpretation of 1 
these expressions. I 

6.7 .) Consider the circular normal distribution given by (6.95) and show that, 
for 8 - do << 1, the shape of the distribution is approximately Gaussian. 

e'g (+ *) In Section 6.4.1 we discussed a technique for modelling the conditional 
density p(Blx) of a periodic variable 0 based on a mixture of circular normal 
[jistributions. Here we investigate an alternative approach which involves 
finding a transformation from the periodic variable 0 E ( 0 , 2 ~ )  to a Eu- 
clidean variable x C (-m, m), and then applying the Gaussian mixture 
tecllnique of Section 6.4 to the estimation of the conditional density F{8lx) 
in ,y-spam (Bishop and Legleye, 1995). Consider the density hnction d% 
fined by the transformation 



hidden units. Show that if, instead of using 0 and 1 as the network targets, 
the values 0 and 1 / a  are used, where Nk is the number of Patterns in 
class 4, then the between-class cwarinnce matrix, given by (6.107) b, 
comes 

sB = C - B)(I~ -51T (6.203) 
k 

where xk is defined by (6.110). This is now the standard h e t ~ e e n - ~ l ~ ~  
covariance matrix as introduced in Section 3.6. 

6.12 (* *) Consider a weighted sum-of-squares error function of the form (6,112) 
in which the network outputs yk are given by (6.21). Show that the solutian 
for the biases which minimizes the error function is given by 

where we have introduced the following weighted averages 

Use this result to show that the error function, with the biases set to their 
optimal values, can be written in the form 

1/2 where K = diag(m, ), (T)hk = t:, (WIkj = wkj and (Z) , i  = q, and we 
have defined - 

tn k -  - tn k - T k j  ;"zzn-zj. 3 3 (6.207) 
Show that (6.206) has the same form as the error function in (6.103) but 
with Z and T premultiptied by K. Hence show that the value of W which 
minimizes this error function is given by 

Hence show that minimization of the error (6.206) is equivalent to maa- 
mization of a criterion of the form 

in which 

show that, for a 1-of-c target coding scheme, and for weighting factors .sn 
ajven by (6.113), the to td  covariance matrix ST is given by (6.114) and 
3 

the between-class covariance matrix SB is given by (6.116). 

6-13 ( *) Suppose that, in Exercise 6.11, the target values had been set to tz  = 
1 - Llk for a pattern n belonging class Cr, where Ldk represents the loss 

with assigning such a pattern to class Ck (loss matrices are 
introduced in Section 1.10). Show that the between-class covariance matrix 
@en by (6.107) takes the form (6.1 17). Verify that this reduces to the form 
(8.109) when Lm = 1 - 6 t k .  

6.14 (*) Consider the Hessian matrix for the cross-entropy error function (6.120) 
[or two classes and a single network output. Show that, in the Iirnit of an 
infinite data set,  the terms involving second derivatives of the network 
outputs, as well as some of the terns involving first. derivatives, vanish 
at the minimum of the error function as a consequence of the fact that  
the network outputs equal the conditional averages of the target data. Ex- 
tend this result b the cross-entropy error (6.145) corresponding to several 
independent attributes. 

6.15 (*) SIlow that the entropy measure in (6.1451, which was derived for targets 
t k  = Ol lr applies also in the case where the targets me probabilities with 
values in the range (0, I). Do this by considering an extended data set in 
which each pattern tz is replaced by a s e t  of M patterns of which a fraction 
M t t  are set to 1 and the remainder are set to 0, and then applying (6.145) 
to this extended data set. 

6-16 (*$ Consider the error function {6.148), together with a network whose 
outputs we given by a softrnax activation function (6.151), in the  limit of 
an infinite data set. Show that the network output functions yk(x) which 
minimize the enor are given by the conditional averages of the target data 
{ t k  Ix). Hint: since the {Ylc] are not independent, as a result of the constraint 
XI, yk = I, consider the functional derivative (Appendix D) with respect 
to ak (x )  instead. 

'-17 (*) Consider the Hessian matrix for the error function (6.148) and a net- 
work with a softmax output activation function (6.151) so that Ck yk (x) = 
1. Show that the terms involving second derivatives of the network outputs 
vanish in the limit of infinite data, provided the network has been trained 
to  a minimum of the error function. Hint: make use of the result of Exer- 
cise 6.16. 

I ''I9 (*) Consider a classification network in which the targets far training are 
given by t; = 1 - L[k for an input vector xn from class Cl,  where Lzk 
are the elements of a loss matrix, as discussed in Section 1-10. Use the 
general resurt yk(x) = {tklx) for the network outputs at the  minimum of 
t,he error function to show that the outputs are given by weighted posterior 



probabilities such that selection of the largest output corresponds to th, 
minimum-risk classification. 

6.19 (**) Generate histograms of the k i d  shown in Figure 6.13 for a dis 
crete variable by sampling from a distribution consisting of a mixture ,r 
two Gaussians. Evaluate numericalIy the entropy of the histograms using 
(6.166) and explore the dependence of the entropy on the parameters ,f 

the mixture model. 
6.20 (+) Using the technique of functional differentiation (Appendix D), t, 

gether with Lagrange muItipliers (Appendix C), show that the probability 
densib function p ( x )  which maximizes the entropy 

subject to the constraints 

is given by 

where r ( a )  is the gamma functian defined on page 28. 
6.21 (*) Show that the choice of distribution q(x) which minimizes the  cross- 

entropy (6.181) is given by q(x )  = p ( x ) .  To do this, consider the functionnl 
derivative (Appendix D) of (6.181) with respect to q(x) .  This deri~~abi~v 
needs to be evaIuated subject to the constraint 

which can be imposed by using a Lagrange multiplier (Appendix C?. I 
6-22 (*) By substituting (6.189) into (6.188) and evaluating the integral over ty 

derive the result f6.190). 

PARAMETER OPTIMIZATION ALGORITHMS 

chapters, the problem of learning in neural networks has been for- 
m,llated in terms of the minimization of an error function E. This error is a 
function of the adaptive parameters (weights and biases) in the network, which 
n.e can conveniently group together into a single W-dimensional weight vector 
w with components wl . . . ww. 

In Chapter 4 it was shown that, for a multi-layer perceptron, the derivatives 
of an error function with respect to the network parameters can be obtained in a 
computationally efficient way using back-propagation. We shall see that the use 
fif  such gradient information is of central importance in hding algorithms for 
1~t;urork training which are sufficiently fast to be of practical use for large-scale 
applications. 

The problem of minimizing continuous, differentiable functions of many varj- 
ahles is one which has been widely studied, and many of the conventionaI ap- 
proaches t o  this problem are directly applicable t o  the training of neural net- 
lurks. In this chapter we shall review several of the most important practical 
alg~rit~hrns. One of the simplest of these is gradient descent, which has heen de- 
srribed briefly in earlier chapters. Here we investigate gradient descent in more 
detail, and discuss i ts  limitations. We then describe a number of heuristic modifi- 
cations to gradient descent which aim to improve its performance, Next we review 

important class of conventional optimization algorithms based on the con- 
C'Pt of conjugate gradients, including a relatively recent variation called scaled 
" " j u ~ a t e  gradients, 'GVe then describe the other major cIass of conventional o p  
'imixattion algorithms known as quasi-Newton methods. Finally, we discuss the 
PQmerhrl Levenberg-Marquardt algorithm which is applicable specifically to a 
'ilm-of-squares error function. There are many standard textbooks which cover 
""-linear optimization techniques, induding Polak (1971), Gill e t  al. (1981), 
D~nnis and Schnabel [1983}, Luenberger (1884), and Fletcher (1987). 

It is sometimes argued that learning algorithms for neural networks should 
"' local (in the sense of the network diagram) so that the computations needed 
t 

'Vdate each weight can be performed using information available locally to 
!i . lat weight. This requirement may be motivated by interest in modelling biolog- 
jCal neural systems or by the desire to implement network algorithms in parallel 
h3rdivare. Although the  locality issue is relevant both to biological plausibility 
and hardware irnglementation, it represents only one facet of these issues, 
Snd ~ I I C ~  more careft11 analyses are required. Since our goal is to find the most 
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Figure 7.1. Geometrical picture of the error function E ( w )  as a surface sitting 
above weight space. Points A and B represent minima of the error Funclinn. 
At any point C, the local gradient of t h ~  esror surface is given by thc vector 
V E .  

effective techniques for pattern recognition, there is little point in introducing un- 
necessary restrictions. We shall therefore regard the issue of locaIity as irrelevant 
in the present context. 

Most of the algorithms which are described in this chapter are ones which have 
been found to have good performance in a wide range of applications. I-lourever, 
different algorithms wiIl perform best on different problems and it is therefore 
not possible to recommend a single universal optimization algorithm. Instead, 
we highlight the relative advantages and limitations of different algorithm @ 

they are discussed. 

7.1 Error surfaces 

The problem addressed in this chapter is to find a weight vector w which min- 
imizes an error function E(w) .  It is useful to have a. simple geometrical pictuE 
of the error minimization process, which can be obtained by viewing E(wl 11' 
an e m r  su~face sitting above weight space, as shown in Figure 9.1. For net- 
works having a single layer of weights, linear output-unit activation functions+ 
and a sum-of-squares error, the error function will be a quadratic function 
the weights. In this case the error surface will have a general multidimension 

J 

parabolic form. There is then a single minimum (or possibly a single continuum 
of degenerate minima), which can be located by solution of a set of coupled line" 
equations, as discussed in detail in Section 3.4.3. 

However, for more general networks, in particular those with more than one 
layer of adaptive weights, the error function will typically be a highly n ~ n - l i * ~ ~  
function of the weights, and there may exist many minima all of which satis@ 

Figure 7.2. A schematic error function for a singIe parameter w ,  showing four 
stationary points at which the local gradient of the error function vanishes. 
Point A is a local minimum, point B is a local maximum, point C is a saddle- 
point, and point D is the global minimum. 

nrhere V E  denotes the gradient of E in weight space. The minimum for which 
the value of the error functian is smallest is called the global minimum while 
other minima are called local minima. There may also be other points which 
sal,isfy the condition (7.1) such as local maxima or saddlepoints. Any vector w 
for which this condition is satisfied is called a stationary point, and the different 
kinds of stationary point are illustrated schernaticaIly in Figure 7.2. 

As a consequence of the non-linearity of the error function, it is not in general 
Pos~ihle to find closed-form solutions for the minima. Instead, we consider alga- 
rjthrns which involve a search through weight space consisting of a succession of 
"pps of the form 

w(~+l) = w ( ~ l  + AW(T) 

'vhpre T labels the iteration step. Different algorithms involve different choices I 

the weight vector increment A W ( ~ ) ,  For some algorithms, such as conjugate 
grarji~nts and the quai-Newton algorithms discussed later, the error function is I I  

"13ranteed not to  increm as a result of a change to the weights (and hopefully I 

rl~crease). One potential disadvantage of such algorithms is that if they reach 
" lqral minimum they will remain there forever, as there is no mechanism for 1 
r h n ~  escape (as this would require a temporary increase in the error function). 
Tt!p choice of initial weights far the algorithm then determines which minimum 
: I i n  "I~orithm will converge to. Also, the presence of saddlepoints, or regions 
,#: 

the Error function is very Aat, can cause some iterative algorithms to 
h n r o ~ ~  'snlck' h r  extensive periods of time, thereby mimicking local minims. 

algorithms can exhibit different behaviour in the neighbourhood 
' 'ninimum. If ~ ( ~ 1  denotes the distance to the minimum at step T ,  then 

P"ll"~rgcncc often h a  the general form 
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where 1; governs the order of convergence. Values of L = 1 and L = 2 are knoQx 
respectively as linear and quadratic convergence. 

In Section 4.4 we discussed the high degree of symmetry which exists ,n 
the weight space of a multi-layered neural network. For instance, a t w ~ l ~ ~ ~ ~  
network with M hidden units exhibits a symmetry factor of 11412". Thus, for 
any point in weight space, there will be ~ ! 2 ~  equivalent points which generare 
the same n-rk mapping, and which therefore give rise t o  the same value for the 
error function. Any local or global minimum will therefore be replicated a large 
number of times throughout weight space. Of course, in a practical application it 
is irrelevant which of these many equivalent solutions we use. htherrnore.  the 
algorithms we shall be discussing make use of a local stepwise search through 
weight space, and will be completely unaffected by the presence of the numerous , 
equivalent points elsewhere in weight space. 

In Section 6.1.3 we showed that the sum-of-squares error function, in the 
limit of an infinite data set, can be written as the sum of two terns 

where pk(x; w) denotes the ac t id ion  of output unit k when the network is 
presented with input vector x, and ( t k ]x )  denotes the conditional average of the 
corresponding target variable given by 

Since only the first term in (7.4) depends on the network weights, the 
minimum of the error is obtained when yk (x; w) = { tk  lx). This can be regarded 
as the optimal solution, as discussed in  Section 6.1.3, In practice we m u ~ r  deal 
with finite data sets, however. If the network is relatively complex (for instwlce 
if it hm a large number of adaptive parameters) then the best generalization Per- 
formance might be obtained from a local minimum, or from some other point 
weight space which is not a minimum of the error. This leads t o  a consider;lfio" 
of techniques in which the generaIization performance is monitored as a func. 
tion of time during tht.  training, and the training is halted when the 0pt im1'~ 
generalization is achieved. Such methods are discussed briefly in Section 9-2-4- 

7.2: Locaf quadratic approximation 257 

7.2 Local quadratic appraximation 
A onsiderable degree of insight into the optimization problem, and into the 
,,,ious techniques for solving it, can be obtained by considering a local quadratic 

to the error function. Consider the Taylor expansion of E(w)  
some point Gi. in weight space 

Rllpr.ce b is defined to be the gradient of E evaluated at 6 

and the Hessian matrix H is defined by 

From (1.61, the corresponding local approximation for the gradient is given by 

For points w which are close to  +, these expressions will give reasonabIe approx- 
imations for the error and its gradient, and they form the basis for much of the 
subsequent discussion of optimization algorithms. 

Consider the particular case of a loceI quadratic approxjmation around a 
win t  w* which is a minimum of the error function. In this case there is no linear 
t ~ r m ,  since VE = 0 at w*, and (7.6) becomes 

~ ' h ~ r e  the Hessian is evduated at w*. In order to interpret this geometrically, 
''ilnsider the eigenvalue equat.ion for the Hessian matrix 

tv: upre the ci~envectors u; form a complete orthonormal set (Appendix A) SO 

: h s t  

( 14' ~ O V J  a p a n d  (w - w*) as a linear combination of the eigenvedors in the form 
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Substituting (7.13) into (?.ID), and using (7.11) and (7.12), allows the error 
function to be written in the form 

&nation (7.13) can be regarded as a transformation of the coordinate system 
in which the origin is translated to the point w*, and the axes are rotated to 
align with the eigenvectors (through the orthogonal matrix whose columns arp 
the ui). This transformation is discussed in more detail in Appendix A. 

A matrix H is said to be positive definite if 

V'HV > 0 for all v. (7.15) 
I 

Since the eigenvectors (Q} form a complete set, an arbitrary vector v can be 
written 

I 

From (7.11) and (7.12) we then have 

and so H will be positive definite if all of its eigenmlues are positive. In the new 
coordinate system whose basis vectors are given by the eigenvectors (ul)# the 
contours of constant E artre ellipses centred on the origin, whose axes are aliglled 
with the eigenvectors and whose len$hs are inversely proportional to the sclllare 
roots of the eigenvlues, as indicated in Figure 7.3. For a one-dimensional weighr 
space, a stationary point w' will he a minimum if 

, I  The corresponding result in d-dimensions is that the Hessian matrix, @vdnate0 
at w*, should he positive definite (Exercise 7.1). 

7.2.1 Use of gradient information 

For most of the network models and error functions which arc discussed in parlier 

~bptters, it is possible to evaluate the gradient of the error function relatively 
efficiently, for instance by means of thc hack-propagation procedure. The us? of 

Figure 7.3. In the neighbourhood of a minimum w*, the error function can 
be approximated by a quadratic fundion. Contom of constant error are then 
ellipses whme ax- are aligned with the eigenvectors us of the Hessian ma- 
trix, with lengths that me inversely proportional to the square roots of the 
corresponding eigenvectors Xi. 

this gradient information can lead to significant improvements in the s p d  with 
which the minima of the error function can be located. We can easily see why 
this is so, as folIows. 

In the quadratic approximation to  the error function, given in (7.61, the 
error surface is specified by the quantities b and H, which contain a totaI of 
iV(Ur i- 3)/2 independent terms (since the matrix H is symmetric), where W 
is the dimensionality of w line, the total number of adaptive parameters in the 
etwork). The location of the minimum of this quadratic approximation therefore 
Ppends on u(W2)  parameters, and we should not expect to be able to locate the 
linimurn until we have gathered 0 ( W 2 )  independent pieces of information. If 

U'"i~ not make use of gradient information, we would expect to have to perform 
at I c ~ ~ t  O ( W Z )  function evaluations, each of which would require U { W )  steps, 
Thus, the computational effort needed to find the minimum would scale like 
(7(itf"). I1 

Y ~ Y J  compare this with an algorithm which makes use of the gradient infor- 
lation. Since each d u a t i o n  of V E  brings W items of information, we might 
"De to find the minimum of the function in O(W)  gradient evaluations. Using 
.hack-propagation, each such evaluation takes only B(W) steps and so the min- 
'mu'm could now be found in O(W2)  steps. This dramatically improved scaling 

W strongly suggests that gradient information should be exploited, a s  is 
he r the optimization algorithms discussed in this chapter. case fo 

Lin~  '3 !a, output units 

''di~cussed at 11en@h in Section 3.4.3, if a sum-of-squares error function is used, 
"l tllc network mapping depends linearly on the weights, then the minimization 



of the error function represents a linear problem, which can be solved exactly io 
a single step using singular value decomposition (SVD). If we consider a 
general multi-layer network with linear output units, then the dependence of the 
network mapping on the find-layer weights will again be linear. This means that 
the partial optimization of a sum-of-squares error function with respect to thew 
weights (with all other parameters held fixed) can again be performed by lineat 
methods, as discussed in Section 3.4.3. The computational effort involved in SVD 
is often very much Iess than that required for general non-linear optimizatlon3 
which suggests that it may be worthwhile to use linear methods for the find. 
layer weights, and non-linear methods for all other parameters. This Ieads to the 
following hybrid procedure for optimizing the weights In such networks (Webb 
and Lowe, 1988). 

Suppose the final-layer weights are collected together into a vector WL, with 
the remaining weights forming a vector G. The error function can then be ex. 
pressed as E(wL,  G ) ,  which is a quadratic function of WL. For any Dven value 
of iG we can perform a one-step exact minimization with respect to the WL using 
SVD, in which G is held fixed. We denote the optimum wr, by w ~ ( 3 ) .  A con- 
ventional non-linear optimization method (such as conjugate gradients, or the 
quasi-Newton methods to be described later) is used t o  minimize E with 
to G. Every time the value of G is changed, the weights wr, are recomputed. 1% 
can therefore regard the finaI layer weights w~ as evolving on a fast time-scale 
compared to the remaining weights 5. Effectively, the non-linear optimization is 
attempting to minimize a function E(WL(+), G )  with respect to  G.  An ob14ous 
advantage of this method is that the dimensionaIity of the effective search space 
for the non-linear algorithm is reduced, and we might hope that this would re- 
duce the number of training iterations which is required to find a good solution, 
However, this is offset to some extent by the greater computational efiort re- 
quired at each such step. Webb and Lowe (1988) show that, for some problems. 
this hybrid approach can yield better solutions, or can require less cornDutation~ 
effort, than full non-linear optimization of the complete network. 

7.4 Optimization in practice 
In order to apply the algorithms described in this chapter to real 
we need to addrws a variety of practical issues. Here we discuss procedures foT 
initializing the wights  in a network, criteria used to terrninat~ training, and 
normalized error functions for assessing the  performance of trained networks 

All of the training algorithms which we consider in this chapter begin 
initializing the weights in the network to some randomly chosen values. It-p haTT 
already seen that optimization algorithms which proceed by a steady monotonir 
reduction in the error function can become stuck in local minima. A suitablP 
choice of initial weights is therefore potentidly important in allowing the train. 
ing algorithm to produce a good set of weights, and in addition may lead " 
improvements in the speed of training. Even stochastic algorithms such as flndi- 
ent descent, which have the possibility of escaping from local minima, can sh~' 
strong sensitivity to  t h e  initial conditions. Thc initialization of weights for radial 
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h,15is function networks has already been dealt with in Chapter 6 .  Here we shall 
c,,n ourselves with multi-layer perceptrons having sigrnoidal hidden-unit ac- 

~011 
itvation functions. 

The majority of initialization procedures in current use involve setting the 
,,ights to randomly chosen small values. Random values are used in order to 
aJ,oid problems due to symmetries in the network. The initid weight values are 
,bosen to be small so that sigmoidal activation functions are not driven into 
rhp saturation regions where g'(a) is very small (which would lead to small 
TE, and consequently a very flat error surface). If the weights are too small, 
honrpver, a11 of the sigmoidal activation functions will be approximately linear, 

can again lead to slow training. This suggests that the summed inputs 
the sigmoidal functions should be of order unity. A random initialization of 

the weights requires that some choice be made for the distribution function from 
which the weights are generated. We now examine the choice of this distribution 
in a little more detail. 

lye shall suppose that the input values to the network XI, .  . . zd have been 
rescaled so as to have zero mean { x i )  = O and unit variance (x:) = 1, where the 
notation (-) will be used to denote an average both over the  training data set and 
over all the choices of initial network weights. The pr6processing of input data 
prior to network training, in order to achieve this normalization, is discussed 
in Inore detail in Section 8.2. The weights are usudly generated from a simple 
distribution, such as a spherically symmetric Gaussian, for convenience, and this 
Is generally taken to have zero mean, since there is no reason to prefer any ather 
swcific point in weight space. The choice of variance u2 for the distribution can 
be important, hawever. For a unit in the first hidden layer, the activation is given 
by ?/ = g(a) where 

Sinre the choice of weight values is uncorrelated with the inputs, the average of 
'! is 7er0 

"inrln {LC,) = 0. Next consider the variance of a 

ivhcrf! f12 is the variance of the distribution of weights, and we have used the fact 
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that the weight values are uncorrelated and hence ( w i ~ j l , )  = 6tja2, together, 
- "" 

(s:) = 1. As we have discussed already, we would like a to be of order unity ,, 
that the activations of the hidden units are determined by the non-linear Part 
of the sigrnoids, without saturating. From (7.21) this suggests that the standard 
deviation of the distribution used to generate the initial weights should scale like 
o a d-1/2. A similar argument can be applied to the weights feeding into any 
other unit in the network, if we assume that the outputs of hidden units a,, 
appropriately distributed. 

Since a particular training run is sensitive to the initial conditions for the 
weights, it is common prmtice t o  train a particular network many times using 
different weight initializations. This leads to a set of different networks wb-- 
generalization performance can be compared by making use of independent d 
In this case it is possible to keep the best network and simply discard the rem 
der. However, improved prediction capability can often be achieved by forn 
a commiftee of networks from ~mongst  the better ones found during the trail 
process, as discussed in Section 9.6. The use of multiple training runs also p 
a related role in building a mixture model for the distribution of weight m 
in the Bayesian framework, as discussed in Section 10.7. 

Wlen using non-linear optimization algorithms, some choice must be made of 
when to stop the training process. Some of the possible choices are listed below: 

lU>t 

ata. 
ain- 
line 

1. Stop after a fixed number of iterations. The problem with this approach 
is that it is difficult to  know in advance how many iterations would be 
appropriate, although an approximate idea can be obtained from some 
preliminary tests, If several networks are being trained (e.g. with various 
numbers of hidden units) then the appropriate number of iterations mav 
be different for different networks. 

2. Stop when a predetermined amount of CPU (central processing unit) time 
has been used. Again, it is difficult to  know what constitutes a suitable 
time unless some preliminary tests are performed first. Some adjustment 
for different architectures may again be necessary. 

3. Stop when the error function falls below some specified value. This suff@fi 
from the problem that the specified vaIue may never be reached, so *me 
Iirnit on CPU time may also be required. 

4. Stop when the relative change in error function falls below some spec1' 
fied value. This may lead to premature termination if the error function 
decreases relatively slowly during some part of the training run. 

5. Stop training when the error measured using an independent valjdatio" 
set starts to increase. This approach is generally used as part of a strateg' 
to  optimize the generaIization performance of the network, and will 

be 

discussed further in Section 9.2.4. 

In practice some combination of the above methods may be employed as part 
a largeIy empirical process of parameter optimization. 

Since the value of the error Function depends on the number of patterns, it ' 
useful to  consider a. normalized error function for thc  purposes of assessing the 

prfnrmance of a trained network. For a sum-of-squares error, an appropriate rllaicP would be the normalized error function given by 

trhrrF X is the mean of the target data over the test set (Webb et al., 1988). 
*/,j, error function equals unity when the model is as good a predictor of the 
t,rget data as the simple model y -= t, and equals zero if the model predicts 
t j r p  d&a values exactly. A value of E of 0.1 will often prove adequate for sirnpIe 

problems, while For regression applications a significant.ty srnaIIer 
r.alue may be needed. For reasons introduced in Chapter 1, and discussed at 
gr.rater length in Chapter 9, the performance of the traiwd network should be 
a.cqessed using a data set which is independent of the training data. 

For classification problems, it is appropriate to test the performance of the 
trained network by assmsing the number of misclassifications, or more generally 
the  value of the total loss (Section 1.10). 

7.6 Gradient descent 

One of the simpIest network training algorithms, and one which we have dready 
encountered several times in previous chapters, is gradient descent, sometimes 
also known as steepest descent In the batch version of gradient descent, we start 
wit11 some initial guess for the weight vector (which is often chosen at  random) 
denoted by w(O). 5% then iteratively update the weight vector such that, at step 
T .  nTe move a short distance in the direction of the greatest rate of decrease of 
the crror, i.e, in the direction of the negative gradient, evaluated at wcT): 

Nt-b~e that the gradient is re-evaluated at each step. In the sequential, or pattern- 
bflced, vcrsian of gradient descent, the error function gradient is evaluated for 

one pattern at a time, and the weights updated wing 

-,, l l -rp  the different patterns n in the training set can be considered in sequence, or 

SP1rcted at random. The parmeter  17 is called the learning rate, and, provided its 
I 

'"'IF is sufficiently small, we expect that, in the batch version (7.23) of gradient 
~ J G -  "P", the value of E will decrea~e at each successive step, eventually leading 
t " "Treight vector at which the condition (7.1) is satisfied. 

For t.he sequential update (7.24) we might also hope for s steady reduction 
111 ( a  I""-'r since, for suficiently small 77, the average direction of motion in weight 

TP'rcp s l l ~ ~ ~ l d  approximate the negative of the loc~ l  gradient. In order to study this 
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7.5.1 Convergence 

AS we have already indicated, one of the limitations of the gradient desced 
t d n i q u e  is the need to choose a suitable value for the learning rate parameter 
v. The problems with gradient descent do not stop there, however. Figure 7-4 
depias the contours of E, for a hypothetical two-dimensional weight space. iu 
which the curvature of E varies significantly with direction. At most points on the 
error surface, the Iocd gradient does not point directly towards the minimumm 
Gradient descent then takes many small steps to  reach the minimum, and is 
clearly a very inefficient procedure. 

We can gain deeper insight into the nature of this problem by considering 

more carefully, we note that sequential gradient descent (7.24) is reminiscent of 
the Robbins-Monro procedure (Section 2.4.1) for finding the zero of a regression 
Function (in this case the error function gradient). The analogy becomes precise, 1 
and we are assured of convergence, if the learning rate parameter y is made t, I 
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decrease a t  each step of the algorithm in accordance with the requirements of the 
theorem (Luo, 1991). These can be satisfied by choosing v(r) cr 1 / ~ ,  although 
such a choice leads to  very slow convergence. In practice, a constant d u e  of ?I is 

Figure 7.4. Schematic illustration af fixed-step gradient descent for an error 
function which has substantially different curvatures dong different directions. 
Ellipses depict contours of constant E ,  so that  the error surface: has the form of 
a long valley. The vectors ul and ua represent the eigenvectors of the Hessian 
matrix. Note that, for most points in weight space, the local negative gradient 
vector -VE does not point towards the minimum of the error function. Sue  
cessive steps of gradient descent can ascillate across the valley, with very slow 
progress along the valley towards the minimum. 

I 

the quadratic approximation to the error function in the neighbourhood of the 
rninimum, discussed earlier in Section 7.2. From (7.10), (7.11) and (7.13), the 
gradient of the error function in this approximation cm be written as 

From (7.13) we also have 

oRen used as ths generally leads to better results even though the guarantee of 
convergence is lost. There is still a serious difficulty with this approach, howeves. 
If q is too large, the algorithm may overshoot leading to an increase in E and 
possibIy to divergent osciIlations resulting in a complete breakdawn in the 
rithrn. Conversely, if is chosen to be too small the search can proceed extremely 
slowly, leading to very long computation times. Furthermore, the optimum value 
for 7 Will typically change during the course of the minimization. 

An important advantage of the sequential approach over batch methods arise 
if there is a high degree of redundant information in the data set. As a simple a- 
ample, suppose that we create a larger training set from the original one simply 
by replicating the o~igind data set ten times. Every evaluation of E then takes 
ten times as long, and so a batch algorithm will take ten times as long to find a 
given solution. By contrast, the sequentid algorithm updates the weights after 
each pattern presentation, and so will be unaffected by the replication of data. 
Later in this chapter we describe a number of powerful optimization algorithms 
(such as conjugate gradients and quasi-Newton methods) which are intrinsically 
batch techniques. For such dgorithms it is still possible to gain some of the 
advantages of sequentid techniques by grouping the data into blocks and pre- 
senting the blocks sequentidly as if each of them was representative of the whole 
data set. Some experimentation may be needed to determine a suitable size for 
the bIocks. 

Another potential advantage of the sequential approach is that, since it is 8 

stochastic dgorithm, it has the pwsibility of escape from local minima. Later 
in this chapter we shall discuss a number of algorithms which have the property 
that  each step of the algorithm is guaranteed not to produce an increase in the 
error function. If such an algorithm finds its way into a local minimum it 
typicdly remain there indefinitely. 

Combining (7,251 with (7.26) and the gradient descent formula (7.23), and using 
thp orthonormality relation (7.12) for the eigenvectors of the Hewian, we obtain 
'he following expression for the change in r y i  at each step of the gradient descent 
aleorithm 

1 

I 

which it follows that 

Tbx..h @re 'old' a n d  'new' denote values before and after a weight update. Using the 

"'th~normality relation (7.12) for the eigenvectars, together with (7.13), we have 
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a d  so at can he interpreted as the distance to the minimum aIong the directio, 
ui. horn (7.28) we see that these distances evolve independently such that, 
each step, the distance aIong the direction of ui is muitiplied by a factor (1 - V 4 ) .  After a total of T steps we have 

and so, provided 11 - qXtl < 1, the limit T --, cw, leads to cri = 0, which horn 
(7.29) shows that w = w" and so the weight vector has reached the minirnum 
of the error. Note that (7.30) demonstrates that gradient descent leads to linear 
convergence in the neighbourhood of a minimum. AIso, convergence to the ~ ; t a . .  

tionary point requires that all of the Xi  be positive, which in turn implies that  
the stationary point is indeed a minimum (Exercise 7.1). 

By making 7 larger we can make the factor (l - ?Xi) smaller and hence 
improve the speed of convergence. There is a limit to how large q can be made, 
however. We can permit (1 - v X ~ )  to  go negative (which gives oscillating values of 
ai) but we must ensure that  Il-qAiI < 1 otherwise the a, values will diverge. This 
Iimits the value of q to 7 < 2/A,,, where A,, is the largest of the eigenvalues. 
The rate of convergence, however, is dominated by the smallest eigenvalue, so 
with q set to its largest permitted value, the convergence along the direction 
corresponding to the smallest eigenvalue (the long axis of the ellipse in Figure 7.4) 
will be governed by 

where Amin is the smallest eigenvalue. If the ratio Ami,/X,, (whose reciprocal 
is known as the condition number of the Hessian) is very small, corresponding to 
highly elongated elliptical error contours as in Figure 7.4, then progress towards 
the minimum will be extremely slaw. From our earlier discussion of 
error surfaces, we might expect to be able t o  find the minimum exactly usin:: 
few W ( W +  3)/2 error function evaluations. Gradient descent is an extreme]!' 
inefficient dgorithm for error function minimization, since the number of function 
evaluations can easily be very much greater than this. Later we shall encounter 
dgorithms which are guaranteed to find the minimum of a quadratic error surface 
exactly in a small, fixed number of steps which is e3(W2). 

The gradient descent procedure we have described so far involves taking ' 
succession of finite steps through weight space. We can instead imagine the e d u -  
tion of the weight vector taking place continuously as a function of time 7. The 
gradient descent rule is  then replaced by a set of coupled non-linear ordinap* 
differential equations of the form 
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,here uyl represents any weight parameter in the network. These equations cor- 
I,,pond to the motion of a massless particle with position vector w moving in a 

P ,tential field E ( w )  subject to viscous drag with viscosity coefficient r]-'. They r,Cresent a set of stifldifferential equations (ones characterized by several widely 
i~ifie~ering time-scales) as a consequence of the fact that the Hessian matrix of- 
[,, has widely differing eipnmlues. The simple gradient descent formula (7.23) 

a 'fixed-step forward Euler' technique for solving (7.321, which is a 
patt,icularly inefficient approach for stiff equations. Application of specialized 
techniques for solving stiff ordinary differential equations (Gear, 19Jl j  to the 
,,,tern in (7.32) can give significant improvements in convergence time (Owens 1 Filkin, 1989). 

1.5.2 Momentam 

One very simpIe technique for deding with the problem of widely differing eigen- 
dues is to  add a momentum term to the gradient descent; formula (Plaut ef al., 
1986). This effectively adds inertia to the motion through weight space (Exer- 
cise 7.3) and smoothes out the oscillations depicted in Figure 7.4. The modified 
~ r ~ d i e n t  descent formula is given by 

ahere p i s  called the momentum parameter. 
To understand the effect of the momentum term, consider first the motion 

through a region of weight space for which the error surface has relatively low 
curvature, as indicated in Figure 7.5. If we make the approximation that the 
Eradicnt is unchanging, then we can apply (7.33) iteratively to a long series of 
weight updates, and then sum the resulting arithmetic series to give 

:nd we see that the result of the momentum term is to increase the effective 
'"ming rate from 7~ to v / ( l  - p). 

n?: contrast, in a region of high curvature in which the gradient descent is 
"CillatorY, x indicated in Figure 7.6, successive contributions from the momen- 
'"m term will tend to cancel, and the effective learning sate will be close to q. 

the momentum term can lead to faster convergence towards the minimum 
{V 'thout * causing divergent oscillations. A schematic illustration of the effect of 
' mornenturn term is shown in Figure 7.7. From (7.35) we see that p must lie 
b~t, lWen in the range 0 < p 5 1. 
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Figure 1.5. With a fixed learning rate parameter, gradient descent down a 
surface with low curvature leads to successively smaller steps (linear conver- 
gence). In such s situation, the effect of a momentum term is similar t o  an 
increase in the effective learning rate parameter, 

Figure 7.6. For a situation in which successive steps of gradient descent are 
oscillatory, a momentum term has little inftuence on the  effective value of the 
learning rate parameter. 

The inclusion of mornentum generdIy leads to a significant improvement in 
the performance of gradient descent. Nevertheless, the algorithm remains rela- 
tively inefficient. The inclusion of momentum dso introduces a second paranjet'' 
P whose value needs to be chosen, in addition to that of the learning rate PB' 
rameter TI. 

7.5.3 Enhanced padi3nt descent 

.AS we have seen, gradient descent, even with a momentum term included, is not a 
particularly efficient aEgorithrn for error function minimization. There ha\* been 
numerous attempts in recent years to improve the performance of hayic .gradient 
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1 Figure 7.7. Illustration of the effect of adding a momentum term to the gradient 
descent algorithm, showing the more rapid progress along the valley of the error 
function, compared with the unmodified gradient, d~oent .  s h m  in Figure 7.4. 

The Parameter p is chosen to  be slightly larger than unity (a typical value might 
by p = 1.1) in order to avoid frequent occurrences of an error increase, since 

'' such cases the error evduation is wasted. The parameter u is taken to be 
"Enificantly less than unity (o = 0.5 is typica.1) so that the algorithm quickly 
''v"s finding a step which decreases the error, again to minimize wasted 
"%utation. Many variations of this heuristic are possible, such as increasing ? 

I 
I 

I 
descent for neural network training by making various ad hoc modifications. 
\\e shall not attempt to review them all here as the literature is much too 
extensive, and we will shortly be considering several robust, theoreticaIly well- 
founded optimization algorithms. Instead we consider a few illustrative examples 
of such techniques which attempt to address various deficiencies of the basic 
gradient descent procedure. 

One obvious problem with simple gadient descent plus momentum is that 
it contains two parameters, 71 and p, whose values must be selected by trial and 
error. The optimum values for these parameters will depend on the particular 
problem, and will typically vary during training. We might therefore seek some 
procedure for setting these automatically as part of the training algorithm. One 
such approach is the bold driver technique (Vogl et al., 1988; Battiti, 1989). 
Consider the situation without a momentum term first. The idea is t o  check 
whether the error function has actuaIly decreared after each step of the gradient 
descent. If it has increased then the algorithm must have overshot the minimum 
b e .  the minimum along the direction of the weight change) and so the learning 
rate parameter must have been too large. In this ease the weight chenge is 
undone, and the learning rate is decreased. This process is repeated until a 
decrease in error is found. If, however, the error decreased at a given step, then 
the new weight values are accepted. However, the learning rate might have been 

small, and so its value is increased. This leads to the following prescription 

I 
hr updating the learning rate parameter: 
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linearly (by a fixed increment) rather than exponentially {by a fixed factor). IfnF 
include momentum in the bold driver algorithm, the momentum coefficient can 
be set to some fixed value (selected in an ad hoc fashion), but the weight 
is usually reset along the negative gradient direction after every occurrence of an 
error function increase, which is equivalent to setting the momentum coefficient 
temporarily to zero (Vogl et at., 1988). 

A more principled approach to setting the optimal Iearning rate paramrtw 
nras introduced by Le Cun ef al. (1993). In Section 7.5.1 we showed that th, 
largest value which can be used for the learning rate parameter was given by 
T~~~ = 2/Xmax, where A,, is the largest eigenvalue of the Hessian matrix. It is 
easily shown (Exercise 7.5) that if an arbitrary vector is alternately normalized 
and then multiplied by the Bessian, it eventudly converges to A,,, times the 
corresponding eigenvector. The length of this vector then gives A,, itself. E ~ L  
uation of the product of the Hessian with a vector can be performed efficiently 
using the R{.)-operator technique discussed in Section 4.10-7. Once a suitable 
value for the learning rate has been determined, the standard gradient descent 
technique is appIied. 

We have already noted that the {negative) gradient vector need not point 
towards the error function minimum, even for a quadratic error surface, as in- 
dicated in Figure 7.4. In addition, we have seen that Iong narrow valleys in tB 
error function, characterized by a Hessian matrix with widely differing eigenval- 
ues, can lead to very slow progress down the valley, as a consequence of the need 
to keep the learning rate small in order to avoid divergent oscillations across 
the valley. One approach that has been suggested for dealing with this problem 
(Jacobs, 1988) is to introduce a separate learning rate for each weight in the 
network, with procedures for updating these learning rates during the training 
process. The gradient descent rule then becomes 

Heuristically, we might wish to increase a particular learning rate when the 
derivative of E with respect to the corresponding parameter has the same s i p  
on consecutive steps since this weight is moving steadily in the downhill direction. 
Conversely, if the sign of the gradient changes on consecutive steps, this s iWb 
oscillation, and the learning rate parameter should be decreased. 

One way to implement this is to take 

where 
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where I i 

and Y > O is a stepsize parameter. This prescription is c ~ l l d  the deltctdelta 
(since, in Jacobs (1988) the notation 6$ was used instead of gi to denote 

rhe of the local gradient vector). Fbr the case of a quadratic error 
~ u r  face, it can be derived by minimizing the error with respect to the learning 

so that 4 is an exponentially weighted average of the current and previous val- 
ues of g. This aIgorithm appears to work moderately well in practice, at least 
far some probIems, One of its obvious drawbacks, however, i s  that it now con- 
tains four parameters (8, #, K and p) if we include momentum. A more serious 
difficulty is that the algorithm rests on the assumption that we can regard the 
weight parameters as being relatively independent. This would be the case for a 
quadratic error function if the Hessian matrix were diagonal (so that the major 
axes of the ellipse in Figure 7.3 were aligned with the weight axes). In practice, 
t h ~  weights in a typical neural network are strongly coupled, leading to a Hessian 
matrix which is often far from diagonal. The solution to this problem lies in a 
number of standard optimization algorithms which we shall discuss shortly. 

Another heuristic scheme, known as quickpmp (Fahlman, 1988), also treats 
the weights as if they were quasi-independent. The idea is to approximate the 

surface, as a function of each of the weights, by a quadra;tic polynomial {i.e. 
a Parabola), and then to use two successive evaluations of the error function, and 

"evaluation of its gradient, to determine the coeficients of the polynomial. At 
the next step of the iteration, the weight parameter is moved to the minimum of 
'he PWhala. This leads to an expression for the weight update at step T given 

(Exercise 7.7) 

I 

Theaig~rithm can be started using a single step of gradient descent. This arsumes 
'hit, the result of the local quadratic fit is to give a parabola with a minimum. 

k e a d  i t  leads to a psrsbola with a maximum, the algorithm can take an 

prarneters [Exercise 7.6). This rule does not work well in practice since it 
lead to negative values for the learning rate, which results in uphill steps, 

udess the d u e  of y is set very small, in which case the algorithm exhibits 
I 

little improvement over conventional gradient descent. A modification to the 
algorithm, known as the delta-bar-delta rule is to take I 

I 
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uphill step. Also, some bound on the maximum size of step needs to be imposH 
to deal with the problem of a nearly flat parabola, and several other k e s  ,,, 
needed in order to get the algorithm to work in practice. 

7.6 Line search I 
The algorithms which are described in this chapter involve taking a sequence O,P 

steps through weight space. It is convenient to consider each of these steps in 
two parts. First we must decide the direction in which to move, and second, n, 
must decide how Ear to move in that direction. With simple gradient descent, th, 
direction of each step is given by the local negative gradient of the error func. 
tion, and the step size is determined by an arbitrary learning rate parameter. 
We might expect that a better procedure would be to move along the direction 
of the negative gradient to find the point at which the error is minimized. More 
generally we can consider some search direction in weight space, and then find 
the minimum of the error function along that direction. This procedure is re- 
ferred to ass a line search, and it forms the basis for several algorithms which 
are considerably more powerful than gradient descent. We first consider how line 
searches can be implemented in practice. 

Suppose that at step T in some algorithm the current weight vector i s  wfr) ,  
and we wish to consider a particular search direction d(') through weight space. 
The minimum along the search direction then gives the next value for the weight 
vector: 

where the parameter A(') is chosen to minimize I 
This gives us an automatic procedure for setting the step leneh, once we have 
chosen the search direction. 

The line search represents a one-dimensiona1 minimization problem. A simple 
approach would be to proceed along the search direction in small steps, eva.Iu- 
ating the error function at each new position, and stop when the error starts to 
increase (Hush and Salas, 1988). It is possible, however, to find very much more 
efficient approaches (Press e t  al., 1992). Consider first the issue of whether 
make use of gradient information in performing a line search. We have a i red '  
argued that there is generally a substantial advantage to be gained from using 
gradient information for the general problem of seeking the minimum of the 
ror function E in the W-dimensional weight space. For the sub-problem of line 
search, however, the argument is somewhat different. Since this is now a on" 
dimensiond problem, both the value of the error function and the gradient of the 
error function each represent just one piece of informatian. An error function cal- 
culation requires one forward propagation and hence needs - 2NW oper-%tions$ 

Figure 7.8. An example of an error function which depends on a parameter X 
governing distance along the search dimtion, showing a, minimum which has 
been bracketed. The three points a < b < c a r e  such that E(a) > E(b) and 
E(c) > E(b) .  This ensures that  the minimum lies somewhere in the interval 
la, cb 

n,here N is the number of patterns in the data set. An error function gradient 
evaluation, however, requires a forward propagation, a bmkwsbl.d propagation, 
and a set of multiplications to form the derivatives. It therefore needs - 5NW 
operations, although it does dlow the error function itself to be evaluated as 
well. On balance, the line search is slightly more efficient if it makes use of error 
hlnction evaluations only. 

Each line search proceeds in two stages. The first stage is to bmcket the 
minimum by finding three pohts a < h < c along the search direction such that 
E(n) > E(b) and E(c) > E(b), as shown in Figure 7.8. Since the error function 
is  continuous, this ensures that there is a minimum somewhere in the interval 
la.?) (Press et al., 1992). The second stage is to locate the minimum itself. Since 
the error function is smooth and continuous, this can be achieved by a process of 
Parabolic interpolation. This involves fitting a quadratic polynomial to the error 
hlnction evaluated at three successive points, and then moving to the minimum 
"f the parabola, as illustrated in Figure 7.9. The process can be repeated by 
"2'aluating the error function at the new point, and then fitting a new parabola 
t r +his point and d o  of the previous points. In practice, several refinements are 

included, leading to the very robust Brent's algorithm (Brent, 1973). Line- 
'?arch algorithms, and termination criteria, are reviewed in Luenberger (1984). 

An important issue concerns the accuracy with which the line searches are 
I'erformed. Depending on the particular algorithm in which the line search is to 

it may ho wa~tefr~l to invest too much computational time in evaluating 
lhr minimum along each search direction to high accuracy. We shall return t o  
I h i s  Point later. For the moment, we make one comment regarding the limit of 
hrc'lr*y which can be achieved in a line search, Kear x minimum at Xo, the 
"rn"'functmion along the search direction can be approximated by 
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Figure 7.9. An ilIustration of the process of parabolic interpolation used to  
perform line-search minimization. The solid curve depicts the error as a func- 
tion of distance X along the search direction, and the error is evaluated at 
three points a < b < c which are such that E(a) > E(b) and E(c) > E(b).  
A parabola (shown dotted) is fitted to the three points a, b, c. The minimum 
of the parabola, at d, gives an approximation to the minimum of E(A). The 
process can be repeated by fitting another parabola through three points given 
by d arid whichever of two of the previous points have the smallest error d u e s  
(b  and c in this example). 

Thus A - Xo must typically be at least of the order of the square root of the  
machine precision before the difference between E(X) and E(Xo) is significant. 
This limits the accuracy with which the minimum can be found. For double 
precision arithmetic this implies that the minimum can only be found to a relative 
accuracy of approximateIy 3 x loL8. In practice is may be better to settk~ for 
much lower accuracy than this. 

7.7 Conjugate gradients 

In the previous section we considered procedures for Iinesearch minimization 
along a specified search direction. To apply line search to the problem of error 
function minimization we need to choose a suitable seearch direction at each stage 
of the algorithm. Suppose we have already minimized along a search direction 
given by the local negative gradient vector. We might suppose that  the search 
direction at the next iteration should be given by the negative gradient vector 
at the new position. However, the use of successive gradient vectors turns out in 
general not to represent the best choice of search direction. To see why, we note 
that at the minimum of the Pine search we have, from (7.44) 
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Figure 7.10. After a line minimization, the new gradient is orthogonal to the 
line-search direction. Thus, if the search directions are always chosen to co- 
incide with the negative gradients of the error function, as indicated here, 
then successive search directions will be orthogonal, md the error function 
minimization will typically proceed very slowly. 

which gives 

where g = OE. Thus, the gradient at the new minimum is orthogonal to the 
previous search direction, as illustrated geometrically in Figure 7.10. Choosing 
successive search directions to be the focal (negative) gradient directions can 
lead to the problem $Iready indicated in Figure 7.4 in which the search point 
oscillates on suc~ssive steps while making little progress towards the minimum. 
The algorithm can then take many steps to  converge, even for a quadratic error 
fu!~ction. 

The solution to this problem lies in choosing the successive search directions 
d"' such that, at each step of the algorithm, the component of the gradient 
Parallel to the previous search direction, which has just been made zero, is un- 
" k e d  (to lowest order). This is illustrated in Figure 7.11. Suppose we have 

performed a tine minimixation along the direction d('), starting from 
'I1p Point w(+), to give the new point d 7 + l ) .  Then at the point w(7+1) we have 

I" choose the next search direction d('+l) such that, dong this new direc- 
tion, retain the property that the component of the gradient parallel to the 
pa be^^^ search direction remains zero (to lowest order). Thus we require that 
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Figure 7.11. This diagram illustrates the concept of conjugate directions. Sup- 
pose a line search has been performed along the direction d(') starting from 
the point d T 1 ,  to give an error minimum along the search path at the point 
w('+'). The direction d('+') is said to be conjugate to the direction d(') if 
the component of the gradient parallel to the direction d('), which has just 
be made zero, remains zero (to lowest order) as we move along the direction 
d('+U, 

as shown in Figure 7.11, If we now expand (7.49) to Erst order in A, and note 
that the zeroth-order term vanishes as a consequence of (7.481, we obtain 

where H is the Hessian matrix evaluated at the point w(~+' ) .  Tf the error surf= 
is quadratic, thts relation holds for arbitrary values of X in (7.49) since the 
Hessian matrix is constant, and higher-order terms in the expansion of (7.49) 
in powers of A vanish. Search directions which satisfy (7.50) are said to be nola- 
interfering or conjugate. In fwt, we shall see that it is possible to construct a 
sequence of successive search directions d(') such that each direction is conjugaw 
to all previous directions, up t o  the dimensionality W of the search space. This 
Ieads naturally to the conjugate gradient optimization dgorithm. 

7.7.1 Quadratic error finctioa 

In order to introduce the conjugate gradient algorithm, we foIlm Johansson et 
al. (1992) and consider first the case of a quadratic error function of the form 

in which the parameters b and H are constant, and H is assumed to he positi" 
definite. The local gradient of this error function is given by 
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I ufl d the error function (7.51) is minimized at  the point w* given, from (7.52), by 

1 Suppose we can find a set of W vectors (where W is the dimensionality of 
, the weight space) which are mutually conjugate with respect to R so that 

then it is easily shown that these vectors will be linearly independent if H is  
psitive definite (Exercise 7.8). Such vectors therefore form a complete, but non- 
,,thogorial, basis set in weight space. Suppose we are starting from some point 
w,, and we wish to get t o  the minimum w* of the error function. The difference 
between the vectors wl and w* can be written as a linear combination of the 
conjugate direction vectors in the form 

Note that;, if we define 

then (7.55) can be written as an iterative equation in the form 

This represents a succession of steps parallel the conjugate directions, with step 
Ien@hs controlled by the parameters aj. 

In order to find expressions for the a's we multiply (7.55) by d : ~  and make 
lfie of (7.53) give 

see the significance of using mutually conjugate directions, since (7.54) 
"QWS that the terms on the right-hand side of (7.58) decouple, dowing an 
Cfxpii~it  solution for the a's in the form 
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Figure 7.12. Schematic illustration of the application of the conjugate gradient 
algorithm to the minimization of a tw~dirnensiond quadratic error function. 
The algorithm mwes to the minimum of the error after two steps. This should 
be compared with Figures 7.4 and 7.7. 

Without this property, (7.58) would represent a set of coupled equations for the 
at. 

We can write (7.59) in a more convenient form as follows. Fkom (7.56) we 
have 

where we have again used the conjugacy condition (7.54). This allows the nu- 
merator on the right-hand side of (7.59) to be written in the form 

where gj = g(wj), and we have made use of (7.52). Thus, ai can be written in 
the form 

We now give a simple inductive argument to show that, if the weights afe 1 
incremented using (7.57) with the D~ given by (7.62) then the g d i e n t  vector 
gj at the j th step is orthogonal to all previous conjugate directions. It therefore 
follows that after W steps the components of the gradient along all directioos 
have been made zero, and so we will have arrived at the minimum of the 1 form. This is illustrated schematically for a two-dimensional space in Figure 7-12. 
To derive the orthogonality property, we note from (7.52) that I 

where we have used (7.57). We now take the scaIar product of this equation with 
dj, and use the definition of crj given by (7.62), to give 

I 

I 
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similarly, from (7.63), we have 

dE(gj+l - gj) = a j d : ~ d j  = O for all k < j 5 W. 

kppl~ng  the technique of induction to (7.64) and (7.65) we obtain the result 

that 

dzgj=O f o r a l l k < j s W  (7.66) 

kq required. 
The next problem is how to construct a set of mutually conjugate directions. 

This can be achieved by selecting the first direction to be the negative gradient 
dl = -gl, and then choosing each successive direction to  be a linear combination 
of the current gradient and the previous search direction 

The coefficients Oj can be found by imposing the conjugacy condition (7.54) 
which gives 

In  fact, it is e~tsily shown by induction (Exercise 7.9) that succcesive use of the 
construction given by (7.67) and (7.68) generates a set of W mutually conjugate 
directions. 
From (7.67) it follows that dk is given by a linear combination of a11 previous 

Radient vectors 

h n q  (7.66) we then have 

k-1 

gzgj = x TgFy for all k < j 5 W. (7.70) 
1=1 

Since the initial search direction is just dl = -gl, we can use (7.66) to show that 
pTg3 = 0, so that the gradient at step j is orthogonal to the initid gradient. If 

apply induction to 17-70) we find that the current gradient is erthogond to 
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dl previous gradients 
1 

r ee that these three expressions for p, are equivalent provided the error function .\o 
is qudratic. In practice, the error fundion will not be quadratic, and 
these different expressions for pg can give different results. The Polak-Etlbiere 
form is generally fouad to give slightly better results than the other expressions. 
This is probably due to the fact that, if the algorithm is making little progress, 
,, t.hrtt successive gradient vectors are very similar, the Polak-Ribiere form gives 
, small d u e  for pi so that the search direction in (7.67) tends to be rwet to 
the negative gradient direction, which is equivalent to restarting the conjugate 
gdient  procedure. 

W e  dso wish to avoid the use of the Hessian matrix to  evaluate ajj. In fact, 
;q the case of a quadratic error function, the correct value of mJ can be fouad by 
erforming a line minimization along the search direction. To see this, consider a 
uadratic error (7.51) as a function of the parameter a &long the search direction 
j ,  starting at the point wj, given by 

We have now developed an algorithm for finding the minimum of a general 
quadratic error function in at most W steps. Starting from a randomly chosen 
point wl, successive conjugate directions are constructed using (7.67) in which 1 
the parameters 4 are given by (7.08). At each step the wight vector is incrp 1 
ment;d dong the corresponding direction using (7.57) in which the parameter 
aj is given by (7.62). I 

7.7.2 The conjugate gradient algorithm 

' we set; the derivative of this expression with respect to cr epud to zero we 
btain 

So far our discussion of conjugate gradients has been limited t o  quadratic error I 
functions. For a general non-quadratic error function, the error in the neighbout- 
hood of a given point; will be approximately quadratic, and so we may hope that 
repeated application of the above procedure will lead to effective convergence 
to a minimum of the error. The step length in this procedure is governed by 
the coefficient olj given by (7.62), Ebnd the search direction is determined by the 
coefficient ,BJ given by (7.68). These expressions depend on the Hessian matrix 
H. For a non-quadratic error function, the Hessian matrix will depend on the 
current weight vector, and so will need to be re-evaluated at each step of the 
algorithm. Since the evaluation of H is cornputationally costIy for non-linear 
neurd networks, and since its evaluation would have t o  be done repeatedly, we 

'here we have used the expression in (7.52) for the local gradient in the quadratic 
PProxImation. We see that the result in (7.77) is equivalent to that found in 
7.62). Thus, we can replace the explicit evaluation of orj by a numerical prom 
ure invoiving a line minimization dong the search direction d,. 

1% have seen that, for a qnadratic error function, the conjugate gradient 
[~ori thm Ends the minimum aRer at most W line minimizations, without cal- 
llating the Hessian matrix. This clearly represents a significant improvement 

simple gradient descent approach which could take a very large number of 
'"Ps to minimize even a quadratic error function. In practice, the error function 
la!' be far from quadratic. The algorithm therefore generally needs to be run 
" many iterations until a sufficiently small error is obtained or until some other 
''mination criterion is reached. During the running of the algorithm, the conju- 

-3CV of the search directions tends to deteriorate, and so it is common practice 
t ' renart  the algorithm after every W steps by resetting the search vector to the 

:'~atij~e @gradient direction. More sophsticated restart procedures are described 
'" P o ~ r d l  (1977). 

The conjugate gradient algorithm has  been derived on the assumption of a 

would like to avoid having to use the Hessian. In fact, it turns out that the c e  
efficients aj md p, c m  be found without expIicit knowledge of H. This leads 
the conjugate gmdimt algorithm (Hestenes and Stiefel, 1952; Press ef a!., 1992). 

which is known as the Hestenes-Stdefel expression. From (7.66) and (7.67) 
have 

I 

which, together with a further use of (7.68)) allows (7.72) to be written in the 
Polak-Ribie~ form 

Consider first the coefficient P,. If we substitute (7.63) into (7.68) we obtain 

Similarly, we can use the orthogonality property (7.71) for the gradients to sim- 
plify (7.74) further, resulting in the Fletcher-Reeves form 
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quadratic error function with a positive-definite Hessian matrix. For general non- I 

linear error functions, the local Hessian matrix need not be positive definite. T~ 
e search dic t ions  defined by the conjugate gradient algorithm need not then be 

descent directions (Shanno, 1978). In practice, the use of robust Iine minimi,, 1 
tion techniques ensures that the error can not increase at my step, and 6uch 
algorithms are generally found to have good performance in real applications+ 

As we have seen, the conjugate gradient algorithm provides a minimization I 

technique which requires onIy the evaluation of the error function and its deriva- 
tives, and which, for a quadratic error function, is guaranteed to find the mini- 
mum in at most W steps. Since the derivation has been relatively complex, ,, 
now summarize the key steps of the algorithm: 1 

1. Choose an initial weight vector wl . 
2. Evaluate the gradient vector gl, and set the initial search direction d, = I 

-%1. 

7.8 Scaled conjugate gradients 1 1  
We have seen how the use of a line search allows the step size in the c o n j u ~ a ~ ~  
gradient algorithm to be chosen without having to evaluate the Hessian matrix 1 
However, the line search itself introduces some problems. In particular, every line 
minimization involves several error function evaluations, each of which is corn- 
putationally expensive. Also, the linesearch procedure itself necessarily invdv* 

3. At step j, minimize E(wj  f a d j )  with respect to n to give wj+i = wj + 
a rn ind j .  

4. Test to see if the stopping criterion is satisfied. 
5. Evaluate the new gradient; vector gj+l. 

6. Evaluate the new search direction using (7.67) in which P,: is given by the 
H e e n e ~ S t i e f e l  formula (7.72), the Polak-Rbiere formula (7.74) or the 
Fletcher-Reeves formula (7.75). 

7. Set j = j + 1 and go to 3, 
I 

Empirical results from the training of multi-layer pereeptron networks using 
conjugate gradients can be found in Watrous (19871, Webb et al. (19881, Kramer 
and Sangiownni-Vincentelli (1989), Makram-Ebeid et cnl. (1989), Barnard (1992) 
and Johansson et a!. (1992). 

The batch form of gradient descent with momentum, discussed in Section 7.5, 
involves two arbitrary parameters A and p, where X determines the step length, 
and p controls the momentum, i.e. the fraction of the previous step to be included 
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1 

~ 
1 

p~ameter  whose value determines the termination criterion for each lie I 

ch. The overall perfo-ce of the algorithm can be sensitive to  the value I 
gear 
of this parameter since a line search which is insufficiently accurate implies that 
the value of oj is not being determined correctly, while, an excessively accurate 

search can represent a good deal of wasted computation. 
I 

M$]ler (1993b) introduced the scaled conjugate gradient algorithm as a way 
of alroiding the line-search procedure of conventional conjugate gredients. First, 

that the Hessian matrix enters the formula (7.62) for aj only in the form 
of the Hessian multiplied by a, vector d j .  We saw in Section 4.10.7 that, for the 
muIti-layer perceptron, and indeed for mere genera1 networks, the product of the 
Hessian with an arbitrary vector could be computed efficiently, in O(W) steps 
(per training pattern), by using central differences or, more accurately, by using 
the ??{.)-operator technique. 
This suggests that, instead of using line minimization, which typically in- 

volves several error function evaluations, each of which takes O(W) operations, 
me simply evaluate Hdi using the methods of Section 4.10.7. This simpIe ap- 
proach fails, however, became, in the case of a non-quadratic error function, the 
Hessian matrix need not be positive definite. 3h this case, the denominator in 
(7.62) can become negative, and the weight update can lead to an increase in 
the value of the error function. The problem can be overcome by modifying the 
Hessian matrix to ensure that it is positive definite. This is achieved by adding 
to the Hessian some multiple of the unit matrix, so that the Hessian becomes 

in the current step. A major probIern with gradient descent is bow to determine 
values for A and p, particularly since the optimum d u e s  wiU typically vaW 
from one iteration to the next. The conjugate gradient method can he regarded 
as a form of gradient descent with momentum, in which the parameters $I and 
p are determined automatically at each iteration. The effective Iearning rate is 
determined by line minimization, while the momentum is determined by the 
parameter in (7.121, (7.74) or (7.75) since this controls the search direction 1 1  

through (7.67). I 

where I is the unit matrix, and X 2 0 is a scaling coefficient. Provided X is 
sufficiently large, this modified Hessian is guaranked to be positive definite. The 
formu~a for the step length is then given by 

v:here the suffix j on )ij reflects the fact that the optimum value for this par=- 
Oter can vary from one iteration to  the next. For large values of A j  the step size 
bpc~mes small. Techniques such as this are well known in standard optimization 
tileor~, where they me called model tnrst region methods, because the model is 
? f f ~ c t i v e ~ ~  only trusted in a srrlall region around the current search point. The 
size of the trust region is governed by the parameter A,, so that for large A, 

trust region is small. The model-trusbregion technique is considered in more 
firtail in the context of the Levenberg-Marquardt algorithm later in this chapter. 

1% ~ Q W  have to find a way to choose an appropriate value for A,. From the 
in Section 7.1.2 we know that the expression (7.79) with A, = 0 will 

move the weight vector to the minimum along the search direction provided (i) 
thr @ r m r  function can be represented by a quadratic form, and (ii) the denomi- 



284 7: Pamrneter Optimization Algorithms 

nator is positive (corresponding to a positivpdefinik Hessian). If either of th ese conditions is not satisfied then the value of Aj needs t o  be increased EiC~~rdi~~,~, 
Consider first the problem of a Hessian which i s  not positive definite, ~h~ 

denominator in the expression (7.79) for the Ctj cca be written as 

For a positivedefinite Hessian we have bj > 0. If, however, dj < 0 then ~ v c  
increase the value of Aj in order to make dj > 0. Let the raised value of A, be 
caIled x j .  Then the corresponding raised value of S j  is given by 

This will be positive if > AXj - bj /lldj 112.  Mriller (1993b) chooses to set 

Substituting (7.82) into (7.81) gives 

which is therefore now positive. This value is used as the denominator in (7.79) 
to compute the value of the stegsize parameter aj. 

We now consider the effects of the local quadratic assumption. In regions 
where the quadratic approximation is good, the value of Xi shouId be reducd, 
while if the quadratic approximation is poor, Aj should be increased, so that the 
size of the trust region reflects the accuracy of the local quadratic approxima- 
tion. This can be achieved by considering the comparison parameter defined b.,' 
(Fletcher, 1987) 

where Eq(wj is the local quadratic approximation to the error function in the 
neighbourhood of the point wj, given by 

From (7.84) we see that Aj gives a measure of the accuracy of the quadratic 
approximation. If Aj is close to 1 then the approximation is a good one and the 
value of A can be decrea~ed. Conversely a small value of A, is an indication rhRt 
Aj should be increased. Substituting (7.85) into (7.84), and using the definition 
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i;.62) for a,, we obtain 

The value of can then be adjusted using the following prescription {Fletcher, 
1987): 

if Aj > 0.75 then Aj+ l  = A j / 2  (7.87) 

if Aj < 0.25 then ,Ij+, = 4Xj (7.88) 

othemi?,e set Xj+l = A,. Note that, if Ai < O so that the step would actually 
lead to  an increase in the error, then the weights are not updated, but instead 
the iqlue of A, is increased in accordance with (7.88), and A, is reevaluated. 
Eventually an error decrease will be obtained since, for sufficiently Iarge A j ,  the 
algorithm will be taking a small step in the direction of the negative gradient. 
The two stages of increasing Xj (if necessary) to ensure that sj is positive, and 
adjusting X3 according to the validity of the local quadratic approximation, are 
applied in succession after each weight update. 

Detailed stepby-step descriptions of the algorithm can be found in Mdler 
(1993h) and Williams (1991). Results from software simulations indicate that 

algorithm can sometimes offer a significant improvement in speed compared 
conventional conjugate gradient algorithms. 

7.9 Newton's method 
In the conjugate grdient  algorithm, implicit use was made of second-order in- 
formation about the error surface, represented by the Iocal Hessian matrix. We 
"w turn to a ~ 1 % ~ ~  of algorithms which make explicit use of the Hessian. 

Using the local quadratic approximation, we can obtain directly an expression 
the location of the minimum (or more generally the stationary point) of the 

I 

function. From (7.10) the gradient at any point w is given by 

%d so the weight vector w* corresponding to the minimum of the error function I 

Qfisfies 

vector -Hplg is known as the Newton direction or the Newton step, and I 

B r m ~  the basis for a variety of optimization strategies. Unlike the local gradient 
V"r-"or, the Newton direction for a quadratic error surface, evaluated at any w, 
Poirlts directiy at the minimum of the error function, as illustrated in Figure 7-13, 



n.hrie 'Ve have used the Newton step formula d = -HdIg. 
from the neighbourhood of a minimum, the Hessian matrix need not 

,,itive definite. The problem can be resolved by adopting the model tmst 

bP tn discussed earlier in Section 7.8, and described in more detail in 
I 

7.11. This involves adding to the Hessian a. positive-dehite symmetric 
which comprises the unit matrix X times a constant factor A. Provided X 

is s,ificiently luge, the new matrix ~ 
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Since the quadratic approximation used to obtain (7.90) is not exact it 
be necessary to apply (7.90) iteratively, with the Hessian being re-evaluated at 
each new search point. From (?.go), we see that the gradient descent procedure 
(7.23) corresponds to one step of the Newton formula (7.901, with the inverse 
Hessian approximated by the unit matrix times q, where is the learning rate 
parmeter. 

There are several difficulties with such an approach, however. First, the exact 
evaluation of the Hessian for non-linear networks is cornputationally demmdbg, 
since it requires 6(NW2) steps, where W is the number of weights in the net- 
work and N is the number of patterns in the data set. This evaluation would be 
prohibitively expensive if done at each stage of an iterative algorithm. Second, 
the Hessian must be inverted, which requires O(W3) steps, and so is also ma- 
putationally demanding. Third, the Newton step in (7.90) may move towads a 
maximum or 8 saddlepoint rather than a minimum. This occurs if the Ressianis 
not positive definite, so that there exist directions of negative curvature ThuS1 
the error is not guaranteed to be reduced at each iteration. Finally, the step size 
predicted by (7.90) may be sufficiently large that it takes us outside t h ~  rmge 
validity of the quadratic approximation. In this case the algorithm could become 
unstable. 

NevertheIess, by making various modifications to the full Newton rule it 
be turned into a practical optimization method. Note first that, if the Hessian' 
positive definite (as is the ease close to a minimum), then the Newton direction 
always represents a descent direction, as can be seen by considering the 

1 0 4  

directional derivative of the error function in the Newton direction evalua ted st 

some point w 

Figure 7.13. Illustratioa of the Newton direction for a quadratic error surfwe, 
The local negative gradient vector -g(w) does not in general point to-& 
the minimum of the error function, whereas the Newton direction -H-lg(w) 
does. 

a 
-E(w + Ad) = dTg = - g T ~ - ' g  < 0 aA I A = ~  

,ill he positive definite. The corresponding step direction is a compromise be 
myen the Newton direction and the negative gradient direction. For very small 

of X we recover the Newton direction, while for Iarge values of X the 
direction approximates the negative gradient 

This fitill leaves the problem of computing and inverting the Hessian matrix. 
One approach is to approximate the Hessian by neglecting the off-diagond terms 
(Becker and Le Cun, 1989; Rcotti et d., 1988). This has the advantages that the 
inverse of the Hessian is trivial to compute, and the Newton update equations 
(7.90) decouple into separate equations for each weight. The problem of negative 
curnatures is dealt with by the simple heuristic of taking the modulus of the 
second derivative. This gives a Newton update for a weight wi in the form 

A is treated as a small positive constant. For the multi-layer perceptron, the 
d i a ~ ~ n a i  terms in the Hessian matrix can be computed by a back-propagation 
Procedllr@ as discussed in Section 4.10.1. A major drawback of this approach, 
9 v ~ r .  is that the Hessian matrix far many neural network problems is typically 
lar from diagonal. 

Q uasi-Newton methods I 

already argued that a direct application of the Newton method, as given b. - I ' ' g')). wou !d be computationally prohibitive since it would require ~ ) ( N w ~ )  
operations to M u a t e  the Hessian matrix and 0(w3) operations to compute 
lh ini.erre Alternative appro&-, known as quasi-Newton or variable metric 
m'hods, are based on (7.90), but instend of calculating the H w i a n  directly, *' then evaluating its invene, they build up an approximation to the inverse 
b'ial' owr a number of steps. As with conjugate gradients, these methods can 1 6nd minimum of a quadratic form in at most W steps, giving an overall 

L i 
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computational cost which is ~ ( N w " ) .  
The quasi-Newton approach involves generating a sequence of matrices 

which represent itlcteasingly accurate approximations to the inverse Hessian 
H-', using only information on the first derivatives of the error function. ~h~ 
problems arising from Hessian matrices which are not positive definite are solved 
by starting from a posititredefinite matrix (such BS the unit matrix) and ensuring 
that the tipdate procedure is such that the approximation to the inverse Hessian 
i s  gumanteed to remain positive definite. 

Fsom the Newton formula (7.90) we see that the weight vectors at steps 
and T + 1 are related to the corresponding gradients by 

which is knuwn as the quasi-Newton condition. The approximation G of the 
inverse Hessian is constructed so as to  satisfy this condition  SO. 

The two most commonly used update fofrnulae are the DaGdson-Fletcher- 
Powell (QFP) and the Bmyden-Fletcher-Goldfarb-Shanno (BFGS) procedures. 
Here we give only the BFGS expression, since this is generally regarded as being 
superior: 

where we have defined the folluwing vectors: 

Derivations of this expression can be found in many standard texts on optimize 
tion methods such as Polak (1971), or Luenbergei (1984). It is straightforward 
to verify by direct substitution that (7.96) does indeed satisfy the quasi-Nen7ton 
condition (7.95). 

Initializing the procedure using the identity matrix corresponds to taking 
first step in the direction of the negative gradient. At each step of the algorithm' ... c 
the direction -Gg is guaranteed to he a descent direction, since the matrfx 
is positive definite. However, the full Newton step given by (7.90) may take "' 
search outside the range of validity of the quadratic approximation. The soiution 
is to use a line-search algorithm (Section 7.6), as used with conjugate .gradients' 
to find the minimum of the error function along the search direction. Th~s.  the 
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a(') is found by line minimization. 
A significant advantage of the quasi-Newton approach over the conjugate 

gradient method is that  the line search does not need to be performed with 
such &reat accuracy since it does not form a critical factor in the algorithm. For 

gradients, the line minimizations need to be performed accurately in 
order to ensure that the system of conjugate directions and orthogonal gradients 
is set up correctly- 

A potentia1 disadvantage of the quasi-Newton method is that it requires the 
storage and update of a matrix G of size W x W. For smdl networks this is of 
little consequence, but for networks with more than a few thousand weights it 
could lead to prohibitive memory requirements. In such cases, techniques such 
,s conjugate gradients, which require only 6 ( W )  storage, have a significant ad- 
vantage. 

For an W-dimensional quadratic form, the sequence of matrices G(') is guar- 
anteed to converge exactly to the true Hessian after W steps, and the quasi- 
Newton algorithm would find the exact minimum of the quadratic form after W 
steps, assuming the line minimizations were performed exxtly. Results from the 
application of quasi-Newton methods to the training of neural networks can be 
found in Watrous (19871, Webb et  at. (I9S8), and Barnard (1992). 

7.10.1 Limited memom wmi-Newton methods 

Shanno (197%) investigated the accuracy needed for line searches in both conju- 
gate gradient and quasi-Newton algorithms, and conduded that conjugate gra- 
dient algorithms require relatively accurate line searches, while quasi-Newton 
methods remain robust even if the line searches are only performed to relatively 
10%~ accuracy. This implies that, for conjugate gradient methods, significant com- 
putational effort needs to  be expended on each line minimization. 

The advantage of conjugate gradient algorithms, however, is that they require 
Oilv]  storage rather than the 0(w2) storage needed by quasi-Newton methods. 

cluestion therefore arises as to whether we can find an algorithm which uses 
" l l i )  storage but which does not require accurate line searches (Shanno, 1978). 
'"""i?v to reduce the storage requirement of quasi-Newton methods is to replace 

aPProxlrnate inverse Hessian matrix G at each step by the unit matrix. If 
w F- make this substitution into the BFGS formula in (7.96), and multiply the 

j'''!ltin~ approximate inverse Hessian by the current gradient g(T+ l ) ,  we obtain 
hlloaying expression for the search direction 

Phpre the scalars A and 3 are defined by 

weight vector is updated using 1 
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vT, PT&b+l)  VTg(r+l) 
A = -  I t -  ( PTV) pTv + P=V (7.102) 

and the vectors p and v are defined in (7.97) and (7.98). If exact Iine searches ,,, 
performed, then (7.101) produces search directions which are mutually conjugate 
(Shanno, 1978). The difference compared with standard conjugate Eradiems is 
that if approximate line searches are used, the algorithm remains well behavedn 
As with conjugate gradients, the algorithm is restarted in the direction of the 
negative gradient every W steps. This is known as the dinaited memory BFGS 
algorithm, and has been applied to the problem of neural network training bv 
Battiti (1989), 

7.11 The Levenberg-Marquardt algorithm 

Many of the optimization algorithms we have discussed up to now have been 
general-purpose methods designed to work with a wide range of error functions. 
We now describe an algorithm designed specifically for minimizing a sum-of- 
squares error. 

Consider the sum-of-squares error function in the form 

where E" is the error for the n th  pattern, and E is a vector with elements en. 
Suppose we are currently at a point wol~  in weight space and we move to a pdnt  
w,,,. If the displacement w,, - wold is small then we can expand the error 
vector E to first order in a Taylor series 

where we have defined the matrix Z with elements 

The error function (7.104) can then be written as 

If we minimize this error with respect to the new weights w,, we obtain 
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1f we neglect the second term, then the Hessian can be written in the form 

ypt, that this has the sarne structure as the paeud+inverse formula for linear 

n?T introduced in Section 3.4.3, as we would expect, since we are indeed 
a sum-~f-squares error function for a Iinear model. 

For the s ~ m - o f - ~ u a r e s  error function (7.104), the elements of the Hessian 

For a linear network (7.110) is exact. We therefore see that (7.108) involves the 
inverse Hessian, as we might expect since it corresponds to the Newton step 
applied to the linearized model in (7.105). For non-linear networks it represents 
an approximation, although we note that in the Iimit of an infinite data set 
the expression (7.110) is exact at the global minimum of the error function, 
as discussed in Section 6.1 -4. Recall that in this approximation the Hessian is 
relatively easy to compute, since first derivatives with respect to network weights 
can he obtained very efficientty using back-propagation as shown in Section 4.8.3. 

In principle, the update formula (7.108) could be applied iterativeIy in order 
to try to minimize the error function. The problem with such an approach is that 
tile step size which is given by (7.108) could turn out to be relatively large, in 
which case the linear approximation (7.107) on which it is based would no longer 
be ualid. In the Levenberg-Maquardt algorithm (kenberg ,  1944; Marquardt, 
19631, this problem is addressed by seeking to minimize the error function while 
a t  the same time trying to keep the step size small so as to ensure that  the linear 
aPPtoximation remains valid. This is achieved by considering a modified error 
function of the form 

I 

yh~re  the parameter A governs the step size. For large values of X the value of 
'iwneu. - wold 1 1 2  will tend to be small. If we minimize the modified error (7.111) 

respect to wnWr we obtain 

take the form I 

I is the unit matrix. For very small values of the parameter A we recover 
the Newton formula, while for large values of L we recover standard gradient 
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descent. In this latter case the step length is determined by A-', so that it in 
clear that, for sufficiently large values of A, the error will necessarily decrease 
since (7.112) then generates a very small step in the direction of the negatj,, 
gradient. The Levenberg-Marquardt algorithm is an example of a model t~ 
region approach in which the model (in this case the linearized approximation 
for the error function) is trusted only within some region around the cur-,,, 
search point. The size of this region is governed by the value of A. 

In practice a value mwt be chosen for X and this vdue should vary approp~+ 
ately during the minimization process. One common approach for setting X is to 
begin with some arbitrary value such as A = 0.1, and at each step monitor th, 
change in error E. If the error decreases after taking the step predicted by (7.112) 
the new weight vector is retained, the value of X is decreased by a factor of 10, 
and the process repeated. If, however, the error increases, then X is increaed 
by a factor of 10, the old weight vector is restored, and a new might update 
computed. This i s  repeated until a decrease in E is obtained. Comparisons .of 
the Levenberg-Marquardt algorithm with other methods for training multi-layer 
perceptrons are given in Webb et al. (1988). 

Exercises 

7.1 (*) Show that the stationary point; w* of quadratic error surface of the form 
(7.10) is a unique global minimum if, and onIy if, the Hessian matrix is 
positive defirtite, so that dl of its eigendues are positive. 

7.2 (* *) Consider a quadratic error error function in two-dimensions of the form 

Verify that X I  and A2 Enre the eigenvdues of the Hessian matrix. Write a 
numerical implementation of the gradient descent algorithm, and apply it 
to the minimization of this error function for the case where the ratio of the 
eigenvalues A2 /A1  is large (say IO:lj. Explore the convergence properti@ 
of the algorithm for various values of the learning rate parameter. and 
verify that the largest value of 7 which still leads to a reduction in E 
determined by the ratio of the two eigenvalues, as discussed in Section 7 . 5 ~ ~  
Now include a momentum term and explore the convergence behaviour 
a function of both the learning rate and momentum parameters. For e8 
experiment, plot trajectories of the evolution of the weight vector in the 
two-dimensional weight space, superimposed on contows of constant er'or' 

7.3 (*) Take the continuoustime limit of (7.33) and show that leads the 

following equation of motion 

where 
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and T is the continuous time variable. The equation of motion (7.114) 
to the motion of a massive particle (i.e. one having inertia) 

, i t h  mass m moving downhill under a force -VE, subject to viscous drag 
with viscosity coefficient v.  This is the origin of the term 'momen tum~n  
(7.3333 

7.1 (+) In 17.35) we considered the effect of a momentum term on gradient de- 
scent through a region of weight space in which the error function gradient 
couPd be taken to be approximately constant. This was based on aurnming 
an arithmetic series after an infinite number of steps. Repeat this analygis 
more carefully for a finite number L of steps, by expressing the resulting 
finite series as the difference of two infinite series, Hence obtain an expres- 
sion for the weight vector wIL) in terms of the initid weight vector wIO), 
the error gradient V E  (assumed constant) and the parameters 91 and p. 
Show that (7,351 is obtained in the limit L -+ m, 

1.5 (*) Consider an arbitrary vector v and suppose that we first normalize v so 
that IIvI[ = 1 and then multiply the resulting vector by a real symmetric 
matrix H. Show that, if this process of normaIization and multiplication 
by H is repeated many times, the resulting vector will converge towards 
Ammu,, where A,, is the largest eigenvalue of H and n,,, is the corre- 
sponding eigenvector. (Assume that the initial vector v is not orthogonal 
to urn,,). 

7.6 (*) Consider a single-Iayer network having a mapping function given by 

and a sum-oEsquares error function of the form 

wlth n labels the patterns, and k labels the output units. Suppose the 
Wights are updated by a grdient descent rule in which each weight wki 

has its own learning rate parameter q k i ,  so that the value of zuki at time 
step T is given by 

Use the above equations to find m expression for the error at step T in 
terms of the weight values at step T - 1 and the learning rate parameters 
?:'. Show that the derivative of the error function with respect to is 
given l y  the delta-delta expression 

I 
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where 

L A  

7.7 (*) Derive the quickprop weight update formula (7.42) by following the dis ) 
cussion given in the text. 

7.8 (k) Consider a symmetric, positive-definite W x W matrix H, and suppose 
there exists a set of W mutually conjugate directions di satisfying 

Show that the vectors dt must be linearly independent (i.e. that  dd, cannot 
be expressed as a Iinear combination of { d j )  where j = I, .  . . , W with 

j # i}. 
7.9 (*) The purpose of this, exercise is t o  show by induction that if successive 

search directions are constructed from (7.67) using the conjugacy condition 
(7.683, that the first W such directions will dl be mutually conjugate. We 
know by construction that dTHdl = O. Now suppose that d T ~ d ~  = O For 
some given j < W and for aII i satisfying d < j. Since d:+lHd, = 0 by 
construction, we need t o  show that d>lHdi = 0 for aI1 i < j + 1. Using 
(7.67) we have 

d;+l~di = - g , T , l ~ d i  + pjdTXldi. (7.122) 

The second term in (7.122) vanishes by assumption. Show that the first 
term also vanishes, by making use of (7.63) and (7.711. This completes the 
proof. 

7.10 (*) Verify by direct substitution that the BFGS update formula (7.961 
satisfies the Newton condition (7.95). 

7.1 1 (*) Verify that replacement of the approximate inverse Hessian matrix G(" 
by the unit matrix 1 in the BFGS formula (7.96) leads to a Newton steP 
-G('*')g given by the limited memory BFGS expression (7.101). 

PREPROCESSING AND FEATURE EXTRACTION 

since neural networks can perform essentially arbitrary non-linear functional 
between sets of variables, a single neural network could, in principle, 

be used to map the raw input data  directly onto the required final output values. 
In practice, for all but the simplest problems, such an approach will generally 
S ~ Y P  poor results for a number of reasons which we shall discuss b e h .  For most 
applications it is necessary first to transform the data into some new represen- 
tation before training a neural network. To some extent, the general-purpose 
nature of a neural network mapping means that less emphasis has to be placed 
on careful optimization of this pre-processing than would be the case with simple 
linear techniques, for instance, Nevertheless, in many practical applications the 
rlloice of pre-processing will be one of the most significant factors in determining 
the performance of the final system. 
h the simplest case, preprocessing may take the form of a linear transforma- 

tion ofthe input data, and ~ossibly also of the output data  (where i t  is sometimes 
?trmed post-processing). More complex pre-processing may involve red nction of 
"hfe dimensionality of the input data. The fac t  that such dirnensianality reduction 
can kacl to improved performance may at first appear somewhat paradoxical, 
s i ~ ~ ~  it cannot increase the information content of the input data, and in most 
r;tSPs will reduce it. The resolution is related to the curse of dimensionality dis- 
S'ls"d in Section 1.4. 

Another important way in which network performance can be improved, 
""'"times dramatically, is through the incorporation of prior knozuledge, which 
~ F Z  "'5 to relevant information which might be used to  develop a solution and 

yhic l l  is additional to that provided by the training data. Prior knowledge can 
''ti!pr he incorporated into the network structure itself or into the pre-processing 
and Post-processing stages. It can also be used to modify the training process 
:hr q " ~ h  the use of regularization, as discussed in Sections 9.2 and 10.1.2. 

-4 final aspect of data preparation arises horn the fact that real data often 
"lifPrs horn a number of deficiencies such as missing input values or incorrect 
tav:pt valTles, 

this chapter we shall focus primarily on classification problems. It should ha ""l~hasized, however, that most of the same general principles apply equally 

'Trmion problems. 



8: Pre-processing and Feature Edmctdon 

output 

processing 

network 

I F ]  processing 

inputJ data 

Figure 8.1. Schematic illustration of the use of data pre-procmjng and post- 
processing in conjunction with a neural network mapping. 

8.1 Pre-processing and post-processing 
In Chapter 1 we formulated the problem of pattern recognition in terms of a 
nun-linear mapping from a set of input variables to a set of output variables. We 
have already seen that a feed-forward neural network can in principle represent an 
arbitrary functional mapping between spaces of many dimensions, and so it would 
appew that we could use a single network to map the raw input data directly 
onto the required output variables. In practice it is nearly always advantageous 
to apply pre-processing transformations to the input data before it is pesentd 
to a network, Similarly, the outputs of the network are often post-processed to 
give the required output values. These steps are indicated in Figure 8.1. The pre- 
processing and post-processing steps may consist of simple fixed transformations 
determined by hand, or they may themselves involve some adaptive processes 
which are driven by the data. For practical applications, data pre-processing is 
often one of the most important stages in the deveIopment of solution, and the 
choice of pre-processing steps can often have a significant effect on 
performance. 

Since the training of the neurd network may involve an iterative algorithmn 
it will generally be convenient to process the whole training set using the Pre- 
processing transformations, and then use this transformed data set to train the 
network. With applications involving on-line learning, each new data point must 
first be pre-processed before it is passed to the network. If post-proeessing of 

the network outputs is used, then the target data must be transformed using 
the inverse of the post-processing transformation in order to generate the target 
values for the network outputs. When subsequent data is processed by the train' 
network, it must f ist  be passed through the pre-processing stage, then througl' 
the network, and finally through the post-processing transformation. 
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one of the most important forms of preprocessing involves a reduction in I 
dimensionality of the input data. At the simplest level this could involve I 

discarding a subset of the original inputs. Other approaches involve forming 
Iil,ear Or non-linear combinations of the original variables to generate inputs for 
I,he network. Such combinations of inputs are sometimes carled features, and the 

of generating them js calIed feature dmction. The principal motivation 
for dimensionality reduction is that it can help to alleviate the worst effects 
of the curse of dimensionality (Section 1.4). A network with fewer inputs has 
f e l ~ r  parameters to be determined, and these are more likely to be 

Properly constrained by a data set of limited size, leading to a network with 
better properties. Ln addition, a network with fewer weights may 
b, faster to train. 

AS a rather extreme example, consider the hypothetical character recognition 
problem discussed in Section 1.1. A 256 x 256 image h a  a totd of 65 536 pixels. 
In the mast direct approach we could take each pixel as the input to a single large 

network, which would give 65 537 adaptive weights (including the bias) 
for every unit in the first hidden layer. This implies that a very large training 
set would be needed to ensure that the weights were we1 determined, and this 
in turn implies that huge computational resources would be needed in order to 
find a suitable minimum of the error function. In practice such an approach is 
clearly impractical, One technique for dimensionality reduction in this case i s  
pireel averaging which involve grouping bbcks of pixeIs together and replacing 
each of them with a singIe effective pixel whose grey-scale value is given by the 
average of the grey-scde values of the original pixels in the block. It is clear that 
information is discarded by this process, and that if the blocks of pixels are too 
large, then there will be insufficient information remaining in the pixel averaged 
ima~e for eRective classification. These averaged pixels are examples of featuws, 
that is modified inpui;s formed from collections of the original inputs which might 
hp combined in linear or non-linear ways. For an image interpretation problem 

Rill often be possible to identify more appropriate features which retain more 
"f the relevant information in the original image. For a medical classification 
problem, such features might include various measures of textures, while for a 
Pruhlem involving detecting objects in images, it might be more appropriate to 
px"tact features involving geometrical parameters such as the lengths of edges 
Or meas of contiguous regions. 

Clearly in most situations a reduction in the dimensionality of the input v e ~  '" result in loss of information. One of the main goals in designing a good 
Prec~rocessing strategy is to ensure that as much of the relevant information as 
Pqssihle is retained. If too much information is lost in the pre-processing stage 
! 

IMn the resulting reduction in performance more than offsets any improvement 
YiyiW from a reduction in dimensionality. Consider a classification problem in 
I h i r h  an input vector x is to be assigned to one of c classes Ck where k = 1,. . . , e. 
Thq minimum probability of rnisclassification is obtained by assigning each input 
vpp'or x to the class Ci. having the largest posterior probability P(Ckx) .  We can 

rd these probabilities as examples of features. Since there are c such features, 
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and since they satisfy the relation zk PICklx) = 1, we see that in principle c, 
independent features are sufficient to give the optimal classifier. h practice, of 
course, we will not be able to obtain these probabilities easily, otherwise we would 
already have solved the problem. We may therefore need to retain a much larger 
number of features in order t o  ensure that we do not discard too much useful ib 
formation. This discussion highlights the rather artificid distinction between the 
pre-processing stage md the classification or regression stage. If we can perform 
sufficiently clever pre-processing then the remaining operations become trivial. 
Clearly there is a baIance to  be found in the extent to which data processing $ 
performed in the pre-processing and post-processing stages, and the extent to 
which it is performed by the network itself. 

8.2 Input normalization and encoding 

One of the most common forms of pre-processing consists of a simple linear 
rescaling of the input variables, This is often useful if different mriables have 
typical values which differ significantly. In a system monitoring a chemical plant, 
for instance, two of the inputs might represent a temperature and a pressure 
respectively. Depending on the units in which each of these is expressed, t h q  
may have values which differ by several orders of magnitude. Furthermore, the 
typical sizes of the inputs may not reflect their relative importance in determining 
the required outputs. 

By applying a linear transformation we can arrange for all of the inpub ta 
have similar values. To do this, we treat each of the input variables independently, 
and for each variabIe we calculate its mean Zi md variance c: with respect 
to the training set, using 

where n = 3,. . . , N labels the patterns. We then define a set of resealed variables 
given by 

It is easy to see that the transformed variables given by the 2; have zero me@ 
and unit standard deviation over the transformed training set. In the case 
regression problems it is aften appropriate to apply a similar linear rescding '' 
the target values. 
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sate that the transformation in (8.2) is linear and so, for the case of a multi- 
Iflver perceptron, it is in principle redundant since it could be combined with 

linear transformation in the first layer of the network. In practice, however, 
input normalization ensures that all of the input and target variables are of order 
,,,itv, in which case we expect that the network weights should also be d order 

The weights can then be given a suitable random initialization prior to  
n,work training. Without the linear rescaling, we would need to find a solution 
for the weights in which some weight values had markedly different values from 

others. 
%ate that, in the case of a radial basis function network with sphericdly- 

,,mmetric basis functions, it is particularly important to  normalize the input 
A .  

\~~~iables  so that they span similar ranges. This is a consequence of the fact 
that. the activation of a basis function Is determined by the Euclidean distance I 
hetween the input vector x and the basis function centre fij given by 

where d is the dimensionality of the input space. If one of the input variables 
h a s  a much smaller range of values than the others, the value of 1' will be very 
insensitive to this variable. In principle, an aItemative to normdisation of the 
input data is to use basis functions with more general covariance matrices. 

The simple linear rescaling in (8.2) treats the variables as independent. We 
can perform a more sophisticated linear rescaling, known as whitening, which 
dlows also for correlations amnm the variables (Fhkunaga, 1990). For con- - 
nience we group the input variables xi into a vector x = (XI,. . . , ~ d ) ~ ,  which has 
sample mean vector and covaiance matrix with respect te the N datsk points of 
t h ~  training set given by 

I t  introduce the eigenvalue equation for the covariance matrix 

Euj = Ajuj (8.5)  

we can define a vector of linearly transformed input variables given by 

gn = ~ - 1 / 2 u " ( ~ n  
(8.6) 
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whitened 
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Figure 8.2. Schematic illustration of the use of the eigenvectors uj (together 
with their corresponding eigendues Aj) of  the covariance matrix of a distri- 
bution to whiten the distribution so that its covariance matrix becomes the 
unit matrix. 

where we have defined 

Then it is easy to verify that, in the transformed coordinates, the aaza set h a  
zero mean and a covariance matrix which is given by the unit matrix. This 
illustrated schematically in Figure 8.2. 

8.2.1 Discwte data 

30 far have discussed data which takes the form of continuous variablp~.  i lk  
may also have to ded with data taking on discrete values. In such cases it is 
venient to distinguish between ordinal variabIes which have a natural orderiflp 
and eategoncal variables which do n o t  An exampie of an ordinal variable muid 
be a person's age in years. Such data can simply be transformed directh 
the corresponding values of a continuous variable. An example of a catWrie' 
variable would be a measurement which could take one of the values rod. PHs 
or blue. If these were to be represented as, for instance, the values 0.0, 0-.5 "' 
1.0 of a single continuous input variable, this would impose an artificial OfiieriQP 

on the data. One way around this is to use a 1-of-c coding for the inprlt 
similar to that discussed for target data in classification problems in Section 6.6 
In the above example this requires three input variables, with the  three col*''" 
represented by input values of (1,0,0) , (0,1,0) and (0,0, I). 
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Missing data 

In P ractical applications it sometimes happens that the data suffers from defi- 
ciencies which should be remedied before the data is used for network training. 

problem is that some of the input values may be missing from the 
;,,, set for some of the pattern vectors (Little and Rubin, 1987; Little, 1992). If 

quantity of data available is aztficientEy large, and the proportion of patterns 
,tfectPd is small, then the simplest solution is to discard those patterns from 

data set. Note that this approach is implicitly assuming that the mechanism 
is responsible for the omission of data values is independent of the data 
If the values which are missing depend on the data, then this approach 

,,.ill modify the effective data distribution. An example would be a sensor which 
always fails to produce an output signd when the signal value exceeds some 
threshold. 

!{;hen there is too little data to discard the deficient examples, or when the 
of deficient points is too high, it becomes important to make full use 

of t he  information which i s  potentiaI1y available from the incomplete patterns. 
Consider first the problem of unconditional density estimation, for the case of a 
parametric model based on a single Gaussian distribution. A common heuristic 
for estimating the model parameters would be the following. The components pi 
of the mean vector p are estimated from the values of x,: for a11 of the data points 
for which this value is available, irrespective of whdher other input values are 
present. Similarly, the (i, j) element of the covariance matrix Z1 is found using 
all pairs of data points for which values of both x, and xj are available. Such an 
approach, however, can lead to poor results (Ghahramani and Jordan, 1994b), 

indicated in Figure 8.3, 
I~arious heuristics have aIso been proposed for dealing with missing input 

data in regression and classification problems. For example, it is common to 'fill 
in' the missing input vajues first (Hand, 1981), and then train a feed-forward 
""r't.ork using some standard method. For example, each missing value might 
he replaced by the mean of the corresponding variable m r  those patterns for 
Iv1dcl1 i t s  value is avdlable. This is prone to serious problems a s  discussed above. 
*'more daborate approach is to express any variable which has missing values in 
'ern15 of a regression over the other variables using the available data,  and then '" the regression function to  fill in the missing values. Again, this approach 
:C "ls to cause problems as it underestimates the covariance in the data since 

the rcKresion function is noise-free. 
'lissin:: data in density estimation problems can be dealt with in a princi- 

'Irnd by seeking a maximum likelihood solution, and usin J the expectation- 
maamiration, or EM, algorithm to deal with missing data. In Section 2.6.2, the ESr was introduced as a technique for finding maximum likelihood 

for mixture models, in which hypothetical variables describing which 
''"ponnnt was responsible for generating each data point were introduced and trc- 1 dtprl '~nissing data'. The EM algorithm can similarly he  applied to the prob- 

Or variables missing from the data itself (Ghahramani and Jordan, 1994b). 
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Figure 8.3. Schematic illustration of a set of data points in two dimensions, 
For some of the data points (shown by the crosses) the values of both variables 
are present, while for others (shown by the vertical Iines) only the  values of 
XI are known. If the mean vector of the distribution is estimated using the 
available d u e s  of each variable separately, then the result is a poor estimate, 
as indicated by the square. 

In fact the two problems can be tackled together, so that the parameters of a 
mixture model can be estimated, even when there is missing data. Such tech- 
niques can be applied to the determination of the basis function parameters in 
a radial llasis function network, as discussed in Section 5.9.4. They can also be 
used to determine the density p(x ,  t) in the joint input-target space. Ekom this 
density, the conditional density p(t1x) can be evaluated, as can the regression 
function (t lx) . 

In general, missing values should be treated by integration over the cop 
responding variables (Ahmad nnd Tresp, 1993), weighted by the appropriate 
distribution (Exercise 8.4). This requires that the input distribution itself be 
modelled. A related approach is t o  fill in the missing data points with valuE 
drawn at random from this distribution (Lowe and Webb, iS9Oj. I t  is then PoS= 
sible to generate many different 'completions' of a given input pattern which hs 
missing variables. This can be regarded as a simple Monte Carko approximation 
to the required integration wer the input distribution (Section 10.9). 

8.4 Time series prediction 

Many potential applications of neural networks involve data x = x(i) which 
varies as a function of time T .  The goal is often t o  predict the value of x a sbo* - d 
time into the future. Techniques based on feed-forward networks, of the krn 

.ad described in earlier chapters, can be applied directly to such problems 
the data is appropriately pre-processed first. Consider lor simplicity a singie 
variable ~(7). One common approach is  to sample s(r)  at regular intervds 
gene rat^ a series of discrete values z, 1, x ,  , z,+ 1 ant1 so on. can take a I 
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Figure 8.4. Sampling of a time series at discrete steps can be wed to  generate 
a set  of training data for a feed-fatward network. Successive values of the 
timedependent variable ~(r), given by x,-*+I, . . . , x,, form the inputs to a 
feed-forward network, and the corresponding target d u e  is given by x,+l. 

of d such values X,_~+I,. . . , xr to be the inputs to a feed-fomd network, and 
use the next value x,+l as the target for the output of the network, as indicated 
in Figure 8.4. By stepping along the time axis, we can create a training data set 
consisting of many sets of input d u e s  with corresponding Owget values. Once 
the network has been trained, it can be presented with a set of obsemed values 
a,$-d+l ,  . . . , s , ~  and used t o  make a prediction for x , I + ~ .  This is called one step 
ahead prediction. If the predictions themselves are cycled around to  the inputs 
of the network, then predictions can be made at further points x,r+z and SO on. 
This is called multi-step ahead prediction, and is typically characterized by a 
rapidly increasing divergence between the predicted and observed values as the 
"~mber of steps ahead is increased due to the accumulation of errors. The abwe 
approach is easily generalized ta deal with several timcdependent variables in 

form d a time-dependent vector x(T) .  
One drawback with this technique is the need to choose the time increment 

hetween successive inputs, and this may require some empirical optimization. 
-Another problem is that the time series may show an underlying trend, such as 
" "eadily increming d u e ,  with more complex structure superimposedm This can 
i, remated by fitting a simple (e.g. linear) function of time to the data, and then 
"Utracting off the predictions of this simple model. Such preprocessing is called 
d~+t~endiag,  and without it, a trained network would be forced to extrapolate 

presented with new data, and would therefore have poor performance. 
There is a key assumption which is implicit in this approach to  time series 

'Pdiction, which is that the statistical properties of the generator of the data 
'b de-trending) are timeindependent. Provided this is the cme, then the pre- 
'Or@ssing described above has mapped the time series problem onto a static 

iuncfion approximation problem, to which a feed-forward network can be applied. 
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If, however, the generator of the data itself evolves with time, then this approach 
is inappropriate and it becomes necessary for the network model to adapt to the 
data continuously so that it can 'track' the time variation. This requires on-line 
learning techniques, and raises a number of important issues, many of which are 
at present largely unresolved and lie outside the scope of this book. 

8.5 Feature seIection 
One of the simpIest techniques for dimensionality reduction is to select a subset 
af the inputs, and to discard the remainder. This approach can be useful if 
there are inputs which carry little useful information for the solution of the 
problem, or if there are very strong correlations between sets of inputs so that 
the same information is repeated in several variables. It can be applied not only 
to the original data, but also to a set of candidate features constructed by some 
other means. For convenience we shall t d k  of feature selection, even though the 
features night simply be the original input wiabIes. Many of the idem are 
equally applicable to conventional approaches to pattern recognition, and an! 
covered in a number of the standard books in this area including Hand (1981), 
Devijver and Kittler (1982) and Xkunaga (19901, and are reviewed in Siedlecki 
and Sklansky (1988). 

Any procedure for feature selection must be based on t;wo components. First, 
a criterion must be defined by which it is possible to judge whether one subset of 
features is better than another. Second, a systematic procedure must be found 
for searching through candidate subsets of featurw. In principle the selection 
criterion should be the same as wilI be used to assess the complete system (such 
as misclassification rate for a classification problem or sum-of-squares error for 
a regression problem). Similarly, the search procedure could simply consist of 
an exhaustive search of all possibIe subsets of features since this is in general 
the only approach which is guaranteed to find the optimal subset. In a 
application, however, we are often forced to consider simplified selection criteria 
as well as non-exhaustive search procedures in order to limit the computational 
complexity of the search process. We begin with a discussion of possible selection 
criteria. 

8.5.1 Selection c r i t e ~ a  

It is clear that the optimal subset of features selected from a given startin!: set 

will depend, among other things, on the particular form of model (neural n e w r k  
or otherwise) with which they are to be used. Ideally the selection criterion 
be obtained by training the network on the given subset of features. and 
evaluating its performance on an independent set of test data. If the  newvrb 
training procedure involves non-linear optimization, such an approach is liki' 
to  be impractical since the training and testing process would have to be i e ~ ~ ~ ~ ~  
for each new choice of feature subset, and the computational requirements 
become too great. It is therefore common to use a simpler model, such il.; a lac' - h the 
mapping, in order to select the features, and then use these features W I ~  

more sophisticated non-linear model. The simplified model is chosen so that it'@ 
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be trained relatively quickly (using Iinear matrix methods for instance) thereby 
a relatively large number of feature combinations to be explored. It 

-hotll$ be emphasized, h m e r ,  that the feature selection and the classification io, reflession) stages should be ideally be optimized together, and that it is 
because of practical constraints that we are often forced to treat them 

independe~tl~- 
F~~ regression problems, we can take the simple model to be a linear mapping 

by a single-layer network with linear output units, which is equivalent to 
multiplication with the addition of a bias vector. If the error function 

jar training is given by a sum-of-squares, we can use this same me* 
sure for feature selection. In this case, the optimal values for the weights and 
biases in the linear mapping can be expressed in terms of a set of linear equa- 
tions whose soIution can be found quickly by using singular d u e  decomposition 
(Section 3.4.3). 

For classification problems, the selection criterion should ideally be taken to 
the probability of mkctassification, or more generally as the expected total 

105s or risk. This could in principle be calculated by using either parametric or 
non-parametric techniques to estimate the posterior probabilities for each class 
(Hand, 1981). In practice, evaluation of this criterion directly is generally too 
complex, and we have to resort instead t o  simpler criteria such as those based 
nn class separability. We expect that a set of variables in which the classes are 
best separated will be a good set of variables for input to a neural network or 
other classifier. Appropriate criteria for c I ~ s  separability, based on covariance 
matrices, were discussed in Section 3.6 in the context of the Fisher discriminant 
and its generalizations. 

If we were able to use the fuIl criterion of misclassification rate, we would 
W e c t  that, as we reduce the number of features which are retained, the gener- 
allaation performance of the system would improve (a consequence of the curse 
of dimensionality) until some optimal subset of features is reached, and that if 

reatures are retained the performance will degrade. One of the limitations 
many simple selection criteria, such as those b ~ d  on class separability, is 

'liar they are incapable of modelling this phenomenon. For example, the Maha- 
lanohis distance A2 (Seetion 2.1.1) always increases as extra variables are added. 
In general such measures J satisfy a monotonicity property such that 

X denotes a set  of features, and Xt denotes a larger set of features which 
the set X as a subset. Ths property is shared by criteria based on 

'n"riance matrices. The inequality simply says that  deleting features cannot 
:illce 'he error rate. As a consequence, criteria which satisfy the monotonicity 
'ns'raint cannot be used to deter* the optimum size for a set  of variables 

sd so cannot he used to compare sets of different sizes. However, they do offer a 
hflll Way to compare sets of variables having t h e  same number of elements. In 
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practice the removal: of features can improve the error rate when we take account 
of the effects of a finite size data set. One approach to the set size problem i s  to 
use conventional statistical tests to measure the significance of the improvernent 
in discrimination resulting from inclusion of extra variables (Hand, 1981). A,- 
other approach is to apply cross-validation techniques (Section 9.8.1) to compare 
models trained using different numbers of features, where the particular feature 
subset used for each model is determined by one of the approaches discussed 
here. 

8.5.2 Search pmceduws 

If we have a total of d p~ssible features, then since each feature can be present 
or absent, there are a total of 2d possible feature subsets which could be consid- 
ered. For a relatively small number of features we might consider simply using 
exhaustive search. With 10 input variables, for example, there are 1024 possible 
subsees which i t  might be computationally feasible to consider. For large numbers 
of input variables, however, exhaustive search becomes prohibitively expensive. 
Thus with 100 inputs there are wer 1030 possible subsets, and exhaustive search 
is impossible. If we have already decided that we want to extract preciseIy 
features then the number of combinations of features is given by 

d! 
(d-  2j!i 

which can be significantly smaller than 2d, but which may still be impracticdy 
Iarge in many applications. 

In principle it may be necessary to consider all possible subsets of features, 
since combinations of variables can provide significant information which is not 
avaiIable in any of the individual variabIes separately. This is illustrated for HQ 

classes, and two features XI and 22, in Figure 8.5. Either feature taken atone gil* 
strong overlap between the two classes, while if the two features are considered 
together then the classes form well-separated clusters. A similar effect can occur 
with an arbitrary number of features so that, in the most general case, the on]? 
way to  find the optimum subset is to perform exhaustive search. 

If we are using a criterion which satisfies the monotonicity relation in 18.9) 
then there exists an accelerated search procedure known as branch and b f l ~ ~ n a  

(Narendra and Fukunaga, 1977). This method can also be applied in many other 
areas such as cluster analysis and searching for nearest neighbours. In the present 
context it will guxantee to find the best subset of given size, without needing 
to evaluate d l  possible subsets. To understand this technique, we begin b ~ :  dis- 
cussing the exhaustive search procedure, which we set out as a tree structure. 
Consider an originaI set of d features si where i = 1 , .  . . , d, and denote the 
indices of the M = d - d katurm which have been discarded by a,. . . Y Z.\f' 

where each zk can take the d u e  1,. . . ,d. However, no t.m zk should take the 
same d u e ,  since that would represent a ~ingle feature being eliminated twice' 
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Figure 8.5. Example of data Erom two classes (represented by the creme and 
the circles respectively) as described by two feature variables XI and xz. If the 
data was described by either feature alone then there would be strong overlap 
of the two c l w ,  while with if both features me used, m shown here, then 
the classes are well separated. 

Also, the order of the a ' s  is irrelevant in defining the feature subset. A sufficient 
condition for satisfying these constraints is that the zk should satisfy 

This allows us  t~ construct a search tree, as shown in Figure 8.6 for the case of 
h e  original features from which we wish to select a subset of two. The features 
are indexed by the labels 1, 2, 3,4 ,  5, and the number next to each node denotes 
the feature which is eliminated at that node. Each possible subset of WO features 
selected from a total of five is represented by one of the nodes at the bottom of 
the tree. At the first level down from the top of the tree, the Righest value of zk 
~ ~ h i c h  is considered is 3, since any higher value would not allow the constraint 
(8.11) t o  be satisfied. SirniIar arguments are used to construct the stof the 

Now suppoae that we wish to maximize a criterion J (2) and that the value 
J corresponding to the node shown at A is recorded as a threshold, If at m y  

point in the search an intermediate node is encountered, such as that shown 
"" B,  for which the value of J is smaller than the threshold, then there is no 
"'4 do evaluate any of the sets which lie below this node en the tree, since, 
* a cmsequence of the monotonicity relation (8.9), such nodes necessarily have 
''alues of the criterion which are smaller than the threshold. Thus, the nodm 
'''cr4.n as solid circles in Figure 8.6 need not be evaluated. If. at any point in the 

a hal-layer node is encountered which has a larger value for the criterion, 
' hen this value becomes the new threshold. The algorithm terminates when every 
Gnai-~ayer node has either been evaluated or exciuded using the rnonotonieity_ 
''Iation. Note that, unlike exhaustive search applied to all oossible subsets of d 
'*:sbles, this method requires evaluation of gor liate subsets ne of the 
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Figure 8.6. A search tree far fer~ture subset selection, for the case of a set of 
five feature variables from which we wish to pick out the optimum subset of 
two vmriables. If a strictly monotonic selection criterion is being used, and a 
node such as that at B is found which hm a lower value for the criterion than 
some final-level node such as that at A, then all nodes below B (shown as  solid 
black nodes) can be eliminated from the search. 

which contain rnore than ;variables. However, this is rnore than offset by t h ~  
savings in not having t o  evaluate final-layer subsets which are excluded using the 
monotonicity property. The basic branch and bound algorithm can be modifid 
to generate a tree in which nodes with smaller values of the selection criterion 
tend to have larger numbers of successive branches (Fukmagsb, 1990). This can 
lead t o  imprwements in computational efficiency since nodes with srndler value 
of the criterion are more likely to be eliminated from the search tree. 

8.5.3 Sequential search techniques 

The branch and bound algorithm for monotonic selection crite ;cne~alI!' 

faster than exhaustive search but is &ill guaranteed to find t] ore ~ h -  

set (of given size) which maximizes the criterion. In some applieanona, such a" 
approach is still computationally too expensive, and we are then forced to con' 
sider techniques which are significantly fmter but which may give suboptimal 
solutions. The simplest method would be to select those 2 features which 
individually the best (obtained by evaluating the selection criterion using On' 
feature at a time). This method, however, is likely to be highly 

ble. and 

would O* he optimal for selection criteria which can be expresse ' sum* @' 
.t **auld 

the product, of the criterion evaluated for each feature individ~alu~, -11- 1 

therefore only be appropriate if the features were cmpleteIy independent. . 
A better approach, known as sequential forward selection, is illustrated ' 

Figure 8.7. The procedure begins by considering each of the variable. individudy 
and selecting the one which gives the largest value lor the selection critrrionn 

At 

each successive stage of the algorithm, one additional feature is added to the '"' 

ria is g 
he feat1 

2 .  

unrelia 
d as th€ 
?.. 
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Figure 8.7. Sequential forward selection illustrated for a set of four input fea- 
tures, denoted by 1, 2, 3 and 4. The single best feature variable is chosen first, 
and then features are added one at a time such that at each stage the variable 
chosen is the one which p r o d u c ~  the greatest increase in the criterion function. 

again chosen on the basis of which of the possible candidates at that stage gives 
rise to the largest increase in the value of the selection criterion. One obvious 
diEculty with this approach i s  that, if there are two feature variables of the kind 
shown in Figure 8.5, such that either feature aIone provides little discrimination, 
bu t  where both features together are very effective, then the forward selection 
procedure may never find ths combination since either feature alone would never 
be selected. 

An alternative is ta start with the full set of d features and to eliminate them 
One at a time. This gives rise to the technique of sequenfzal backward elimination 
illustrated in Figure 8.8. At each stage of the algorithm, one feature is deleted 
irotn the set, chosen from amongst dl available candidates as the one which gives 
the smallest reduction in the value of the selection criterion. This overcomes the 
problem with the forward selection approach highlighted above, but is still not 
tuaranteed to be optimal. The backward elimination algorithm requires a greater 
'lmmber of evaluations, however, since it considers numbers of features greate~ 
'h:in 0, qua1 to ;while the forward selection procedure considers numbers of 
' a ~ s  less than or equal t o  d: 

These algorithms can be generalized in various ways in order to allow small 
: l b i ~ t ~  af features which are ~ollectively useful t o  be selected (Devijver and 
"ttler. 1982). For example, at the kth stage of the algorithm, we can add 1 c .  

using the sequential forward algorithm and then eliminate r features "sin ,, . the sequential backwards algorithm. Clearly there are many variations on 
' ! I q  theme giving a range of algorithms which search a larger range of feature 

"lhser, at the price of increased computation. 
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Figure 8.8. Sequential backward elimination of variabla, again illustrated for 
the case of four features. Starting with the complete set, features are eliminated 
one at a time, such that at each stage the feature chosen for elimination is 
the one corresponding to the smallest reduction in the value of the selection 
criterion. 

8.8 Principal component analysis 

I where the vectors Ui satisfy the orthonormality relation 

mprove] 
lower d 
space u 
- 0  - 1.- 

We have already discussed the problems which can wise in attempts to perform 
pattern recognition in high-dimensional spaces, and the potential ii 
which can be achieved by first mapping the data into a space of 
sionality. In general, a reduction in the dimensionality of the input 
mcompanied by a loss of some of the information which discrimina~es rle 

different classes (or, more generally, which determines the target values) 
goal in dimensionality reduction i s  therefore to preserve as much of the re] 
information as possible. We have already discussed one approach to dimel--- 
ality xeductian based an the selection of a subset of a given set of features or 
inputs. Here we consider techniques for combining inputs together to m& a 
(generally smaller) set of features. The procedures we shall discuss in this set- 

t bn  rely entirely on the input data itself without reference to the correspo 
target data, and can be regarded as a form of ansupewised learning. Whih 
are of great practical significance, the neglect of the target data infom 
implies they can dso be significantly suboptimal, as we discuss in Section Fib-'' 

We begin our discussion of unsupervised techniques for dirnensionalitY 
duction by restricting our attention to linear transformations. Our gonl is a r- 
map vectors xn in a d-dimensional space ( x ~ , .  . . x d )  onto vectors X" in an 
dimensional space (zl,. . . , z M ) ,  where M < d. We first note that the wctc 
can be represented, without loss of generality, as a linear combination of Se 

d orthonormal vectors u, 

k4\vccu 

. The 
e t m t  
lsion- 

in which S,, is the Kronecker delta symbol defined on page xiti. Explicit expres- 
sions for the coefficients z;: in (8.12) can be found by using (8.13) to  give 

which can be regarded as a simpb rotation of the coordinate system from the 
original X'S to a new set of coordinates given by the 2's (Appendix A). Now 
,,ppose that we retain only a subset M c d of the basis vectors ui, so that 
, use only M coefficients q. The remaining coefficients will be replaced by 
 ons st ants bi so that each vector x is approximated by an expression of the form 

1 This represents a form of dimensionality reduetian since the original vfftar x 
which contained d degrees of freedom must now be approximated by a new 
vector z which has M < d degrees of freedom. Now consider a whoIe data set of 
.W vectors xn where n = I,. . . , N .  We wish to  choose the basis vectors ng and 
the coefficients b, such that  the approximation given by (8.15), with the values 
of z, determined by (8.141, gives the best approximation to the originaI vector x 
on average for the whole data set. The error in the vector x" introduced by the 
dimensionality reduction is given by 

' j r p  can then define the best approximation to be that which minimizes the sum 
Of the Squares of the emors ~ v e r  the whole data set. Thus, we minimize 

'*here we have used the orthonormality relation (8.13). If we set the derivative '' E~ a i t h  respect to bi to zero we find 
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where we have defined the mean vector T t o  be 

Using (8.14) and (8.18) we can write the sum-of-squares error (8.17) 

where L: is the covariance matrix of the set of vectors {xn) a d  is given by 
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Figure 8.9. Schematic illustration of principal component andysis applied to 
data in two dimensions. In a linear projection down to one dimension, the 
optimum choice of projection, in the sense of minimizing the sum-of-squares 
error, is obtained by first subtracting off the mean 3 of the data set, and then 
projecting onto the first eigenvector ul of the covariance matrix. 

I 

There now remains the task of minimizing EM with respect to the choice of bmis 
vectors %. It is shown in Appendix E that the minimum occurs when the basis 
vectors satisfy 

SO that they are the eigenvectors of the covariance matrix. Note that, since the 
covariance matrix is real and symmetric, its eigenvect,ors can indeed be chosen 
to  be orthonormal as assumed. Substituting (8.22) into (8.20), and making use 
of the orthonormality relation (8.131, we obtain the value of the error criterion 
at the minimum in the form 

Thus, the minimum error is obtained by choosing the d - M smallest eigemalu@' 
and their corresponding eigenvectors, as the ones to discard. 

The linear dimensionality reduction procedure derived above is called d "' 
K~lrhunea-Lohe traasfownotion or principal component analysis and is discu- 
at length in Jollife (1986). Each of the eigenveaors ui is called a p r i n c i ~ ~ l  'Om: 

portent. The technique is illustrated schematically in Figure 8.9 for the 
data points in two dimensions, 

In practice, the algorithm proceeds by first computing the mean of the 
x" and then subtracting off this mean. Then the covariance matrix is cnlelllo"d 

and its eigenvectors and dgenvalues are found. The eigenvectors corresponding 
to she M largest eigenvalues are retained and the input vectors x" are projected 
onto the eigenvectors to give the components of the transformed vectors zn in / the M-dimensional space. Thus, in Figure 8.9, each twc-dimensional data point 
is transformed to a single variable zl representing the projection of the data 
point onto the eigenvector ul. 

The error introduced by a dimensionality reduction using principal compo- 
nent analysis can be evaluated using (8.23). In some applications the original data 
h= R very high dimensiondity and we wish only to retain the first few principal 
components. In such cases use can be made of efficient algorithms which allow 
('d~ the required eigenvectors: corresponding to the largest few eigendues, to 
he ~~paluated (Press et  al., 1992). 

1% have considered Iinear dimensionality reduction based on the sum-of- 
error criterion. It is possible to consider other criteria including data 

'mariance measures and population entropy. These give rise to the same re- ' r l ~  for the optimal dimensionality reduction in terms of projections onto the 
I D ' ~ n v @ ~ i ~ i s  of D corresponding to  the largest eigenvalues (hrkunaga, 1990). 

>11 IPose , we are given a set of data vectors in a d-dimensional space, and we 
' 3  Fk'ly Principal component analysis and discover that the first d' eigenvalues have 

3 9  7"'fcantly larger values than the remaining d-dt eigendues. This tells US that 
YIP 
ET;.: 'Ista can he represented to a relatively high accuracy by projection onto the 

d' eigenvectors. We therefore discover that the effective dimensiondity of 
"k (1  ,.. less than the apparent dimensionalihy d, as a result of correlations 
i'Yhin the data. Howwer, principal component analysis is limited by virtue of 
*'*'% a linear technique. It may therefore be unablo t o  capture more complex 

n'n-linrar ~orrelationq, and may therefore overestimate the true dimensionality 
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Figure 8.10. Example of a data set in two dimensions which has an intrinsic 
dimensionality d% I. The data can be specified not only in terms of the two 
variables x i  and x2, but also in terms of the single parameter g. However, a lin- 
ear dimensionality reduction technique, such as principal component analysis, 
is unable to detect the lower dimensionality. 

I 
of the data. This is illustrated schematically in Figure 8.10, for dab& r v ~ ~ ~ t ~  which 
lie around the perimeter of a circle. Principal component analysis would give two 
eigenvectors with equd eigenvalues (as a result of the symmetry of the data). En 
fwt, however, the  data could be described equally well by a single parameter 7 
as shown. More generally, a data set in d dimensions is said to have an in trim'c 
dimensionalztp equal to d' if the data lies entirely within a df-dimensional sub 
space (Fukunaga, 1982). 

Note that if the data is slightly noisy, then the intrinsic dimensiondity rn8Y 

be increased. Figure 8.11 shows some data in two dimensions which is corrupted 
by a small bvel of noise. Strictly the data now lives in a two-dimensional space* 
but can nevertheless by represented to high accuracy by a single parameter. 

8.6.2 Neural networks for dimensionality reduction 
Multi-layer neural networks can themselves be used to perform non-linear dimen- 
sionality reduction, thereby overcoming some of the limitations of linear p""cipaI 
component analysis. Consider first a multi-layer pesceptron of the form show* 
in Figure 8.12, having d inputs, d output units and M hidden units, with <* 
(Rumelhart et al., 1986). The targets used to train the network are simpl?' the 
input vectors themselves, so that the network is attempting to map each input 1 

vector onto itself. Due to the reduced number of units in the first layer, a perid 
reconstruction of dl input vectors is not in general possibk. The network b-9 I 
trained by minimizing a sum-of-squares error of the form I 
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Figure 8.11. Addition of a small Ievel of noise to data in two dimensions having 
an intrinsic dimensionality of 1 can increase its intrinsic dimensionality to 2. 
Nevertheless, the data can be repreented to a good approximation by a singIe 
variable q and for practical purposes can be regarded as having an intrinsic 
dimensionality of 1. 

outputs 
XI Xd 

XI Xd 
inputs 

Figllre 8.12. An auto-associative multi-layer perceptron having two layers of 
{I, *P1~hts. - Such a network is trained to map input vectors onto themseiws by 
minimization of a sum-of-squares error. Even with ncm-linear units in the hid- 
den layer, such a network is equivalent to linear principal component analysis. 

have been omitted for clarity. 
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Xt Xd 

non-linear 

non-linear 

Figure 8.23. Addition of extra hidden layers of non-linear units to  the network 
of Figure 8.12 gives an auto-associative network which can perform a general 
non-linear dimensionality reduction. Biases have been omittd for clarity. 

Such a network is said to form an auto-associative mapping. Error rninirniza 
in this case represents a form of unsupervised training, since no indepenr 
tagst data is provided. If the hidden units have linear activations functi 
then it can be shown that the error function has a unique global minimum, 
that at this minimum the network performs a projection onto the M-dimensia 
sub-space which is spanned by the first M principal components of the ( 

(Bourlard and Kamp, 1988; Baldi and Hornik, 1989). Thus, the vectors of weignts 
which lead into the hidden units in Figure 8.12 form a basis set which spans the 
principd sub-space. (Note, however, that these vectors need not be orthogonal 
or normalized.) This result is not surprising, since both principal ~ornpos"~+ 
analysis and the neural network are using linear dimemionaIity reduction 
are minimizing the same sum-of-squares error function. 

I t  might be thought that the limitations of a linear dimensionality reduc 
could be overcome by using non-linear (sigmoidal) activation functions for the 
hidden units in the network in Figure 8.12. However, it was shown by B U U ~ ~ ~ T ~  

and Kamp (1988) that such non-linemities make no difference, and that the mini- 
mum error soIution is again given by the projection onto the principal cornpol 
subspace. There is therefore no advantage in using two-layer neural network 
perform dimensiondity reduction. Standard techniques for principal cornpol 
analysis (based on singular value decomposition) are guaranteed to give the co'- 
rect solution in finite time, and also generate an ordered set of eigendues 
corresponding orthonormal eigenvectors. 

The situation is different, however, if additional hidden layers are 
ted in the network. Consider the four-layer wtc-associative network shoarn Ln 
Figure 8.13. Again the output units are linear, and the M units in the second 
hidden layer can also be linear. However, the first and third hidden layers I"" 
sigmoidal non-linear activation functions. The notwork is again trained bv mi*- 
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Figure 8.14. Geometrical interpretation of the mappings performed by the 
network in Figure 8.13. 

lization of the error in (8.24), We can view this network as two successive 
nctional mappings F1 and Fz. The first mapping F1 projects the original d- 
mensional data onto an M-dimensional sub-space S defined by the activations 

ur the units in the second hidden layer. Because of the presence of the first hidden 
tayer of non-linear units, this mapping is essentially arbitrary, and in particular 
is not restricted to being linear. Similarly the second half of the network defines 
an arbitrary functional mapping from the M-dimensional space back into the 
original d-dimensional space. This has a simple geometrical interpretation, as 
indicated for the case d = 3 and M = 2 in Figure 8.14. The function Fz maps 
from an M-dimensional space S into a d-dimensional space and therefore defines 

e way in which the space S is embedded within the original x-space. Since the 
 ping Fz can be non-linear, the sub-space S can be non-planar, as indicated 
the figure. The mapping F1 then defines a projection of points in the original 

"-dimensional space into the M-dimensional subspace 5. 
Such a network effectiveIy performs a non-lines principal component analy- 

S1$. It h a  the advantage of not being limited t o  linear transformations, although 
It contains standard principal component analysis as a special case. However, 
'hP minimization of the error function is now a non-linear optimization problem, 
"'"re the error function in (8.24) ig no longer a quadratic function of the network 
Parameters. Computationally intensive non-linear optimization techniques must 

wed (Chapter 71, and there is the risk of fmding a suboptimal local minimum 
pf the error function. Also, the dimensionality of the sub-space must be specified 
It' advance of training the network, so that in practice it may be necessary to 
""in and compare several networks having different values of M. An example of 
the nP~iication of this approach is given in Kramer (1991). 
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Figure 8.15. An example of a simpIe ~Iassification problem for which princi- 
pal component analysis would discard the discriminatory information. Tww 
dimensional date is taken from two Gaussi~n classes C1 and Ca depicted by the 
two ellipses. Dimensionality reduction to one dimension using principal com- 
ponent analysis would give a projection of the data anto the vector ul which 
would remove dl ability to discriminate the two class-. The full discrimina- 
tory capability can be preserved if instead the data is projected onto the vector 
uz, which is the direction which would be obtained from h e m  discriminant 
analysis. 

We have described both linear and non-linear unsupervised techniques for di- 
mensiondity reduction. These can lead to significant irnprwements in the per- 
formance of subsequent regression or cIassi6cation system. It shouId be empha- 
sized, however, that methods based on unsupervised techniques take no accomt 
of the target data, and can therefore give results which are substantidly less 
than optimal. A reduction in dimensionality generally involves the loss of some 
information, and it may happen that this information is very important for the 
subsequent regression or classification phase, even though it is of relatively little 
importance for represent ation of the input data itself. 

As a simple example, consider a classification problem involving input dats 
in two dimensions taken from two Gaussian-distributed as shown in fir 
ure 8.15. Principal component analysis applied to this data would give the eipP- 
vectors and uz as shown. If the dimensionality of the data were to be 
to one dimension using principal: component analysis, then the data waulc 
projected onto the vector ul since this has the larger eigenvalue. However, 
would lead to a complete loss of all discriminatory information, and the cl@ 

have identical distributions in the one-dimensional space. By contrast' 
projection onto the vector uz would give optimal class separation with no 

of 

discriminatory information. Clearly this is an extreme example, and in Pactico 
dimensionality reduction by unsupervised techniques can prove useful in mfl' 

8.7: Invariancea and prdor knowledge 

licati0nsh 
gPPNote that in the example of Figure 8.15, a reduction of dirnensiondity us- 
, Fisher's linear discriminant (Section 3.6) would yield the optimal projection 

I tn, 
,ctor u2. This is a consequence of the fact that i t  takes account of the class 

in selecting the projection vector. However, as we saw in Section 3.6, 
, poblern with c classes, Fisher's linear technique can only find c - 1 inde- 

pendent directions. For problems with few classes and high input dimensionality 
may result in too drmtic a reduction of dimensionality. Techniques such 

., component analysis do not suffer from this limitation and are able ,, any number of orthogonal directions up to the dimensionality of the 
original space. 

~t is worth noting that there is an additional link between principd com- 
ponent analysis and a cIass of linear neural network models which make we of 1 of the Hebb learning rule (Hebb, 1949). This form of learning in- 
volves making changes to the value of a weight parameter in proportion to the 
activation values of the two units which are linked by that weight. Such net- 
works can be made to perform principal component andysis of the data (Oja, 
1982, 1989; Linskes, 1988; Sanger, 1989), and furthermore it can be arrmged 
that the weights converge to orthonormal vectors along the principd component 
directions. For practical applications, however, there would appear to be little 
advantage in using such approaches compared with standard numerical analysis 
techniques such as those described earlier, 

1 8.7 Invarimees and prior knowledge 
Throughout this book we are considering the probIem of setting up a multivariate 
mapping (for regression or classification) on the basis of a set of training data. 
In  many practical situations we have, in addition to the data itself, some general 
infomation about the form which the mapping should take or some constraints 
which it should satisfy. This is referred to as pP.ior knowledge, and its inclusion 

the network dmign process can often lead to substantial improvements in 
Pprformance. 

Il'e have allready encountered one form of prior knowledge expressed as prior 
probabilities of class membership in a classification problem (Section 1.8). These 
'an be taken into account in an optimal way by direct use of Bayed theorem, or by 
lnrio(hcing weighting factors in a sum-of-squares error function (Section 6.6.2). 

concentrate on forms of prior knowledge concerned with various kinds of 
]"'"'iance. As we shall see, the required invariance properties can be built into 

We-processing stage, or they can be included in the network structure itself. 
the latter option does not strictly constitute part of the pre-processing, i t  

!' di7cussed in this chapter for convenience. 

'".1 Jnvanances 
In hl ""Y practical. applications it is known that  the outputs in a classification or 
re0 *rPqsion problem shouId be unchanged, or inuaniant, when the input is subject 
tr, , Sr io~s  t,ransformatiuns. An important example is the classification of objects 
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in two-dimensional images. A particular object shouId be assigned th  
s-e 

elassifrcation even if it is rotated or translated within the image or if it is linearly 
scaled (corresponding to the object moving towards or away from the camerai, 
Such transformations produce significant changes in the raw data (expressed 
terms of the intensities at each of the pixels in the image) and yet should 
rise to the same output from the classification system. We shall use this oh 
recognition example to illustrate the use of invariances in neural network! 
should be borne in mind, however, that the sarne general principles apply to 
problem for which it is desired to incorporate invariance with respect to a st 

transformations. 
Broadly we can identifi three basic approaches to the construction of in, 

ant classification (or regression) systems based on neural networks (Barnard 
Casasent, 1991): 

1. The first approach is to train a network by example. This involves 
ing within the training set a sufficiently large number of examples of the 
effects of the various transformations. Thus, for translation invariance, the 
training set should include examples of objects at many different positions. 
If suitable training data is not readily available then it can be generated by 
applying the  transformations to the existing data, for example by translab 
ing a single image to generate several images of the sarne object at different 
locations. 

2. The second approach involves making a choice of pre-processing which in- 
corporates the required invariance properties. If features are extracted from 
the raw data which are themselves invariant, then any subsequent rep* 
sion or classification system will necessarily also respect these invarianca. 

3. The final option is to build the invariance properties into the network struc- 
ture itself. One way to achieve this is through the use of shared weights- 
and we shall consider two specific examples involving local receptive fields 
and higher-order networks. 

While approach 1 is relatively straightfornard, it suffers from the disadvantage 
of being inefficient in requiring a substantially expanded data set. It will air0 
result in a network which only approximately respects the invariance. Rlrther- 
more, the network will be unable t o  deal with new inputs in which the range 
the transformation exceeds that encountered during training, as this represents .d 
an extrapolatbn of the network inputs. Methods 2 and 3 achieve the reWr 
invariance properties without needing unnecessarily large data sets. In the Cok 

text of t.ranslatian invariance, for instance, a network which has been trdned 
to recognize an object correctly at one position within an image can recognize 
the same object correctly at any position. In contrast to a network trainpd 
method 1, such a network is abie to extrapolate to new inputs if t h  r 

the  training data primarily by virtue done of the transformation: 
An alternative approach which also involves incorporating invari 

~rougl~ 

training, but which does not require artificial expansion of the 
is the 

technique of tangent prop (Sirnard et a!., 1'392). Consider the ef t rans- 

ey diffe 
1. 

ances tl 
data set, 
Tect of rl. 

Figure 8.16. Illustration of a tw~dimensional input space showing the ef- 
fect of a continuous transformation on a, particular input vector x". A one- 
dimensional transformation, parametrized by the continuous variable a, ap- 
plied to x" causes it to sweep out a one-dimensional manifold M .  Locally, the 
effect of the transformation can be approximated by the tangent vector 7". 

formation on a particular input pattern vector xn. Provided the transformation 
is contiiluous {such as translation or rotation, but not mirror reflection for in- 
stance) then the transformed pattern wilI sweep out a manifold M within the 
d-dimensional input space. This is illustrated in Figure 8.16, for the case of d = 2 
for simplicity. Suppose the transformation is gwerned by a singIe parameter cr 
(n.hi& might be rotation angle for instance). Then the sub-space A4 swept out 

x" will be one-dimensional, and wiII be parametrized by a. Let the vector 
which results from acting on xn by this transformation be denoted by s(a,xn) 
~ h i c h ,  is defined so that s(0, xn) = xn. Then the tangent t o  the curve M is given 

the directional derivative T = ds/da,  and the tangent vector at the point xn 
1.F given by 

Cader a transformation of the input vector, the network output vector will, in 
yn"ral, change. The derivative of the =tivation of output unit k with respect 
'q is given by 

Y b ~ @  Jk, is the (k,i) element of the Jacobian matrix J, as discussed in Sec- 
j ' ' ~ ~  4-9. The result (8.26) can be used to modik the standard error function, so 
'' '0 encourage local invwiance in the neighbourhood of t h e  data points, by the 
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addition to the usual error function E of a regularization function a to giva - 

${,he 
re (u ,v )  are Cartesian coordinates describing locations within the image, 

total error function of the form 
(TI, f l )  represenb the intensity of the image a t  location {u, v), and K(u,  v )  is 

a kernel and is a fixed function whose form determines the particular 
z = ~ + v C !  (8. under consideration. In practice, an image is specified in terms of a 

i;,ite array of pixels, and so the integrals in (8.29) are replaced by discrete sums 
where v is a regularization coefficient (Section 9.2) and 

(8.28) 
ifthen the kernel function takes the form of simple powers we have wgular mo- 
,,jents which, in continuous notation, can be written 

The regularization function will be zero when the network mapping function js 

invariant under the transformation in the neighbourhood of each pattern vector, 
and the value of the parameter v determines the balance between the network 1 

MI, = J z(uI v)u1vrn du du (8.31) 

fitting the training data and the network learning the invariance property. 

o the r 
ues intr 

- - 
In a practical implementation, the tangent vector 7" can be approximated hy 

finite differences, by subtracting the original vector xa from the corresponding 
vector after transformation using a, small value of a, and dividing by a. Some 
smoothing of the data may also be required. The reguIarization function depends 
on the network weights through the Jacobian J. A back-propagation formalism 
for computing the derivatives of the regularizer with respect t letwork 
weights is easily obtained (Exercise 8.6) by extension of the techniq odumd 
in Chapter 4. 

If the transformation is governed by 3; parameters (e.g. L = A lul che case 
of translation in a two-dimensional image) then the space M will have dimen- 
sionality L, and the corresponding regularizer is given by the sum of terms 05 

the form (8.28), one for each transformation. If several transformations are con- 
sidered at the same time, and the network mapping is made invariant to e d  
separately, then it will be (Iocally) invariant t o  combinations of the transform* 
tions (Sirnard et  al., 1992). A related technique, cdled fangent detaae, can be 
used to build invariance properties into distancebased methods such as 

' 

neighbour classifiers (Sirnard ef al., 1993). 

8.7.2 Invariance thmugh pre-plmcessing 

1 and m are non-negative integers. We can define a corresponding set of 
translation-invariarlt features, called central moments, by first subtracting off the 
means of u and v 

 here t = MIO/MoO and 77 = Mol/Moo. Under a translation of the image 
x(u, v )  - X(U + Au, v t- Av), and it is easy to verify that the moments de- 
fined in (8.32) are invariant. Note that this neglects edge effects and assumes 
that the integrals in (8.32) run over (-m, oo). In practice, the use of moments 
in the discrete form (8.30) will give only approximate invariance under such 
transformations. 

Similarly. under a change of scale we have x(a, v) 4 x(au, av). We can make 
t h ~  central moments invariant to scale by normdirsing them to give 

The second approach which shall consider for incorporating invariance pro' 1 and again it easy to veriiy that the normalized in (8.33) are simulta- 
erties into neural network mappings is by a suitable choice of p r e - p r ~ c e ~ ~ ~ ~ ~  

I ?US~Y invariant to translations and scaling. Similarly, we can use the moments 
One such technique involves the extraction of features from the origina1 input In 18.33) in turn to moments are s~ultaneously invariant to 
data which are invariant under the requiied transformations. Such features ,,,~, and rotation ( ~ ~ ~ ~ ~ i ~  8.7). F~~ instance, the quati@ 
oRen based on aornenb of the original data. For inputs which consist of a t."'p 
dimensional image, the moments are defined by I P20 4- la02 (8.34) 

this property {SehalkoE, 1989). Other forms of moments e m  also be consid- 
which are based on different forms for the kernel function K(u,  O) ( K h ~ t m -  
and Hocg, 1990). 
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Figure 8.17. Illustration of a threedimensional input space showing trajectc 
ries, such as M ,  which patterns sweep out under the action of transformation 
to which the network outputs should be invariant. A suitably chosen set c 
constraints will define a, sub-spwe 7 which intersects each trajectory precise! 
once. If new inputs are mapped onto this surface using the transformation 
then invariance is guaranted. 

One problem with the use of moments as input features is that conside 
computational effort may be required for their evaluation, and this cornput 
mud be repeated for each new input image. A second problem is that 
of information is discarded in evaluating m y  particular moment, and so 
moments may be required in order to give good discrimjnation. 

An alternative, related approach to invariant pre-processing is to tram 
any new inputs so as to sat is^ some appropriately chosen set of constrarll~~ 
(Earnard and Casasent, 1991). This is illustrated schematically in Figure 8-li 
for a set of oneparameter transformations. Under the action of the trans forma+ 
tions, each input vector sweeps out a trajectory M as discussed earlier. ThoSe 
patterns whieh satisfy the constraints live on a ~ubspace 7 which intersects 
trajectories. Note that the constraints must be chosen so that eaeh tra.jectQ" 
intersects the constraint surface a t  precisely one point. Any new input wmr 
is first transformed (thus moving it along its trajectory) until it reaches "le 

constraint surfwe. This transformed vector is then used as the input to the ~'1 
work. As an example, suppose we wish to impose invariance to trans1 at ions "' 
changes of scale. The constraints might then take the form that the zerorh a"d 
first moments Moo, Mlo and Mol, given by (8.31), should have specified value. s]ati@C 
Every image (for the training set or test set) is first transformed by 
and scaling until the constraints are satisfied. 

!raMe 
ation 
a lot 

8.7.3 S h a d  weights drue 
The third approach to dealing with invarianees, discussed &we, involve , 
turing the network itself in such n way that the network mapping reVec 
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Figure 8.18. Schematic architecture of a network for translation-invariant ob- 
ject recognition in two-dimensional images. In a practical system there may 
be more than two layers between the input image and the outputs. 

invariances. While, stridly, this is not a form of pre-processing, it is treated here 
Eor convenience. Again, we introduce this concept in the context of networks 
designed for object rwognition in two-dimensional images. 

Consider the network structure shown in Figure 8.18. The inputs to the net- 
work are given by the intensities at each of the pixels in a two-dimensional array. 
hits in the first and second layen are similarly arranged in two-dimensional 
sheets to  reflect the geometrical structure of the problem. Instead of having full 
1"erconnections between adjacent layers, each hidden unit receives inputs only 

units in a small region in the previous layer, k n m  as a receptive field. 
reflects the results of experiments in conventional image processing which 

hav@ d~rnonstrated the advantage of extracting local features from an image and 
jhtn combining them together to form higher-order features. Note that it also 
Irnttates some aspects of the mammalian visual processing system. The network 
yhlkcture is typically chosen so that there is some overlap between adjacent 
"%P'ivp fields. 

-r.. 

r.: ' h e  technique of shared weights can then be used to build in some degree 
.' invariance into the response of the network (Rumelhart et ad., ?35r;. . L@ Cun et al., 1989; Lsng et  nl., 1990). In the simplest case this involves 

'nti''rai"fng the weights from each receptive Beld to be equal to the eorrespond- 
LP.? 

from all of the receptive fields of the other units in the same layer. ?qn-. 
"der an object whieh falls within receptive field shown at A in Figure 8.18, 

grrt? 
it, 'Pgnding to  a unit in hidden layer 1, and which produces some activation 

91 I 
r. " that unit. If the same object falls at the corresponding position in re- 

'live field B,  then, = a consequence of the shared weights, the corresponding 
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unit in hidden layer 1 will have the same activation level. The units in the second 
layer have fixed weights chosen so that each unit computes a simple average of 
the activations of the units that fall within its receptive field. This allows units 
in the. layer to be relatively insensitive to moderate translations within 
the input image. However, it does presem some positional information 
allowing units in higher layers to detect more complex composite feature. Typi 
caIly each successive layer has fewer units than previous layers, as infomation 
the spatial location of objects is gradually eliminated. This corresponds to the 
use of a relatively high resolution to detect the presence of a feature in an earlier 
layer, while using a lower resolution to represent the locgtion of that feature in 
a subsequent layer. 

In a practical network there may be several pairs of layers, with alternate 
layers having b e d  and adaptive weights. These gadually build up increasing 
tolerance to shifts in the input image, so that the final output layer has a response 
whi& is aIrnost entirely independent of the pmition of an object in the input 
field. 

As described so far, this network architecture has only one kind of receptive 1 
field in each layer. In order to be able to extract severd different kinds of feature 
is necessm to provide sevexal 'planes' of units in each hidden layer, with all 
units in a given plane sharing the same weights. Weight sharing can be enforced 
during learning by initializing corresponding weights to the same (random) values 
and then averaging the weight changes for all of the weights in one group and 
updating all of the corresponding weights by the same amount using the averaged 
weight change. 

Network architectures of this form have been used in the zip code recogni- 
I 

tion system of Le Cun e t  al. (1989), and in the neocognitmn of Fukushima et a[. 
(1983) and Fukushima (1988), for translation-invariant recognition of handwrit- 
ten digits. I 

The use of receptive fields can dramatically reduce the number of we@ 
present in the network compared with s fu lb  connected architecture. This maker 
i t  practical to treat pixel values in an image directly as inputs to a nefsflk. 
In addition, the use of shared weights means that the number of independent 
narnrneters in the network is much less than the numbei of weighb, which allofi 1 r - - - ---  - 

much smaller data sets t o  be used than would otherwise be necessary. 

8.7.4 Higher-oder networks for encoding invariances 

In Section 4.5 we introduced the concept of a higher-order network based On 

units whose outputs are given by 

where zi is an input, g ( + )  is s non-linear activation function and the m's rep 
resent the weights. We have already remarked that n ~ ~ e h  networks can hare ' 

Figure 8.19. We can impose translation invariance on a second-order nt.%Of k 
if we ensure that, for each hidden unit separateIy, weights from any %i, of 
points il and iz axe constrained to equd those from any other pair i {  *d 
where the line i:i'z can be obtained from the line i r i 2  by translation. G,  

Under a tramlation, the value of the intensity in pixel il -will go from jb,riginal 
irqll~e x,, to a new value xi, given by xi, = xi,. where the translrs,, ,,, 

&scribed by a vector fram pixel ilt to pixel il. Thus the argumPr of the 
h t i o n  h n ~ t i o n  g( . )  in (8.36) will be invariant i f  for each unit j i .  he Erst 
dm layer, we have 

of weight parameters and are therefore impractical for r n : ~ ~  appli- 
cations. (The number of independent parameters per unit is the same a for the 
corresponding multivariate polynomial, and is discussed in Exerciser :, 61.8.) 
However, we can exploit the structure of a higher-order network to  i ~ ? ~ , ,  in- 
variances, and at the same time reduce significantly the number of inc9,,dent 
weights in the network, by using a form of weight sharing (DUB and [axwell, 

has a simple geometrical interpretation as indicated in Figure 8.'. Ead, 
Onit in the first hidden layer takes inputs from two pixels in the irne,) such 
'' 'hose labelled il and iz in the figure. The constraint in (8.37) requi-, that ,  
. f r ~  r ach unit in the first hidden layer, and for each possible pair of p ~ k q  g the 

the weights from m y  other pair of points, such as those at i ;  and. which I '" obtained from il nnd by translation, must be equal. Note t t  such 

I 

1087: Perantonis and Lisboa, 1992). Consider the problem of incorgorat -5 trans+ 
lation innrianee into a higher-order network. This can be achieved b using 
S~cond-order network of the form 



an appromh would not work with a first-order network, since the constraint 
the weights would force all weights into any given unit t o  be equal. Each Unit 
would therefore take as input something proportional to the average of all of 
input pixel values and, while this would be translation invariant, there would be 
nr, freedom left for the units to detect any structure in the irn%e. Edge effecg 
as well as the discrete nature of the pixels, have been neglected here, and id 
practice the invariance properties will be only approximately realized. 

Higher-order networks can be made invariant to more complex transforma- 
tions. Consider a general Kth-order unit 
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Under a particular geometrical transformation, xsc,, + xtl = 5'; where the pixel 
at il iS replaced by the pixel at ij. It follows that the expression in (8.38) will 
invariant provided 

Exercises 

As well allowing invariances to be built inta the network structure, the imposi- 
tion of the constraints in (8.39) can greatly reduce the number of free parameters 
in the network, and thereby dramatically reduce the size of data set needed to 
determine those weights. 

Simultaneous translation and scale invariance can be built into a second-order 
network by demanding that, for each unit in the f i s t  hidden layer, and for eacb 
pair of inputs il and i 2 ,  the weights from il and iz are constrained to equal those 
from any other pair ii and ia where the pair i i i ;  can be obtained from 1142  

by a combination of translation and scaling. This selects all pairs of points such 
that the line ii-ib is parallel to the line i l i z .  There is a slight complication in 
the case of scaling arising from the fact that the input image consists of discrete 
pixels. If a given geometrical object is scaled by a factor X then the number of 
pixels which it occupies is scaled by a, factor X2. If the image consists of black 
pixels (value +I) on a white background (value 0) for instance, then the number 
of active pixels will be scaled by X2, which would spoil the scale invariance The 
problem can be avoided by normalizing the image, e.g. to a vector of unit length 
Note that this then gives fractional values for the inputs, 

If we consider simultaneous translation, rotation and scaIe invariance, SPP 

that any pair of points can be mapped to any other pair by a combination of such 
t r ans foa t ions .  Thus a second-order network would be constrained to have *I1? 
weights to my hidden unit equal, which w u l d  again cause the activation of each 
unit to be simply proportiona1 to the averwe of the input values. We therefore 
need to go to a third-order network. In this case, each unit takes inputs fro" 
three pixels in the image, and the weights must satisfy the constraint that, 
every triplet of pixels, and for every hidden unit, the weights must equal tho* 

Figure 8.20. Simultaneous translation, rotation and scale invariance can be 
b d l t  into a third-order network provided weights from triplets of points which 
correspond to similar triangles, such as those ahown in (a) and (b), are con- 
strained to be equal. 

emanating from any other triplet which can be obtained by any combination of 
rranslations, rotations and scaligs (Reid et al., 1989). This means that corr* 
soonding triplets lie at the vertices of simiiar triangles, in other words triangles 
which have the same values of the angles encountered in the same order when 
traversing the triangle in, say, a clockwise direction. This is illustrated in Fig- 
ure 8.20. Although the incorporation of constraints greatly reduces the number 
of free parameters in higher-order networks, the use of such networks is not 
u~idespread. 

Exercises 

8.1 1x1 Verify that the whitened input vector, given by (8.6), has zero mean and 
a covariance matrix given by the identity matrix. 

8.2 (*) Consider a radial hasis function network with spherical Gaussian basis 
functions in which the jth basis function is governed by a mean pj  and a 
variance parameter 0; (Section 5.2). Show that the effect of applying the 
whitening transformation (8.6) to the original input data is equivalent to a 
special case of the same network with general Gaussian basis functions gov- 
erned by a general covariance matrix Ej in which the original un-whitened 
data is used. Obtain an expression for the corresponding mean jij and 

covariance matrix gj in terms of the parameters of the original basis func- 
tions and of the whitening transformation. 

'+3 (* *) Generate sets of data points in two dimensions using a variety of distri- 
butions including Gaussian (with general covariance rnatrjx) and mixtures 
of Gaussians. For each data set, appIy the whitening transformation (Sec- 
tion 8.2) and produce scatter plots of the data points hefore and after 
transformation. 

(*) Consider a trained classifier which can produce the posterior probabil- 
ities P(Cklx) for a new input vector x.  Suppose that some of the values 
of the input vector are missing, so that x can be partitioned into a sub- 
Vect,or x, of components whose values are missing, and a remaining vector 



i whose d u e s  are present. Show that posterior probabilities, given ,gv 
the data 2, are given by 
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8.5 (*) Consider the problem of selecting M feature variables from a total 
candidate variables, Find expressions for the number of criterion function 
evaluations which must be performed for (i) exhaustive search, (ii) sequen. 
tial forward selection, and (iii) sequentid backward elimination. Consider 
the case of choosing 10 features out of a sei of 50 candidates, and evaIuat 
the corresponding expressions for the number of evaluations by these three 
methods. 

8.6 I**) Consider a multi-layer perceptron with arbitrary feed-forward topot 
ogy, which is t o  be trained by minimizing the 'tangent prop' error function 
(8.27) in which the reguIariaing function is given by (8=28), Show that the 
regularization term S l  can be written as a sum over patterns of terms of 
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the form 

where 2) is a differential operator defined by 

1 where we have defined 

By acting on the forward propagation equations 

zj = g(aj>% aj = c w j c z i  (8.43) 
2 

with the operator D, show that Rn can be evaluated by forward propaga- 
tion using the following equations: 

where we have defined the new variables 

I Write down the back-propagation equations for 6:, and hence derive a set 
of back-propagation equations for the evaluation of the $:. 

e,y(*) T;lk have seen that the normalized moments pam defined by (8.33) are 1 simultaneously invariant to translation and sealing. I t  follows that any 
combination of such moments will also satisfy the same invariances. Show 
that the moment defined in (8.34) is, additionally, invariant under rotation 
6 4 8 + Ad. Hint: this is most easily done by representing the moments 
using polar coordinates centred on the point (E,U), so that the central 
moments become I 

I 

Now show that the derivatives of an with respect to a weight wrr in thp 

network can be written in the form 

and then making use of the relation sin2 i3 -b cos2 0 = 1. Which of the 
following moments are rotation invariant? 
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LEARNING AND GENERALIZATION 

As we have emphasized in several other chapters, the god of network traininR 
is not to  learn an exact representation of the training data itself, but ratheT 
to build a statistical model of the process which generates the data, This is 
important if the network is t o  exhibit good generalization, that is, to make good 
predictions for new inputs. In Section 1.5, we introduced the simple analogy 
of curve fitting using polynomials, and showed that a polynomial with too fpK 

coefficients gives poor predictions for new data, i.e. paor generalization, since 
the poIynornial function has too little flexibility. Conversely, a polynomial with 
too many coefficients also gives poor generdization since it fits too much of the 
noise on the training data. The number of coefficients in the polynomial controls 
the effective flexibility, or complexity, of the model. 

This highlights the need to optimize the complexity of the model in order to 
achieve the best generalization. Considerable insight into this phenomenon csln 

be obtained by introducing the cclncept of the bias-variance tradeoff, in which 
the generalization error is decomposed into the sum of the bias squared plus the 
variance. A model which is too simple, or too inflexible, will have a large b i ~ ~ .  
while one which has too much flexibiliw in relation to the particular data set 
will have a large variance. Bias and variance are complementary quantities, .and 
the best generdization is obtained when we have the best compromise brtw@fi 
the conflicting requirements of small hias and small variance. 

In order to find the optimum balance between bias and variance nppd 

to have a way of controlling the effective compEexity of the model. In the cSe 

of neural networks, the complexity can be varied by changing the number 'i 
adaptive parameters in the network. This is called stmctuml stabilization One 
way to implement this in practice is to compare a range of models having differen' 
different numbers of hidden units. AIternatively, we can st& with a r e ~ f i t ~ ' ' ~ ' ~  
large network and prune out the least significant connections, either by 
individual weights or by removing cornplate units. Similarly, we can start rith 
a small network, and add units during the learning process, with the anal '' 
arriving at an optimal network structure. Yet another way to reduce varian@ '' 
to combine the 0utput.j of several networks together to form a committee. . 

The second principal approach to controlling the complexity of a inode' [' 

through the use of regularrration which involves the addition of a penalty re"1i 
to the error function. We can control the degree of regularization, Ilencc 

the effective complexity of t h e  model, by scaling the regularization term by 

,ldiustable multiplicative parameter. 
In a ~ract ical  application, we have to optimize the model complexity for the 

cl,,en training data set. One of the most important techniques for doing this is 
,,]led cmss-validation, 

In Chapter 10 we discuss the Bayesian framework which provides a com- 
,,llmentary viewpoint to the one presented in this chapter. The bias-variance 
,,&-off is then no longer reIevant, and we can in principle consider networks of 
Rrbitral+ily high complexity without encountering over-fitting. 

9.1 Bias and variance 

l n  section 1.5 we discussed the problem of curve fitting using polynomial func- 
rlons, and we showed that there is an optimal number of coefficients for the 
pol)~nonial, for a given training set, in order t o  obtain the best represertation 
of the underlying systematic properties of the data, and hence to obtain the 
best generaIization on new data. This represents a trade-off between achieving a 

fit to the training data, and obtaining a reasonably smooth function which 
is not over-fitted to the data. Similar considerations apply to the problem of 
tlenslty estimation, discussed in Chapter 2, where various smoothing parameters 
arise which control the trade-off between smoothing the model density hnction 
and fitting the data set. The same issues also arise in the supervised training of 
neural networks. 

A key insight into this trade-off comes from the decomposition of error into 
bras and variance components (Geman et al., 1992). We begin with a mathemat- 
ical treatment of the bias-variance decomposition, and then discuss its implic* 
Zions. 

I t  is convenient to consider the particular cease of a model trained using B sum- 
of-squares error function, although our conclusians will be much more general. 
Alsob for notational simplicity, we shall consider a network having a single output 
5 .  although again this is not a significant limitation. We showed in Section 6.1.3 
'hat the sum-of-squares error, in the limit of an infinite data set, can be written 

the form 

7 p(x) is the unconditional density of the input data, and { t ( x )  denotes 
" conditional average, or regression, of the target data given by 
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where ~ ( t  lx) is the conditional densiiy of the target variable t conditioned on the 
input vector x. Similarly 

I 
+Z(Y(x) - EDIY (x)] ){&D[Y - ( t l x ) ) *  (9a6) 

{tqx) = tZP(tlx)dt. 
' 9 h 3 1  in order to  compute the expression in (9.5) we take the expectation of both sides 

(9.6) over the ensemble of data sets D. We see thaC the third term on the 
Note that the second term in (9.1) is independent of the network function side of (9.6) vanishes, and we are left with 

y(x) and hence is independent of the network weights, The optimal netNork 
function y(x), in the sense of minimizing the sum-of-squares error, is the one 
which makes the first  term in (9.1) vanish, and is given by y(x) = {t(x}. ~ h ,  &o[{yCx) - Itlx)121 

second term represents the intrinsic noise in the data and sets a lower limit on 
the error which can be achieved. 

In a practical situation we must deal with the problems arising from a finit+ 
size data set. Suppose we consider a training set D ~0rISisting of N patterns which 
we use to  determine our network model y(x). NOW consider a whole ensemble of 
possible data sets, each containing N patterns, and each taken from the same 
fixed joint distribution p(x, t) .  We have already argued that the optimal network 
mapping is given by the conditional average {tlx). A measure of how close the 
actual m a p p q  function ~ ( x )  is to the desired one is given by the integrand of 
the first term in (9.1): 

The value of this quantity will depend on the particular data set s, on which it 
is trained. We can eliminate this dependence by considering an average over the 
complete ensemble of data sets, which we mite as 

where ED[-] denotes the expectation, or ensemble average, and we recaIl that t h p  

function y(x) depends on the particular data set D which is used for training. 
Note that this expression is itself a function of x. 

If the network function were always a perfect predictor of the regression func- 
1 

tian ( t lx)  then this error would be zero. As we shall see, a non-zero error can 
arise for essentially two distinct reasons. It may be that the network function 
is on average different from the regression function. This is caEled bim. -%Ites+ 
natively, i t  may he that the network function is very sensitive to the 
data set D, so that, at a given x, it is larger than the required value for sornP 
data sets, and arnalIer for other data sets. This is cdied variance. We can mke 
the decomposition into bias and variance explicit by writing (9.5)  in son1exh3' 
different, but mathematically equivalent, form. First we expand the term in cur1Y 
brackets in (9.5) to  give 

(bias)* variance 

It is worth studying the expressions in (9.7) closely. The bias measures the extent 
I to which the average (over all data sets) of the network function differs from the 
1 desired function (t lx).  Conversely the variance measures the extent to which the 

I 

I ,&work function y(x).is sensitive to the particular choice of data set. Note that 1 
the expressions for hias and variance are fundions of the input vector x. We can I I  

I "so introduce corresponding average values for bias and variance by integrating 
over all x. By referring back to (9.1) we see that the appropriate weighting for 
FKS integration is given by the unconditional density PIX), so that 

variance = - ED [{y(x) - c ~ [ ~ ( x ) ] ) ~ ] ~ ( x )  dx. 2 ' J (9.91 

The meaning of the bias and variance terms can be iIlustrated by considering 
extreme limits for the choice of functional form for y{x). We shall suppose 

+hat the target data for network training is generated from a smooth function 
h(x)  to which zero mean random noise E is added, so that 

I 

that the optimal mapping function in this ease is given by {t lx) = h(x) .  One 
of model for y(x) would be some hred function g(x) which completely 

I 

Independent of the data ge t  D, M indicated in Figure 9-1. It is clear that the 
'"ariance term in (9.7) will vanish, since E ~ [ y { x ) ]  = g(x) = y(x). However, the 
t .  term will typically be high since no attention at all was paid to the data, and 

v, T-'"iess we have some prior knowledge which helps us to choose the function 
'lx) we are making a wild guess. 
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X 5.1.1 Miniminng bias and variance 

Figure 9.1. A schematic illustration of the meaning of bias and variance. Circles 
denote a set of data points which have been generated from an underlying 
function h(x) (dashed curve) with the addition of noise. The goal is  to try to 
approximate h(x)  as closely as possible. If we try to model the data by a fixed 
function g(z), then the bias will generally be high while the vari 11 be 

zero. 

,,.hich is just the variance of the noise on the data, which could be substantial. 
We see that there is a natural tradeoff between bias and variance. A function 

R+hich is closely fitted to the data set will tend to have a large variance and 
Ilence give a large expected error. We can decrease the variance by smoothing 
+he function, but if this is taken too far then the bias becomes large and the 
,pcted error is again large. This trade-off between bias and variance plays a 

role in the application of neural network techniques to  practical problem. 
itre shall give a simple example of the dependence of bias and variance on the 
?ffective model complexity in Section 9.8.2. 

Figure 9.2. As in Figure 9.1, but in which a modal is used which is a simple 
exact interpolant of the data points. In this case the bisa k Iow but the variancP 
is high. 

The opposite ahreme is to take a functim which fits the training data pep 
feetlv. such as the simple exact interpolant indicated in Figure 9.2. In this '@ * ,  

the bias term vanishes at the data points themseIves since 

-1 

and the bias will typicdly be small in the neighbourhood of the data p0inls". 
variance, however, will be significant since 

ifre have seen that, for any given size of data set, there is some optimal balance 
between bias and variance which gives the smallest average generalization error. 
rn order to improve the performance of the network further we need to be able 
to reduce the bias while at the same time also reducing the variance. One way 
to achieve this is to use more data points. As we increase the number of data 
points we can afford to use more complex modeIs, and therefore reduce bias, 
while at the same time ensuing that each model is more heavily conskrained 
by the data, thereby also reducing variance. If we increase the  number of data 
points sufficiently rapidly in relation to the model complexity we can find a 
.Yuence of models such that both bias and variance decrease. Models such as 
Fred-forward neural networks can in principle provide consistent estimators of 
the regression function, meaning that they can approximate the regression to 
arbitrary accuracy in the limit as the number of data points goes to infinity. 
This limit requires a subtle bdance of network complexity against number of 

points to ensure tha t  at  each step both bias and variance are decreased. 
Consistency has been widely studied in the context of conventional techniques 

*.atistical pattern recognition. For feed-forward networks, White (1990) has 
'.lln~ll how the complexity of a *layer network must grow in relation to the 
'I" of the data set in order to be consistent. This does not, however, tell us the 
''bm~lexity required for any given number of data points. It dso requires that the 
i'arameter optimization algorithms are capable of h d i n g  the global minimum of 
"' ermr function. Note that, wen if both bias and variance can be reduced to  
:' 

"'7 the error en new data will stiIl be non-zero as a result of the intrinsic noise " "'h data given by the second term in (9.1). 
In Practice we are &en limited in the number of training patterns available, 

hlld in  ma 
ny applications this may indeed be a severe limitation. An alternative 

Ip?Oach to reducing both b i a  and variance becomes possible if we have some 
1 "'" bowledge concerning the unknown function h(x) .  Such knmiedge can be 
'IQpr 
. ' constrain the model function y(x) in a way which is consistent with h(x)  
:hrl therefore d o s  not give rise to increased bias. Note that  the bias- 

eprohlem implies that, for example, a simple linear model (single-layer 
'lPt'")rk) might, in some applications involving relatively small data sets, give 
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superior performance to a more general non-linear model (such as a multi-lay,, 
network) even though the latter contains the linear model bs a special case. 

9.2 Regularization 
In Section 1.5 we saw that a polynomial with an excess of free coefficients tends 
to generate mappings which have a lot of curvature and structure, as a result of 
over-fitting to the noise on the training data. Similar behaviour dm arises with 
more complex non-linear neural network models. The technique of R ~ U I W ~ ~ ~ .  
tion encourages smoother network mappings by adding a penalty fl t o  the error 
function to give 

Here E is one of the standard error functions as discussed in Chapter 6, and 
the parameter u controls the extent t o  which the penalty term fl influences 
the form _of the solution. Training is performed by minimizing the total error 
function E, which requires that the derivatives of  St with respect to the network 
weights can be computed efficiently. A function y(x) which provides a good fit 
to the training data will give a small value for E, while one which is very smooth 
will give a small value for fl. The resulting network mapping is a compromise 
between fitting the data and minimizing Q. Regularization is discussed in the 
context of radid basis function networks in Section 5.4, and is given a Bayesian 
interpretation in Section 10.1. 

In this section we shall consider various forms for the regularization term fl. 
Regularization techniques have been extensively studied in the context of linear 
models for y(x). For the case of one input variable z and one outDut variabi~ Y? 
the class of Tikhonov regularizers takes the form 

,mpiri~ally that a regulariaer of this form can lead to significant improvements 
in network generalization {Hinton, 1987). Some heuristic justification for the 
fleight-de~ay regulariaer can be given as folIows. We know that to produce an 
,wr-fitted mapping with regions of large curvature requires relatively large d u e s  
for t.he weights. For small values of the weights the network mapping represented 
bv a multi-layer perceptron is approximately linear, since the central region of a 
,igmoidaI activation function can be approximated by a linear trmsfomation. 
B~  sing a regularizer of the form (9.151, the weights are encouraged to be smdl, 

Many network training algorithms make use of the derivatives of the total 
prror function with respect t o  the network weights, which from (9.13) and (9.15) 
$re given 

Suppose that the data term E is absent and we consider training by simple ggre 
dient descent in the continuoustime limit. The weight vector WIT)  then evolves 
with time r according to 

rt-here Q is the learning rate parameter. This equation has solution 
I 

W(T)  = w(0) exp(-qur) (9.18) l 

and so all of the weights decay exponentially to zero, which is the reason for the 
of the term 'weight decay'. 
We can gain some further insight into the behaviour of the weight-decay 

r%ularizer by considering the particular case of a quadratic error function. A 
, yq""rl quadratic error can be written in the form 

I 
I 

I 1 
where h, 2 0 for r = 0,. . . , R - 1, and hn > 0 (Tikhonov and Arsenln. 19i7)' 

E(w) = Eo + b'w + - w T ~ w  
2 (9.19) 

Regularization has also been widely studied in the contwrt of vision syatemi 
(Poggio e t  al., 1985). 

' the H and the W C ~ O ~  b &re c o n & m .  The minimum ofthis error I + 

'U"c'ion occurs at the point W* which, by differentiating (9,19), 
9-2.1 Weight decay 

One of the simplest forms of r e~ la r i ze r  is called weight decay and consists o'"' b+Hw* = 0. (9.20) 
sum of the squares of the adaptive parameters in the network 

LhP 
Presence d the regularization term, the minimum movw to a point 

1 o=-CWT horn (9.131, satisfies 
2 I 

bt-H%+vG=O. 
where the sum runs over all weights m d  biases. In ~ ~ I ' l ~ ~ l l t ~ i ~ I l ~ l  cur" fittin$ 

(9.21) 

the use this form of reglllarizer is called ridge rqression. I t  h s  hren fouo 

I 

I 
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We can better interpret the effect of the weight-decay term if we rotate the aye 
in weight space 80 as to diagonalize the Hessian matrix R {Appendix A). Thh 
is done by considering the eigenvector equation for the Hessian given by 

We can now expand w* and iG in terms of the eigenvectors to give 

Combining (9.203, (9.21) and (9.231, and using the orthonormality of the {u,), 
we obtain the following relation between the minima of the original and thp 
regularized error functions 

The eigenvectors uj represent the principal directions of the quadratic error 
surface. Along those directions for which the corresponding eigenvalues are rela- 
tively large, so that Ai >> v, (9.24) shows that Gj E w;, and so the minimum of 
the error function is shifted v e ~ y  little, Conversely, dong directions for which the 
eigenvalues are relatively small, so that A, << v ,  (9.24) shows that IGj 1 << ]w;Fl 
and so the corresponding components of the minimum weight vector are sup 
pressed. This effect is illustrated in Figure 9.3. 

9.2.2 Consistency of weight decay 

One of the limitations of simple weight decay in the form (9.15) is that is inmp 
sistent with certain scaling properties of network mappings, To ilIustrate thk' 
consider a multi-layer perceptron network having a single hidden layer and IjfleN 

output units, which performs a mapping from a set of input variables x, to "' 
of output variables yk. The activation of a hidden unit in the first hidden 
is given by 

while the activations of the output units are given by 

Figure 9.3. Illustration of the effect of a simpIe weight-decay regdmizer on 
a quadratic error function. The circle represents a contour along which the 
weight-decay term is  constant, and the ellipse represents a contour of constant 
unregularized error. Note that the axes in weight space have been rotated to be 
parallel with the principal axes of the original error surface, determined by the 
eigenvectors of the corresponding Hessian matrix. The effect of the regdarizer 
is to shift the minimum of the error function from w* to wm This reduces the 
value of wl  at the minimum significantly since this corresponds to a small 
eigenvalue, while the value of w2, which corresponds to a large eigendue, is  
hardly affected. 

Then we can arrange for the mapping performed by the netmurk to  be unchanged I 
by making a corresponding linear transformation of the weights a d  biases from 
the inputs to the units in the hidden layer of the form 

Suppose we perform a linear transformation on the input data of the form A 

a linear transformatian of the output variables of the network of the 
form 

?an hc achiwed by making a transformation of the second-layer weights using 
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If we train one network using the original data and one network using data F,, 1 
which the input and/or target variables fire transformed by one of the abw, 
ear transformations, then consistency requires that we should obtah equiv: 
networks which differ only by the Linear transformation of the weights as g 
Any regularizer should be consistent with this property, othemise it arbitr 
favours one solution over another, equ iden t  one. Clearly, simple weight d 
(9.15) which treats a11 weights and biases on an equal footing does not sa 
this propertgf. 

We therefore look for a regularizer which is invariant under the linear ti 
formations (9.281, (9.291, (9.31) and (9.32). In particular, the weights sh 
be scale-invariant and the biases should be shift-inva~iant. Such a regularil 
given by 

dats 
t the 
sizer 

& - . S F  

1 Fislre g* Exmple of data generated by sampling the f ~ t i o n  h(r), d e h e d  
where Wl denotes the set of weights in the first layer, Wz denotes the -+ h~ (9.341, adding Gaussian distributed random noise with standard devi- 
weights in the second layer, and biases are excluded from the summations. Under I ation of 0.05. The dashed curve shows the fmction h(%) the s o ~ d  curve 
the linear transformations of the weights given by 19-28), (9.29)~ (9.31) and I shows the result of fitting a sadid bask function network without regdariz* 
(g.32), the regularizer will remain unchanged provided the parameters vl and VZ tion. There is one Gaussian basis function for each of the 30 data points, 

are suitably resealed. 
the is a strongly over-fitted network mapping. (This figure is identical 

In Section 3.4.3 we showed that the role of the biases in the final I ~ Y  to Figure 5.1, and is reproduced here for ease of cornpmison.) 

a nebork with linear outputs, trained by minimizing a sum-of-squares 
function, is t o  compensate for the difference between the mean (me1 the I 

and adding Gaussian distributed random noise with zero mean and standard 
set) of the output vector from the network and the corresponding mean * deviation = 0.05. There is one basis function centred on each data point, &nd 
tmget mIues. ~t is therefore reasonable to exclude the biases from the repla the network gives a strongly over-fitted solution. 

as we do not wish systematicdly to distort the mean network output- The ouLpu' 'lie now include a weight decay regularizer of the form (9.15) with the bias 

is then ha the sample mem of the target data, and provides an unbispd excluded from the summation, for reasons discussed above. Figure 9.5 

estimate of the true target mean. 
"QWS the efiect of using regularization coefficient of = 40. ~h~ network 

WeigbMecay regularizers can be motivated in the context of h e a r  models mapping now much smoother and gives a ITluch c I Q S ~ ~  representation of the 
the sensitivity of the model predictions to noise on the input vectorr' ''"eer'~ng function from which the data was generated (shown by the dashed 

Minimizetion of this sensitiGty leads naturally to  a weightdecay regularizer, i"(Umel. The degree ~ f s m ~ o t h i n g  is controlled by the regularization coefficient u, 

which the biases are from the sum over weights (Exercise 9.2). Thelnorr too large a of v leads to over-smoothing, illustrated for II = 1000 in 
Flqure 9.6. 

general case of non-Unear networks is covered in detail later, when we 'On 

the training of networks with additive noise on the inputs. "4 Early stopping 

9.2.3 A simple ill~stration of weight d e w  I "lternative to  regularization as a way of controlling the &=tive complexity of 
an illustration of the use of weight decay, we return to the emmple "'"' I "t'v~rk the procedure of early #topping. The training of non-linear network 

in section 5.1 of noisy sine function using a radial basis hil'ct'on to an iterative reduction of the error function defined with r% 
In Figure 9.4 we show an example of a data set topther 

thr 

I 
Pn Pect lo a set of training data. During a typical training sesion, this error 

network function obtained by minimizing a sum-of-squares error. Here data " F ~ @ ~ ~ ~ ~ ~  decreaes a function of the number of iterations in the a]gorltb. 

by sampling the function h(zE given by '' many of the algorithm de~cribed h Chapter 7 (such as conjugate gradients) tf,? 
error is a monohnicall~ decreasing function of the iteration index. HoweVer, 

h(s) = 0.5 + 0.4 sin(27rx) 
(9*511 Ihc error measured with rmprt to independent data, generally a didat ion  

Ohen shows a decrease at first, fallowed by an increase as the nemork starta 



valldation 

training 

Figure 9.7. A schematic illustration of the behavjour of training and validation 
set errors during a typical training session, as a function of the  iteration step 
r ,  The goal of achieving the best generalization performance suggests that 
training shouId be stopped ctt the point 7 corresponding to the minimum of 

~i~ 9.5. in ~igun 9.4 but with a weighMay Wulmimr md a reg- ( the validatian *t error. 

ularization rneffieient = 40, shuwing the much smoother network mapping 
and the comondingly closer apeement with the underlying Werator of the ing process, corresponding to a steady increase in the effective complexity of the 
data, shown by the dashed curve. trgning before a minimum of the trahing error has been rewhed 

then represents a way of limiting the effective network complexity. 
In the case of a quadratic error function, ewly stopping should give rise to 

similar behaviour to regularization using a simple weight-decay term. This can 
understood from Figure 9.8. The axes in weight space have been rotated to 

I be parallel to  the eigenvectors of the Hessiwi matrix. If, in the absence of weight 
1 decay, the weight vector starts at the origin and proceeds during training along 

A Path which follows the locd negative gradient vector, then the weight vector 
( '"1 move initially parallel to the w2 axis to a point corresponding mughty to 

2nd then move towards the minimum of the error function w'. This follows 
Lm the shape of the error surface and the widely diRering eigenvalues of the 
hwsian. Stopping at a point near i is therefore similar to weight decay, The ' 'lationship between early stopping and weight decay can be made quantitative, 

d i ~ c ~ ~ ~ e d  in Exercise 9.1, thereby showing that the quantity 77) (where r is 
I thp 

index, and 1) is the learning rate parameter) plays the role of the 
F p i  Procat of the regulatization parameter v. This exercise also shows that the? 

number of parameters in the network (i.e+ the number of weights whose 

Figure 9,6, As in ~i~~~ 9.5 but with v = showing the 
having difkr significantly from zero) grows during the mune of training. 

too large a for the regdmization coefficient' 
>+h '1. Carnature-d~ven smoathinq 

to over-fit. paining can therefore be rtopped at the point of smallest erroT w"" 

Fapeck to new data, as indicated in Figure 9.7, since this gives a network 

which 

is  expected M have the best generalization perfomance. 
The behsviour of the network in this case is sometimes expiaid ,d 

t i d y  in terms of the effective number of degrees of freedom in the 
This number is suppose to s t a r t  out small and then to grow during the tf@ 

I$€. 

i 
%i seen that over-fitted sol&ns are generaI1y characterized by mappings 

'lave a lot of stnleture and relatively high curvature. This provided some :flqjr 

tQ!+ "' t~ t iva t ion  hor weight-decay regularizers as a way of reducing the curva- 
bh. O f t h e  network function. A more direct approach i~ to consider a regularizer 
%:'' Penalizes curvature explicitly. Since the cumtare  is governed by the sec- 
hhn'iorivati~es of the network function, we can consider s regularizer of the 
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Figure 9.8. A schematic illustration of why early stopping can gil 3r 

results to weight decay in the case of a quadratic error function. Tne ellipse 
shows a contour of constant error, and w* denotes the minimum of the error 
function. If the  weight vector starts at the origin and moves according to 
the local negative gradient direction, then it will follow the path shown by 
the curve. By stopping training early, a weight vector & is found which is 
qualitatively similar to that obtained with a simple weight-decay regularixer 
and training to the new minimum of the error, as can be seen by comparing 
with Figure 9.3. A precise quantitative relationship between early stopping 
and weight-decay regu1arization can be demonstrated formally for ie of 

quadratic error surfaces (Exercise 9.1). 

the cm 

Note that this regularizer is a discrete version of the Tikhonw form (9.11). 
hgularizers involving second derivatives also form the basis of the conventiond 
interpolation technique of cubic splines (Wahba and Wold, 1975; De Boor, 1978). 
The derivatives of (9.35) with respect to the weights for a multi-layer perceP 
can be obtained by an extension of the back-propagation procedure (Bis 
1993). 

9.3 Training with noise 

We have discussed two approaches to controlling the effective eornple.;lV 
network mapping, based respectively on limiting the number of adaptive 
eters and on regularization. A third approach is the technique of training "'jib 
noise, which involves the addition of noise to the input vectors during the """- 
ing process. For sequential training algorithms, this can be done by adding a '@' EJ 

random vector t o  each input pattern before it is presented to the netmrk. 
that, if the patterns are being recycled, u different random vector is added 

eaJl 

time. For batch methods, a similar effect can be achieved by replicating 
each 

data point u number of times snd adding new random vectors onto each 
COP>' 

fleusisticd1y, we might expect that the noise will 'smear out' each data point 
,,d make it difficult for the network to fit individual data points precisely, and 
hence will reduce over-fitting. In practice, it has been demonstrated that training 
,;th noise can indeed lead to improvements in network generalization (Sietsma 

Dow, 1991). We now show that training with noise is closely related to the 
technique of regularization (Bishop, 1995). 

Suppose we describe the noise on the inputs by the random vector E ,  governed 
1 , ~  some probability distribution a<). If we consider the Iimit of an infinite 
lltlmber of data points, we can write the error function, in the absence of noise, 
In the form 

~5 discussed in Section 6.1.3. If we now consider an infinite number of copies of 
each data point, each of which is perturbed by the addition of a noise vector, 
then the mean error function defined over this expanded data set can be written 
a.5 

E e  now assume that the noise amplitude b small, and expand the network I 

function as a TayIor series in powers of 5 to give 

noise distribution is generally chosen to have zero mean, and to be uncor- 
1 between diRerent inputs. Thus we have 

the parameter u represents the variance of the noise distribution. S u b  
9' 

itu'ing the Taylor series expansion (9.38) into the error function (9.37), and 
"'lrinl: llse of (9.39) to integrate over the noise distribution, we obtain 

z = ~ f v f l  (9.40) 

W p W  F is the standard sum-of-squarm error given by (9.36), and the extra term "" qiven h, 
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(9.41) 
This has the form of a regularization term added to the usual sum-of-squar, 
error, with the coefficient of the regutarizer determined by the noise wiance  
(Webb, 1994). 

Provided the noise amplitude is small, so that the neglect of higher-order 
terms in the Taylor expansion is d i d ,  the minimization of the sum-of-squars 
error with noise added to  the input da ta  is equivalent to the minimization 01 
the regularized sum-of-spumes ermr (9.401, with a regularization term given 
by (9.41), without the addition of noise. It should be noted, however, that the 
second term in the regularization function (9.41) involves second derivatives of 
the network function, and so evaluation of the gradients of this error with respect 
to network weights will be computationally demanding. Furthermore, this term 
is not positive definite, and sa the error function is not a priori bounded below, 
and is therefore unsuitable for use as the basis of a training algorithm. 

We now consider the minimization of the regularized error (9.40) with respect 
to the network function y(x), which allows us to show that the second deriwi- 
tive terms can be neglected. This result is analogous to the one obtained for the 
outer product approximation for the Hessian matrix in Section 6.1.4, in which 
we showed that similar second-derivative terms also vanish. Thus, we will see 
that the use of the regularbation function (9.41) for network training is q u i v -  
alent, for small values of the noise amplitude, to the use of a positive-definite 
regularization function which is of standard Tikhonov form and which involva 
only first derivatives of the network function (Bishop, 1995). 

As discussed at length in Section 6.1.5, the network function which rninimi~s  
the sum-of-squares error is given by the conditional average ( tk  (x} of the 
values tk. From (9.40) we see that, in the presence of the regularization term, 
the network function which minimizes the total error will have the form 

NOW consider the second term in equation (9.41) which depends on the second 
derivatives of the network function. Making use of the definition of the condi- 
tiond average of the target data, given in equation (g.Z), we can rewrite this 
term in the form 

Using (9.42) we see that, to lowest order in u, this tsrm vanishes at the minimu" 
of the total error function. Thus, only the first term in equation (9.41) nWd5 
be retained. It should be ernphaqizd that this result is a consequence of 

the 

amage over the target data, and so i t  does not require the individual ter@ 

- t k  to be small, only that their (conditional) average over t k  be small. '' The minimization of the sum-ofsquares error with nobe is therefore equiv- 
,lent (to fir& order in v) to the minimization of a regularized sum-of-squwa 
error without noise, where the regularizer, given by the first term in equation 
(9.411, has the form 

nrhere we have integrated out the Ck variables. Note that the regularization func- 
tion in equation (9.44) is not in general equivalent to that given in equation 
(9.41). However, the total regularized error in each case is minimized by the 
same network function y(x), and hence by the same set of network weight vd- 
ues. Thus, for the purposes of network training, we can replace the regularization 
term in equation (9.41) with the one in equation (9.44). In practice, we approx- 

1 imate (9.44) by a sum over a finite set of N data points of the form 

'rivatives of this regularher with respect to the network weights can be found 
I .-ing an extended back-propagation aIgorithm (Bishop, 1993). 

This regulariser involves first derivatives of the network mapping function. 
1 A related approach has been proposed by Drucker and Le Gun (1992) based 

Qn a sum of derivatives of the error function itself with respect to the network 1 !Vats. This choice of regulariw leads to a computationally eficient algorithm 
evaluating the padients of the regularization function with respect to  the 

, newark weights. The algorithm is equivalent to forward and backward propa- 
tion through an extended network architecture, and is termed double back- 
oPagation. 

3 Soft weight sharing 

'e way to reduce the effective complexity of a network with a large number 
is t o  constrain wights within certain groups to be equal. This is 

' technique of weight shailng which was discussed in Section 8.7.3 as a way 
,h'lilding translation invariance into networks used for image interpretation. " Only applicable, however, to particular problems in which the form of the 

can be specified in advance. Here we consider a form of soft weight 
9 (yowlan and Hinton, 1992) in which the hard constraint of equal weights 

iP rp 
I 

Placed by a form of regularization in which groups of weights are encouraged 
similar valuer. firthemore, the division of weights into groups, the mean 'VrISht 

dQpy value for each group, and the spread of values within the groups, are dl 
mined as part of the learning process. 
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As discussed at length in Chapter 6, an error function can be regarde, as 
the negative logarithm of a likelihood function. Thus, the simple weight-decay 
regnlarizer (9.15) represents the negative logarithm of the likelihood of the given 
set of weight values under a Galmian distribution centred on the migin, To 
this, consider a Gaussian of the form 

Then the likelihood of the set of weight values under this distribution is g 

by 

where W is the total number of weights. Taking the negatiw logarithm 
gives the weight-decay regularizer, up t o  an irrelevmt additive constant. A 
have seen, the weight-decay term has the effect of encouraging the weight vg 
to form a cluster with values cbse to zero. 

We can encourage the weight values to form several groups, rather than j u s ~  
one group, by considering a probability distribution which is a m i d w  of Gaus 
sians, An introduction to Gaussian mixture models and their basic proprrties is 
given in Section 2.6. The centres and variances of the Gaussian componentg 
well as the mixing coefficients, will be considered as adjustable parameters t 
determined as part of the learning process. Thus, we have a probability del 
of the form 

. -. 

then 

I 
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I 
 he total error function is then given by 

,there v is the regularization coefficient. This error is minimized both with respect 
to the weights wt and with respect to the parameters aj, pj  and crj of the 

model. If the weights were constant, then the parameters of the mixture 
model could be determined by using the E M  re-estimation procedure discussed 
in Section 2.6.2. However, the distribution of weights is itself evoIving during 
tI~e learning process, and so to avoid numerical instability a joint optimization is 
performed simultaneously over the weights and the mixture model parameters. 
p his can be done using one of the standard dgorithms, such as the conjugate 
gradient or quasi-Newton methods, described in Chapter 7. The parameter v, 
however, cannot be optimized in this way, since this would give w -, 0 and an 
over-fitted solution, but must be found using techniques such as cross-validation 
tn be discussed later. 

In order to minimize the total error function it is necessary to be able to 
er~luate its derivatives with respect to the various adjustable parameters. To do 
this it is convenient to regard the ai's as prior probabilities, and to introduce 
the corresponding posterior probabilities given by Bayes' theorem in the form 

The derivatives of the total error function with rmpect to the weights are then 
:hen by 

I 

j=I  

"effect of the regularization term is thus to pull each weight towards the 
where aJ are the m s n g  and the co~nponent densities of the j t h  Gaussian, with a force proportional to the posterior probability 
Gaussians of the form jL that Gaussian for the given weight. This is precisely the kind of effect which 

:!'? 4TP seeking. 
1 (' 

n- . of the ermr with respect t o  the centres of the Gaussians are a h  
"-qll!: computed to give 

Forming the likelihood function in the usual way, and then taking the negsti" 
logarithm, leads to a regularizing function of the form I 

'''']'!l liw- a simple intuitive interpretation, since i t  drives pj towards an average 
q f ,  

v:n ;n. 

hp Wight mlues, weighted by the posterior probnhiities that the respective 
'rllts we, generated by component j. Similarly, the derivatives with respect 

I 
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t o  the variances are given by 

I='-33) 
together . ,. with (9.501, (9.52) and (9.59), we then obtain the required derivatives 

which drives ai towards the weighted average of the squared deviations of the 
weights around the corresponding centre pj,  where the weighting coefficients 
are again given by the posterior probability that each weight is generated by 
component j. Note that, in a practical implementation, new variables Q defined 
by 

are introduced, and the minimization is performed with respect to the qj. This 
ensures that the parameters gj remain positive. It also has the effect of dis- 
couraging pathological solutions in which one or more of the c,- goes to zero, 
corresponding to a Gaussian component collapsing onto one of the weight pa- 
rameter d u e s ,  Such solutions are discussed in more detail in the context of 
Gaussian mixture models in Section 2.6. From a Bayesian perspective, the use 
of a transformation of the form (9.56) can be motivated by a consideration of 
noa-infomatiwe priors (Section 10,4 md Escercise 10.13). 

For the derivatives with respect to the mixing coefficients a,, we need to  take 
account of the constr&ints 

which follow from the interpretation of the a, as prior probabilities. This can be 
done by expressing the mixing coefficients in terms of a set of auxilim variable 
{rj) using the softmm function given by 

We can now minimize the emor function with respect to the {yl). TO find the 

derivatives of with respect to T~ we make use of 

which follows from (9.58). Using the chdn rule in the form 

in the IolXl 

Rthere we have made use of xi crj = I. We see that ol,. is therefore driven towards 
the average posterior probability for component j. 

In practice it is necessary to take some care over the Initialization of the 
weights in order to ensure that good solutions are found. One approach is to 
choose the initial weights from a uniform distribution over a finite interval, and 
then initialize the components q5j ( w )  to have means which are equally spaced over 
this interval, with equal priors, and variances equal t o  the spacing between the 
adjacent means, This ensures that, for most of the weights, there is little initid 
contribution to the error gradient from the regularization term, and so the initial 
evolution af the weights is primarily data-driven. Also, the posterior probabiIities 
have roughly equal contributions m r  the complete set of weights, which heIps 
to avoid problems due to priors going to zero early in the optimization. Results 
on several test problem (Nowlan and Hinton, 1992) show that this method can 
l e d  to significantly better generalization than simple weight decay. 

9-5 Growing and pruning algorithms 
The architecture of a neural network (number of units and topology of connec- 
lions) can have a significant impact on its performance in any particular ap- 
plication. Various techniques have therefore been developed for optimizing the 
Qhitecture, in some cases as part of the network training p r o w s  itself. It js 

I '"Portant to  distinguish between two distinct aspects of the architecture selec- 
lion problem. First, we need a systematic procedure for exploring some space of 
Pnssihle architectures, and this forms the subject of this section+ Second, we need / 'One way of deciding which of the architwtures e n i d r e d  should be selected. 
Ibis is usually determined by the requirement of achieving the best possible 
z'neralixation, and is discussed at length in Section 9.8. 

Pn 
The simplest approach to network strucf ure optimization iwofves exhaustive 

""h through a restricted c l a ~ s  of network architectures. We might for instance 
the class of multi-layer perceptmns having two layers of weights with 

"'l between adjacent layers and no direct input-output connections. 
only a~pect  of the architecture which remains to  be specified is the number 

hidden units, and so we train a set d networks having s range of values ' y q  and select the one which gives the best value for our performance orite- ti 2' This approach can require significant computational effort and yet it only 

, ~ * r f " l ~ ~ ~  ,- n very restricted c l ~ s  of network models. If we expand the range of 
a 
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models (by having multiple hidden layers and partial connectivity for exampin) 
we quickly reach the point of having insufficient computational resources for a 
complete search. Note, however, that  this is the approach which i s  most widely 
adopted in practice. Some justification can be found in the fact that, for the h, 
layer architecture, we know that  we can approximate any continuous functional 
mapping to arbitrary accuracy (Section 4.3) provided M is sufficiently large. 

An obvious drawback of such an approach is that many different networks 
have to he trained. This can in principle be avoided by considering a n e b &  
which is initially relatively smdI and allowing new units and connections to b, 
added during training, A simple example of this would be to consider the class 
networks having two layers of weights with full connections in each layer, and to 
start with a few hidden units and then add one unit at a time. Such am approach 
was considered by Bello (1992) who used the weights from one nekwork as the 
initial guess for training the next network (with the extra weights initialized 
randornb). Techniques of this form are called growing algohthms and we shall 
consider some examples for networks of threshold units, and then discuss the 
cascade correlation algorithm which uses sigmoidal units. 

An alternative approach is to start with a relatively large network and grad- 
udly remove either connections or cornpIete units. These are known as pruning 
algo~thms and we shall consider several specific examples. Note that, if weight 
sharing is used, then several weights may be controlled by a single parameter, 
and if the parameter is set to zero then all the corresponding weights are deleted. 

A further possible approach to the design of network topology is to construct 
a complex network from several simpler network modules. We consider two im- 
portant examples of this, c d e d  network committees and miztures of 
The latter allows a problem to be decomposed automatically into a number of 
sub-problems, each of which is tackled by a separate network. 

9.5.1 Exact Boolean clmsifimtioa 

As we emphasize at several points in this book, the goal in training a neural 
network is usualIy to achieve the best generdieation on new data rather than tQ 
learn the training set accurately. However, for completeness we give here a brief 
review of two approaches to network construction aIgorithrns which can learn 
a finite set of Boolean patterns exadly We consider networks having threshold 
unib and a single output, for binary input patterns belonging to two cl@seS- 

Before discussing these algorithms in detail, we need first to consider a modi- 
fication to the usual perceptron learning algorithm known as the pocket aboriihnt 
(Gallant, 1986b) designed to deal with data sets which are not linearly separable+ 
The simple perceptron learning algorithm (Section 3.5) is guaranteed to findRn 
exact classification of the training data set if it is linearly separable. If the dat' 
set is not linearly separable, then the algorithm does not converge. The pole t  
algorithm involves retaining a copy ('in one's pocket') of the set of weight. wllicb It 
has so far survived unchmged for the longest number of pattern presentations'. 
e m  be shown that,  for a sufficiently long training time, this gives, with probahl'- 
ity arbitrarily clme to unity, the set of weight values which produces the 

Figure 9.9. The tiling algorithm buiIds a network in successive layers. In each 
I layer, the first unit added is the master unit (shown as the heavier circle) 

1 which plays a special role. Sumwive layers are fully connected, and there are 
no other interconnections in the network. 

I 
possible number of miaclassifications. Note, howwer, that no upper bound on the 

I 
training time needed for this to occur is known. 

The tiling algorithm (Mezard and Nadal, 1989) builds a network in successive 
leyers with each layer having fewer units than the previous layer, as indicated 
m Figure 9.9. Note that the only interconnections in the network are between 
adjacent layers. W h e n  a new layer is constructed, a single unit, cdled the master 
unit, is added and trained using the pocket algorithm. One requirement for the 
"twork is that each layer must form a 'faithful' representation of the data set, 

I in other words t;wo input patterns which bebng to different classes must not 
1 mapped onto the same pattern of activations in any layer, otherwise it will 

I 

I 
hp impossible for successive layers to  separate them. This is achieved by adding 
further ancilIav units to  the layer, ane at a time, leaving the weights to the 
m*ter unit and any other ancillary units in that layer fixed. The geometrical 

I inrer~retation of this procedure is indicated in Figure 9.10, If the representation 

I 

" ai\n stage is not faithful then there must exist patterns from different classes 
'''.'hich give rise to the same set of activations in that layer. The group of dI I .  
'"ut patterns which give rise to those activations are identified and an extra 
"''cllary unit is added and trained (again using the pocket algorithm) on that 
up '"'JP- The process of searching for ambiguities, and adding ancillary units, is 

:pcat@d until the representation is faithful. The whole process is repeated with .hn next layer. It can be shown that at each layer the master unit produces fewer 

mi'ciasifications than the master unit in the previous layer. Thus, eventually 
'" of the master units produces correct classification of all of the patterns, and '" algorithm converges with a network of finite size. 

I f r p  next consider the upstart algorithm (Frean, 1990) which is also guaranteed 
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Figure 9.10. IlIustration of the role of the anciIlary units in the tiling algo- 
rithm. The circles and crosses represent the patterns of activations of units in 
a particular layer when the network is  presented with input pattern from two 
different classes. The master unit in the next layer {whose decision boundary k 
represented by the solid line) is trained to find the best linear separator of the 
classes, and then ancillary units (with decision boundmi- given by the dashed 
lines) are added so as to separate those patterns which are misdassified. 

to find a finite network which gives complete classification of a finite data set. 
However, it builds the network by adding extra units between existing units 
and the inputs, as indicated In Figure 9.11. All units take their inputs directly 
from the inpnts to the network, and have binary threshold =tivation functions. 
The algorithm begins by training a single unit using the pocket algorithm. This 
'parent' unit will typically mi&classi& some of the patterns, and so two 'offspring' 
units are added, one to deal with the patterns for which the parent is incorrect]? 
off, and the other to deal with the patterns for which the parent is incorrwtly 
on. These units are connected to their parent with sufficiently large negativ 
positive weights respectiveIy that  they can reverse the output of the parent 
they are activated. The weights to the parent are frozen and the ofispri~ 
trained to produce the correct output for the corresponding incorrect pat 
while at the same time not spoiling the classification of the patterns which 
correct. The algorithm is called upstart because the offspring correct the mi! 
of their parents! We can always choose the weights and bias of an ofFsprinI 
such that  it only generates a non-zero output for one particular pattern, aIlc 

will then reduce the number of errors of the parent by one. In practice, the 
are trained by the pocket algorithm and may do much better than just culLL- 
one pattern. Once trained, the offspring weights are hozen, and they becomc 
pa-rents for another layer of offspring, and so on. 

Since the addition of each offspring unit reduces the number of errors 
of 

its parent by at least one, it i s  clear that the network must eventually c1*5ir 

, Figure 9.11. The upstart algorithm adds new offspring units, at A md B, 
to correct the mistakes made by the patent unit. The offspring themelves 
generate offspring units, leading eventually to a network having a binary tree 
structure. 

all patterns correctly using a finite number of units. This occurs because the 
number of mistakes which successive offspring have to correct diminishes until 
eventually an offspring gets all of its patterns correct, which implies that its 
parent produces the correct patterns, and so on all the way back up the network 
to the output unit. The b a l  network has the form of a binmy tree, although 
some branchm might be missing if they are not needed. However, this architecture 

I can be reorganized into a tw*layer network by removing the output connections 
I 

I from the units and moving all units into a single hidden layer (leaving their input 
connections unchanged), A new output unit is then created, and new hidden-te i 

I Output connections added, These connections can be learned with the perceptron 
algorithm or found by expIicit construction in a way which guarantees correct 
dasification of all patterns (Frean, 1990). In simulations it is found that the 1 upstart algorithm produces networks having fewer units than those found with 
the tiling algorithm. Other algorithms for tackling the Boolean classification 
Problem have been described by Gallant (1986a), Nadd (1989) and Marchand 1 f i  ~ l .  (1wa). 

diflerent approach to network eonstruetion, applicable to problems with con- 
' ' " Q ~ S  output variables, is known as cascade-correlation (Fahlrnan and Lebiere, 

and is based on networks of sigmoidal hidden units. The form of the net- 
s "'k architecture is shown in Figure 9.12. To begin with there are no hidden 

'lnits, and every input is connected to w r y  output unit by adjustable con- 
?'c'ions (the crosses in Figure 9.12). The output units may be linear or may 
barre Sigmoidai non-linearities depending on the application. At this stage the 

pk has a single layer of weights and can be trained by a number of dif- 
ent algorithms, as discussed in Chapters 3 and 7. Fahlman and LeMere use 

?he rluickprop algorithm (Section 7.5.3). The network is trained for a period of 

'Irne governed by some user-defined parameter (whose value is set empirically) 
I 
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I 

Figure 9.12. Architecture of the cascade-correlation network. Large circles de- 
note processing units, small circles denote inputs, and the bias input js shown 
in black. Squares represent weights which are trained and then frozen, while 
the  omsss show weights which are retrained after the addition of each hidden 1 
unit. Bidden unit HI is added first, and then hidden unit Hz, and so on. 
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and then a sigmoidd hdden unit is added to the network. This is followed $ 
further network training, alternating with the addition of hidden units, until n 
sufficiently small error is *hieved. The addition of hidden units is done in such 
a way that, at each stage of the algorithm, only a singklayer system is being 
trained. Each new hidden unit takes inputs from all of the inputs to the netv~rk 
plus the outputs of all existing hidden units, leding t o  the cascade st,ructure of 
Fimre 9.12. The hidden unit weights are first determined, and then t.he unit 15 

added to the network. These weights are found by maximizing the correlation 
between the output of the unit and the residual error of the network out~ut-5 
prior to the addition of that unit. This correlation ( s t u d y  the covariance) iS 
defined by 

XI -9 

where cx = (pk - t ~ )  is the error of network output k, and z denotes the Ol t t~ ' '  

of the unit given by I 

,.here the sum runs over al1 inputs and all existing hidden units. In (9.62) the 
rollowing average quantities are defined over the whole training set 

xo a- 

I 

The derivative of S with respect to the weights of the new hidden unit are easily 
found in the form 

*,here the sign corresponds t o  the sign of the covariance inside the modulus bars 
ill (9.62). These derimtivas can then be used with the quickprop algorithm to 
optimize the weights for the new hidden unit. Once this has been done the unit 

dded to the network and is connected to all output units by adaptive weights. 
"klI output-layer weights are now retrained (with all hidden unit weights fixed). 
Again, this cormponds to a singklayer training problem, and is perfarmed us- 
ing quickprop. These singlelayer training problems can be expected to converge 
very rapidly. For linear output units, the output-layer weights, which minimize 
a sum-of-squares error, can be found quickly by pseudo-inverse techniques (Sec- 
tion 3.4.3). Note that, because the hidden unit weights are never changed, the 
activations of the: hidden units (for each of the input vectors from the train- 
ing set) can be evaluated once for the whok of the training set, and these values 
re-used repeatedly in the remainder of the algorithm, saving considerable compu- 
tational effort. Benchmark results from this dgorithm can be found in Fahlman 

Lebiere (1990). 

=J 

g.5.3 Saliency of weights 

turn now to  pruning algorithms which start with a relatively large network 
""hen remove connections in order to arrive at a suitable network architec- 
ture. Several of the approaches to network pruning are based on the following 
general procedure. First, a relatively large network is trained using one of the 
"Ward t r h i n g  dgorithms. This network might for instance have a high degree 
rJFcOnnectivity. Then the network is examined to assess the relative importance 
r'r the weights, and the least important are deleted. Typically this is followed by 

further training of the pruned nefmork, and the procedure of pruning and 
tr'l"% may be repeated for several cycles. Clea~ly, there are various choices to 
1 , ~  made concerning how much training is applied at each stage, what fraction 

" the weights are pruned and so on. Usually these choices are made on a heuris- ''' bkqis. The most important consideration, however, is how to decide which 
k'i~hts should be removed. 

In the c m  of simple models it may be clear in which order the parameters 
ihotild be deleted. With s polynomial, for instance, the higher-order coefficients 

*I  
,"\ 
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would generally he deleted first since we expect the function we are tryjr 
represent to be relatively smooth. In the case of a neural network i t  is not o b  
a p&ri which weights will be the least significant. We therefore need : 
measure of the relative importance, or saliency, of different weights. 

The simplest concept of sdiency is to suppose that small weights aK 

important than large weights, and to use the magnitude Iwl of a weight vall 
a measure of its importance. Such an approach clearly requires that the i 
and output variables are normalized appropriately (Section 8.2). Howevet, ,k 

has little theoretical motivation, and performs poorly in practice. 'lVe Consider 
instead how to find a measure of saliency with a more principled justification, 

Since network training is defined in terms of the minimization of an error func- 
tion, it is natural to use the same: error function to find a definition of salieng 
In particular, we could define the saliency of a weight as the change in the error 
function which results from deletion (setting to zero) of that weight. This could 
be implemented by direct evaluation, so that, for each weight in the (trai 
network in turn, the weight is temporarily set to  zero and the error fun1 
re-evaluated. However, such an approach would be computationally deman 
(Exercise 9.17). 

Consider instead the change in the error function due to small changes in 
the values of the weights (Le CUR ef ab, 1990). If the e i g h t  wi is changed to 
wi + Swi then the corresponding change in the error function E is given by 

where the Hij are the elements of the Hessian matrix 

1 ,  Choose a relatively large initial network architecture. 
2 .  p a i n  the network in the usual way until some stopping criterion is satisfied. 
3, Compute the second derivatives Hz, for each of the weights, and hence 

I evaluate the saliencies H,,w,2/2. 
3, Sort the weights by saliency and delete some of tlie low-saliency weights. 
5 Go to 2 and repeat until some ovt3ralI stopping criterion is reached. L .  

rllis approach to weight elimination has been termed optimal brain damage 

\ 

I 
Le Cun et  al., 1990). In an application to the problem of recognition of hand- 

,,itten zip codes, the technique allowed the number of free parameters in a 

I n p b ~ r k  to  be reduced by about a factor of 4 (from a network initially hav- 
ing over 10 000 free parameters) while giving a small increase in generalization 
pformance and a substantial increase in the speed of the trained network. 

The assumption that the Hessian for a network is diagonal, however, is fre- 
quently a poor one. A procedure for determining the saliency of weights, known 
as optimal bwin surgeom, which does not make the assumption of a diagonal Hes- 
sian, was introduced by Hassibi and Stork (1993). This method also computes 
corrections to the remaining weights after deletion of a particular weight and 
so reduces the need for network retraining during the pruning phase. Suppose 
a weight wi is to be s e t  to  zero. The remaining weights are then adjusted so as 
FO minimize the increase in error resuIting from the deletion. We can write the I 
total change in the weight vector in the form 6w. Again, assuming the network 1 
a already trained to a minimum of the error function, and neglecting third-order I 
terms, the change in the error resulting from this change to the weight vector I 

be written I 

If we assume that the training process has converged, then the first tern1 in 1 
(9.66) wiIl vanish. Le Cun et al. (1990) approximate the Besian by discarding 
the non-diagonal terms. Techniques for calculating the diagonal terms of thp 
Hessian far a multi-Iayer perceptron were described in Section 4.10.1. Neglecting 
the higher-order terms in the expansion then reduces (9.66) to the form 

The change in the weight vector must satisfy 

If a weight having an initial d u e  wi is set to zero, then the increase in error 
will be given approximately by (9.68) with 6wi = w., and so the saliency value 
of the weights are given approximately by the quantities Hiiwi /2 .  A practical 
implementation would typically consist of the following steps: 

 here ei is a unit vector in weight space parallel to the wi axis. We need to 
find the 6w which minimizes 6E in (9.691, subject to the constraint (9.70). 
'his is most easily done by introducing a Lagrange multiplier (Exercise 9.8 and 
b e n d i x  C), giving the following result for the optimal change in the weight 
%?tor 

d t h  corresponding value for the increase in the error in the form 
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Figure 9.13. A schematic illustration of the error contours for a network havinI 
a non-diagonal Hessian matrix, for two of the weights wl and wa. The network 
is initially trained to the error minimum at w". Weight pruning based on the 
magnitude of the weights would take the weight vector to the point A by 
elimination of the smaller weight w2. Conversely, optimal brain damage leads 
to removal of wl and moves the weight vector to B. Finally, optimal brair 
surgeon removes wl and also computes a correction to the remaining weigh1 
wz and hence m e w  the weight vector to C. 

Note that, if the Hessian is in fact diagonal, then these resuIts reduce to  the 
corresponding results for the optima1 brain damage technique discussed above. 
The inverse Hessian is evaIuated using the sequential technique discussed in 
Section 4.10.3 which is itself based on the outer product approximation for the  
Hessian, discussed in Section 4.10.2. In a practical implementation, the optimal 
brain surgeon algorithm proceeds by the following steps: 

I. Dain  a relatively large network to a minimum of the error function. 
2. Evaluate the inverse Hessian H-'. 
3. Evaluate SEi for each value of i using (9.72) and select the value of i which 

gives the smallest increase in error. 
4. Update all of the weighb in the network using the weight change evdu 

from (9.71). 
5. Go to 3 and repeat until some stopping criterion is reached. 

p.5.4 Weight elimination 

In section 9.2-1 we discussed the use of a sirnpIe weight-decay term as a form of 
replarization, Do give a total error function of the form 

 his regularization term favours small weights, and so network training based on 
of (9.73) will tend to reduce the magnitude of those weights which 

Me not contributing significantly to a reduction in the error E. One procedure for 
weights from a network would therefore be t o  train the network using 

the regularized error (9.73), and then remove weights whose values fall below 
some threshold. 

One of the difficulties of the sirnple penalty term in (9.73), from the point of 
view of network pruning, is that it tends to favour many smdl weights rather 

I than a few large ones. To see this, consider two weights wl and u r ~  feeding 
into a unit from identical inputs, so that the weights are performing redundant 
tasks. The unregularized error E will be identical if we have two equal weights 
rnl = wz = w/2,  or if we have one larger weight wl = w, and one zero weight 
U ~ Z  = 0. In the first case, the weight-decay term xi w: = w 2 / 2  while in the 
second case Ci w: = w2. 

This problem can be overcome by using a modified decay term of the form 
I (Hanson and Pratt, 1989; Lang and Hinton, 1990; Weigend et al., 1990) 

A conparisen of pruning by weight magnitude, optimal brdn damage an( 
ma1 brain surgeon is shown schematically in Figure 9.13. Note that the mlg"' 
changes are evaluated in the quadratic approximation. Since the true error func* 
tioa will be non-quadratic, it wilI be necessary to retrain the network after " 
period of weight pruning. Simulation results confirm that the optimal brain sup 
geon technique is superior to optima1 brain damage which is in turn superior '@ 
magnitude-based pruning (Le Cun et aL, 1990; Ha~sibi and Stork, 1993). 

where 8 is a parameter which sets a scaIe and is usually chosen to be of order 
u"Q. Use of this form of regularizer has been called weight elimznetion. As shown 
in Exercise 9.9, for weight values somewhat larger than CJ this pen& term wiIl 

favour a few large weights rather than many smdl ones, and so is more 
likely to eliminate weights born the network than b the simple weight-decay 
'9'" in (9.73). This leads to a form of network pruning which is combied with 
'Ii@ training proems itself, rather than alternating with it. In practice weight 
'"Iues will typically not be reduced to zero, but it would be possible to remove 
"'khts completeIy if their values fell below some small threshold. Note that this 
" ~ r i t h m  involves the scale parameter u? whose value must he chosen by hand. 

' , ' .5 Node prunim+q 

lnrkad of pruning individual weights from a network we can prune complete 
''"'f~. and several techniques for achieving this have been suggested. Mozer and 
"&sky (1989) adopt an algorithm based on alternate phases of training and 
r'moval of unit,. This requires a measure of the saliency s, of a unit, of which 
L h ~  most natural definition would be the increase in the error function (measured 
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with respect to the training set) as a result of deleting a unit j 

s j  = E(without unit j )  - E(with unit j ) .  I$ 
As with individual weights, such a measure is reIatively slow to evaluate sin 
requires a complete pass through the data set for each unit, although it is c ~ f  
less computationally expensive to  repeat the error measurement for each 
than it is for each weight. To find a convenient approximation, we can intro, 
a factor a, which multiplies the summed input to each unit (except the ou 
units), so that the forward propagation equations become 

where the activation function g(.) is defined such that g(0) = 0, as would fit 
case for g(a)  = tanha, for example. Then with ~ r j  = O the unit is absent, 
with a j  = 1 the unit is present. Then (9.75) can be written as 

whkh can then be approximated by the derivative with respect to aj: 

These derivatives are easily evaluated using an extension of the back-propaga 
dgorithm (Exercise 9.10). Note that the % do not actually appear in the for7 

propagation equations, but are introduced simply as a convenient way to  d ~ !  
and evaluate, the sj. In order to make this approach work in practice, M 
and Smolensky (1989) found they had to use a Minkowski-R error with R 
(Section 6.21, together with an exponentially weighted running average estir 
of sj to smooth out fluctuations. Other forms of node-pruning algorithm 1 
been considered by Hanson and Pratt (19891, Chauvin (1989) and Ji et a/. (15 

ce it, 
: a r l ~  
unit  

var d 
fine, 
naPF 

I 

9.6 Committees of networks 

I t  is common practice in the application of neural networks to train many difi'*- 
ent candidate networks and then to select the best, on the basis of performanCP 

1 
on an independent validation set for instance, and to keep only this network "d 
to discard the rmt. There are two disadvantages with such an  approacll. First' 
dl of the effort involved in training the remaining networks is w a s t d .  swond' ...* 
the generalization performance on the validation set has- a randor 10 

due to the noise on the data, and so the network which had best pe nc 

[he vaIidation set might not be the one with the best performance on new test I 

data. 
These drawbacks can be overcome by combining the networks together to 

brrn a committee (Perrone and Cooper, 1993; Perrone, 1994). The importance of 
,uch an approach is that it can lead to significant improvements in the predictions 
,, new data, while involving Iittle additional computational effort. In fact the 

of a committee can be better than the performance of the best single 
fl,trvork used in isolation. For notational convenience we consider networks with a 

output y, although the generalization to several outputs is straightforward. 
Suppose we have a set of L trained network models yt(x) where i = I, .  . . , L. 
This set might contain networks having different numbers of hidden units, or 
,,etworks with the same architecture but trained to different local minima of 
the error function. It might even include different kinds of network models or 

mixture of network and conventional modeIs. We denote the true regression 
function which we are seeking to approximate by h(x).  Then we can write the 
mapping function of each network as the desired function plus an error: 

The average sum-of-squares error for model yi(x) can be written as 
I 

shere E[ . ]  denotes the expectation, and corresponds to an integration over x I 
weighted by the unconditional density of x so that 

I 

From (9.80) the average error made by the networks acting individually i s  given 
hv 

We now introduce a simple form of committee. This involves taking the out- 
D"t of the committee to be the average of the outputs of the L networks which 
"'mprise the committee. Thus, we write the committee prediction in the form 

I@ error due tc, the committee can then be written as 



L 
p~jzed committee prediction given by a weighted combination of the predictions 
of the members of the form 

n=l  

L 
IE we now make the assumption that the errors ~ i ( x )  have zero mean and ,,, 
uncorrelated, so that 

t=1 then, using (9.82), we can relate the committee error (9.84) to  the average error 
of the networks acting separately as follows: &ere the parameters, ar wilI be determined shortly. We now introduce the error 

r matrix C with dements given by 

This represents the apparently rather dramatic result that the sum-of-squares This allows the error due to the generalized committee to be written as 
error can he reduced by a factor of L simply by averaging the predictions of 
L networks. In practice, the reduction in error is generally much srndler than EGEN = & [(YGEN(X) - h ( ~ ) ) ' ]  (9.92) 
this, because the errors E ~ ( x )  of different models are typically highly correlated. 
and so assumption (9-85) does not hold. However, we can easily show that the 
committee averaging process cannot produce an increase in the expected error (9.93) 
by making use of Cauchy's inequality in the form 

which gives the result 

ECOM I EAV. 

u'e can now determine optimal values for the a, by minimization of EGEN. In 
"der to find a non-trivial minimum (i.e, a solution other than at = 0 for dl i) 

(9.88) nre need to constrain the ai. This is most naturally done by requiring 

Typically, some useful reduction in error is generally obtained, and the method I 
L 

has the &vantage of being trivial to implement, There is a significant reduction = 1. (9.SS) 
in processing speed far new data, but in many appZications this will be i r ~ l e v a ~ '  2=1 

The reduction in error can be viewed as arising from reduced vazjance 
to the averaging over many solutions. This suggests tha t  the members of 1' '" . for the form of this form of constraint d l 1  be discussed &~rtly. 
committee should not individually be chosen to have optimal trade-off betnren a Lagrange multiplier (Appendix C) to enforce this constraint, we sw 
bias and variance, hut should have relatively smaller bias, since the extra rhat the minimum of (8.94) occurs when 

can be removed by averaging. 
The simple committee discussed so far involves averaging the predi~ti~fl '  L 

the individual networks. However, we might expect that some members 0 f the 

committee will typically make better predictions than other members. We would 
therefore expect to be A l e  to reduce the e m r  still further if we give &re"@' 
weight to some committee members than to others. Thus, we consider rt gener- 

2Cajcij+x = O  
3=1 

has the solution 
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relative to  the committee prediction itself. As a result of the minus 
front of the second term on the right-hand side of (9.102) we see that, 1" 

lqTe call increase the spread of predictions of the committee members without 
jncreasing the errors of the individual members themselves, then the committee 
,rror wiIl decrease. Furthermore, since this term is strictly negative, we can use 
1?,80), (9.82) ~ n d  (9.102), together with a, = 1 JL, to give 

We can find the value of X by substituting (9.97) into the constraint equ, 
(9.95), which gives the solution for She a, in the form 

in keeping with (9.88) and (9.101). 
One problem with the constraint (9.95) is that it does not prevent the weight- 

ing coefficients in the committee from adopting large negative and positive values 
hence giving extreme predictions from the committee even when each mem- 

ber of the committee might he making sensible predictions. We might therefore 
, ~ e k  to constrain the coefficients further by insisting that, for each value of x, we 
have I l n l i n ( ~ )  I yCEN(x) 5 ~ m a x ( ~ ) -  This condition can be satisfied in general I 

by requiring that a, > 0 and C,  cr, = 1 (Exercise 9.12). The minimization of the 
committee crror subject to these two constraints is now a more difficult problem, l 
and can be tackled using techniques of linear programming (Press e t  a!,, 1992). 

The usefulness of committee averaging is not limited to the sum-ofsquares 
error, but applies to any error function which is convex (Exercise 9.13). Sec- 
tion 10.7 shows how the concept of a committee arises naturally in a Bayesian 
framework. 

Substituting (9.98) into (9.94) we find that the value of the error at the minin 
is given by 

In summary, to set up this generdized committee, we train L network mot 
and then compute the correlation matrix C using a, finitesample approxirns 
to (9.91) given by 

9.7 Mixtures of experts I 
where tn is the target value corresponding to input vector xn. We then find C - I ,  

evaluate the ai using (9.98), and then use (9.89) to make new predictions. 
Since the generdized committee (9.89) is a special case of the simple aver 

committee (9.83) we have the inequality 

Consider the problem of learning a mapping in which the form of the mapping is 
different for different regions of the input space. Although a single homogeneous 
n~twork could be applied to this problem, we might expect that the t a ~ k  would 
h~ m d e  easier if we assigned different 'expert' networks to tackle each of the 
{iifferent regions, and then used an extra 'gating' network, which also sees the 

vector, to decide which of the experts should be used to determine the 
"'ltput. 

If the problem has an obvious decomposition of this form, then it may be 
!iQssihle to design the network architecture by hand. However, a more powerful 
and more general approach would be to discover a suitable decomposition as 
Ytt of the Iearning process. This is achieved by the m i x t w ~ e - o f - e q e h  model 

et  al., 19911, whose architecture is shown in Figure 9.14. All of the 
nxPert nefmorks, as well as the gating network, are trained together. The goal 
r"F the training procedure is to have the gating network learn an appropriate 
'''.composition of the input space into different regions, with one of the expert 

I 
""~vorks responsible for generating the outputs for input vectors falling within 
"Wh region. 

The key is in thc definition of the error function, which has a similar form 
that discussed in Section 6.4 in the  context of the problem of modelling con- 

'age 

The generalization error of a committee can be decomposed into m e  sun 
two terms (Exercise 9.11) ta give (Krogh and Vedelsby, 1995) 

which is somewhat a~alogous to the bias-variance decomposition discussed 
Section 9.1. The first term depends onIy on the errors of individuaI networksq 
while the second term depends on the spread of predictions of the committ@ 
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output 

network network network Q T 9 J  
Figure 9.14. Architecture of the mixtwe-of-experts modular network. The gat- 
ing network acts as a switch and, for any given input vector, decides which of 
the expert networks will be used t o  determine the output. 

ditional distributions, and it will be assumed that the reader is dready famil 
with this material. T h e  error function is given by the negative logarithm of I 
likelihood with respect to a probability distribution given by a mixture of 
Gaussians of the form 

where the &(tlx) are Gaussian functions given by 

iar 1 

4l.3 

These Gaussian functions have means p, (x)  which are functions of the inr 
vector x, and are taken to have unit covariance matrices. There is one expest 
network for each Gaussian, and the output of the ith expert network is a w-c~O' 

representing the corresponding mean p,(x) where x is the input vertor. The 
mixing coefficients at (x) are determined by the outputs yi sf  the gating n e w r k  
through a softmax activation function 

Thus, the gating network has one output for each of the expert; networks, 
indicated in Figure 9.34. This model differs from tha t  discussed in Section 6.4 in 
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wo minor respects. First, the variance parameters of the Gaussians here are set 
to unity, whereas they were taken to be general functions of the input vector x 
in Section 6.4, although is it clearIy straightforward to incorporate more generd 
~ ~ ~ l s i a n  functions into the present model. Second, different networks are used 
to model the pCL,(x) and cri(x) here, whereas a single network was considered in 
section 6.4- 

The mixture-of-experts network is trained by minimizing the error function 
(9.104) simultaneously with respect t o  the weights in all of the expert networks 

in the gating network. When the trained network is used to make predictions 
;For new inputs, the input vector is presented to the gating network and the largest 
output is used to select one of the expert networks. The input vector is then 
pesented to this expert network whose output pi (x )  represents the prediction 
of the complete system for this input. This corresponds to the selection of the 
most probable branch of the conditional distribution on the assumption of weakly 
n~-erlapping Gaussians, as discussed on page 220. 

It was also shown in Section 6.4 that the use of an error function based on a 
mixture of Gaussims Ieads to an automatic soft clustering of the target vectors 
into groups associated with the Gaussian components. In the context of the 
mixtureof-experts atcbitecture it therefore leads to an automatic decomposition 
of the problem into distinct sub-tasks, each of which is effectively assigned to 
one of the network modules. 

Jacobs et al. (1991) demonstrate the performance of this algorithm on a 
w w ~ l  recognition probIem and show that it discovers a sensibb decomposition 
of the mapping. Jordan and Jacobs (1994) extend the mixt;ur+of-experts model 
~ I V  considering a hierarchical system in which each expert network c m  itself 
consist of a mixtureof-experts mode1 compIete with its own gating network. 
This can be repeated at any number of levels, leading to a tree structure. The 
hierarchical architecture then allows simple linear networks to  be used for the 
experts at the leaves of the tree, while still allowing the overall system to have 
flexible modelling cap~bilities. Jordan m d  Jacobs (1994) have shown that the 
EM algorithm (Section 2.6.2) can be extended to provide an effective training 
mechanism for such networks. 

9-8 Model order selection 
In this book, we have focused on the minimization of an error function as the 

technique for determining d u e s  for the free parameters (the weights and 
hi-) in a neural network. Such nn approach, however, is unable to determine 
"h optimum number of such parameters (or equivalently the optimum size of 
n e h r k ) ,  because an increase in the number of parameters in a network will 

I FPnerally aIlow a smaller value of the ermr to  be found. Our goal is to find a 
" h r k  which gives good predictions for new data, and this is typicdly not 

network whit& giver the smallest error with respect to the training data. In 
tradcoff between bias and variance discussed in Section 9.1, we saw that 

is an optimal degree of complexity in a network model for a given data 
"h Networks with too Iittle flexibility will smooth out some of the underlying 
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structure in the data (corresponding to  high bias), while networks which are I,, 
complex will over-fit the data (corresponding to high variance). In either c ~ ~ .  
the performance of the network on new data will be poor. 

Similar considerations apply to  the problem of determining the values 
continuous parameters such as the regularization coefficient u in a regularized 
error function of the form 

Too large a value for v leads to a network with large bias (unless the regnl~,  
tion function happens to be completely consistent with the underlying strut 
of the data) while too small a, value aIIows the network solution to have 
high a variance. This was illustrated in Figures 9.4, 9.5 and 9.6. Again, di 
minimization of cannot be used to find the optimum value for Y ,  since 
gives v = 0 and an over-fitted solution, 

We shall assume that the goal is to find a network having the best gent 
ization performance. This is usually the most difficult part of any pattern re 
nition problem, and is the one which typically limits the practicd applicatic 
neural networks. In some cases, however, other criteria might also be import 
For instance, speed of operation on a serial computer wiIl be governed by 
size of the network, and we might be prepwed to trade some generalization 
pabiIity in return for a smaller network. We shall not discuss these possihil 
further, but instead focus exclusiveIy on the problem of generdisation. 

r of 
,ant. 
the 

I ca- 
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9.8.1 Cross-validation 

Since our goal is to find the network having the best performanc ,w d 
the simplest approwh to the comparison of different networks is to evaluate 
error function using data which is independent of that used for training. Various 
networks are trained by minimization of an appropriate error function defined 
with respect to a training data set. The performance of the networks is t h ~ n  
compared by evaluating the error function using an independent validation 
and the network having the smallest error with respect to the validation 
is selected. This approach is called the hold out method Since this proce( 
can itself lead to some over-fitting to the validation set, the perf1 e of 
seIected network should be confirmed by measuring its performa a t  
independent set of data called a test set. 

The appIication of this technique is iIlustrated in Figure 9.15 using the  sNlr'- 

radial basis function example as used in plotting Figures 9.4, 9.5 and 9.6. He@ 
we have plotted the error on the training set, as well as the generalization enu* 
measured with respect to an independent validation set, as functions of 
logarithm of the regularization coefficient v. As expected, the training error 
decreases steadily with decreasing v while the validation error shows a minimUn" 
at a value of in u 1 3.7, and thereafter increases with decreasing u. Figure 9.5 
was platted using this optimum value of u, and confirms the expectation that the 
mapping with the best generalization is one which is closest to the undrrb'id 
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Figure 9.15. Plat of training and validation set errors versus the logarithm 
of the regularization coefficient, for the example used to plot Figure 9.4. A 
validation set of 1000 points was used to obtain a good estimate of the gen- 
eralization error. The validation error shows a minimum at lnv 12: 3.7, which 
was the value used to plot Figure 9.5. 

function from which the data was generated (shown by the dashed curve in 
Figure 9.5). 

This example also provides a convenient opportunity to demonstrate the de- 
pendence of bias and variance on the effective network complexity. The values of 
the average bias and variance were estimated using knowledge of the true under- 
lying generator of the data, given by the sine function h(x) in (9.34). For each 
mlue of In v, 100 data e t s ,  each containing 30 points, were generated by sam- 
pling h ( s )  and adding noise. A radial basis function network (with 30 Gaussian 
basis functions, one centred on each data point as before) was then trained on 
each of the data sets to give a mapping y, ( x )  where i = 1, . . . ,100. The average 
r B ~ ~ n s e  of the networks is given by 

' Estimates of the integrated and variance are then given by 
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lnv 

Figure 9.16. PIots of -timated (biasj2 and variance as functions of the log- 
arithm of the regularization mefficient v fox the radial basis function model 
used to plot Figure 9-15. Also shown is the sum of (bias)' and variance which 
shows a minimum at a value close to the minimum of the validation error in 
Figure 9.15. 

variance = E{yi(xn) - g ( ~ " ) } ~ .  
Tt 

100 , 
* = I  

Figure 9.16 shows the (biasI2 and the variance of the radial basis function model 
as functions of In Y. The minimum of the sum of (hlasI2 and variance occurs at 
a value of lnv  close to that at which the minimum validation error occurs in 
Figure 9.15 as expected. 

In practice, the availability of labelled data may be severely limited and 
we may not be able to afford the Iumry of keeping aside part of the data set 
for model comparison purposes. In such cmes we can adopt the procedure of 
cross-whdation (Stone, 1974, 1978; Wahba and Wold, 1975). Here we divide t hp  
training set at  random into S distinct segments. We then train a network using 
data from S - 1 of the segments and test its performance, by evaluating the error 
function, using the remaining segment. This process is repeated for each of thp 
5' possible choices for the segment which is omitted from the training proces* 
and the test errors averaged over dl S results. The partitioning of the data set is 
illustrated in Figure 9.17. Such a procedure allows us to use a high 
the available data (a fraction 1 - 1/S) to train the networks, while also making 
use of all data points in evaluating the cross-validation error. The d i s a d w t g e  
of such an approach is that it ~ a u i r e s  the training process to be repeated S times 
which in some circumstances ad to  a requireme rge amounts of 
processing time. A typicd chc might be S = 10, 1 if data is  wry 
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Figure 9.17. Schematic illustration of the partitioning of a data set into S seg- 
ments for use in cros+validation. A network is trained S times, each time using 
a version of the data set in which one of the segments (shown shaded) is omit- 
ted. Each trained network is then tested on the data from the segment which 
was omitted during training, and the results averaged over all S networks. 

scarce we could go to the extreme limit of S = N for a. data set with N data 
points, which involves N separate training runs per network, each using { N  - 1 )  
data points. This limit is known as the leave-one-out method. 

9.8.2 Stacked genemlization 
In Section 9.6 we discugsed the use of committees as a way of combining the pre- 
dictions of several trdned networks, and we saw how this could lead to reduced 
errors. The committee techniques are based only on the training data, however, 
and so do not directly address the issue of model complexity optimization. Con- 
versely, techniques such as cross-validation represent a winner-takes-all strategy I 

in which only the best network is retained. The method of stacked genemlizatioa 
(Wol~ert, 1992) provides a way of combining trained networks together which 
uses partitioning of the data set (in a similar way to crossrvalidation) to find an 
Overall system with usually improved generalization performance. 

Consider the modular network system shown in Figure 9.18. Here we see a set 
of M 'level-0' networks Afp to flM whose outputs are combined using a 'level-1' 
RPtWork N1.  The idea is to train the level-0 networks first and then examine their 
behaviour when generalizing. This provides a new training set which is used to 
train the level-1 network. 

The specific procedure for setting up the stacked generalization system is as 
follows. Let the complete set of available data be denoted by O. We first leave 

a single data point from D as a validation point, and treat the remainder 
D as a training set. All level-0 networks are then trained using the training 

I 

Partition and their outputs are measured using the validation data point. This 
generates a single pattern for a new data set which will be used to train the 

1 1  
' ~ 1 - 1  network H< The inputs of this pattern consist of the outputs of all the ' level-O networks, and the target value is the corresponding target value from the 

i Original full data set. This process is now repeated with a different choice for 
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Figure 9.18. Stacked generalization combines the outputs of several 'level-0' 
networks fl, . . . using a 'level-1' network N1 to give the final output. 
The level-1 network corrects for the biases exhibited by the level-0 networks. 

the data point which is kept mide. After cycling through the full data set of 
N points we have N patterns in the new data set, which is now used to train 
NL. Finally, all of the level-0 networks are r+trained using the hll  data set D. 
Predictions on new data can now be made by presenting new input vectors to the 
level-0 networks and taking their outputs as the inputs to the level-I network, 
whose output constitutes the predicted output. Wolpert (1992) gives arguments 
to suggest that the level-0 networks should contain a wide variety of different 
models, while the level-1 network should provide a relatively smooth function 
and hence should have s relatively simple structure. 

There are many possible miartions of stacked generalization. For instance, if 
the data set is large, or if the level-0 networks are computationally intensive to  

model which is too complex will have a large vaIue for the criterion because the 
complexity term is large. The minimum value for the criterion then represents 
;, tradeoff between these two competing effects. For a sum-of-squares error a 
wical form for such a criterion would be 

where E is the value of the sum-of-squares error with respect to the training set 
after training is compIete, N is the total, number of data points in the training I 

set, W is the number of adjustable parmeters (weights) in the model, and a2 is 
I 

the variance of the noise on the data (which must be estimated). 
Moody (1992) has generalized such criteria to deaI with non-Iinear models 

and to allow for the presence of a regularization term. By performing a Iocal 
linearization of the network mapping function he obtains a criterion, cdled the 

prediction e m r ,  of the form I 

where y is the effectawe number of parameters in the network, which for linear 
networks is given by 

train, we might have aside a larger fraction of D than just a single data point where A, are the eigenvalues of the Hessian matrix of the unregularized error 
when training the level-0 networks. Stwhng can also be applied in a slightly evaluated at the error minimum, and Y is the regularization coefficient. The I 
modified form to improve the generalization of a single network, and it can also 
be extendd to more than two levels of networks (Wolpert, 1992). 

form of y in (9.1 14) should be compared to the expression for the minimum of 
the regularized error given by (9.24). The reason that y is the effective number I 

9.8.3 Complexitp criteria 

In conventional statistics, various criteria have been developed, &en in the con- 
tact of linear models, for assessing the generalbation performance of trained 
models without the use of validation data. These include the C,-statistic (Male 
lows, 19731, the final prediction error (Akaike, 1969), the Akaike information 
criterion (Akaike, 1973) and the predicted squared error (Barren, 1984). Such 
criteria take the general form of a prediction error (PE) which consists of the 
sum of two terms 

PE = training error + complexity term (9.111) 

where the complexity term represents a penalty which grows as the number 
free parameters in the model grows. Thus, if the model is too simple it wifl 
a large wlue for the criterion because the residual training error is large, w l  

of Parameters is that eigenvalues which satisfgr A i  >> u contribute 1 to the sum 
in /9.114), while eigenvalues which satisfy X i  << v contribute 0 t o  the sum. We 
"41 not discuss the orMn of this criterion here, since we give a more general 
ascussion From the Bayesian perspective in Chapter 10. 

9.9 Vapnik-Chervonenkis dimension 

useful insight into generalization is obtained by considering the worst- 
performance for a particular trained network. The theory of this has been 

developed mainly in the context of nehvorks with binary inputs (Baum and 
Haussier, 1989; Abu-Mostafa, 1989 Hertz et al., 1991). For simplicity we consider 
"*arks having a single binary output. 

i Suppose that the input vectors are generated from some probability distri- 
I hution P(x) and that the target data is given by a (noiseless) function h(x). For 
I given model y(x), we can define the average generalization ability g(y) to 
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be the probability that y(x) = h{x) for the given distribution P(x). This says 
that, if we pick an input vector x at  random from the distribution PIX), then 
the probability that the two functions will agree is given by g(y). 

In practice, we cannot calculake g(g) directly because we do not know the 
4 

true probability distribution P(x) ,  nor do we know the function h(x) .  What we 
log* A 

typically do instead is to train a. network using a set of N training patterns to 
give a network function y(x; w), and then measure the fraction of the training 
set which the network correctly classifies, which we shall denote by g g ~  (3). In 
the limit of an infinite data set N 4 m we would expect to find gw(y) -+ g ( ~ ) ,  
by definition of g(y). However, for a finite-size training set the network func- 
tion y(x; w) will be partly tuned to the particular training set (the problem of 
over-fitting) and so we would expect grv(y) > g(y). For instance, the network 

4, N 

might learn the training set perfectly, so that g ~ ( y )  = I, and yet the predictive Figure 9.N. General form of the growth function A(N) shown as a pIot of 
performance on new data dram from the same distribution might be poor so Log, A versus N .  The function initially grows like 2" up to some critical num- 
that g(y) << I. We say that qN(y }  is a biased estimate of g ( ~ ) ,  since it is system- of Patterns, given by N = dvc, at which point the growth slows to become 

atically different from the true value. It gives an over-optimistic estimate of the a power law. The value dvc is called the Vapnik-Chervonenkis dimension. 

generalization perfo~mmce of the network. 
If we now consider the set of dl functions (y) which the network can im- 

plement, we can study the maximum discrepancy which can occur between the 
generalization performance a t i m a t d  from the sample of size N and the true 
generalization g(y ) , given by 

as this gives a worst-case measure of generahation performance. Given a smau 
quantity 6 ,  a. theorem due to Vapnik and Chervonenkis (1971) gives an upper 
bound on the probability of the difference in (9.115) exceeding E, given by 

(dichotomies) which can be implemented by the network on a set, of N input 1 
vectors xn, where n = 1,. . . , N. The number of potential different patterns is 
2", and if our network could represent all of these then A ( N )  = 2N. In this I 

case, it is clear that we cannot make the right-hand side of (9.116) smaller by 
increasing N. In practice, our network will have a finite capacity, and so for 
large enough N it will not be capable of representing a11 possible 2* patterns, 
The general form of the function A(N) is shown in Figure 9.19. For small N it 
sows like 2N, which says that the network can store exactly dl of the training 
Patterns. Beyond some critical number of patterns, however, the growth starts to 
"ow down. This criticaI number of patterns, denoted dvc, is called the Vapnik- 
aermonenkis dimension, or VC dimension (Blurrier et aL, 1989; Abu-Mostah, 
1989) and is a property of the particular network. In f ~ t ,  it can be shown 
(cover, 1965; Vapnik and Chervo~enkis, 1871) that the function A(N) is either 

equal to !lN for all N ,  or is bounded above by the relation 

where A(N) is known as the  growth function and will be discussed shortIy. 
Since this result applies to any of the functions y which can be implementd 

by the network, we can apply it to the particular function y (x; w) obtained from 
training the network on the given data set. Then (9.116) gives an upper bound 
on the discrepancy between our estimate gN(y) of the predieti r and 'Ir 
true generalization performance g(y). Our aim is to make this t s small 
possible (i.e. make the righthand side of (9.116) as small as I ), and " 
can seek to do this by increasing the number N of training patterns. SUPPP" 
for instance that we obtained perfect results (zero residual error) on the m i n m g  
data, so that g N ( y )  = 1. Then, for a given value of r i f  we could reduce the rigb" 
hand side of (9.116) to a small value 6 = 0.05, say, we would be 95% certain that 

. . 

on err0 
round a 
mssible 

9 ( ~ )  > 1 - 
The function A(N) in (9.116) gives the number d distinct binary !31nftionr 

this now has only polynomial growth, it is dear that we can make the 
ri~l~ht-hand side of (8.116) arbitrarily small by making N sufficiently large. This 
" a" intuitively reasonable result. If there are so few pstterns that the network 
*ahbore them all perfectly, we cannot expect it to generalize. Only when the 
?'-k has ~uecemfully leamed a number of patterns which is much larger than 
:'s Intrinsic storage capacity for random patterns (as measured by dvc) will the 

1 r t -  n f W ~ r k  have captured some of the structure in the data, and only then can 
vrJ expect it to generalize to new data. Consider a set of data points which are 

59erated at random. The only way to learn all of the patterns in such a data 
-?t . for the network to store the training patterns individually, which requires 

"tw~ork with dvC > N .  Fm such data set. we cannot expect to  find a network 



which generalizes. 
The above results give us some idea of how many patterns we need to USE 

train a network in order to get good generalization performance in terms of the 
VC dimension of the network. Baum and Haussler (1989) considered 
feed-forward networks of threshald units. For a network having a total 0 1  
units, and a total of W weights (including biases), they gave an upper bounc 
the VC dimension in the form 

where e is the base of natural logarithms. They used this to  show that, if st 
number N of patterns, given by 

can be learned by the network such that a fraction 1 - ~ 1 2  are correctly classif 
where Q < E 5 1/8, then there is a high probability that the network will corsel 
classify a fraction 1 - E of future examples drawn from the same distributio~ 

They also considered the case of networks having two layers of thresf 
units, and were able to h d  a lower bound on the VC dimension in the form 

where IM/2] denotes the largest integer which is Jess than or equal to M/2,  
and d is the number of inputs. For large two-layer networks we typically haw 
Md -- W (since most of the weights are in the first layer). From this they d e r i d  
the approximate rule of thumb that to classify correctly a fraction 1 - 6 of new 
examples requires a number of patterns at least equal to  

Thus, for E = 0.1 this suggests that we need around ten times as many train 
patterns as there are weights jn the network. 

The VC dimension gives worst-case bounds on generalization. In particu 
it only considers which functions can in principle be implemented by the  
work. Thus, it does not depend, for instance, on the presence or absence 
regularizing function, since such a function does not cempIeteIy rule out an!' 
of weight values. We might hope: that in practice we would achieve good P 
alization with fewer training patterns than the number predicted using the 
dimension. 

Exercises 

9.1 (**) Consider a quadratic error function of the form 

J 
Exercises 

where w* represents the minimum, and the Hessian matrix H is positive 
definite and constant. Suppose the initial weight vector is w(O) is chosen 
to be at the origin, and is updated using simple gradient descent 

where r denotes the step number, and 7 is the learning rate (which is 
assumed to be small). Show that, after r steps, the components d the 
weight vector paraIlel to the eigenvectors of H can be written 

where wj = wTuj, and Uj and Xj are the eigenvectors and eigenvalues 
respectively of H so that 

Huj = Aiuj. (9.125) 

Show that, as r + cx, this gives w(') + w* as expected, provided 11 - 
qXjl < 1. Now suppose that training is halted after a finite number T 

of steps. Show that the components of the weight vector parallel to the 
eigenvectors of the Hessian satis& 

w 1  < 1w;l when 5 < (q-r)-'. (9.127) I 

Compare this result to the corresponding result (9.24) obtained using reg- 
ularization with simple weight decay, and hence show that (~r ) -"s  anal- 
ogous to the regularization parameter v.  The above results also show that 
the effective number of parameters in the network, as defined by (9.1141, 
grows as the training progresses. 

'*2 (1) Consider a linear network model with outputs 

and a sum-of-squares error function of the form 

1 where n labels the patterns from the training set, and t; denotes the target 
values. Suppose that random noise, with components E*, is added to the i 
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input vectors. By averaging over the noise and assuming { E * )  = 0 and 
{%t j )  = 6,v show that this is equivalent to the use of a weight-decay 
regularization term, with the biases wko omitted, and noisefree data. 

9.3 (+ *) Chauvin (1989) considered a reguIariser given by the sum of the square 
of the activations of a11 the hidden units in the network. By using the. chain 
rule of calculus, derive a back-propagation algorithm for computing the 
derivativar of such an error function with respect to the weights and biasef: 
in the network. 

9.4 (**) Consider the cross-entropy error function, in the Iimit of an infinit0 
data set, given by 

(9.130) 
Following a similar argument to that given in Section 9.3 for the case of a 
sum-of-squares error function, show that the addition of noise to the inputs 
during training is equivalent to the use of a regularizer of the form 

In Section 6.7.2 it was shown that, at the minimum of the unregtllarized 
error function, the network output approximates the conditional average 
of the target data. Use this result to show that the second-derivative term 
in /9.131), as well. as the second term in square brackets, vanishes. 

9.5 ( * A )  &peat Exercise 9.4 for the case of the log-likelihood error function of 
the form 

E = - // ta  yk(x)p( t*  lx)p(x) dx dtr  (9.1321 
k 

where the network outputs are given by the softmax function (Section 6.9' 
so that xk pk(x) = 1. Again, derive the form of the regularizer, and sho-'. 
using the resuIt of Exercise 6.16, that the second-derivative term can bp 
neglected when finding the minimum of the regularized error. Hence find 
the final form of the regularization function. 

9.6 (*) Consider a regularized error function of the form 

and suppose that the unregularized error E is minimized by a weight vecfl" 
w*. Show that, if the regularization eoeficient v is srndl, the weight vector 
G which minimizes the regularized error can be written in the Form 

Exercises 383 

where the gradient VSt and the Hessian H = VVE are evaluated at w = 
w*. 

9.7 (*) Consider a multi-layer perceptron network with W weights and a tsain- 
ing set with N patterns. Find approximate expressions for the number of 
computational steps required to evaluate the saliency of the  weights by 
(i) temporary deletion of each weight in turn followed by reevaluation of 
the error function; {ii) use of the 'optimal brain damage' expression Hiiw? 
for the saliency of the weights in which the diagonal approximation for 
the Hessian matrix is used (Section 4.10.1); (iii) use of the 'optima1 brain 
surgeon' expression (9.72) together with the sequential update procedure 
for evaluating the inverse of the Hessian (Section 4.10.3). Evaluate these 
expressions for the case W = 300 and N = 5000. 

9.8 (+I Use Lagrmge multipliers (Appendix C) to verify that minimization of 
(9.69), subject to the constraint (9.70), leads to the results (9.71) and 
(9.72) for the change to the weight vector and the increase in error function 
respectively, for the 'optimal brain surgeon' technique. 

9.9 (* *) Consider the modified weight-decay term in (9.74) for the case of two 
weights wr and wa which receive identical inputs and which feed the same 
unit (so that the weights perform redundant tasks). Change variables to 
s = (wl t w2)/G and a = w Z / w I .  Show analytically that, for fixed s, the 
value a = 1 is a stationary point of the weight-decay term. Plot graphs of 
the value of the weight-decay term as a function of cr for various values of 
s. Hence show that, for s = 1 the regularization term has a single minimum 
as a function of a at a E 0.5, while for s = 2 there J e  hvo minima at 
a = 0 and a -t m. We therefore see that, for weight values larger than 
the characteristic scale 6, the modified weighbdecay term in (9.74) has the 
desired effect of encouraging a few larger weights in preference to several 
srnaIIer ones, 

9,10 (*) Derive a set of back-propagation equations for evaluation of the deriva, 
tives in (9.78), for a network of general feed-forward topology having for- 
Ward propagat ion equations given by (S ,761. 
(*) Consider a committee defined by (9.89) in which the coefficients satisfy 
the constraint (9.95). Verify the decomposition of the committee general- 
ization error given by (9.102). 
(*) Consider a committee network of the form 

where yi[x) denote the functions corresponding to the individual networks 
in the committee. Suppose that, in order to ensure that the committee 
Predictions remain within sensible limits, we require 



384 9: Learning and Genemlkotion 

ymin(x) and y,,(x) are the minimum and maximum outputs of an,. 
members of the committee for that value of x. Show that, if the requirement 
(9.136) is to be satisfied for any set of network fumtions { y i (x ) ) ,  then the 
necessary and sufficient conditions on the ai are given by 

9.13 (*) Use Jensen's inequality (Exercise 2.13) to show that any error function 
E(y)  which is a convex function of the network output y will satisfy the 
following inequality for committees of networks 

where ECoM and EAV are defined in Section 9.6. 
9.14 (*) Use the result (9.119) to estimate typical numbers of patterns needed 

to get good generalization (better than, say, 95% correct on new data) in 
networks having d = 10 inputs and M = 30 threshold hidden units. 

BAYESIAN TECHNIQUES 

In this chapter we consider the application of Bayesian inference techniques to 
neural networks. A simple example of the Bayesian approwh was described in 
Section 2.3 where we considered the problem of inferring the mean of a one- 
dimensional Gaussian distribution from a set of training data. In the context of 
neural networks, Bayesian methods offer a number of important features includ- 
ing the following: 

1. The conventional training method of error minimization arises from a par- 
ticular approximation to the Bayesian approach. I 

2. Regularization can be given a natural interpretation in the Bayesian frame- 
work. 

3. For regression problems, error bars, or confidence intervals, can be assigned 
to the predictions generated by a network. 

4. Bayesian methods allow the d u e s  of ~egularieation coefficients to be se- 
lected ming only the training data, without the need to use geparate train- 
ing and validation data. Furthermore, the Bayesian approach allows rela- 
tively large numbers of regularization coefficients to be used, which would 

I 

be computationally prohibitive if their d u e s  had to be optimized using 
cross-validation. I 

5 .  Similarly, the Bayesian approach allows different models (a.g. networks 
with different numbets of hidden units, or different netmork types such as 
multi-layer perceptrons and radid basis function networks) to be compared 
using only the training data. More generally, it provides an objective and 
principled framework for dealing with the issues of model complexity which 
avoids many of the problems which arise when using maximum likelihood. 

6. Bayesian methods dIow choices t o  be made about where in input space new 
data should be collected in order that it be the most informative (MacKay, 
1992~). Such use of the model itself to guide the collection of data during 
training is known as active learning. 

7. The relative importance of different inputs can be determined using the 

1 Bayesian technique of automatic relevance determination (MacKay, 1994a, 
19955; Neal, 1994), based on the use of a separate regularization coeffi- 
cient for each input. If a particular coefficient acquires a large value, this I 
indicates that the corresponding input is irrelevant and can be eliminated. 
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Note that, in order to focus on the more basic issues, topics 6 and 7 will not b, 
discussed further. 

Ln earlier chapters network training was based on maximum likelihood which 
is equivalent to minimization of an error function. We emphasized that, within 
this framework, a more complex model is typically better able to fit the training 
data, but that this does not necessarily mean that it will give a smaIler error 
with respect to new data. Models which are either too simple or too compIeX 
will give reIativeIy poor approximations t o  the underlying process from which 
the data is generated. This was discussed in terms of the bias-variance trade- 
off in Section 9.1. It is therefore not clear, from the training error alone, which 
made1 will give the best generalization, and so we resorted to partitioning of the 
data set to select an appropriate level of cornplexity~ through such techniques 
as crossvalidation (Section 9.8.1). The Bayesian approach, however, treats the 
issue of model complexity very differently, and in particular it allows dl of the 
available data to be used for 'training'. 

To gain some insight into how this comes about, consider a hypothetical ex- 
ample of three different models, 'HI, 7 i 2  and ?t3, which we suppose have stedily 
increasing flexibility, corresponding for instance to a steadily increasing number 
of hidden units. Thus, each model consists of a specification of the network archi- 
tecture (number of units, type of activation function, etc.) and is governed by a 
number of adaptive parameters. By varying the values of these parameters, each 
model can represent a range of input-output functions. The more complex mod- 
els, with a greater number of hidden units for instance, can represent a peater 
range of such functions. Suppose we have a set of input vectors (x', . . . , x"). and 
a, corresponding set of target vectors D (tl,. . . , tN). We can then consider 1 

posterior probability for each of the models, given the observed data set D. Frl 
Bayes' theorem this probability can be written in the form 

The quantity p ( H i )  represents a prior probability for model H i .  If we have 
particular reason to prefer one model over another, then we would assign e9 
priors to all of the models. Since the denominator p(D) does not depend 
the model, we see that different models can be compared by evaluating p(~lHil- 
which is called the evidence for the model Hi 19Ba). This is illustratd 
schernsticaliy in Figure 10.1, where we see that the evidence favours models which 
are neither too simple nor too complex. 

This indicates that the Bayesian approach could be used to select a particilir 
model for which the evidence is largest. We might expect that the model nrirh 
the greatest evidence is also the one which will have the best generalization per- 
formance, and we shall discuss this issue in some detail in Section 10.6. H O W ~ V ~ ' :  

as we s h d  see in Section 10.7, the correct Bayesian approach is to make USE 
ot 

the complete set of models. Predicted outputs for new input vectors are obtainod 

Figure 10.1. Schematic example of three modeIs, XI, W2 and R3, which have 
successively greater complexity, showing the probability (known es the evi- 
dence) of different data sets D given each model F&. We see that  more com- 
plex modeIs can describe a greater range of data sets. Note, however, that the 
distributions are normalized. Thus, when a particular data set DO is observed, 
the model Hz has a greater evidence than either the simpler model R1 or the 
more complex model 3 3 .  

by performing a weighted sum over the predictions of dl the models, where the 
weighting coefficients depend on the evidence. More probable models therefore 
contribute more strongly t o  the predicted output. Since the evidence can be 
evaluated using the training data, we see that Bayesian methods are able to deal 
tvith the issue of model complexity, without the need to use cross-validation. 

An impofiant concept in Bayesim inference is that of mrsrginalizatioa, which 
hvolves integrating out unwanted variables. Suppose we are discussing a model 
Nith two variables w and a. Then the most complete description of these variables 
is in terms of the joint distribution p ( u , o ) .  If we are interested only in the 
distribution of w then we should integrate out r~ as foIlows: 

rhus the predictive distribution for w is obtained by averaging the conditional 
'fisttibution p(ur/a) with a weighting factor given by the distribution p(a) .  We 
'hall encounter several examples of marginalization later in this chapter. 

'O.1  Bayesian learning of network weights 

'Ike first problem we shall address is that of learning the weights in a neural 
" h r k  on the basis of a set of training data. In previous chapters we have 
'"'d maimurn likelihood techniques (equivalent to the minimization of an error 
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function) which attempt to find a single set of values for the network weight! 
By contrast, the Bayesian approach considers a probability distribution funct 
over weight space, representing the relative degrees of belief in different val 
for the weight vector. This function is initially set to some prior distributi 
Once the data has been observed, it can be converted to a posterior d i~t r ibut i~  
through the use of Bayes' theorem. The posterior distribution can then be use 
to evaluate the predictions of the trained network for new values of the inpk 
variables, as will be discussed in Section 10.2. 

The use of Bayesian learning to infer parameter values from a set of train 
data was introduced in Section 2.3 in the context of parametric density e 
mation. There we gave a simple illustration which involved inferring the m8 
of a Gaussian distribution. We shall see that the more complex problem of 
ferring the weights in a neural network proceeds in an analogous manner. 
simplicity of notation, we shall consider networks having a single output v 
able y, although the extension to many output variables is straightforward. M 
of the discussion in this chapter will concern function approximation proble 
for the case of noise-free input data and noisy target data. The applicat 
of Bayesian methods to classification problems wijl be discussed briefly in Sec- 
tion 10.3. Bayesian inference for nois+free data has, been studied by Sibisi (1991), 
and the problem of interpolating data with noise on both dependent and inde- 
pendent variables has been discussed in the context of straight-line fitting ' 
Gull (1 988a). 

ion 
ues 
on. 

cut, 

in- 
For 
art 

10.1,l Dastribution of weights 

We begin by considering the problem of training a network in which the ar 
tecture (number of Iayers, number of hidden units, choice of activation functi 
dc. )  is given. In the conventional maximum likelihood appromh, a single 'b-- 
Set of weight d u e s  is determined by minimization of a suitable error function 
In the Bayesian framework, however, we consider a probability distribution over 
weight values. In the absence of any data, this is described by a prior distribution 
which we shall denote by p(w), and whose form we shall discuss shortly. Here 
w (wl,. . . , w w )  denotes the vector of adaptive weight (and bias) parametes 
Let the target data from the training set be denoted by D - (tl, . . . , t N ) .  O I ~ C ~  
we observe the data D we can write down an expression for the posteri0~ PO' 
ability distribution for the weights, which we denote by p(wlD), using BavE 
theorem 

chi- 
'ens 

pstl 

where the denominator is a normalization factor which can be written 
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which ensures that the left-hand side of (10.3) gives unity when integrated 
,ver all weight space. As we ahdl see shortly, the quantity p(Dlw), which rep- 
resents a model for the noise process on the target data, corresponds to the 
likelihood function encountered in previous chapters. 

Since the data set consists of input as we11 as target data, the input values 
strictly be included in Bayes' theorem (10.3) which should therefore be 

n+tten in the form 

&ere X denotes the set of input vectors (xl,. . . , x N ) .  As we have already noted 
in chapters, however, feed-forward networks trained by supervised lear- 
ing do not in generd model the distribution p(x)  of the input data. Thus X 
always appears as a conditioning variable on the right-hand side of the proba- 
bilities in (10.5). We shall therefore continue t o  omit it from now on in order to 
simplify the notation. 

The picture of learning provided by the Bayesian formalism is as follows. We 
start  with some prior distribution over the weights given by p(w) .  Since we gen- 
erally have little idea at this stage of what the weight; values should be, the prior 
might express some rather general properties such as smoothness of the net- 
work function, but will otherwise leave the weight values fairly unconstrained. 
The prior will therefore typically be a rather b r o d  distribution, as indicated 
schematicalIy in Figure 10.2. Once we have observed the data, this prior dis- 
tribution can be converted to a posterior distribution using Bayes' theorem In 
the form (10.3). This posterior distribution will be more compact, a~ indicated 
in Figure 10.2, expressing the fact that we have learned something about the 
extent to which different weight values are consistent with the observed data, In 
order to evaluate the posterior distribution we need to provide expressions for 
the prior distribution p(w) and for the likelihood function p(Dlw). 

l0.1.2 Gaussian pear 
4 first consider the prior probability distribution for the weights. This distri- 
bution should refleet any prior knowledge we have about the form of network 

we expect to find. In general, we can write this distribution as an ex- 
ponential of the form 

1 
P(W)  = - e x ~ ( - a E w  1 (10.6) 

zw (a)  

shere Zw(a) is a normalization factor given by 
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Figure 10.2. Schematic plot of the prior distribution of weights p ( w )  and the 
posterior distribution p(wlD) which arise in the Bayesian inference of network 
parameters. The most probable weight vector w ~ p  corresponds to the max- 
imum of the posterior distribution. In practice the posterior distribution will 
t y p i d y  have a complex structure with many local maxima. 

which ensures that j'p(wj dw = I. The role of the parameter a will be considered 
shortly. 

The discussion of bias and variance in Section 9.1 indicates that a smooth 
network function will typically have better generdization than one which is over- 
fitted to the training data (assuming that the underlying function which we wish 
to approximate i s  indeed smooth). This is one of the motivations for regulariza- 
tion techniques designed to encourage smooth network mappings. Such mappings 
can be achieved by favouring small values for the network weights, and this sug- 
gests the following simple form for Ew 

where W is the totd number of weights and biases in the network. This tor* 
sponds Go the use of a simple weight-decay regularizer, as we shall see shod1? 
and gives a prior distribution of the form 

Thus, when llwll is large, Ew is large, snd p ( w )  is small, and so this choice 
prior distribution says that we expect the weight values to be small rather ths" 
large, 

Since the parameter a itself controls the distribution of other pamete'  
(weights and bimes), it is called a hyperparameter. To begin with, we 

@ 
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Figure 10.3. A simple data set consisting of two points horn class C1 ( c i r c l ~ )  
and two points from cIass C2 (crosses), used to illustrate Bayesian learning in 
neural networks. The numbers show the order in which the data points are 
presented to the network. 

sume that the value of a is known. We shall discuss how to treat a as part of 
the learning process in Sections 10.4 and 10.5. A major advantage of the prior 
in (10.9) is that it is a Gaussian function, which simplifies some of the andy- 
sis. Thus, the evaluation of the normalization coefficient &(a) using (10.7) is 
st mightforward, and gives 

Many other choices for the prior p(w) can also be considered. Williams (1995) 
discusses a Laplacim prior of the form (10.6) with Ew = z, lwi/. Several 
0 t h  possibilities, including entropy-based priors, are discussed in Buntine md 
't7@i~md (1991). The appropriate selection of priors for very large networks is 
discussed by Neal (1 994). 

10-1.3 Example of Bayesian learning 

illustrate the concept of Bayesian learning in neural networks by considering 
a simple example of a single-layer network applied to  a clasificatiort problem. 
'he input vectors are two-dimensional x = (XI, xz), and the data set consists of 

data points, two from each of two classes, as illustrated in Figure 10.3. The 
"twork model has a single layer of weights, with a single logistic output given 
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Figure 10.4. Plot of a Gaussian prior shown as a surface over a two-dimensional 
weight space (wl , w2). 

Note that the weight vector w = {w l ,  u2) is twc-dimensional, and that there is nu 
bias parameter. We shall choose a Gaussian prior distribution for the weighk.. 
given by (10.9), in which the parameter a is given a fixed value of a = 1. A 
surface plot of this prior, as a function of the weight parameters wl and wz, is 
shown in Figure 10.4. 

horn Section 6.7.1, we know that the output y (x; w} of the network in (10.11 1 

can he interpreted as the probability of membership of class Cl, given the input 
vector X. The probability of membership of class C2 is then (1 - y). If we assump 
that the target values are independent and identically distributed, the likelihood 
hnction p(Dlw} in Bayes' theorem (10.3) will be given by a product of facton4 
one for each data point, where each factor is either y or (1 - y) according f'l 

whether the data point is from class C1 or C2. 
First, suppose we just consider the data points labelled (i)  and (ii) in Fis: 

ure 10.3, Then we can calculate the posterior distribution of weights using BaY6 
theorem (10.3). The resulting distribution is plotted in Figure 10.5. W e  can up 
derstand the form of this distribution by first noting that the network functi0' 
in (10.11) represents a sigmoidal ridge in which the value y = 0.5 (the decisicfi 
boundary for minimum probability of rnisclassifieation) is given by a line 
through the origin in Figure 10.3. The f x o  weight parameters w l  and I.UZ contry; 
the orientation of this line and the slope of the sigmoid. Patterns (i)  and ( j l '  

cause weight vectors from approximately half of weight space to have extremA! 
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Figure 10.5. Plot of the posterior distribution obtained horn the prior in Fig- 
ure 10.4, using patterns (i) and ( i i )  from Figure 10.3. (Note that there is a 
change of vertical scale compared to Figure 10.4.) 

Figure 10.6. Plot of the posterior distribution obtained after using all four 
Patterns from Figure 10.3. (Note that for convenience there is again a change 
of vertical scale compared to previous figures.) 

probabilities as they represent 'decision surfaces' with the wrong orient* 
'Ion The remaining weight vectors are largely unaffected and so the shape of the 
Ft"rior distribution in the corresponding region of weight space then reflects 
hat of the prior distribution in Figure 10.4. 

If we now include all four patterns from Figure 10.3, we obtain the posterior 
ilfstrihution shown in Figure 10.6. As a result of the way patterns (iii) and 
ii*) W-F labelled, there is now no decision boundary which classifies d l  four 
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points perfectly. The most probable solution is one in which the sigmoid has a to give 
particular orientation and slope, and solutions which differ significantly from this 
have much lower probability. The posterior distribution of weights is therefore 
relatively narrow. 

10.1.4 Gaussian noise model 
For the n~oment we shall treat P as a fixed, known constant. We shall return 

we turn now to more general architectures of feed-forward and to a to  the problem of determining this parameter as part of the learning process in 
consideration of 'regression' problems. Later we shdI return to a discussion of Sections 10.4 and 10.5. 
Bayesian methods for classification. 

In general, we can write the likelihood function in Bayes' theorem (10.3) in 10.1.5 Posterior distribution of weight values 
the form Once we have chosen a prior distribution, and an expression for the likelihood 

1 function, we can use B a p '  theorem in the form (10.3) and (16.4) to find the 
p(Dlw) = zoo ~xP(-PED) (10.12) posterior distribution of the weights. Using our general expressions (10.6) and 

(10.12) we obtain the posterior distribution in the form 

where ED is an error function, md p is another example of a hyperpaxameter 
which will be discussed shortly. The function Zn(P) is a norrna1ixal;ion factor 

L 1 
p(wlD) = - exp(-PED - [YEW) = - exp(-S(w)) zs (10.17) 

zs I 
given by 

where 
ZD(B) = / ~P(-BED) d~ (10.13) 

where dD = $ dtl . . . d t N  represents an integration over the target variables. md 
1 

As in Section 6.1, we shdl  assume that the target data is generated from a 
smooth function with additive zero-mean Gaussian noise, so that the probabil 
of observing a data value t for a given input vector x would be z~(%@) = / ~ X P ( - P E D  - o E w )  dw. (10.19) 

p( t l r ,  w) cx srp (-${y(x;w) - t)' (10.14 Consider first the problem of finding the weight vector w ~ p  corresponding t o  
maximum of the posterior distribution. This can be found by minimizing the I 

"Qative logarithm of (10.17) with respect to the weights. Since the normalizing 
where ~ ( x ;  w) represents s network fundion g m m h g  the mean ofthe distribu- factor 2s in (10.17) is independent of  the weights, we see that  this is equivalent 
tion, w represents the corresponding network weight vector, and the parameter to minimizing S(w) given by (10.18). For the particular prior distribution given 
4 controis the variance of the noise. Provided tohe data points are drawn jndP (10.9) and noise model given by (10.15), this can be written in the form 
pendently from this distribution, we have 

R= l 
''Te that, apart from an overall rnuItiplicative factor, this is precisely the 

N (10,15j 1 "sua1 sum-of-squares error function with a weight-decay regularisation term, as 
d l r e u ~ e d  in Section 9.2.1. Note that, if we are only interested in finding the 

n=l '"ight vector which minimizes this error function, the effective value of the 
r'~ularization parameter (the coefficient of the regularizing term) depends only 

The (10.13) GaussiP.n for the nteg norrns~ization ale which are factor easily ZD(B) evaluated is then (Appendix the produd 01 Orb the ratio ~ / B S  since an overall multiplicative factor is unimportant. 
The most probable value for the weight vector, denoted by w ~ p ,  corresponds I 
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to the maximum of the posterior probability, or equivalently to the minimum 
the right-hand side in (10.20). If we consider a succession of training sets with 
increasing numbers N of patterns then we see that the first term in (10.20) 
grows with N while the second term does not. If n: and p are fixed, then as fi 
increases, the first term becomes more and more dominant, until eventudly the 
second term becomes insignificant;. The maximum likelihood solution is then a 
very good approximation to the most probable solution W M ~ .  Conversely, for 
very small data sets the prior term plays an important role in determining the 
Iocation of the most; probable solution, 

10.1.6 Consistent priors 

We have seen that a quadratic prior, consisting of a sum over all weights (and 
biases) in the network, corresponds to a simple weight-decay regularizer. In Sec- 
tion 9.2.2, we showed that this regulariaer has an intrinsic inconsistency with 
the known scaling properties of network mappings. This led to a consideration 
of weight-decay regularizers in which there is a different regularization coefficient 
for weights in different layers, and in which biases are excluded. For a t w ~ I ~ . y e r  
network, this suggests a prior of the form 

analysis in Exercises 10.5 to 10.8. 

10.1.7 Gaussian appm~rnation to the posterior dwt~but iom 
Given our particular choices for the noise model and the prior, the expressions 
(10.17) and (10.20) defining the posterior distribution are exact (although in gen- 
eral the normalization coefficient Zs (a, p) cannot be evaluated analytically). In 
pactice we wish to evaluate the probability distribution of network predictions, 
s well as the evidences for the hyperparameters and for the model. These re- 
quire integrations over weqht space, and in order to make these integrals anal* 
ically tractable, we need to introduce some simplifying approximations. MacKay 
(f 992d) uses a Gaussian approximation for the posterior distribution. This is ob- 
tained by considering the Taylor expmsion of S(w) around its minimum value 
and retaining terms up to second order so that 

where the linear term has vanished since we are expanding mound a minimum 
of S(w). Here A is the Hessian matrix of the total (regularized) error function, 
with elements given by 

where Wr denotes the set of weights in the first layer, W2 denotes the set of = PVVEE' + aI. (10.25) 
weights in the second layer, and biases are excluded from the summations. 
that priors of ehi form are impmper (they cannot be normalized) since the A of exact and approximate methods for evaluating the Hessian of the 
parameters are unconstrained. The use of improper priors can lead to difficul- ,rmr function E~ were discussed in section 4,10. 
ties in selecting regularization coefficients and in mode1 comparison within tht- The expansion (10.24) ieds  t o  a posterior distribution which is now a ~a~~ 
Bayesian framework, since the corresponding evidence is zero. It is therefore sian hnction of the weights, by 
common to include separate priors for the biases. 

More generally, we can consider priors in which the weights are divided into 1 
any number of groups Wk so that -S(wMp) - -AW=AAW 

2 ) (10.26) 

where 

(10.21) 'here Aw = w - WMP, and 2;. is the normalization constant appropriate to 
'he Gaussian approximation. Some partial justification for this appioximation 

t 
Comes from the result of Walker (1969), which says that, under very general eir- 
Cumstances, a posterior distribution will tend to a Gaussian in the limit where 

Ihe number of data points goes to infinity. Far very large data sets we might 
(10.23' expect the Gaussian approximation to be a good one. However, the pri- 1 1 ~ 1 1 :  = c TIJ2*  ma^ motivation for the Gaussian approximation is that it allows a great deal 

w E W ~  p r o ~ e s s  to be made analytically. Later we shall discuss techniques based on 
of 

F~~ simplicity of exposition, we shall continue to use a Gaussian priUr 'Tarkov chain Monte Car10 integration which avoid this approximation. 
Using the results given in Appendix B, it is now straightfornard to evaluate the form (10.9). q-he extension of the Bayesian analysis to  account 'Or 'I1' rn"'C 

fhc normalination factor 2;. for this Gaussian approximation, in terms of the 
prior (10.22) is straightforward, nnd the reader Led through the 

drt~rminant of the matrix A, to give 



10: Bayesian Techniques 10.2: DisMbutdon of f~tulork outputs 399 

For a general non-linear network mapping function y(x; w), e.g. a multi-lam 
perceptron, these may be numerous Iocal minima of the error function, some of 
which may be associated with summetries in the network. For instance, if we con- 
sider a multi-layer perceptron with two layers of weights, M hidden units, and 
anti-symmetric hidden unit activation functions (e.g. the 'ta~nh' function), then 
each distinct local minimum belongs to a family of 2 M ~ !  equivalent minima, as 
discussed in Section 4.4. The weight vectors corresponding to these different min- 
ima are related by transformations which interchange the hidden units and reflect 
the signs of the weights associated with individual hidden units. There may be 
several famiIies of such minima, where the different families are non-equivdent 
and are not related by symmetry transformations. The single-Gaussian approx- 
imation given by (10.26) dearly does not take multiple minima into  count. 
One approach is to approximate the posterior distribution by a sum of Gaus- 
sian~, once centred on each of the minima (MacKay, 1992d), and we shall see 
how to make use of this approximation in Section 10.7. 

by the Hessian matrix A) is sufficiently narrow that we may approximate the 
network fundion y(x; w) by its linear expansion around WMP 

~ ( x ;  w) = Y (x; WMP) S. gT&w (10.30) 

where 

g V W Y I ~ ~ ~  a (10.32) 

This allows us to write (10.29) in the form 

where YMP Y(X; W M ~ ) .  The integral in (10.32) is easily evaluated (Exer- 
cises 10.1 and 10.2) to give a Gaussian distribution of the form 

10.2 Distribution of network outputs (10.33) 

As we have seen, in the Bayesian formalism a 'trained' network is described in 
terms of the posterior probability distribution of weight values. If we present a where we have restored the normalization factor explicitly. This distribution has 
new input vector to such a network, then the distribution of weights gives rise a mean given by y ~ p ,  and a variance given by 
to a distribution of network outputs. In addition, there will be a contribution to 
the output distribution arising from the assumed Gaussian noise on the output I 
variables. Here we shall calculate the distribution of output values, using t.he 

5; = - + g T ~ - l g .  
P 

(10.34) 

single-Gaussian approximation introduced above. 
Using the rules of proba'oility, we can write the distribution of outputs, for a We can interpret the standard deviation at of the predictive distribution for t 

given input vector x, in the form an error bar on the mean value y ~ p .  This error bar h~ t w ~  contributions, one 
arising from the intrinsic noise on the target data, corresponding to the first term 

p(tlx7 w)p(wlD) dw (10.281 
in (10.34), and one arising from the width of the posterior distribution of the 
"etwork weights, corresponding to the second term in (10.34). When the noise 

is large, so that P is smalI, the noise term dominates, as indicated in 
where p(wlD) is the posterior distribution of weights. The distribution p(t1x7 W) F i ~ u r e  10.7. For a small noise amplitude (large value of P)  the variance of the 
is simply the model for the distribution of noise on the target data, for a fued Output distribution is dominated by the contribution from the variance of the 
value of the weight vector, and is given by (10.14). Posterior distribution of weights, as shown in Figure 10.8. 

In order to evaluate this distribution we shdl make use of the Gaussian 1% see that tlze Bayesian formalism allows us to calculate error bars on 
approximation (10.26) for the posterior distribution of weights, together the network outputs, instead of just providing a single 'best guess' output. In 
the expression (10.14) for the distribution of network outputs. This gives " Praictical implementation, we first find the most probable weights w ~ p  by 

minimizing the regularized error function S(w). We can then assign error bars 

p(tlx, D) a / exp (-f{t - ~ ( x ;  w)12 ) , ( - ~ A ~ T A A ~  to this network function by evaluating the Hessian matrix and using (10.34). 
ilethods for the exact evaluation of the Hessian, as well as useful approximations, 

discussed in Section 4.10. 

where have droppe$ any constant factors (i.e. factors independent of '1' 
addition, we shall assume that the width of the posterior distribution (determin 
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Figure 10.7. The distribution of network outputs in the Bap ian  formapism is  
determined both by the posterior distribution of network weights p(wlD) and 
by the variance p-' due to the intrinsic noise on the data. When the posterior 
distribution of weights is very nmow in relation to the noise variance, as shown 
here, the width of the distribution of network outputs is determined primarily 
by the noise. 

Figure 10.8. As in Figure 10.7, but with a posterior distribution for the weights 
which is relatively broad in comparison with the intrinsic noise on the data, 
showing how the width of the distribution over network outputs is now domi- 
nated by the distribution of network weights. 

Figure 10.9. A simple example of the application of Bayesian methods to a 
'regression"roblem. Here 30 data points have been generated by sampling 
the function (10.35), and the network consists of a muhi-layer perceptron with 
four hidden units having 'tanh' activation functions, and one Iinear output 
unit. The solid curve shours the network function with the weight vector set 
to w ~ p  corresponding to the maximum of the posterior distribution, and the 
dashed curves represent the &2ut error bars from (10.34). Notice how the error 
bars are Iarger in regions of low data density. 

10.2.1 Example of Bapesian regression 

As a simple illustration of the appIication of Bayesian techniques to  a 'regression' 
prohlem, we consider a one-input one-output example involving data generated 
from the snlooth function 

!{'ith additive Gaussian noise having a standard deviation of o = 0.05. Values for 
" were generated by sampling a Gaussian mixture distribution having two well- 
separated components. A prior of the form (10.21) was used, and values of cr and 
8 were chosen by an on-line re-estimation procedure described in Section 10.4. 

The network mapping corresponding to the most c rob able weight d u e s  is 
~ h o f f ~ n  in Figure 10.9, together with the &2ut error bars given by (20.34). WTe see 
'hat the width of the error bar depends on the local density of input data, with 
'he error bars increasing in magnitude in regions of input space having tow data 
'Iensity. In this exampie the Hessian matrix was evaluated using exact analytica1 
techniques, as discussed in Section 4.10. 
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10.2.2 Generalized linear networks 

In Section 3.3 we discussed models having a single layer of adaptive weights, ,, 
that, for linear output units, the network mapping function is s linear function 
of the weights. Such models can be written in the form 

If we continue to use a Gaussian noise model and a Gaussian prior on the weights, 
then the total error function is given by 

and hence is a quadratic function of the weights. Thus, the posterior distribution 
of weights is exactly Gaussian, ,end only has a single maximum rather than the 
multiple maxima which can arise with non-linear models. The most probable 
might vector w ~ p  is described by a set of linear equations, which ate easily 
solved using the techniques described in Section 3.4.3. The network function can 
then be written, without approximation, in the form 

where AW = w - W M ~  as before. Also, the Hessian matrix A is given exactly 
by the outer product expression (Section 4.10.2) in the form 

where I i s  the unit matrix. The distribution of network outputs is then given tly 
a Gaussian integral of the form 

which can be evaluated in the same way as (10.32) to give a distribution for 
which is Gaussian with mean y ~ p  and variance 
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10.3 Application to classification probIems 

We now return briefly to a discussion of the application of Bayesian methods t o  
classification problems. Following MacKay (1992b) we consider problems involv- 
ing two classes. Aa discussed in Section 6.7, the likelihood function for the data 
given by 

where G is the cross-entropy error function, given by I 
G(Dlw) = - Eft" ln ~ ( x " )  t (1 - tn)  In(l - y(xn))]. (10.43) 

n 

The distribution (10.42) has the correct normalization since the target data t" 
take the values 0 or 1, and so the normalization 'integral' becomes a sum of 
terms each of which is the product of factors of the form I I 

1 I 
exp(ln y) + exp(In(1- y)) = p + (1 - y) = 1. 

Note that there is no equivalent of the constant 0. This is because the targets are 
assumed to provide perfect dass labels, and so there is no uncertainty associated 
with their values. 

As discussed in Section 6.7.1, I t  is appropriate to choose an output activation 
function given by the logistic sigmoid of the form 

where a. = wizj is the weighted linear sum feeding into the output unit. This 1 
activation function allows the network output to be interpreted as the probability I 

I I 

P(Cllx) that an input vector x belongs t o  class CL. 
Again, we can introduce a prior distribution for the network weights in terms 
a regularization term Ew, so that the posterior distribution becomes 

As before, this distribution can be approximated by a Gaussian centred on the 
maximum posterior weight vector w ~ p  
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where 22 is the normalization constant appropriate to  the Gaussian approxim 
tion, and Aw = w - w ~ p .  

The probabiIity of membership of class CI for a new input vector x is giv, 
in the Bayesian framework by an integration over the distribution of netwo 
weights of the form 

In the case of regression problems, the distribution of network outputs givr 
by (10.33) is a Gaussian with mean pMp(x) = p(x; w ~ p ) ,  SO that the margin; 
ized output corresponding to (10.49) coincides with the predictions made 
using the most probable weight vector alone (provided the posterior distribu 
is sufficiently narrow that we can approximate y as; a function of w by a lil 
function in the neighhourhood of the most probable weight vector). For ctassifica- 
tion problems, however, this result does not hoId, since the network function call 

no longer be approximated by a linear function of the network weights as it con- 
sequence of the sigmoidal activation function y = g(a) on the network outp ' 

The process of marginaIiaation then introduces some important modification 
the predictions made by the network. 

MajcKay (1992b) assumes that a (rather than y) is locally a linear func~t-- 
of the weights 

a(x; W) = ~ M P  (x) t g T ( x ) ~ w  (10.50) 

where Aw = w - w ~ p .  The distribution of a then takes the form 

where 6(-) is the Dirac delta-Function. We now use the Gaussian approximafiL-- 
(10.47) for the posterior distribution p(wlD). Since the delta-function eonstr~il'' 
requires that Aw be linearly related to a, and since the posterior weight distrl- 
buiion is  Gaussian, the distribution of n will also he Gaussian. The mean afld 
variance of this Gaussian distribution are easily e&uated (Exercise 10.3) t , ~  @ 

10.3: Application to  clmsificat8on problems 405 

where the variance s2 is given by 

s2(x) = g T ~ - " g .  

We then have 

where plajx, D) is given by (10.53) and g(a) is given by (10.45). Since the in- 
tegral ((10.56) does not have an analytic solution, MacKay (1992b) suggests the 
following approximation 

where 

and s2 is defined by (10.54). 
Now compwe the ~Iassification decisions obtained using the marginalized 

output given by (10.56) with those obtained using the output m p  = g ( a ~ p )  
corresponding to the most probable weight vector. If the output is used to classify 
the network input so as to minimize the probability of miaclassification, then 
the decision boundary corresponds to a network output of 0.5 (Section 1.8.1). 
For the most probable output mp = ~ ( a ~ ~ ) ,  the form of the logistic sigmoid 
activation function (10.45) shows that g ~ p  = 0.5 co~responds to a(x,  WMP) = 0. 
For the marginalized output (10.56) the decision boundary P(C1 lx, D) = 0.5 also 
cQrresponds to  a(x, wMp) = 0. This follows From (10.56) together with the fact 
that g(a) - 0.5 is anti-symmetric while the Gaussian (10.53) is symmetric. Thus, 
if the marginalized outputs are used t o  classify new inputs directly on the bmis 
Ofthe most probable class they will give the same results as would be obtained 

using most probable outputs alone. 
However, if a more complex Ioss matrix is introduced or if a 'reject option" 

is included (Section 1.10), then marginalization can have a significant effect on 
decisions made by the network. The effects of marginalization for a simple 

tk+class ~roblern are shown schematically in Figures 10.10 and 10.11 for the 
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Figure 10.10. A schematic pIot of the posterior distribution of weights showing 
the most probable weight vector WMP, and also two other weight vectars 
and w(') taken kom the posterior distribution. 

case of a single-layer network. Figure 10.10 shows the posterior distributic 
network weights, and Figures 10.11 (a}-(c) show examples of the network 
puts obtained by choosing weight vedors from varions points in the post,..,, 
distribution. The effect of marginalization (integration of the predictions over 
the posterior distribution) is shown in Figure 10.11 (d). Note that the decision 
boundary (corresponding to the central y = 0.5 line) is the same as for Fig- 
ure 10.11 (a). 

10.4 The evidence framework for a: and P 
So far in this chapter, we have assumed that the d u e s  of the hyperparamet 
a and p are known. For most applications, however, we will have little idea 
suitable values for a and 0 (in some cases we may have an idea of the no 
level p). The treatment of hyperparameters involves Occam's razor (Section 1 
since the values of hyperparameters which give the best fit to the training di 
in a maximum likelihood setting represent over-complex or over-flexible mod 
which do not give the best generalization. 

As we have discussed already, the correct Bayesian treatment for parameb 
such as CY and 8, whose values are unknown, is to integrate them out of a 
predictions. For example, the posterior distribution of network weights is giv 

by 

ers 
of 

ise 
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Figure 10.11. Schematic illustration of data from two classes (represented by 
circles and crosses) showing the predictions made by a classifier with a single 
layer of weights and a logistic sigmoid output unit. (a) shows the predictions 
made by the network with the weights set to their mast probable values WMP. 

The three lines correspond to network outputs of 0.1, 0.5 and 0.9, A point such 
tts C, which is well outside the region containing the training data, is classified 
with great confidence by this network. (b) and (c) show predictions made by 
the weight vectors corresponding to w(') and w ( ~ )  in Figure 10.10. Notice how 
the point C is classified differently by these two networks. Cd) shows the effects 
of marginaIizing over the distribution of weights given in Figure 10.10. We see 
that the probability contours spread out in regions where there is little data. 
The point C is now assigned a probability cIose to 0.5 as we would expect. 

Note that we have extended our notation to include dependencies on a and P 
Wplicitly in the various probabifity densities. Two approaches to the treatment 
of hyperparmeters have been discussed in the literature. One of these performs 
the integrals over CY and analytically, and will be discussed in Section 10.5. 
An dternative approach, known as the evidence rappwxicimatian, has been $is 
Cussed by MacKay ((1992a, 1992d) and wilI be considered first, This framework 
is based on techniques developed by Gull (1988b, 1989) and SkilLing (1991). It is 
COmputationally equivalent to the type II marimurn likelihood (MLII) method 
Of conventional statistics (Berger, 1985). 

Let us suppose that the posterior probability distribution p ( a ,  PID) for the 
hyperparameters in (10.59) is sharply peaked around their most probable values 
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aMp and &p. Then (10.59) can be written 

This says that we should find the values of the hyperparameters which maximize 
the posterior probability, and then perform the remaining calculations with the 
hyperparameters set to these values. We shall discuss the validity of this approx- 
imation later, when we consider the alternative approach of exact integration. 

In order t o  h d  a M p  and p ~ p ,  we need to  evaluated the posterior distribution 
of a and /3. This is given by 

which requires a choice for the prior p ( a ,  PI. Since this represents a prior over the 
hyperparameters, it is sometime called a hyperprior. The distribution of weight 
parameters, for example, is governed by a parameter a which itself is described 
by a distribution. Schemes such as this are called hierarchical models and can be 
extended to m y  number of levels. If we have no idea of what would be suitable 
values for a and p, then we should choose a prior which in some sense gives 
equal. weight to all possible values. Such priors are called non-infomatiue and are 
discussed at length in Berger (1985). They often have the characteristic that they 
cannot; be normalized since the integral of the prior diverges. Priors for whlch 
this is the case are cdled ampmper. An example would be a prior for a parameter 
a which is taken to be uniform over an infinite interval (0, m). In fact, a and P 
are examples of scale panmeters since they determine the scde of 1 1  w12 and of 
the noise respectively. Non-informative priors for scale parameters are generdl~ 
chosen to be uniform on a logarithmic scale as discussed in Exercise 10.13. 

For the moment we shall suppose that the hyperprior p(a, P)  is chosen to be 
very insensitive to the values of a and p to reflect the fact that we have little idea 
of suitable values for these quantities. Later we shall discuss more formally horn' 
to choose suitable hyperpriors. Since the denominator in (10.62) is independent 
of a and 0, we see that the maximum-posterior values for these hyperpxameters 
are found by maximizing the likelihood term p(Dla, 0). This term is called 
evidence for a and 0. 

Mote that the Bayesian analysis is proceeding in a hierarchical fashion. The 
first level involves the determination of the distribution of weight values. 
the second level we are seeking the distribution of hyperparameter values- The 
evidenee p(Dlu, 0) at this lwel of the hierarchy is given by the denominator 
Bayes' theorem (10.3) from the previous level. 

We can easily express the evidence in terms of quantities which we ha* 

evaluated already. If we make the dependences on a and P explicit, then we can 
%.rite (10.4) in the form 

where we have made use of the fact that the prior is independent of 0 and 
the likelihood function is independent; of a. Using the exponential forms (10.6) 
and (10.12) for the prior and likelihood distributions, together with (10.18) and 
(10.19), we can then write this in the form 

For our particular choices of noise model and prior on the weights, we have 
already evaluated ZD and Zw in (10.16) and (10.10) respectively. If we make 
the Gaussian approximation for the posterior distribution of the weights, then 
Zs is given by (10.27). The log of the evidence is then given by 

1% first consider the problem of finding the maximum with respect to a. In 
order t o  differentiate In ]A/ with respect to or we first write A = H 4- aI, where 

= pVVED is the Hessian of the unregnlarized error function. If { X i )  (where 
1 = 1,. . . , W )  denote the eigenvalues of H, then A has eigenvalues Xi + a and 
n7(: have 
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where the last step foIlows from the fact that the eigenvalues of A-' are (Xi + 
rr}-l. Note that this derivation has implicitly assumed that the eigenvalues A, 
do not themselves depend on cu. For an error function Eo, which is exactly a 
quadratic function of the weights (as is the case for a linear network and a sum- 
of-squares error function), the Hessian will be constant and this assumption will 
be exact. For non-linear network models, the Hessian H will be a function of w. 
Since the Hessian is evaluated at WMP, and since WMP depends on a, we see that 
the result (10.68) actualiy neglects terms involving dAi /da (MacKay, 1992a). 

With this approximation, the  maximization of (10.67) with respect to a is 
then straightforward with the result that, at the maximum, 

where the  quantity -j is defined by 

This result can be given a simple and elegant interpretation (Gull, 1989). In the 
absence of any data, the most probable weight vector would be zero, and E$" = 

0. The value of E E ~  represents the extent to which the weights are driven away 
from this value by the data. If we assume for the moment that the eigenvalues 
A, are positive then the quantity nl, = Ai /(A+ -I- a) is a quantity which lies in the 
range 0 to  1. This can be interpreted geometrically if we imagine rotating the axes 
of weight space to dign them with the eigenvectors of H as shown schematic all^ 
in Figure 10.12. Directions for which X i  >> a will give a contribution close to  
one in the sum in (10.30) and the corresponding component of the weight vector 
is determined primarily by the data. Conversely, directions for which A, << 
will make a small contribution t o  the sum, and the corresponding component of 
the weight vector is determined primarily by the prior and hence is reduced to 

a small vahe. (See also the discussions of weight-decay regularization and earl? 
stopping in Sections 9.2.1 and 9.2.4 respectively). Thus y measures the effective 
number of weights whose values are controlled by the data rather than by the xlp 
prior. Such weights are called well-detemined pa~anaeters. The quantity 2aE1r 
can be regarded as a X2 (Press et al., 1992) for the weights since it can be mitter' 
in the form Ci w?/o$ where u& = I/a. The criterion (10.70) then says that 
x& = -y so that the X2 for the weights is given by the number of well-determined 
parameters. Note that, since w ~ p  corresponds t o  the minimum of S(w) rather 
than the minimum of E D ( w ) ,  t h e  Hessian H = /3VVEa is  not evaluated fit th' 

10.4: The evidence framework for a and P 

1 -wMP likelihood 

Figure 10.12. Schematic diagram of two directions in weight space after rot* 
tion of the axes to dign with the eigenvectors of H. The circle shows a contour 
of Ew while the ellipse shows a contour of ED. In the direction wl the eigen- 
value A1 is small compared with a and so the quantity Al/(hl +a) is: close to 
zero. In the direction w2 the eigenvalue A2 is large compared with a and so 
the quantity A2/(& + a) is close ta 1. 

minimum of ED, and so there is no guarantw that the eigenm1uw Xi  will be 
positive. 

We next consider the maximization of (10.67) with respect to 8. Since Ai are 
the cigenvalues of H = /3VVED it follows that A i  is directly proportional to ,d 
anand hence 

Thus we have 

This leads to the foIlowing condition satisfied at the maximum of (10.67) with 
to 0: 
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N Again we can regard 2PE0 = (tn - y(xn; w ) ) ~  /a;, where 0; = I j D ,  as a 
X2 for the data term. Thus at the optimum value of f l  we have X& = N - y. For 
every well-determined parameter, the data error is reduced by one unit, and the 
weight error is increased by one unit. From (10.18), (10.69) and (10.73) we see 
that the total error S(w}, evaluated at w ~ p ,  satisfies the relation 2SMp = N .  

So far our analysis has assumed that the posterior distribution is described 
by a single Gaussian function of the weights. As we have already observed, how- 
ever, this is not an adequate description of the posterior distribution in the case 
of non-linear networks since there are many minima present in the regularized 
error fundion S(w). The approach adopted by MacKay (19926) is to note that 
we are using a particular set of weights w ~ p  to make predictions, correspond- 
ing to a particular local minimum of s ( ~ ) .  Thus, we can set the values of n 
and /3 appropriately for this particular solution, noting that different minima 
may require different values for these hyperparameters. The integral in (10.64) 
should therefore be interpreted not as an integraI over the whole of weight space, 
but simply as an integral in the neighboushood of the particular bcal minimum 
being considered. By considering a Gaussian approximation ta the posterior dis- 
tribution in the neighbourhood of thii minimum, we then arrive at the formalism 
for determining a and P derived above. Later we shall discuss how to deal with 
multiple minima. 

In a practical implementation of this approach, we need to find the optimum 
a and p as well as the optimum weight vector WMP. A simple approach to  this 
problem is to use a standard iterative training algorithm, of the kind described 
in Chapter 7, to find w ~ p ,  whiIe periodically reestimating the vdues of a and 
p using 

which follow from (10.69) and (10.73). The current estimates of a and P are used 
to evaluate the quantities an the right-hand sides of (10.74) and (10.75), and the  
procedure is started hy mahng some initial guess for the values of a and P. 

The evidence approach to the determination of a and f l  is ilIustrated using 
the same regression example as in Figure 10.9. The graph shown in Figure 10.13 
was obtained by W g  P to its known true vaIue, and shows a plot of y and 2 a E ~  
versus Ina. The d u e  of was found by eduating the Hessian matrix using 
exact analytic methods described in Section 4.10, and then finding its eigenmltre 
spectrum. Figure 10.14 shows the corresponding plot of the log evidence for fi 
versus En a. Comparison of Figures 10.13 and 10.14 shows that the maximum of 
the evidence occurs approximately when the condition 2aEw = y is satisfied- 

As a very rough approximation, we can assume that all of the weight pararsl- 
et-ers are well determined sa that y = W, a s  we would expect t o  be the caqe it 
we have large quantities of data so that N >> W .  In this caye the re-estimatiofl 

Figure 10.13. This shows a plot of the quantities 7 and 2aEw versus Ina  for 
the example problem shown in Figure 10.9. The parameter P is  set to its true 
d u e .  

FIgure 10.14. This shows a plot of the log evidence for a versus tna, corre- 
swonding t o  the plots in Figure 10.13. Comparison with Figure 10.13 shows 
that the maximum of the evidence occurs approximately when the condition 
2aEw = 7 is satisfied. Again the value of 0 is set to its true value. 
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where r is the standard gamma function (defined an page 28). The integration 
over p can be performed in exactly the same way with the result 

We can now write down the exact (rather than approximate) un-normalized 
posterior distribution of the weights. The negative logarithm of this posterior, 
corresponding to an error function, then takes the form 

The form (10.89) should be contrasted with the form of the log posterior of 
the weights for the case in which a and 0 are assumed to be known. From (10.17) 
this latter form can be written 

- lnp(w1D) = @ED 4- aEw + csnst. ( 1 0 . g ~ )  

Note that the gradient of (10.90) is given by 

The gradient of (10.89) can be written in an andogous form as 

where we have defined 

a,R = W/2Ew 

P e ~  = N/2Eon 

Thus, minimization of the error function of (10.89) could he implemented * 
a minimization of (10.90) in which the values of Pefi and nes are continu~ush' 

tipdated using the re-estimation formulae (10.93) and (10.94) (MacKay, 1994b; 
Williams, 1995). Notice that this corresponds precisely to the approximatjon 
(10.76) and (10.77) to the evidence approach. 

10.5.1 Integmtian versus maximization 

pormafly, Bayesian inference requires that we integrate over the hyperpararne- 
ters. In practice, one technique which we have considered above, which MacKay 
(1994b) refers to as the 'MAP' approach (for muximum posterior) is to perform 
this integration analytically. An a1t;ernative approach is to use the  evidence ap- 
proximation, which involves finding the values of the hyperparameters which 
maximize the evidence, and then performing subsequent; analysis with the hy- 
perparameters fixed to these values. Since the exact integration is so easily per- 
formed, it might appear that this should be the preferred approach (IlTolpert, 
1993). As well as being exact, it has the advantage of saving the significant com- 
putationaI effort of the evidence approximation, which has to be repeated afresh 
for each new data set. 

However, MacKay (1994b) hay argued that in practice the evidence approx- 
imation will often be expected to give superior results. The reason that this 
could in principle be the case, even though formally we shonId integrate over 
the hyperparameters, is that in practice with exact integration the remainder 
of the Bayesian analysis cannot be carried through without introducing further 
approximations, and these subsequent approximations can lead to much greater 
inaccuracies than the evidence approach. 

Consider the regularization parameter a. We have already seen that the 'effec- 
tive' value for this parmeter  differs between the evidence and MAP approaches 

Thus, the MAP method effectively estimates an cy based on the total number 
of parameters, while the evidence method makes use of the  number of well- 
(letermined parameters. MacKay (1994b) attributes this difference to a bias in 
the MAP approach which is andogous to the distinction between g~ and U N - 1  

(Section 2.2). 
The MAP approach gives an expression (10.89) for the exact posterior d i a  

rrihution of the weights. In order to make use of this expression in practice, 
however, it is necessary to make some approximations. Typically, this .~rould 
in~~olve finding the maximum posterior weight vector w ~ p  by a standard non- 
linear optimization algorithm, and then fitting a Gaussian approximation around 
'his value (Buntine and Wigend, 1991). Clearly the MAP method is capable of 
finding a true value for w ~ p ,  and so the value found within the evidence a p  
proximation must be in error (to the extent that the two approaches differ). 
'Towever, MacICay (1994b) has argued that the Gaussian approximation found 
t9 the evidence approach finds a better representation for most of the U O ~ U ~ I !  

l the posterior probability distribution than does the MAP approach. Since 
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the  error bars around the most probable a and P determhed from the  evidence 
approximation are given by (10.84) and (1 0.&1), we expect the evidence approx, 
imation to be vdid when y >> I and N - y >> I. A more thorough discussion 
of the conditions for the validity of the evidence approximation are given in 
MatKay (1 994b). 

10.6 Bayesian model comparison 
So far we have considered Bayesian methods for finding the most probable out- 
puts from a neural network, for estimating error bars on these outputs, and 
for setting the valves of regularization coefficients and noise parameters. Our 
final application for Bayesian methods is to the comparison of different models. 
As we have already indicated, the Bayesian formalism automatically penalizes 
highly complex models and so is able to pick out an optimal model without re- 
sorting to the  use of independent data as in methods such as cross-validation 
(Section 9,8.1). 

Suppose we have a set of models Xi, which might for example include multi- 
layer perceptron networks with various numbers of hidden units, radial basis 
hnction networks and linear models. From Bayes' theorem we can write down 
the posterior probabilities of the various models 'FI,, once we have observed the 
training data set D, in the form 

where P ( X I )  is the prior probability assigned to model 'H,, and the quantity 
p(DIXi ) ,  referred to as the evidence for 3.1i (MacKay, 1992a). This evidence is 
precisely the denominator in (10.62) in which we have made the conditional 
dependence on the model Xi explicit. If we have no reason to assign different 
priors to different models, then we can compare the relative of 
different models on the basis of their evidence. Again, we note the hierarchical 
nature of this Bayesian framework, with the evidence at  this level being givcfl 
by the denominator of Bayes' theorem at the previous Ievel. 

We can provide a simple interpretation of the evidence, and the way it penal- 
izes complex models, as follows (MacKay, 1992a). First, we write the evidence 
in the form 

Now consider a single weight parameter w. If the posterior distribution is shar~l? '  
peaked in weight space around the most probable value w ~ p ,  then we can a P  
proximate the integral by the  value at the maximum times the width A ~ ~ o a t e t i ~ '  

of the peak 

Figure 10.15. An iIlustration of the Occam factor which arises in the formal- 
ism For Bayesian model comparison. The prior probability p(wl7-l) is taken 
to  be uniform over some large region Aw,,,~,,. When the data arrives this ml- 
lapses to a posterior distribution p(wlD, 3E) with a width A W , , ~ ~ ~ .  The ratio 
Awpo.tertor/Awprior represents the Occam factor which penalizes the mode1 for 
having the particular posterior distribution of weights. 

as indicated in Figure 10.15. If we take the prior to be uniform over some large 
interval hwprior then (10.98) becomes 

The first term on the right-hand side is the likelihood evaluated for the most 
probable weight values, while the second term, which is referred to as an Occam 
factor and which has value < 1, penalizes the network for having this particular 
Posterior distribution of weights. For a model with many parameters, each will 
generate a similm Occam factor and so the evidence will be correspondingly 
'educed. Similarly a model in which the parameters have to be finely tuned will 
also be penalized with a smaIl Occam factor. A model which has a large best-fit 
likelihood will receive a large contribution to the evidence. However, if the model 
i~ also very complex then the Occam factor wiIl be very small. The model with 
the largest evidence will be determined by the balance between needing large 
likelihood (to fit the data well) and needing a relatively large Occam faetor (so 
that the model is not too camplex). 
We can evaluate the evidence more precisely as fallaws. We first write 

The quantity p(D/a,  P ,  3-11] is just the evidence for a and 0 which we considered 
"rlies (with the dependence on the model again made explicit). Integration over 

1 
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a and p is easily performed using the Gaussian approximation for the distributioll 
p(Dla, 0 ,  Ri) introduced in Section 10.4, in which the variance parameters are 
given by (10.81) and (10.84). Consider the integration over P. From (10.78) this 
can be written in the form 

where we have taken the prior distribution for In /3 t o  be constant wet some larg~ 
region 1nR which encompasses PMP as well as most of the probability mmass of 
the Gaussian distribution, A similar argument a p p l i ~  to the parameter a. Thus 
we have 

We can obtain an expression for lnp(DlcrMp, PMp, X i )  by using (10.67) and set- 

ting a = a ~ p  and @ = DM=. 
The result (10.67) was obtained by integrating over the posterior distribution 

p(wlD,h',) represented by a single Gaussian. As we have already remarked. 
for any given configuration of the weights (corresponding to the mean of t,he 
Gaussian) there are many equivalent weight vectors related by symmetries OF 
the network. Here we consider a tw~layer network having M hidden units, so 
that the degree of redundancy is given by zM M! a s  discussed in Section 4.4. The 
Occam factor which we are trying to estimate depends on the ratio of the volume 
of the posterior distribution in weight space to the volume of the prior. Since our 
expression for the prior (a Gaussian centred on the origin) already takes x c o ~ m t  
of the many equivalent configurations, we must ensure that our expression for 
the posterior also takes these into account. Thus, we must include an extra factor 
of 2 M M !  in (10.102). Note that this implicitly assumes that there is negligillle 
overlap between the Gaussian functions centred on each such minimum. We shall 
discuss shortly what to do about the presence of other minima which cannot be 
related to the current minimum by symmetry transformations. 

Rather than evaluate the evidence (10.102) it is more convenienx ru consider 
its logarithm. Expressions for o1,~ and a!., are given by (10.81) and 
respectively. Omitting terms which are the same for different networks. 

the'' 

obtain 
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The new quantity which we need to evaluate here is the determinant of the 
Hessian matrix A. 

In practice the accurate evaluation of the evidence can prove t o  be very 
difficult. One of the reasons for this is that the Hessian is given by the product 
of the eigenvalues and so is very sensitive to such errors. This was not the case 
for the evaluation of y used in the optimization of a and p since y depends 
on the sum of the eigenvdues and so is less sensitive to errors in the small 
eigenvalues. hrthermore, the determinant of the Hessian, which measures the  
volume of the posterior distribution, will be dominated by the mall eigenvalues 
since these correspond to directions in which the distribution is relatively broad. 
One approach is to take all eigenvalues which are below some (arbitrary) cut-off 
E and reglue them by the value 6. A check should then be made to determine if 
the resulting model comparisons are sensitive to the value of this cut-off. Clearly 
such an approach is far from satisfactory, and serves to highlight the difficulty of 
determining the model evidence within the Gaussian approximation framework. 

Since the Bayesian approach to  model comparison incorporates a mechanism 
for penaIizing over-complex models, we might expect that the model with the 
largest evidence would give the best results on unseen data, in other words that 
it would have the  best generalization properties. MacKay (19S2d) and Thodberg 
(1993) both report observing empirical {anti) correlation between model evidence 1 
and generalization error. However, this orrelation is far from perfect. Although 
we expect some correlation between a model having high evidence and the model 
@neralixing well, the evidence is not measuring the same thing as generalization 
Performance. In particular, we can identify several distinctions between these 
quantities: 

1. The test error is measured on a finite data set and so is a noisy quantity. 
2. The evidence provides a quantitative measure of the relative probabilities 

of different models. Although one particular model may have the highest 
probability, there may be other models for which the  roba ability is stiIl 
significant. Thus the model with the highest evidence will not necessarily 
give the best performance. We shall return to this point shortly when we 
discuss committees of networks. 

3. If we had two different models which happened to give rise to the same 
most-probable interpolant, then they would necessariiy have the same gen- 
eralization performance, but the more complex model would have a larger 
Occam factor and hence would have a smaller evidence. Thus, for two mod- 
els which make the same predictions, the Bayesian approach b u r s  the 1 
simpler model. I 
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4. The generalization error, in the form considered above, is measured using 
a network with weights set to the maximum of the posterior distribution. 
The evidence, however, takes account of the complete posterior distribution 
around the most probable value. (As we noted in Section 10.3, however, for 
the case of s Gaussian posterior distribution, and with a local linearization 
of the network function, the integration over the posterior has no effect on 
the network predictions.) 

5. The Bayesian analysis implicitly assumes that the set of models under 
consideration contains the 'truth' as a particular case. If all of the models 
are poorly matched to the problem then the relative evidences of different 
models may be misleading. MacKay (1992d) argues that a poor correlation 
between evidence and generalization error can be used to infer the presence 
of limitations in the models. 

An additional reason why the correlation between evidence and test error may 
be poor is that there will be inaccuracies in evaluating the evidence. These arise 
from the use of a Gaussian approximation to the posterior distribution, and 
are particularly important if the Hessian matrix has one or more very small 
eigenvalues, as discussed above. 

Further insight into the issue of model complexity in the Bayesian frame- 
work has been provided by Neal (1994) who has argued that, provided the com- 
plete Bayesian analysis is performed without approximation, there is no need 
to limit the complexity of a model even when there is relatively little training 
data available. Many red-world applications of neural networks (for example 
the recognition of handwritten characters) involve a multitude of compIications 
and we do not expect them to be accurately d v e d  by a simple network having 
a few hidden units. Neal (1994) was therefore led to consider the behaviour of 
priors over weights in the limit as the number of hidden units tends to infmity. 
He showed that, provided the parameters governing the priors are scaled appro- 
priately with the number of units, the resulting prior distributions aver network 
functions are well behaved in this limit. Such priors could in principle permit the 
use of very large networks. In practice, we may wish to  limit the complexity in 
order to ensure that Gaussian assumptions are valid, or that Monte Carlo tech- 
niques (discussed in Section 10.9) can produce acceptable answers in reasonable 
computational time. 

10.7 Committees of networks 

In Section 9.6 we discussed techniques for combining several network 'modules' 
together in order to obtain improved performance. Here we shall see how such 
committees of networks arise naturaIly in the Bayesian framework. I n e n  we 
evaluated the evidence in (10.103) we took account of the multiple solutions due 
to symmetries in the network. We did not, however, allow for the presence of 
multipIe, non-equimlent minima. If we train our network several times starting 
from different random initial weight confi~rat ions then we will typically discaver 
severaI such solutions. We can then model the posterior distribution using a scf 

of Gaussians, one centred on each local minimum, in which we assume that there 
is negligible overlap between the Gaussians. 

Consider the predictions made by such a posterior distribution when the 
network is presented with a new input vector. The posterior distribution of the 
weights can be represented as 

where denotes one of the non-equivalent minima and all of its symmetric 
equivalents. This distribution is used to determine other quantities by integration 
over the wlioIe of weight space. For instance, the mean output predicted by the 
committee is given by 

where ri denotes the region of weight space surrounding the ith local minimum, 
and 3; is the corresponding network prediction averaged over this region. Here we 
have assumed that there is negligible overIap between the distributions centred 
on each minimum. From (10.105) we see that the predicted output is just a linear 
combination of the predictions made by each of the networks corresponding to 
distinct Iocal minima, weighted by the posterior probability of that solution. 
Note that, strictly speaking, in a practical implementation the weighting for 
each minimum should be adjusted according to the probability of that minimum 
being found by the paticular parameter optimization algorithm being used, 
with minima which are more likely to he discovered receiving less weight. For 
large problems such an  approach is infeasible, however, since each minimum will 
tvpically only he seen once so that determination of the probabilities of finding 
the minima will not be possible. 

We can extend this result further by consideriw different models 'Hi, such as 
networks with different numbers of hidden units or different kinds of models. In 
the same way that variables such as hyperparameters are integrated out of the 
model, so if our model space consists of several distinct models, then Bayesian 
inference requires that, instead of just picking the most probable model, we 
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should sum over all models. The distribution of some quantily Q, given a data 
set D, can be written 

which again is a linear combination of the predictions made by each model sep 
arateIy) where the weighting coefficients are given by the posterior probabilities 
of the models. We can compute the weighting coefficients. by evaluating the 
evidences, multiplying by the model priors, and then normalizing so that the  
coefficients sum to I. 

Committees bring two advantages. First they can lead to  improved general- 
ization, as was noted in Section 9.6. This is to be expected since the extension 
from a single Gaussian to a Gaussian mixture provides a more accurate model 
for the posterior distribution of weights. The second benefit of considering a 
committee is that the spread of predictions between members of the committee 
makes a contribution to the estimated error bars on our predictions in addition 
to those identified already, leading t o  more accurate estimation of error bars. 

In practice, the direct application of such procedures generally leads to poor 
results since the integral over the Gaussian approximation to the posterior gives 
only a poor estimation of the evidence (Thodberg, 1993). A more pragmatic 
approach is to use the evidence simply as a rough indicator, and to select a 
committee of neeworks whose members have reasonably high evidence, and then 
form linear, or non-Iinear, combinations of the outputs of the committee mem- 
bers using techniques discussed in Section 9.6. Indeed, the method of stacked 
generalization (Section 9.8.2) can be viewed here as a cross-validatary approach 
to estimating the posterior probabilities of the members of the committee. 

10,8 Practical impIementation of Bayesian techniques 

Since we have covered a lot of ground in our discussion of Bayesian methodst 
we summarize here the main steps needed to implement thase technique for 
practical applications. We restrict attention to the evidence framework with the 
use of Gaussian approximations. 

1. Choose initial values for the hyperparametem a and 6. laitialize the weights 

I in the network using values drawn from the prior distribution. 
2. Train the network using s standard non-linear optimization algorithm 

(Chapter 7)  to minimize the t o t d  error function S(w). 
3. Every few cycles of the algorithm, re-estimate values for u and @ usiog 

(10.74) and (10.75), with y calculated using (10.70). This requires emlun 
tion of the Hessian matrix (Section 4.10) and evaluation of its eigenvalUe I 

spectrum. 
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4. Repeat steps 1-3 for different random initial choices for the network weights 
in order to find different local minima. In principIe, a check should be 
made that the different solutions are not simply related by a symmetry 
transformation of the network (Section 4.4). 

5. Repeat steps 1-4 for a selection of different network models, and compare 
their evidences using (10.103). Eigenvalues which are smaller than a cutoff 
value are omitted from the sum in evaluating the log determinant of the 
Hessian. If a committee of networks is to be used it is probably best to 
choose a selection of the better networks on the basis of their evidences, 
but then to use the techniques of Section 9.6 to compute suitable weighting 
coeficients. 

Examples of the prwticd application of Bayesian techniques are given in Thod- 
berg (1993) and MacKay (1995b). 

10.9 Monte Car lo  methods 

In the conventional (maximum likelihood) approach to network training, the bulk 
of the computational effort is concerned with optimi.zcation, in order ta  find the 
minimum of an error function. By contrast, in the Bayesian approach, the cen- 
tral operations require integration over multi-dimensional spaces. For example, 
the evaluation of the distribution of network outputs involves an integral over 
weight space given by (10.28). SimiEarly, the evahation of the evidence for the 
hyperparameters also involves an integral over weight space given by (10.64). So 
far in this chapter, we have concentrated on the use of a Gaussian approximation 
for the posterior distribution of the weights, which allows these integrals to be 
performed anaEyticalIy. This also allows the problem of integration to be replaced 
again with one of optimization (needed to  find the mean of the Gaussian dis- 
tribution}. If we wish to avoid the Gaussian approximation then we might seek 
numerical techniques for evaluating the corresponding integrals directly. 

Many standard numerical integration techniques, which can be used success- 
fdly for integrations over a small number of variables, are totally unsuitable for 
integrds of the kind we are considering, which involve integration over spaces 
of hundreds or thousands of weight parameters. For instance, if we try to sam- 
ple weight space on some regular grid then, since the number of grid points 
grows exponentially with the dimensionality (see the discussion of the 'curse of 
dimensionality' in Section 1.41, the computational effort would be prohibitive. 
'I'e resort instead to various forms of random sampling of points in weight space. 
Such methods are called Monte Carlo techniques. 

The integraIs we wish to evaluate take the form 

where P ( ~ ] D )  represents posterior distribution of the weights, and P(w)  is some 
'nk'l;cgrand. The basic idea is to approximate (10.107) with the finite sum 
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ing an integral using (10.108) may be much larger than if the vectors had been 
independent. 

- 
2 = 1  

As it stands, such an approach does not yet achieve the desired aim of sam- 
~1in.g preferentially the regions where p(wlD) is large. This can be achieved by 

where iwi) represents a sample of weight vectors generated from the distribution a modification to the procedure, known as the Metmpolzs algorithm (Metropolis p ( w l ~ ) .  The key difficulty is that in general it is very difficult t o  generate a set 
e t  a(,  1953), which was developed to study the statistical mechanics of physical 

of vectors having the required distribution. systems. The idea is to make candidate steps of the form (10.111), but to re- 
One appro& would be to consider some simpler distribution dw) from ject a proportion of the steps which lead to  a reduction in the value of p(wlD). 

which we easily generate suitable vectors. we can then write 
This must be done with great care, however, in order to ensure that resulting 
sample of weight vectors represents the required distribution. In the Metropolis 
algorithm this is achieved by using the following criterion: 

which makes use of the fact that we can easily evaluate p(wl D), even thou5,, wc 

cannot easily generate vectors having this distribution. In fact we cannot even 
normalize p(wlD), and so we should modify (10.109) slightly and use 

where jT(wilD) is the un-normalized distrihution. This approach, which is called 
importance sampling, does not solve our problem, because for neural networks 
the value of p(wlD) is typically very small except in extremely narrow regions 
of weight space. Thus, for any simple choice of q(w), most of the vectors will fall 
in regions where p(wlD) is small, and so a prohibitively large sample of vector; 
would be required to build up an accurate approximation to the integral. 

We must therefore face the task of generating a sample of vectors w reprewn- 
tative of the distribution p(w ID). To do this effectively, we must search through 
weight space to find regions where p(wlD) is reasonably large. This can be done 
by considering a sequence of vectors, where each successive vector depends On 
the previous vector as well as having a random component. Such techniques nrC 
called Markov chain Monte Carlo methods, and are reviewed in Neal (1993). Ti'e 
simplest example is a mndom walk in which at successive steps we have 

where e is some small random vector. chosen for instance from a spherical GaU' 
sian distribution having a small variance parameter. Note that suecessivP ~~'''' 
generated in this way will no longer be independent. As a result of this cJpp"- 
dence, the number of vectors needed to achieve a given accuracy in app 

soxi mat' 

if p(wneWP) > P C W O I ~  ID) accept 

if p(w,,,,]D) < ~ ( w d d  ID) accept with probability ~ C ~ n e w l D )  (10.112) 
P ( W ~  ID) ' 

In terms of an error function E = - Inp, this can be expressed as 

if En,, < Eold accept 
(10.1 13) 

if Enew > accept with probability exp {-(,I&,, - Eold)}. 
I 

The candidate steps are generated in a way which satisfies the principle of de- 
tailed balance. This requires that, if the current vector is w ~ ,  the probability of 
generating a candidate vector w2 must be the same as the probability of gener- ! 
ating wl the candidate vector if the current vector is w2. The random walk 
formula (10.11 I), for example, with s governed by spherical Gaussian distribu- 

I tion, clearly satisfies this property. The Metropolis algorithm has been used with 
3eat success in many applications. In the case of the Bayesian integrals needed 
for neural networks, however, it can still prove to be deficient due to the strong 
correlations in the posterior distribution, as illustrated in Figure 10.16. 

This problem can be tackled by taking account of information concerning the 
F'adient of p(wJD) and using this to choose search directions which favour re- I 
gens of high posterior probability. For neural networks, the gradient information 
'"easily obtained using back-propagation. Again, great care must be taken to 
?"sure that the gradient information is used in sueh a way that the distribution 
Of weight vectors which is generated corresponds to the required distribution. I 

Procedure for achieving this, known as h y b d  Monte Carlo, wils developed 
1 'v Duane et ai. (1987), and was applied to the Bayesian treatment of neural 

"h0rks  by Neal (1992, 1994). I 
O m  of the potential difficulties which still remains is the tendency for such 

*'Qrithrns to spend a long time in the neighbourhood of poor local maxima of 

I Probability (corresponding to local minima of the regularized error function), 
'I" so fail to discover good maxima which make a much more significant mntri- 
'''hion to the integral. A standard technique for improving t h e  situation is called I 
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Figure 10.16. When the standard Metropolis algorithm is applied to the e d -  
uation of integrals in the Bayesian treatment of neural networks, a large prc- 
portion of the candidate steps are rejected due to the high correlations in the 
posterior distribution. Starting from the point wold, almost all potential steps 
(shown by the arrows) will lead to a decrease in p(w[D). This probiem becomes 
even more severe in spaces of higher dimensionality. 

simulated annealing (following an analogy with physical systems) introdliced by 
Kirkpatrick et al, (1983). For the standard Metropolis algorithm, this is achieved 
by modifying (10.113) to give 

if En, < Eold accept 

if En,, > Eold accept with probability exp 

where T is a parameter generally referred to as temperature. This algorithnl 
leads to a sequence of vectors which ~ p p t o t i c a l l y  represent the distribution 
exp{- E(wlD) JT) .  For T = I we recover the desired distribut.ion. For T >> 1. 
however, the system can explore weight space much more freely, and can readily 
escape from local error function minima. Simulated annealing involves starting 
with a large value for T and then gradually reducing its value during the course 
of the simulation, giving the system a much better chance to settle into a region 
of high probability. The application of simul~tt?d annealing to the Monte Carla 
algorithm for the Bayesian treatment of neural networks ha? been considered I??' 
Neal (1992, 1994) although was not found to be essential. 

By using the hybrid Monte Carlo algorithm it is possible to generate a suitai-lr 
sample of weight vectors wi for practical applications of neural networks 
reasonable computational time. For agiven test input vector x, the corrcsponf~ill~ 
network predictions y(x; w,) represent a sample from the distribution p(ylx, 
This allows the uncertainties on the network outputs, associated with a w'~' 
input vector, to be assessed. The estimation of the erridence, how~vcr, remains I' 

difficult problem. Anot-her significant problem with Monte Carlo rnct hods is tlkr 

10.10: Minimum description length. 429 

difficulty in defining a suitable termination criterion. Despite these drawbacks, 
Monte CarIo techniques offer a promising approach to Bayesian inference in the 
context of neural networks. 

10.10 Minimum description Iength 

An alternative framework for discussing model complexity is provided by the 
minimum description length principle (Ttissanen, 1978). Although conceptually 
very different, this approach leads to a formdisrn which is essentially identical to 
the Bayesian one. Imagine that a 'sender' wishes to transmit a data set D to a 
'receiver', as indicated in Figure 10.17, using a message of the shortest possible 
length {where the length of the message might be measured by the number of 
bits, for instance). One approach would he simply to transmit a suitably encoded 
form of the data set itself using some fixed coding scheme with the assumption 
that the data points are independent. However, if there are systematic aspects to 
the data, the details of which are not known to the receiver in advance of seeing 
the data, then we wouId expect to  be able to use a shorter message if we first 
transmit information specifying some model 7-1 which captures those aspects, 
using a message of length L('FI), and then send a secand message specifying how 
the actual data set differs from that predicted by the model. We can regard 
L(1-l) as a measure of the complexity of the model, since a more complex model 
will require more information to describe it. The message needed to send the 
discrepancy information has length denoted by L(D/3-C), which can be viewed as 
an error term. We shall suppose that  the input data values are known already to 
the receiver, since we are not trying t o  predict the input data, only the output 
data. Thus the total  length of the rnwsage which is sent is given by 

description length = L(DIR) + L(H) (10.115) - v 
error complexity 

We can see that the goal of choosing the shortest description length leads t o  
a natural form of Occam's razor. A very simple model will be a poor predictor 
of the data, and so the errors will be large and th is  wiII lead to a large error 
term in (10.1 15). Allowing for a more complex model can lead to a reduction in 
the ermr contribution, but too complex a model will require a lot of information 
to specify and hence wil1 lead to a Iarge complexity term in (10.115). Intuitively 
Tk'e expect the shortest description length to occur when the model H gives an 
accurate representation of the statistical process which generated the data, and 
x7': also expect that ,  on average, this model will have the best generalization 
Properties. 

In Section 6.10 we showed that, to transmit information about a quantity s 
efficiently, a sender and receiver shouId agree on a suitable probability distribu- 
tion p(x ) .  The minimum amount of information, in bits, needed t o  transmit the 
val~rc of x is then giver1 by - log2p(r). If p(x) happens to be the true distribution 
for 5 then this minimum amount of informat !or1 will take a srnxIler value t l r ~ ~ n  for 
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sender receiver 

Figure 10.17. Illustration of the concept of minimum description length. A 
data set D can be transmitted from a sender to a receiver by first sending a 
prescription for a model 7-1, using a message of length L(7-I), and then transmit- 
ting the discrepancies between the data predicted by Fl and the actual data, 
which represents a message of length LIDI'FE). The principle of minimum de- 
scription length then selects as optimal that mode1 which minimizes the total 
information transmitted. 

any other choice of distribution. For convenience we shall measure information 
using logarithms to base e in which case the information, given by - lnp(s), is 
measured in 'nats'. This allows us to write the description length in (10.115) in 
the form 

description length = - In p(DI'H) - lnp(3-1) = - l n ~ ( z I D )  - l n ~ ( D )  (10.116) 

so that the description length is equivalent, up to an additive constant - InplD),  
to  the negative logarithm of the posterior probability of the model given the data 
set. 

We now consider the problem of determining the values for the weights in 
a network model. Suppose that we consider a particular weight vector, which 
we can regard as a 'most probable' set of weights. The cost of transmitting the 
weights and the data given the model can be written as the sum of two terms 

where the second term on the right-hand side represents the cost of specifying 
the weights, and the first term is the cost of specifying the data for given values 
of the weights (i.e. the cost of specifying the errors between the true values far 
the data and the values predicted by the model with the weighk set to the gix7efl 
values). In order to transmit this information, the sender and receiver need to 
agree on specific forms for the distributions. Suppose we mods1 the distributio*' 
of the weights as a zero mean Gaussian with variance a-" 

where W is the total number of weight pnrarneters. Similarly let us suppose that 
we model the distributioi~ of errors by a Gaussian with variance 0 - I  rentred "I' 

the prediction ~ ( x ;  w) made by the model 
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Figure 10.18. When a continuous variable x is encoded to some finite precision 
6 x  under a distribution p ( x ) ,  the information required to describe the value of 
the variable is given by the negative logarithm of the probability mass under 
the distribution, shown by the shaded region. 

Then the description Iength (10.117) can be written in the form 

which we recognize as the standard sum-of-squares error function with a weight- 
decay regularizer. 

An additional consideration for continuous variables, which we have so far 
ignored, is the precision with which they are encoded. We cannot specify a con- 
tinuous quantity 3: exactly since that would require an infinite message leneh, 
so instead we aptxi& its d u e  to within some small tolerance 6s. The message 
len@h needed to do this is given by the negative logarithm of the probability 
mass within this range of uncertainty, as indicated in Figure 10.18. If the tol- 
erance Sx is sufficiently small, then this probability mass is given to a good 
approximation by p{z)Sx.  

For the data term In p(D (w, 1-11 the additional contribution from the precision 
6D of the variables represents an i r r e l m t  constant. For the weights, hawever, 
the precision plays an important role, since if the weights are specified t o  a low 
Precisian they can be transmitted with a shorter message, but the errors on 
the data will then typicdly be larger and hence will need a longer message to 
transmit them. Again, there is a trade-off, which leads to an optimal level of 
Precision for the weights. For the case of Gaussim distributions, the calculations 
can be made explicitly (Wallace and Freeman, 1987). The optimal precision far 
the weights is re1atd to the posterior uncertainty in the parameters given by 
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Am' where A = -VVp(wlD, 3-1). The value of the description length with the 
parameters set to their optimal values, and the weight precision set to its optimal 
value, is then equivaIent to the Bayesian evidence given by (10.67). 

So far we have considered the situation in which a 'most probable' set of 
weight values is transmitted. As we have seen, however, the Bayesian approach 
requires that; we consider not just a single set of weights, but a posterior probabii- 
ity distribution of weights. One way to see how this arises within the description- 
length framework is through the 'bits back' argument of Hinton and van Camp 
(1993). Suppose the sender and receiver have already agreed on some prior dis- 
tribution p(w1l-l). The sender uses the data set D to compute the posterior d i s  
tribution and then picks a weight vector from this distribution, to within some 
very fine tolerance 6w, using a string of random bits. This weight vector can be 
communicated to the receiver by encoding with respect to the prior, with a de- 
scription length of - In (p(w13-1) bw). Having sent the weight vector, the data can 
then be transmitted with description length - ln(p(Dlw, 31)6D). Once the data 
has been received, the receiver can then run the same training algorithm as used 
by the sender and hence compute the posterior distribution. The receiver can 
then deduce the string of random bits which were used by the sender to pick the 
weight vector from the posterior distribution. Since these bits could be used to 
communicate some other, quite unrelated, message, they should not be included 
in the description length cost. Thus, there is a 'refund' in the description lensh 
given by t In{p{wlD, 31-)bw), which is just the length of the hit string needed 
to ~ i c k  the weight vector from the posterior distribution with precision Sw. The 
net description length is therefore given by 

where we have used Bayes' theorem. This is the correct description length for 
encoding the data, given the model, t o  precision SD. 

In this chapter we have considered two approaches to determining the poste- 
rior distribution of the weights. The first is to find the maximum of the posterior 
distribution, and then to fit a Gaussian function centred on this maximum. The 
second approach is to express the posterior distribution in terms of a sample 
of representative vectors, generatd using Monte Carlo techniques. We end this 
chapter by discussing briefly a third approach, known as ensemble learning, which 
again assumes a Gaussian distribution, but in which the mean and the variance 
are allowed to  evolve during the learning process (Binton and van Camp, 1993)- 
Learning can be expressed in terms of a minimization of the ~ullback-Leibler 
distance (Section 2.5.5) between the model distribution and the true posterior. 
In general this is not computationally tractable. However, for two-layer networks 
with linear output units, and with the assumption that the covariance rnatrh 
of the model distribution is diagonal, the required derivatives can be evaluated 

to any desired precision. The hope is that the resulting distribution, which need 
no longer be centred on the most probable weights, might give a better repre 
sentation of the posterior distribution. A potentially important limitation of this 
approach, however, is the neglect of off-diagonal terms in the model distribution. 

Exercises 

10.1 (**) Consider a Gaussim distribution af the form 

and show that this distribution has mean T and variance cr2 so that  

Using these resuIts, show that  the mean of the distribution (10.32) is given 
by y ~ p  and that its variance is given by (10.34). (Hint: in each case evaluate 
the integral over t first, and then evaluate the integral over w using the 
techniques of Appendix B). 

10.2 ( *A)  Use the results derived in Appendix B to evaIuate the integral in 
(10.32) directly, Do this by expanding the square in the exponent and 
collecting together the terms which are quadratic in Aw. Then use the 
result (B.22) to show that the distribution can be written as a Gaussian 
of the form 

in which the mean i s  given by 

and the variance is given by 

Simplify this expression for the variance by multiplying numerator and 
denominator by the factor 
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where I is the unit matrix. Hence, using the general result (BC)-' = 
C-IB-I, show that the variance can be written in the form 

10.3 (**) Use the results (10.123) and (10,124), together with the results ob- 
tained in Appendix 3, to show that the mean of the distribution (10.521, 
with p(wlD) given by (10.471, is given by a ~ p  and that the variance is 
given by (10.54). 

10.4 I**) The expressions (10.126) and (10.129) for the mean and variance of 
the distribution of target values were derived after linearizing the netwo 
mapping function around the most probable weights, using (10.30). Co 
sider this expansion taken to next order: 

where G = VVyl,, . By using (10.123) and (10.124) with p(tJD) given 1 
(10.32), and neglecting terms which are quartic in Aw, derive the followil 
results for the mean and variance of the distribution of target values: 

10.6 (*) Consider a red, symmetric matrix A, whose elements depend on some 
parmeter a. Rorn the results given in Appendix A, we can diagondize A 
by using the eigenvector equation in the form 

and then defining the matrix V G (vl,. . . , vw) so that VTAV = D where 
D = diag(q3,. . . , T ~ ) .  Ue this result, together with the fact that V is an 
orthogonal matrix so that VTv = WT = I, to show that 

10.7 (**I For the weight prior (10.133) considered in Exercise 10.5, find an. 
expression for the logarithm of the evidence p(Dl{ak), P )  analogous to 
the expression given by (10.67). Use the resuIt (10.137) to show that the 
following conditions are satisfied when this log evidence is maximized with 
respect to and ak: 

10.5 (*) The next four exercises develop the extension of the Bayesian formalism 
to the case of more general prior distributions given by (10.22) in which 
the weights are partitioned into groups labelled by k .  First, show that the 
prior (10.22) can be written 

where I k  is a matrix whose elements are all zero, except for some elements 
on the leading diagonal Jii = 1 where i corresponds to a weight from g o u p  
k. Show that the normalization coefficient Zw is given by 

where Wk is the number of weights in group k. Verify that the distribution 
of network outputs is again given by (1 0.331, with variance given by (10.34 
in which the Hessian matrix A is given by 

where y z Ck r k ,  2Ewk = W ~ I ~ W ,  and 

Here q, are the eigenvalues of A as in (10.136) with A given by (10.135). 
Verify that, if all of the weights are included in the prior, and all of the 
caeficients aft: are constrained to a single common value a, then these 
results reduce to the ones presented in the text for the simple weighb 
decay prior (10.9). We see that the use of the more general prior (10.133) 
requires the eigenvectors of the Hessian to be computed, as well as the 
eigenvalues. The use of the standard weight-decay prior (10.9) requires 
only the eigenvalues, Ieding to a saving of computational effort (Press et 
al., 1992). 

10.8 (* *) By using the results of the previous exercise, together with (10.79) 
and analogous expressions for the variances U E ~ , , ~ ,  show that the Gaussian 
approximation for the evidence p(D\(ak),  P )  around the most probable 
values has variances given approximately by 
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Hence show that the contribution to the logarithm of the model evidence 
arising from the distribution of values of ah and P is given by 

.10.9 (*I Show that, for the logistic sigmoid $(a)  given by (10.45), the function 
g(a) - 0.5 is =ti-symmetric. Hence show that the marginalized network 
output P(Cl lx, D)  given by (10.56) is equal t o  0.5 when aMp(x] = 0. 

10,10 (* **) Consider the approximation (10.57) to the integral in (10.56). In- 
vestigate the accuracy of this approximation by evaluating (10.56) using 
numerical integration (Press et al., 1992) with g(a) given by (10.45) and 
p(arD) given by (10.53). Plot a graph of P(Cllx, D )  versus aMp for s2 = 4 
by numerical integration of (10.56). Similarly, plot a graph of P(Cl lx, D) 
obtained by evaluating the approximation (10.571, and also plot the differ- 
ence between these two graphs on a suitably expanded vertical scde. 

10.11 (* *) Consider the Gaussian approximation for the distribution of 0 given 
by (10.78), and the andogous result for p(DI In a), in which the variances 
are given by (10.81) and (10.84). In these expressions, any correlation be- 
tween a and p was neglected. Show that the reciprocal of the OR-diagonal 
term in the inverse covariance matrix for the more generd Gaussian dis- 
tribution p(DI In a, In 0) is given by 

Evaluate this term using the expression for the Iog evidence given by (10.67) 
together with the results (10.68) and (10.71). Show that this term is neg- 
Iigible compared to the diagonal terms, and hence that the assumption of 
separable distributions for In a and In f l  is justified. 

10.12 (*) Consider a probability density for a vector x, which is parametrized 
by a vector 8. If the density takes the form 

then 0 is said to be a location parameter. An exmpIe would be the mean 
vector in a normal distribution. We can obtain a, non-informative prior 
p(0) for the location parameter by the following argument {Berger, 1985)- 
Suppose that instead of observing x we observed xt = x t c where C is 
a constant (this corresponds t o  a simple shift of the origin of the coordi- 
nate system). Then the density of this new variable is f (xf - 8') where 
8' = 0 -I- c. Since this has the same structure as the original density, it is  

natural to  require that  the choice of prior be independent of this change in 
coordinates. Thus we have 

where p'(Bf) is the prior for O', and A is an arbitrary region of B-space. 
Show that (10.146) requires that the prior must have the form p ( 0 )  = 

const. This ia an improper prior, since it cannot be normalized, and it is 
conventional to take p(0)  = 2. 

10.13 (*) If a probability density can be written in the form 

then s is known as a smk parameter, An example would be the standard 
deviation parameter u in a normal distribution of the form 

We wish to find a non-informative prior p(s)  for the scale parameter s 
(Berger, 1985). Suppose that instead of observing x we observe x' = cx 
where c is a constant. Show that the density for x' takes the form I 

where sf = cs. Since this has the same structure as (10.147) we require 
that the prior for s', which we denote by py(sf) be the same as the prior 
for s. Thus we have 

(10.150) 

where A = (a,  b) is any interval in (0, m). Show that  this implies that the 
prior should take the form p(s)  E 11s. Hence show that the prior for Ins 
is constant. This is an improper prior, since it cannot be normalized, and 
it is conventional to take p(s)  = l/s. 

10.14 (*) Consider the predictive distribution for a network output variable 
given by (10.28) and suppose we approximate the integration over weight 
space by using the Monte Carlo expression (10.108). Show that, for a noise 
model given by the Gaussian (10.14), the mean and variance of the distri- 
bution p( t  lx, D) are given by 
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Figure 10.19. An illustration of the technique of i+ejection sampling for gener- 
ating d u e s  from a distribution p(w1.Q). Values are generated from a simpler 
distribution governed by the function f (w) which satisfies f (w) 2 p(w1D). 
These values are accepted with probabiIity governed by the ratio p(w ID)/ f ( w )  
as describd in the tat. 

10.15 (** *) This exercise is concerned with the implementation of a simple 
Monte Cario method for finding the most probable network interpolant 
and for estimating corresponding error bars. It is based on the technique 
of rejection sampling (Devroye, 1986; Press et al., 1992) for generating a 
random sample from a complex distribution. Consider the probbm of gen- 
erating values for a single variable w from a distribution p(w1D). We shall 
suppose that evaluating p(wlD) is straightforward, while generating values 
of w directly from this distribution is not. Consider a function f ( w )  which 
satisfies f (w)  2 p(urlD) for all w as shown in Figure 10.19, and suppme 
that vaIues of w are generated at random with a distribution proportional 
to f ( w ) .  Verify that, if these values are accepted with probability given 
by the ratio p(wjD)/f (v) then the accepted d u e s  will be governed by 
the distribution p(w1D). (Hint: one way to do this is to use Figure 10.19 
and to  show the result geometrically.) We now apply this technique to 
the generation of might vectors from the posterior distribution of network 
weights. Suppose we choose f (w) = Ap(w) where A is a constmt and 
p(w) is the prior weight distribution. Consider a likelihood function given 
by (10.12) and use Bayes' theorem in the fonn (10.3) to show that the con- 
dition f (w) ? p(wlD) can be satisfied by choosing A-' = ZDP(D) where 
p(D) is the denominator in (10.3). Hence show that might vectors can be 
generated &om the posterior distribution simply by selecting them f r o r  
the prior and then accepting them with probability given by e x p ( - P E ~ )  
Implement this numerically for a sirnpEe regression ~roblem by consider- 
ing a single-input single-output two-layer network with sigmoidaI bidder 
units and a linear output unit, together with a data set consisting of 
more than ten data points. Generate weight vectors from a Gaussian prior 
given by (10.9) with a fixed suitably-chosen value of a, and select them 
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with a likelihood function e x p ( - P E ~ )  having a h e d  value of P and a 
sum-of-squares error ED until around 10 or 20 weight vectors have been 
accepted. Techniques for generating numbers with a Gaussian distribution 
are described in Press et  aE. (1992). Plot the corresponding set of network 
functions on the  same graph, together with the original data points. Use 
the resuits of Exercise 10.14 to plot on a separate graph the Monte Carlo 
estimates of the mean of the predictive distribution, as well as the error 
bars, as functions of the input variable x.  Note that rejection sampling is 
not suitable as a practical technique for large-scde problems since the time 
required by this algorithm grows exponentially with the number of data 
points. 
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APPENDIX A 

SYMMETRIC MATRICES 

In several chapters we need to consider the properties of  real, symmetric matri- 
ces. Examples include Hessian matrices (whose elements are given by the second 
derivatives of an error function with respect to the network weights) and covari- 
ance matrices for Gaussian distributions. Symmetric matrices have the property 
that Aij = Aj,, or equivalently A~ = A where denotes the transpose of A. 

The inverse of a symmetric matrix is aIso symmetric. To see this we start 
from the definition of the inverse given by A-'A = I where I is the unit matrix, 
and then use the general result that, for any two matrices A and B, we have 
(ABST = B=A=. This gives AT(A-I]T = I which, together with the symmetry 
property AT = A, shows that ( A - ' ) ~  = A-' as required. 

Eigenvec tor equation 

We begin by considering the eigenvector equation for a symmetric matrix in the 
form 

where A is a W x W matrix, and k = 1,. . . , W. The eigenvector equations (A.1) 
represent a set of coupled linear algebraic equations for the components uk, of 
the eigenvectors, and can be written in matrix notation as 

where D is a. diagonal matrix whose elements consist of the eigenvalues Ak 

and U is a matrix whose columns consist of the eigenvectors u k .  The neeessar?' 
and sufficient condition for the set of simultmeous equations represented b!' 
(A.2) to have a solution is that the determinant of the matrix of coefficient? 
vanishes, so that 

Since this is an Wth order equation it has precisely W roots. 
We can show that the eigenvectors can be chosen to form an orthonormal 

set, as follows. For any pair of eigenvectors uj and u k ,  it follows from (A.1) that 

Subtracting these two equations, and using the symmetry property of A we find 

Thus, for Ah # Xj, the eigenvectors must be orthogonal. If Ak = Xj, then any 
linear combination of the eigenvectors uj and uk will also be an eigenvector, and 
this can be used to choose orthogonal linear combinations. A total of W orthog- 
onal eigenmctors can be found, corresponding to the W solutions of (A.43. Note 
that, if uk is an eigenvector with eigenvalue Xk, then Puk is also an eigenvector, 
for any non-zero pl, and has the same eigendue. This property can be used to 
normalize the eigenvectors t o  unit length, so that they become an orthonormal 
set satisfying 

If we multiply (A.1) by A-' we obtain 

so we see that A-l has the same eigenvectors as A but with reciprocal eigenvaI- 
ues. 

Diagonalisat ion 

The matrix A can be dtagonalized using the  matrix U. From (A.1) and (A.8) it 
follows that 

where D is defmed by (A.3). h m  (A.8) it follows that the matrix U is orthog- 
onal, in other words it satisfies 

Consider a vector x which is transformed by the orthogonal matrix U to  give 
a new vector 
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% = tSTx. (A.12) from (A.16) that the surfaces of constmt F ( x )  are hyperellipsoids, with principal 
axes having lengths propmtional to  A;''~. 

As a consequence of the orthogonality property ( A . l l ) ,  the length of the ve~tor 
is preserved by this transformation: 

Similarly, the angle between two vectors is also preserved 

Thus, the effect of multiplication by uT is equinlent to a rigid rotation of the 
coordinate syskem. 

General quadratic form 

There are several points in the book where we need to consider quadratic h n c -  
tions of the form 

where A is an arbitrary matrix. Note that we can, without Ims of generality, 
assume that the matrix A is symmetric, since any anti-symmetric component 
would vanish on the right-hand side of (A. 15). We can diagonalize this quadratic 
form by using the orthogond matrix U, whose columns are the eigenvectors of 
A, as follows: 

where we have used (A.10), (A.11) and (A.12). 
A matrix A is said to be po~itiue defmite if V*AV > O for any non-zero 

vector Y. It follows from (A.l)  and (A.8) that the eigendues of a positice 
definite matrix are all positive, since 

If the matrix A in the quadratic form (A.15) is positive definite, then i t  follo~* 



APPENDIX B 

GAUSSIAN INTEGRALS 

One variable 
We begin by evaluating the following Gaussian integral 

This is easiIy done by considering the square of the integral, and then transform- 
ing to polar coordinates: 

where we have changed variables first using x = T cosd, y = rsinB and then 
using rZ = u. W n g  the square root we finally obtain 

Several variables 

Consider the evaluation of the W-dimensiona1 Gaussian integral 
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where A is a W x W real symmetric matrix, w is a W-dimensional vector, and 
the integration is over the whole of w-space. In order to evaluate this integral it 
is convenient to consider the eigenvector equation for A in the form 

Since A is real an$ symmetric, we can choose the eigenvectors to  form a complete 
orthonormal set 

as discussed in Appendix A. We can then expand the vector w as a linear com- 
bination of the eigenvectoss 

The integration over the weight values dwI . . . dww can now be replaced by an 
integration aver d a l  . . . dow.  The Jacobian of this change of variables is given 
by 

where u k i  is the ith element of the vector uk ,  and 'det' denotes the determinant. 
The uk i  are also the elements of a matrix U whose coJumns are given by the uk ,  
and which is an orthogonal matrix, i.e. it satisfies uTU = I, since its columns 
are orthonormal. Thus 

and hence ) J1 = 1. Using the orthonormality of the u k  we have 

The various integrals over the ak now decouple, and so we can write 

Using the result (B.3) we obtain 
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Since the determinant of a matrix is given by the product of its eigenvalues, 

we finally obtain 

Inclusion of Hnear term 

In deriving the distribution of network outputs within the Bayesian framework in 
Exercise 10.2, we need t o  consider a more general form of the Gaussian integral, 
which has an additional linear term, of the form 

Again, it is convenient to work in terms of the eigenvectors of A. We first define 
hk to be the projections of h onto the eigenvectors 

This again leads to a set of decoupled integrals over the ak of the form 

Completing the square in the exponent, we have 
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If we now apply A-' to both sides of (B.5) we see that A-' has the same 
eigenvectors as A, but with eigendues A;': 

A-'U~  = XL'U~ .  (B.20) 

Thus, using (B.6) and (3.161, we see that  

J-4 hTA-'h = - 
k Xk' 

Using this result in (B.19) we obtain our final result: 

Iw = ( 2 ~ ) ~ / ' l ~ l - ' / ~  exp 

If we now change integration variables to Ek = ak - hk /Ak, we again obtain A 

product of integrals which can be evaluated using (3.3) to give 



APPENDIX C 

LAGRANGE MULTIPLIERS 

The technique of h p n g e  multipliers, also sometimes called undeteained mul- 
tipliers, is used t o  find the stationary points of a function of several variables 
subject to one or more constraints. 

Consider the problem of finding the minimum of a function f (xl, x2)  subject 
to a constraint relating sl and sz which we write in the form 

One approach would be to solve the constraint equation (C.1) and thus express 
sz as a function of X I  in the form x2 = h ( x l ) .  Thii can then be substituted into 
f ( z ~ , x z )  to give a function of X I  alone of the form f (xr, h ( x l ) ) .  The maximum 
with respect to XI could then be found by differentiation in the usual way, to 
give the stationary value x;Rin, with the corresponding value of z 2  given by 
xpn = h(xFin). 

One problem with this approach is tha t  it may be dificult t o  find an analytic 
solution of the constraint equation which allows 2 2  to be expressed as an explicit 
function of X I .  Also, this approach treats and xg differently and so spoils the 
natural symmetry between these variables. 

A more eIegaat, and often simpler, approach is based on the introduction of 
a parameter A called a Lagrange multiplier. We motivate this technique from 
a geometrical perspective. Consider the case of d variabfes X I , .  . . , xd which we 
can, group into a vector x.  The constraint equation g(x) = 0 then represents a 
surface in x-space as indicated in Figure C.1. At any point P on the constraint 
surface, the gradient of the function f (x) is given by the vector V f .  To find 
the stationary point of f (x) within the surface we can compute the component 
Vll f of V f which lies in the surface, and then set VIF f = 0. Consider the Taylor 
expansion of the function g(x)  when we move a short distance from the point x 
in the form 

If the point x + E is chosen to  lie within the surface then we have g(x + E )  = g(x) 
and hence E=V~(X)  = 0. Thus we see that the vector Vg is normal to the surface 
g(x) = 0. We can then obtain the component Vll f which lies in the surface b ~ '  
adding to V f some muItiple of the normal vector Vg so that 

Figure C.1. A geometrical picture of the technique of Lagrange multipIiexs. 
The gradient of a function f ( x )  at a point P is given by a vector Vf. We 
wish to find the component of this vector lying within the constraint surface 
g(x) = 0. This can be done by gubtracting from Vf an appropriate rnuItipie 
of the vector normal to the constraint surface, given by Vg. 

where A is a Lagrange mmuItipIier. It is convenient to introduce the Lagrmgian 
function given by 

W e  then see that  the vector VL is given by the right-hand side of (C.3) and so 
the required stationarity condition is given by setting VL = 0. Furthermore, the 
condition aL/aA = O leads to the constraint equation g(x) = 0. 

Thus to fmd the minimum of a function f ( x )  subject to the constraint 
g (x) = 0 we define the Lagrangian function given by (C,4) and we then find the 
stationary point of L(x,  A) with respect both to x and A. For a ddimensional 
vector x this gives dl + 1 equations which determine both the stationary point; 
x* and the value of A. If we are only interested in x* then we can eliminate X 
from the stationarity equations without needing to find its value (hence the term 
'undetermined multiplier'). 

As a, simple example, suppose we wish to find the stationary point of the 
function f (xl, x 2 )  E x l x ~  subject to  the constraint g ( x 1 ,  xz) = XI + z2 - 1 = 0. 
The corresponding Lagrangian function is given by 

The conditions for (C.5) to be stationary with respect to X I ,  X Z ,  and A then give 
the following coupled equations: 
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Solution of these equations gives the s tat ionq point as (XI, xz) = (+,$). 
This technique can be applied directly t o  functions of more than two variables 

Similarly it can be applied when there are several constraints simpIy by using one 
Lagrange multiplier hk for each of the constraints gkfx) = 0 and constructing a 
Lagrangian function of the form 

This Lagrangian is then minimized with respect to x and {Ak). Extensions to 
constrained functional derivatives (Appendix Dl are similarly straightforward. 

A more formal discussion of the technique of Lagrange multipliers can be 
found in Dixon (1972, pages 8&93). 

APPENDIX D 

CALCULUS OF VARIATIONS 

At several points in this book we make use of the technique of functional difley- 
entiation, also known as calculus of vacmP-iations. Here we give a brief introduction 
to this topic, using an analogy to conventional differentiation. We can regard a 
function f (x) as a transformation which takes x as input, and which generates 
f as output. For this function we can define its derivative d f / d x  by considering 
the change in f ( x )  when the value of x is changed by a small amount 62 so that 

A function of many variables f (sr,. . . , xd) can be regarded as a transformation 
which depends on a discrete set of independent variables. For such a function we 

i 
have 

" a f  af = C --asi + o(ax2). 
i=l 

ax ,  

In the same way, we can consider a functional, written as E [ f ] ,  which takes 
a function f ( x )  as input and returns a scalar value E. As an example of a 
functional, consider I 

so that  the value of E [ f ]  depends on the particular choice of the function f (z). 
The concept of a functional derivative arises when we consider how much E [ f ]  
changes when we make a small change 6f ( x )  to the function f (x), where Sf ( x )  
is a function of x which has small magnitude everywhere but which is otherwise 
arbitrary. We denote the functional derivative: of E [ f ]  with respect to  f ( x )  by 
6E/6 f (x), and define i t  by the folIowing relation: 





APPENDIX E 

PRJNCIPAL COMPONENTS 

In Section 8.6, we showed that the optimal h a ;  dimensionality reduction pro- 
cedure (in the sense of least squares) was determined by minimization of the 
following function: 

where E is the covariance matrix defined by (8.2 1). W e  now show that the solu- 
tion t o  this probrem can be expressed in terms of the eigenvectors and eigenvalues 
of 32. 

It is clear that (E.l) has a non-trivial minimum with respect to the only if 
we impose some constraint. A suitable constraint is obtained by requiring the ur 
to  be orthonormal, and c m  be taken into account by the use of a set of Lagrange 
multipliers p,j (Appendix C). We therefore minimize the hnction 

This is conveniently written in matrix notation in the form 

where M is a matrix with elements pi,, U is a matrix whose columns consist of 
the eigenvectors ui, and I is the unit matrix. If we minimize (E.3) with respect 
to U we obtain 

By definition, the m~tr ix  E js symmetric. Also, the matrix M can be taken to bp 

symmetric without loss of generality, since the matrix U V  is symmetric as is 
the unit matrix I, and hence any anti-symmetric component in M would vanish 
in (E.3). Thus, we can write (E.4) in the form 

EU = UM. CE.5) 

Since, by construction, U has orthonorma1 columns, it is an orthogonal matrix 
satisfying UTu = I. Thus we can write (E.5) in  the equiwlent form 

Clearly one solution of this equation is to choose M to be diagonal so that the 
columns of U are the eigenvectors of E and the elements of M are its eigenvalues. 
However, this is not the only possible solution. Consider an arbitrary solution of 
(E.5). The eigenvector equation for M can be written 

where A is a diagonal matrix of eigenvalues. Since M is symmetric, the eigen- 
vector matrix Q can be chosen to have orthonormal columns. Thus !I! is an 
orthogonal matrix satisfying ilrT* = I. From (E.7) we then have 

Substituting (E.6) into (E.8) we obtain 

where we have defined 

Using eqT = I we can write 

Thus, an arbitrary solution to (E.6) can be obtained from the particular solution 
fJ by application of an orthogonal transformation given by I. We now note that  
the value of the criterion EM is invariant under this transformation since 
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where we have used the fact that the trace is invariant t o  cyclic permutations 
of its argument, together with 5PT* = I. Since dl of the possible solutions 
give the same value for the residual error EM, we can choose whichever is mosl 
convenient. We therefore choose the solution given by 6 since, from (E.95, this 
has columns which are the eigenvectors of E, 
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activation function, 82 
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addine learning mIe, 97 
adaptive parameters, see weighta 
additive modela, 136-137 
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Akaike information criterion, 376 
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autma4sociative network, 316 
automatic relevance determination, 385 

back-propagation, 140-148 
efficiency, 146-147 
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backward elimination, 309 
basis functions, 88, 165 
batch learning, 263 
Bayes' theorem, 17-23 
Bayesian inference, 42-46 
Bayesian statisti-, 21 
Bernoulli distribution, 84 
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best approximation property, 169 
between-class covariance matrix, 108 
BFGS algorithm, 288 
bias 
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bias parameter, 78 
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'bits back' argument, 432 
bold driver algorithm, 269 

minimum, 273 
ound algorithm, 306 
t hm,  273 

bra 
bra 
Brt 

cketing a I 

.nch and b 
mt's  algori 

CART, see clmification and regression 
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central limit theorem, 37 
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circular normal distribution, 222 
city-block metric, 209 
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cl&fication, 5 
classification and regreasion t m n ,  137 
clustering algorithms, 187-189 
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complete data, 69 
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complexity criteria, 976-377 
condition number, 166 
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conditional median, 210 
mnditional probability, 17, 194, 212-222 
confidence intemals, 385 
conjugate gradients, 274-282 
conjugate prior, 43 
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convex function, 75, 369 
convex hull, 113 
covariance matrix, 35, 108, 111 
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credit assignment problem, 140 
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multiple clams, 237-240 
two clams, 230-232 

cr-validation, 372-375 
c u m  of dimensionality, 7-9, 51, 297 
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curvatur~drlven smoothing, 345-346 

data set, 2 
Dav~dson-FEetcher-Pme1l algorithm, 288 
de-trending, 303 
decision boundary, 4 



decision making, 20 feed-forward networks, 120-121 
dccision regions, 24 final prediction error, 376 
decision surface, see decision boundary 
degrees of Freedom, 11 
delta-bas-delta algorithm, 270-271 
density estimation 

and radial basis functions, 183-185 
kernel methods, 53-55, 177 
non-parametric, 33 
parametric, 33 
Parzen windows, 53 
semi-parametric, 33, 60 
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error function 
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Euler-Lagrange equations, 173 
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evidence approximation, 407 
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expected loss, 27 

fast multiplication by Hesaian, 158-160 
fast re-training, 150, 162-163 
feature extraction, 6, 297 
features, 2 

finite differences, 147, 158 
Fisher's discriminant. 105-112, 227 

relation to least-squares, 109-110 
Fletcher-Reeves formula, 280 
forward problems, 207 
forward propagation, 142 
forward selection, 308 
frequentist statistics, 21 
function approximation, 6 
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Gaussian, 34-38 
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prior, 389-391 
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and evidence, 421-422 
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generalized linear discriminant, 8&-89 
generalized linear network, 402 
generalized prediction error, 377 
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gradient descent, 263-272 
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convergence, 264-267 
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Green's function, 173 
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growth function, 378 

Heaviside activation function, 121-1 22 
Heavis~de step function, 84 
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central differences, 154 
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finite differences, 154 
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Heatenea-Stiefel formula, 280 
hidden units, 16, 117 
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hierarchical models, 408 
higher-order network, 133-135, 161, 326- 

329 
Hinton diagram, 119 
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hold out method, 372 
hybrid Monte Carlo, 427 
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importance sampling, 426 
impreper prior, 396, 408 
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kernel function, 53 

periodic, 221 
kernel regression, 177-179 
Kiefer-Wolfowitx algorithm, 48 
Kohonen topographic mapping, 188 
Kolmogorov's theorem, 137-140 
KuIlback-Leibfer distance, 59, 244 

Lagrange rnultipliera, 448-450 
Laplacian distribution, 209, 392 
layered networks, 117-1 20 

counting convention, 119 
linear, 121 

learning, see training 
learning-rate parameter, 263 
leave-one-out method, 375 
Levenberg-Marquardt algorithm, 290-292 
Levenberg-Mquardt approximation, 

152, 206 
Lwenberg-Marquardt approximation, 206 
likelihood function, 23, 40 

singularities, 58, 63 
limited memory BFGS algorithm, 28S290 
line search techniques, 272-274 
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linear separability, 85-88 

Iinsm sum rules, 20P2IH 
local learning algorithms, 253-254 
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localized bmb functions, 165 
location parameter, 216, 436-437 
logistic discrimination, 82-85 
logistic aigrnoid, 82, 232-234 
loss matrix, 27 
LR norm, 209 

madeline III learning rule, 148 
Mahatanobis distance, 35 
marginal distribution, 37 
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Markov chain Monte Carlo, 426 
MARS, see multivariate adaptive regres- 
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for Gaussian, 40-42 
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ML-11, 407 
relation to Bayea, 45 

McCuIloch and Pitts neumn model, 83-84 
mean of distribution, 34-35 
Metropolis dgorithm, 427 
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minimum risk decisions, 27, 224 
Minkowski error function, 208-210 
rnialabelled data, 209 
missing data, 301-302 
missing valuw, 69 
mixing parameters, 60 
mixture models, 59-73, 212-222 
mixture of experta, 214, 369-371 
MLII ,  407 
MLP, see multi-layer perceptron 
model order sel-tion, 371-377 
model trust region, 283, 287, 291-292 
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momentum, 267-268 
Monte Carlo methods, 425-429 
multi-layer perceptron, I16 

and radial basis functions, 1@-183 
multi-quadric function, 166 
multi-atep ahead prediction, 303 
multivariate adaptive ~egresaien splines, 

137 

Nadaraya-Watson estimator, I f 8  
nats, 243, 430 
nearest-neighbour rule, 57 
neocognitron, 326 
network diagram, 62, 79, 117, 168 
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neuron, 83-84 
Newton direction, 285 
Newton's method, 285-287 
node perturbation, 148 
node pruning, 363-364 
noiseless coding theorem, 244 
non-informative prior, 408, 436-437 
non-interfering, see conjugate 
non-linear principal component analysis, 

317 
non-parametric density estimation, 33 
normal distribution, 34-38 
normal equations, 91 
normalized exponential, see suftmax 
novelty, 189 
numerical differentiation, 147-148 

Occam factor, 419 
Occam's razor, 14, 406, 429 
one-stepahead prediction, 303 
optimal brain damage, 361 
optf ma1 brain surgeon, 361 
order of oanwgence, 256 
order-limited perceptmn, 105 
ordinal variables, 300 
orthogonal least squarw, 187 
outer product Hessian, 206 
outliers, 209 
over-fitting, 11 

parametric density estimation, 33 
Panen estimator, 53, 177 
pattern recognition, 1 

statistical, 17 
pattern-based learning, 263 
perceptron, 84, 98-105 

convergence theorem, 100-103 
diameter-limited, 104 
learning algorithm, 100 
order-limited, 105 

perceptson criterion, 99 
periodic variables, 221-222 
pixel averaging, 297 
pocket algorithm, 103, 354 
Polak-Ribiere formula, 280 
pdynomial 

carve f i t t ing,  9-13 
higher-order, 16, 30 

positive-definite Hessian, 258 
post-processing, 296 
posterior distribution, 389 
posterior probability, 18 

in mixture model, 61 

potential functions, 182 
PPR, see projection pursuit regression 
pre-processing, 6, 296-298 
predicted squared error, 376 
principal componenta, 310-313, 4 5 4 6 5 6  
prior 

conjugate, 43 
consistency, 396-397 
entropic, 391 
improper, 396, 408 
in mixture model, 61 
knowledge, 6, 295 
non-informative, 408, 436-437 
probability, 17 

probability 
conditional, 17 
density, 21 
joint, 17 
poatwior, 18 
prior, 17 

processing units, 80 
projection pursuit regression, 135-136 
prototypes, 39, 183 
pruning algorithms, 354 
pswd~inverse, 92-95 

quasi-Newton methods, 281-290 
quickprop algorithm, 271-272 

7t-operator, 158-160 
radial basis functions 

best apprmimation, 169 
clustering algorithms, 187-189 
density estimation, 171-179, 183-185 
exact interpolation, 164-166 
for clwification, 179-182 
Gaussian mixtures, 18s390 
Hessian matrix, 191 
Jacobian matrix, 191 
network training, 17&171 
neural networks, 167-169 
noisy interpolation, 175-177 
orthogonal least squares, 187 
regularization, 111-115 
relation to multi-layer perceptron, 182- 

183 
supervised training, 190-191 

random walk, 426 
RBF, nee radial basis functions 
re-estimation formulae, 412, 417 
retraining of network, 150, 162-163 
receptive field. 104, 325 
regression, 5 
regreanion function, 47, 203 

regular moments, 323 
regularization, 15, 171-175, 338-353, 385 

weight decay, 338-343, 395 
reinforcement learning, 10 
reject aption, 28 
rejection sampling, 43&439 
rejection threshold, 28 
reproducing densities, 43 
ridge regression, 338 
risk, 27 
RMS error, 197 
Robbins-Monro algorithm, 4 6 4 9  
robot kinematics, 207 
robust statistics, 210 
root-mean-square ermr, 197 
rotation invariance, 320, 323 

saddlepoints, 255 
saliency of weights, 360 
sample, 2, 426 

average, 4 1  
scale invariance, 6, 320, 323 
scale parameter, 215, 408, 437 
scaled conjugate gradients, 282-285 
search direction, 272 

Fletcher-Reeves, 280 
HestenesStiefel, 280 
Polak-Ribiere, 280 

self-organizing feature map, 188 
semi-parametric density estimation, 33, 60 
sequentid backward elimination, 309 
sequential forward selection, 308 
sequentid learning, 46-49, 263 
shared weights, 324-326 
sigrnoid activation function, 82, 232-234 
simply-connected decision regions, 50-81 
simulated anneaiing, 428 
singular value decomposition, 93, 171, 260 
smoothing parameter, 57-59 
smoothness of mapping, 171-173 
soft weight sharing, 349-353 
softmax, 215, 238-240 
spectral analysis, 207 
spline funct~on, 165 
stacked generalization, 375-376, 424 
standard deviation, 34 
stationary points, 255 
statistical bias, 41, 333338,  373-374 
statistical independence, 36 
steepest descent, see gradient descent 
stif differential equations, 267 
stochastic parameter estimation, 46-49, 

72-73 

stopping criteria, 262 
strict interpotation, see exact interpolation 
structural stabilization, 332 
sum-of-squares error function, 89-97, 19.5- 

207 
for classification, 225-230 

supervised learning, 10 
radial baais functions, 190-191 

SVD, aee singular value decomposition 
symmetries 

weight space, 133, 256 
synapses, 84 

tangent distance, 322 
tangent prop, 320-322 
tanh activation function, 127 
target values, 9 
temperature parameter, 4281 
template, 39, 122 
test error functions, 262-263 
test set, 10, 312 
thin-plate spline function, 165 
threshold, 78 
threshold activation function, 121-1 7" 
threshold logic functions, 87 
Tikhonov regularization, 338 
tiling algerithm, 355 
timeseries prediction, 302-304 
tomography, 207 
topographic mapping, 188 
total covariance matrix, 111 
training set, 5, 372 
tranglation invariance, 6, 320, 323 
type I1 maximum likelihood, 407 

undetermined multipliers, see Lagrange 
multipliers 

unsupervised learning, 10, 318-319 
upstart algorithm, 355-357 

validation set, 372 
Vapnik-Chervonenkis dimension, see VC 

dimension 
variable-metric methods, 287-290 
variance 

parameter, 34-35, 73-74 
statistical, 333-338, 373-374 

YC dimension, 377-380 
von Mises distribution, 222 

weight decay, 338-343 
and pruning, 363 
consistency, 34S342 

weight elimination, 363 



weight initialization, 26S262 
weight space, 254 

symmetries, 133, 256 
weight vector, 253 
weights, 5 
well-determined parametem, 430 

whitening transformation, 299-300 
Widrow-Hoff learning rule, 97 
within-dass cwariance matrix, 108 

XOR, see exclusive-OR 
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