! Bishl_op ,,

In this textbook, Chris Bishop provides the
first comprehensive treatment of feed-
forward networks from the perspective of
statistical pattern recognition. After intro-
ducing the basic concepts of pattern
recognition, he describes techniques for
modelling probability density functions,
and discusses the properties and relative
merits of the multi-layer perceptron and
radial basis function network models. He
also motivates the use of various forms of
error function, and reviews the principal
algorithms for error function minimization.
There is a detailed discussion of learning
and generalization in neural networks, and
the important topics of data processing,
feature extraction, and prior knowledge
are also covered. He concludes with an
extensive treatment of Bayesian techniques
and their applications to neural networks.

Neural Networks for
Pattern Recognition

Cl*l':r-iéftbpher M. Bishop

\LJ

The book includes

* 129 graded exercises

* a self-contained introduction to
statistical pattern recognition

* an extensive discussion of Bayesian
methods

Chris Bishop is Assistant Director of ISBN O- 198086042 |
Microsoft Research, Cambridge, and is | | “ ‘ “ h
Professor of Computer Science at 801

The University of Edinburgh.

ellQINUZ 022 U1D}IRd 40} SHIOMIDN-[BLODN -

OXFORD UNIVERSITY PRESS
Also available in hardback

; 0XFARD

Neural Networks for
Pattern Recognition

CHRISTOPHER M. BISHOP

Institute for Adaptive
and Neural Computation
Division of Informatics
Edinburgh University

OXFORD

UNIVERSITY PRESS

OXFORD

UNIVERSITY PRESS
Great Clarendon Street, Oxford OX2 6DP

Oxford University Press is a department of the University of Oxford

It furthers the University’s objective of excellence in research, scholarship,
and education by publishing worldwide in

Oxford New York
Auckland Cape Town Dar es Salaam Hong Kong Karachi
Kuala Lumpur Madrid Melbourne Mexico City Nairobi
New Delhi Shanghai Taipei Toronto

With Offices in
Argentina Austria Brazil Chile Czech Republic France Greece
Guatemala Hungary Italy Japan South Korea Poland Portugal
Singapore Switzerland Thailand Turkey Ukraine Vietnam

Published in the United States
By Oxford University Press Inc., New York

The moral rights of the author have been asserted
© C.M. Bishop 1995
Database right Oxford University Press (maker)

First published 1995
Reprinted 1996 (twice), 1997 (twice), 1998, 1999, 2000, 2002, 2003 (twice),
2004, 2005

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means,
without the prior permission in writing of Oxford University Press,
or as expressly permitted by law, or under terms agreed with the appropriate
reprographics rights organization. Enquiries concerning reproduction
outside the scope of the above should be sent to the Rights Department,
Oxford University Press, at the address above

You must not circulate this book in any other binding or cover
and you must impose this same condition on any acquirer

A catalogue record for this book is available from the British Library

Library of Congress Cataloging in Publication Data
Bishop, Chris (Chris M.)
Neural networks for pattern recognition / Chris Bishop.
1. Neural networks (Computer science). 2. Pattern recognition
systems I Title.
QA76.87.B574 1994 006.4—dc20 95-40465
ISBN 0 19 853864 2(Pbk)

Printed in Great Britain
on acid-free paper by
CPI Bath

To Jenna

FOREWORD
Geoffrey Hinton

Department of Computer Science
University of Toronto

For those entering the field of artificial neural networks, there has been an acute
need for an authoritative textbook that explains the main ideas clearly and con-
sistently using the basic tools of linear algebra, calculus, and simple probability
theory. There have been many attempts to provide such a text, but until now,
none has succeeded. Some authors have failed to separate the basic ideas and
principles from the soft and fuzzy intuitions that led to some of the models as
well as to most of the exaggerated claims. Others have been unwilling to use the
basic mathematical tools that are essential for a rigorous understanding of the
material. Yet others have tried to cover too many different kinds of neural net-
work without going into enough depth on any one of them. The most successful
attempt to date has been “Introduction to the Theory of Neural Computation”
by Hertz, Krogh and Palmer. Unfortunately, this book started life as a graduate
course in statistical physics and it shows. So despite its many admirable qualities
it is not ideal as a general textbook.

Bishop is a leading researcher who has a deep understanding of the material
and has gone to great lengths to organize it into a sequence that makes sense. He
has wisely avoided the temptation to try to cover everything and has therefore
omitted interesting topics like reinforcement learning, Hopfield Networks and
Boltzmann machines in order to focus on the types of neural network that are
most widely used in practical applications. He assumes that the reader has the
basic mathematical literacy required for an undergraduate science degree, and
using these tools he explains everything from scratch. Before introducing the
multilayer perceptron, for example, he lays a solid foundation of basic statistical
concepts. So the crucial concept of overfitting is first introduced using easily
visualised examples of one-dimensional polynomials and only later applied to
neural networks. An impressive aspect of this book is that it takes the reader all
the way from the simplest linear models to the very latest Bayesian multilayer
neural networks without ever requiring any great intellectual leaps.

Although Bishop has been involved in some of the most impressive applica-
tions of neural networks, the theme of the book is principles rather than applica-
tions. Nevertheless, it is much more useful than any of the applications-oriented
texts in preparing the reader for applying this technology effectively. The crucial
issues of how to get good generalization and rapid learning are covered in great
depth and detail and there are also excellent discussions of how to preprocess

Foreword

viii

nd how to choose a suitable error function for the output.

gn of the increasing maturity of the field that methods whmh. were
neuron-like qualities can now be given a
solid statistical foundation. Ultimately, we all hope that a better statistical un-
derstanding of artificial neural networks will help us Emderstand how the brain
actually works, but until that day comes it is reassuring to -know why our c_ur—l
rent models work and how to use them effectively to solve important practica

problems.

the input a
It is a si :
once justified by vague appeals to their

PREFACE

Introduction

In recent years neural computing has emerged as a practical technology, with
successful applications in many fields. The majority of these applications are
concerned with problems in pattern recognition, and make use of feed-forward
network architectures such as the multi-layer perceptron and the radial basis
function network. Also, it has also become widely acknowledged that success-
ful applications of neural computing require a principled, rather than ad hoc,
approach. My aim in writing this book has been to provide a more focused
treatment of neural networks than previously available, which reflects these de-
velopments. By deliberately concentrating on the pattern recognition aspects of
neural networks, it has become possible to treat many important topics in much
greater depth. For example, density estimation, error functions, parameter op-
timization algorithms, data pre-processing, and Bayesian methods are each the
subject of an entire chapter.

From the perspective of pattern recognition, neural networks can be regarded
as an extension of the many conventional techniques which have been developed
over several decades. Indeed, this book includes discussions of several concepts in
conventional statistical pattern recognition which I regard as essential for a clear
understanding of neural networks. More extensive treatments of these topics can
be found in the many texts on statistical pattern recognition, including Duda and
Hart (1973), Hand (1981), Devijver and Kittler (1982), and Fukunaga (1990).
Recent review articles by Ripley (1994) and Cheng and Titterington (1994) have
also emphasized the statistical underpinnings of neural networks.

Historically, many concepts in neural computing have been inspired by studies
of biological networks. The perspective of statistical pattern recognition, how-
ever, offers a much more direct and principled route to many of the same con-
cepts. For example, the sum-and-threshold model of a neuron arises naturally as
the optimal discriminant function needed to distinguish two classes whose distri-
butions are normal with equal covariance matrices. Similarly, the familiar logistic
sigmoid is precisely the function needed to allow the output of a network to be
interpreted as a probability, when the distribution of hidden unit activations is
governed by a member of the exponential family.

An important assumption which is made throughout the book is that the pro-
cesses which give rise to the data do not themselves evolve with time. Techniques
for dealing with non-stationary sources of data are not so highly developed, nor so
well established, as those for static problems. Furthermore, the issues addressed
within this book remain equally important in the face of the additional compli-
cation of non-stationarity. It should be noted that this restriction does not mean
that applications involving the prediction of time series are excluded. The key

x Preface

consideration for time series is not the time variation of the signals themselves,
but whether the underlying process which generates the data is itself evolving
with time, as discussed in Section 8.4.

Use as a course text

This book is aimed at researchers in neural computing as well as those wishing
to apply neural networks to practical applications. It is also intended to be used
used as the primary text for a graduate-level, or advanced undergraduate-level,
course on neural networks. In this case the book should be used sequentially, and
care has been taken to ensure that where possible the material in any particular
chapter depends only on concepts developed in earlier chapters.

Exercises are provided at the end of each chapter, and these are intended
to reinforce concepts developed in the main text, as well as to lead the reader
through some extensions of these concepts. Each exercise is assigned a grading
according to its complexity and the length of time needed to solve it, ranging from
() for a short, simple exercise, to (* #*) for a more extensive or more complex
exercise. Some of the exercises call for analytical derivations or proofs, while
others require varying degrees of numerical simulation. Many of the simulations
can be carried out using numerical analysis and graphical visualization packages,
while others specifically require the use of neural network software. Often suitable
network simulators are available as add-on tool-kits to the numerical analysis
packages. No particular software system has been prescribed, and the course
tutor, or the student, is free to select an appropriate package from the many
available. A few of the exercises require the student to develop the necessary
code in a standard language such as C or C++. In this case some very useful
software modules written in C, together with background information, can be
found in Press et al. (1992).

Prerequisites

This book is intended to be largely self-contained as far as the subject of neural
networks is concerned, although some prior exposure to the subject may be
helpful to the reader. A clear understanding of neural networks can only be
achieved with the use of a certain minimum level of mathematics. It is therefore
assumed that the reader has a good working knowledge of vector and matrix
algebra, as well as integral and differential calculus for several variables. Some
more specific results and techniques which are used at a number of places in the
text are described in the appendices.

Overview of the chapters

The first chapter provides an introduction to the principal concepts of pattern
recognition. By drawing an analogy with the problem of polynomial curve fit-
ting, it introduces many of the central ideas, such as parameter optimization,
generalization and model complexity, which will be discussed at greater length in

later chapters of the book. This chapter also gives an overview of the forma
== ___

Preface s

of statistical pattern recognition, including probabilities, decision criteria and
Bayes’ theorem.

Chapter 2 deals with the problem of modelling the probability distribution of
a set of data, and reviews conventional parametric and non-parametric methods
as well as discussing more recent techniques based on mixture distributions’
Aside from being of considerable practical importance in their own right thé
concepts of probability density estimation are relevant to many aspects of m;ural
computing.

Neural networks having a single layer of adaptive weights are introduced in
Chapter 3. Although such networks have less flexibility than multi-layer net-
works, they can play an important role in practical applications, and they also
serve to motivate several ideas and techniques which are applicable also to more
general network structures.

Chapter 4 provides a comprehensive treatment of the multi-layer perceptron
and describes the technique of error back-propagation and its significance as a;
genel:al framework for evaluating derivatives in multi-layer networks. The Hessian
matrix, which plays a central role in many parameter optimization algorithms
as well as in Bayesian techniques, is also treated at length.

; An alter.native, and complementary, approach to representing general non-
linear mappings is provided by radial basis function networks, and is discussed in
Chapter 5. These networks are motivated from several distinct perspectives, and
hence provide a unifying framework linking a number of different approacl::es

Several different error functions can be used for training neural networl.(s
and these are motivated, and their properties examined, in Chapter 6. The cir-‘
cElmst&nces under which network outputs can be interpreted as probabilities are
discussed, and the corresponding interpretation of hidden unit activations is also
considered.

Chapter 7 reviews many of the most important algorithms for optimizing the
value_s of the parameters in a network, in other words for network training. Simple
algorithms, based on gradient descent with momentum, have serious limitations
and an understanding of these helps to motivate some of the more powerfuj
algorithms, such as conjugate gradients and quasi-Newton methods.

(_)ne of the most important factors in determining the success of a practical
application of neural networks is the form of pre-processing applied to the data.
Ch?.pter 8 covers a range of issues associated with data pre-processing, and de-

scribes several practical techniques related to dimensionality reduction, and the
use of prior knowledge.

Cha.ptt'sr 9 provides a number of insights into the problem of generalization,
::nd describes @e?hods for adf:lressing the central issue of model order selec-

ion, rI'he key mmght of the bias-variance trade-off is introduced, and several

mques for optimizing this trade-off, including regularization, are treated at

The 15‘1na.l chapter discusses the treatment of neural networks from a Bayesian
perspective. As well as providing a more fundamental view of learning in neural
networks, the Bayesian approach also leads to practical procedures for assigning

e

i Preface

error bars to network predictions and for optimizing the values of regularization
coefficients.

Some useful mathematical results are derived in the appendices, relating to
the properties of symmetric matrices, Gaussian integration, Lagrange multipliers,
calculus of variations, and principal component analysis.

An extensive bibliography is included, which is intended to provide useful
pointers to the literature rather than a complete record of the historical devel-
opment of the subject.

Nomenclature

In trying to find a notation which is internally consistent, I have adopted a
number of general principles as follows. Lower-case bold letters, for example v,
are used to denote vectors, while upper-case bold letters, such as M, denote
matrices. One exception is that I have used the notation § to denote a vector
whose elements y™ represent the values of a variable corresponding to different
patterns in a training set, to distinguish it from a vector y whose elements yj
correspond to different variables. Related variables are indexed by lower-case
Roman letters, and a set of such variables is denoted by enclosing braces. For
instance, {z;} denotes a set of input variables z;, where i = 1,...,d. Vectors are
considered to be column vectors, with the corresponding row vector denoted by
a superscript T indicating the transpose, so that, for example, xT = (23,.-,%d)-
Similarly, MT denotes the transpose of a matrix M. The notation M = (M;;)
is used to denote the fact that the matrix M has the elements M;;, while the
notation (M);; is used to denote the ij element of a matrix M. The Euclidean
length of a vector x is denoted by |)x||, while the magnitude of a scalar z is
denoted by |z|. The determinant of a matrix M is written as [M].

I typically use an upper-case P to denote a probability and a lower-case p to
denote a probability density. Note that I use p(z) to represent the distribution
of z and p(y) to represent the distribution of y, so that these distributions are
denoted by the same symbol p even though they represent different functions. By
a similar abuse of notation I frequently use, for example, yx to denote the outputs
of a neural network, and at the same time use yi(x; w) to denote the non-linear
mapping function represented by the network. I hope these conventions will save
more confusion than they cause.

To denote functionals (Appendix D) I use square brackets, so that, for exam-
ple, E[f] denotes functional of the function f(x). Square brackets are also used
in the notation £[Q] which denotes the expectation (i.e. average) of a random
variable Q.

I use the notation O(N) to denote that a quantity is of order N. Given two
functions f(N) and g(IV), we say that f = O(g) if f(N) < Ag(N), where A is
a constant, for all values of N (although we are typically interested in large N).
Similarly, we will say that f ~ g if the ratio f(N)/g(N) — 1 as N — oo.

1 find it indispensable to use two distinct conventions to describe the weight
parameters in a network. Sometimes it is convenient to refer explicitly to the
weight which goes to a unit labelled by j from a unit (or input) labelled by 4.

Preface xiii

Such a weight will be denoted by wj;. In other contexts it is more convenient
to label the weights using a single index, as in wy, where k runs from 1 to W
and W is the total number of weights. The variables wy can then be gathered'
together to make a vector w whose elements comprise all of the weights (or more
generally all of the adaptive parameters) in the network.

The notation &y; denotes the usual Kronecker delta symbol, in other words
5,:‘:,- =1if i = j and §;; = 0 otherwise. Similarly, the notation 6(z) denotes the
Dirac delta function, which has the properties §(z) = 0 for z # 0 and

[Za(z)dz= L

In d-dimensions the Dirac delta function is defined by

d
8(x) = [] é(as).

i=1

The symbols used for the most commonly occurrin ities i
u
| Mo i g g quantities in the book
& number of outputs; number of classes
Cr kth class

d number of inputs

E error function
£|Q] expectation of a random variable Q
g(-) activation function

input label

hidden unit label

output unit label

number of hidden units

pattern label

number of patterns

probability

probability density function
target value

time step in iterative algorithms
number of weights and biases in a network
network input variable

network output variable
activation of hidden unit
logarithm to base e

logarithm to base 2

gu@asq w"g\huzg tsa-u.u.
.~

g
o
L&)

?———

xiv Preface

Acknowledgements

Finally, I wish to express my considerable gratitude to the many people who,

in one way or another, have helped with the process of writing this book. The

first of these is Jenna, who has displayed considerable patience and good hu- CONTENTS
mour, notwithstanding my consistent underestimates of the time and effort re-

quired to complete this book. I am particularly grateful to a number of people

for carefully reviewing draft material for this book, and for discussions which ' B

in one way or another have influenced parts of the text: Geoff Hinton, David 1 Statistical Pattern Recognition 1
Lowe, Stephen Luttrell, David MacKay, Alan McLachlan, Martin Mgller, Rad- 1.1 An er‘{amp.le ~ character recognition 1
ford Neal, Cazhaow Qazaz, Brian Ripley, Richard Rohwer, David Saad, Iain 1.2 Classmcathn and regression 5
Strachan, Markus Svensén, Lionel Tarassenko, David Wallace, Chris Williams, 1.3 Pre-processing and feature extraction 6
Peter Williams and Colin Windsor. I would also like to thank Richard Lister 14 The curse of dimensionality 7
for providing considerable assistance while I was typesetting the text in IXTEX. 1.5 Polynomial curve fitting 9
Finally, I wish to thank staff at Oxford University Press for their help in the 1.6 Model complexity 14
final stages of preparing this book. L7 Multn’ranate non-linear functions 15
Several of the diagrams in the book have been inspired by similar diagrams 1.8 Baygs- theorem 17
appearing in published work, as follows: i?o 1]\34?01_51911_ boupiaries 23
-10 Minimizing ris! 27
Figures 115, 2.3, 2.5, 80d 3.1 oevuvenerrnnneennnnnns (Duda and Hart, 1973) Exercises 28

TICUED 2000 e uare o s e a AL Ao e s s sk o w ba A b (Luttrell, 1994) o . o s
Flgures 3.10and 3:34 ... -croiviiiiiniiiiaineis (Minsky and Papert, 1969) ;1 P;;:;::::::g nll:()atellll: ;y Eatimation 33
U B e R A O e Y N T T T R Tt (Lippmann, 1987) 9.2 Maximum likelihood 34
RN By et P o e St e T (Lowe, 1995) 2.3 Bayesian inference 39
Figires 5:9 and §.10 ...cinvevinarssvssnssnsasassis (Hartman et al., 1990) D4 Sequential paramster estimation 42
T R s st e e B e AR IR (Ghahramani and Jordan, 1994a) 2.5 Non-parametric methods o
Fiaie G2 disciminbainasasssmeweand o s vleme (Fahlman and Lebiere, 1990) 216 Mixture models o
Flaure D34 7w Siiamae v swndies Senbd wotaguns .(Jacobs et al., 1991) Fixercioas 59
Fiirure G0 v isiaianniy b s e A B e e (Hertz et al., 1991) 73
Figures 10.1, 10.10, 10.11 and 10.15cciiiiiivnnins (MacKay, 1994a) 3 Single-Layer Networks 7
Figures 10.3, 104, 105and 106cccivnemvenimaasarsne (MacKay, 1995a) 3.1 Linear discriminant functions i
Figires 9.3 and T0.12civnreenmnnsvamnorvioromensaniis (MacKay, 1992a) 3.2 Linear separability 85
gi Generalized linear discriminants 88

s vy - Least-squares techniques

Chris Bishop 3.5 The pe?ceptron ; gg
3.6 Fisher’s linear discriminant 105
Exercises 112
4 The Multi-layer Perceptron 116
4.1 Feed-forward network mappings 116
4.2 Threshold units 121
4.3 Sigmoidal units 126
44 Weight-space symmetries 133
4.5 Higher-order networks 133
| 4.6 Projection pursuit regression 135
l] 4.7 Kolmogorov's theorem 137

xvi Contents Contents

4.8 Error back-propagation 140 8 Pre-processing and Feature Extraction
4.9 The Jacobian matrix 148 8.1 Pre-processing and post-processing
410 The Hessian matrix 150 8.2 Input normalization and encoding
Exercises 161 8.3 Missing data
5 Radial Basis Functions 164 gg g;;r;i:: l;;se;ﬁilctmn
51 Exact interpolation 164 8.6 Principal component analysi
5.2 Radial basis function networks 167 8.7 Invariances anI():! rior kn YTISd
5.3 Network training 170 Ecercises ~ nowlenee
5.4 Regularization theory 171
5.5 Noisy interpolation theory 176 9 Learning and Generalization
5.6 Relation to kernel regression 177 9.1 Bias and variance
5.7 Radial basis function networks for classification 179 9.2 Regularization
5.8 Comparison with the multi-layer perceptron 182 9.3 Training with noise
5.9 Basis function optimization 183 94 Soft weight sharing
5.10 Supervised training 190 9.5 Growing and pruning algorithms
Exercises 191 9.6 Committees of networks
. 9.7 Mixtures of experts
6 Error Functions 9 9.8 Model order sell)ection
6.1 Su‘m—of-sqyares Seror 195 9.9 Vapnik-Chervonenkis dimension
6.2 Minkowski error 208 Eiercises
6.3 Input-dependent variance 211
6.4 Modelling conditional distributions 212 10 Bayesian Techniques
6.5 Estimating posterior probabilities 222 10.1 Bayesian learning of network weights
6.6 Sum-of-squares for classification 225 10.2 Distribution of network outputs
6.7 Cross-entropy for two classes 230 10.3 Application to classification problems
6.8 Multiple independent attributes 236 10.4 The evidence framework for o and /3
6.9 Cross-entropy for multiple classes 237 10.5 Integration over hyperparameters
6.10 Entropy 240 10.6 Bayesian model comparison
6.11 General conditions for outputs to be probabilities 245 10.7 Committees of networks
Exercises 248 10.8 Practical implementation of Bayesian techniques

10.9 Monte Carlo methods

;1 Pgrameter Optimization Algorithms 253 10.30 Minifiuin desciiption Jength
: rror surfaces 254 o

7.2 Local quadratic approximation 257

7.3 Linear output units 259 A Symmetric Matrices
7.4 Optimization in practice 260

7.5 Gradient descent 263 B Gaussian Integrals

7.6 Line search 272 c L -

7.7 Conjugate gradients 274 agrange Multipliers
7.8 Scaled conjugate gradients 282 D s

o\ o hints et 285 S Vaxiatlons
7.10 Quasi-Newton methods 287 E Principal Components
7.11 The Levenberg-Marquardt algorithm 290

s 299 References

1
STATISTICAL PATTERN RECOGNITION

The term pattern recognition encompasses a wide range of information processing
problems of great practical significance, from speech recognition and the classi-
on of handwritten characters, to fault detection in machinery and medical
agnosis. Often these are problems which many humans solve in a seemingly
rtless fashion. However, their solution using computers has, in many cases,
d to be immensely difficult. In order to have the best opportunity of devel-
ng effective solutions, it is important to adopt a principled approach based
yund theoretical concepts.

. The most general, and most natural, framework in which to formulate solu-
to pattern recognition problems is a statistical one, which recognizes the
stic nature both of the information we seek to process, and of the form
h we should express the results. Statistical pattern recognitionis a well
blished field with a long history. Throughout this book, we shall view neu-
vorks as an extension of conventional techniques in statistical pattern
nition, and we shall build on, rather than ignore, the many powerful results
this field offers.

this first chapter we provide a gentle introduction to many of the key
in pattern recognition which will be central to our treatment of neural
. By using a simple pattern classification example, and analogies to the
of curve fitting, we introduce a number of important issues which will
in later chapters in the context of neural networks. This chapter also
introduce some of the basic formalism of statistical pattern recognition.

An example — character recognition

I introduce many of the fundamental concepts of statistical pattern recog-
by considering a simple, hypothetical, problem of distinguishing hand-
R versions of the characters ‘a’ and ‘b’. Images of the characters might be
by a television camera and fed to a computer, and we seek an algo-
hlcllcan distinguish as reliably as possible between the two characters.
is represented by an array of pixels, as illustrated in Figure 1.1, each
carries an associated value which we shall denote by z; (where the
the individual pixels). The value of z; might, for instance, range
a completely white pixel to 1 for a completely black pixel. It is of-
fo gather the z; variables together and denote them by a single
.., 24)T where d is the total number of such variables, and the

P——-

1: Statistical Pattern Recognilion

L1

L
LLLLLT

LLI L1}

Lititiny

L1l

Ll

Figure 1.1. Tlustration of two hypothetical images representing handwritten
versions of the characters ‘a’ and ‘b’. Each image is described by an array of
pixel values z; which range from 0 to 1 according to the fraction of the pixel
square occupied by black ink.

superscript T denotes the transpose. In considering this example we shall ignore

a number of detailed practical considerations which would have to be addressed
in a real implementation, and focus instead on the underlying issues.

The goal in this classification problem is to develop an algorithm which will

assign any image, represented by a vector X, to one of two classes, which we

shall denote by Ck, where k = 1,2, so that class C; corresponds to the character
‘a’ and class Cy corresponds to ‘b’. We shall suppose that we are provided with
a large number of examples of images corresponding to both ‘a' and ‘b’, which
have already been classified by a human. Such a collection will be referred to as

a data set. In the statistics literature it would be called a sample.

One obvious problem which we face stems from the high dimensionality of

the data which we are collecting. For a typical image size of 256 x 256 pix

each image can be represented as a point in a d-dimensional space, where d =
65 536. The axes of this space represent the grey-level values of the corresponding

pixels, which in this example might be represented by 8-bit numbers. In princip
we might think of storing every possible image together with its correspondi
class label. Tn practice, of course, this is completely impractical due to the
large number of possible images: for a 256 x 256 image with 8-bit pixel v
there would be 28%286%256 ~ 10158000 {ifferent images. By contrast, we I
typically have a few thousand examples in our training set. It is clear then t
the classifier system must be designed so as to be able to classify correctly
previously unseen image vector. This is the problem of generalization, which
discussed at length in Chapters 9 and 10. _

As we shall see in Section 1.4, the presence of a large number of input variables
can present some severe problems for pattern recognition systems. One tech
to help alleviate such problems is to combine input variables together to mak
smaller number of new variables called features. These might be constructed
hand’ based on some understanding of the particular problem being tackled,
they might be derived from the data by automated procedures. In the p:
example, we could, for instance, evaluate the ratio of the height of the ch
to its width, which we shall denote by #;, since we might expect that cha

1.1: An ezample - character recognition

!
[

C,

ot
2!

—y

Figure 1.2. Schematic plot of the histograms of the fe i T gi

by t.hg ratio of the height of a character to its width, f::.u;ed::z;:leoi:lhngl;men
containing examples from classes C; = ‘a’ and C, = ‘b’. Notice that characters
from class Cg tﬁnd to have larger values of ¥) than characters from class C
but thsint there is a significant overlap between the two histograms. If a ne:y:
fmage is observed which has a value of 7, given by A, we might ex ect th
image is more likely to belong to class C; than Cs. ? :

class C; (corresponding to

m we measure the value of Z; for
-thez.r values as histograms for each
m which these histograms might

example of ‘b’
ore cannot distinguish the two classes

of Z), we may wish to know how to make best use of it to classify a new

4 value of Z; given by A as indicated in Fi i
‘image is more likelybgro belong to clac.lsmGFlgure i e
ﬂtherefc:‘re be to build a classifier system
ol;: t;i; 31 &}Ed wlnch' classifies as C; any image for which 71 exceeds the
o'f miscwlv assclg ct;l;s:nlgezl ailhfather images as Cy. We might expect that the
old to be at the point w’;;grﬁ}‘:ﬂh s s
llt to })e essentially correct, as we shall see in Section 1.9.
. ’_la-a;lgcation pr'ocedure we have described so far is based on the evalu-
1 followed by its comparison with a threshold. While we would expect
give some degree of discrimination between the two classes it suffers
o broblem, indicated in Figure 1.2, that there is still significant overlap
. grax.ns, and hence we must expect that many of the new characters
Heh we might test it will be misclassified. One way to

o

‘b’) will typically have larger values of 7
; : Z; than
fri from clas§ Ci (corresponding to ‘a’). We might then hope th;.t the
of) alone will allow new images to be assigned to the correct class.
each of the images in our data set, and
of the two classes. Figure 1.2 shows the
- s htake. We see that typically examples of the
- ave arger values of Z; than examples of the character ‘a’, but we
see that the two l?mtograms overlap, so that occasionally we might encounter
which has a smaller value of Z, than some example of ‘a’. We
perfectly using the value of ¥, alone.
We suppose for the moment that the only information available! is the

S0 85 to minimize the number of misclassifications. For a new image which

tlfa.n to class Cy. One approach
which simply uses a threshold for

two histograms cross. This intuition

try to improve the

?—

4 1: Statistical Pattern Recognition 1.2: Classification and regression 5
.2 Classification and regression

) ﬂk The system considered above _for classifying handwritten characters was designed

% take an image and to assign it to one of the two classes C; or C. We can

resent the outcome of the classification in terms of a variable i
: value 1 if the image is classified as C;, and the value 0 if it ig ;:g?ﬁzgk z
'j'hus, the overall system can be viewed as a mapping from a set of input
bles z1,...,Z4, representing the pixel intensities, to an output variable y
senting the class label. In more complex problems there may be several
u out variableg, which we shall denote by yi where k = 1,...,¢. Thus, if we
ed to classify all 26 letters of the alphabet, we might consider 26 (‘)utput
bles each of which corresponds to one of the possible letters.
In general it will not be possible to determine a suitable form for the required
ing, except with the help of a data set of examples. The mapping is therefore
elled in terms of some mathematical function which contains a number of
able parameters, whose values are determined with the help of the data
can write such functions in the form '

Figure 1.3. A hypothetical classification problem involving two feature vari-
ables 71 and Z2. Circles denote patterns from class and crosses denote
patterns from class C. The decision boundary (shown by the line) is able to
provide good separation of the two classes, although there are still a few pat-
terns which would be incorrectly classified by this boundary. Note that if the
value of either of the two features were considered separately (corresponding
to a projection of the data onto one or other of the axes), then there would be

substantially greater overlap of the two classes. Y = ye(x; W) (1.1)

:;genotes. the vector of parameters. A neural network model, of the kind
ed in this book, can be‘ regarded simply as a particular choice for the
' functions yi(x; w). In this case, the parameters comprising w are often

situation is to consider a second feature T, (whose actual definition we need not
consider) and to try to classify new images on the basis of the values of Z; and

» considered together. The reason why this might be beneficial is indicated in '
Figure 1.3. Here we see examples of patterns from two classes plotted in tha | ights. For the character classification example considered above, the

(Z1,%2) space. It is possible to draw a line in this space, known as a decision : on T was an example of
boundary, which gives good separation of the two classes. New patterns which lie. ‘data by plotting histogranl:s as il: Fi‘)::rua;?it;r gli]:iesevzlfu: s?les Ifo:lr:f ioﬁ
above the decision boundary are classified as belonging to class C; while patterns , however, corresponds to a very limited form for y(x; w) P ed ; esho
falling below the decision boundary are classified as Co. A few examples are still applications we need to consider much more ﬂexil::l f‘ al:t or most
incorrectly classified, but the separation of the patterns is much better than if ice of neural networks in this context is that thev o ﬂ‘e: unctions. The
either feature had been considered individually, as can be seen by considering all y general framework for representing non-lineare:}; : ina V?I'Y powerful
of the data points projected as histograms onto one or other of the two axes. variables to several output variables, where the formpl:)f fge i, se_zvere?,l
We could continue to consider ever larger numbers of (independent) features by a number of adjustable Para.mc;tem. This ecans of des mﬁp.pmgthlz

in the hove of improving the performance indefinitely. In fact, as we shall see in for these parameters on the basis of the data set is called learning or
ng, and for this reason the data set of examples is generally referred to as a

Section 1.4, adding too many features can, paradoxically, lead to a worsening of
ng set. Neural network models, as well as many conventional approaches to

performance. Furthermore, for many real pattern recognition applications, it .;.
the case that some overlap between the distributions of the classes is inevitable. ' pattern recognition, can be viewed as specific choices for the functional
d to represent the mapping (1.1), together with particular procedures

f the pattern classificati
zing the parameters in the mapping. In fact, neural network models

This highlights the intrinsically probabilistic nature o
problem, With handwritten characters, for example, there is considerable
ntain conventional approaches as special cases, as discussed in subsequent

ability in the way the characters are drawn. We are forced to treat the meas
variables as random quantities, and to accept that perfect classification of DES
examples may not always be possible. Instead we could aim to build a classi

which has the smallest probability of making a mistake.

-n problems the task is to assign new inputs to one of a number
€ dmwhich :’; caht;:lfories. However, thgre are many other pattern recogni-
: i sf refer to as regression problems, in which the outputs
L e i o tfontmuous variables. Examples include the determina-
fraction of oil in a pipeline from measurements of the attenuation

3

6 1: Statistical Pattern Recognition

of gamma beams passing through the pipe, and the prediction of the value of
a currency exchange rate at the some future time, given its values at a num-
ber of recent times. In fact, as discussed in Section 2.4, the term ‘regression’
refers to a specific kind of function defined in terms of an average over a random
quantity. Both regression and classification problems can be seen as particular
cases of function approzimation. In the case of regression problems it is the re-
gression function (defined in Section 6.1.3) which we wish to approximate, while
for classification problems the functions which we seek to approximate are the
probabilities of membership of the different classes expressed as functions of the
input variables. Many of the key issues which need to be addressed in tackling
pattern recognition problems are common both to classification and regression.

1.3 Pre-processing and feature extraction

Rather than represent the entire transformation from the set of input variables
Ty,...,Zq to the set of output variables y1,...,¥e by a single neural network func-
tion, there is often great benefit in breaking down the mapping into an initial
pre-processing stage, followed by the parametrized neural network model itself.
This is illustrated schematically in Figure 1.4. For many applications, the outputs
from the network also undergo post-processing to convert them to the required
form. In our character recognition example, the original input variables, given
by the pixel values z;, were first transformed to a single variable Z;. This is an
example of a form of pre-processing which is generally called feature extraction.
The distinction between the pre-processing stage and the neural network is not
always clear cut, but often the pre-processing can be regarded as a fixed trans-
formation of the variables, while the network itself contains adaptive parameters
whose values are set as part of the training process. The use of pre-processing
can often greatly improve the performance of a pattern recognition system, and
there are several reasons why this may be so, as we now discuss.

In our character recognition example, we know that the decision on whether
to classify a character as ‘a’ or ‘b’ should not depend on where in the image that
character is located. A classification system whose decisions are insensitive to
the location of an object within an image is said to exhibit translation invari-

ance. The simple approach to character recognition considered above satisfies

this property because the feature T, (the ratio of height to width of the charac-
ter) does not depend on the character’s position. Note that this feature variable
also exhibits scale invariance, since it is unchanged if the size of the character is
uniformly re-scaled. Such invariance properties are examples of prior knowledge,
that is, information which we possess about the desired form of the solution
which is additional to the information provided by the training data. The in-
clusion of prior knowledge into the design of a pattern recognition system can
improve its performance dramatically, and the use of pre-processing is one im-
portant way of achieving this. Since pre-processing and feature extraction can

have such a significant impact on the final performance of a pattern recognition

system, we have devoted the whole of Chapter 8 to a detailed discussion of these
topics.

1.4: The curse of dimensionality

?F:gure 1.4. The majority of neural network applications require the original
lnpqt variables zi,...,Zq to be transformed by some form of pre-processing
to give a new set of variables Z1,...,Zy. These are then treated as the inputs
to the neural network, whose outputs are denoted by y1,..., ..

1.4 The curse of dimensionality

There is another important reason why pre-processing can have a profound ef-
fect.. on the performance of a pattern recognition system. To see this let us return
again to the character recognition problem, where we saw that increasing the
nur-nber of features from 1 to 2 could lead to an improvement in performance
This suggests that we might use an ever larger number of such features, or eveI;
(!ispense with feature extraction altogether and simply use all 65 536 pi.x’el values
directly as inputs to our neural network. In practice, however, we often find that
beyond a certain point, adding new features can actually lead to a reduction in‘
the performance of the classification system. In order to understand this impor-
tant ?ﬁ'ect, consider the following very simple technique (not recommended in
Practice) for modelling non-linear mappings from a set of input variables z; to
an output variable y on the basis of a set of training data. ‘
A t}:ie begin by dividing. each of the input variables into a number of intervals,
50 that tpe \-ralue of a variable can be specified approximately by saying in which
mr;m it lies. This leads to a division of the whole input space into a large
Humber of boxes or cells as indicated in Figure 1.5. Each of the training examples
m;reSponds to_ a point in one of the cells, and carries an associated value of
by out'put variable y. _If we are given a new point in the input space, we can
ietermine a corresponding value for y by finding which cell the point falls in, and
returnu-xg the average value of y for all of the training points which iie in
. ceil: ?y increasing the number of divisions along each axis we could increase
majl;:ec:m;ln Wlt]]:]f whjclf the inpu.t varifa.bles can be specified. There is, however, a
= bef of exﬁg [B&CE input v_'anable is divided into M divisions, then the total
h input? ce zss. M e:z;l this grows e::.pfmenzz'auy with the dimensionality of
e Sp:cuz mr;e c .cell must contain at least one data point, this implies
Tl qu _ty- of training data needed to specify the mapping also grows
‘“XPponentially. This phenomenon has been termed the curse of dimensionality

——~

8 1: Statistical Pattern Recognition

Figure 1.5. One way to specify a mapping from a d-dimensional space z1,...,Td
to an output variable y is to divide the input space into a number of cells, as
indicated here for the case of d = 3, and to specify the value of y for each of
the cells. The major problem with this approach is that the number of cells,
and hence the number of example data points required, grows exponentially
with d, a phenomenon known as the ‘curse of dimensionality’.

(Bellman, 1961). If we are forced to work with a limited quantity of data, as we
are in practice, then increasing the dimensionality of the space rapidly leads to
the point where the data is very sparse, in which case it provides a very poor
representation of the mapping.

Of course, the technique of dividing up the input space into cells is a par-
ticularly inefficient way to represent a multivariate non-linear function. In sub-
sequent chapters we shall consider other approaches to this problem, based on
feed-forward neural networks, which are much less susceptible to the curse of

1.5: Polynomial curve fitting 9

of the data before using it to train a neural network or other pattern recognition

system.

1.5 Polynomial curve fitting

Many o.f the meo%'taut issues concerning the application of neural networks
can be m‘troduced in the simpler context of polynomial curve fitting. Here th
prf)l?lefn_ is to fit a polynomial to a set of N data points by the tec':hni ue ot;
minimizing an error function. Consider the Mth-order polynomial given l?y

M
y(@) =wo +wiz + - +wyzM = ¥ wjad, (1.2)
i=0

This can be regarded as a non-linear mappi i i
ping which takes z as input and

duces y as output. The precise/ form of the function y(z) is deternl:ined byrlrl?(;
values of the parafneters Wo, -..wps, Which are analogous to the weights in a
neural network. It is convenient to denote the set of parameters (wo, ..., wp) by
&e tTrec!;or w. The polynomial can then be written as a functional ma’pping in
e form y = y(z; w) as was done for more general non-linear mappings in (1.1)
We shall label the data with the index n = 1,..., N, so that each data point
:;nmsts of a va.lucf of z, denoted by z", and a corresponding desired value for
he output Ys which we shall denote by ¢". These desired outputs are called
target values in the neural network context. In order to find suitable values for

:ge tc:loefﬁcients in t'.he:t polynomial, it is convenient to consider the error between
e -esued output ", for a particular input z", and the corresponding value

propredlce‘:jtﬁd by t.hsil polynomial function given by y(z™; w). Standard curve-fitting
: res involve minimizing the squar i

E g square of this error, summed over all data

dimensionality. These techniques are able to exploit two important properties of
real data. First, the input variables are generally correlated in some way, so that
the data points do not fill out the entire input space but tend to be restricted to
a sub-space of lower dimensionality. This leads to the concept of intrinsic dimen-
sionality which is discussed further in Section 8.6.1. Second, for most mappings
of practical interest, the value of the output variables will not change arbitrarily
from one region of input space to another, but will typically vary smoothly as
a function of the input variables. Thus, it is possible to infer the values of the
output variables at intermediate points, where no data is available, by a process
similar to interpolation.

Although the effects of dimensionality are generally not as severe as the exam-
ple of Figure 1.5 might suggest, it remains true that, in many problems, reducing
the number of input variables can sometimes lead to improved performance for
a given data set, even though information is being discarded. The fixed quantity
of data is better able to specify the mapping in the lower-dimensional space, and
this more than compensates for the loss of information. In our simple character
recognition problem we could have considered all 65536 pixel values as inputs
to our non-linear model. Such an approach, however, would be expected to give
extremely poor results as a consequence of the effects of dimensionality coupled
with a limited size of data set. As we shall discuss in Chapter 8, one of the impor-
tant roles of pre-processing in many applications is to reduce the dimensionality

1 N
B= 5“2{31&“;“0 —$")2, (1.3)

2‘1 ;::I:j ;:ga;d j as .bemg a function of w, and so the polynomial can be fitted
o :;1 . g' - oosing a va‘lue for W, which we denote by w*, which minimizes
e e polynor.mal (1.:'2) is a linear function of the parameters w
i 'f is a quadratic function of w. This means that the minimum of
i b 105‘-;11:'\:2 terms of. the solution of a set of linear algebraic equations
e linea;- m‘od lS(:tmn,‘.v. which depend linearly on the adaptive parameters are
e onds 13{ a;leven though t]:fey may b'e non-linear functions of the original
il releva;;.ce toa; I::cam:ep!:s. which arise in the study of such models are also
e m;,; more complex non-linear neural networks considered in
. ﬁn > : S e therefore present.nn extended discussion of linear models
€ guise of ‘single-layer networks’) in Chapter 3.

10 1: Statistical Pattern Recognition 1.5: Polynomial curve fitting 11

The minimization of an error function such as (1.3), which involves target’
values for the network outputs, is called supervised learning since for each input
pattern the value of the desired output is specified. A second form of learning in
neural networks, called unsupervised learning, does not involve the use of target
data. Instead of learning an input-output mapping, the goal may be to model the
probability distribution of the input data (as discussed at length in Chapter 2)°
or to discover clusters or other structure in the data. There is a third form of
learning, called reinforcement learning (Hertz et al., 1991) in which information
is supplied as to whether the network outputs are good or bad, but again
actual desired values are given. This is mainly used for control applications, and
will not be discussed further.

We have introduced the sum-of-squares error function from a heuristic view-
point. Error functions play an important role in the use of neural networks, and
the whole of Chapter 6 is devoted to a detailed discussion of their properties.
There we shall see how the sum-of-squares error function can be derived from
some general statistical principles, provided we make certain assumptions about
the properties of the data. We shall also investigate other forms of error function
which are appropriate when these assumptions are not valid.

We can illustrate the technique of polynomial curve fitting by generating
synthetic data in a way which is intended to capture some of the basic properties
of real data sets used in pattern recognition problems. Specifically, we generate
training data from the function

1.0

0.5

0.0 :
0.0 0.5

Figure 1.6. An example of a set of 11 data points obtained by sampling the
function h(z), defined by (1.4), at equal intervals of z and adding random noise.
The dashed curve shows the function h(z), while the solid curve shows the
rather poor approximation obtained with a linear polynomial, corresponding
to M =1in (1.2).

from (1.4), together with the result of fitting a linear polynomial, given by
with M = 1. As can be seen, this polynomial gives a poor representation
h(z), as a consequence of its limited flexibility. We can obtain a better fit by
acreasing the order of the polynomial, since this increases the number of degrees
Jreedom (i.e. the number of free parameters) in the function, which gives
ter flexibility. Figure 1.7 shows the result of fitting a cubic polynomial
= 3) which gives a much better approximation to h(z). If, however, we
--::n- the order of the polynomial too far, then the approximation to the
: lying function actually gets worse. Figure 1.8 shows the result of fitting a
order polynomial (M = 10). This is now able to achieve a perfect fit to the
hing data, since a 10th-order polynomial has 11 free parameters, and there
€ 11 data points. However, the polynomial has fitted the data by developing
dramatic oscillations. Such functions are said to be over-fitted to the data.

a consequence, this function gives a poor representation of h(z).

h(z) = 0.5 + 0.4sin(27) (1.4)

by sampling the function h(z) at equal intervals of z and then adding random
noise with a Gaussian distribution (Section 2.1.1) having standard deviation
o = 0.05. Thus for each data point a new value for the noise contribution is
chosen. A basic property of most data sets of interest in pattern recognition is:
that the data exhibits an underlying systematic aspect, represented in this case
by the function h(z), but is corrupted with random noise. The central goal in
pattern recognition is to produce a system which makes good predictions for
new data, in other words one which exhibits good generalization. In order to
measure the generalization capabilities of the polynomial, we have generated &
second data set called a test set, which is produced in the same way as the
training set, but with new values for the noise component. This reflects the basic

Generalization

er ffo assess the capability of the polynomial to generalize to new data, it
_Mment to consider the root-mean-square (RMS) error given by

assumption that the data on which we wish to use the pattern recognition system - 1 X
is produced by the same underlying mechanism as the training data. As we shall E =\ 7 Z {y(zm; w*) —tn}2 (1.5)
discuss at length in Chapter 9, the best generalization to new data is obtained n=1

when the mapping represents the underlying systematic aspects of the data,
rather capturing the specific details (i.e. the noise contribution) of the particular
training set. We will therefore be interested in seeing how close the polynomial
y(z) is to the function h(z).

Figure 1.6 shows the 11 points from the training set, as well as the function

W* represents the vector of coefficients corresponding to the minimum
ﬂle error function, so that y(z; w*) represents the fitted polynomial. For the
irpose of Wuathg the effectiveness of the polynomial at predicting new data,

more convenient quantity to consider than the original sum-of-squares
(1.3) since the strong dependence on the number of data points has been

————t

12 1: Statistical Pattern Recognition 1.5: Polynomial curve fitting
13
03
Fary = = = test
= \ training
£
o \
2] !
E L S
0.0 - 1 A i

0.0 05 % 1.0
z 4 8 8 10

Figure 1.7. This shows the same data set as in Figure 1.6, but this time fitted by order of polynomial

a cubic (M = 3) polynomial, showing the significantly improved approximation
to h(x) achieved by this more flexible function.

Figure 1.9. Plots of the RMS error (1.5) as a function of the ord

nomial f9r both training and test sets, for the example probleme:o‘:li:szt}:ll:rz;l{n
the previous three figures. The error with respect to the training set decreases
monotonically with M, while the error in making predictions for new data (as
measured by the test set) shows a minimum at M = 3.

1.0

0.5

0.0 :
0.0 pEFINEZE Wy

Figure 1.8. The result of fitting the same data set as in Figure 1.6 using a 10th-
order (M = 10) polynomial. This gives a perfect fit to the training data, but
at the expense of a function which has large oscillations, and which therefore
gives a poorer representation of the generator function A(z) than did the cubic

polynomial of Figure 1.7,

ilﬂm 1.10. A schematic example of vectors in two dimensions (z1,22) be-
Mging to two classes shown by crosses and circles. The solid curve shows the

decision bound, f a si e :
e oo classe:ry of a simple model which gives relatively poor separation of

removed. Figure 1.9 shows a plot of E®MS for both the training data set and the
test data set, as a function of the order M of the polynomial. We see that the
training set error decreases steadily as the order of the polynomial increases. The
test set error, however, reaches a minimum at M = 3, and thereafter increases
as the order of the polynomial is increased.

The ability of the polynomial to generalize to new data (i.e. to the test set)
therefore reaches an optimum value for a polynomial of a particular degree of
complexity. Generalization is treated at greater length in Chapter 9, where we.
discuss the trade-off between the bias and the variance of a model. A model
which has too little flexibility, such as the linear polynomial of Figure 1.6, has a
high bias, while a model which has too much flexibility, such as the 10th-order
polynomial of Figure 1.8, has a high variance. The point of best generalization is
determined by the trade-off between these two competing properties, and occurs

W
'h:.j;et:e nu;nber of degrees of freedom in the model is relatively small compared
b Size o the data set (4 free parameters for M = 3, compared with 11 data
Points og in this example).
e s fi' gj?i;l;mhof over—ﬁtting is one which also arises in classification tasks. Fig-
e -10-1.12 show a succ.essmn-of decision boundaries for a schematic example
o mﬁlm caﬁ;n problex?l {nvolvmg two classes, and two input variables. As the
. .._m‘."?@pplax ;yn : o 5 oglo'del is bﬁeasﬁed, 50 the decision boundary can become more
ou give a er fit to the training data. icati
s the best generalization performance is ig:i; oﬁl;?;;i]:::; y&?::?lfatlgss i
an intermediate level of flexibility. g

?—: I“

14 1: Statistical Pattern Recognition ! 1.7: Multivariate non-linear functions 15

polynomial above) actually gives a poorer representation of the systematic as-

ts of the data than would a simpler model (such as the 3rd-order polynomial).

A model which is too simple, however, as in the 1st-order polynomial, is also not

| prefered as it gives too poor a fit to the data. The same considerations apply to

l neural network models, where again we can control the complexity of the model
. by controlling the number of free parameters which it possesses.

] ~ An alternative approach to optimizing the generalization performance of a

. model is to control its effective complezity. This can be achieved by considering

‘a model with many adjustable parameters, and then altering the training pro-

¢edure by adding a penalty term {2 to the error function. The total error then

Figure 1.11. As in Figure 1.10, but showing the decision boundary correspond- =R (1.6)

i re flexible model, which gives better separation of the training data. 9 ‘
e . ‘where Q is called a regularization term. The value of 2 depends on the mapping

iction y(z), and if the functional form of Q is chosen appropriately, it can be
to control over-fitting. For example, if we examine the function represented
’L the 10th-order polynomial in Figure 1.8, we see that it has large oscillations,
d hence the function y(z) has regions of large curvature. We might therefore
oose a regularization function which is large for functions with large values of
the second derivative, such as

a=1 /(%) 17

parameter v in (1.6) controls the extent to which the regularization term
ences the form of the solution, and hence controls the effective complexity
the model. Regularization is discussed in greater detail in Sections 5.4, 9,2
10.1.5.

‘e have seen that, for a fixed size of data set, it is important to achieve the
m level of complexity for the model in order to minimize the combina-
of bias and variance. By using a sequence of successively larger data sets,
er, and a corresponding set of models with successively greater complexity,
S possible in principle to reduce both bias and variance simultaneously and
to improve the generalization performance of the network. The ultimate
alization achievable will be limited by the intrinsic noise on the data.

Figure 1.12. As in Figure 1.10, but showing the decision boundary corres?ond-
ing to a highly flexible model which is able to achieve perfect separa‘tmn of
the training data. In many applications the distributions of data from different
classes overlap, and the best generalization performance is t.h ?chievved by a
model with intermediate complexity, corresponding to the decision boundary

in Figure 1.11.

1.6 Model complexity

Using an example of polynomial curve fitting, we have seen t}'mt the best gener-
alization performance is achieved by a model whose complexity (measured
by the order of the polynomial) is neither too small nor too large. The prob

of finding the optimal complexity for a model provides an example of Occam 3

razor, named after William of Occam (1285-1349). This is the principle that
should prefer simpler models to more complex models, and that this preierenc
should be traded off against the extent to which the models fit the data. Thus &
highly complex model which fits the data extremely well (such as the 10th-order

' Multivariate non-linear functions

2 role of neural networks, as we have already indicated, is to provide general
rized non-linear mappings between a set of input variables and a set of
variables. Polynomials provide such mappings for the case of one input
e and one output variable. Provided we have a sufficiently large num-
t terms in the polynomial, we can approximate any reasonable function to
'y accuracy, This suggests that we could simply extend the concept of

.

16 1: Statistical Pattern Recognition 1.8: Bayes’ theorem 17

tions, such as the presence of multiple minima in the error function. Chapter 7 is
therefore concerned with the important topic of finding efficient algorithms for
performing this optimization.

a polynomial to higher dimensions. Thus, for d input variables, and again one
output variable, we could consider higher-order polynomials up to, say, order 3,
given by

d d d d d d
y=1wp+ Z Wy, Tiy + Z Z Wiy iy Tiy Ty + Z Z z WiyigisTiy TizTig- (1.8)

i1=1 i1=1lig=1 i1=1ia=11i3=1

1.8 Bayes’ theorem

In the remainder of this chapter we introduce some of the basic concepts of the
statistical approach to pattern recognition, in preparation for later chapters. For
- readers interested in a more detailed account of these topics there are many stan-
."c;tard textbooks which specialize in this area, including Duda and Hart (1973)

Hand (1981), Devijver and Kittler (1982), and Fukunaga (1990). Rather than
present these concepts in an abstract fashion, we let them unfold naturally in
the context of the character recognition problem introduced at the start of this
chapter.

1 We begin by supposing that we wish to classify a new character but as yet we
have made no measurements on the image of that character. The goal is to classify
the character in such a way as to minimize the probability of misclassification. If
had collected a large number of examples of the characters, we could find the
tions which belong in each of the two classes. We formalize this by introducing
prior probabilities P(Cyx) of an image belonging to each of the classes Cj.
These correspond to the fractions of characters in each class, in the limit of an
infinite number of observations. Thus, if the letter ‘a’ occurs three times as often
the letter ‘b’, we have P(C;) = 0.75 and P(C;) = 0.25.

A If we were forced to classify a new character without being allowed to see
2 corresponding image, then the best we can do is to assign it to the class
ng the higher prior probability. That is, we assign the image to class C; if
{ 1) > P(C,), and to class Cz otherwise. In the character recognition example,
* means we would always classify a new character as ‘a’. This procedure
mizes the probability of misclassification, even though we know that some
€ images will correspond to the character ‘b’.

"OW suppose that we have measured the value of the feature variable 7, for

P _Me. It is clear from Figure 1.2 that this gives us further information on

h to bas? our classification decision, and we seek a formalism which allows

S information to be combined with the prior probabilities which we already

- To begin with, we shall suppose that Z; is assigned to one of a discrete
+ 0 VBJLIGS: {X'}, as was done for the histogram plot of Figure 1.2, We can

resent this infcl)rmation in a slightly different way, as an array of cells, as in

€ 1.13. The joint probability P(Cy, X !) is defined to be the probability that

For an Mth-order polynomial of this kind, the number of independent adjustable
parameters would grow like d¥ (Exercise 1.8). While this now has a power
law dependence on d, rather than the exponential dependence of the model
represented in Figure 1.5, it still represents a dramatic growth in the number of
degrees of freedom of the model as the dimensionality of the input space increases.
For medium to large applications, such a model would need huge quantities of
training data in order to ensure that the adaptive parameters (the coefficients
in the polynomial) were well determined.
There are in fact many different ways in which to represent general non-linear
mappings between multidimensional spaces. The importance of neural networks,
and similar techniques, lies in the way in which they deal with the problem of
scaling with dimensionality. Generally, these models represent non-linear func-
tions of many variables in terms of superpositions of non-linear functions of a
single variable, which we might call ‘hidden functions’ (also called hidden units).
The key point is that the hidden functions are themselves adapted to the data
as part of the training process, and so the number of such functions only needs
to grow as the complexity of the problem itself grows, and not simply as the
dimensionality grows. The number of free parameters in such models, for a given
number of hidden functions, typically only grows linearly, or quadratically, with
the dimensionality of the input space, as compared with the d™ growth for a
general Mth-order polynomial. We devote Chapters 4 and 5 to a study of two of
the most popular such models, known respectively as the multi-layer perceptron
and the radial basis function network.
Barron (1993) has studied the way in which the residual sum-of-squares er-

ror decreases as the number of parameters in a model is increased. For neural
networks he showed that this error falls as O(1/M) where M is the number of
hidden units in the network, irrespective of the number of input variables. By
contrast, the error only decreases as @(1/M?*/?), where d is the dimensionality
of input space, for polynomials or indeed any other series expansion in which it
is the coefficients of linear combinations of fixed functions which are adapted.. b tho :
We see that neural networks therefore offer a dramatic advantage for function: ion of thz hz:;;: ﬁ:‘; ‘;.{ auai;;fobemng;f tol classHC E‘ This corresponds to
approximation in spaces of many dimensions. ' R a particular cell (in row Cj and column
ppThe o dft:e oy for ghis efficient scaling with dimensionality st : uﬁ Im.ut of an infinite number of images. The prior proba;ﬂities P(Cy)
the network functions are now necessarily non-linear functions of the adapti 7 irél;r correspond to the total fraction of images in the corresponding
parameters. Unlike polynomial curve fitting, the procedure for determining the: . & 'we introdice the conditional probability T T T—

values of the parameters is now a problem in non-linear optimization, which is IS RNSE th ob,]
computationally intensive and which presents a number of additional complica~ ; Aat the observation falls in column X' of the array given that it

L

18 1: Statistical Pattern Recognition 1.8: Bayes’ theorem 19
C . (o LLCI%) P(C,I%,)
C, .
Xl
Figure 1.13. Data from the histogram of Figure 1.2 represented as an array. 0.0 + —
The feature variable Z; can take one of the discrete values X' and each image A %

is assigned to one of the two classes C; or Ca. The number of dots in each cell
represents the number of images having the corresponding value of X ! and the
corresponding class label. Various probabilities are defined in the text in terms
of the fraction of points falling in different regions of the array.

Figure 1.14. Histogram plot of posterior probabilities, corresponding to the
histogram of observations in Figure 1.2, for prior probabilities P(C,) = 06
and P{C‘z) =04.

e denominator in Bayes’ theorem, P(X'), plays the role of a normalization
or, and ensures that the posterior probabilities sum to unity. As we shall
shortly, the posterior probability is a quantity of central interest since it
vs us to make optimal decisions regarding the class membership of new data.
particular, assigning a new image to the class having the largest posterior
obability minimizes the probability of misclassification of that image.

~ The denominator in Bayes’ theorem can be expressed in terms of the prior
l’_m;bilities and the class-conditional probabilities. To do this we note that any

measurement must be assigned to one of the two classes C; or Cp. Thus

belongs to class Cx. It is given by the fraction of the images in row Cy which fall
in cell X! (in the limit of an infinite number of images).

We now note that the fraction of the total number of images which fall into
cell (Cx, X?') is given by the fraction of the number of images in row Cx which
fall in cell (Cx, X') times the fraction of the total number of images which fall in
row Ck. This is equivalent to writing the joint probability in the form

P(Ck, X") = P(X"|C) P(Ck).

By a similar argument, we can see that the joint probability can also be written

in the form P(C1|X") + P(Co|X") =1. (1.12)

P(Ci, X') = P(Ck| X" P(XY) (1.10) ituting (1.11) into (1.12) we obtain

where P(Ci|X!) is the probability that the class is Cx given that the measured P(X") = P(X'|C,)P(C1) + P(X"(C2) P(Ca). (1.13)
value of Z; falls in the cell X!. The quantity P(X') is the probability of ob-
serving a value X! with respect to the whole data set, irrespective of the class
membership, and is therefore given by the fraction of the total number of imag
which fall into column X'. The two expressions for the joint probabilities in (1.9)
and (1.10) must, however, be equal. Thus, we can write '

Inference and decision

Portance of Bayes' theorem lies in the fact that it re-expresses the poste-
mbabﬂities in terms of quantities which are often much easier to calculate.
Ve seen in our character recognition example that the prior probabilities
‘estimated from the proportions of the training data which fall into each

gl P(X'|Cc) P(Ck) classes. Similarly, the class-conditional probabilities P(X!|Ck) could be
(CelX*) =——%— ated from the hi . 0
P(X7) m the histograms of Figure 1.2. From these quantities we can also

the normalization factor in Bayes’ theorem, by use of (1.13), and hence eval-

f.\'-h.e‘ posterior probabilities. Figure 1.14 shows the histograms of posterior
ility, corresponding to the class-conditional probabilities in Figure 1.2, for

ot probabilities P(C;) = 0.6 and P(Cs) = 0.4,

' hew image, having feature value X', the probability of misclassification

nized if we assign the image to the class C,. for which the posterior prob-

P(Ci|X") is largest, as we shall demonstrate in Section 1.9, Thus, if we

This expression is referred to as Bayes’ theorem (after the Revd. Thomas Bayes:
1702-1761). The quantity on the left-hand side of (1.11) is called the posteri

probability, since it gives the probability that the class is Cy after we have m
a measurement of 7;. Bayes' theorem allows the posterior probability to
expressed in terms of the prior probability P(Cy), together with the quantity
P(X'|Ct) which is called the class-conditional probability of X' for class Cg.

——-

S ——
20 1: Statistical Pattern Recognition 1.8: Bayes’ theorem 21

:]::iegnw:d at::e‘:;r a::xg?e with feature value A, as shown in Figure 1.14, it should be || 1.8.2 Bayesian versus frequentist statistics

In some cases the prior probabilities can be estimated directly from the train-
ing data itself. However, it sometimes happens (often by design) that the frac-
tions of examples from different classes in the training data set differ from the
probabilities expected when our trained pattern recognition system is applied to
new data. As an example, consider the problem of designing a system to distin-
guish between normal tissue (class C;) and tumours (class C;) on medical X-ray
images, for use in mass screening. From medical statistics we may know that,
in the general population, the probability of observing a tumour is 1% and so
we should use prior probabilities of P(C;) = 0.99 and P(Cz) = 0.01. In collect-
ing a training data set, however, we might choose to include equal numbers of
examples from both classes to ensure that we get a reasonable number of repre-
sentatives of tumours, without having to use a huge number of images in total.
We can still use the images in our data set to estimate the class-conditional
probabilities P(X'|Cx) and then use Bayes’ theorem to calculate the correct pos-
terior probabilities using the known prior probabilities. Note that in practice
these prior probabilities could be obtained from medical statistics without the
need to collect images or determine their class. In this example, failure to take
correct account of the prior probabilities would lead to significantly sub-optimal
results.

One approach to statistical pattern recognition is therefore to evaluate the
class-conditional probabilities and the prior probabilities separately and then
combine them using Bayes’ theorem to give posterior probabilities, which can
then be used to classify new examples. An alternative approach is to estimate
the posterior probability functions directly. As we shall see in Chapter 6, the
outputs of a neural network can be interpreted as (approximations to) posterior
probabilities, provided the error function used to train the network is chosen
appropriately.

It is important to distinguish between two separate stages in the classification
process. The first is inference whereby data is used to determine values for the
posterior probabilities. These are then used in the second stage which is decision’
making in which those probabilities are used to make decisions such as assig
a new data point to one of the possible classes. So far we have based classifice
tion decisions on the goal of minimizing the probability of misclassification. In
Section 1.10 we shall discuss more general decision criteria, and introduce the:
concept of a loss matrix. A

As we have indicated, the minimum probability of misclassification is ob=
tained by assigning each new observation to the class for which the poster or
probability is largest. In the literature this is sometimes referred to as the “Bayes’
rule”. We avoid this terminology, however, since the role of Bayes’ theorem 18
in the evaluation of posterior probabilities, and this is quite distinct from ny
subsequent decision procedure.

Until now we have defined probabilities in terms of fractions of a set of obser-
vations in the limit where the number of observations tends to infinity. Such a
view of probabilities is known as frequentist. There is, however, a totally differ-
ent way of viewing the same formalism. Consider, for example, the problem of
predicting the winner of a bicycle race. The ‘probability’ of a particular cyclist
winning does not sit naturally within the frequentist framework since the race
‘will take place only once, and so it will not be possible to perform a large number
of trials. Nevertheless, it would not seem unusual to hear someone say that a
particular cyclist has a 30% probability of winning. In this case we are using
e term ‘probability’ to express a subjective ‘degree of belief’ in a particular
yutcome.

Suppose we try to encode these subjective beliefs as real numbers. In a key
er, Cox (1946) showed that, provided we impose some simple, and very nat-
, consistency requirements, we are led uniquely to the Bayesian formalism.
we use a value of 1 to denote complete certainty that an event will occur, and
to _denote complete certainty that the event will not occur (with inten;mdi—
values representing corresponding degrees of belief), then these real values
: exactly like conventional probabilities. Bayes’ theorem then provides us
th a precise q}xantitative prescription for updating these probabilities when we

presented with new data. The prior probability represents our degree of belief
fore the data arrives. After we observe the data, we can use Bayes' theorem
Yert th:s prior probability into a posterior probability. Jaynes (1986) gives
tening review of the fascinating, and sometimes controversial history
yesian statistics. ,

- Probability densities

we have treated the feature variable #; by discretizing it into a finite set
__ j;es. In many applications it will be more appropriate to regard the feature
b ?]I; as contlm.uous. Probabilities for discrete variables are then replaced by
aﬁf densities. From now on we shall omit the ™ symbol and suppose that
lables z; now refer to input quantities after any pre-processing and feat
ction have been performed. * =i
. P{O_babl_hty del_lsity function p(z) specifies that the probability of the vari-
& lying in the interval between any two points z = @ and 2 = b is given

b
P(z € [a, b)) =fa p(z) dz. (1.14)

g _on p(z) is normalized so that P(z € [a,b]) = 1 if the interval [a, b] cor-
45 to the whole of z-space. Note that we use upper-case letters for probabil-
o Sown .r-case.letters for probability densities. For continuous variables, the
nditional probabilities introduced above become class-conditional plrob-

————-—f

22 1: Statistical Paitern Recognition

ability density functions, which we write in the form p(z|Cx). The histograms
plotted in Figure 1.2 effectively provide unnormalized, discretized estimates of

the two functions p(z|Cy) and p(z|Cs3).

If there are d variables z1,...,2q, we may group them into a vector x =
(x1,...,2q4)" corresponding to a point in a d-dimensional space. The distribution
of values of x can be described by probability density function p(x), such that
the probability of x lying in a region R of x-space is given by

P(x€R) :/Rp(x)dx. (1.15)

We define the expectation, or expected (i.e. average) value, of a function Q(x)
with respect to a probability density p(x) to be

£Ql = f Q(x)p(x) dx (1.16)

where the integral is over the whole of x-space. For a finite set of data points
x!,...,xV, drawn from the distribution p(x), the expectation can be approxi-

mated by the average over the data points

N
£lQl = fQ{x)p(x) dx ~ % ZQ(x"). (1.17)

n=]

1.8.4 Bayes’ theorem in general

theorem, which can now be written in the form

P(zIC)P(Ck)

P ="

z irrespective of the class, and is given by

p(z) = p(x|C1) P(Cy) + p(x|C2) P(C2).

Again this plays the role of a normalizing factor in (1.18) and ensures that the

posterior probabilities sum to 1
P(Cy|z) + P(Calz) =1

as can be verified by substituting (1.18) into (1.20) and using (1.19).

For continuous variables the prior probabilities can be combined with the class-
conditional densities to give the posterior probabilities P(Cy|z) using Bayes’

(1.18)
Here p(x) is the unconditional density function, that is the density function for

(1.19)

(1.20)

1.9: Decision boundaries 23

A large part of Chapter 2 is devoted to the problem of modelling probability
density functions on the basis of a set of example data. One application for
such techniques is for estimating class-conditional densities for subsequent use
in Bayes’ theorem to find posterior probabilities.

In most practical pattern classification problems it is necessary to use more
than one feature variable. We may also wish to consider more than two possible
classes, so that in our character recognition problem we might consider more than
two characters. For ¢ different classes C1,..-,C., and for a continuous feature
vector x, we can write Bayes' theorem in the form

P(Cx|x) = p(x|Ci) P(Cy)

2(x) (1.21)

3 where the unconditional density p(x) is given by

p(x) = Y p(x|Ck) P(Ck) (1.22)
k=1

- which ensures that the posterior probabilities sum to unity

;P(Cklx) =1, (1.23)

- In practice, we might choose to model the class-conditi it

ce, : nditional densities p(x|C
'?_y_-parametnzed functional forms. When viewed as functions of the para.n(aelte’;sz
‘they are referred to as likelihood functions, for the observed value of x. Bayes’

@eorem can therefore be summarized in the form
L

likelihood x prior

posterior = — ;
normalization factor

(1.24)

[
!.
2
1.9 Decision boundaries

: posiéerior probability P(Ck|x) gives the probability of the pattern belonging
class Ci once we have observed the feature vector x. The probability of mis-

by selecting the class Cj. having the largest posterior
so that a feature vector x is assigned to class Cy. if

P(Ci|x) > P(C;|x) for all 7 # k. (1.25)
_. examine the justification for this rule shortly. Since the unconditional

¥ p(x) is independent of the class, it may be dropped from the Bayes’

?———

where P(z € R1,C3) is the joint probability of « being assigned to class C; and i rsnant functions

the true class being Ca. Thus, if p(z|C1)P(C;) > p(z|C2)P(Cs) for a given z,
should choose the regions R; and R; such that z is in R, since this gives &
smaller contribution to the error. We recognise this as the decision rule given
(1,26) for minimizing the probability of misclassification. The same result can
seen graphically in Figure 1.15, in which misclassification errors arise from t
shaded region. By choosing the decision boundary to coincide with the value of
at which the two distributions cross (shown by the arrow) we minimize the
of the shaded region and hence minimize the probability of misclassification.
corresponds to classifying each new pattern z using (1.26), which is equivalen
to assigning each pattern to the class having the largest posterior probability:
A similar justification for this decision rule may be given for the general '
of e classes and d-dimensional feature vectors. In this case it is easier to calc
the probability of a new pattern being correctly classified (Duda and Hart, 1973)

OF X is assigned to class Cy. if

k(%) > yj(x) for all j # k.

terms of discriminant functions, simply by choosing

Yk(x) = P(Cklx).

L P(correct) = iP(ﬁc € R, Ck)
: k=1

24 1: Statistical Pattern Recognition 1.9: Decision boundaries o5
formula for the purposes of comparing posterior probabilities. Thus, we can use
(1.21) to write the criterion (1.25) in the form
p(x|Ck)P(Cy) > p(x|C;)P(C;) for all j # k. (1.26) , p(xIC)P(C))
- P(xICP(C,)
A pattern classifier provides a rule for assigning each point of feature space
to one of ¢ classes. We can therefore regard the feature space as being divid
up into ¢ decision regions Ri,...,R. such that a point falling in region Ry is ¥
assigned to class Cx. Note that each of these regions need not be contiguous, > > 3
but may itself be divided into several disjoint regions all of which are associated R, R,
with the same class. The boundaries between these regions are known as decision _ i .
surfaces or decision boundaries. g 115, cher;atcm Higmteation of the joint probability densities, given by
In order to find the optimal criterion for placement of decision boundaries, g:) It tﬁ(:‘l,ef.iicﬁj E{;:;ﬁ:‘g:g:ciﬁluﬁoﬁu :c,t;or tt‘:" c:asse; Cy
consider again the case of a one-dimensional feature space x and two cla errors arise from the shaded region. By placing the d)ecis?:n bzsna;:lryc:;
C; and Cp. We seek a decision boundary which minimizes the probability point where the two probability density curves cross (shown by the arrow)
misclassification, as illustrated in Figure 1.15. A misclassification error will occur probability of misclassification is minimized. d
if we assign a new pattern to class C; when in fact it belongs to class Cz, or vice
versa. We can calculate the total probability of an error of either kind by writing =
(Duda and Hart, 1973) =Y P(x € Ri[Ck) P(Ck)
k=1
P(error) = P(z € Ry,C;) + P(x € Ry,Ca) =
= P(x|C) P(Cy) dx. 1.28
= P(z € R2|C1)P(Cy) + P(z € R4[C2)P(C2) g./;n (1.28)
: Il bability is maximized by choosing the {Rx} such that each x i i
= [plc)P(C dz+f TC)PC)dr (1.21) R . e oosing the {Ry.} such that each x is assigned
La p(x|C1)P(Cy) " p(z|C2)P(Ca) (A class for which the integrand is a maximum, which is equivalent to (1.26).

1 we have focused on probability distribution functions, the decision on
hembership in our classifiers has been based solely on the relative sizes
abilities. This observation allows us to reformulate the classification
terms of a set of discriminant functions Y1(x); - .., Yo(x) such that an

(1.29)

Sion rule for minimizing the probability of misclassification may easily

(1.30)

Bayes’ theorem, and note that the unconditional density p(x) in the
ﬁoes not t.'lepend on the class label Ci, and therefore does not affect
on decision, we can write an equivalent discriminant function in

26 1: Statistical Pattern Recognition 1.10: Minimizing risk o7

subsequent chapters.

i..-lﬁ Minimizing risk

So far we have based our classification decisions on the desire to minimize the
_,,‘ obability of misclassifying a new pattern. In many applications this may not
the most appropriate criterion. Consider for instance the medical screening
blem discussed on page 20. There may be much more serious consequences if
classify an image of a tumour as normal than if we classify a normal image
that of a tumour. Such effects may easily be taken into account as follows.
‘We define a loss matriz with elements Li; specifying the penalty associated
h assigning a pattern to class C; when in fact it belongs to class C. Consider
| the patterns x which belong to class Ci. Then the exzpected (i.e. average) loss
r those patterns is given by

the form
Yk (x) = p(x|Cx) P(Ck)- (1.31)

Since it is only the relative magnitudes of the discriminant functions which are
important in determining the class, we can replace y(x) by g(yk(x)), where g(-)
is any monotonic function, and the decisions of the classifier will not be affected.
By taking logarithms for example, we could write our discriminant functions in

the form
uk(x) = Inp(x|Ck) + In P(Ck). (1.32)

In general the decision boundaries are given by the regions where the discrimi-
nant functions are equal, so that if Ry and R; are contiguous then the decision

boundary separating them is given by

Ry = ZLH f p(x|Cy) dx. (1.37)
yk(x) = y;(x)- (1.33) = i

The locations of the decision boundaries are therefore unaffected by monotonic i the overall expected loss, or risk, for patterns from all classes is
transformations of the discriminant functions.

Discriminant functions for two-class decision problems are traditionally writ-
ten in a slightly different form. Instead of using two discriminant functions y; (X)

and ya(x), we introduce a single discriminant function

R=3_ RiP(C) (1.38)
k=1

= Z/ {ZijP(Xfck)P(Ck}} dx.
i=1YRi (k=1

: u?k is minimized if the integrand is minimized at each point x, that is if
Tégions R; are chosen such that x € R; when

y(x) = v1(%) — ya(x) (1.34)

and we now use the rule that x is assigned to class C; if y(x) > 0 and to class
Cy if y(x) < 0. From the remarks above it follows that we can use several forms

for y(x) including

y(x) = P(C1]x) — P(C2|x) (1.35) g Liip(x|Cx)P(Ck) < 3 Liip(xICk)P(Cx) for all i # j (1.39)

or alternatively -
r_ﬂei[:resents' a gel?era]jzation of the usual decision rule for minimizing the
Rty of misclassification. Note that, if we assign a loss of 1 if the pattern
Ace Lm the :vrox;g cl(as;, and a loss of 0 if it is placed in the correct class,
v Lkj = 1 — Ok; (where 6; is the Kronecker delta symbol defined on
m),ii:flilen (1,39)_ reduces to the decision rule for minimizing the probability
assification, given by (1.26). In an application such as the medical image
. 08-1310_ E n problem, tl:ne values of the coefficients Lyj would probably be chosen

' ‘ fa;ied on the views of experienced medical staff. For other applications,
; T example, it may be possible to choose values for the Li; in a more

= s

atic fashion since the risks can be more easily quantified.

. p(x|C1) P(C1) .
y(x) =In 2(xICa) +In PCa)’ (1.36,

It may not appear that we have gained a great deal by introducing discrim=
inant functions, but as we shall see it is often possible to determine suitable
discriminant functions from our training data without having to go through the
intermediate step of probability density estimation. However, by relating

discriminant functions to the probabilities, we retain the link to the optin
criteria of decision theory introduced above. There are also important links |
tween discriminant functions and neural networks, and these will be explored in

———7

28 1: Statistical Pattern Recognition

1.10.1 Rejection thresholds

In general we expect most of the misclassification errors to occur in those regions
of x-space where the largest of the posterior probabilities is relatively low, since
there is then a strong overlap between different classes. In some applications
it may be better not to make a classification decision in such cases. This is
sometimes called the reject option. For the medical classification problem for
example, it may be better not to rely on an automatic classification system in
doubtful cases, but to have these classified instead by a human expert. We then
arrive at the following procedure

y > 6, then classify x

% & P(Celx) {<€, then reject x (1.40)
where @ is a threshold in the range (0,1). The larger the value of 8, the fewer
points will be classified. One way in which the reject option can be used is to
to design a relatively simple but fast classifier system to cover the bulk of the
feature space, while leaving the remaining regions to a more sophisticated system

which might be relatively slow.
The reject option can be applied to neural networks by making use of the
result, to be discussed in Chapter 6, that the outputs of a correctly trained

network approximate Bayesian posterior probabilities.

Exercises
1.1 (*) The first four exercises explore the failure of common intuition when
dealing with spaces of many dimensions. In Appendix B it is shown that

Consider the following identity involving the transformation from Cartesian
to polar coordinates

4 o z 2 2
11 f e %idr; =8 f e r¢tdr (1.42)
o0 0

=10

use of (1.41) show that
oxd/2

54 = Ta2)
where I'(z) is the gamma function defined by

I(@)= fo > le=vdu, (1.44)

]:: exp {—%gﬁ} dr = (2—:-) lﬂ. (1.41)

where Sy is the surface area of the unit sphere in d dimensions. By making

(1.43)

Ezercises 29

Using the results I'(1) = 1 and I'(3/2) = \/z/2, verify that (1.43) reduces
to the well-known expressions when d = 2 and d = 3.

1.2 (*) Using the result (1.43), show that the volume of a hypersphere of radius
a in d-dimensions is given by

Sqad
V= 28¢
d 7 (1.45)
Hence show that the ratio of the volume of a hypersphere of radius a to

the volume of a hypercube of side 2a (i.e. the circumscribed hypercube) is

given by
volume of sphere wd/2
volume of cube ~ d24-1T(d/2)" (1.46)
Using Stirling’s approximation
D(z + 1) ~ (2m) /222 +1/2 (1.47)

which is _ralid when z is large, show that, as d — 00, the ratio (1.46) goes
to zero. Similarly, show that the ratio of the distance from the centre of the
hypercube to one .°f the corners, divided by the perpendicular distance to
one of the edges, is V/d, and therefore goes to oo as d — 0o. These results
show that, :in a high dimensional space, most of the volume of a cube is
concentrated in the large number of corners, which t
ey which themselves become very
1.3 (%) Consider a sphere of radius a in d dimensions. Use the result (1.45) to
show tifat; the fraction of the volume of the sphere which lies at values of
the radius between a — ¢ and a, where 0 < € < a, is given by

=1 (l—i)d' (1.48)

Hence show that, for any fixed € no matter how small, this fraction tends

:lc: 1 as d — oo. Evaluate the ratio f numerically, with e/a = 0.01, for
fe l(]:e.sﬁas d =2 d=10 and d = 1000. Similarly, evaluate the fraction

3 the volume of the sphere which lies inside the radius a/2, again for

dis_t nZt,) li :j i10 fa(.ind d= 100[?. We see th‘at, for points which are uniformly

oty nside a sphere in d du'faenmons where d is large, almost all of
€ points are concentrated in a thin shell close to the surface.

i ; v
14(x%) Consider a probability density function p(x) in d dimensions which is

a function only of radius r = x| and which has a Gaussian form

1 2
p(x) = W exp (— “;JL) ; (1.49)

30 1: Statistical Pattern Recognition
Sard? r?
el s e 1.5
Plr) = Ty o () (1.50)

where Sy is the surface area of a unit sphere in d dimensions. Show that the
function p(r) has a single maximum which, for large values of d, is located
at ¥ ~ Vdo. Finally, by considering p(7 + €) where ¢ < 7 show that for
large d

2
o7 +€) = p(F) exp (—23—;) . (1.51)

Thus, we see that p(r) decays exponentially away from its maximum at
7 with length scale 0. Since o < T at large d, we see that most of the
probability mass is concentrated in a thin shell at large radius. By contrast,
note that the value of the probability density itself is exp(d/2) times bigger
at the origin than at the radius @, as can be seen by comparing p(x) in
(1.49) for [|x]|2 = 0 with p(x) for [|x||> = 7 = od. Thus, the bulk of the
probability mass is located in a different part of space from the region of
high probability density.

1.5 (x) By differentiating of the sum-of-squares error function (1.3), using the
form of the polynomial given in (1.2), show that the values of the polyno-
mial coefficients which minimize the error are given by the solution of the
following set of linear simultaneous equations

M
> Ajpw; =Ty (1.52)

=2
where we have defined

Ajy = Y @)

mn

M=y AR, (1.53)

1.6 (x) Consider the second-order terms in a higher-order polynomial in d di-
mensions, given by

d d
Zzwijl’,’&:j. (154) i

i=1 j=1

Show that the matrix w;; can be written as the sum of a symmetric matrix
wd, = (wij +wj:)/2 and an anti-symmetric matrix w,%— = (wij — wji)/2-

i
Verify that these satisfy w; = w§; and wf; = —wf;. Hence show that
d d d d
Z Z Wi TiT; = Z: Z w‘-ijiz:_.,- (155)
i=1j=1 =1 =1

so that the contribution from the anti-symmetric matrix vanishes. This
demonstrates that the matrix wy; can be chosen to be symmetric without

Ezercises 31

los§ of generality. Show that, as a consequence of this symmetry, the number
of mdepe_ndent parameters in the matrix w;; is given by d(d + 1)/2.

1.7 (x+) Consider the Mth-order term in a multivariate polynomial in d dimen-
sions, given by

d
Z Wiy igeoipg Tiy Tip * =+ Ty, - (1.56)
H1=113=1 M=l
The M-dimensional array wj,s,...;,, contains ¢ elements, but many of
these are related as a consequence of the many interchange symmetries of
the factor z;, x4, -+ z;,,. Show that the redundancy in the coefficients can
be removed by rewriting (1.56) in the form

d i M -1
Z Z e Z Wiyigeing Tiy Tig *** Ligy - (1.57)

f1=lig=1 ipy=1

Hence show that the number of independent parameters n(d, M) which
appear at order M satisfies the relation

d
n(d, M) =Y n(i, M ~1). (1.58)
i=1

Use this relation to show, by induction, that

d+ M -1)!

n(d, M) = L+ M 1!

(4. M) (d—1)IM!" (1.59)

To do this, first s',.how that the result is true for M = 2, and any value of

d>1, by comparing (1.59) with the result of Exercise 1.6. Now use (1.58)

to show that, if the result holds at order M — 1, then it will also hold at
order M provided the following relation is satisfied:

d
(+M—-2)! (d+M-1)!
;(it) (d+M—1) o)

-DIM —-1)! — (d-1)IM!°

:‘hinally, use induction to prove (1.60). This can be done by first showing
b at sz‘i) is correct for d = I and arbitrary M (making use of the result
+ = 1), then assuming it is correct for dimension d ifyi it i
b ks imension d and verifying that it is
L8 (x *? In the previ.ous exercise we considered the Mth-order term in a gener-
alized polynomial. Now consider all of the terms up to and including the

Mth i
i agfier. Show that the total number N(d, M) of independent parame-

P———f

1: Statistical Pattern Recognilion

32
M
N(d,M) = _ n(d.). (1.61)
=0
Hence, using the expression (1.59), show by induction that
(d+ M)! 1.69
N(d,M) = "7~ (1.62)

holds for M = 0 and arbitrary

: hat the result (1.62
To do this, first show that the r (£9 der M, show that it holds

d > 1. Then, by assuming that (1.62) holds at or
at—order M + 1. Use Stirling’s approximation in the form l_n n! ';A}nlnﬂ -—hn
to show that, for large d, the quantity N(d, M) grows like d™. FO:'[‘ tue
general cubic (M = 3) polynomial in d—dimensi@& evaluate numerica y
the total number of independent parameters for {1.) d =10 and (fl) d. = 100,
which correspond to typical small-scale and medium-scale applications.
1.9 (*) Suppose we have a box containing 8 apples and 4 oranges, and we hif‘ve a
second box containing 10 apples and 2 oranges. Oa}e of the boxes is chosen
at random (with equal probability) and an item is selected from. 'the I:l)lox
and found to be an apple. Use Bayes’ theorem to find the probability that
the apple came from the first box. .
1.10 (%) Cﬂﬁsider two non-negative numbers a and tt. and sho‘w. that, ff a < ‘b
then a < (ab)}/2. Use this result to show that, if !:he decision regions aliﬁ
chosen to minimize the probability of misclassification, this probability w

satisfy

Plerror) < [(p(xIC)P(CPACPCa) /. (169

1.11 (+) Verify that the minimum-risk decision criterion (1_.39) r_educs‘:s to the
decision rule (1.26) for minimizing the probability of misclassification when

the loss matrix is given by Ligj = 1 — 0k;.

2
PROBABILITY DENSITY ESTIMATION

In this chapter we consider the problem of modelling a probability density func-
tion p(x), given a finite number of data points x®, n = 1,..., N drawn from
that density function. The methods we describe can be used to build classifier
systems by considering each of the classes Ci. in turn, and estimating the corre-
sponding class-conditional densities p(x|Cy) by making use of the fact that each
data point is labelled according to its class. These densities can then be used in
Bayes' theorem (Section 1.8) to find the posterior probabilities corresponding to
a new measurement of x, which can in turn be used to make a classification of
X
Density estimation can also be applied to unlabelled data (that is data with-
out any class labels) where it has a number of applications. In the context of
neural networks it can be applied to the distribution of data in the input space
as part of the training process for radial basis function networks (Section 5.9),
and to provide a method for validating the outputs of a trained neural network
(Bishop, 1994b).
In Chapter 6, techniques for density estimation are combined with neural
network models to provide a general framework for modelling conditional density
functions.
Here we consider three alternative approaches to density estimation. The
first of these involves parametric methods in which a specific functional form
for the density model is assumed. This contains a number of parameters which
are then optimized by fitting the model to the data set. The drawback of such
an approach is that the particular form of parametric function chosen might be
incapable of providing a good representation of the true density. By contrast,
1€ second technique of non-parametric estimation does not assume a particular
functional form, but allows the form of the density to be determined entirely
1?)’ the data. Such methods typically suffer from the problem that the number
Of parameters in the model grows with the size of the data set, so that the
Mmodels can quickly become unwieldy. The third approach, sometimes called semi-
Parametric estimation, tries to achieve the best of both worlds by allowing a very
3__3'31}81"&1 class of functional forms in which the number of adaptive parameters can
he tcreased in a systematic way to build ever more flexible models, but where the
YOtal number of parameters in the model can be varied independently from the
of the data set. We shall focus on semi-parametric models based on mizture
Wbutions. Feed-forward neural networks can be regarded as semi-parametric

34 2: Probability Density Estimation 2.1: Parametric methods 35

models for conditional density estimation, as discussed further in Chapter 6.
It should be emphasized that accurate modelling of probability densities from
finite data sets in spaces of high dimensionality (where high could be as low as

can easily be verified using the results derived in Appendix B. The mean and
variance of the one-dimensional normal distribution satisfy

d = 10) is, in general, extremely difficult. In Exercise 1.4 it was shown that most oo

of the probability mass associated with a Gaussian distribution in a space of high n=_Ez]= / zp(x) dz (2.2)

dimensionality occurs in a thin shell at large radius. With a finite data set, there =

may be few, if any, data points associated with the region of high probability 0o

density near the origin. This is another example of the ‘curse of dimensionality’ o? =E[(z - w3 = / (z — p)’p(z) dz (2.3)
—00

discussed in Section 1.4.

The techniques described in this chapter are not only of great interest in
their own right, but they also provide an excellent introduction to many of the
central issues which must be addressed when using neural networks in practical
applications. More extensive discussions of density estimation can be found in
Duda and Hart (1973), Titterington et al. (1985), Silverman (1986), McLachlan
and Basford (1988), Fukunaga (1990) and Scott (1992).

where £[-] denotes the expectation.
In d dimensions the general multivariate normal probability density can be
written

1 1
p(x) = Weﬁﬁp{—ﬂx-ﬂﬂx_l@*#)} (2.4)

2.1 Parametric methods

One of the most straightforward approaches to density estimation is to represent
the probability density p(x) in terms of a specific functional form which contains
a number of adjustable parameters. The values of the parameters can then be
optimized to give the best fit to the data. The simplest, and most widely used,

where the mean p is now a d-dimensional vector, ¥ is a d x d covariance
matriz, and |X| is the determinant of ¥. The pre-factor in (2.4) ensures that
| oo P(X) dx = 1, as can again be verified using the results derived in Appendix B.
The density function p(x) is governed by the parameters p and X, which satisfy

parametric model is the normal or Gaussian distribution, which has a number p=E[x] (2.5)
of convenient analytical and statistical properties. Since our aim is to explain the '
basic principles of parametric density estimation, we shall limit our discussion 3 = E&[(x — p)(x — ”)T]_ (2.6)

to normal distributions.

We shall also describe the two principal techniques for determining the pa-
rameters of the model distribution, known respectively as mazimum likelihood
and Bayesian inference. As an illustration of the Bayesian approach, we consider
the problem of finding the mean of a normal distribution. Bayesian methods are
also considered in Chapter 10 where they are applied to the more complex prob-
lem of learning in neural networks. We shall also consider stochastic techniques
for on-line learning in which the data values arrive sequentially and must be
discarded as soon as they are used.

Erom (2.6) we see that X is a symmetric matrix, and therefore has d(d+1)/2
igudependent components. There are also d independent elements in y, and so the
,-_C._l_enSity function is completely specified once the values of d(d + 3)/2 parameters
‘have been determined. The quantity

A? = (x - p) TS (x - pr) (2.7)

j‘whlch appears in the exponent in (2.4), is called the Mahalanobis distance from
vao b From the results derived in Appendix A for the properties of real sym-
etric matrices, we see that the surfaces of constant probability density for (2.4)
are hyperellipsoids on which A? is constant, as shown for the case of two dimen-
éions in Figure 2.1. The principal axes of the hyperellipsoids are given by the
igenvectors u; of ¥ which satisfy

2.1.1 The normal distribution

The normal density function, for the case of a single variable, can be written in’
the form

1 S, 1
p(z) = (rotia exp {—%f—)*} (2.1)0

where p and o are called the mean and variance respectively, and the parameter
o (which is the square root of the variance) is called the standard deviation. The
coefficient in front of the exponential in (2.1) ensures that [“o, p(%)dz = 1, as

E'Ll,; =)k,'lli (28)

md ?he corresponding eigenvalues A; give the variances along the respective
Principal directions.

36 9: Probability Density Estimation

X, u, b‘ u,

Figure 2.1. A normal distribution in two dimensions is governed by a mes:.iri
vector pt and a covariance matrix with eigenvectors uy and ugz, and cc}rrmpc:n .
ing eigenvalues A; and)2. The ellipse corresponds to a contmirl ,?2 (;ms :.n

probability density on which the density is smaller by a factor e than it is

at the point .

It is sometimes convenient to consider a simplified form of Gaussian distri-
bution in which the covariance matrix is diagonal,

(B)ij = 6ij07, (2.9)

which reduces the total number of independent parameters in jnhe _distri’bumon
to 2d. In this case the contours of constant density are hyperellipsoids with the
principal directions aligned with the coordinate axes. Thtf: components of :ft:.erg |
then said to be statistically independent since the distribution of x can be wri hr; |
as the product of the distributions for each of the components separately in the:

form
d i
p(x) = []p(z:)- (2.10);

i=1

by choosing ¢; = ¢ for all j, which reduces

the number of parameters still further to d + 1. The contours o‘f copsta;nt i{:};
sity are then hyperspheres. A surface plot of the norme'ﬂ c!mtn‘butson orf ;
case is shown in Figure 2.2. Although these simplified distributions have fewer

parameters, they also clearly have less generality.

Further simplification can obtained

2.1.2 Properties of the normal distribution

The normal distribution has a number of important Properties which make it &
common choice for use in parametric density estimation:

2.1: Parametric methods 37

Figure 2.2, Surface plot of a normal distribution in two dimensions for a diag-

onal covariance matrix governed by a single variance parameter ¢°.

. It has relatively simple analytical properties allowing many useful results
to be obtained explicitly. For instance, any moment of the distribution can
be expressed as a function of g and 2.

. The central limit theorem states that, under rather general circumstances,
the mean of M random variables tends to be distributed normally, in the
limit as M tends to infinity. The main condition is that the variance of any
one variable should not dominate. A common application is to the sum
of a set of variables drawn independently from the same distribution. In
practice, convergence tends to be very rapid, so that for values of M as
small as 10 the approximation to a normal distribution can be very good.
We might hope that measurements of naturally occurring phenomena have
several constituent components, leading to a distribution which is close to
normal.

. Under any non-singular linear transformation of the coordinate system,
the Mahalanobis distance keeps its quadratic form and remains positive
definite. Thus, after such a transformation, the distribution is again normal,
but with different mean and covariance parameters.

. The marginal densities of a normal distribution, obtained by integrating

out some of the variables, are themselves normal. Similarly, the conditional
densities, obtained by setting some of the variables to fixed values, are also
normal.

. There exists a linear transformation which diagonalizes the covariance ma-

trix. This leads to a new coordinate system, based on the eigenvectors of
%, in which the variables are statistically independent, so that the density
function for the vector x factors into the product of the densities for each
of the component variables separately (Exercise 2.2).

. For given values of the mean and the covariance matrix, the normal den-

sity function maximizes the entropy. This point is discussed further in
Section 6.10.

38 2: Probability Density Estimation 2.2: Mazimum likelihood 39

In practice, the main reason for choosing a normal distribution is usually its
analytical simplicity. |

9.1.3 Diseriminant functions | A Y(x) = yy(x)

In Section 1.9.1 we introduced the concept of a discriminant function, and showed
how it could be related to the class-conditional density functions through Bayes’
theorem. This led to a particular form of discriminant function given by

yk(x) = Inp(x|Cx) + In P(Ck) (2.11)

where Ci denotes the kth class, and P(Cy) denotes the corresponding prior prob-
ability. Each new input vector x is assigned to the class Cx which gives the largest:
value for the corresponding discriminant yj(x). This choice of classification crite-
rion minimizes the probability of misclassification. If each of the class-conditional
density functions p(x|Cx) in (2.11) is taken to be an independent normal distri-
bution, then from (2.4) we have

’l- X
'r: F‘ig'ure 2.3. Fu}' two classes_ lfaving normal probability densities with equal co-
_ variance ma.tncea. the decision boundary corresponding to the contour along
- which the discriminant functions are equal, is linear. Here the ellipses corre-
; g spond to mﬁm:rs’o’f constant class-conditional density, while the straight line
yk(x) = —5(x =) B (% —) — 50 |Sk| + In P(C) (2.12) ggmﬁ; *j;q J:i“;‘::é!";;‘:ﬁ;‘;ﬁi;:’2,;3‘3{2‘;“;‘“;?;)‘_‘” probability of misclas-
where we have dropped constant terms. The decision boundaries, along which iance matrices for all of the classes are equal, and in addition all of th
yk(x) = y;(x), are therefore general quadratic functions in d-dimensional space. bles are statistically independent, so that ¥ I:)ecomes a diagonal Ot e
An important simplification occurs if the covariance matrices for the various: Then 3 = oI (where I denotes the unit matrix) and the discril:m'ag t fuma-rlx.
classes are equal, so that £ = 2. Then the || terms are class independent and in (2.12) can be written MUk nctiong
may be dropped from (2.12). Similarly, the quadratic term xTE " 1x is also class:
independent and can be dropped. Since X is a symmetric matrix, its inverse must;
also be symmetric (Appendix A). It therefore follows that XT3 ™'y, = pj 7 'x.
This gives a set of discriminant functions which can be written in the form

_||x— Al

Y(x) = 202

+In P(Cy) (2.16)
® t}}e class-independent term —dIn o has been dropped. If the classes have
Prior probabilities P(Cx) then the decision rule takes a particularly simple
» measure the Euclidean distance to each of the class means 4. and assign
vector to the class with the nearest mean. In this case the mean vectors act

.plates or prototypes and the decision rule corresponds to simple template
ching, If t.%le prior probabilities are not equal then this template matching rule
= nes n:xodlﬁ.s:d as iqdicatefi by (2.16). The concept of a prototype also arises

nnection with radial basis function networks, as discussed in Chapter 5.

Yk(X) = WEx 4 wio (2.13)

where

Wi =pp s (2.14)

1 .
Wro = —§uEE_lpk -+ lﬂ P(Ck) (2.15) .
Maximum likelihood
The functions in (2.13) are an example of lineer discriminants, since they are g decided on a parametric form for a densi i
. : : nsity fu :
linear functions of x. Decision boundaries, corresponding to yx(x) = y;(x), aré the data set to find values for the para.met);rs.nlﬁlfll:iﬁ igéii};e;r?; ttls:lmgez
then hyperplanar. This result is illustrated for a two-class problem with two W briefly the two principal approaches to this problem, k e
variables, in which the two classes have equal covariance matrices, in Figure 2.3. Y 88 mazimum likelihood and Bayesian inference. Althou l'; l:}l,1 own res]fe;.
Linear discriminants are closely related to neural network models which have & ad to similar results, their conceptual basis is l;ather diéeren:se Mme't i
single layer of adaptive weights, as will be discussed in St?ction 3.1) 00d seeks to find the optimum values for the parameters b maxu?lmm =
Another simplification of the discriminant functions is poﬁiblfif again the ood function derived from the trainin, g data. By contrast 3;1 the Baljgiga:

T

.

40 2: Probability Density Estimation 2.2: Mazimum likelihood
41

approach the parameters are described by a probability distribution. This is ‘Tatsuoka, 1971) then leads to the following results

initially set to some prior distribution, which is then converted to a posterior

distribution, through the use of Bayes' theorem, once the data has been ob- N
served. The final expression for the desired probability density of input variables L= 1 Z X"

is then given by an integral over all possible values of the parameters, weighted N~ 1 (2.19)
by their posterior distribution. Note that the Bayesian approach does not in-

volve setting the parameters to specific values, unlike the maximum likelihood = X

method. Since our aim in this chapter is to give an overview of conventional = N Z(x" -) (x"—@)T (2.20)

1

w

pattern recognition techniques, we shall restrict our attention to the case of the
normal density function for which the results are relatively straightforward.

We begin our discussion of parameter estimation by considering the maximum
likelihood procedure. Suppose we consider a density function p(x) which depends:
on a set of parameters 8 = (6y,...,0um)T. In a classification problem we would
take one such function for each of the classes. Here we shall omit the class labels:
for simplicity, but essentially the same steps are performed separately for each
class in the problem. To make the dependence on the parameters explicit, we
shall write the density function in the form p(x|0). We also have a data set of
N vectors X = {x!,...,xN}. If these vectors are drawn independently from the
distribution p(x|@), then the joint probability density of the whole data set X’ is
given by

which represents the intuitive result that the maximum likelihood estimate fi of
the mean vector p is given by the sample average (i.e. the average with respe:: :o
the given data set). We recall from (2.5) that, for data generated from a normal
.jgmnzbutlon, the expectation of x (i.e. the average value of x over an in(;i:;te
‘sample) give'as the true mean p. Similarly, the maximum likelihood estimate 3
:he Eoval;iancg rgatrix E is given by the sample average of the outer product
b= p.)(x. 5 i) g Again, from (2.6), we note that, for data generated from
I_normal distribution, the expectation of this quantity (with Z replaced b p
?ves the true covariance matrix 3. B
@ho$:;;hm'xgh the maximum likelihood approach seems intuitively reasonable, we
o point out that it can suffer from some deficiencies. Consider the maximum
likelihood estimates for the mean and variance of a normal distribution in one

N
p(x|6) = [] »(x"6) = £(6) (2.17) mm'ﬂm“’”’ given from (2.19) and (2.20), by
n=1
_]
where £(8) can be viewed as a function of @ for fixed &, in which case it is B==3"z" 9.9
referred to as the likelithood of @ for the given X. The technique of maximum N n=1 (2.21)
likelihood then sets the value of & by maximizing £(8). This corresponds to the
intuitively reasonable idea of choosing the 8 which is most likely to give rise to the 5 3 o
observed data. A more formal discussion of the origins of the maximum likelihood R Z (=™ —)% (2.22)
: n=1

procedure is given in Akaike (1973). In practice, it is often more convenient :
consider the negative logarithm of the likelihood f we consi
€ consider the expectation, defined in (1 i
.] -16 —
ain (Exercise 2.4) (), of the estimate for 7 , then we

N
E=-InL(8)=- Inp(x"|6)

n=1

M= 2
E[O‘ I“ N a (223)

and to find a minimum of E. This is equivalent to maximizing £ since the negative
logarithm is a monotonically decreasing function. The negative log-likelihood cam
be regarded as an error function, as discussed at greater length in Chapter 6. 4 :
For most choices of density function, the optimum € will have to be found byt % I8 sai

: 4 g g indeed

an iterative numerical procedure of the kind described in Chapter 7. Howevery Teasonabl
for the special case of a multivariate normal density, we can find the maximum 8
likelihood solution by analytic differentiation of (2.18), with p(x|@) given by
(2.4). Some straightforward but rather involved matrix algebra (Anderson, 1958,

._azis

o the true vari e el .
- variance of the distribution from which the data set was

:jﬂuta ees;?a_te guch as thi.?-, v.vhose expected value differs from the true
fo: ;lbit bias. In the limit N — oo, we see that the bias disappears,
o) n::;xﬁ:‘ats values of N the maximum likelihood estimator gives
S w;; 5 al ;22. The pr_obiemﬂhas arisen because, in the expression
ue ek (:_:h ave u our est.unate: i for the mean, rather than the true
: apter 10 a similar effect is discussed in the context of learning

|

42 9: Probability Density Estimation 2.3: Bayesian inference 43
~m the definition of conditional probability densities, we can then write
posterior
p(x,0|X) = p(x|6, X)p(0]X). (2.25)

p(8lx)

e first factor, bowever, is independent of A’ since it is just our assumed form
the parametrized density, and is completely specified once the values of the
rameters @ have been set. We therefore have

(i) = [p(xio)p(el) ao. (2.26)

Figure 2.4. Schematic illustration of Bayesian inference for a parameter 6. The
prior distribution reflects our initial belief in the range of values which @ might
take, before we have observed any data, and is typically very broad. Once we
have observed the data set X, we can calculate the corresponding posterior
distribution using Bayes’ theorem. Since some values of the parameter will be
more consistent with the data than others, this leads to posterior distribution
which is narrower than the prior distribution.

instead of choosing a specific value for 8, the Bayesian approach performs
ed average over all values of 8. The weighting factor p(8|X’), which is the
rior distribution of 8, is determined by starting from some a;sumed prior
ribution p(@) and then updating it using Bayes’ theorem to take account of
data set X. Since the data points {x!,...,x"} are assumed to be drawn
endently from the same underlying distribution, we can write

in neural networks. In this case the consequences are potentially much moré

serious, as a result of the much larger number of parameters which have to b N
determined. p(X(6) = Hp(x“{a) (2.27)
n=1
2.3 Bayesian inference , . £ . N
. is precisely the likelihood function introduced in (2.17). Using Bayes’ the-

In the maximum likelihood method described above, the goal is to find the we can then write the posterior distribution for 8 in the form

single most likely value for the parameter vector 8 given the observed data.

Bayesian approach, however, is rather different. Our uncertainty in the val N
of the parameters is represented by a probability density function, as disc p(6|X) = p(X|0)p(6) » r(0) H 2(x"0) 28
in Section 1.8.2. Before we observe the data, the parameters are described by @ Y p(X) p(X) = (2.28)

prior probability density, which is typically very broad to reflect the fact thal
we have little idea of what values the parameters should take. Once we obseryg
the data, we can make use of Bayes’ theorem to find the corresponding post,
probability density. Since some values of the parameters are more consistent
the data than others, we find that the posterior distribution is narrower thal
the prior distribution. This phenomenon is known as Bayesian learning, and 1
illustrated schematically in Figure 2.4.

We first give a formal discussion of Bayesian learning in general terms, anl
then consider a very simple example to see how it operates in practice. In Chap
ter 10 we apply Bayesian techniques to the much more complex problems ¢
determining the parameters in a neural network, and of comparing different ne
work models. .

We begin by writing the desired density function for the vector x, given |
training data set X, as an integral over a joint distribution of the form

fe the normalization factor in the denominator is given by
N

p(¥) = [9(6) [] px"10") def (2:29)
n=1

;;;;lr:dﬂ;;tg é')p.(t?!&’) d@ = 1. Typically, ti{e evaluation of integrals such
il feagibl ;s a l‘;ery complex m{dertakjng, and, in general, it is only
" S e for the class of _dens:ty functions for which the posterior
: 6) has t.he same functional form as the prior. For a given choice
ctg;(()ﬂgl)j;oa prior p.(ﬂ) which gives:, rise to a posterior p(@|X) having the
- ut;::i::l is said to l::e a conjugate _pn’on If we were to update the
o b r_g a :ucltlzesmon of data points, with the posterior at each
: l'mmg m prior at the next stage, then the distribution would retain
ctional form throughout. Such functions are known as reproducing

p(x|X) = /;p(x, 0|x) de. (2.24 s (Duda and Hart, 1973), and include the normal distribution as the

44 2: Probability Densily Estimation

most commonly encountered example.

In order to illustrate the technique of Bayesian learning, we consider a simple
example involving a one-dimensional input space governed by a single variable
x. We shall suppose that the data is generated from a normal distribution for
which the standard deviation o is assumed to be known. The goal is to find the
mean y of the distribution, given a set of data points {z*,...,z"}. We shall take
the prior density for 4 to be a normal distribution having mean yo and standard
deviation oy, given by

1 — o)’
Po(k) = Groayi7s P {—w—z;?—'} (2.30)

This expresses our prior knowledge of the mean y, and so if we are very uncertain
as to its value we would choose a large value for gp. Once we have observed &
given set of N data points, we can calculate the posterior density p(u|X) =
pn(plz1,...,zN) using Bayes’ theorem. It is important to distinguish clearly
between the distribution of z, which we are trying to model, and the distributions
po(r) and pn(p|X), which describe our uncertainty in the value of u. In this
particular example, all of these distributions are normal.
Using (2.28) we can write the posterior distribution in the form

N
P (ulX) = ;;{E(;)) [1 »("1)-

n=1

Then, using the form (2.1) for the normal distribution for p(z|u), it is straig ht
forward to show (Exercise 2.5) that the posterior distribution py(u|X) is als
normal, with mean yx and variance % given by

_ Nd} 7+ o?
" No¢ +ao2 ng+0'2”0

. (2.32

1 N1
ok % of

where 7 is the sample mean

1 N
= ﬁ Z 2", (2 .l.
n=1

From (2.32) and (2.33) we see that, as the number of data points IV increases
the mean of the posterior distribution for p approaches the sample mean
Similarly, the standard deviation oy approaches zero. This result is illustraté
for a particular set of parameter values in Figure 2.5.

2.8: Bayesian inference 45
10.0 T
N=50
p(w)
50+ -
N=10
N=0 N=1
0.0
0.0
0.5 m 1.0

Figure 2.5. An illustration of Bayesian inference for the case of data drawn
1 E?n 1, :hi‘:h is itself alscf giw?n by a normal distribution in this example. As
 the number N of data points increases, the posterior density becomes more
sharply peaked. In this example, the prior distribution was chosen to have a

~ from a normal density function. The plot shows the posterior density for the
mean of 0.0 and standard deviation of 0.3 to reflect the fact that we have little

- idea of what value y should have. The true mean of the distribution of = from

?.'hich the data was generated, was 0.8 (with a standard deviation of 0.3 which
is assu_med to be known). Note that, as the size N of the sample increases, the
- Posterior distribution concentrates around the true value of the mean.

’I‘ht_ere is ? simpEe relationship between the technique of Bayesian inference
d the maximum likelihood method. From (2.17) and (2.28) we have, omitting
e€nominator since it is independent of @,

p(8Ix’,...,xN) x L(8)p(6). (2.35)

‘have little prior information about @ then p(@) will be relatively flat. The
el bod‘ function by definition peaks at the maximum likelihood value 8. If
peak is relatively sharp, then the integral in (2.26) will be dominated by the
I around @, and the integral in (2.26) will be given approximately by

P(x|X) ~ p(x[) / p(6X) d6 = p(x[B) (2.36)

we have used [p(0|X)do = 1. Thus, the distribution is j i

maxlmum likelihood expression. We have seen that, as the :::iﬂi;: e;' l;};
10ns Increases, the posterior probability density for @ tends to become

and more sharply peaked. For large numbers of observations, therefore, the
1 representation of the density p(x) approaches the maximum likelihood

g

46 2: Probability Density Estimation
solution. For a limited number of observations, however, the two approaches will
tend to give somewhat different results.

2.4 Sequential parameter estimation

There are several other approaches to the problem of parameter estimation,
which we do not have space to discuss in detail here. One technique which is
worthy of mention, however, is that of sequential parameter estimation, since it/
underpins a number of algorithms used in adaptive neural networks.

Sequential methods for parameter estimation make use of iterative techniques:
to update the parameter values as new data points or observations are acquired.
They play an important role in pattern recognition for a number of reasons. First,;
they do not require the storage of a complete data set since each data point ca 1
be discarded once it has been used, and so they can prove useful when large!
volumes of data are available. Second, they can be used for ‘on-line’ learning in
real-time adaptive systems. Finally, if the underlying process which generates
the data has a slow time variation, the parameter values can adapt to ‘track’ the
behaviour of the system.

In simple cases it may be possible to take a standard ‘batch’ technique for
parameter estimation and separate out the contribution from the (N + 1)th
data point to give a sequential update formula. For instance, from the maximum
likelihood expression for the mean of a normal distribution, given by (2.19), we
obtain

N+1

ﬁN+1=ﬁN+N+1(X - By)-
We see that it is only necessary to store the values of i and N, and so each data
point is used once and can then be discarded. Note that the contribution of each
successive data point decreases as a consequence of the 1/(N + 1) coefficients
Although this heuristic procedure seems reasonable, we would like to find so ne
formal assurance that it will converge satisfactorily. To do this, we turn to a

more general view of sequential parameter estimation.

2.4.1 The Robbins-Monro algorithm

The iterative formula of (2.37) is a particular example of a more general proces
dure for finding the roots of functions which are defined stochastically. Consider @
pair of random variables g and # which are correlated, as indicated in Figure 2.6.
The average value of g for each value of f defines a function f(6)

£(6) = €lglé)

where £[:|6] denotes the expectation for the given value of 8. Thus, if we co ld
make several measurements of the value of g for a given value of § we would obtaif
a set of random values whose average value (in the limit of an infinite sample
defines the value of the function f at that value of . Functions which have this

[.

2.4: Sequential parameter estimation

47

*e%e f(9)

Figure 2.6. .The regression function f(#) is defined to be the expectation of a
random variable g for each value of 6. The root 8" of f(6) can be found by the
Robbins-Monro algorithm.

____.f:-ra.l form are referred to as regression functions, and a general procedure for
finding the roots of such functions was given by Robbins and Monro (1951).
The goal is to find a value 8* for which f(0*) = 0. We shall assume that g

-haa finite variance

Ellg— £)*16] < o0 (2.39)

‘and we shall also assume, without loss of generality, that f(6) > 0 for # < #* and

) <0 for 6 > 6" as indicated in Figure 2.6. The Robbins-Monro procedure
specifies a sequence of successive estimates for the root given by
\ On+1 =6n +ang(fn) (2.40)

e g(fn) is a value for the random variable g obtained when @ takes the value

The C(.)eﬂicients {an} represent a sequence of positive numbers which satisfy
following three conditions:

Mim oy =0 (2.41)
oo
D av=00 (2.42)
N=1
i 2
ay < oo. (2.43)

N=1

* ¢an then be shown that the sequence of estimates 8y does indeed converge to

48 2: Probability Density Estimation 5 Nomporamsiohs wieliode 5

the root 8* with probability 1 (Robbins and Monro, 1951). For a simple proof of
this result, see Fukunaga (1990).
The first condition (2.41) ensures that successive corrections tend to decrease
in magnitude so that the process converges to a limiting value, while the second
condition (2.42) ensures that the corrections are sufficiently large that the root is
eventually found. The final condition (2.43) ensures that the accumulated noise
has finite variance so that the noise does not spoil the convergence to the root.
An analogous procedure for finding the minimum of a regression function
has been given by Kiefer and Wolfowitz (1952). These stochastic approximation
schemes have also been extended to the multidimensional case by Blum (1954).
We can formulate the maximum likelihood parameter estimate as a sequential
update method using the Robbins-Monro formula as follows. The maximum
likelihood value 4 is given by a solution of

8 (N
~, "|g

Since we can equally well seek a maximum of the logarithm of the likelihood
function, we can also write

N
o {Z mp(a:“te)}

n=]

=

) (N s
- oy
“
-~

p(gIR)

Figure 2.7. This figure shows the specific form taken by the diagram in Fig-
u.re 2..6. for the particular case of data drawn from an assumed normal distribu-
I_taon in which t‘he variable g corresponds to the derivative of the log-likelihood
ffmctlon, fand is given by (z — 1) /0. The dashed line represent the regres-
sion function (i — 1) /o, and its root gives the required maximum likelihood
estimate zi of the mean in the limit of an infinite set of data.

=0, @.
7

=0 (2.4 IS is a very straightforward scheme to i
ek tie i implement, once we have chosen a
_ As a specific example, consider the case where p(2|0) is taken to be a normal
i :b_utlon, with known standard deviation ¢ and unknown mean . It is then
lines of algebra (Exercise 2.6) to show that, if we choose ay = o%/(N +1)
ecover the one-dimensional version of (2.37). This choice of ay satisfies the;
eria (2.41) - (2.43), and so convergence is assured. In this case, the random
g;e) Qf F.igure 2.6 is given by the estimate i of the mean, anc.; the random
1:]mne 5‘?[(13 given I:;y (@ —-n)/ fz. '];he corresponding regression function f(8)
A z —_,u)/o'] = (1~ fm)/.cr , and the root of this regression function
€ required maximum likelihood estimate I = p of the mean, in the
of an infinite supply of data, as shown in Figure 2.7. Similar stt;chastic

0

LB % g {% lnp(I"lﬂ)} =£& [56;‘; lup(:c}f})] (2.46)

Thus, the maximum likelihood solution is asymptotically equivalent to finding 2
solution of .

£ [3‘% In p(x|9}] = 0.

From the Robbins—Monro formula (2.40) this can be solved using an iterativ€ Non-parametric methods
o v il section we consider some of the more important non-parametric tech-
s for pm?)?.bility c!ensity estimation. The term non-parametric is used to de-
I;d::ali:ll;ty d.enmty functions for which the functional form is not specified
4 g » but which depends on the data itself. We begin with a discussion of
,. gram methods, and then move onto kernel-based approaches which
> al .ltssecl in Chapter 5, have a close connection with radial basis funct.iori
- networks. We then discuss another important non-parametric estimation

N+1|g)

a
On+1 =On +an 5 Inp(z
Oy

50 2: Probability Density Estimation 2.5: Non-parametric methods 51

¥ their starting position on the axis. The results are often not too sensitive to the
- starting position, but the parameter M plays a crucial role. Figure 2.8 shows the
histograms which result from values of M of 3, 7 and 22. We see that the number
* of bins (or more precisely the bin width) is acting as a smoothing parameter. If
the bin width is too small then the estimated density is very spiky, while if its
- value is too large then some of the true structure in the density (in this case the

imodal nature of the distribution) is smoothed out. In general we expect there to
some optimum value for the bin width which represents the best compromise
etween these problems. This situation is closely related to that encountered in
tion 1.5 in the context of curve fitting with polynomials. There we saw the
pportance of choosing a suitable number of terms in the polynomial in order
«capture the underlying structure in the data, without over-fitting to the noise
the individual data points. Similarly, in the case of density estimation, we do
know the true underlying density, and so we are faced with the problem of
to choose a suitable value for the parameter M. We shall see that this is
key issue which will arise in a number of different guises, both in the context
conventional techniques and of neural networks. For the moment we defer the
blem of finding the optimal value for parameters such as M while we examine
alternative approaches to non-parametric density estimation.

One advantage of the histogram method is that, once the histogram has been
structed, the data can be discarded and only the information on the sizes and
ations of the histogram bins need be retained. (In this sense, the histogram
esentation should strictly be regarded as a semi-parametric technique). In-
2 the histogram may be constructed sequentially in which data points are
nsidered one at a time and then discarded. The benefits of sequential tech-
jues were discussed in Section 2.4. However, the simple histogram suffers from
l!lln-lber of difficulties which make it unsuitable for use in most practical ap-
ications, except for rapid visualization of data in one or two dimensions. One
-l'flf’m is that the estimated density function is not smooth but has discon-
luities at the boundaries of the histogram bins. Since these boundaries were

ed by hand in advance of observing the data, it is unlikely that they repre-
it true structure in the distribution. A second very serious problem becomes

rent when we consider the generalization to higher dimensions. If we divide

-v.ana.ble into M intervals, then a d-dimensional feature space will be di-
dinto M 4 bins. This exponential growth with d is an example of the ‘curse
dimensionality’ discussed in Section 1.4. In high dimensions we would either
e a huge number of data points to obtain a density estimate, or most of
s would be empty, corresponding to an estimated density of zero.

Figure 2.8. An illustration of the histogram approach to density estimation. A
set of thirty data points was generated by sampling a density function given by
the sum of two normal distributions with means py = 0.3, g2 = 0.8, standard
deviations o1 = o2 = 0.1, and amplitudes of 0.7 and 0.3 respectively. The
original distribution is shown by the dashed curve, and the histogram estimates
are shown by the solid curves. The number M of histogram bins within the
given interval determines the width of the bins, which in turn controls the
smoothness of the estimated density.

technique called K-nearest-neighbours and show how this approach can be
both for density estimation and to provide classification decisions directly.

nally, we consider the role of the smoothing parameters which govern the deg
of smoothness of the estimated density and which arise in any non-parametric
technique. Determination of suitable values for such parameters is an importan®
part of the density estimation process.

2.5.1 Histograms

The basic problem of non-parametric density estimation is very simple. Given 8
set of data points, we wish to model the probability distribution which generated
the data, without making any prior assumption about the form of the distributios
function (except for some general smoothness properties, which we shall disc
shortly). In Section 1.1 we considered a histogram of hypothetical values for 8
feature Z; for each of two classes. The histogram is obtained simply by dividing
the #;-axis into a number of bins, and approximating the density at each valué
of #; by the fraction of the points which fall inside the corresponding bin. Thi8
procedure represents a simple form of non-parametric density estimation.
In Figure 2.8 we show a simple example of density estimation using the
histogram. approach. Note that we can choose both the number of bins M, and

Density estimation in general

T we hav.e given a rather heuristic discussion of density estimation based on
de?.-of histograms. To proceed further we return to the basic definition of
dability density functions. The probability that a new vector x, drawn from
‘Jnkl_:own density function p(x), will fall inside some region R of x-space is
definition, given by ’

?‘

52 2: Probability Density Estimation 2.5: Non-parametric methods 53
o f p(x') dx’. (2.49) We expect that, in the limit of an infinite number of data points, our esti-
R ' ‘mation procedure should become exact, since the volume of R can be shrunk

to zero, thereby ensuring that (2.52) becomes increasingly accurate, while also
improving the accuracy of (2.51) by ensuring that R contains an ever increasing
pumber of points, It can be shown that both kernel methods and K-nearest-
‘peighbour methods do indeed converge to the true probability density in the
Jimit of infinite IV, provided that V shrinks with N, and K grows with N, in a
guitable way (Duda and Hart, 1973).

If we have N data points drawn independently from p(x) then the probability
that K of them will fall within the region R is given by the binomial law

N!

WPK(I - P)N-K. (250'

Pr(K) =

The mean fraction of points falling in this regions is given by E [K /N] d 953 Kernel-based methods
the variance around this mean is given by [(K/N — P)?| = P)/N. 'I‘h S

the distribution is sharply peaked as N — oo. We therefore expect that a good
estimate of the probability P can be obtained from the mean fraction of the

points which fall within R, so that

‘Suppose we take the region R to be a hypercube with sides of length h centred
‘on the point x. Its volume is then given by

I V = hé, (2.54)
P~ K|/N. (25 "-i' We can find an expression for K, the number of points which fall within this
egion, by defining a kernel function H(u), also known as a Parzen window

If we assume that p(x) is continuous and does not vary appreciably over the senblatt, 1956; Parzen, 1962) given by

region R, then we can approximate (2.49) by
1 |uyl<1/2 j=1,....d

- {0 otherwise (2.55)

PE j;; S eV

that H(u) corresponds to a unit hypercube centred at the origin. Thus, for
data points x", the quantity H((x — x")/h) is equal to unity if the point x®
falls inside a hypercube of side h centred on x, and is zero otherwise. The total
aumber of points falling inside the hypercube is then simply

N x—x"
K=z_:1H(=) (2.56)

‘We substitute (2.56) and (2.54) into (2.53) we obtain the following estimate
the density at the point x:

5) = 1 Y1 (x-x"
Px)-—ﬁz_:lm'ﬂ(A) (2.57)

Where p(x) denotes the model density. We can regard this density estimate as
sisting of the superposition of N cubes of side h, with each cube centred
; one of the data points. This is somewhat reminiscent of the histogram ap-
ach, except that, instead of bins which are defined in advance, we have cells
: locatlons are determined by the data points. Nevertheless, we still have
imate which has discontinuities.

W¥e can smooth out the estimate by choosing different forms for the kernel

where V is the volume of R, and x is some point lying inside R. From (2.5-
and (2.52) we obtain the intuitive result :

p(x) ~ NV

Note that to obtain this estimate we have had to make two assumptions, the
validity of which is governed by the choice of the region R. In order for (2.51) t0
hold accurately we require R to be relatively large, so that P will be large and

(2.52) is most accurate when R is relatively small, so that p(x) is approximately
constant inside the integration region. Once again, we see that there is a choicg
to be made regarding the degree of smoothing to be performed, and for a giver
size of data set we expect that there will be some optimum value for the s
of R which will give the best estimate of p(x). We shall return to this problem
shortly.

In applying (2.53) to practical density estimation problems there are twe
basic approaches we can adopt. The first is to choose a fixed value of K and
determine the corresponding volume V from the data. This gives rise to the K
nearest-neighbour approach discussed later. Alternatively we can fix the volume
V and determine X from the data. This leads to the class of kernel-based density

estimation techniques, which we describe next. e
- __g‘_ i

54 2: Probability Density Estimation 2.5: Non-parametric methods 55

function H(u). For instance, a common choice is a multivariate normal kernel,
for which

= @ oo
X —x"
p(x) = N Z hﬁ)dﬂ exp {—'—2;{2——} (2.58) Rt .
In general, if the kernel functions satisfy - .
(b) h = 0.08
H(u) >0 P
N -

and X

/H('u) du = (2.60)
then the estimate in (2.57) will satisfy p(x) > 0 and [p(x)dx =1, as required.

As a simple example of kernel density estimation, we return to the data
set used to construct the histograms of Figure 2.8. In Figure 2.9 we plot the
results of density estimation using a Gaussian kernel function, with values of the
width parameter h given by 0.2, 0.08 and 0.01 respectively. This shows that h is
acting as a smoothing parameter, and that an appropriate choice for the value
of h is important if a good approximation to the true density is to be obtained.
When the kernel width h is too large the estimated density is over-smoothed
and the bimodal nature of the underlying distribution is lost. Conversely, when:
h is too small, a great deal of structure is present in the estimated density which
represents the properties of the particular data set rather than true structure in
the underlying distribution.

Some insight into the role of the kernel function can be obtained by computing

the expectation of the estimated density, in other words the average value of th e eakz{:ilirgml? val:;: g}r tlgfe Smf:(’th]?hg pgramlf te; h. ‘ 1 of th
model density at some given point x, where the average is taken over different = asec. methoc suffers from the drawback of requiring all of the

s °L a points to be stored, which can make evaluation of the density very slow if
ble selections of th ints x”. Maki f (2.57 - Y Very stow 1
possible selections of the data points x™. Making use of (2.57) we have € number of data points is large. One solution is to use fewer kernel functions
N
1 1 x—x'
Elp(x)] = = E S
i ELﬂH(2)]

Figure 2.9. An example of the kernel approach to density estimation, using
the same data as in Figure 2.8. Gaussian kernel functions have been used with
various values for the kernel width h.

al weighted by this density. We see that the expectation of the estimated
nsity is a convolution of the true density with the kernel function, and so
presents a smoothed version of the true density. Here the kernel width h plays
e role of the smoothing parameter. For h — 0, the kernel approaches a delta

nction and p(x) approaches the true density. For a finite sample size, however,
a small value of h leads to a noisy representation for p(x) which approaches a set
Ita functions centred on the data points. Once again, we see that we must

id to adapt their positions and widths in response to the data. Methods for
ng this, based on maximum likelihood, will be described in Section 2.6.
A.nother problem with the kernel-based estimator is that it gives a biased es-

! ¢ of the density. In fact, Rosenblatt (1956) showed that, for a finite data set,
1 o € is no non-negative estimator which is unbiased for all continuous denslty
=& [FH (h)] functions.
~ The use of kernel methods to estimate regression functions is discussed in
1 et oo , apter 5, which also demonstrates the close link with radial basis function
= [e (555) o) i (261) works.

4 K-nearest-neighbours

of the potential problems with the kernel-based approach to density estima-
i arises from the use of a fixed width parameter h for all of the data points.

where, in the third line, we have used the fact that the vectors X" are drawn
independently from the density p(x), and so the expectation is simply given by an

56 2: Probability Density Estimation 2.5: Non-parametric methods 57

elling the class-conditional densities for each class separately, and then com-
s them with priors to give models for the posterior probabilities which can
be used to make classification decisions. We can use this approach to find a
ifier based directly on the K-nearest-neighbour technique by the following
t modification. Suppose our data set contains N} points in class C and N
ts in total, so that >, Ni = N. We then draw a hypersphere around the
int X which encompasses K points irrespective of their class label. Suppose
s sphere, of volume V/, contains K} points from class Cy. Then we can use
53) to give approximations for the class-conditional densities in the form

K
Cr) = ——.
p(x|Ck) A (2.62)
e unconditional density can be similarly estimated from
K
PX) = 7 (2.63)
Figure 2.10. The K-nearest-neighbour approach to density estimation, again Bhile th ; b ; -
using the same data as in Figure 2.8, for various values of K. " Qi Pricrecan be'ectimiated using
: N
If h is too large there may be regions of x-space in which the estimate is over P(Cx) = Fk (2.64)
smoothed. Reducing i may, however, lead to problems in regions of lower dens
where the model density p will become noisy. Thus, the optimum choice of k ‘We now use Bayes’ theorem to give
be a function of position. This difficulty is addressed in the K-nearest-neighb -
approach to density estimation. _ p(x|Cx) P(Ck K.
We again return to (2.53) as our starting point, but we now fix K and allo® P(Cklx) = 2x|Ce) P(Cy) = (2.65)

the volume V to vary. Thus, we consider a small hypersphere centred at a poin P(x) %
x, and allow the radius of the sphere to grow until it contains precisely K d
points. The estimate of the density at the point x is then given by (2.53), wh
V is the volume of the sphere. In Figure 2.10 we show the result of the K-neare
neighbour approach, for the same data set as used in Figures 2.8 and 2.9, for
values K = 20, 8 and 1. We see that K acts as a smoothing parameter and that
there is an optimum choice for the value of K.

One disadvantage of the K-nearest-neighbour technique is that the resulting
estimate is not a true probability density since its integral over all x-space d¥
verges. A disadvantage of both kernel and K-nearest-neighbour methods is tha
all of the training data points must be retained. This might lead to problems
computer storage, and can require large amounts of processing to evaluate
density for new values of x. More sophisticated versions of these algorithms
low fewer data points to be used (Hart, 1968; Gates, 1972; Hand and Batchelor
1978). There also exist tree search techniques which speed up the process finding
the near neighbours of a point (Fukunaga and Narendra, 1975).]

As we have already indicated, one of the applications of density estimation i8
in the construction of classifiers through the use of Bayes’ theorem. This involves

us, to minimize the probability of misclassifying a new vector x, it should
assigned to the class Cy for which the ratio Ky /K is largest. This is known
K -nearest-neighbour classification rule. It involves finding a hypersphere
und the point x which contains K points (independent of their class), and
assigning x to the class having the largest number of representatives inside
ypersphere. For the special case of K = 1 we have the nearest-neighbour
which simply assigns a point x to the same class as that of the nearest point
m the training set. Figure 2.11 shows an example of the decision boundary
esponding to the nearest-neighbour classification rule.

5 Smoothing parameters

all of the density estimation techniques discussed in this section we have seen
: th?re is always some form of smoothing parameter governing the nature of
'eﬂtltrtated density. For histograms it is the width of the bins, for kernel
Ods it is the kernel width h, and for K -nearest-neighbours it is the value of
the model density is over-smoothed, the bias becomes large and leads to a
fively poor estimator. However, with insufficient smoothing the variance is

58 2: Probability Density Estimation 2.6: Mizture models 59
]
the number of data points goes to infinity, can be written as an expectation in
the form

A 1 X
. p E[-InL] =~ lim < ; In (x™) (2.67)

- «
= — [p(x) Inp(x) dx (2.68)
o |w‘hlch can be regarded as a measure of the extent to which the model density
and the true density agree. When p(x) = p(x) this measure has a residual value

fvEn by

- fp{x) In p(x) dx (2.69)

Figure 2.11. Example of the decision boundary produced by the nearest-
neighbour classification rule. Note that the boundary is piecewise linear, with
each segment corresponding to the perpendicular bisector between two data

i - ‘ which is known as the entropy of p(x) (Section 6.10). It is convenient to subtract

@m residual value to give a measure of the ‘distance’ between p(x) and p(x)
high, so that the model density is noisy and very sensitive to the individual data i‘? fe form
points. (Bias and variance are defined more precisely in Section 9.1). The choice
of a suitable value for the smoothing parameter is analogous to the problem o'"
choosing the number of terms in a polynomial used in curve fitting, discussed
in Section 1.5. Similar smoothing parameters will appear in our discussions of
neural networks. For instance, the number of hidden units in a layered feed-
forward network can play a similar role to the number of terms in a polynomi al,

It is important to realize that we cannot simply pick the value of the smooth=
ing parameter which gives the largest value for the likelihood, as the likelihood
can always be increased indefinitely by choosing ever smaller values for the
smoothing parameter. Consider for instance the case of kernel estimators. The
likelihood function can be written as

L=- fp(x) In :Z— dx (2.70)

I __ch is known as the Kullback-Leibler distance or asymmetric divergence (Kull-
and Leibler, 1951; Kullback, 1959). It is easily shown (Exercise 2.10) that
0 with equality if, and only if, the two density functions are equal. Note
L is not symmetric with respect to the two probability distributions. This is
onable since it is more important for the model distribution p(x) to be close
.t]_:e_ true distribution p(x) in regions where data is more likely to be found.
the integral in (2.70) is weighted by the true distribution.
- In a practical density estimation problem we are therefore faced with the
: culty of deciding a suitable value for the smoothing parameter. This is an
_Ple of a very general, and very important, issue which is concerned with
00sing the optimal level of complexity, or flexibility, of a model for a given
a set. Rather than consider this problem in the framework of density estima-
where p(x|...) is given by (2.58) for the case of Gaussian kernels. It is ea sily , we defer further discussion until Chapters 9 and 10, where we consider the
verified that unconstrained maximization of £(k) leads to h — 0 so' that i Ogous issue in the context of neural network models. There we shall discuss

resulting density estimate consists of a delta function at each data point, with - gher Al e?.pproa.ches S deling witth adel catplexity; Kased Diapetuivaly-on
Closs-validation and Bayesian inference.

zero density elsewhere.
The goal in selecting smoothing parameters is to produce a model for the
probability density which is as close as possible to the (unknown) true den=
sity p(x). It is often convenient to have a formal measure of the difference, or
‘distance’, between two density functions. If p(x) is our model of the density
function, then the average negative log-likelihood per data point, in the limit as
e .

§ |
c(ry = [e lhsx,...xN) (2.66)

n=1

Mixture models

fﬂ!‘ m this chapter we have considered two general approaches to density
) flon, parametric and non-parametric, each of which has its merits and
HHMitations. In particular, the parametric approach assumes a specific form for

60 2: Probability Density Estimation

the density function, which might be very different from the true density. Usually,
however, parametric models allow the density function to be evaluated very
rapidly for new values of the input vector. Non-parametric methods, by contrast,
allow very general forms of density function, but suffer from the fact that the
number of variables in the model grows directly with the number of training data
points. This leads to models which can be very slow to evaluate for new input
vectors.

In order to combine the advantages of both parametric and non-parametric
methods we need to find techniques which are not restricted to specific functional
forms, and yet where the size of the model only grows with the complexity of
the problem being solved, and not simply with the size of the data set. This
leads us to a class of models which we shall call semi-parametric. The price we
have to pay is that the process of setting up the model using the data set (i.e.
the training of the model) is computationally intensive compared to the simple.
procedures needed for parametric or non-parametric methods (which in some
cases involve little more than evaluating a few expressions for parameter values,
or even just storing the training data).

In this section we shall restrict attention to one particular form of density
function, called a mizture model. As well as providing powerful techniques for’
density estimation, mixture models find important applications in the context
of neural networks, for example in configuring the basis functions in radial basis
function networks (Section 5.9), in techniques for conditional density estimation
(Section 6.4), in the technique of soft weight sharing (Section 9.4), and in the
mixture-of-experts model (Section 9.7). Here we discuss three training methods
for mixture models, all of which are based on maximum likelihood, invol
respectively non-linear optimization, re-estimation (leading to the EM algorithm
and stochastic sequential estimation. '

In the non-parametric kernel-based approach to density estimation, the den-
sity function was represented as a linear superposition of kernel functions, with
one kernel centred on each data point. Here we consider models in which the den=
sity function is again formed from a linear combination of basis functions, but

and is typically much less than the number N of data points. We therefore wri
our model for the density as a linear combination of component densities p(x|j)
in the form

M
p(x) =Y p(x|7)P(j).

=1

Such a representation is called a mizture distribution (Titterington et al., 19895
McLachlan and Basford, 1988) and the coefficients P(j) are called the mizing
parameters. Notice that there is a strong similarity between (2.71) and the ex=
pression given in equation (1.22) for the unconditional density of data taken from
a mixture of several classes. This similarity has been emphasized by our choice of

‘algorithm in Section 2.6.2. As with any

2.6: Mizture models 61

notation. We shall call P(7) the prior probability of the data point having been
generated from component j of the mixture. These priors are chosen to satisfy
the constraints

M
) Plij=1
Jj=1

(2.72)
0< P(j) <L (2.73)

Similarly, the component density functions p(x|j) are normalized so that
/p(x|j) dx =1 (2.74)

and hence can be regarded as class-conditional densities. To generate a data
point from the probability distribution (2.71), one of the components j is first
selected at random with probability P(j), and then a data point is generated
from the corresponding component density p(x|7). An important property of such
;_z'nixture models is that, for many choices of component density function, they can
approximate any continuous density to arbitrary accuracy provided the model

'Iaas a sufficiently large number of components, and provided the parameters of
‘the model are chosen correctly.

The key difference between the mixture model representation and a true

classification problem lies in the nature of the training data, since in this case we

are not provided with any ‘class labels’ to say which component was responsible

for generating each data point. This represents an example of incomplete data,

and we shall discuss this problem at greater length when we consider the EM

of the other density estimation techniques

discussed in this chapter, the technique of mixture modelling can be applied

Separately to each class Cx in a true classification problem. In this case, each

;:‘flass-conditional density p(x|C) is represented by an independent mixture model
‘of the form (2.71),

Having made the link with prior probabilities and conditional densities, we

. introduce the corresponding posterior probabilities, which we can express
g Bayes’ theorem in the form

:)P(4)
) = (2.75)
i?ihere p(x) is given by (2.71). These posterior probabilities satisfy
M
> P(jlx) = 1. (2.76)
=1

62 2: Probability Density Fstimation 2.6: Mizture models 63

in this context has been given by Redner and Walker (1984).

For the case of Gaussian components of the form (2.77), the mixture den-
sity contains the following adjustable parameters: P(5), p. and o;j (where j =
1,...,M). The negative log-likelihood for the data set is giJven by

N N M
E=-InL=- zllnp{x") =->"In Zp(x“ij)P(j)} (2.78)

n=1 J=1

which can be regarded as an error function. Maximizing the likelihood £ is then
equivalent to minimizing E.

It is important to emphasize that minimizing this error function is non-trivial
in a number of respects. First of all, there exist parameter values for which the
likelihood goes to infinity (Day, 1969). These arise when one of the Gaussian
components collapses onto one of the data points, as can be seen by setting
p; = X in (2.77) and then letting o; — 0. In addition, small groups of points
which are close together can give rise to local minima in the error function which
may give poor representations of the true distribution. In practical problems we
wish to avoid the singular solutions and the inappropriate local minima. Several
techniques for dealing with the problems of singularities have been proposed. One
approach is to constrain the components to have equal covariance matrices (Day.
1969). Alternatively, when one of the variance parameters shrinks to a small value’
during the course of an iterative algorithm, the corresponding Gaussian can be
replaced with one having a larger width.

Since the error function is a smooth differentiable function of the parameters
0? the mixture model, we can employ standard non-linear optimization tech-
niques, such as those described in Chapter 7, to find its minima. We shall see in
phapter 7, that there are considerable computational advantages in making use
of gradient information provided it can be evaluated efficiently. In the present
case the derivatives of E can be found analytically.

L For the centres pt; of the Gaussian components we find, by simple differenti-
ation of (2.78), and making use of (2.75) and (2.77),

x X
: inputs ‘

Figure 2.12. Representation of the mixture model (2.71) in terms of a network
diagram. For Gaussian component densities p(x|j) given by (2.77), the lines
connecting the inputs x; to the components p(x|j) represent the elements pj:
of the corresponding mean vectors ;.

The value of P(j|x) represents the probability that a particular component j
was responsible for generating the data point x.]

In this section, we shall limit our attention to mixture models in which the
individual component densities are given by Gaussian distribution functions. We
shall further assume that the Gaussians each have a covariance matrix which is
some scalar multiple of the identity matrix so that ¥; = ¢2I (where I is the
identity matrix) and hence

. 1 fIx — p;12
p(x|7) = m exp {——TU?J— - (2.77)
J

In fact, the techniques we shall describe are easily extended to general Gaussian
component densities having full covariance matrices as discussed in Section 2.1.]

in the context of parametric distributions. 5
The mixture model can be represented in terms of a network diagram as 0E oppy (#j =27
s s : ; : : 5— =2 P(jlx") L. (2.79)
shown in Figure 2.12. This is simply a diagrammatic representation of a mathe= op; — af. :

matical function, in this case the mixture model in (2.71). Such diagrams prove
particularly useful when considering complex neural network structures, as dis=

cussed in later chapters.

Similarly, for the width parameter o; we obtain

2.6.1 Mazimum likelihood

Various procedures have been developed for determining the parameters of &
Gaussian mixture model from a set of data. In the remainder of this chapter we
consider three approaches, all of them based on maximizing the likelihood of ¢

parameters for the given data set. A review of maximum likelihood techniques

OF _ S~ priom [4 X7 — g2
B, = & Pllx?) {a—j - ~a—;"~} . (2.80)

n=l1 i

. -'lfhe_ minimjzati?n of E with respect to the mixing parameters P(j) must be
Carried out subject to the constraints (2.72) and (2.73). This can be done by

2: Probability Densily Estimation

64

representing the mixing parameters in terms of a set of M auxiliary variables:
{~;} such that

exp(7;)

) - (2.81)
oLy exp(7k) '

P(j) =

The transformation given by (2.81) is called the softmaz function, or normalized
exponential, and ensures that, for —oco < 7; < 09, the constraints (2.72) and
(2.73) are satisfied as required for probabilities. We can now perform an uncon-
strained minimization of the error function with respect to the {7;}. To find the
derivatives of E with respect to 7; we make use of :

dP(k ; ;
Té_) = 8,1P(j) — P()P(K)

which follows from (2.81). Using the chain rule in the form

together with (2.75) and (2.78), we then obtain the required derivatives in the
form [

N .J
g% = ; {P(jIx™) - P()} 2o

where we have made use of (2.76). The complete set of derivatives of the errog
function with respect to the parameters of the model, given by (2.79), (2.
and (2.84), can then be used in the non-linear optimization algorithms describ
in Chapter 7 to provide practical techniques for finding minima of the error

function. :
Some insight into the nature of the maximum likelihood solution can bé

obtained by considering the expressions for the parameters at a minimum of E:
Setting (2.79) to zero we obtain

5 SaPURX"
D S 2(1D

which represents the intuitively satisfying result that the mean of the jth compo-
nent is just the mean of the data vectors, weighted by the posterior probabili
that the corresponding data points were generated from that component. Simi
larly, setting the derivatives in (2.80) to zero we find

2.6: Mizture models 65

2 _ 15, PUIRYIX" — 3,2
AR W Tt

which again represents the intuitive result that the variance of the jth component
is given by the variance of the data with respect to the mean of that component
again weighted with the posterior probabilities. Finally, setting the derivative in’
(2.84) to zero we obtain

(2.86)

e 1 N
B(j) = 5 2 P(Ix") (2.87)
n=1

50 that, at Fhe maximum likelihood solution, the prior probability for the jth
_component is given by the posterior probabilities for that component, averaged
over the data set.

2.6.2 The EM algorithm

'ﬁghﬂe the formulae given in (2.85), (2.86) and (2.87) provide useful insight into
nature of the maximum likelihood solution, they do not provide a direct
~method for ca.lculatmg the parameters. In fact they represent highly non-linear
‘coupled equations, since the parameters occur implicitly on the right-hand sides

virtue of (2.75). They do, however, suggest that we might seek an iterative
heme for finding the minima of E. Suppose we begin by making some initial

ess for the parameters of the Gaussian mixture model, which we shall call
i€ ‘old’ parameter values. We can then evaluate the right-hand sides in (2.85)
86) and (2.87), and this will give a revised estimate for the parameters, which,
e shall call the ‘new’ parameter values, for which we might hope the value of the
Tor function is smaller. These parameter values then become the ‘old’ values
nd the process is repeated. We shall show that, provided some care is take:i
the way in which the updates are performed, an algorithm of this form can
‘ found which is guaranteed to decrease the error function at each iteration
itil a 'local minimum is found. This provides a simple, practical method fo;
mating the mixture parameters which avoids the complexities of non-linear

Optimization algorithms. We shall also see that this is a special case of a more

eral procedure known as the ezpectation-mazimization, or EM, algorithm

(Dempster et al., 1977).
L From (2.78) we can write the change in error when we replace the old pa-

eter values by the new values in the form

Erew _ pold _ _ Z}n {p“ew(xn) } (2.88)

= poid (xn)
-tp"‘-“"(x) denot.es the probability density evaluated using the new values
* the parameters, while p4(x) represents the density evaluated using the old
tameter values. Using the definition of the mixture distribution given by (2.71),

*_

66 2: Probability Density Estimation 2.6: Mizture models 67
we can write this in the form
Loy PN 1) PR (51
Enew = EOi'd o=]J'l{ 2 : } 289 A new
; P4 (xm) Pod(j[xn) (2-89) 1 E(0™)
E(e) Eold euw

where the last factor inside the brackets is simply the identity. We now make use +0(8™)
of Jensen's inequality (Exercise 2.13) which says that, given a set of numbers:
A; = 0 such that ZJ. A; =1, f 7 ko R

In (Z AJ'IJ.') > Z /_-; ln(.’.t_-_.'). (2.90‘
i j >

o™ o™

Since the probabilities P°'4(j|x) in the numerator of (2.89) sum to unity, theys

can play the role of the); in (2.90). This gives Figure 2.13. Schematic plot of the error function E as a function of the new
value 8°*% of one of the parameters of the mixture model. The curve E°'9
Q(0"*") provides an upper bound on the value of E™*" and the EM algorithm

involves finding the minimum value of this upper bound.

Q+A (Z PO (5) = 1) , (2.94)

new Id Id/ . ln Pnew(j)pnew (xn iJ) "

E"*¥ — E° 5-2“:;1” (1)m{pm(xn)md(ﬂxn}}. (2.91)

We wish to minimize E™¥ with respect to the ‘new’ parameters. If we let Q be

the right-hand side in (2.91) then we have E"" < B+ Q and so £°" + Q rep-

resents an upper bound on the value of E"®%, We can therefore seek to minimize

this bound with respect to the ‘new’ values of the parameters, as illustrated in

Figure 2.13 (Luttrell, 1994). Minimizing @ will necessarily lead to a decrease i
the value of the E™®% unless E"®¥ is already at a local minimum.

If we now drop terms which depend only on the ‘old’ parameters, we

write the right-hand side of (2.91) in the form

]

tting the derivatives of (2.94) with respect to P"®¥(j) to zero we obtain

Pold T
0=»zn:?£|(%)+x. (2.95)

4he value of A\ can be found by multiplying both sides of (2.95) by P"¥(j)
summing over j. Using }°, P™*¥(j) = 1 and Z; P'4(j|x™) = 1 we obtain
N. We then finally obtain the following update equations for the parameters
Of the mixture model:

Q== P In {P" (j)p"*" (x"|1)}

3

and the smallest value for the upper bound is found by minimizing this quantitys

If we consider the specific case of a Gaussian mixture model then we have v e PO

SIS SN D =
a , | Tl
Q=-— PY(j|x™) { In P"*¥(j) —dlno?®™ — -—“—J + const. j
22 () = dlnof™ = o gmevys | (gnewys = 1 En PPOGIROIX" —] (2.97)
(298 LTS B g |
We can now minimize this function with respect to the ‘new’ parameters. Fol
the parameters K and ¢; this minimization is straightforward. However, for the P(3)eY = —]-'— 14 (|x?
mixing parameters P"*¥(j) we must take account of the constraint 3, P*¥(j) = i EP" i e

1. This is easily done by introducing a Lagrange multiplier A and minimizing the

function NOtice carefully where the ‘new’ and ‘old’ parameters appear on the right-hand

68 2: Prabability Density Estimation 2.6: Mizture models 69
1.0 T 1.0 :
05 4 0.5 f 4
0.0 == 0.0 .
0.0 0.5 1.0 0.0 0.5 1.0

Figure 2.15. This shows the initial configuration of seven Gaussians of a mix-
ture model which has been initialized using the data in Figure 2.14. Each circle
represents the line along which [lx — p,|| = o; for the corresponding Gaus-
sian component. The parameters of the mixture model were initialized by first
setting the centres #; to a random subset of the data points. The width pa-
rameter o; for each component was initialized to the distance to the nearest
other component centre, and finally the priors P(j) were all set to 1 /M, where
M =T in this example.

Figure 2.14. Example of the application of the EM algorithm to mixture den-
sity estimation showing 1000 data points drawn from a distribution which is
uniform inside an annular region.

sides of these expressions. These should be compared with the corresponding
maximum likelihood results (2.85)—(2.87). The algorithm is readily extended to
include Gaussian functions with full covariance matrices.

As a simple example of the use of the EM algorithm for density estimation,
we consider a set of 1000 data points generated from a distribution which is
uniform within an annular-shaped region, as shown in Figure 2.14. A Gaussian
mixture model, with seven components of the form (2.77), was then fitted to
this data. The initial configuration of the model is shown in Figure 2.15. Aff
20 cycles of the EM algorithm the Gaussians had evolved to the form shown
in Figure 2.16. The corresponding contours of probability density are shown in
Figure 2.17.

Further insight into the EM algorithm can be obtained by returning to our
earlier remarks concerning the similarities between a mixture density model and
the representation for the unconditional density in a classification problem.
the latter case, the data points x™ all carry a class label indicating which coms=
ponent density function was responsible for generating them. This allows each
class-conditional density function to be considered separately, and its parameters

o not have corresponding ‘class’ labels. The data set is said to be incomplete, and
maximum likelihood procedure leads to a non-linear optimization problem
h does not have an analytic solution. A very general treatment of such
complete-data problems was given by Dempster et al. (1977), who developed
EM algorithm as an elegant and powerful approach to their solution. It can
.b.e.applied to problems in which incompleteness of the data takes the form
Missing values for some of the variables in the training set. The example of
Imating the parameters of a Gaussian mixture model discussed above is a
al case of the EM algorithm.
L t}r:fe have already remarked that the problem of determining the parameters
i€ mixture model would be very straightforward if we knew which compo-
0t j was responsible for generating each data point. We therefore consider
& ypothetical complete data set in which each data point is labelled with the
““tmiponent which generated it. Thus, for each data point x", we can introduce a
able .z", which is an integer in the range (1, M) specifying which component
A _the mixture generated the data point. The negative log-likelihood (or error
Ction) for the complete data problem, for ‘new’ parameter values, is given by

Section 2.2 that the corresponding maximum likelihood problem could be sol -
analytically to give expressions such as (2.19) and (2.20) for the parameters of

the Gaussians. "
For the problem of unconditional density estimation using a mixture model we:

70

2. Probability Density Estimation

1.0

O

0.0
0.0

Figure 2.16. Final con_ﬁ
cycles of the EM algorith

guration of the Gaussians frefm Figure 2.1
m using the data set from Figure 2.14.

0.5 1.0

5 after 20

1.0

1

0.0
0.0

Figure 2.17. Contours of constant probability d

0.5 1.0

ensity corresponding to the

Gaussian mixture model of Figure 2.16.

2.6: Mizture models 71

ECOmP — __ |p (ComP (299)
N

= -2 Inp"™(x",2") (2.100)
n=1
N

= — ZIH{PWW(Zn}pneW(xnlzﬂ)}_ (2.101]

n=1

If we knew which component was responsible for generating each data point,
then P"*%(z") =1 and the complete-data error function decomposes into a sum
of independent terms, one for each component of the mixture, each of which only
involves the data points generated by that component. This sum is then easily
minimized with respect to the parameters of the component distributions. The
problem, however, is that we do not know which component is responsible for
each data point, and hence we do not know the distribution of the 2. We there-
fore adopt the following procedure. First we guess some values for the parameters
of the mixture model (the ‘old’ parameter values) and we then use these, together
-with Bayes’ theorem, to find the probability distribution of the {z"}. We then
compute the expectation of E°°™P with respect to this distribution. This is the
ezpectation or E-step of the EM algorithm. The ‘new’ parameter values are then
found by minimizing this expected error with respect to the parameters. This
s the mazimization or M-step of the EM algorithm (since minimizing an error
function is equivalent to maximizing the corresponding likelihood).
The probability for 2™, given the value of x™ and the ‘old’ parameter values,
is just P°!4(2"|x™). Thus, the expectation of E°™P over the complete set of {z"}
Values is obtained by summing (2.101) over all possible values of the {2"} with
& weighting factor given by the probability distribution for the {z"} to give

M M N
E[E™P] = Z Z Ecomp H PoMH("x™). (2.102)
zl=1 zN=1 n=1
It is convenient to rewrite Eomp from (2.101) in the equivalent form
N M
E*™P = — 3 "3~ 8jen In (P (§)p" (x"|)} . (2.103)

n=1 i=1

We now substitute (2.103) into (2.102), and perform the sums over the {z"}
Variables by making use of the identity

M M N 7ics)
Z Z éjz"‘ H Pold(zn Ixﬂ) = P°’d(j|xn)

2l=1 zN=1 n'=1

(2.104)

™

———

72 2: Probability Density Estimation Ezercises 73

which can be proved using already converged to the maximum likelihood solution, we could use (2.87) to
write (2.109) in the form

M i

3 PGk =1,

: w1 _ POV
3=

T WADPG) e

is gi it ti ikeli in the form L : AL
This gives the expectation of the complete-data likelihood in the for ‘and then to use this as an approximation for the n;. Alternatively, the parameters

. , can themselves also be estimated stochastically, using the update formula
EE=™] = - 3 3 UG In (P ()" (x")} . (2:108)

n=1j=1

1 P@xY) 1
't P(jlxN+) g

41 (2.111)

A\

We now note that (2.106) is identical to (2.92). Thus, minimization of (2.106) .
leads to the form of the EM algorithm derived above. ‘which follows directly from the definition (2.109). If the data is arriving on-line,
istinct from being taken from a fixed training set with replacement, then the
problem of singular solutions, discussed in Section 2.6.1, will not arise since an

'_dividua.l data point is used once only and then discarded.

2.6.3 Stochastic estimation of parameters

As a third approach to the determination of the parameters of a Gaussian mix:
ture model we consider the technique of stochastic on-line optimization (Travén,
1991). Again we seek to minimize the error function, but now we suppose that
the data points are arriving one at a time and we wish to find a sequential update
scheme. Consider the minimum-error expression (2.85) for the mean p; of the
jth component of the mixture for a data set consisting of N points

2.1 (x) Using the form (2.1) for the normal distribution in one dimension, and
the results derived in Appendix B, show that [p(z)dz = 1, and verify
(2.2) and (2.3).

2.2 (xx) Consider the Gaussian distribution in d dimensions given by (2.4). By
using the properties of symmetric matrices derived in Appendix A, show
that there exists a transformation to a new coordinate system, defined
by the eigenvectors of X, such that the transformed variables Z; become
statistically independent, so that the distribution of the Z; can be written
as p(Z1,...,%q) = [];p(Z;). Hence show that show that [p(x)dx = 1.
. Finally, verify (2.5) and (2.6).

2.3 () Using the expression (2.1) for the normal distribution in one dimension,
show that values of the mean and variance parameters which minimize the
error function (2.18) are given by (2.21) and (2.22).

= Znmy PO
T ey PGixm)

From the corresponding expression for N + 1 data points, we can separate off
the contribution from x"+! in order to obtain an expression for g\ *! in ters
of ,uf’ . This is analogous to the procedure we adopted for stochastic estima
of the parameters of a single Gaussian function in Section 2.4. After some simplé
algebra we obtain

(2.107)

H;VH = ,_,;\' %k n;'”i(xNH = u?’} 2.4 (x+) Using the definition of expected value given by (1.16), and the form
of the normal distribution (2.1), derive the result (2.23). Now consider the
where the parameter qf +1 g given by foll g estimate of the variance
N+1 P(jlxN+1) - T . i(n_R)? (2.112)
) g SESQUIR ol o= r —u 5
P T PGl N'=1:3

where i is the maximum likelihood estimate for the mean given by (2.21).
Show that this estimate has the property that its expected value is equal
to the true variance o?. Estimators which have this property are said to
be unbiased. If the mean y of the distribution is known exactly, instead of

in (2.109) contains an ever increasing number of terms, all of which would have t0
be re-estimated every time the parameter values were changed. It would therefore
require the storage of all previous data points, in conflict with the goal of a
stochastic learning procedure. One approach is to note that, if the model ha

.

74

2: Probability Density Estimation

being determined from the data, show that the estimate of the variance
given by

N
~2 1 n
2 7 nzz:l(x _ P)2 (2.113)

|
is unbiased.

2.5 (x) Derive the results (2.32) and (2.33) for the mean and variance of the
posterior distribution of u given a set of N observed values of .

2.6 () Using the maximum likelihood expression (2.19) for the mean p of a
Gaussian distribution, derive the result (2.37) for the iterative sequential.
estimation of p.

2.7 (*%) Consider the problem of parametric density estimation for data in one
dimension using a normal distribution with mean p and variance 2. Show
that the Robbins-Monro formula (2.48) for sequential maximum likelihood
gives rise to the heuristic formula (2.37) for the estimation of y provided we.
choose the coefficients ay = 02/(N +1). Obtain the corresponding formula
for iterative estimation of o2, analogous to (2.37) for u, by separating out
the contribution from the (N + 1) data point in the maximum likelihood
expression (2.22). Verify that substitution of a normal distribution into the:
Robbins-Monro formula (2.48) gives the same result, for a suitable choice
of the coefficients an.

2.8 () Consider two class-conditional densities in d-dimensions, each of which is:
described by a Gaussian with a covariance matrix given by Xy = 071, where
1 is the unit matrix, but with different values of the variance parameter of..
Show that the decision boundary along which the posterior probabilities
for the two classes are equal takes the form of a hypersphere.

2.9 (x%+) This exercise explores numerically the behaviour of the K -nearest-
neighbour classification algorithm. Begin by generating data in two dimen=
sions from two classes, each described by a Gaussian distribution having &
covariance matrix which is proportional to the unit matrix, but with d f-
ferent variances. Assume equal class priors but use different class mes
Plot the data points, using a different symbol for each of the two class
and also plot the optimal decision boundary given by the result derived i
Exercise 2.8. Also plot the decision boundaries predicted by the K-nearest=
neighbour classification algorithm for various values of K. One way to
this is to consider a fine grid of points covering the region of inter
and assign each point the value +1 or —1 according to the class predic
the K -nearest-neighbour classification described on page 57. Then use
contouring package to plot the contour having value 0. By restricting the
number of data points, show that there exists an optimal value for K in
order for the decision boundary predicted by the algorithm to be as cl
as possible to the optimal one, and that smaller or larger values of K give
poorer results.

Ezercises 75

2.10 (*) By sketching graphs of Inz and z — 1 verify the inequality Inz < z —1
with equality if, and only if, # = 1. Confirm this result by differentiation
of !nz — (z — 1). Hence show that the Kullback-Leibler distance (2.70)
satisfies L > 0 with equality if, and only if, the two distributions are eq;Jal
2.11 (x) Consider two discrete probability distributions p; and ¢; such thm;

Spi =1and ¥ ,¢; = 1. The corres i i i
; ;i - ponding discrete
Kullback-Leibler distance can be written e

~Lnin(3)

By differentiating (2.114) with respect to g;, and making use of a Lagran
multiplier (Appendix C) to ensure that the constraint 3, ¢; = 1 is sa%irsﬁe%-ie
show that Fhis distance is minimized when ¢; = p; for ;II i, and that thé
corresponding value for the distance is zero. ‘

2.12 (x) Using the result (2.105), verify the identity (2.104).

2.13 (x*) Indiscussing the convergence properties of the EM algorithm we made
use of Jensen’s inequality for convex functions. We can define a convex
function f(z) as one for which every chord lies on or below the graph of
the function (a chord being a straight line which connects two points on the
graph of the function). This is illustrated in Figure 2.18. Use this definition

(2.114)

f(x)

’\\
chord

-
.

a X

b

X

Figure 2.18. 1l i .
ity ustration of a convex function f(z) as used to derive Jensen's

to show that, for a point z, = (1 —
i hswep + = (1—t)a-+tb part way along the chord, where

f((1—t)a+1tb) > (1 —¢t)f(a) + tf(b). (2.115)

Given a set of points z; all lying in the interval (a,b), and a set of M

9: Probability Density Estimation

. = hat the quantity Y. A;z;
bers A; > 0 such that 3, A; = 1, show & : i y
:li?liees in Jthie interval (a,b). S‘;:arting from (2.115) use induction to prove

Jensen’s inequality

(2.116)

M M
f (Z Am) > Aif(s),
i=1 j=1

for any M > 2. This is the form of Jensen’s inequality used in (2.90).

2.14 (x*) Starting from (2.107 :
update of the mean p; of the jth componen
Similarly, starting from t
of a spherical Gaussian given by (2.86
for (a?)N"‘l. Finally, derive (2.111) from (2.109).

), derive the expression (2.108) for the stochasti c
j t of a Gaussian mixture model.
he maximum likelihood expression for the varia:'l
), obtain the corresponding expressio;

3
SINGLE-LAYER NETWORKS

In Chapter 1 we showed that the optimal decision rule for minimizing the prob-
ability of misclassification requires a new pattern to be assigned to the class
having the largest posterior probability. We also showed how the posterior prob-
abilities can be related to class-conditional densities through Bayes’ theorem, and
in Chapter 2 we described several techniques for estimating these densities. An
alternative approach, which circumvents the determination of probability densi-
ties, is based on the idea of a discriminant function, also introduced in Chapter 1.
In a practical application of discriminant functions, specific parametrized func-
tional forms are chosen, and the values of the parameters are then determined
from a set of training data by means of a suitable learning algorithm.

The simplest choice of discriminant function consists of a linear combination
of the input variables, in which the coefficients in the linear combination are the
parameters of the model, and has been considered widely in the literature on
conventional approaches to pattern recognition. This simple discriminant can be
generalized by transforming the linear combination with a non-linear function
(called an activation function) which leads to concepts such as logistic regression
-and the perceptron. Another extension involves transforming the input variables
With fixed non-linear functions before forming the linear combination, to give
generalized linear discriminants. As we shall see, these various forms of linear
discriminant can be regarded as forms of neural network in which there is a single
i-i.ﬂ)’er of adaptive weights between the inputs and the outputs.

Various techniques exist for determining the weight values in single-layer
‘Detworks, and in this chapter we shall consider several of them in detail. In
Particular, we shall study perceptron learning, least-squares methods and the
Fisher discriminant. As well as forming an important class of techniques in their
GWn right, single-layer networks provide many useful insights into the properties
Of more complex multi-layer networks. Single-layer networks were widely studied
in the 1960’s, and the history of such networks is reviewed in Widrow and Lehr

(1990). Two useful books from this period are Nilsson (1965) and Lewis and
Coates (1967).

3.1 Linear discriminant functions
Llll Chapter 1 we saw that optimal discriminant functions can be determined

i’1‘3111 class-conditional densities via Bayes’ theorem. Instead of performing density
Stimation, however, we can postulate specific parametrized functional forms for

78 3: Single-Layer Networks 3.1: Linear discriminant functions 79

the discriminant functions and use the training data set to determine suita
values for the parameters. In this section we consider various forms of lineay
discriminant, and discuss their properties.

3.1.1 Tuwo classes
We begin by considering the two-category classification problem. In Chapter 1
we introduced the concept of a discriminant function y(x) such that the vector
x is assigned to class C; if y(x) > 0 and to class Cp if y(x) < 0. The sim
choice of discriminant function is one which is linear in the components of x;
and which can therefore be written as '

y(x) = w'x + wp (3

where we shall refer to the d-dimensional vector w as the weight vector and the
parameter wy as the bias. Sometimes —wy is called a threshold. Note that the
of the term bias here is quite distinct from the concept of statistical bias whi
is discussed briefly on page 41, and at length in Section 9.1. From Section
we know that, for class-conditional densities having normal distributions witk
equal covariance matrices, a linear discriminant of the form (3.1) is optimal.

The expression in (3.1) has a simple geometrical interpretation (Duda a
Hart, 1973) as follows. We first note that the decision boundary y(x) =0c¢
responds to a (d — 1)-dimensional hyperplane in d-dimensional x-space. For
case of a two-dimensional input space, d = 2, the decision boundary is a str
line, as shown in Figure 3.1. If x* and x? are two points on the hyperplane, tk
y(xA) = 0 = y(xP) and so, using (3.1), we have wT (x? —x*) = 0. Thus,
normal to any vector lying in the hyperplane, and so we see that w determ
the orientation of the decision boundary. If x is a point on the hyperplane
the normal distance from the origin to the hyperplane is given by

Figure .3.1. A linear decision boundary, corresponding to y(x) = 0, in a two-
dimensional input space (z1,72). The weight vector w, which can be rep-
resented as a vector in x-space, defines the orientation of the decision plane
while the bias wg defines the position of the plane in terms of its perpendjcula;
distance from the origin.

_wix _ wo o
=T " T (34

inputs

where we have used y(x) = 0 together with (3.1). Thus, the bias wq determines
the position of the hyperplane in x-space, as indicated in Figure 3.1.

There is a slightly different notation which we can adopt which will oft
prove convenient. If we define new (d + 1)-dimensional vectors w = (wn, w) 8
X = (1,x), then we can rewrite (3.1) in the form

:F.lgllre 3.2. Representation of a linear discriminant function as a neural network

glj:g&n}. Each component in the diagram corresponds to a variable in the linear

fro riminant e)fpression. The bias wo can be considered as a weight parameter
™ an extra input whose activation z¢ is permanently set to +1.

ol 7%, (3.3 etwo.rk diagram as shown in Figure 3.2. Inputs z,...,z4 are shown as
S, Which are connected by the weights wy, ..., wy to the output y(x). The

S Wy 1s represented as a weight from an extra input zp which is permanently

With this notation we can interpret the decision boundary y(x) = 0 as a 1 s
14l unity.

dimensional hyperplane which passes through the origin in (d + 1)-dimensiona
X-space. = .
We can represent the linear discriminant function in (3.1) or (3.3) in terms

80 8: Single-Layer Networks

3.1: Linear discriminant functions

3.1.2 Several classes
Linear discriminants can easily be extended to the case of ¢ classes by following
the ideas introduced in Chapter 1 and using one discriminant function yx(x) for.
each class Cy of the form

Yk (X) = Wi X + wio. (3.4)
A new point x is then assigned to class Cy if yx(x) > y;j(x) for all j # k. The

decision boundary separating class Cy from class C; is given by yk(x) = y;(x)
which, for linear discriminants, corresponds to a hyperplane of the form

xu xl J.‘,,
inputs

Figure 3.3. Representation of multiple linear discriminant functions yx(x) as

a neural network diagram having ¢ out i i i
: put units. Again, the b
sented as weights from an extra input @y = 1. - i

(wi — w;) "% + (wko — wj0) = 0. (3.5)

By analogy with our earlier results for the single discriminant (3.1), we see
the normal to the decision boundary is given by the difference between the
weight vectors, and that the perpendicular distance of the decision bounds y
from the origin is given by

_ _ (wko —wjo) (3.6)
Wi — w;l|

The multiclass linear discriminant function (3.4) can be expressed in terms
a neural network diagram as shown in Figure 3.3. The circles at the top
the diagram, corresponding to the functions yx(x) in (3.4) are sometimes ca
processing units, and the evaluation of the discriminant functions can be vie
as a flow of information from the inputs to the outputs. Each output yx(x) i8
associated with a weight vector wi and a bias wyo. We can express the network
outputs in terms of the components of the vectors {wy} to give

Figure 3.4. Example of decision bo i
gty undaries produced a multi .
discriminant. If two points x* and xZ both lie in - by iclass linear

g Toak o on region Ry th
- point X on the li i s k then every
Uk(X) = Y weits + Wko- (37 follows that, the lgzﬁ?nnm'."g them must also lie in region Ry. It therefore
i=1 ision regions must be simply connected and convex.

‘this, consider two poi A
i points x* and x® which both lie in the regi v
:_- re 3.4. Any point X which lies o egion Ry, as shown in

Then each line in Figure 3.3 connecting an input 7 to an output k corresponds t0
n the line joining x* and x® can be written

a weight parameter wy;. As before, we can regard the bias parameters as being
weights from an extra input zo = 1, so that] A
}
p;l;;rf)o éda < lb Since xABand x5 both lie in Ry, they must satisfy y(x?) >
U(z) = z{;ﬂx) > y;(x") for all j # k. Using (3.4) and (3.9) it follows that
all poiny. e0X”) + (1 — a)yk(x") and hence yy(R) > y(R) for all j # k. Thus
*" Points on the line connecting x4 and x? also lie in R and so th 3)
must be simply connected and A k so the region Ry

)

=ox® + (1 —a)x? (3.9)

d e
ve(x) =) wiizs. (38

i=0

Once the network is trained, a new vector is classified by applying it to :
inputs of the network, computing the output unit activations, and assigning
vector to the class whose output unit has the largest activation. This leads

a set of decision regions which are always simply connected and convex. To
g

82 3: Single-Layer Networks 3.1: Linear discriminant functions 83
3.1.3 Logistic discrimination
So far we have considered discriminant functions which are simple linear func-
tions of the input variables. There are several ways in which such functions can 1.0 .
be generalized, and here we consider the use of a non-linear function g(-) which i
acts on the linear sum to give a discriminant function for the two-class problem g(a) E
of the form !
i
y = g(wTx + wp) (3.10) 05 , y
where g(+) is called an activation function and is generally chosen to be mono- E
tonic. The form (3.10) is still regarded as a linear discriminant since the decision: !
boundary which it generates is still linear, as a consequence of the monotonic 0.0 H
nature of g(-). -5.0 0.0 a 5.0

As a motivation for this form of discriminant, consider a two-class problem
in which the class-conditional densities are given by Gaussian distributions with
equal covariance matrices £, = Xy = X, so that

Figure 3.5. Plot of the logistic sigmoid activation function given by (3.18).

1 1 B ene . a=wrx+uwp (3.17)
p(x|Ck) = CnsE P {—5(" —) T (x— Pk)} . (8.11) .
Using Bayes’ theorem, the posterior probability of membership of class C; is: =
giv:f by v ? P w ! ; w=5""(u — py) (3.18)

P(Cy)

p(x|C1)P(C1) PGy):

1 = 1 =
wo = —Ep}"z Tu, + E,u'-fE Yy +In
(x|C1)P(Cy) + p(x|C2) P(C2)

(3.19)

P(C]]X) = P

Thus, we see that the use of the logistic sigmoid activation function allows the
\tputs of the discriminant to be interpreted as posterior probabilities. This
i phes that such a discriminant is providing more than simply a classification
Aecision, and is potentially a very powerful result. The importance of interpreting
‘i€ outputs of networks in terms of probabilities is discussed at much greater
ength in Chapter 6.

r _'i['he term sigmoid means ‘S-shaped’, and the logistic form of the sigmoid maps
“1€ Interval (—oo, 00) onto (0, 1). If [a| is small, then the logistic sigmoid function
can be approximated by a linear function, and so in this sense a network
VILh sigmoidal activation functions contains a linear network as a special case.
£ there are more than two classes then an extension of the previous analysis
*ads to a generalization of the logistic sigmoid called a normalized exponential
Er softmaz, which is discussed in detail in Section 6.9.

~ Linear discriminants with logistic activation functions have been widely used
M the statistics literature under the name logistic discrimination (Anderson,
982). Sigmoidal activation functions also play a crucial role in multi-layer neural
Works, as discussed in Chapter 4.

. Another form of linear discriminant was introduced by McCulloch and Pitts
\1943) as a simple mathematical model for the behaviour of a single neuron in

1
1+ exp(—a)

g9(a)

where

. p(xle)P(C)
a=ln RGP

and the function g(a) is the logistic sigmoid activation function given by

1

9(a) = 1+ exp(—a)

which is plotted in Figure 3.5. If we now substitute expressions for the class-
conditional densities from (3.11) into (3.15) we obtain

-l

— ol

84 &: Single-Layer Networks

a biological nervous system. Again this takes the form (3.10) with an activation’
function which is the Heaviside step function

(d) = 0 whena<0
N =11 when a > 0.

In this model the inputs z; represent the level of activity of other neurons which
connect to the neuron being modelled, the weights w; represent the strengths .i
the interconnections, called synapses, between the neurons, and the bias wg rep-
resents the threshold for the neuron to ‘fire’. Although this model has its origing
in biology, it is clear that it can equally well be motivated within the framework
of statistical pattern recognition. Networks of threshold units were studied by
Rosenblatt (1962) under the name perceptrons and by Widrow and Hoff (1960)
who called them adalines. They will be discussed in detail in Section 3.5.

Note that it is sometimes convenient to regard the linear discriminant (3.1)
as a special case of the more general form (3.10). In this case the model is s
to have a linear activation function, which in fact is just the identity g(a) = a.

3.1.4 Binary input veclors

Linear discriminants, and the logistic activation function, also arise in a natural
way when we consider input patterns in which the variables are binary (so tha
each z; can take only the values 0 or 1). Let Py; denote the probability t
the input a; takes the value +1 when the input vector is drawn from the cl
Cg. The corresponding probability that z; = 0 is then given by 1 — P;. We
combine these together to write the probability for z; to take either of its allov
values in the form

p(2i|Ck) = PE(1 — P)' ™ (3.21)
which is called a Bernoulli distribution. If we now assume that the input variables
are statistically independent, we obtain the probability for the complete
vector as the product of the probabilities for each of the components separately

d
p(x|Cy) = [] PE(1 - P) .

i=1

(3.22

We now recall from Chapter 1 that we can write a discriminant function whicl

minimizes the probability of misclassifying new inputs in the form '
yr(x) = In P(x|Cx) + In P(Ck)-

Substituting (3.22) into (3.23) we obtain a linear discriminant function given b}

e e W

=, Ea

8.2: Linear separability

d
ye(x) = E WgiZs + Wo

i=1

in which the weights and bias are given by

Wei = In Py — 111(1 == Pki)

(3.25)

d
wko = Y _ In(1 = Pky) + In P(Cy).

i=1

(3.26)

We have already seen that, for two classes with normally distributed class-
conditional densities, the posterior probabilities can be obtained from the linear

discriminant by applying a logistic activation function. A similar result holds
also for the Bernoulli distribution. Consider a set of independent binary variables

&y, having Bernoulli class-conditional densities given by (3.22). If we substitute

(3.22) into (3.12) we again obtain a single-layer network structure, with a logistic
activation function, of the form

P(Cy|x) = g(wTx + wp) (3.27)
where g(a) is given by (3.16) and
_ 1-P; . P(G)
wo—glnl_Pzi-HnP(cz) (3.28)
Py 1 —iPy
w; =In E—:- —In =B (3.29)

We have shown that, both for normally distributed and Bernoulli distributed
onditional densities, the posterior probabilities are obtained by a logistic
e-layer network. In fact these are particular instances of a much more general

tesult, which is derived in Section 6.7.1.

8.2 Linear separability

far in this chapter we have discussed discriminant functions having a decision
undary which is linear, or more generally hyperplanar in higher dimensions.
ly this is a very restricted class of decision boundary, and we might well

s_uch systems to have less than optimal performance for many practical
blications. Indeed, this provides the principal motivation for using multi-layer

ﬂfs of the kind discussed in Chapters 4 and 5. The particular nature of
limitation inherent in single-layer systems warrants some careful discussion,

86 3: Single-Layer Networks 3.2: Linear separability 87

1.0

05 |

0.0

Figure 3.6. The exclusive-OR problem consists of four patterns in a two-
dimensional space as shown. It provides a simple example of a problem which
is not linearly separable.

Nj(d+1)

F‘igure. 37 F‘[ot. of the fraction F(N,d) of the dichotomies of N data points
in d dimensions which are linearly separable, as a function of N/(d + 1), for

Consider for the moment the problem of learning to classify a given data set cartous viuas b,

exactly, where each input vector has been labelled as belonging to one of

classes C; and Cy. If all of the points can be a classified correctly by a line 1 shan NS diq

(i.e. hyperplanar) decision boundary, then the points are said to be linearly F(N,d) = 1 & N-1 =

separable. For such a data set there exist weight and bias values such that & s oN-1 Z (i) when N >d+1 (3.30)
i=0

linear discriminant will lead to perfect classification. A simple example of a d
set which is not linearly separable is provided by the two-dimensional ezclusi
OR problem, also known as XOR, illustrated in Figure 3.6. The input vectors
x = (0,0) and (1,1) belong to class C;, while the input vectors (0,1) and (1,0)
belong to class Ca. It is clear that there is no linear decision boundary which
classify all four points correctly. This problem can be generalized to d-dimensio!
when it is known as the d-bit parity problem. In this case the data set con
of all possible binary input vectors of length d, which are classified as class Cy if
there is an even number of 1's in the input vector, and as class C; otherwise.
For the case of continuous input variables it is interesting to consider the
probability that a random set of patterns will be linearly separable. Sup;
we have N data points distributed at random in d dimensions. Note that
particular distribution used to generate the random points is not relevant.
that we require is that there are no accidental degeneracies, i.e. that there i
subset of d or fewer points which are linearly dependent. The points are thes
said to be in general position. Having chosen the points, imagine that we
randomly assign each of the points to one of the two classes Cy and Cy with e
probability. Each possible assignment for the complete data set is referred
a dichotomy, and for N points there are 2V possible dichotomies. We now
what fraction F(N, d) of these dichotomies is linearly separable. It can be show!
(Cover, 1965) that this fraction is given by the expression

- which is plotted as a function of N/(d + 1) in Figure 3.7 for d = 1, d = 20 and
-d = oo. Here the symbol

(ﬁ) = 7= 13:31)

denotes the number of combinations of M objects selected from a total of N. We
See from (3.30) that, if the number of data points is fewer than d+1, any labelling
the points will always lead to a linearly separable problem. For N = 2(d + 1),
e probability of linear separability is 0.5 for any value of d (Exercise 3.5). In
E Practical application, the positions of points from the same class will tend to
be cofrela(:ed, and so the probability that a data set with a much larger number
Points than 2(d + 1) will be linearly separable is higher than (3.30) would
For the case of binary input patterns, if there are d inputs then there are
possible input patterns and hence 22° possible labellings of those patterns
‘ween two classes. Those which can be implemented by a perceptron are called
s 2shold logic functions and form an extremely small subset (less than od” /dh)
Of the total (Lewis and Coates, 1967).
{n the neural computing literature a lot of attention is often paid to the in-
‘of single-layer networks to solve simple problems such as XOR. From our
stical pattern recognition perspective, however, we see that the ability of
cular model to provide an exact representation of a given training set is

88 3: Single-Layer Networks 3.4: Least-squares technigues 89

1
accuracy. Again, we can absorb the biases as special cases of the weights by

largely irrelevant. We are primarily interested in designing systems with good
defining an extra basis function ¢ = 1, so that

generalization performance, so that they give the greatest accuracy when p
sented with previously unseen data. Furthermore, problems such as XOR a
parity involve learning the complete set of all possible input patterns, so the
concept of generalization does not even apply. Finally, they have the property
that the smallest possible change in the input pattern produces the largest poss
sible change in the output. Most practical pattern recognition problems have
opposite characteristic, so that small changes in the inputs do not, for the m
part, produce large changes in the outputs, and hence the mapping represented
by the network should be relatively smooth.

Consider the problem of two normally-distributed classes with equal covari-
ance matrices, discussed in Section 2.1.3. Since the class distributions overlap i
is entirely possible that a finite sized data set drawn from these distributions
not be linearly separable. However, we know that the optimal decision bound
is in fact linear. A single-layer network can therefore achieve the best possi
classification performance on unseen data, even though it may not separate the
training data exactly.

The key consideration concerns the choice of an appropriate discriminan
function for the particular problem in hand. This may involve a combinat
of prior knowledge of the general form which the solution should take, coup
with an empirical comparison of the performance of alternative models. Th
issues are considered in more detail in Chapters 8, 9 and 10. Here we sim
note that single-layer networks correspond to a very narrow class of possibl
discriminant functions, and in many practical situations may not represent

M
k(%) = > wi;h;(x). (3.33)
=0

We have assumed that the basis functions ¢;(x) are fixed, independently of the
data. Chapters 4 and 5 discuss multi-layer neural networks, many of which can
be regarded as generalized discriminant functions of the form (3.32), but in which
the basis functions themselves can be modified during the training process.

3.4 Least-squares techniques

o far in this chapter we have discussed various forms of single-layer network
d explored some of their properties. The remainder of the chapter is concerned
h techniques for training such networks, and we begin with a discussion of
hods based on the minimization of a sum-of-squares error function. This is
e simplest form of error function and is most suitable for regression problems.
e it can also be used for classification problems, there exist other, more
ropriate, error functions, discussed at length in Chapter 6.

4.1 Sum-of-squares error function

consistency with the discussions in Chapter 5, we shall consider the error
inimization problem in the context of the generalized linear network (3.33).
optimal choice. Nevertheless, single-layer networks remain of considerable pr his contains the simple linear discriminant of (3.4) as a special case in which
tical importance in providing a benchmark against which the performance ‘the ¢, (x) simply correspond to the input variables ;. The sum-of-squares error
more complex multi-layer networks can be assessed. The fact that single- function is given by a sum over all patterns in the training set, and over all
networks can often be trained very quickly, as shown in Section 3.4, gives th: puts, of the form

particular advantage over more complex network structures which often require

considerable computational effort to train. e

N
33 {ur(xw) - 17 (3.34)

n=1k=1

E(w) =

B3| =

3.3 Generalized linear discriminants

One way to generalize the discriminant functions, so as to permit a much large!
range of possible decision boundaries, is to transform the input vector x
set of M predefined non-linear functions ¢;(x), sometimes called basis functi
and then to represent the output as a linear combination of these functions

here y; (x™; w) represents the output of unit k as a function of the input vector

and the weight vector w, NN is the number of training patterns, and c is the
‘Humber of outputs. The quantity ¢} represents the target value for output unit k
hen the input vector is x™. This error function is a smooth function of the weight
eters wg;, and can be minimized by a variety of standard techniques. Since
3) is a linear function of the weights, the error function E(w) is a quadratic
iction of the weights, and hence its derivatives with respect to the weights
linear functions of the weights. The solution for the weight values at the
mum of the error function can therefore be found exactly in closed form, as
€ shall see in Section 3.4.3.

Yk(X) = Y wkj6;(x) + wio. (3.32

j=1

This now represents a much larger class of functions yx(x). In fact, as discussed i
Chapters 4 and 5, for a suitable choice of the basis functions ¢;(x), the fun
in (3.32) can approximate any continuous functional transformation to arbitrary

- N

90 3: Single-Layer Networks 8.4: Least-squares techniques 91

M End
g= Z w;iP; (3.36)

=0
5o that i is constrained to lie in the sub-space S, as shown in Figure 3.8. By
S . changing the values of the weights w; we can change the location of 7 subject to
¢ f this constraint.
o f The sum-of-squares error (3.34) can now be written in the form
= y

2

il
E=3 jguw.:qﬁj—t (3.37)

Figure 3.8. Geometrical interpretation of the solution to the least-squares prob-
lem, illustrated for the case of 3 training patterns (N = 3) and 2 basis functions
¢o and ¢, (corresponding to M = 1). The target values t" are grouped together

' If we minimize this expression with respect to the weights w; we find

to form an N-dimensional vector £ which lives in an N-dimensional Euclidean E =0= 4"_1 (F-1), i=1,...,M. (3.38)
space. The corresponding network outputs can similarly be represented as a) Ow;

’

This represents a set of coupled equations for the weights, known as the normal
‘equations of the least-squares problem, for which we shall find an explicit solution
ly. Before doing so, however, it is useful to consider the geometncal inter-
ation of (3.38). Let us decompose into the sum of two vectors =1 +1
ere ttl is the orthogonal projection of £ onto the sub-space S, and £, is the

remainder. Then 5;1‘ £1 = 0 by definition, and hence from (3.38) we have

vector § which consists of a linear combination of M + 1 basis vectors ¢;,
which themselves span an (M + 1)-dimensional Euclidean sub-space S. The
least-squares solution for ¥ is given by the orthogonal projection of ¢ onto S.

3.4.2 Geometrical interpretation of least squares

Before deriving a solution for the weights, it is instructive to consider a geo-
metrical interpretation of the least-squares problem. To do this we consider a
network having a single output y. There is no loss of generality in doing this
as the same discussion applies separately to each output of the network. For a
particular input pattern x™ we can write the network output as

M
=Y wid} (3.35)
=0

5;1‘(?;‘?_{")=O: j=11'!M‘ {339)

1ce the vectors ¢; form a basis set which span the sub-space S, we can solve
(3.39) to give

) 7=1 (3.40)
where ¢7 = ¢;(x"). We now group the target values together to form an N=
dimensional vector ¢ whose elements are given by t*. This vector can be cor
sidered to live in an N-dimensional Euclidean space, as indicated in Figure 3.
For each basis function ¢;(x) we can similarly group the N values of ¢7, corre
sponding to the N data points, to make a vector J)'J-, also of dimension N, which
can be drawn in the same space as the vector £. For the moment we shall assum
that the number of basis functions (including the bias) is less than the num
of patterns, so that M + 1 < N. The M + 1 vectors 45}, corresponding to
M + 1 basis functions, then form a (non-orthogonal) basis set which spans
(M + 1)-dimensional Euclidean sub-space S. The network outputs y™ can a
be grouped to form a vector §. From (3.35) we see that ¥ is given by a lin
combination of the ¢; of the form
o mE—

d so the solution vector is just the projection of the vector of target values
the sub-space spanned by the basis vectors, as indicated in Figure 3.8, This
t is intuitively correct, since the process of learning correSponds to choosing
ection for ¢ such as to minimize its distance from f. Since 7 is constrained
lie in the sub-space, the best we can do is choose it to correspond to the
gonal projection of £ onto S. This minimizes the Iength of the error vector
¥ — t. Note that the residual error vector émin = t." —t = —t, is then

hogonal to S, so that ¢j €min = 0.

F-

92 §: Single-Layer Networks

3.4.3 Pseudo-inverse solution

(3.33), we can write the sum-of-squares error function (3.34) in the form

zero gives the normal equations for the least-squares problem in the form

N M
Z{wa; —cz}¢?=0-

n=1 | j’=0
notation to give

(@Te)WT = &7TT.

Here ® has dimensions N x M and elements ¢}, W has dimensions ¢ x M e "
elements wy;, and T has dimensions N X ¢ and elements ¢}. The matrix QT -‘

in (3.43) is a square matrix of dimension M x M. Provided 1t is non-singular we
may invert it to obtain a solution to (3.43) which can be written in the form

wT =i

where @T is an M x N matrix known as the pseudo-inverse of ® (Golub and
Kahan, 1965; Rao and Mitra, 1971) and is given by

3l = (373) 18T (3.4

Since @ is, in general, a non-square matrix it does not itself have a true inverse;
but the pseudo-inverse does have the property (as is easily seen from 3.45)
®'® = I where I is the unit matrix. Note, however, that ®®1 # I in general. If
the matrix T ® is singular then (3.43) does not have a unique solution. Howevery
if the pseudo-inverse is defined by

2l =lim (27® +e1)"'@”

We now proceed to find an exact solution to the least-squares problem. To do
this we return to the case of a network having ¢ outputs. Using the expression

N ¢ 4 |
E(w) = % Zkz_;l {Zm,gb, - :k} ; (3.41)

Differentiating this expression with respect to wy; and setting the derivative to

8.4: Least-squares technigues 93

then it can be shown that the limit always exists, and that this limiting value
minimizes F (Rao and Mitra, 1971).

In practice, the direct solution of the normal equations can lead to numerical
difficulties due to the possibility of @Tﬁ being singular or nearly singular. This
can arise if two of the basis vectors ¢;, shown in Figure 3.8, are nearly collinear.
The effects of noise and numerical error can then lead to very large values for
the weights which give near cancellation between these vectors. Figure 3.9(a)
shows two basis vectors 51 and 5; which are nearly orthqgonal, Eogether with
the component % of i which lies in the plane spanned by ¢; and ¢;. The corre-
sponding weight values needed to express 7 as a linear combination of ¢, and
@, have relatively small values. By contrast, Figure 3.9(b) shows the correspond-
ing situation when the vectors 51 and 52 are nearly collinear. In this case the
weights need to adopt large (positive or negative) values in order to represent
7y as a linear combination of the basis vectors. In the case where the two basis

vectors are exactly collinear, we can write r,ég = Aq&l for some constant \. Then
widy + wads = (wy + Awz)@; and only the combination (w; + Aws) is fixed
by the least-squares procedure, with the value of ws, say, being arbitrary. Near
degeneracies will not be uncommon when dealing with real, noisy data sets. In
practice, such problems are best resolved by using the technique of singular value
decomposition (SVD) to find a solution for the weights. A good introduction to
SVD, together with a suggested numerical implementation, can be found in Press
et al. (1992). Such an approach avoids problems due to the accumulation of nu-

-merical roundoff errors, and automatically selects (from amongst a set of nearly
 degenerate solutions) the one for which the length ||w/|| of the kth weight vector
is shortest.

In the above discussion, the bias parameters were treated as a special case

of the weights. We can gain some insight into the role of the biases if we make
them explicit. If we consider the minimization of (3.41) with respect to the bias
_parameters alone we obtain

Bfuko =Y {Zwk,qb, + Wio — z,,} 0 (3.47)

n=1 =1

‘Which can be solved for the biases to give

M
wyo =tk — Y wi;d; (3.48)
i=1

94 3: Single-Layer Networks 3.4: Least-squares techniques 95

is under-determined. Similarly, if there are fewer patterns than basis functions,
so that N < M, then the least-squares problem is again under-determined. In
such cases, there is a continuum of solutions for the weights, all of which give
zero error. Singular value decomposition leads to a numerically well-behaved
algorithm which picks out the particular solution for which the magnitude ||wy||
of the weight vector for each output unit k is the shortest. As we have already
indicated in Chapter 1, it is desirable to have a sufficiently large training set
that the weight values are ‘over-determined’, so that in practice we arrange that
N > M, which corresponds to the situation depicted in Figure 3.8.

% E sz 3;
8,

W.E:

(@)

s w,ﬁ),’ = 3.44 Gradient descent

4’ __,_‘_’:_ s | We have shown how, for a linear network, the weight values which minimize the

3 v 3 sum-of-squares error function can be found explicitly in terms of the pseudo-
1 171

inverse of a matrix. It is important to note that this result is only possible for
the case of a linear network, with a sum-of-squares error function. If a non-linear
activation function, such as a sigmoid, is used, or if a different error function
is considered, then a closed form solution is no longer possible. However, if the
activation function is differentiable, as is the case for the logistic sigmoid in (3.16)
for instance, the derivatives of the error function with respect to the weight
parameters can easily be evaluated. These derivatives can then be used in a
variety of gradient-based optimization algorithms, discussed in Chapter 7, for
finding the minimum of the error function. Here we consider one of the simplest
of such algorithms, known as gradient descent.
It is convenient to group all of the parameters (weights and biases) in the
‘hetwork together to form a single weight vector w, so that the error function
can be expressed as E = E(w). Provided E is a differentiable function of w we
y adopt the following procedure. We begin with an initial guess for w (which
‘might for instance be chosen at random) and we then update the weight vector
by moving a small distance in w-space in the direction in which E decreases most
Tapidly, i.e. in the direction of —V,,E. By iterating this process we generate a
Sequence of weight vectors w(™) whose components are calculated using

(b)

Figure 3.9. In (a) we see two basis vectors ¢1 and @2 which are nea:l.y ox:thog—
onal. The least-squares solution vector #j is given by a linear combination of
these vectors, with relatively small values for the coefficients w; and w2. In _(b)
the basis vectors are nearly collinear, and the magnitudes of the corresponding

weight values become very large.

1y f e
- B o N
tksﬁgtzl ¢; = NZ¢J

n=1

network and the corresponding mean of the target data.

If T is a square non-singular matrix, the pseudo-inverse reduces to the usual
inverse. The matrix is square when N = M, so that the number of patterns equai§
the number of basis functions. If we multiply (3.43) by (@")~! we obtain

eWT =T.
(r+1) _ . (r) g
ki ki n awkj) ()

If we write this in index notation we have

‘hﬂl'e 7 is a small positive number called the learning rate parameter. Under

litable conditions the sequence of weight vectors will converge to a point at
*h E is minimized. The choice of the value for 7 can be fairly critical, since

is too small the reduction in error will be very slow, while, if it is too large,

frgent oscillations can result.

In general the error function is given by a sum of terms each of which is

ulated using just one of the patterns from the training set, so that

M
> wkidy =1%

j=0

and we see that, for each input pattern, the network outputs are exactly equal

the corresponding target values, and hence the sum-of-squares exror (3.41) ¥

be zero. The condition for (®7)~! to exist is that the columns ¢ " of the m

®T be linearly independent. If the vectors ¢™ are not linearly independent,

that the effective value of N is less than M, then the least-squares problem Eiw) = ZE"(W) s
n

———

———

96 3: Single-Layer Networks 3.4: Least-squares techniques G
where the term E™ is calculated using pattern n only. In this case we can update due to presentation of a particular pattern is given by
the weight vector using just one pattern at a time
Awgj = —ndpd7.
wiTt) = {7 — q—-—-aEn (3.54) ’ b (3.58)
ki ki dw j

This rule, and its variants, are known by a variety of names includi
) mg the LMS
(least mean squares) rule, the adaline rule, the Widrow—Hoff rule (Wi
Hoff, 1960), and the delta rule. ki
| For networks with differentiable non-linear activation functions, such as the

‘ g;gistic sigmoid shown in Figure 3.5, we can write the network outputs in the
rm
|

and this is repeated many times by cycling through all of the patterns used in the.
definition of E. This form of sequential, or pattern-based, update is reminiscent.
of the Robbins-Monro procedure introduced in Section 2.4, and many of t

same comments apply here. In particular, this technique allows the system to be:
used in real-time adaptive applications in which data is arriving continuously.
Each data point can be used once and then discarded, and if the value of Ul
is chosen appropriately, the system may be able to ‘track’ any slow changes
in the characteristics of the data. If n is chosen to decrease with time in
suitable way during the learning process, then gradient descent becomes preci
the Robbins-Monro procedure for finding the root of the regression functi
E[OE™ /dwy) where £ denotes the expectation. If the value of 7 is chosen to
steadily decreasing with time, so that (™) = 1o/ (which satisfies the conditions
for the Robbins-Monro theorem stated in Section 2.4), then the weight matrix
W can be shown to converge to a solution of

Uk = g(ak) (3.59)

where g(-) is the activation function, and

M
ok =) wisd;. (3.60)
I 3=0

ff[‘he derivatives of the error function for pattern n again take the form
3T(eW -T)=0

oE™

et ACOL 1 (3.61)

where @ is defined on page 92, irrespective of whether or not $7® is singular. _

Gradient descent, and its limitations, are discussed at greater length in Chap- in which

ter 7, along with a variety of more sophisticated optimization algorithms.

In order to implement gradient descent, we need explicit expressions for the . Al X7 — ¢
' - = — 7).
derivatives of the error function with respect to the weights. We consider k=) m(c") - t) (362)

the pattern-based form of gradient descent given by (3.54). For a generali ec

For the logistic sigmoid given by (3.16), the derivati P ;
linear network function of the form (3.33) the derivatives are given by o Y (3.16), the derivative of the activation function

€an be expressed in the simple form

oE™
dw ki

= {y(x") — th Y5 (x") = 6547 9'(a) = 9(a)(1 - g(a)). (3.63)
; --gradie'mf descent based on the total error function (summed over all patterns
e de trammg set) given by (3.52), the derivatives are obtained by computing
~"¢ Gerivatives for each pattern separately and then summing over all patterns

where we have defined

&F = we(x™) —t§.

A OF 9E™
We see that the derivative with respect to a weight wy; connecting basis fun it Z T (3.64)
j to output k can be expressed as the product of & for the output unit and ¢ : n ki

the basis function. Thus, the derivative can be calculated from quantities w
are ‘local’ (in the sense of the network diagram) to the weight concerned.
property is discussed at greater length in the context of multi-layer networks
Section 4.8. Combining (3.54) and (3.56) we see that the change in the we

A

9: Single-Layer Networks

98

Figure 3.10. The perceptron network used a fixed set of processing elements, ‘
denoted ¢;, followed by a layer of adaptive weights w; and a threshold acti-

vation function g(-). The processing elements ¢; typically also had threshold
activation functions, and took inputs from a randomly chosen subset of the

pixels of the input image.

3.5 The perceptron

Single-layer networks, with threshold activation functions, were studied by Rosen-
blatt (1962) who called them perceptrons. Rosenblatt also built hardware imple-
mentations of these networks, which incorporated learning using an algorithm
to be discussed below. These networks were applied to classification problems;
in which the inputs were usually binary images of characters or simple shapes.
The properties of perceptrons are reviewed in Block (1962).

At the same time as Rosenblatt was developing the perceptron, Widrow and
co-workers were working along similar lines using systems known as adalines
(Widrow and Lehr, 1990). The term adaline comes from ADAptive LINear Ele
ment, and refers to a single processing unit with threshold non-linearity (Widrow
and Hoff, 1960) of essentially the same form as the perceptron.

We have already seen that a network with a single layer of weights has /
limited capabilities. To improve the performance of the perceptron, Rosenblatt
used a layer of fixed processing elements to transform the raw input data,
shown in Figure 3.10. These processing elements can be regarded as the ba

|

fixed weights connected to a random subset of the input pixels, with a threshold
activation function of the form (3.20). We shall again use the convention intro-
duced earlier of defining an extra basis function ¢o whose activation is perma~
nently set to +1, together with a corresponding bias parameter wy. The output
of the perceptron is therefore given by

M
y=g (Z wj%(ﬂ) =g(w'¢)

=0

(3.65)

where ¢ denotes the vector formed from the activations @0, - @a. The output
_.__—"h-_

LiS £" = 41 if the input vector belongs to class €y, and t"

3.5: The perceptron 99

unit activation function is most conveniently chosen to be an anti-symmetric
version of the threshold activation function of the form

g(a) = {

We now turn to a discussion of the procedures used to train the perceptron.

-1 whena<0

+1 whena > 0. (3.66)

3.5.1 The perceptron criterion

Since our goal is to produce an effective classification system, it would be natural
to define the error function in terms of the total number of misclassifications over
the training set. More generally we could introduce a loss matrix (Section 1.10)
and consider the total loss incurred as a result of a particular classification of
the data set. Such error measures, however, prove very difficult to work with
in practice. This is because smooth changes in the values of the weights (and
biases) cause the decision boundaries to move across the data points resulting
in discontinuous changes in the error. The error function is therefore piecewise
constant, and so procedures akin to gradient descent cannot be applied. We
therefore seek other error functions which can be more easily minimized.

In this section we consider a continuous, piecewise-linear error function called
‘the perceptron criterion. As each input vector x™ is presented to the inputs of
the network it generates a corresponding vector of activations ¢" in the first-
layer processing elements. Suppose we associate with each input vector x" a
corresponding target value £", such that the desired output from the network
—1 if the vector
belongs to class Cy. From (3.65) and (3.66) we want w @™ > 0 for vectors from

'ela&s C1, and wT@™ < 0 for vectors from class Cs. It therefore follows that for all
Vectors we want to have w™(¢"t") > 0. This suggests that we try to minimize

the following error function, known as the perceptron criterion

EPrS(w)=— Y wT(¢"t") (3.67)

Q" em

Where M is the set of vectors ¢ which are misclassified by the current weight
‘Vect.or w. The error function EP**(w) is the sum of a number of positive terms,
and €quals zero if all of the data points are correctly classified. From the dis-
Cussion in Section 3.1 we see that EP*™(w) is proportional to the sum, over all
OF the input patterns which are misclassified, of the (absolute) distances to the
-_det"flslon boundary. During training, the decision boundary will move and some
Points which were previously misclassified will become correctly classified (and
versa) so that the set of patterns which contribute to the sum in (3.67) will
“lange. The perceptron criterion is therefore continuous and piecewise linear
Vith discontinuities in its gradient.

100 3: Single-Layer Networks 8.5: The perceptron 101
3.5.2 Perceptron learning !
If we apply the pattern-by-pattern gradient descent rule (3.54) to the perceptrg
criterion (3.67) we obtain h 4
w§T+I} = wf-") + ngjtr. o, c
w? o
This corresponds to a very simple learning algorithm which can be sumn -
as follows. Cycle through all of the patterns in the training set and test ~ °
pattern in turn using the current set of weight values. If the pattern is corr ™~
classified do nothing, otherwise add the pattern vector (multiplied by 7) = >
weight vector if the pattern is labelled class C; or subtract the pattern v ~ ' o
(multiplied by 1) from the weight vector if the pattern is labelled class Cy T ~
easy to see that this procedure tends to reduce the error since a °
C,

(T (gren) = —wIT(g"") — (") ("t") < —wT(¢7t") . |

e 3.11, A simple example of perceptron learning, for a data set with four
rns. Circles represent patterns belonging to class C; and squares represent
rns belonging to class Cz. The initial decision boundary, corresponding to
eight vector w'®, shown by the dashed curve, leaves one of the points,
1 incorrectly classified.

since [|@™t"||* > 0 and 5 > 0.

For the particular case of the perceptron criterion, we see that the
n is in fact unimportant since a change in 7 is equivalent to a re-scaling
weights and bias (assuming the initial parameter values are similarly r
This leaves the location of the decision boundaries unchanged. To see this, 1
that the location of the decision boundary is given by (3.2), and is
unchanged if all of the weights, including the bias, are rescaled by the
constant. Thus, when minimizing the perceptron criterion, we can take
with no loss of generality. This property does not hold, however, for most
forms of error function. "

In Figures 3.11-3.13 we give a simple example of learning in a percept:
the case of one basis function ¢, so that, with biases included as special ¢
the weights, the data points live in a two-dimensional space (¢o, ¢1) with @g

ning process starts with some arbitrary weight vector which, without loss
___a.lity, we can assume to be the zero vector. At each step of the algorithm,
ght vector is updated using

w(TtD) = wi7) 4 pnyn (3.71)

@" is a vector which is misclassified by the perceptron. Suppose that, after
the algorithm for some time, the number of times that each vector ¢"
presented and misclassified is 7™. Then the weight vector at this point
ven by

3.5.3 Perceptron convergence theorem

There is an interesting result which states that, for any data set which is
separable, the learning rule in (3.68) is guaranteed to find a solution i
number of steps (Rosenblatt, 1962; Block, 1962; Nilsson, 1965; Minsky &
pert, 1969; Duda and Hart, 1973; Hand, 1981; Arbib, 1987; Hertz et al.
This is known as the perceptron convergence theorem. Here we give a
simple proof, based on Hertz et al. (1991). }

Since we are considering a data set which is linearly separable, we &
that there exists at least one weight vector W for which all training vectors
correctly classified, so that !

w=> rg"", (3.72)

OW take the scalar product of this equation with W to give

\?FTW — z Tn‘“*rT¢ntn
n

> 7 min (W7 ¢"t") (373)

22, 7" is the total number of weight updates, and the inequality

wIigm™t" > 0 for all n.
1 replacing each update vector by the smallest of the update vectors.

102 8: Single-Layer Networks 8.5: The perceptron 103

[D2 = W + 72 + 2w T

< W) + 8" 1%) (3.74)

the inequality follows from the fact that the pattern ¢™ must have been
ified, and so w(MTp"t" < 0. We also have (t")% = 1 since t* = +1, and
812 < |@l|Z,ax Where ||@|lmax is the length of the longest input vector. Thus,
he change in the value of |w||? satisfies

A

Allwl? = w2 — w2 < ||l (3.75)

id so after 7 weight vector updates we have

W12 < Tlldll uas (3.76)

Figure 3.12. To correct for the misclassification of ¢' in Figure 3.11 we
(minus) ¢* onto w'® to give a new weight vector w'), with the new dec
boundary again shown by the dashed curve. The point at ¢ is now correctly
classified, but the point at ¢? is now incorrectly classified. "

d so the length ||w| of the weight vector increases no faster than 71/2. We
¢ recall the previous result that WTw is bounded below by a linear function
ce W is fixed, we see that for sufficiently large 7 these two results would
ne incompatible. Thus 7 cannot grow indefinitely, and so the algorithm
converge in a finite number of steps.
ne of the difficulties with the perceptron learning rule is that, if the data
ippens not to be linearly separable, then the learning algorithm will never
e. Furthermore, if we arbitrarily stop the learning process there is no
ntee that the weight vector found will generalize well for new data. Various
tics have been proposed with a view to giving good performance on prob-
hlch are not linearly separable while still ensuring convergence when the
em is linearly separable. For example, the value of the parameter 7 may be
to decrease during the learning process so that the corrections gradually
ne smaller. One approach is to take n = K /7 where K is a constant and 7 is
number, by analogy with the Robbins—-Monro procedure (Section 2.4.1).
native algorithm for finding good solutions on problems which are not
y separable, called the pocket algorithm, is described in Section 9.5.1. As
already discussed, the issue of linear separability is a somewhat arti-
one, and it is more important to develop learning algorithms which can
ed to give good performance across a wide range of problems, even if
s sacrificing the guarantee of perfect classification for linearly separable

¢2

(0]

2
o

/

Figure 3.13. To correct for the misclassification of ¢? in Figure 3.12 we

@* onto w(') to give a new weight vector w(®) which classifies all the poir
correctly. P
Limitations of the perceptron

DPerceptrons were being studied experimentally in the 1960s, it was found
7 could solve many problems very readily, whereas other problems, which
ly appeared to be no more difficult, proved impossible to solve. A crit-
isal of the capabilities of these networks, from a formal mathematical
nt, was given by Minsky and Papert (1969) in their book Perceptrons.

From (3.70) it then follows that the value of W w is bounded below by a
which grows linearly with .

Keeping this result in mind, we now turn to a consideration of the ma
of the weight vector w. From (3.71) we have

104 3: Single-Layer Networks 3.6: Fisher’s linear discriminant 105

They showed that there are many types of problem which a perceptron can,
in any practical sense, be used to solve. In this context a solution is taken
a correct classification of all of the patterns in the training set.

Many recent textbooks on neural networks have summarized Minsky
Papert’s contribution by pointing out that a single-layer network can only
data sets which are linearly separable, and hence can not solve problems
the XOR example considered earlier. In fact, the arguments of Minsky and
are rather more subtle, and shed light on the nature of multi-layer ne
which only one of the layers of weights is adaptive. Consider the pe:
shown in Figure 3.10. The first layer of fixed (non-adaptive) processin
computes a set of functions ¢; whose values depend on the input pattern
though the data set of input patterns may not be linearly separable, when
in the space of original input variables, it can easily be the case that the
set of patterns becomes linearly separable when transformed into the s
¢; values. Thus a perceptron can solve a linearly inseparable problem, provi
it has an appropriate set of first-layer processing elements. 1

The real difficulty with the perceptron arises from the fact that t.
cessing elements are fixed in advance and cannot be adapted to the par
problem (or data set) which is being considered. As a consequence of this, i
out that the number, or complexity, of such units must grow very rapidly
cally exponentially) with the dimensionality of the problem if the percep
to remain capable in general of providing a solution. It is therefore necessar
limit either the number or the complexity of the first-layer units. Minsky
Papert discuss a range of different forms of perceptron (depending on th
of the functions ¢;) and for each of them they provide examples of pr
which cannot be solved.

Here we consider one particular form, called a diameter-limited per
in which we consider two-dimensional input images as shown in Figure 3.1
in which each of the ¢; takes its inputs only from within a small loca.Hzed.
of the image, called a receptive field, having fixed diameter. Minsky and
(1969) provide a simple geometrical proof that such a perceptron cannot
simple problem involving the determination of whether a binary geometr
age is simply connected. This is illustrated in Figure 3.14. We shall suppo
connected shapes are labelled with targets +1 and that disconnected shapt
targets —1. Note that the overall length of the shapes is taken to be much 18
than the maximum diameter of the receptive fields (indicated by the dask
cles), so that no single receptive field can overlap both ends of the shape..
shape in Figure 3.14 (a), the functions ¢; and the adaptive weights in
ceptron must be such that the linear sum which forms the input to the th
function is negative, if this figure is to be correctly classified as ‘disconn
In going to 3.14 (b), only the left-hand end of the shape has cha.nged,
receptive fields which lie in this region, and their corresponding wei
be such that the linear sum is increased sufficiently to make it go posi
this shape is ‘connected’. Similarly, in going from 3.14 (a) to 3.14 (c) the
sum must also be increased sufficiently to make it positive. However, in g

(©) (@)

eure 3.14. An example of a simple problem, involving the determination of
ether a geometrical figure is simply connected, which cannot be solved by
a perceptron whose inputs are taken from regions of limited diameter.

.14 (a) to 3.14 (d), both ends of the shape have been changed in this way,
 the linear sum must be even more positive. This is inevitable since the
limitation means that the response due to the two ends of the shape are
ndent. Thus, the linear sum cannot be negative for the shape in 3.14 (d),
will therefore be misclassified.

us alternative approaches to limiting the complexity of the first-layer
can be considered. For instance, in an order-limited perceptron, each of the
take inputs only from a limited number of input pixels (which may lie
e on the input image). Counter-examples similar to the one presented
can be found also for these other choices of ¢;. These difficulties can be
nted by allowing the number and complexity of the ¢; to grow suffi-
apidly with the dimensionality of the problem. For example, it is shown
tion 4.2.1 that, for networks with binary inputs, there is a simple proce-
or constructing the ¢; such that any set of input patterns is guaranteed to
arly separable in the ¢; space. The number of such units, however, must
Xponentially with the input dimensionality. Such an approach is therefore
“impractical for anything other than toy problems.

Practical solution to these difficulties is to allow the functions ¢; to be
U, 80 that they are chosen as part of the learning process. This leads to a
ation of multi-layer adaptive networks, as discussed in Chapters 4 and 5.

“isher’s linear discriminant
’ﬁnﬂl topic of this chapter we consider a rather different approach to lin-
Criminants, introduced by Fisher (1936). In Section 1.4 we encountered

lem of the ‘curse of dimensionality’ whereby the design of a good clas-
mes rapidly more difficult as the dimensionality of the input space

106 8: Single-Layer Networks 8.6: Fisher’s linear discriminant 107

increases. One way of dealing with this problem is to pre-process the data
as to reduce its dimensionality before applying a classification algorithm. Tk
Fisher discriminant aims to achieve an optimal linear dimensionality reductio
It is therefore not strictly a discriminant itself, but it can easily be used §
construct a discriminant. As well as being an important technique in its oy
right, the Fisher discriminant provides insight into the representations learng
by multi-layer networks, as discussed in Section 6.6.1.

3.6.1 Two classes

One very simple approach to dimensionality reduction, motivated by our earl
discussion of single-layer networks, is to use a linear projection of the data oni
a one-dimensional space, so that an input vector x is projected onto a value
given by

Figure 3.15. A schematic illustration of why it is important to take account of
the within-class covariances when constructing the Fisher linear discriminant
criterion. Projection of the data onto the z;-axis leads to greater separation
of the projected class means than does projection onto the z2-axis, and yet it
-: eads to greater class overlap. The problem is resolved by taking account of
the within-class scatter of the data points.

y=w'x (3.

where, as before, w is a vector of adjustable weight parameters. Note that tk
expression does not contain any bias parameter. We shall return to this p
shortly. In general, the projection onto one dimension leads to a considerab
of information, and classes which are well separated in the original d-dim
space may become strongly overlapping in one dimension. However, by adjus
the components of the weight vector w we can select a projection which m
mizes the class separation. To begin with, consider a two-class problem in
there are N, points of class C; and N> points of class C2. The mean
the two classes are given by

er, as illustrated in Figure 3.15. This shows two classes which are well
ed in the original two-dimensional space (z,z2). We see that projection
he z,-axis gives a much larger separation of the projected class means
does projection onto the xp-axis. Nevertheless, separation of the projected
much better when the data is projected onto the z,-axis than when it is
onto the z;-axis. This difficulty arises from the substantial difference
thin-class spreads along the two axis directions. The resolution proposed
er is to maximize a function which represents the difference between the
class means, normalized by a measure of the within-class scatter along
ion of w,
Projection formula (3.77) transforms the set of labelled data points in x
elled set in the one-dimensional space y. The within-class scatter of the
stormed data from class Cy is described the within-class covariance, given by

nel; 28602

We might think of defining the separation of the classes, when proje
w, as being the separation of the projected class means. This suggests
might choose w so as to maximize

mz —my = w’ (my — m;) st=) (" —m)? (3.81)
- nel,
where .
® can define the total within-class covariance for the whole data set to be
my = Wka

: 57+ 83. We therefore arrive at the Fisher criterion given by
- (ma —my)?

is the class mean of the projected data from class Cr. However, this e
st +85

can be made arbitrarily large simply by increasing the magnitude of w.
this problem, we could constrain w to have unit length, so that 3, w? =
a Lagrange multiplier (Appendix C) to perform the constrained me
we then find that w oc (mz —m;). There is still a problem with this a

J(w) (3.82)

e the dependence on w explicit by using (3.77), (3.80) and (3.81) to
e Fisher criterion in the form

106 3: Single-Layer Networks 3.6: Fisher’s linear discriminant 109
Tiafi= wTSpw it alleviates problems associated with the curse of dimensionality. Thus, with
WISww e-sized data sets, reduction of the dimensionality may well lead to overall

improvements in the performance of a classifier system.

where Sg is the between-class covariance matrix and is given by
36.2 Relation to the least-squares approach

he least-squares approach to the determination of a linear discriminant was
d on the goal of making the network outputs as close as possible to a set of
et values. By contrast, the Fisher criterion was derived by requiring maxi-
n class separation in the output space. It is interesting to see the relationship
ween these two approaches. In particular, we shall show that, for the two-class
pro blem, the Fisher criterion can be obtained as a special case of least squares.
~ So far we have taken the target values to be +1 for class C; and —1 for
Cz. If, however, we adopt a slightly different target coding scheme then the
st-squares solution solution for the weights becomes equivalent to the Fisher
(wTSw)Sww = (WISww)Spw. lution (Duda and Hart, 1973). In particular, we shall take the targets for class

: to be N/Ny, where Ny is the number of patterns in class C;, and N is the
number of patterns. This target value approximates the reciprocal of the
prior probability for class Cy. For class C we shall take the targets to be —N/Nj.
L The sum-of-squares error function can be written

Sp = (mg — m;)(mz — m,

and Sy is the total within-class covariance matrix, given by

Sw=) (x"—m)(x"—m)T+ Y (x" —mg)(x" —m2)".

nel; necCs

Differentiating (3.83) with respect to w, we find that J(w) is maximized when

From (3.84) we see that Sgw is always in the direction of (ms — m,). Furth
more, we do not care about the magnitude of w, only its direction. Thus, we
drop any scalar factors. Multiplying both sides of (3.86) by S} we then ol

w x S/ (mg — my). (38

wll-l

N
Z wTx™ 4 wg —)2. (3.88)

This is known as Fisher's linear discriminant, although strictly it is not a di
criminant but rather a specific choice of direction for projection of the data
to one dimension. Note that, if the within-class covariance is isotropic, so
Sw is proportional to the unit matrix, we find that w is proportional to &

the derivatives of E with respect to wg and w to zero we obtain respec-

difference of the class means, as discussed above. The projected data can sul N

sequently be used to construct a discriminant, by choosing a threshold yg 8 z (WTx™ +wp - %) =0 (3.89)

that we classify a new point as belonging to C; if y(x) > yo, and classify it 8 n=1

belonging to Cy otherwise. In doing this we note that y = w'x is the su

a set of random variables, and so we may invoke the central limit theorem ') i

page 37) and model the class-conditional density functions p(y|Cx) using norn Z (Wix™ +wp — ") x™ = 0. (3.90)
n=1

distributions. The techniques of Chapter 2 can then be used to find the par
eters of the normal distributions by maximum likelihood, and the formalism¥
Chapter 1 then gives an expression for the optimal threshold. »

Once we have obtained a suitable weight vector and a threshold, the prot 1
dure for deciding the class of a new vector is identical to that of the perce
network of Section 3.5. We can therefore view the Fisher criterion as a sp
procedure for choosing the weights (and subsequently the bias) in a single-lay
network. More conventionally, however, it is regarded as a technique for dimes
sionality reduction, a subject which is discussed at greater length in Chapter 8.1
reducing the dimensionality of the data we are discarding information, and thi
cannot reduce (and will typically increase) the theoretical minimum achievabi€
error rate. Dimensionality reduction may be wnrhhwhile in practice, however, a8

from (3.89), and making use of our choice of target coding scheme for the #",
DEain an expression for the bias in the form

wo=-w'm (3.91)

Bre m is the mean of the total data set and is given by

N
1 1
St Z = S (Vim; + Npmy). (3.92)

110 3: Single-Layer Networks ‘ 3.6: Fisher’s linear discriminant 111

;whel‘e N is the number of patterns in class Ci. In order to find a generalization
of the between-class covariance matrix, we follow Duda and Hart (1973) and
consider first the total covariance matrix

After some straightforward algebra, and again making use of the choice of ¢
the second equation (3.90) becomes :

(Sw . N}sz SB) w = N(m; — my) N
n n T
Sy = Z(x —m)(x" —m) (3.99)
n=1

where Sy is defined by (3.85), Sp is defined by (3.84), and we have substit
for the bias using (3.91). Using (3.84) we note that S gw is always in the dire B ire m is the mean of the total data set
of (my — m,). Thus we can write | [
1 N 1 ¢
sl = =

w o Sj;} (my — m;) m=g ; x* = gNkmk (3.100)
where we have ignored irrelevant scale factors. Thus the weight vector coin
with that found from the Fisher criterion. In addition, we have also found ;
expression for the bias value wg given by (3.91). This tells us that a new

x should be classified as belonging to class C; if wT(x —m) > 0 and ¢
otherwise.

and N =), Ni is the total number of data points. The total covariance matrix
n be decomposed into the sum of the within-class covariance matrix, given by
,) and (3.97), plus an additional matrix Sp which we identify as a measure
of the between-class covariance

3.6.3 Several classes S+ =Sw +Sg (3.101)
We now consider the generalization of the Fisher discriminant to several ¢

and we shall assume that the dimensionality of the input space is greate

the number of classes, so that d > ¢. Also, we introduce d’ > 1 linear ‘feat .

yk = Wy x, where k = 1,...,d'. These feature values can conveniently be gr S Z Ni(my — m)(my — m)T (3.102)

together to form a vector y. Similarly, the weight vectors {wy} can be consid
to be the rows of a matrix W, so that :

k=1

e covariance matrices have been defined in the original x-space. We can now

y=Wx ne similar matrices in the projected d’-dimensional y-space
The generalization of the within-class covariance matrix to the case of ¢ classe - 5 n T
follows from (3.85) to give sw=3_ > (" —m)y" — m) (3.103)
k=1neCy
c
Sw =) S
k=1 .
where s8 = Ni(w — 1) (py — p)" (3.104)
k=1
Sk =) (x" —my)(x" —my)"
neCy

1 1 2

and Be=5—) ¥y p==> Npp. (3.105)
Nk ﬂ%& N k=1

i}
My = = x”‘ . .] .
Ni vl 0 we wish to construct a scalar which is large when the between-class co-

e is large and when the within-class covariance is small. There are now

112 3: Single-Layer Networks |

many possible choices of criterion (Fukunaga, 1990). One example is given by
. |

J(W) ="T¥ {S;VISB}

where Tr{M} denotes the trace of a matrix M. This criterion can then be rewri
ten as an explicit function of the projection matrix W in the form

J(W) = Tr { (WS WT)~}(WSpWT)}.

Maximization of such criteria is straightforward, though somewhat involve
and is discussed at length in Fukunaga (1990). The weight values are determine
by those eigenvectors of SQISB which correspond to the d’ largest eigenvalug

There is one important result which is common to all such criteria, whicl
worth emphasizing. We first note from (3.102) that Sp is composed of the s
of ¢ matrices, each of which is an outer product of two vectors and therefo
rank 1. In addition only (¢ — 1) of these matrices are independent as a res
of the constraint (3.100). Thus, Sp has rank at most equal to (¢ — 1) and &
there are at most (¢ — 1) non-zero eigenvalues. This shows that the proje
down onto the (¢ — 1)-dimensional sub-space spanned by the eigenvectors of S
does not alter the value of J(W), and so we are therefore unable to find
than (¢ — 1) linear ‘features’ by this means (Fukunaga, 1990). Dimensionalit
reduction and feature extraction are discussed at greater length in Chapter 8.

Exercises

3.1 (x) Consider a point Z which lies on the plane y(X) = 0, where y(x) is g
by (3.1). By minimizing the distance ||x — X|| with respect to X sub,
to this constraint, show that the value of the linear discriminant func
y(x) gives a (signed) measure of the perpendicular distance L of the
x to the decision boundary y(x) = 0 of the form

_y®
L=Twi

3.2 (x) There are several possible ways in which to generalize the concept
linear discriminant function from two classes to ¢ classes. One possibi
would be to use (c—1) linear discriminant functions, such that yx (x)>0
inputs x in class Cx and yx(x) < 0 for inputs not in class C¢. By draw
a simple example in two dimensions for ¢ = 3, show that this appr
can lead to regions of x-space for which the classification is ambigus
Another approach would be to use one discriminant function y;x(X)
each possible pair of classes C; and Cy, such that yjk(x) > 0 for pattern
class C;, and y;(x) < 0 for patterns in class Cy. For ¢ classes we would 1
(e — 1)/2 discriminant functions. Again, by drawing a specific exar
in two dimensions for ¢ = 3, show that this approach can also lead &
ambiguous regions. -

S e e N

FEzercises. 113

I&s (*) Consider a mixture model of the form (2.71) in which the component

densities are given by

d
p(xlj) = [] PE (1 — B>

i=1

(3.109)

which is equivalent to (3.22). Show that the maximum likelihood solution
for the parameters Pj; is given by

B, = 2 Pl
Y Pl

where P(j|x) is the posterior probability for component j corresponding
to an input vector x and is given, from Bayes’ theorem, by

p(x|5)P(7)
2 P(x[k)P(k)

and P(j) is the corresponding prior probability.

(3.110)

P(jlx) = (3.111)

set of all points x given by

(3.112)

K= E anx"
n

where &, > 0 and 3", @, = 1. Consider a second set of points {z"} and its
corresponding convex hull. The two sets of points will be linearly separable
if there exists a vector W and a scalar wp such that WTx™ + wg > 0 for all
x", and WTz" +wg < 0 for all z". Show that, if their convex hulls intersect,
the two sets of points cannot be linearly separable, and conversely that, if
they are linearly separable, their convex hulls do not intersect.

8.5 («*) Draw all 22 = 4 dichotomies of N = 2 points in one dimension, and

hence show that the fraction of such dichotomies which are linearly sepa-
rable is 1.0. By considering the binomial expansion of 2¢ = (14 1)4, verify
that the summation in (3.30) does indeed give F =1 when N =d + 1 for
any d. Similarly, by drawing all 2% = 16 dichotomies of N' = 4 points in one
dimension, show that the fraction of dichotomies which are linearly sepa-
rable is 0.5. By considering the binomial expansion of 224+! = (14-1)2d+1,
show from (3.30) that the fraction of dichotomies which are linearly sep-
arable for N = 2(d + 1) is given by F(2d + 2,d) = 0.5 for any N. Verify
that these results are consistent with Figure 3.7.

9.6 (x4 %) Generate and plot a set of data points in two dimensions, drawn
i

from t?JO clas:ses each of which is described by a Gaussian class-conditional
degsii‘:y function. Implement the gradient descent algorithm for training a
logistic discriminant, and plot the decision boundary at regular intervals

114 3: Single-Layer Networks Erercises 115

(x* %) Generate a data set consisting of a small number of vectors in two
" dimensions, each belonging to one of two classes. Write a numerical im-
plementation of the perceptron learning algorithm, and plot both the data
points and the decision boundary after every iteration. Explore the be-
haviour of the algorithm both for data sets which are linearly separable
and for those which are not.
310 (x) Use a Lagrange multiplier (Appendix C) to show that, for two classes,
" the projection vector which maximizes the separation of the projected class
means given by (3.79), subject to the constraint ||w|? = 1, is given by
w o (m2 —my).
8.11 (x*) Using the definitions of the between-class and within-class covariance
~ matrices given by (3.84) and (3.85) respectively, together with (3.91) and
- (3.92) and the choice of target values described in Section 3.6.2, show that
the expression (3.90) which minimizes the sum-of-squares error function
can be written in the form (3.93).
.12 () By making use of (3.98), show that the total covariance matrix St
given by (3.99) can be decomposed into within-class and between-class
covariance matrices as in (3.101), where the within-class covariance matrix
Sy is given by (3.96) and (3.97), and the between-class covariance matrix
~ Sp is given by (3.102).

A
C,

A

0.0 1.0 20 3.0 4.0

\ 4

.0

Figure 3.16. Distribution of data in one dimension drawn from two classes,
used in Exercise 3.7.

during the training procedure on the same graph as the data. Explore k
effects of choosing different values for the learning rate parameter 7.
pare the behaviour of the sequential and batch weight update proce
described by (3.52) and (3.54) respectively.

3.7 (x*) Consider data in one dimension drawn from two classes having
tributions shown in Figure 3.16. What is the ratio of the prior probab

which minimizes the sum-of-squares error function defined by

i /:{!J(z) -1 de+ /:{y(-r) +1}do (3.118

where the target values are ¢ = +1 for class C; and t = —1 for class Cz. Sh
that the decision boundary given by y(z) = 0 just fails to separate th
classes. Would a single-layer perceptron necessarily find a solution
separates the two classes exactly? Justify your answer. Discuss briefl
advantages and limitations of the least-squares and perceptron algorithi
in the light of these results. [
3.8 (x) Prove that, for arbitrary vectors w and W, the following inequality
satisfied:
—_— < 1. 11
TP <! G
Hence, using the results (3.73) and (3.76) from the proof of the pe
tron convergence theorem given in the text, show that an upper lim
the number of weight updates needed for convergence of the perce]
algorithm is given by

SRS . -8
max = Ting (W1)2

4.1: Feed-forward network mappings 117

4
THE MULTI-LAYER PERCEPTRON

In Chapter 3, we discussed the properties of networks having a single layer
adaptive weights. Such networks have a number of important limitations in
of the range of functions which they can represent. To allow for more general
pings we might consider successive transformations corresponding to ne
having several layers of adaptive weights. In fact we shall see that networks
just two layers of weights are capable of approximating any continuous funct
mapping. More generally we can consider arbitrary network diagrams (not
essarily having a simple layered structure) since any network diagram ca
converted into its corresponding mapping function. The only restriction is
the diagram must be feed-forward, so that it contains no feedback loops.
ensures that the network outputs can be calculated as explicit functions of th
inputs and the weights.

We begin this chapter by reviewing the representational capabilities of multi
layered networks having either threshold or sigmoidal activation functions. |
networks are generally called multi-layer perceptrons, even when the acti
functions are sigmoidal. For networks having differentiable activation funct:
there exists a powerful and computationally efficient method, called error &
propagation, for finding the derivatives of an error function with respect to
weights and biases in the network. This is an important feature of such netv
since these derivatives play a central role in the majority of training algori
for multi-layered networks, and we therefore discuss back-propagation at s

inputs

Figure 4.1, An example of a feed-forward network having two]a.yelrs of adaptive
weights. The bias parameters in the first layer are shown as weights from an
extra input having a fixed value of zo = 1. Similarly, the bias parameters in the
second layer are shown as weights from an extra hidden unit, with activation

again fixed at zo = 1.

We shall view feed-forward neural networks as providing a general framework
or representing non-linear functional mappings between a set of input varifzbles
| a set of output variables. This is achieved by representing the non-linear
ion of many variables in terms of compositions of non-linear functions of
sle variable, called activation functions. Each multivariate function can be
presented in terms of a network diagram such that there is a one-to-one corre-
ondence between components of the function and the elements of the diagram.
ually, any topology of network diagram, provided it is feed-forward, can be
slated into the corresponding mapping function. We can therefore catego-
s different network functions by considering the structure of the corresponding

ork diagrams.

4.1.1 Layered networks

length. We also consider a variety of techniques for evaluating and approximati begin by looking at networks consisting of successive layers of adaptive
the second derivatives of an error function. These derivatives form the ele hts. As discussed in Chapter 3, single-layer networks are based on a linear
of the Hessian matrix, which has a variety of different applications in the con mbination of the input variables which is transformed by a non-linear activa-
of neural networks. ' on function. We can construct more general functions by considering networks
ving successive layers of processing units, with connections running from every
t in one layer to every unit in the next layer, but with no other connections
rmitted. Such layered networks are easier to analyse theoretically than more
neral topologies, and can often be implemented more efficiently in a software
ulation.

An example of a layered network is shown in Figure 4.1. Note that units
ich are not treated as output units are called hidden units. In this network
e are d inputs, M hidden units and ¢ output units. We can write down the
ytic function corresponding to Figure 4.1 as follows. The output of the jth

4.1 Feed-forward network mappings

In the first three sections of this chapter we consider a variety of different
of feed-forward network, and explore the limitations which exist on the mappin|
which they can generase. We are only concerned in this discussion with find
fundamental restrictions on the capabilities of the networks, and so we shall
instance assume that arbitrarily large networks can be constructed if needed
practice, we must deal with networks of a finite size, and this raises a number of
important issues which are discussed in later chapters.

B

118 4: The Multi-layer Perceptron 4.1: Feed-forward network mappings 119

hidden unit is obtained by first forming a weighted linear combination of th eoation function, to give

input values, and adding a bias, to give 3 :

yk = g(ax). (4.6)

d

o= 3w+ uf) . ST
4 LT e o we have used the notation g(-) for the activation function of the output

- . to emphasize that this need not be the same function as used for the

en units. . .)

1f we combine (4.2), (4.3), (4.5) and (4.6) we obtain an exphcxit expression for

he complete function represented by the network diagram in Figure 4.1 in the

1 -
Here wg‘-) denotes a weight in the first layer, going from input i o hidden ug

j, and wg-é,) denotes the bias for hidden unit j. As with the single-layer netw
of Chapter 3, we have made the bias terms for the hidden units explicit
diagram of Figure 4.1 by the inclusion of an extra input variable 25 whose y
is permanently set at zo = 1. This can be represented analytically by rewr
(4.1) in the form

Tergnil
AR

M d
_ 1
w=7(> wﬁ)y (2 :w},.’:c,-) 1)
=0

=0

note that, if the activation functions for the output units are taken to be
' so that g(a) = a, this functional form becomes a special case'of the
1 alized linear discriminant function discussed in Section 3.3, in which the
The activation of hidden unit j is then obtained by transforming the linear su asis functions are given by the particular functions z; defined by (4.2) and
) vangisn skl fumetion 9(:) to give i .3). The crucial difference is that here we shall regard the weight parameters
P ing in the first layer of the network, as well as those in the second layer,
ng adaptive, so that their values can be changed during the process of
vork training. : :
The network of Figure 4.1 corresponds to a transformation of the input vari-
by two successive single-layer networks. It is clear that we can extend this
of networks by considering further successive transformatic_ms of the same
al kind, corresponding to networks with extra layers of weights. Through-
this book, when we use the term L-layer network we shall be referring to
vork with L layers of adaptive weights. Thus we shall call the netwqu of
e 4.1 a two-layer network, while the networks of Chapter 3 are called anglg-
networks. Tt should be noted, however, that an alternative convention 1s
metimes also found in the literature. This counts layers of units rather than
ers of weights, and regards the inputs as separate units. According to this
ntion the networks of Chapter 3 would be called two-layer networks, and
network in Figure 4.1 would be said to have three layers. We do not recom-
mend this convention, however, since it is the layers of adaptive weights which
erucial in determining the properties of the network function. Furthermore,
circles representing inputs in a network diagram are not true processing units
ince their sole purpose is to represent the values of the input variables.
. A useful technique for visualization of the weight values in a neural network
8 the Hinton diagram, illustrated in Figure 4.2. Each square in the diagram cor-
nds to one of the weight or bias parameters in the network, and the squares
ke grouped into blocks corresponding to the parameters associated with each
nit. The size of a square is proportional to the magnitude of the corresponding

d
=" (1)

i=0

Z; = g(aj).

11.1 this chapter we shall consider two principal forms of activation functic
given respectively by the Heaviside step function, and by continuous si gmo
functions, as introduced already in the context of single-layer networks in |
tion 3.1.3. '

Tl}e outputs of the network are obtained by transforming the activatio
the hidden units using a second layer of processing elements. Thus, for e

ouf.put unit k, we construct a linear combination of the outputs of the hi
units of the form

M
2
.= Zwij)zj + w,[cf}).
i=1

Again, we can absorb the bias into the weights to give

w%ﬁch can be represented diagrammatically by including an extra hidden uni
with activation 2z = 1 as shown in Figure qu_-___'gl‘l_}é:._lfct_i‘_ration of the kth ou

unit is then obtained by transforming this line

120 4: The Multi-layer Percepiron 4.2: Threshold units 121

outputs

biases
weights

weights

A B C

Figure 4.2. Example of a two-layer network which solves the XOR problem,
showing the corresponding Hinton diagram. The weights in the network have inbuts
the value 1.0 unless indicated otherwise. ‘ P

: . . { Figure 4.3. An example of a neural network having a general feed-forward
parameter, and the square is black or white according to whether the paramete _ topology. Note that each unit has an associated bias parameter, which has

is positive or negative. _ been omitted from the diagram for clarity.

442, Genevil fopulogies rk. In practice, there is little call to consider random networks, but there

ﬂ:en considerable advantage in building a lot of structure into the network.
example involving multiple layers of processing units, with highly restricted
‘structured interconnections between the layers, is discussed in Section 8.7.3.
Note that, if the activation functions of all the hidden units in a network are
to be linear, then for any such network we can always find an equivalent
k without hidden units. This follows from the fact that the composition of

ve linear transformations is itself a linear transformation. Note, however,
if the number of hidden units is smaller than either the number of input or
t units, then the linear transformation which the network generates is not
ost general possible since information is lost in the dimensionality reduction
hidden units. In Section 8.6.2 it is shown that such networks can be related
nventional data processing techniques such as principal component analysis.
eneral, however, there is little interest in multi-layer linear networks, and we
l therefore mainly consider networks for which the hidden unit activation
ions are non-linear.

Since there is a direct correspondence between a network diagram and its m
matical function, we can develop more general network mappings by consid
more complex network diagrams. We shall, however, restrict our attention to
case of feed-forward networks. These have the property that there are no
back loops in the network. In general we say that a network is feed-forward
is possible to attach successive numbers to the inputs and to all of the hi
and output units such that each unit only receives connections from inp
units having a smaller number. An example of a general feed-forward ne
is shown in Figure 4.3. Such networks have the property that the om;p!.ltist
be expressed as deterministic functions of the inputs, and so the whole ne
represents a multivariate non-linear functional mapping.

The procedure for translating a network diagram into the correspond
mathematical function follows from a straightforward extension of the
already discussed. Thus, the output of unit k is obtained by transform
weighted linear sum with a non-linear activation function to give

Threshold units

2 are many possible choices for the non-linear activation functions in a multi-
network, and the choice of activation functions for the hidden units may
N be different from that for the output units. This is because hidden and
Put units perform different roles, as is discussed at length in Sections 6.6.1
-7.1. However, we begin by considering networks in which all units have
Side, or step, activation functions of the form

2k =g Zwka_,-
J

where the sum runs over all inputs and units which send connections to
(and a bias parameter is included in the summation). For a given set of
applied to the inputs of the network, successive use of (4.8) allows the acti
of all units in the network to be evaluated mcludmg those of the output
This process can be regarded as a forward propagation of signals through th

122 4: The Multi-layer Perceptron 4.2: Threshold units 123

_J0 whena<0
g(a)—{l when a > 0.

Such units are also known as threshold units. We consider separately the
in which the inputs consist of binary and continuous variables.

4.2.1 Binary inputs

Consider first the case of binary inputs, so that 2; = 0 or 1. Since the ne
outputs are also 0 or 1, the network is computing a Boolean function. We
easily show that a two-layer network of the form shown in Figure 4.1 can gen
any Boolean function, provided the number M of hidden units is sufficiently |
(McCulloch and Pitts, 1943). This can be seen by constructing a specific n
which computes a particular (arbitrary) Boolean function. We first note tha
d inputs the total possible number of binary patterns which we have to co
is 2. A Boolean function is therefore completely specified once we have gi
the output (0 or 1) corresponding to each of the 2¢ possible input patterns
construct the required network we take one hidden unit for every input pas
which has an output target of 1. We then arrange for each hidden unit to re
just to the corresponding pattern. This can be achieved by setting the we
from an input to a given hidden unit to +1 if the corresponding pattern
1 for that input, and setting the weight to —1 if the pattern has a 0 for
input. The bias for the hidden unit is set to 1 — b where b is the numbe
non-zero inputs for that pattern. Thus, for any given hidden unit, presenta
of the corresponding pattern will generate a summed input of b and the unit
give an output of 1, while any other pattern (including any of the patterns 1
target 0) will give a summed input of at most b — 2 and the unit will have
output of 0. It is now a simple matter to connect each hidden unit to the ou
unit with a weight +1. An output bias of —1 then ensures that the output o
network is correct for all patterns.

This construction is of little practical value, since it merely stores a
binary relations and has no capability to generalize to new patterns outside
training set (since the training set was exhaustive). It does, however, illustrate:
concept of a template. Each hidden unit acts as a template for the correspons
input pattern and only generates an output when the input pattern matches
template pattern.

(a) (b) (c)

Figure 4.4. Illustration of some possible decision boundaries which can be gen-
erated by networks having threshold activation functions and various numbers
of layers. Note that, for the two-layer network in (b), a single convex region of
the form shown is not the most general possible.

1 on one side of the hyperplane, and z = 0 on the other side. If there are M
den units and the bias on the output unit is set to —M, then the output unit
nputes a logical AND of the outputs of the hidden units. In other words, the
put unit has an output of 1 only if all of the hidden units have an output of 1.
h a network can generate decision boundaries which surround a single convex
on of the input space, whose boundary consists of segments of hyperplanes,
illustrated in Figure 4.4 (b). A convex region is defined to be one for which any
joining two points on the boundary of the region passes only through points
ch lie inside the region. These are not, however, the most general regions
ch can be generated by a two-layer network of threshold units, as we shall
shortly.

Networks having three layers of weights can generate arbitrary decision re-
» which may be non-convex and disjoint, as illustrated in Figure 4.4 (c). A
ple demonstration of this last property can be given as follows (Lippmann,
)- Consider a particular network architecture in which, instead of having
connectivity between adjacent layers as considered so far, the hidden units
arranged into groups of 2d units, where d denotes the number of inputs. The
ogy of the network is illustrated in Figure 4.5. The units in each group send
outputs to a unit in the second hidden layer associated with that group.
1 second-layer unit then sends a connection to the output unit. Suppose the
ut space is divided into a fine grid of hypercubes, each of which is labelled as
5 Cy or Cy. By making the input-space grid sufficiently fine we can approxi-
e an arbitrarily shaped decision boundary as closely as we wish. One group
t-layer units is assigned to each hypercube which corresponds to class Cy,

4.2.2 Continuous inputs

We now discuss the case of continuous input variables, again for units wit
threshold activation functions, and we consider the possible decision boundari
which can be produced by networks having various numbers of layers (Lippmat
1987; Lonstaff and Cross, 1987). In Section 3.1 it was shown that a network wi
a single layer of weights, and a threshold output unit, has a decision bounc
which is a hyperplane. This is illustrated for a two-dimensional input space
Figure 4.4 (a). Now consider networks with two layers of weights. Again, e
hidden units divides the input space with a hyperplane, so that it has activa

124 4: The Multi-layer Perceptron

|
{

inputs

Figure 4.5. Topology of a neural network to demonstrate that networks with
three layers of threshold units can generate arbitrarily complex decision bound-
aries. Biases have been omitted for clarity. :

and there are no units corresponding to class C;. Using the ‘AND’ constru
for two-layer networks discussed above, we now arrange that each second-l
hidden unit generates a 1 only for inputs lying in the corresponding hyperc
This can be done by arranging for the hyperplanes associated with the first-
units in the block to be aligned with the sides of the hypercube. Finally
output unit has a bias which is set to —1 so that it computes a logical
of the outputs of the second-layer hidden units. In other words the output
generates a 1 whenever one (or more) of the second-layer hidden units does
the output unit activation is 1, this is interpreted as class C;, otherwise it is i
preted as class C3. The resulting decision boundary then reflects the (arbi
assignment of hypercubes to classes C; and Cs.

The above existence proof demonstrates that feed-forward neural ne
with threshold units can generate arbitrarily complex decision boundaries.
proof is of little practical interest, however, since it requires the decision bo
to be specified in advance, and also it will typically lead to very large net
Although it is ‘constructive’ in that it provides a set of weights and thre
which generate a given decision boundary, it does not answer the more p!
question of how to choose an appropriate set of weights and biases for a parti
problem when we are given only a set of training examples and we do not knav
in advance what the optimal decision boundary will be. 3

Returning to networks with two layers of weights, we have already seen hi
the AND construction for the output unit allows such a network to gene
an arbitrary simply-connected convex decision region. However, by relaxing

4.2 Threshold units 125

— - —p -
| 1 | |
| |

2 13 1218 2

| | _ | l__-_

3 |4]| 3| 4] 3
¢ 0 Sl

4;5:4}5:4
| | | |

Figure 4.6. Example of a non-convex decision boundary generated by a network
having two layers of threshold units. The dashed lines show the hyperplanes
corresponding to the hidden units, and the arrows show the direction in which
the hidden unit activations make the transition from 0 to 1. The second-layer
weights are all set to 1, and so the numbers represent the value of the linear
‘sum presented to the output unit. By setting the output unit bias to —3.5, the
decision boundary represented by the solid curve is generated.

5> <*— > <
| | | |
|
g b a8 fosdins
| | | l____
4 | 5 4 5 4
T_'""|) S
3l 4} 3] 43
| | | |

~ Figure 4.7. As in Figure 4.6, but showing how a disjoint decision region can
- be produced. In this case the bias on the output unit is set to —4.5.

ction of an AND output unit, more general decision boundaries can be con-

cted (Wieland and Leighton, 1987; Huang and Lippmann, 1988). Figure 4.6
Ws an example of a non-convex decision boundary, and Figure 4.7 shows a

ion region which is disjoint. Huang and Lippmann (1988) give some exam-
of very complex decision boundaries for networks having a two layers of
hold units.

This would seem to suggest that a network with just two layers of weights

| generate arbitrary decision boundaries. This is not in fact the case (Gibson
Cowan, 1990; Blum and Li, 1991) and Figure 4.8 shows an example of a
sion region which cannot be produced by a network having just two layers of

126 4: The Multi-layer Perceptron

-
.

[

Figure 4.8. An example of a decision boundary which cannot be produced by
a network having two layers of threshold units (Gibson and Cowan, 1990).

weights. Note, however, that any given decision boundary can be approxima
arbitrarily closely by a two-layer network having sigmoidal activation functions

as discussed in Section 4.3.2.

So far we have discussed procedures for generating particular forms of
sion boundary. A distinct, though related, issue whether a network can ¢
correctly a given set of data points which have been labelled as belonging to
of two classes (a dichotomy). In Chapter 3 it is shown that a network ha
single layer of threshold units could classify a set of points perfectly if they w
linearly separable. This would always be the case if the number of data poi
was at most equal to d + 1 where d is the dimensionality of the input s
Nilsson (1965) showed that, for a set of N data points, a two-layer netwo
threshold units with N — 1 units in the hidden layer could exactly separs
arbitrary dichotomy. Baum (1988) improved this result by showing that for
points in general position (i.e. excluding exact degeneracies) in d-dimensio
space, a network with [N/d] hidden units in a single hidden layer could separ
them correctly into two classes. Here [N/d] denotes the smallest integer

is greater than or equal to N/d.

4.3 Sigmoidal units

We turn now to a consideration of multi-layer networks having different
activation functions, and to the problem of representing smooth mappings
tween continuous variables. In Section 3.1.3 we introduced the logistic si

activation function, whose outputs lie in the range (0,1), given by

1

99) = T op(-a)

s ¢ ey

4.8: Sigmoidal units 127

1.0

g(a)

0.0 pmmmmmmmmmmm e e

-1.0 p—
-3.0 0.0 4" 'B0

Figure 4.9. Plot of the ‘tanh’ activation function given by (4.11).

‘which is plotted in Figure 3.5. We discuss the motivation for this form of acti-
vation function in Sections 3.1.3 and 6.7.1, where we show that the use of such
activation functions on the network outputs plays an important role in allowing
he outputs to be given a probabilistic interpretation.

The logistic sigmoid (4.10) is often used for the hidden units of a multi-layer
network. However, there may be some small practical advantage in using a ‘tanh’
activation function of the form

et — e—8

g(a) = tanh(a) = s

(4.11)

which is plotted in Figure 4.9. Note that (4.11) differs from the logistic function
i (4.10) only through a linear transformation. Specifically, an activation function
9(@) = tanh(a) is equivalent to an activation function g(a) = 1/(1 + e~%) if we
apply a linear transformation @ = a/2 to the input and a linear transformation
g =2g—1 to the output. Thus a neural network whose hidden units use the
activation function in (4.11) is equivalent to one with hidden units using (4.10)
- but having different values for the weights and biases. Empirically, it is often
[_?Olmd that ‘tanh’ activation functions give rise to faster convergence of training
algorithms than logistic functions.

~ In this section we shall consider networks with linear output units. As we
;‘_‘hBJI see, this does not restrict the class of functions which such networks can
approximate. The use of sigmoid units at the outputs would limit the range of
Possible outputs to the range attainable by the sigmoid, and in some cases this
‘Would be undesirable. Even if the desired output always lay within the range
Of the sigmoid we note that the sigmoid function g(-) is monotonic, and hence
18 invertible, and so a desired output of y for a network with sigmoidal output
nits is equivalent to a desired output of g~ (y) for a network with linear output

128

4: The Multi-layer Perceptron

units. Note, however, that there are other reasons why we might wish to y
non-linear activation functions at the output units, as discussed in Chapter

A sigmoidal hidden unit can approximate a linear hidden unit arbit
accurately. This can be achieved by arranging for all of the weights feeding
the unit, as well as the bias, to be very small, so that the summed input li
the linear part of the sigmoid curve near the origin. The weights on the out;
of the unit leading to the next layer of units can then be made correspond
large to re-scale the activations (with a suitable offset to the biases if necess
Similarly, a sigmoidal hidden unit can be made to approximate a step fun
by setting the weights and the bias feeding into that unit to very large val

As we shall see shortly, essentially any continuous functional mapping
represented to arbitrary accuracy by a network having two layers of weights
sigmoidal hidden units. We therefore know that networks with extra la
processing units also have general approximation capabilities since they co!
the two-layer network as a special case. This follows from the fact thal
remaining layers can be arranged to perform linear transformations as dise
above, and the identity transformation is a special case of a linear transfo:
(provided there is a sufficient number of hidden units so that no reducti
dimensionality occurs). Nevertheless, it is instructive to begin with a disc
of networks having three layers of weights.

4.3.1 Three-layer networks

In Section 4.2 we gave a heuristic proof that a three-layer network with t
activation functions could represent an arbitrary decision boundary to arbi
accuracy. In the same spirit we can give an analogous proof that a network
three layers of weights and sigmoidal activation functions can approxim
arbitrary accuracy, any smooth mapping (Lapedes and Farber, 1988). The
quired network topology has the same form as in Figure 4.5, with each group
units in the first hidden layer again containing 2d units, where d is the di
sionality of the input space. As we did for threshold units, we try to arra
each group to provide a non-zero output only when the input vector lies wi
a small region of the input space. For this purpose it is convenient to con
the logistic sigmoid activation function given by (4.10).

We can illustrate the construction of the network by considering a tW
dimensional input space. In Figure 4.10 (a) we show the output from a 8
unit in the first hidden layer, given by

2 = g(wTx + w). (

From the discussion in Section 3.1, we see that the orientation of the sigm:
determined by the direction of w, its location is determined by the bias wo, 8
the steepness of the sigmoid slope is determined by ||w/|. Units in the
hidden layer form linear combinations of these sigmoidal surfaces. Consid
combination of two such surfaces in which we choose the second sigmoid to
the same orientation as the first but displaced from it by a short distance

4.8: Sigmoidal units

129

(d)

Figure 4.10. Demonstration that a network with three layers of weights, and
sigmoidal hidden units, can approximate a smooth multivariate mapping to
arbitrary accuracy. In (a) we see the output of a single sigmoidal unit as a
function of two input variables. Adding the outputs from two such units can
produce a ridge-like function (b), and adding two ridges can give a function

- with a maximum (c). Transforming this function with another sigmoid gives a

localized response (d). By taking linear combinations of these localized func-
tions, we can approximate any smooth functional mapping.

g the two sigmoids together we obtain a ridge-like function as shown in
e 4.10 (b). We next construct d of these ridges with orthogonal orientations
add them together to give a bump-like structure as shown in Figure 4.10 (c).
ough this has a central peak there are also many other ridges present which
h out to infinity. These are removed by the action of the sigmoids of the
nd-layer units which effectively provide a form of soft threshold to isolate
central bump, as shown in Figure 4.10 (d). We now appeal to the intuitive
(discussed more formally in Section 5.2) that any reasonable function can
Pproximated to arbitrary accuracy by a linear superposition of a sufficiently
e number of localized ‘bump’ functions, provided the coefficients in the linear

mbination are appropriately chosen. This superposition is performed by the

ut unit, which has a linear activation function.

Once again, although this is a constructive algorithm it is of little relevance to

ical applications and serves mainly as an existence proof. However, the idea

resenting a function as a linear superposition of localized bump functions
ests that we might consider two-layer networks in which each hidden unit
es a bump-like function directly. Such networks are called local basis

130 4: The Multi-layer Perceptron 4.3: Sigmoidal units 131
function networks, and will be considered in detail in Chapter 5.

4.3.2 Two-layer networks A

We turn next to the question of the capabilities of networks having two la f(2)

weights and sigmoidal hidden units. This has proven to be an important
network for practical applications. The general topology is shown in Figure
and the network function was given explicitly in (4.7). We shall see that
networks can approximate arbitrarily well any functional (one-one or many
continuous mapping from one finite-dimensional space to another, provid
number M of hidden units is sufficiently large.

A considerable number of papers have appeared in the literature dis
this property including Funahashi (1989), Hecht-Nielsen (1989), Cybenko (
Hornik et al. (1989), Stinchecombe and White (1989), Cotter (1990), Ito (1!
Hornik (1991) and Kreinovich (1991). An important corollary of this rest
that, in the context of a classification problem, networks with sigmoidal ;
linearities and two layers of weights can approximate any decision bound
arbitrary accuracy. Thus, such networks also provide universal non-line:
criminant functions. More generally, the capability of such networks to app
imate general smooth functions allows them to model posterior probabili
class membership.

Here we outline a simple proof of the universality property (Jones, 1990; Bl
and Li, 1991). Consider the case of two input variables z; and x5, and a
output variable y (the extension to larger numbers of input or output varia
is straightforward). We know that, for any given value of z1, the desired func
y(z1,Z2) can be approximated to within any given (sum-of-squares) error by
Fourier decomposition in the variable z, giving rise to terms of the form

-
>

Mt e ==

Z i Z

Figure 4.11. Approximation of a continuous function f (z) by a linear superpo-
sition of threshold step functions. This forms the basis of a simple proof that a
two-layer network having sigmoidal hidden units and linear output units can
~ approximate a continuous function to arbitrary accuracy.

N
F(2) = fo+ Y _{firr — fiYH(z —2) (4.15)

i=0

there H (z) is the Heaviside step function. Thus we see that the function y(z1, z2)
be expressed as a linear combination of step functions whose arguments are
ar combinations of z; and zg. In other words the function y(z,,z2) can be

ximated by a two-layer network with threshold hidden units and linear
put units. Finally, we recall that threshold activation functions can be ap-
ximated arbitrarily well by sigmoidal functions, simply by scaling the weights
biases.

ote that this proof does not indicate whether the network can simultane-
3 approximate the derivatives of the function, since our approximation in
5) has zero derivative except at discrete points at which the derivative is
efined. A proof that two-layer networks having sigmoidal hidden units can
taneously approximate both a function and its derivatives was given by
y(z1,22) ZZA,; cos(lzy) cos(sz2) (4.1 S sornik et al. (1990).
* As a simple illustration of the capabilities of two-layer networks with sig-

al hidden units we consider mappings from a single input z to a single

ut y. In Figure 4.12 we show the result of training a network with five hid-
‘units having ‘tanh’ activation functions given by (4.11). The data sets each

st of 50 data points generated by a variety of functions, and the network
' & single linear output unit and was trained for 1000 epochs using the BEFGS
i-Newton algorithm described in Section 7.10. We see that the same network
| generate a wide variety of different functions simply by choosing different
s for the weights and biases.
The above proofs were concerned with demonstrating that a network with a

y(z1,x9) = Z As(z1) cos(szz)

where the coefficients A, are functions of z;. Similarly, the coefficients them
can be expressed in terms of a Fourier series giving

We can.now use the standard trigonometric identity cosacosf = 3 cos(a:
B) + = cos(a —) to write this as a linear combination of terms of the f
CGS(ZSI} and cos(z},) where 25 = lz; + sz and 2, = la; — szp. Finally, #
note that the function cos(z) can be approxlmated to arbitrary accuracy by
linear combination of threshold step functions. This can be seen by making
explicit construction, illustrated in Figure 4.11, for a function f(z) in terms
piecewise constant function, of the form

132 4: The Multi-layer Perceptron 4.4: Weight-space symmetries 133

4 Weight-space symmetries
nsider & two-layer network having M hidden units, with ‘tanh’ activation
ons given by (4.11), and full connectivity in both layers. If we change the
of all of the weights and the bias feeding into a particular hidden unit,
n. for a given input pattern, the sign of the activation of the hidden unit
pe reversed, since (4.11) is an odd function. This can be compensated by
ging the sign of all of the weights leading out of that hidden unit. Thus,
changing the signs of a particular group of weights (and a bias), the input—
mapping function represented by the network is unchanged, and so we
found two different weight vectors which give rise to the same mapping
on. For M hidden units, there will be M such ‘sign-flip’ symmetries, and
any given weight vector will be one of a set 2M equivalent weight vectors
en et al., 1993).
milarly, imagine that we interchange the values of all of the weights (and
as) leading into and out of a particular hidden unit with the corresponding
of the weights (and bias) associated with a different hidden unit. Again,
early leaves the network input-output mapping function unchanged, but
ponds to a different choice of weight vector. For M hidden units, any
} weight vector will have M! equivalent weight vectors associated with this
following functions: (a) 2, (b) sin(2rz) (c) |z| which is continuous but with ange symmetry, corresponding to the M! different orderings of the hidden
discontinuous first derivative, and (d) the step function 8(z) = sign(z), which nits (Chen et al., 1993). The network will therefore have an overall weight-space
is discontinuous. 1 pmmetry factor of M12M. For networks with more than two layers of weights,
: al level of symmetry will be given by the product of such factors, one for
r of hidden units.
turns out that these factors account for all of the symmetries in weight
except for possible accidental symmetries due to specific choices for the
i values). Furthermore, the existence of these symmetries is not a particular
of the ‘tanh’ function, but applies to a wide range of activation functions
nann, 1992; Chen et al., 1993; Albertini and Sontag, 1993; Kurkovad and
1994). In many cases, these symmetries in weight space are of little
-consequence. However, we shall encounter an example in Section 10.6
we need to take them into account.

(@

Figure 4.12. Examples of sets of data points (circles) together with the corre-
sponding functions represented by a multi-layer perceptron network which h
been trained using the data. The data sets were generated by sampling

sufficiently large number of hidden units could approximate a particular
ping. White (1990) and Gallant and White (1992) considered the cond
under which a network will actually learn a given mapping from a finite
set, showing how the number of hidden units must grow as the size of th
set grows.
If we try to approximate a given function A(x) with a network having a fit
number M of hidden units, then there will be a residual error. Jones (1992]
Barron (1993) have shown that this error decreases as O(1/M) as the numi
M of hidden units is increased. s
Since we know that, with a single hidden layer, we can approximate any mé
ping to arbitrary accuracy we might wonder if there is anything to be gaini
using any other network topology, for instance one having several hidden lay!
One possibility is that by using extra layers we might find more efficient
imations in the sense of achieving the same level of accuracy with fewer oy
and biases in total. Very little is currently known about this issue. Hov
later chapters discuss situations in which there are other good reasons A aj = Z w;iTi + Wjo. (4.16)
sider networks with more complex topologies, including networks with s 3
hidden layers, and networks with only partial connectivity between layers.

'Higher-order networks

in this chapter we have considered units for which the output is given by
ear activation function acting on a linear combination of the inputs of

Ve seen that networks composed of such units can in principle approximate
ictional mapping to arbitrary accuracy, and therefore constitute a univer-
S8 of parametrized multivariate non-linear mappings. Nevertheless, there

Considerable interest in studying other forms of processing unit. Chapter 5

134 4: The Multi-layer Perceptron 4.6: Projection pursuit regression 135
" d
1
.= w§) + Z u,l_g“):f:‘1 + Z Z wj,lm:f:,lr,-2 (4.18)
A iy=1 f1=11dz=
y(x) » the sums run over all inputs, or units, which send connections to unit j.
v« hefore, this sum is then transformed using a non-linear activation function to
4 ; = g(a;). If terms up to degree M are retained, this will be known as an

order unit. Clearly (4.18) includes the conventional linear (first-order) unit
6) as a special case. The similarity to the higher-order polynomials discussed
section 1.7 is clear. Note that the summations in (4.18) can be constrained
ow for the permutation symmetry of the higher-order terms. For instance,
' term x4, T4, is equivalent to the term @;,z;, and so we need only retain one
R, R, R, J : in the summation. The total number of independent parameters in a
order expression such as (4.18) is discussed in Exercises 1.6-1.8.

we introduce an extra input zp = +1 then, for an Mth-order unit we can
orb all of the terms up to the Mth-order within the Mth-order term. For
ce, if we consider second-order units we can write (4.18) in the equivalent

-X.-___-___

Figure 4.13. A one-dimensional input space = with decision regions R (whi
is disjoint) and R3. A linear discriminant function cannot generate the required
decision boundaries, but a quadratic discriminant y(z), shown by the solic
curve, can. The required decision rule then assigns an input z to class Cy if
y(z) > 0 and to class C; otherwise. .
for instance is devoted to a study of networks containing units whose actis
depend on the distance of an input vector from the weight vector. Here we
sider some extensions of the linear expression in (4.16) which therefore co
(4.16) as a special case.

As discussed in Chapter 3, a network consisting of a single layer of
the form (4.16) can only produce decision boundaries which take the fori
piecewise hyperplanes in the input space. Such a network is therefore in
of generating decision regions which are concave or which are multiply conne
Consider the one-dimensional input space z illustrated in Figure 4.13. We
find a discriminant function which will divide the space into the decision
R; and Rz as shown. A linear discriminant function is not sufficient since
region R, is disjoint. However, the required decision boundaries can be gen
by a quadratic discriminant of the form

Z Z WP 2% (4.19)

i1=013=0

vith similar generalizations to higher orders.

We see that there will typically be many more weight parameters in a higher-
unit than there are in a first-order unit. For example, if we consider an
ut dimensionality of d = 10 then a first-order unit will have 11 weight param-
s (including the bias), a second-order unit will have 66 independent weights,
a third-order unit will have 572 independent weights. This explosion in the
ber of parameters is the principal difficulty with such higher-order units.
compensating benefit is that it is possible to arrange for the response of the
0 be invariant to various transformations of the input. In Section 8.7.4 it
1own how a third-order unit can be simultaneously invariant to translations,
tions and scalings of the input patterns when these are drawn from pixels
two-dimensional image. This is achieved by imposing constraints on the
its, which also greatly reduce the number of independent parameters, and
ereby makes the use of such units a tractable proposition. Higher-order units
generally used only in the first layer of a network, with subsequent layers
g composed of conventional first-order units.

y(z) = wax® + w1z + wo

provided the weights ws, w; and wq are chosen appropriately.

We can generalize this idea to higher orders than just quadratic,
several input variables (Ivakhnenko, 1971; Barron and Barron, 1988). This |
to higher-order processing units (Giles and Maxwell, 1987; Ghosh and
1992), also known as sigma-pi units (Rumelhart et al., 1986). For second-orde
units the generalization of (4.16) takes the form

Projection pursuit regression and other conventional techniques

sticians have developed a variety of techniques for classification and regres-
i which can be regarded as complementary to the multi-layer perceptron. Here
give a brief overview of the most prominent of these approaches, and indi-
e their relation to neural networks. One of the most closely related is that of

136 4: The Multi-layer Perceptron 4.7: Kolmogorov’s theorem 137

projection pursuit regression (Friedman and Stuetzle, 1981; Huber, 1985)
single output variable, the projection pursuit regression mapping can
in the form

d
y=g (Z Pi(w:) + wo) (4.21)

i=1

#;(-) are non-linear functions and g(-) represents the logistic sigmoid
p (4.10). Thisis actually a very restrictive class of models, since it does not
,r interactions between the input variables. Thus a function of the form
example, cannot be modelled. They do, however, have an advantage in
f the interpretation of the trained model, since the individual univariate
ns ¢;(-) can be plotted.

ansion of the additive models which allows for interactions is given
technique of multivariate adaptive regression splines (MARS) (Friedman,
) for which the mapping function can be written

M

Y= Z w;P; (u;-rx + ‘l.&jo) + wp
fat]

which is remarkably similar to a two-layer feed-forward neural networ
rameters u; and ujo define the projection of the input vector x onto
planes labelled by j = 1,..., M, as in the multi-layer perceptron. Thes
tions are transformed by non-linear ‘activation functions’ ¢; and t
are linearly combined to form the output variable y. Determination of £
eters in the model is done by minimizing a sum-of-squares error fun

important difference is that each ‘hidden unit’ in projection pursuit re MK
is allowed a different activation function, and these functions are not pre ¥ Z Wj H Dik(Tu(k,)) + wo (4.22)
in advance, but are determined from the data as part of the training =1 k=1

Another difference is that typically all of the parameters in a n
work are optimized simultaneously, while those in projection pursuit
are optimized cyclically in groups. Specifically, training in the projecti
suit regression network takes place for one hidden unit at a time, and |
hidden unit the second-layer weights are optimized first, followed by verned by a label v(k, j). The basis functions are adaptive in that the
vation function, followed by the first-layer weights. The process is repe of factors. K, the labels v(k, 7), and the knots for the one-dimensional
each hidden unit in turn, until a sufficiently small value for the error fun tictions are all determined from the data. Basis functions are added
ntally during learning, using the technique of sequential forward selection
d in Section 8.5.3.
alternative framework for learning non-linear multivariate mappings in-
itioning the input space into regions, and fitting a different mapping
1 region. In many such algorithms, the partitions are formed from
es which are parallel to the input variable axes, as indicated in Fig-
- In the simplest case the output variable is taken to be constant within
n. A common technique is to form a binary partition in which the
ace is divided into two regions, and then each of these is divided in turn,
on, This form of partitioning can then be described by a binary tree
ire, in which each leaf represents one of the regions. Successive branches
added to the tree during learning, with the locations of the hyperplanes
ermined by the data. Procedures are often also devised for pruning the
e as a way of controlling the effective complexity of the model. Two
known algorithms of this kind are classification and regression trees
Breiman et al., 1984) and ID3 (Quinlan, 1986). A detailed discussion
algorithms would however, take us too far afield.

he jth basis function is given by a product of some number K; of one-
jonal spline functions ¢;x (Press et al., 1992) each of which depends on
she input variables z,,, where the particular input variable used in each

achieved, or until some other stopping criterion is satisfied. Since the outj
(4.20) depends linearly on the second-layer parameters, these can be
by linear least-squares techniques, as discussed in Section 3.4. Optim
the activation functions ¢; represents a problem in one-dimensional ¢
for which a variety of techniques can be used, such as cubic splines
al., 1992). Finally, the optimization of the first-layer weights requires
techniques of the kind discussed in Chapter 7

Several generalizations to more than one output variable are possib!
1994) depending on whether the outputs share common basis functions
if not, whether the separate basis functions ¢;x (where k labels the ous
share common projection directions. In terms of representational cap. i
can regard projection pursuit regression as a generalization of the mu
perceptron, in that the activation functions are more flexible. It is the
surprising that projection pursuit regression should have the same *
proximation capabilities as multi-layer perceptrons (Diaconis and Shahs
1984; Jones, 1987). Projection pursuit regression is compared with mu
perceptron networks in Hwang et al. (1994). 3

Another framework for non-linear regression is the class of generalized ¢ -
tive models (Hastie and Tibshirani, 1990) which take the form % °lm°80r0v's theorem
theorem due to Kolmogorov (1957) which, although of no direct prac-
hificance, does have an interesting relation to neural networks. The theo-

138 4: The Multi-layer Perceptron 4.7: Kolmogorov’s theorem 139

inputs

Figure 4.14. An example of the partitioning of a space by hyperplanes wh 'L
are parallel to the coordinate axes. Such partitions form the basis of a number . "
of algorithms for solving classification and regression problems. Figure 4.15. Network topology to implement Kolmogorov’s theorem.
rem has its origins at the end of the nineteenth century when the mathem
Hilbert compiled a list of 23 unsolved problems as a challenge for twentiet
tury mathematicians (Hilbert, 1900). Hilbert’s thirteenth problem con
issue of whether functions of several variables can be represented in ter
superpositions of functions of fewer variables. He conjectured that there
continuous functions of three variables which cannot be represented as
positions of functions of two variables. The conjecture was disproved by Arn
(1957). However, a much more general result was obtained by Kolmogorov (19
who showed that every continuous function of several variables (for a closed
bounded input domain) can be represented as the superposition of a small
ber of functions of one variable. Improved versions of Kolmogorov’s theorem h
been given by Sprecher (1965), Kahane (1975) and Lorentz (1976). In neural [

where 0 <)\; < 1 are constants. The output y of the network is then given by

2d+1

y=_ 9() (4.24)
j=1

e the function g is real and continuous. Note that the function g depends
e particular function y(x) which is to be represented, while the functions
o not. This expression can be extended to a network with more that one
output unit simply by modifying (4.24) to give

2d+1
work terms this theorem says that any continuous mapping y(x) from d i = Z gk(2;)- (4.25)
variables z; to an output variable y can be represented exactly by a three- o

neural network having d(2d + 1) units in the first hidden layer and (2d+1)
in the second hidden layer. The network topology is illustrated, for the
a single output, in Figure 4.15. Each unit in the first hidden layer compu
function of one of the input variables z; given by h;(z;) where j =1,...,
and the h; are strictly monotonic functions. The activation of the jth
the second hidden layer is given by

that the theorem only guarantees the existence of a suitable network. No ac-
examples of functions h; or g are known, and there is no known constructive
nique for finding them.
While Kolmogorov’s theorem is remarkable, its relevance to practical neural
Mputing is at best limited (Girosi and Poggio, 1989; Kurkov4, 1991; Kurkova,
92). There are two reasons for this. First, the functions h; are far from being
h. Indeed, it has been shown that if the functions h; are required to be
ooth then the theorem breaks down (Vitushkin, 1954). The presence of non-
oth functions in a network would lead to problems of extreme sensitivity

d
zj =Y Aihy(:)

i=1

140 4: The Multi-layer Percepiron 4.8: Error back-propagation 141

to the input variables. Smoothness of the network mapping is an .-.l;- " it corresponds to a propagation of errors backwards through the network.
property in connection with the generalization performance of a network; g . technique of back-propagation was popularized in a paper by Rumelhart,
discussed in greater detail in Section 9.2. The second reason is that the on and Williams (1986). However, similar ideas had been developed earlier
g depends on the particular function y(x) which we wish to represent. number of researchers including Werbos (1974) and Parker (1985).
the converse of the situation which we generally encounter with neural ne + should be noted that the term back-propagation is used in the neural com-
Usually, we consider fixed activation functions, and then adjust the nun literature to mean a variety of different things. For instance, the multi-
hidden units, and the values of the weights and biases, to give a sufficiently r perceptron architecture is sometimes called a back-propagation network.
representation of the desired mapping. In Kolmogorov’s theorem the numb , term back-propagation is also used to describe the training of a multi-layer
hidden units is fixed, while the activation functions depend on the mappi eptron using gradient descent applied to a sum-of-squares error function. In
general, if we are trying to represent an arbitrary continuous function t to clarify the terminology it is useful to consider the nature of the training
cannot hope to do this exactly with a finite number of fixed activation fun .ess more carefully. Most training algorithms involve an iterative procedure
since the finite number of adjustable parameters represents a finite nun minimization of an error function, with adjustments to the weights being
degrees of freedom, and a general continuous function has effectively i in a sequence of steps. At each such step we can distinguish between
many degrees of freedom. distinct stages. In the first stage, the derivatives of the error function with
oct to the weights must be evaluated. As we shall see, the important con-
ition of the back-propagation technique is in providing a computationally
ient method for evaluating such derivatives. Since it is at this stage that
rs are propagated backwards through the network, we shall use the term
ropagation specifically to describe the evaluation of derivatives. In the
nd stage, the derivatives are then used to compute the adjustments to be
to the weights. The simplest such technique, and the one originally con-
d by Rumelhart et al. (1986), involves gradient descent. It is important to
snize that the two stages are distinct. Thus, the first stage process, namely
propagation of errors backwards through the network in order to evaluate
ives, can be applied to many other kinds of network and not just the
ti-layer perceptron. It can also be applied to error functions other that just
nple sum-of-squares, and to the evaluation of other derivatives such as the
ian and Hessian matrices, as we shall see later in this chapter. Similarly, the
nd stage of weight adjustment using the calculated derivatives can be tack-
d using a variety of optimization schemes (discussed at length in Chapter 7),
y of which are substantially more powerful than simple gradient descent.

4.8 Error back-propagation

So far in this chapter we have concentrated on the representational capabi
multi-layer networks. We next consider how such a network can learn a s
mapping from a given data set. As in previous chapters, learning will be b
the definition of a suitable error function, which is then minimized with
to the weights and biases in the network.

Consider first the case of networks of threshold units. The final 1
weights in the network can be regarded as a perceptron with inputs gi
the outputs of the last layer of hidden units. These weights could therefor
chosen using the perceptron learning rule introduced in Chapter 3. Such
proach cannot, however, be used to determine the weights in earlier laye
the network. Although such layers could in principle be regarded as bei
single-layer perceptrons, we have no procedure for assigning target values
outputs, and so the perceptron procedure cannot be applied. This is know
the credit assignment problem. If an output unit produces an incorrect res
when the network is presented with an input vector we have no way of deter
ing which of the hidden units should be regarded as responsible for genera
the error, so there is no way of determining which weights to adjust or by
much,

The solution to this credit assignment problem is relatively simple.
consider a network with differentiable activation functions, then the acti
of the output units become differentiable functions of both the input
and of the weights and biases. If we define an error function, such as the sun
squares error introduced in Chapter 1, which is a differentiable function
network outputs, then this error is itself a differentiable function of the weil
We can therefore evaluate the derivatives of the error with respect to the w
and these derivatives can then be used to find weight values which minim a; = Z w;iZi (4.26)
error function, by using either gradient descent or one of the more po 3
optimization methods discussed in Chapter 7. The algorithm for evaluating i
derivatives of the error function is known as back-propagation since, as we

Evaluation of error function derivatives

now derive the back-propagation algorithm for a general network having
ary feed-forward topology, and arbitrary differentiable non-linear activation
ns, for the case of an arbitrary differentiable error function. The resulting
fmulae will then be illustrated using a simple layered network structure having
e layer of sigmoidal hidden units and a sum-of-squares error.

0 a general feed-forward network, each unit computes a weighted sum of its
s of the form

T '@ z; is the activation of a unit, or input, which sends a connection to unit

142 4: The Multi-layer Perceptron 4.8: Error back-propagation 143

QE™ _ OE™ Ba,

j, and wj; is the weight associated with that connection. The summation rug _ ' (4.30)

over all units which send connections to unit j. In Section 4.1 we showed owy; da; Ow;;

biases can be included in this sum by introducing an extra umit, or input, | .

activation fixed at +1. We therefore do not need to deal with biases expli “We now introduce a useful notation

The sum in (4.26) is transformed by a non-linear activation function g(-) to -

the activation z; of unit j in the form 8= o (4.31)
i

gy = i). 4.' ;-:.'.
%= gteg) (y ‘where the ¢’s are often referred to as errors for reasons we shall see shortly. Using

Note that one or more of the variables z; in the sum in (4.26) could be an inpuf _'26) we can write

in which case we shall denote it by z;. Similarly, the unit j in (4.27) could b
output unit, in which case we denote its activation by yx. |
As before, we shall seek to determine suitable values for the weights in
network by minimization of an appropriate error function. Here we shall co
error functions which can be written as a sum, over all patterns in the traini
set, of an error defined for each pattern separately

da g
3103','

= Z. (4.32)

‘Substituting (4.31) and (4.32) into (4.30) we then obtain

= 8;2. (4.33)
E=Y g (4.2 P
& te that this has the same general form as obtained for single-layer networks
Section 3.4. Equation (4.33) tells us that the required derivative is obtained
nply by multiplying the value of § for the unit at the output end of the weight
the value of z for the unit at the input end of the weight (where z = 1 in
€ case of a bias). Thus, in order to evaluate the derivatives, we need only to
ulate the value of 6; for each hidden and output unit in the network, and
then apply (4.33).

For the output units the evaluation of 6 is straightforward. From the defini-
tion (4.31) we have

where n labels the patterns. Nearly all error functions of practical interest
this form, for reasons which are explained in Chapter 6. We shall also sup
that the error E™ can be expressed as a differentiable function of the networ
output variables so that

E" = En(yh- '-1y6)‘

Our goal is to find a procedure for evaluating the derivatives of the error func
E with respect to the weights and biases in the network. Using (4.28) we

n
express these derivatives as sums over the training set patterns of the deriva 5 = ‘;_E__ =g ak)g (4.34)
for each pattern separately. From now on we shall therefore consider one p G Yk

at a time. 3
For each pattern we shall suppose that we have supplied the correspon
input vector to the network and calculated the activations of all of the

ere we have used (4.27) with 2, denoted by yi. In order to evaluate (4.34) we
stitute appropriate expressions for ¢'(a) and 8E™ /dy. This will be illustrated
and output units in the network by successive application of (4.26) and (4

%l a simple example shortly.
This process is often called forward propagation since it can be regarded ; To ec;’a-lflatt? the §’s for hidden units we again make use of the chain rule for
forward flow of information through the network. ! i derivatives,
Now consider the evaluation of the derivative of E™ with respect to G 1

weight w;;. The outputs of the various units will depend on the particular inp
pattern n. However, in order to keep the notation uncluttered, we shall [
the superscript n from the input and activation variables. First we note
E"™ depends on the weight w;; only via the summed input a; to unit j. We €8
therefore apply the chain rule for partial derivatives to give

\ .

(4.35)

€re the sum runs over all units k to which unit J sends connections. The
angement of units and weights is illustrated in Figure 4.16. Note that the
Hits labelled k could include other hidden units and /or output units. In writing

4: The Multi-layer Perceptron

d
Figure 4.16. Illustration of the calculation of §; for hidden unit j by back-
propagation of the §’s from those units k to which unit j sends connections.

down (4.35) we are making use of the fact that variations in a; give
variations in the error function only through variations in the variables ay.]
now substitute the definition of § given by (4.31) into (4.35), and make
(4.26) and (4.27), we obtain the following back-propagation formula

85 = ¢'(a5)) wesk
k

which tells us that the value of § for a particular hidden unit can be obtained |

propagating the §’s backwards from units higher up in the network, as illustr
in Figure 4.16. Since we already know the values of the é’s for the output u

it follows that by recursively applying (4.36) we can evaluate the &’s for all'

the hidden units in a feed-forward network, regardless of its topology.

We can summarize the back-propagation procedure for evaluating the der

tives of the error E™ with respect to the weights in four steps:
1. Apply an input vector x™ to the network and forward propagate t

the network using (4.26) and (4.27) to find the activations of all the hi

and output units.
2. Evaluate the &, for all the output units using (4.34).

3. Back-propagate the §’s using (4.36) to obtain §; for each hidden ur

the network.
4. Use (4.33) to evaluate the required derivatives.

The derivative of the total error E can then be obtained by repeating the abov

steps for each pattern in the training set, and then summing over all patte

™,
b

4.8: Error back-propagation 145
OF dE™
P Xﬂ: B (4.37)

1n the above derivation we have implicitly assumed that each hidden or output
in the network has the same activation function g(-). The derivation is

ily generalized, however, to allow different units to have individual activation

tions, simply by keeping track of which form of g(-) goes with which unit.

482 A simple example

The above derivation of the back-propagation procedure allowed for general
ns for the error function, the activation functions and the network topol-
rv. In order to illustrate the application of this algorithm, we shall consider a
icular example. This is chosen both for its simplicity and for its practical
ortance, since many applications of neural networks reported in the litera-
make use of this type of network. Specifically, we shall consider a two-layer
twork of the form illustrated in Figure 4.1, together with a sum-of-squares
ror. The output units have linear activation functions while the hidden units
e logistic sigmoid activation functions given by (4.10), and repeated here:

1
1+exp(-a)’

9(a) (4.38)

A useful feature of this function is that its derivative can be expressed in a
icularly simple form:

g'(a) = g(a)(1 - g(a)). (4.39)

In a software implementation of the network algorithm, (4.39) represents a con-
ent property since the derivative of the activation can be obtained efficiently
from the activation itself using two arithmetic operations.

3F0;> the standard sum-of-squares error function, the error for pattern n is
1 Dy

B =33 e~) (4.40)
k=1

€ Y is the response of output unit k, and #; is the corresponding target, for

% Particular input pattern x”.

| _Using the expressions derived above for back-propagation in a general net-

ork, together with (4.39) and (4.40), we obtain the following results. For the
Mtput units, the 4’s are given by

Ok = Yk — tk (4.41)

146 4: The Multi-layer Perceptron 4-.8: Error back-propagation 147

while for units in the hidden layer the §’s are found using ¢he expression for the error function and wrote down explicit formulae for
srivatives and then evaluated them numerically by forward propagation, we
4 have to evaluate W such terms (one for each weight or bias) each requiring
) operations. Thus, the total computational effort required to evaluate all
?arivatives would scale as O(W?). By comparison, back-propagation allows
erivatives to be evaluated in O(W) operations. This follows from the fact
both the forward and the backward propagation phases are O(W), and the
jon of the derivative using (4.33) also requires O(W) operations. Thus
ek-propagation has reduced the computational complexity from O(W?) to
for each input vector. Since the training of MLP networks, even using
propagation, can be very time consuming, this gain in efficiency is crucial.
otal of N training patterns, the number of computational steps required
aluate the complete error function for the whole data set is NV times larger
1 for one pattern.
he practical importance of the O(W) scaling of back-propagation is anal-
 in some respects to that of the fast Fourier transform (FFT) algorithm
ham, 1974; Press et al., 1992) which reduces the computational complex-
 evaluating an L-point Fourier transform from O(L?) to O(Llog, L). The
ry of this algorithm led to the widespread use of Fourier transforms in a
range of practical applications.

c
(5_-,.' = Zj(]. e Zj) Zwkjék

k=1

where the sum runs over all output units. The derivatives with respect to:
first-layer and second-layer weights are then given by

= 5_-'.'37‘7‘ — = 6];3_-'.'.

Owji Ow;

So far we have discussed the evaluation of the derivatives of the error .
with respect to the weights and biases in the network. In order to turn this'j
a learning algorithm we need some method for updating the weights basei
these derivatives. In Chapter 7 we discuss several such parameter optimi
strategies in some detail. For the moment, we consider the fixed-step gr.
descent technique introduced in Section 3.4. We have the choice of updati
weights either after presentation of each pattern (on-line learning) or
summing the derivatives over all the patterns in the training set (batch lear
In the former case the weights in the first layer are updated using !
) Numerical differentiation
A= ernative approach to back-propagation for computing the derivatives of
ror function is to use finite differences. This can be done by perturbing

while in the case of batch learning the first-layer weights are updated using Lthi in tmn, and approximating the decimbives by the-sxpregsion

Awji =—-n) 87x}
& Z,,: s +0(e) (4.46)

oE™ 1] E“(wji -+ 6) - E“(w_,-‘-)
Ow;; €
with analogous expressions for th d-1 ights. -
psay o pecond-layer gt e € < 1 is a small quantity. In a software simulation, the accuracy of the
roximation to the derivatives can be improved by making e smaller, until
nerical roundoff problems arise. The main problem with this approach is that
- highly desirable O@(W) scaling has been lost. Each forward propagation re-
lires O(W) steps, and there are W weights in the network each of which must
 perturbed individually, so that the overall scaling is O(W?). However, finite
ces play an important role in practice, since a numerical comparison of
O(W) operations, for sufficiently large W. This follows from the fact that . :atwes (Ezlculated By bask-propagetion, with Shose obtained uétng fults
b Satwork itk e t th bl of welahitiie 5 es provides a very powerful check on the correctness of any software
I'y sparse connections, e number oI welg __,“‘ A 5 £
= - i ation of the back-propagation algorithm.
much greater than the number of units. Thus, the bulk of the computa The g : ; &k
: = ; : i (40 . the accuracy of the finite differences method can be improved significantly
effort in forward propagation is concerned with evaluating the sums in (4. Bising symmetrical central differences of the f
with the evaluation of the activation functions representing a small ovel . 2 O FORIE
Each term in the sum in (4.26) requires one multiplication and one additi

leading to an overall computational cost which is O(W). |
For W weights in total there are W such derivatives to evaluate. If we simpi

4.8.3 Efficiency of back-propagation

One of the most important aspects of back-propagation is its computa
efficiency. To understand this, let us examine how the number of comput:
erations required to evaluate the derivatives of the error function scales wi
size of the network. Let W be the total number of weights and biases.
single evaluation of the error function (for a given input pattern) would

OE™ E™(wj; +¢€) — E™wji—¢)
Owji 2¢

+ O(€?). (4.47)

148 4: The Multi-layer Perceptron 4.9: The Jacobian matriz 149

o error function with respect to the network weights, as calculated earlier
pack-propagation. The Jacobian matrix prm.rides a measure of t}w local
ity of the outputs to changes in each of the input varml?les, and is useful
ral contexts in the application of neural networks. For msta.nc;e, if the*‘e
_wn errors associated with the input variables, then the Jacobian n}atruc
these to be propagated through the trained network in order to estimate
"ir contribution to the errors at the outputs. Thus, we have

In this case the O(e) corrections cancel, as is easily verified by Tayloj
sion on the right-hand side of (4.47), and so the residual corrections
The number of computational steps is, however, roughly doubled compare;
(4.46). y

We have seen that the derivatives of an error function with respect to
weights in a network can be expressed efficiently through the relation

0B 0B,
B‘H}ji = aaj y

ayk _ 1

Instead of using the technique of central differences to evaluate the derivs
OE" [0wj; directly, we can use it to estimate E™ /8a; since wral, the network mapping represented by a trained neural network will
-linear, and so the elements of the Jacobian matrix will not be constants
depend on the particular input vector used. Thus (4.51) is valid only for
| perturbations of the inputs, and the Jacobian itself must be re-evaluated
h new input vector.
e Jacobian matrix can be evaluated using a back-propagation -pro(.}edure
h is very similar to the one derived earlier for evaluating the derivatives of
or function with respect to the weights. We start by writing the element

the form

oE™ - E“(a_,- + E) —E“(a,— -
30_1 . 2e

) + O(e?)

- .

We can then make use of (4.48) to evaluate the required derivatives.
derivatives with respect to the weights are found from (4.48) this app
still relatively efficient. Back-propagation requires one forward and one b
propagation through the network, each taking O(W) steps, in order to
all of the OE/a;. By comparison, (4.49) requires 2M forward propa
where M is the number of hidden and output nodes. The overall scaling is-
fore proportional to MW, which is typically much less than the O(W?2)
of (4.47), but more than the O(W) scaling of back-propagation. This teck
is called node perturbation (Jabri and Flower, 1991), and is closely related
madeline III learning rule (Widrow and Lehr, 1990).

In a software implementation, derivatives should be evaluated using
propagation, since this gives the greatest accuracy and numerical efficiency.
ever, the results should be compared with numerical differentiation using

for a few test cases in order to check the correctness of the implementations
([

_ Oy _ ~OukOa4
Jk‘ i Ba:‘- - ; Ba.,- axi

Oy
J

we have made use of (4.26). The sum in (4.52) runs over 'all ‘units J to
the input unit i sends connections (for example, over all units in the first
en layer in the layered topology considered earlier). We now write down a

4.9 The Jacobian matrix eursive back-propagation formula to determine the derivatives 9y /0a;

We have seen how the derivatives of an error function with respect to the
can be obtained by the propagation of errors backwards through the net:
The technique of back-propagation can also be applied to the calculation
other derivatives. Here we consider the evaluation of the Jacobian matrix, 3

Oy _ 5~ Oyk Oar
Pa; ~ 2 Bt Boy

elements are given by the derivatives of the network outputs with respect s e ‘?}{E (4.53)
inputs =g'(az) ; Yl B

_ Oy ;
Jk‘ = 3.1:;' (

Where the sum runs over all units | to which unit j sends connections. Again, we
e made use of (4.26) and (4.27). This back-propagation starts at the output

T § for which, using (4.27), we have
where each such derivative is evaluated with all other inputs held fixed. g (4.27)

that the term Jacobian matrix is also sometimes used to describe the derivat

i 151
.10: The Hessian matriz
150 4: The Multi-layer Perceptron 2§l e
Oyx . . auitable values for regularization parameters can be determined from the
E = 9'(ak)bkie ’f;;lenvalues of the Hessian (Section 10.4).

determinant of the Hessian can be used to compare the relative prob-
-f}?;jties of different network models (Section 10.6).)
4 many of these applications, various apprommH' ?.tlon Sc:le;;llﬂ;se 2:.;:1 1:;23
R i i he Hessian can
he Hessian matrix. However, t _ .

‘ ev;lllgla;i t;exetven'.sion of the back-propagation technique for evaluating the
y us 3

ivatives of the error function. o e 5
er‘waortant consideration for many applications of the Hessian is 1;1};(; :nd
m‘ltl;x which it can be evaluated. If there are W parameters g;relgw 4
Ul i ix has dimensions X

i twork then the Hessian matrix '
g t}:ft;;?onal effort needed to evaluate the Hessian must scale af‘;i le.:::::
(c‘l-g'?)pfor each pattern in the data set. As we s'hall see, thegre are effici
ods for evaluating the Hessian whose scaling is indeed O(W?).

where §xxs is the Kronecker delta symbol, and equals 1 if k = &’ and 0 ot her
We can therefore summarize the procedure for evaluating the Jacobian m
as follows. Apply the input vector corresponding to the point in input s
which the Jacobian matrix is to be found, and forward propagate in the
way to obtain the activations of all of the hidden and output units in the
Next, for each row k of the Jacobian matrix, corresponding to the output up
back-propagate using the recursive relation (4.53), starting with (4.54), for ¢
the hidden units in the network. Finally, use (4.52) to do the back-propa
to the inputs. The second and third steps are then repeated for each val e g
corresponding to each row of the Jacobian matrix.

The Jacobian can also be evaluated using an alternative forward propa
formalism which can be derived in an analogous way to the back-pro;
approach given here (Exercise 4.6). Again, the implementation of such als

10.1 Diagonal approzimation
can be checked by using numerical differentiation in the form

i ix di ire the
of the applications for the Hessz;u rfxatr};;e cll;scFl‘:)s:ii i:bfzxﬂ;eg:e:‘e i
i i 7

e of the Hessian, rather than the essian itsel ‘ ere h
I so‘rife interest 'm,us'mg a diagonal approximation to the fue;it:; assu;ci 1::,:
: ivi i is gener »

e | al to evaluate. We again shall assume, as ‘

ol: lglﬁtion consists of a sum of terms, one for efuch pattern in ti.'ne dartlz
lTt:lmt E =Y, E™. The Hessian can then be obtained by cons1dermg4 ;6)
at a time a.,;nd then summing the results over all pattt'erns. From (4.
diagonal elemlants of the Hessian, for pattern n, can be written

gg_i: - k(i + f)z—eyk(:‘?i =) + O(sz_

4.10 The Hessian matrix

We have shown how the technique of back-propagation can be used to obtair
first derivatives of an error function with respect to the weights in the ne

&2E™ G E" , (4.57)
Back-propagation can also be used to evaluate the second derivatives of the ey o ST i
given by wWis £

y st the right-hand side of (4.57)
82E Using (4.26) and (4.27), the second der-wa.twes on ! ; il 6 -Eive
QwjiOwny” (48 be found recursively using the chain rule of differential calculus,

' k-propagation equation of the form
These derivatives form the elements of the Hessian matrix, which plays an i

2 oE™
portant role in many aspects of neural computing, including the following: ?E" = ¢/(a;)? Z Z W o°E" +¢"(a;) ; Wk Bor (4.58)
k!

T, Wi s o
9a2 *9 Bardax:
J k

now neglect off-diagonal elements in the second derivative terms we obtain

2. The Hessian forms the basis of a fast procedure for re-training a (Becker and Le Cun, 1989; Le Cun et al., 1990)

forward network following a small change in the training data (Bishof

2 pm oE™
1991a). . : a2gn » g’(a,j)z Z ng Bafi : Q”(Gj) Z wkja:' (4.59)
3. The inverse of the Hessian has been used to identify the least sig da . O k

cant weights in a network as part of network ‘pruning’ algorithms

tion 9.5.3). 1
4. The inverse of the Hessian can also be used to assign error bars to the

predictions made by a trained network (Section 10.2). i

g

| eglect i ight-hand side of (4.59), this
Due ect of off-diagonal terms on the right- '
rot:c;hzn!lly gives an approximation to the diagonal terms of the Hessian.

152 4: The Multi-layer Perceptron 4.10: The Hessian matriz 153

ion, which can be evaluated efficiently in O(W) steps using standard back-
stion. The elements of the matrix can then be found in O(W?) steps by
multiplication. It is important to emphasize that this approximation is
Jikely to be valid for a network which has been trained correctly on .the
data set used to evaluate the Hessian, or on one with the same statistical
rties. For a general network mapping, the second derivative terms on the
‘ht-hand side of (4.61) will typically not be negligible.

However, the number of computational steps is reduced from O(W?) to

Ricotti et al. (1988) also used the diagonal approximation to th
but they retained all terms in the evaluation of 82 E™/8a? and so obtaineg
expressions for the diagonal terms. Note that this no longer has O(W)
The major problem with diagonal approximations, however, is that in
the Hessian is typically found to be strongly non-diagonal, and so these
mations, which are driven mainly be computational convenience, must be

with great care. .
i Inverse Hessian

bi and Stork (1993) have used the outer product approximation to develop a
'_utationally efficient procedure for approximating the inverse of the Hessian.
st write the outer product approximation in matrix notation as

4,10.2 Outer product approzimation

When neural networks are applied to regression problems, it is commo
a sum-of-squares error function of the form

N
1
E = E Z(L= tﬂJz Hy = Z gﬂ(gﬂ)T (463)
B n=1
N is the number of patterns in the data set, and the vector g = V£
gradient of the error function. This leads to a sequential procedure for
¢ up the Hessian, obtained by separating off the contribution from data

N +1 to give

where we have considered the case of a single output in order to keep the
simple (the extension to several outputs is straightforward). We can then v
the elements of the Hessian in the form '

0%’E Sy Oy %yn
e =y e Y ()
Ow;; 0wy ; Ow;; Owyy ; W)a'wjéawlk Hyy1 = Hy +gV (V)T (4.64)
der to evaluate the inverse of the Hessian we now consider the matrix identity

th, 1980)

If the network has been trained on the data set and its outputs y™ happen
very close to the target values ¢" then the second term in (4.61) will be
and can be neglected. If the data are noisy, however, such a network ma
is severely over-fitted to the data, and is not the kind of mapping we
order to achieve good generalization (see Chapters 1 and 9). Instead we w
find a mapping which averages over the noise in the data. It turns out th
such a solution we may still be able to neglect the second term in (4.61)
follows from the fact that the quantity (y™ — t") is a random variable with 2
mean, which is uncorrelated with the value of the second derivative term on
right-hand side of (4.61). This whole term will therefore tend to average to
in the summation over n (Hassibi and Stork, 1993). A more formal derivation@
this result is given in Section 6.1.4.

By neglecting the second term in (4.61) we arrive at the Levenberg-Marq
approximation (Levenberg, 1944; Marquardt, 1963) or outer product appro
tion (since the Hessian matrix is built up from a sum of outer products of ve
given by

(A+BC)!=A"1-A"'B(I+CA'B)"'CA™! (4.65)

here I is the unit matrix. If we now identify Hy with A, gN*+! with B, and
&"™)T with C, then we can apply (4.65) to (4.64) to obtain

HEIgN+1 (gN"'l)TH}l
1+ (gN+)THy gVt

Hi,=Hy - (4.66)

lis represents a procedure for evaluating the inverse of the Hessian using a
e pass through the data set. The initial matrix Hy is chosen to be oI, where
a small quantity, so that the algorithm actually finds the inverse of H 4 al.
€ results are not particularly sensitive to the precise value of a. Extension
this algorithm to networks having more than one output is straightforward
Xercise 4.9). '

We note here that the Hessian matrix can sometimes be calculated indi-
Ctly as part of the network training algorithm. In particular, quasi-Newton
linear optimization algorithms gradually build up an approximation to the
se of the Hessian during training. Such algorithms are discussed in detail in

62E 8 z 83}'“ 6y“
Owjidwi <~ Owji Owie’

Its evaluation is straightforward as it only involves first derivatives of the errol

154 4 The Multi-layer Perceptron 4.10: The Hessian matriz 155

sider the general expression (4. 33) for the derivative of the error function
- act to an arbitrary weight wk, which we reproduce here for convenience

Section 7.10.

4.104 Finite differences

As with first dlerivatives of the error function, we can find the second de
by using finite differences, with accuracy limited by the numerical preci
our computer. If we perturb each possible pair of weights in turn, we obt;

aE — 6! Zk- (4.69)
Owy

{ating this with respect to some other weight w;; we obtain

PE_fu b gm0 (Y g
6wj,v6w¢k 3wj',j Baj Swik aaj 6‘»‘.1.!“,:

’E 1
oy P {E(wji + €, wik + €) — E(wji + €, wik — €)

—E(wji — €, wix + €) + E(wji — &, wix — €)} + O(2). (&
b) (w; ik —€)} (€%) ¢ have used (4.26). Here we have assumed that the weight w;; does not

on 'any forward propagation path connecting unit to the outputs of the
k. We shall return to this point shortly. ’
use of (4.69), together with the relation zx = g(ax), we can write

in the form

Again, by using a symmetrical central differences formulation, we ens
the residual errors are O(e?) rather than O(e). Since there are W2 e
in the Hessiam matrix, and since the evaluation of each element requi -
forward propagations each needing O(W) operations (per pattern), we
this approach will require O(W?) operations to evaluate the complete

It therefore has very poor scaling properties, although in practice it is very us P°E" _ 261 (@ his + 2izibis
' - — =z kj + Zizkbi (4.71)
as a check on the software implementation of back-propagation methods. Bw;:0wik 619" (ak) Pk i

A more efficient version of numerical differentiation can be found b
ing central differences to the first derivatives of the error function, w.
themselves calculated using back-propagation. This gives

e we have defined the quantities

8ak
F o hkj = 5 (4.72)
?E _{ 23 L o - b= G
Owjdwn 2€ | wy;' dwy; (wik — €) p + O(€2). »
!
bij = o—- 4.73)
Since there are now only W' weights to be perturbed, and since the gr 1= Ba; (

can be evaluated in O(W) steps, we see that this method gives the He
O(W?) operations.

4.10.5 Ezact evaluation of the Hessian

So far we have considered various approximation schemes for evaluating [. hiy = Oak éﬁi (4.74)
sian matrix. We now describe an algorithm for evaluating the Hessian py L
which is valid for a network of arbitrary feed-forward topology, of the ki
lustrated schernatically in Figure 4.3 (Bishop, 1991a, 1992). The algon '
based on an extension of the technique of back-propagation used to e
first derivatives, and shares many of its desirable features including comf
tional efficiency. It can be applied to any differentiable error function whic
be expressed as a function of the network outputs, and to networks ha:
bitrary differentiable activation functions. The number of computational &
needed to evaluate the Hessian scales like O(W?). Similar algorithms have
been considered by Buntine and Weigend (1993). As before, we shall con:
one pattern at a time. The complete Hessian is then obtained by summing
all patterns.

i€re the sum runs over all units 7 which send connections to unit k. In fact,
tions only arise from units which lie on paths connecting unit 7 to unit
lom (4.26) and (4.27) we then obtain the forward propagation equation

hi; = EQ’(Gr)wkrhrj- (4.75)

itial conditions for evaluating the {hy;} follow from the definition (4.72),
be stated as follows. For each unit j in the network, (except for input
8, for which the corresponding {hx;} are not required), set h;; = 1 and set

156 4: The Multi-layer Perceptron 4.10: The Hessian matriz 157

hg; = 0 for all units k # j which do not lie on any forward propagation
starting from unit j. The remaining elements of hy; can then be found by
propagation using (4.75).

Similarly, we can derive a back-propagation equation which allows the {¢
to be evaluated. We have already seen that the quantities § can be foung
back-propagation §

\mhis algorithm represents a straightforward extension of the_usual forward
1 backward propagation procedures used to find the first derivatives of the
- or function. We can summarize the algorithm in five steps:

_ Evaluate the activations of all of the hidden and output units, for a given
~ input pattern, by using the usual forward propagation equations. Similarly,
compute the initial conditions for the hy; and forward propagate through
the network using (4.75) to find the remaining non-zero elements of ;.
5. Evaluate &y for the output units in the usual way. Similarly, evaluate the
" H, for all the output units using (4.80).

3 Use the standard back-propagation equations to find é; for all hidden units
" in the network. Similarly, back-propagate to find the {b;;} by using (4.78)
" with initial conditions given by (4.79).

4. Evaluate the elements of the Hessian for this input pattern using (4.71).
5. Repeat the above steps for each pattern in the training set, and then sum
' to obtain the full Hessian.

‘In a practical implementation, we substitute appropriate expressions for the
function and the activation functions. For the sum-of-squares error function
linear output units, for example, we have

i =g'(a) Y wabs.

Substituting this into the definition of b;; in (4.73) we obtain

d
by; = % {Q’(ﬂt) Z‘wslﬁa}

which gives

bi; = ¢" (ar)hy; Z waibs + 9 (1) Z Waibs;
8 8

bk = Yk — ti, Hygr = St (4.81)
where the sums run over all units s to which unit [sends connections. No

in a software implementation, the first summation in (4.78) will already
been computed in evaluating the {§;} in (4.76).

There is one subtlety which needs to be considered. The derivative
which appears in (4.77) arose from the derivative /8w;; in (4.70). This tral
mation, from wj; to a;, is valid provided w;; does not appear explicitly withi
brackets on the right-hand side of (4.77). In other words, the weight wj; s
not lie on any of the forward-propagation paths from unit [to the outputs
network, since these are also the paths used to evaluate §; by back-propagati
In practice the problem is easily avoided as follows. If wj; does oceur in
sequence of back-propagations needed to evaluate &, then we simply consi
instead the diagonally opposite element of the Hessian matrix for which
problem will not arise (since the network has a feed-forward topology). We
make use of the fact that the Hessian is a symmetric matrix. B

The initial conditions for the back-propagation in (4.78) follow from (4.72
and (4.73), together with the initial conditions (4.34) for the §’s, to give

he: e Oxx is the Kronecker delta symbol.

.6 Ezact Hessian for two-layer network
an illustration of the above algorithm, we consider the specific case of a layered
etwork having two layers of weights. We can then use the results obtained above
write down explicit expressions for the elements of the Hessian matrix. We
1all use indices i and 4’ to denote inputs, indices j and j' to denoted units in the
dden layer, and indices k and &’ to denote outputs. Using the previous results,
e Hessian matrix for this network can then be considered in three separate
s as follows.

1. Both weights in the second layer:

9*E"
————— = Z: 20 b Hik- 4.82
awkjawk,j, ZIRPORkI 2N ()

2. Both weights in the first layer:

b = Zﬂkk'fzk'j
& 9*E"

0wy zizvg" (aj)b;5 Zk:wkj'ﬁk

where we have defined

o*E"

P E +zizig'(aj)g' (ay) Wi Wi Hik - (4.83)
Hiy Barda, 9 (a; 4 zk: 2}

158 4: The Multi-layer Perceptron 4.10: The Hessian matriz 159
3. One weight in each layer: ; l V. Pearlmutter (1994) used the notation R{-} to denote the operator vIV
1 we shall follow this notation. The analysis is straightforward, and makes use

o’E" _¢ the usual rules of differential calculus, together with the result

W = zig'(a;) {6k8;5 + zprwrjHex} -
R{w}=v. (4.88)
If one or both of the weights is a bias term, then the corresponding exp:
are obtained simply by setting the appropriate activation(s) to 1. The technique is best illustrated with a simple example, and again we choose
a two-layer network with linear output units and a sum-of-squares error function.
As before, we consider the contribution to the error function from one pattern in
» data set. The required vector is then obtained as usual by summing over the
Ztributions from each of the patterns separately. For the two-layer network,

forward-propagation equations are given by

4.10.7 Fast multiplication by the Hessian

In some applications of the Hessian, the quantity of interest is not the He
matrix H itself, but the product of H with some vector v. We have seen th:
evaluation of the Hessian takes O(W?) operations, and it also requires s
which is O(W?). The vector vTH which we wish to calculate itself onl

W elements, so instead of computing the Hessian as an intermediate s a; = Zwﬁz‘ (4.89)
can instead try to find an efficient approach to evaluating vTH directly, wk :
requires only O(W) operations.
We first note that z; = g(a;) (4.90)
vIH = vTV(VE) Y = Zwkaj_ (4.91)
J

where V denotes the gradient operator in weight space. We can then e

the right-hand side of (4.85) using finite differences to give We now act on these equations using the R{:} operator to obtain a set of forward

propagation equations in the form

VE(w +ev) — VE(w

vIV(VE) = (E) ()+0(e). o
Ria;} =Y vjiz: (4.92)

Thus, the quantity vI'H can be found by forward propagating first wi h the :
original weights, and then with the weights perturbed by the small vector R{z} = ¢'(a;)R{a;} (4.93)

This procedure therefore takes O(W) operations. It was used by Le Cun
1993) as part of a technique for on-line estimation of the learning rate para :

l(n gra)cbent descent. R{yx} = Z wriR{2;} + ZJ: UkjZ; (4.94)

J

Note that the residual error in (4.86) can again be reduced from O(f) |
O(€?) by using central differences of the form

|1

where v;; is the element of the vector v which corresponds to the weight w;;.
Quantities of the form R{z;}, R{a;} and R{y:} are to be regarded as new
Variables whose values are found using the above equations.

- Since we are considering a sum-of-squares error function, we have the follow-
ing standard back-propagation expressions:

E(w + ev) — VE(w — ev)

\%
T Lt
v V(VE) = =

+0(e?)

which again scales as O(W).
The problem with a finite-difference approach is one of numerical i

racies. This can be resolved by adopting an analytic approach (Mgller, 1 9. Ok = Yk — tk (4.95)
Pearlmutter, 1994). Suppose we write down standard forward-propagation &

back-propagation equations for the evaluation of VE. We can then apply (= g'(aj) Z WOk (4.96)
to these equations to give a set of forward-propagation and back-propa &

equations for the evaluation of v'H. This corresponds to acting on the ori
forward-propagation and back-propagation equations with a differential oper

T .

160 4: The Multi-layer Percepiron Ezercises 161

Again we act on these equations with the R{-} operator to obtain a set of bag

:_;,4‘ Cises
propagation equations in the form i

(x) In Section 4.4 we showed that, for networks with ‘tanh’ hidden unit acti-
~ yation functions, the network mapping is invariant if all of the weights and
the bias feeding into and out of a unit have their signs changed. Demon-
strate the corresponding symmetry for hidden units with logistic sigmoidal
activetion functions.

4.2 () Consider a sescond-order network unit of the form (4.19). Use the sym-
" metry properties of this term, together with the results of Exercises 1.7

R{6k} = R{wx}

R{6;} = ¢"(a;)R{a;} Y wi;6x
k

+ ¢'(aj) Zﬂkjﬁk and 18, to find an expression for the number of independent weight pa-
k rameters and shoow that this is the same result as that obtained by applying

symmetry considerations to the equivalent form (4.18).
+4'(a;) Z wi;R{Ok}. 4.3 (+) Show, for a feed-forward network with ‘tanh’ hidden unit activation func-
k tions and a summ-of-squares error function, that the origin in weight space

is a sationary point of the error function.
(%) Cossider a layrered network with d inputs, M hidden units and ¢ output
units Write down an expression for the total number of weights and biases

Finally, we have the usual equations for the first derivatives of the error

OF = Op2; in the network. Consider the derivatives of the error function with respect
Owg; ’ to the weights for one input pattern only. Using the fact that these deriva-
tives are given by equations of the form dE™ /Gwy; = 8kz;, write down an
oF 5 exprasion for thhe number of independent derivatives.
B = 0% 3 ; : ;
Ow;i 4.5 (x) Coasider a layered network having second-order units of the form (4.19)

in the first layer and conventional units in the remaining layers. Derive
a bak-propagation formalism for evaluating the derivatives of the error
functon with respect to any weight or bias in the network. Extend the
resul: to general Afth-order units in the first layer.

4.6 (+) InSection 49, a formalism was developed for evaluating the Jacobian
matrix by a process of back-propagation. Derive an alternative formalism
- for obtaining the Jacobian matrix using forward propagation equations.
4.7 (x) Casider a two-layer network having 20 inputs, 10 hidden units, and 5
outputs, together with a training set of 2000 patterns. Calculate roughly
how bng it woazld take to perform one evaluation of the Hessian matrix
using (a) central differences based on direct error function evaluations; (b)
centrl differerces based on gradient evaluations using back-propagation;
(c) the analyti: expressions given in (4.82), (4.83) and (4.84). Assume that
the workstation can perform 5 x 107 floating point operations per second,
and that the tine taken to evaluate an activation function or its derivatives
. can be neglectsd .

4.8 () Veify the ilentity (4.65) by pre- and post-multiplying both sides by
. A4{BC.

4.9 (5) Extend the expression (4.63) for the outer product approximation of the
Hessan to the case of ¢ > 1 output units. Hence derive a recursive ex-
presson analogoass to (4.64) for incrementing the number N of patterns,
and s similar scpression for incrementing the number ¢ of outputs. Use
these results, tozether with the identity (4.65), to find sequential update

and acting on these with the R{-} operator we obtain expressions for the e
of the vector vTH:

R {5‘1—‘3-} = R{G}z + 6 R{z)

R {7{%} — 2 R(5;}.

The implementation of this algorithm involves the introduction of add
variables R{a;}, R{z;} and R{§;} for the hidden units, and R{6;} and 7
for the output units. For each input pattern, the values of these quantities
be found using the above results, and the elements of vTH are then g
(4.101) and (4.102). An elegant aspect of this technique is that the structu
the equations for evaluating v'H mirror closely those for standard forwa
backward propagation, and so software implementation is straightforward.

If desired, the technique can be used to evaluate the full Hessian ma
choosing the vector v to be given successively by a series of unit vectors of
form (0,0,...,1,...,0) each of which picks out one column of the Hessian.
leads to a formalism which is analytically equivalent to the back-propa !
procedure of Bishop (1992), as described in Section 4.10.5, though with s 4
loss of efficiency in a software implementation due to redundant ca ation:

162 4: The Multi-layer Percepiron

expressions analogous (4.66) for finding the inverse of the Hess:an by
crementally including both extra patterns and extra outputs. |

4.10 (% %) Verify that the results (4.82), (4.83) and (4.84) for the Hessian
trix of a two-layer network follow from the general expressions
culating the Hessian matrix for a network of arbitrary topology gi
Section 4.10.5.

4.11 (%) Derive the results (4.82), (4.83) and (4.84) for the exact evaluati on
the Hessian matrix for a two-layer network by direct differentiation
forward-propagation and back-propagation equations.

4.12 (%% *) Write a software implementation of the forward and backward
agation equations for a two-layer network with ‘tanh’ hidden unit acti
function and linear output units. Generate a data set of random inp
target vectors, and set the network weights to random values. For the
of a sum-of-squares error function, evaluate the derivatives of the
with respect to the weights and biases in the network by using the
tral differences expression (4.47). Compare the results with those ob:
using the back-propagation algorithm. Experiment with different val
€, and show numerically that, for values of € in an appropriate range,
two approaches give almost identical results. Plot graphs of the lo
of the evaluation times for these two algorithms versus the logarithm
the number W of weights in the network, for networks having a rar
different sizes (including networks with relatively large values of W).
verify the scalings with W discussed in Section 4.8.

4.13 (x*x) Extend the software implementation of the previous exercise
clude the forward and backward propagation equations for the R{-}
ables, described in Section 4.10.7. Use this implementation to evalua
complete Hessian matrix by setting the vector v in the R{.} oper:
successive unit vectors of the form (0,0,...,1,...,0) each of which
out one column of the Hessian. Also implement the central differen
proach for evaluation of the Hessian given by (4.67). Show that the r
from the R{-} operator and central difference methods agree closely,
vided ¢ is chosen appropriately. Again, plot graphs of the logarith
the evaluation time versus the logarithm of the number of weights in
network, for networks having a range of different sizes, for both of thes
approaches to evaluation of the Hessian, and verify the scalings with W ¢
the two algorithms, as discussed in the text.

4.14 (x»x) Extend further the software implementation of Exercise 4.12 b
plementing equations (4.82), (4.83) and (4.84) for computing the elen
of the Hessian matrix. Show that the results agree with those from !
R{-}-operator approach, and extend the graph of the previous exerci:
include the logarithm of the computation times for this algorithm. h

4.15 (x %) Consider a feed-forward network which has been trained to a min
imum of some error function E, corresponding to a set of weights
where for convenience we have labelled all of the weights and biases in th

Ezercises 163

network with a single index j. Suppose that all of the input values 27 and
target values ¢} in the training set are perturbed by small amounts Az and
At} respectwely This causes the minimum of the error function to change
to a new set of weight values given by {w; 4+ Aw;}. Write down the Taylor
expansion of the new error function E({w;+Aw;}, {z] +Azl}, (i +Atk})
to second order in the A’s. By minimizing this expression with respect to
the {Aw;}, show that the new set of weights which minimizes the error
function can be calculated from the original set of weights by adding cor-
rections Aw; which are given by solutions of the following equation

E HijjAw; =

J

—AT, (4.103)

where Hy; are the elements of the Hessian matrix, and we have defined

AT = ZZ@ A, Az "'ZZawatnAtk

(4.104)

5.1; Ezxact interpolation 165

: ial basis function approach (Powell, 1987) introduces a set of N basis
; in;alone for each data point, which take the form ¢(||x — x"||) where ¢(:)
ne x;on-linear function whose form will be discussed shortly. Thus tl{e nth
: function depends on the distance ||x — x|, ufiually taken to be Euaht:lea.n,
on x and x". The output of the mapping is then taken to be a linear

-bination of the basis functions

h(x) = Y wad(|lx — x]). (5.2)

3
RADIAL BASIS FUNCTIONS

i i i i ized linear discriminant
We recognize this as having the same form as the generaliz d
rﬂiingi:l;)nailidns'.-red in Section 3.3. The interpolation conditions (5.1) can then

The network models discussed in Chapters 3 and 4 are based on units B itten in matrix form as

compute a non-linear function of the scalar product of the input vector
weight vector. Here we consider the other major class of neural network
in which the activation of a hidden unit is determined by the distance be
the input vector and a prototype vector.

An interesting and important property of these radial basis function ne
is that they form a unifying link between a number of disparate concepts :
shall demonstrate in this chapter. In particular, we shall motivate the
radial basis functions from the point of view of function approximation,
larization, noisy interpolation, density estimation, optimal classification
and potential functions.

One consequence of this unifying viewpoint is that it motivates proce -
for training radial basis function networks which can be substantially faster th
the methods used to train multi-layer perceptron networks. This follows fro
interpretation which can be given to the internal representations formed by
hidden units, and leads to a two-stage training procedure. In the first stage,
parameters governing the basis functions (corresponding to hidden units) i
determined using relatively fast, unsupervised methods (i.e. methads which
only the input data and not the target data). The second stage of training then
involves the determination of the final-layer weights, which requires the solutio
of a linear problem, and which is therefore also fast.

Pw=t (5.3)

vhere t = (t"), w = (wy), and the square matrix ® has elements <I>m,»-=
#(llx™ —x™ ||). Provided the inverse matrix & exists we can solve (5.3) to give

w=23a&"t (5.4)

has been shown (Micchelli, 1986) that, for a large class of f?nf;tions #(:), the
ix ® is indeed non-singular provided the data points are .dxstmct. When the
ghts in (5.2) are set to the values given by (5.4), the function h(x) represents
ntinuous differentiable surface which passes exactly through each flata point.
" Both theoretical and empirical studies (Powell, 1987) show thatf, in the con-
text of the exact interpolation problem, many properties of the mterpolatfng
function are relatively insensitive to the precise form of the non-linear function
)'. Several forms of basis function have been considered, the most common

being the Gaussian

o) =ew (-) (55)

where o is a parameter whose value controls the sn_loothnef;s propf;'rties.of the
Interpolating function. The Gaussian (5.5) is a Iacaltzef! basis .functl'on with the
Property that ¢ — 0 as |z| — co. Another choice of basis function with the same
Property is the function

5.1 Exact interpolation

Radial basis function methods have their origins in techniques for perfo
exact interpolation of a set of data points in a multi-dimensional space (Powe
1987). The exact interpolation problem requires every input vector to be map, p
exactly onto the corresponding target vector, and forms a convenient start
point for our discussion of radial basis function networks.

Consider a mapping from a d-dimensional input space x to a one-dimensional
target space . The data set consists of N input vectors x™, together with corre-
sponding targets ¢". The goal is to find a function h(x) such that

#(z) = (a2 +0%) 77, a>0. (5.6)

It is not, however, necessary for the functions to be localized, and other possible
choices are the thin-plate spline function

h(x“) = t“, n= 1, sea ,N. EP,

166 5: Radial Basis Functions 5.2: Radial basis function networks 167
#(z) = 2% In(z),
the function 1.0
#(z) = («* +02)”, 0<p<1, y
which for # = 1/2 is known as the multi-quadric function, the cubic o8
¢(z) =2, -
and the ‘linear’ function
¢(z) == 000 05 % 1.0

which all have the property that ¢ — oo as z — oo. Note that (5.10) lin
z = ||x — x"|| and so is still a non-linear function of the components of x
dimension, it leads to a piecewise-linear interpolating function which repr
the simplest form of exact interpolation. As we shall see, in the context of ne
network mappings there are reasons for considering localized basis functions.
shall focus most of our attention on Gaussian basis functions since, as ¥
being localized, they have a number of useful analytical properties. The techn
of radial basis functions for exact interpolation is illustrated in Figure 5.1
simple one-input, one-output mapping.

The generalization to several output variables is straightforward. Each i
vector x"™ must be mapped exactly onto an output vector t™ having compo)

% so that (5.1) becomes

Figure 5.1. A simple example of exact interpolation using radial basis func-
tions. A set of 30 data points was generated by sampling the function
'y = 0.5+ 0.4sin(27z), shown by the dashed curve, and adding Gaussian noise
with standard deviation 0.05. The solid curve shows the interpolating func-
tion which results from using Gaussian basis functions of the form (5.5) with
width parameter o = 0.067 which corresponds to roughly twice the spacing of
~ the data points. Values for the second-layer weights were found using matrix
inversion techniques as discussed in the text.

Radial basis function networks

radial basis function mappings discussed so far provide an interpolating
on which passes exactly through every data point. As the example in Fig-
e 5.1 illustrates, the exact interpolating function for noisy data is typically
highly oscillatory function. Such interpolating functions are generally unde-
able. As discussed in Section 1.5.1, when there is noise present on the data,
interpolating function which gives the best generalization is one which is
ically much smoother and which averages over the noise on the data. An ad-
nal limitation of the exact interpolation procedure discussed above is that
e number of basis functions is equal to the number of patterns in the data
%€t, and so for large data sets the mapping function can become very costly to
Va nate

By introducing a number of modifications to the exact interpolation proce-
lire we obtain the radial basis function neural network model (Broomhead and
e, 1988; Moody and Darken, 1989). This provides a smooth interpolating
Lion in which the number of basis functions is determined by the complexity
he mapping to be represented rather than by the size of the data set. The
H0difications which are required are as follows:

. The number M of basis functions need not equal the number N of data
points, and is typically much less than N.
2. The centres of the basis functions are no longer constrained to be given by

hx(x™) =, n=1...;N

where the hi(x) are obtained by linear superposition of the same N basis fune
tions as used for the single-output case

k(%) =D wnd(flx — x)-

The weight parameters are obtained by analogy with (5.4) in the form

Whn =) (8wt} -
n.r

Note that in (5.13) the same matrix & is used for each of the output fun:

168 5: Radial Basis Functions 5.2: Radial basis function networks 169

input data vectors. Instead, the determination of suitable centres
part of the training process.
3. Instead of having a common width parameter o, each basis
given its own width o; whose value is also determined during traini
4. Bias parameters are included in the linear sum. They compensate f
difference between the average value over the data set of the basis fi
activations and the corresponding average value of the targets, as d
in Section 3.4.3.
When these changes are made to the exact interpolation formula (5.12)
arrive at the following form for the radial basis function neural network m:

basis

bias functions

M
Yk (%) =) wi;h;(x) + wio.

j=1 ,
| inputs
If desired, the biases wio can be absorbed into the summation by incl
extra basis function ¢y whose activation is set to 1. For the case of C

basis functions we have
llx — ;|2
o= B

where x is the d-dimensional input vector with elements z;, and p; is the
determining the centre of basis function ¢; and has elements p;;. Note
the Gaussian basis functions in (5.15) are not normalized, as was the ca
Gaussian density models in Chapter 2 for example, since any overall fa
be absorbed into the weights in (5.14) without loss of generality. This
function can be represented as a neural network diagram as shown in Fig
Note that more general topologies of radial basis function network (more ti
one hidden layer for instance) are not normally considered.

In discussing the representational properties of multi-layer perceptro
works in Section 4.3.1, we appealed to intuition to suggest that a linear
position of localized functions, as in (5.14) and (5.15), is capable of un
approximation. Hartman et al. (1990) give a formal proof of this prop
networks with Gaussian basis functions in which the widths of the Gaus:
treated as adjustable parameters. A more general result was obtained by .
and Sandberg (1991) who show that, with only mild restrictions on the fori
the kernel functions, the universal approximation property still holds. Fur
generalizations of this results are given in (Park and Sandberg, 1993). As wi
the corresponding proofs for multi-layer perceptron networks, these are exi
proofs which rely on the availability of an arbitrarily large number of hid
units, and they do not offer practical procedures for constructing the netwo
Nevertheless, these theorems are crucial in providing a theoretical foundat
which practical applications can be based with confidence.

Figure 5.2. Architecture of a radial basis function neural network, correspond-
- ing to (5.14). Each basis function acts like a hidden unit. The lines connecting
basis function ¢; to the inputs represent the corresponding elements p;; of
~ the vector ;. The weights wy; are shown as lines from the basis functions
to the output units, and the biases are shown as weights from an extra ‘basis
function’ ¢g whose output is fixed at 1.

Girosi and Poggio (1990) have shown that radial basis function networks
ss the property of best approzimation. An approximation scheme has this
roperty if, in the set of approximating functions (i.e. the set of functions cor-
ponding to all possible choices of the adjustable parameters) there is one
inction which has minimum approximating error for any given function to be
roximated. They also showed that this property is not shared by multi-layer
perceptrons.

The Gaussian radial basis functions considered above can be generalized to
allow for arbitrary covariance matrices X;, as discussed for normal probability
sity functions in Section 2.1.1. Thus we take the basis functions to have the

63(0) = exp {30) "B - i)} (5.16)

Since the covariance matrices 3; are symmetric, this means that each basis func-
tion has d(d+3)/2 independent adjustable parameters (where d is the dimension-
ality of the input space), as compared with the (d + 1) independent parameters
;" the basis functions (5.15). In practice there is a trade-off to be considered
P€lween using a smaller number of basis with many adjustable parameters and
a larger number of less flexible functions.

170 5: Radial Basis Functions 5.4: Regularization theory 171

5.3 Network training 3TewT = 8™T (5.20)

A key aspect of radial basis function networks is the distinction bety
roles of the first and second layers of weights, As we shall see, the basis fun
can be interpreted in a way which allows the first-layer weights (i.e. the
eters governing the basis functions) to be determined by unsupervised tr
techniques. This leads to the following two-stage training procedure for tr
radial basis function networks. In the first stage the input data set {x
is used to determine the parameters of the basis functions (e.g. p; and .
the spherical Gaussian basis functions considered above). The basis
are then kept fixed while the second-layer weights are found in the second
of training. Techniques for optimizing the basis functions are discussed at
in Section 5.9. Here we shall assume that the basis function parameters
already been chosen, and we discuss the problem of optimizing the second
weights. Note that, if there are fewer basis functions than data points,
general it will no longer possible to find a set of weight values for whi
mapping function fits the data points exactly. ;

We begin by considering the radial basis function network mapping in
and we absorb the bias parameters into the weights to give

here (T)nk =t and (®),; = ¢;(x"). The formal solution for the weights is
by

wT =alT (5.21)

here the notation &1 denotes the pseudo-inverse of ® (Section 3.4.3). In prac-
the equations (5.20) are solved using singular value decomposition, to avoid
roblems due to possible ill-conditioning of the matrix ®. Thus, we see that the
second-layer weights can be found by fast, linear matrix inversion techniques.
For the most part we shall consider radial basis function networks in which the
ependence of the network function on the second-layer weights is linear, and in
the error function is given by the sum-of-squares. It is possible to consider
» use of non-linear activation functions applied to the output units, or other
oices for the error function. However, the determination of the second-layer
ights is then no longer a linear problem, and hence a non-linear optimization of
. weights is then required. As we have indicated, one of the major advantages
radial basis function networks is the possibility of avoiding the need for such
ptimization during network training.
As a simple illustration of the use of radial basis function networks, we return
e data set shown in Figure 5.1 and consider the mapping obtained by using
ial basis function network in which the number of basis functions is smaller
an the number of data points, as shown in Figure 5.3
The width parameter o in Figure 5.3 was chosen to be roughly twice the
age spacing between the basis functions. Techniques for setting the basis
nction parameters, including o, are discussed in detail in Section 5.9. Here we
ly note the effect of poor choices of . Figure 5.4 shows the result of choosing
mall a value for o, while the effect of having ¢ too large is illustrated in
gure 5.5.

M
Uk(X) =) wi;dy(x)

3=0

where ¢ is an extra ‘basis function’ with activation value fixed at ¢o =
can be written in matrix notation as

y(x)=W¢

where W = (wy;) and ¢ = (¢;). Since the basis functions are considered
the network is equivalent to a single-layer network of the kind considered
tion 3.3 in the context of classification problems, where it is termed a gener
linear discriminant. As discussed in earlier chapters, we can optimize the w
by minimization of a suitable error function. It is particularly convenient, '
shall see, to consider a sum-of-squares error function given by

B=3 3 Y) -)
Y

where t7 is the target value for output unit k when the network is presented wi
input vector x™. Since the error function is a quadratic function of the weig
its minimum can be found in terms of the solution of a set of linear equatic
This problem was discussed in detail in Section 3.4.3, from which we see t
the weights are determined by the linear equations

Regularization theory

| alternative motivation for radial basis function expansions comes from the
theory of regularization (Poggio and Girosi, 1990a, 1990b). In Section 1.6 the
nique of regularization was introduced as a way of controlling the smoothness
Operties of a mapping function. It involves adding to the error function an extra
M which is designed to penalize mappings which are not smooth. For simplicity
Notation we shall consider networks having a single output y, so that with a
SUm-of-squares error, the total error function to be minimized becomes

=3 W) -+ [1P ix (5:22)

—

172 5: Radial Basis Functions 5.4: Regularization theory 173

1.0

1.0

3 4
y

0.5

0.5

-]

0.0 L o

0.0 0.0 0.5 x 1.0

0.0 0.5 1.0

. Figure 5.5. As in Figure 5.3, but in which the width parameter has been set to
) ‘& = 10.0. This leads to a network function which is over-smoothed, and which
‘again gives a poor representation of the underlying function which generated
‘the data,

Figure 5.3. This shows the same set of 30 data points as in Figure 5.1, toge
with a network mapping (solid curve) in which the number of basis functio:
has been set to 5, which is significantly fewer than the number of data poin
The centres of the basis functions have been set to a random subset of the |
set input vectors, and the width parameters of the basis functions have hi
set to a common value of ¢ = 0.4, which again is roughly equal to twice t}
average spacing between the centres. The second-layer weights are found b
minimizing a sum-of-squares error function using singular value decomposition.

are P is some differential operator, and v is called a regularization parameter.
work mapping functions y(x) which have large curvature will typically give
to large values of |Py|? and hence to a large penalty in the total error
ction. The value of v controls the relative importance of the regularization
n, and hence the degree of smoothness of the function y(x).

We can solve the regularized least-squares problem of (5.22) by using calculus
iations (Appendix D) as follows. Setting the functional derivative of (5.22)
respect to y(x) to zero we obtain

1.0 3 {y(x™) — t"}6(x — x™) + vPPy(x) =0 (5.23)
n
Yy b

P is the adjoint differential operator to P and §(x) is the Dirac delta

on. The equations (5.23) are the Euler-Lagrange equations corresponding

0.5 5.22) A formal solution to these equations can be written down in terms of

; Gmen s functions of the operator PP, which are the functions G(x, x') which

6o PPG(x,x') = 6(x — x'). (5.24)

0.0 0.5 1.0

operator P is translationally and rotationally invariant, then the Green’s
Hfctions depend only on the distance |[x — x'||, and hence they are radial func-

Figure 5.4. As in Figure 5.3, but in which the width parameter has been
N s The formal solution to (5.23) can then be written as

to o = 0.08. The resulting network function is insufficiently smooth and gi -
a poor representation of the underlying function which generated the data.

174 5: Radial Basis Functions
y(x) = zwnG("x - x"[)

which has the form of a linear expansion in radial basis functions. Substity
(5.25) into (5.23) and using (5.24) we obtain

D {ulx") — t"}o(x —x") + v Z Wwnb(x —x") =0
n n |

Integrating over a small region around x™ shows that the coefficients w, satis

y(x") —t" +vw, =0.

Values for the coefficients w, can be found by evaluating (5.25) at the
the training data points x™ and substituting into (5.27). This gives the
Wy as the solutions of the linear equation

(G+vI)w =

where (G)nnt = G(|X™ — X)), (W)a = wn, (t)n = " and I denotes
matrix.
If the operator P is chosen to have the particular form

oo o
[1patix=3" 5z [Dol ix
=0

where D¥ = (V?)! and D?*+! = V(V?)!, with V and V2 denoting the g1
and Laplacian operators respectively, then the Green’s functions are Ga

with width parameters o (Exercise 5.3). '

We see that there is a very close similarity between this form of basis fun
tion expansion, and the one discussed in the context of exact int.erpola_.' :

Section 5.1. Here the Greens functions G(||x —x"||) correspond to the basis
tions ¢([lx — x™||), and there is one such function centred on each data p
the training set. Also, we see that (5.28) reduces to the exact interpolation
(5.3) when the regularization parameter v is zero. When the regularization
rameter is greater than zero, however, we no longer have an exact interpola
function. The effect of the regularization term is to force a smoother n
mapping function, as illustrated in Figure 5.6.

In practice, regularization can also be applied to radial basis function 1
works in which the basis functions are not constrained to be centred on the

points, and in which the number of basis functions need not equal the nur

of data points. Also, regularization terms can be considered for which t.ha
functions are not necessarily the Green’s functions. Provided the regulari
term is a quadratic function of the network mapping, the second-layer v

5.4: Regularization theory 175

1.0

0.5

0.0
0.0 0.5 1.0

Figure 5.6, This shows the same data set as in Figure 5.1, again with one basis
" function centred on each data point, and a width parameter ¢ = 0.067. In this
‘case, however, a regularization term is used, with coefficient v = 40, leading
‘to a smoother mapping (shown by the solid curve) which no longer gives an

exact fit to the data, but which now gives a much better approximation to the

underlying function which generated the data (shown by the dashed curve).
Al

an again be found by the solution of a set of linear equations which minimize a
sim-of-squares error. For example, the regularizer

DI B (82""") (5.30)

izes mappings which have large curvature (Bishop, 1991b). This regularizer
to second-layer weights which are found by solution of

MW = &TT (5.31)

a%4n %97,
(M); =) {qﬁ?qﬁ?, +v Z ('ﬁ _3:t:§) } (5.32)

n T

= (¢7) as before. When v = 0 (5.31) reduces to the previous result (5.20).
mclusmn of the regularization term adds little to the computational cost,
e most of the time is spent in solving the coupled linear equations (5.31).

176 5: Radial Basis Functions 5.6: Relation to kernel regression 177

5.5 Noisy interpolation theory] i that the basis functions are normalized (Moody and Darken, 1989). Strictly
Yet another viewpoint on the origin of radial basis function expansions cg ng, the normalization in (5.36) would require lateral connections between
from the theory of interpolation of noisy data (Webb, 1994). Consider a m rent hidden units in a network diagram. If the distribution of the noise is
from a single input variable z to a single output variable y in which the nal, so that p(€) o exp(—£2/20?), then we obtain an expansion in Gaussian
data is generated from a smooth noise-free function h(z) but in which the functions

data is corrupted by additive noise. The sum-of-squares error, in the lim
infinite data, takes the form > h(z™) exp{—(z — z")?/20%} (5.38)

Y exp{—(z —z")?/20%} '

The extension of this result to several output variables is straightforward and

y(z) =
B3 [[a+6) - ha)Repe)deds

where p(z) is the probability density function of the input data, and p(¢) is
probability density function of the noise. Changing variables using z = z 4

n e Pt = RN 0.2
s 2 hie(a™) exp{—(z — 2")*/20°} (5.39)

W) = S, xp (- — 5 20}

Note that (5.36) will only be a good approximation to (5.35) if the integrand
is sufficiently smooth. This implies that the width of the basis functions should
be large in relation to the spacing of the data, which is a useful rule of thumb
when designing networks with good generalization properties.

=3 f{y h(z)}*p(z — z)p(z) dz dz.

A formal expression for the minimum of the error can then be obtained
variational techniques (Appendix D) by setting the functional derivativ

with respect to y/(z) to zero, to give 5.6 Relation to kernel regression

her motivation for the use of radial basis functions for function approxima-
comes from the theory of kernel regression (Scott, 1992). This is a technique
‘estimating regression functions from noisy data, based on the methods of
el density estimation discussed in Section 2.5.3. Consider a mapping from
L input vector x to an output vector y, and suppose we are given a set of train-
data {x",t"} where n = 1,...,N. A complete description of the statistical
operties of the generator of the data is given by the probability density p(x, t)
‘the joint input-target space. We can model this density by using a Parzen
el estimator constructed from the data set. If we consider Gaussian kernel
ions, this estimator takes the form

f h(@)f(z — 2)p(z) dz
f Bz -o)p(z)de

y(z) =

If we consider the case of a finite number of data points {z"} drawn fi¢
the distribution p(x), we can approximate (5.35) by .

>, h(z™)p(z — ™)
vE) = =5 Fe - o)

which we recognize as being an expansion in radial basis functions, in whi
h(z™) are the expansion coefficients, and the basis functions are given by

1 flx — %™ |t — 72
p(x, t) ki Z « (2mh?) @ray2 =P {_ oh2 92K (5.40)

ere d and c are the dimensionalities of the input and output spaces respec-
y. This is illustrated schematically, for the case of one input variable and
€ output variable, in Figure 5.7.

Since the function h(z) is unknown, the coefficients h(z") should be _ As we have already seen, the goal of learning is to find a smooth mapping
as parameters to be determined from the data. To do this we note that t0m x to y which captures the underlying systematic aspects of the data, with-
noise-free and so we have h(z") = t”. Thus (5.36) becomes an expansio fitting the noise on the data, In Section 6.1.3 it is shown that, under many
functions in which the coefficients are given by the target values. Note mstances, the optimal mapping is given by forming the regression, or condi-
form of basis function expansion differs from that introduced in (5.14) a al average (t|x), of the target data, conditioned on the input variables. This

oL BB
e - Fert

178

5: Radial Basis Functions

5.7: Radial basis function networks for classification 179

~+ unit weights which are just given by the target data values.

approach can be extended by replacing the kernel estimator with an
» mixture model, as discussed in Section 2.6. The parameters of the mix-
Jel can be found using, for instance, the EM (expectation-maximization)
m (Section 2.6.2). For a mixture of M spherical Gaussian functions, we
& rite the joint density in the form

1 W

M 2

| , 1 = p5l* it — w5

9,) = ZIPU)———(ST @raya P {_ 2h.2j ~ 2h23 . (5.43)
Jj=

v

wing the same line of argument as before, we arrive at the following expres-

Figure 5.7. Schematic illustration of the use of a kernel estimator to mod .:_:1 for the regression:

joiftt probability density in the input-output space. The dots show the d
points, and the circles represent Gaussian kernel functions centred on the d

points, while the curve shows the regression function given by the condi
average of t as a function of z,

_ X, Pli)v; exp {—IIx — ;1*/2h%}

y(x) = Y; P(j)exp {—lx— l-‘j“2/2h2}

(5.44)

can be expressed in terms of the conditional density p(t|x), and hence i

hich can be viewed as a normalized radial basis function expansion in which
of the joint density p(x,t), as follows:

nber of basis functions is typically much smaller than the number of data
and in which the basis function centres are no longer constrained to

y(x) = (t|x) ide with the data points. This result can be extended to Gaussian functions
th general covariance matrices (Ghahramani and Jordan, 1994b).
= / tp(tix) dt 7 Radial basis function networks for classification
her key insight into the nature of the radial basis function network is ob-
/ tp(x, t) dt d by considering the use of such networks for classification problems (Lowe,

Suppose we have a data set which falls into three classes as shown in Fig-
A multi-layer perceptron can separate the classes by using hidden units
h form hyperplanes in the input space, as indicated in Figure 5.8(a). An
ive approach is to model the separate class distributions by local kernel
ctions, as indicated in (b). This latter type of representation is related to the
dial basis function network.
. Suppose we model the data in each class C using a single kernel function,
h we write as p(x|Cx). In a classification problem our goal is to model the
rior probabilities p(Ci(x) for each of the classes. These probabilities can be
ned through Bayes’ theorem, using prior probabilities p(Cy), as follows:

: fp(x,t)dt -

If we now sub§titute our density estimate (5.40) into (5.41) we obtain the"
lowing expression for the regression of the target data |

S " exp {—[lx — x"[[2/242)

YO = S e Tk — /2R

This is known as the Nadaraya-Watson estimator (Nadaraya, 1964; Wa

1964), and has been re-discovered relatively recently in the context of B P(Ci|x) = E@M

networks (Specht, 1990; Schigler and Hartmann, 1992). We see that (5.42 p(x) S
the form of a normalized expansion in Gaussian radial basis functions de

the input space, and should be compared with the form (5.38) obtained _ _ P(x|Ck)P(C) 6
from the perspective of additive noise on the input data. Each basis func = 3 P(XICe) P(Cr) (5.46)

centred on a data point, and the coefficients in the expansion are given
target values t". Note that this construction provides values for the hidd

180 5: Radial Basis Functions 5.7: Radial basis function networks for classification 181
M

=Y p(xli)P(j) (5.50)
fma]

(@) (b)

Figure 5.8. Schematic example of data points in two dimensions which fall
three distinct classes. One way to separate the classes is to use hyperplan

+ore we have defined priors for the basis functions given by

P(j) =Y P(jICk)P(Ck). (5.51)
k

the quantities we are interested in are the posterior probabilities of class
hership. These can be obtained by substituting the expressions (5. 48) and
) into Bayes' theorem (5.45) to give

: M 2 . ;
P(C

shown in (a), as used in a multi-layer perceptron. An alternative appro P(Cx|x) = Zj=1§ulck)p(xl'?) () P(J) (5.52)

shown in (b), is to fit each class with a kernel function, which gives the zj;gl p(x|3")P(5") P(j)

of representation formed by a radial basis function network.

I M

This can be viewed as a simple form of basis function network with normal — Z wijh; (X) (5.53)
basis functions given by . =1

p(x|Cx)
2ok P(x|C) P(Cr)

and second-layer connections which consist of one weight from each hiddi

e we have inserted an extra factor of 1 = P(j)/P(j) into (5.52). The expres-
(5.53) represents a radial basis function network, in which the normalized
 functions are given by

Pr(x) =

going to the corresponding output unit, with value p(Ci). The outputs p(x)7)P(3) (5.54)
network represent approximations to the posterior probabilities. ¢3(x) = S p(x|i)P() .

In most applications a single kernel function will not give a pa.rtxcula.rl _ £
representation of the class-conditional distributions p(x|Ci). A better rep = P(j|x) (5.55)

tation could be obtained by using a separate mixture model to represent e
the conditional densities. However, a computationally more efficient ap;
and one which may help to reduce the number of adjustable parameters

and the second-layer weights are given by
model, is to use a common pool of M basis functions, labelled by an index ;

represent all of the class-conditional densities. Thus, we write Why = P(J|?=()Jj§’(c’°) 5%
p(x|Cx) = ZP(XIJ)P(J [Ck)- = P(Ck|3)- (5.57)

=1
- s, the activations of the basis functions can be interpreted as the posterior
abilities of the presence of corresponding features in the input space, and
weights can similarly be interpreted as the posterior probabilities of class
bershlp, given the presence of the features. The activations of the hidden
in a multi-layer perceptron (with logistic sigmoid activation functions) can
‘given a similar interpretation as posterior probabilities of the presence of
Atures, as discussed in Section 6.7.1.

Note from (5.50) that the unconditional density of the input data is expressed

An expression for the unconditional density p(x) can be found from (5.48
summing over all classes

p(x) = > p(x|Ck)P(Ck)
k

182 5: Radial Basis Functions

in terms of a mixture model, in which the component densities are gi
the basis functions. This motivates the use of mixture density estima
procedure for finding the basis function parameters, as discussed in Section

It should be emphasized that the outputs of this network also have
interpretation as the posterior probabilities of class membership. The ab
interpret network outputs in this way is of central importance in the eof
application of neural networks, and is discussed at length in Chapter 6.

Finally, for completeness, we point out that radial basis functions
closely related to the method of potential functions (Aizerman et al., 196
ranjan et al., 1989). This is a way of finding a linear discriminant functio
a training set of data points, based on an analogy with electrostatics. In
we place a unit of positive charge at each point in input space at which the
training vector from class Cy, and a unit of negative charge at each point
there is a training vector from class Cs. These charges give rise to an
static potential field which can be treated as a discriminant function. The
function which is used to compute the contribution to the potential fro
charge need not be that of conventional electrostatics, but can be some of
function of the radial distance from the data point.

5.8 Comparison with the multi-layer perceptron

Radial basis function networks and multi-layer perceptrons play very simi
in that they both provide techniques for approximating arbitrary non-linear
tional mappings between multidimensional spaces. In both cases the ma
are expressed in terms of parametrized compositions of functions of single
ables. The particular structures of the two networks are very different, ho
and so it is interesting to compare them in more detail. Some of the imp
differences between the multi-layer perceptron and radial basis function ne
are as follows:

1. The hidden unit representations of the multi-layer perceptron depend @
weighted linear summations of the inputs, transformed by monotonic ¢
vation functions. Thus the activation of a hidden unit in a multi-layer
ceptron is constant on surfaces which consist of parallel (d—1)-dimens
hyperplanes in d-dimensional input space. By contrast, the hidden un
in a radial basis function network use distance to a prototype vector #
lowed by transformation with a (usually) localized function. The acti
of a basis function is therefore constant on concentric (d — 1)-dimensi
hyperspheres (or more generally on (d — 1)-dimensional hyperellipsoid

A multi-layer perceptron can be said to form a distributed representation]
the space of activation values for the hidden units since, for a given
vector, many hidden units will typically contribute to the determi
of the output value. During training, the functions represented by the
den units must be such that, when linearly combined by the final
of weights, they generate the correct outputs for a range of possible inpt
values. The interference and cross-coupling between the hidden units whi

5.9: Basis function optimization 183

this requires results in the network training process being highly non-linear
with problems of local minima, or nearly flat regions in the error function
. arising from near cancellations in the effects of different weights. This can

lead to very slow convergence of the training procedure even with advanced

‘optimization strategies. By contrast, a radial basis function network with
. Jocalized basis functions forms a representation in the space of hidden units

which is local with respect to the input space because, for a given input
vector, typically only a few hidden units will have significant activations.

3, A multi-layer perceptron often has many layers of weights, and a com-
~ plex pattern of connectivity, so that not all possible weights in any given

layer are present. Also, a variety of different activation functions may be

used within the same network. A radial basis function network, however,
--generally has a simple architecture consisting of two layers of weights, in
~ which the first layer contains the parameters of the basis functions, and
~ the second layer forms linear combinations of the activations of the basis
functions to generate the outputs.
'4, All of the parameters in a multi-layer perceptron are usually determined
at the same time as part of a single global training strategy involving
~ supervised training. A radial basis function network, however, is typically

trained in two stages, with the basis functions being determined first by
unsupervised techniques using the input data alone, and the second-layer
weights subsequently being found by fast linear supervised methods.

Basis function optimization

of the principal advantages of radial basis function neural networks, as
npared with the multi-layer perceptron, is the possibility of choosing suitable

neters for the hidden units without having to perform a full non-linear
ization of the network. In this section we shall discuss several possible

ategies for selecting the parameters of the basis functions. The problem of

ing the appropriate number of basis functions, however, is discussed in the
of model order selection and generalization in Chapter 9.

| We have motivated radial basis functions from the perspectives of function
4pproximation, regularization, noisy interpolation, kernel regression, and the es-
ation of posterior class probabilities for classification problems. All of these

oints suggest that the basis function parameters should be chosen to form

epresentation of the probability density of the input data. This leads to an
pervised procedure for optimizing the basis function parameters which de-
ds only on the input data from the training set, and which ignores any target
Hormation. The basis function centres u; can then be regarded as prototypes
the input vectors. In this section we discuss a number of possible strategies
*OI optimizing the basis functions which are motivated by these considerations.
. There are many potential applications for neural networks where unlabelled
ut data is plentiful, but where labelled data is in short supply. For instance,
it may be easy to collect examples of raw input data for the network, but the

184 5: Radial Basis Funciions 5.9: Basis function optimization 185

labelling of the data with target variables may require the time of a human
which therefore limits the amount of data which can be labelled in a re
time. With such applications, the two-stage training process for a rad
function network can be particularly advantageous since the determin
the non-linear representation given by first layer of the network can e
using a large quantity of unlabelled data, leaving a relatively small num
parameters in the second layer to be determined using the labelled data. 2
stage of the training process, we can ensure that the number of data pe
large compared with the number of parameters to be determined, as requiz
good generalization.

One of the major potential difficulties with radial basis function n
however, also stems from the localized nature of the hidden unit repr
It concerns the way in which such a network addresses the curse of dim
discussed in Section 1.4. There we saw that the number of hypercubes v
needed to fill out a compact region of a d-dimensional space grows expo
with d. When the data is confined to some lower-dimensional sub-spac
to be interpreted as the effective dimensionality of the sub-space, known
intrinsic dimensionality of the data. If the basis function centres are used
out the sub-space then the number of basis function centres will be an expon
function of d (Hartman et al., 1990). As well as increasing the computation ti
a large number of basis functions leads to a requirement for large n
training patterns in order to ensure that the network parameters are pr
determined.

The problem is particularly severe if there are input variables whi
significant variance but which play little role in determining the appro
output variables. Such irrelevant inputs are not uncommon in practical ai
tions. When the basis function centres are chosen using the input data
there is no way to distinguish relevant from irrelevant inputs. This prob
illustrated in Figure 5.9 where we see a variable y which is a non-linear
of an input variable z,. We wish to use radial basis function network
to approximate this function. The basis functions are chosen to cover the 1
of the z; axis where data is observed. Suppose that a second input var
is introduced which is uncorrelated with z;. Then the number of basis fur
needed to cover the required region of input space increases dramatically
dicated in Figure 5.10. If y is independent of z; then these extra basis
have no useful role in determining the value of . Simulations using artificial
(Hartman et al., 1990), in which 19 out of 20 input variables consisted of
uncorrelated wlth the output, showed that a multi-layer perceptron could
to ignore the irrelevant inputs and obtain accurate results with a small
of hidden units, while radial basis function networks showed large error
decreased only slowly as the number of hidden units was increased.

Problems arising from the curse of dimensionality may be much less s
basis functions with full covariance matrices are used, as in (5.16), rather
spherical basis functions of the form (5.15). However, the number of paran
per basis function is then much greater.

y(xp)

OCOMCN,

X,

Figure 5.9. A schematic example of a function y(z1) of an input variable z;
wluch has been modelled using a set of radial basis functions.

X

Figure 5.10. As in Figure 5.9, but in which an extra, irrelevant variable z2
has been introduced. Note that the number of basis functions, whose locations
. are determined using the input data alone, has increased dramnt.ica.lly:, even
~ though z, carries no useful information for determining the output variable.

We have provided compelling reasons for using unsupervised methods to de-
€rmine the first- layer parameters in a radial basis function network by modelling
density of input data. Such method have also proven to be very powerful in
tice. However, it should be emphasized that the optimal choice of basis func-
L parameters for density estimation need not be optimal for representing the
ping to the output variables. Figure 5.11 shows a simple example of a prob-
M for which the use of density estimation to set the basis function parameters
rly gives a sub-optimal solution.

186 5: Radial Basis Functions 5.9: Basis function optimization 187

« overlap to some degree and hence give a relatively smooth representation
Le distribution of training data. We might also recognize that the optimal
may be different for basis functions in different regions of input space. For
nce, the widths may be determined from the average distance of each basis
ion to its L nearest neighbours, where L is typically small. Such ad hoc
cedures for choosing the basis function parameters are very fast, and allow
ial basis function network to be set up very quickly, but are likely to be
significantly sub-optimal.
202 Orthogonal least squares
more principled approach to selecting a sub-set of the data points as basis
tion centres is based on the technique of orthogonal least squares. To motivate
pproach consider the following procedure for selecting basis functions. We
by considering a network with just one basis function. For each data point
urn we set the basis function centre to the input vector for that data point,
hen set the second-layer weights by pseudo-inverse techniques using the
gomplete training set of N data points. The basis function centre which gives rise
o the smallest residual error is retained. In subsequent steps of the algorithm,
he number of basis functions is then increased incrementally. If at some point in
 algorithm [of the data points have been selected as basis function centres,
n N —[networks are trained in which each of the remaining N — [data points
1 is selected as the centre for the additional basis function. The extra basis
ion which gives the smallest value for the residual sum-of-squares error is
hen retained, and the algorithm proceeds to the next stage.
ch an approach would be computationally intensive since at each step it
be necessary to obtain a complete pseudo-inverse solution for each possible
e of basis functions. A much more efficient procedure for achieving the same
is that of orthogonal least squares (Chen et al., 1989, 1991). In outline, the
thm involves the sequential addition of new basis functions, each centred
one of the data points, as described above. This is done by constructing a
of orthogonal vectors in the space S spanned by the vectors of hidden unit
ations for each pattern in the training set (Section 3.4.2). It is then possible
culate directly which data point should be chosen as the next basis function
ire in order to produce the greatest reduction in residual sum-of-squares error.
s for the second-layer weights are also determined at the same time. If the
orithm is continued long enough then all data points will be selected, and the
dual error will be zero. In order to achieve good generalization, the algorithm
be stopped before this occurs. This is the problem of model-order selection,
discussed at length in Chapters 9 and 10.

a b %

Figure 5.11. A simple example to illustrate why the use of unsupervised n
ods based on density estimation to determine the basis function param
need not be optimal for approximating the target function. Data in one ¢
mension (shown by the circles) is generated from a Gaussian distribution p:
shown by the dashed curve. Unsupervised training of one Gaussian basis fun
tion would cause it to be centred at z = a, giving a good approximation
p(z). Target values for the input data are generated from a Gaussian functi
centred at b shown by the solid curve. The basis function centred at a can
give a very poor representation of h(z). By contrast, if the basis function
centred at b it could represent the function h(z) exactly.

5.9.1 Subsets of data points

One simple procedure for selecting the basis function centres K is to
equal to a random subset of the input vectors from the tralmng set A
done for the example shown in Figure 5.3. Clearly this is not an optims
cedure so far as density estimation is concerned, and may also lead to
of an unnecessarily large number of basis functions in order to achieve a
performance on the training data. This method is often used, however,
vide a set of starting values for many of the iterative adaptive proced
discussed shortly.

Another approach is to start with all data points as basis functions ¢
and then selectively remove centres in such a way as to have minimum dis
on the performance of the system. Such an approach was introduced i
K-nearest-neighbour classification scheme by Devijver and Kittler (19
applied to radial basis function networks used for classification by Kraa
and Duin (1991). A procedure for selecting a subset of the basis functions
to preserve the best estimator of the unconditional density is given in
and Hayes (1989).

These techniques only set the basis function centres, and the width pi
eters o; must be chosen using some other procedure. One heuristic app)
to choose all the ¢; to be equal and to be given by some multiple of the
distance between the basis function centres. This ensures that the basis

Clustering algorithms
an improvement on simply choosing a subset of the data points as the basis
ction centres, we can use clustering techniques to find a set of centres which

8 accurately reflects the distribution of the data points. Moody and Darken
) use the K-means clustering algorithm, in which the number K of centres

188 5: Radial Basis Punctions 5.9: Basis function optimization 189

must be decided in advance. The algorithm involves a simple re-estimatiop
cedure, as follows. Suppose there are N data points x™ in total, and jy
to find a set of K representative vectors p; where j =1,...,K. The
seeks to partition the data points {x"} into K disjoint subsets S; cont
data points, in such a way as to minimize the sum-of-squares clustering
given by

|1 to suboptimal placement of vectors.

: Gaussian mizture models e
3 iscussed a number of heuristic procedures for setting the basis
h‘-‘:ﬁ ;:ls.rreaﬂgtgrs slfch that the basis functions apprqximate the fiistrlbutlop t?f
input data. A more principled approach, however, is to_rechmze that this 1;
atially the mixture density estimation problem, which is discussed at len%;'.l

tion 2.6. The basis functions of the neural network can be regarded as ;'
ponents of a mixture density model, whose paramleters are to be optlm;ze

maximum likelihood. We therefore model the density of the input data by a

ure model of the form

K
T=30 3 "=y

j=1 nes;

where p; is the mean of the data points in set S; and is given by

¥
L E K
’ NJ RES,‘

M
p(x) =Y P(i)¢i(x) (5.61)

i=1

» the parameters P(j) are the mixing coefficients, a:nd ¢;(x) are the ::(;
functions of the network. Note that the mixing coefficients can be re%la.r '
prior probabilities for the data points to hav:re b.een' generated from the j
ponent of the mixture. The likelihood function is given by

c=[]»x" (5.62)

The batch version of K-means (Lloyd, 1982) begins by assigning the
random to K sets and then computing the mean vectors of the points in
Next, each point is re-assigned to a new set according to which is the
mean vector. The means of the sets are then recomputed. This proced
repeated until there is no further change in the grouping of the data po
can be shown (Linde et al., 1980) that at each such iteration the value of
not increase. The calculation of the means can also be formulated as a stoc
on-line process (MacQueen, 1967; Moody and Darken, 1989). In this
initial centres are randomly chosen from the data points, and as each data
x" is presented, the nearest i; is updated using

is maximized both with respect to the mixing coefﬁ@-ier}ts A‘P[j), and with
t to the parameters of the basis functions. This maximization can bedper-
ned by computing the derivatives of £ with reefpecf; to the [_:arameters an :;s-
these derivatives in standard non-linear optimization algonthma (Chapter 7).
ernatively, the parameters can be found by re—estimsittlon.proced.ure; gazsed
on the EM (expectation-maximization) algorithm, descn_be-d in Sect.x?n 6.2.
Once the mixture model has been optimized, the mixing coeﬂic'lents P‘(J)
be discarded, and the basis functions then used in the radi‘al bams_ ﬁlnctlon
rk in which the second-layer weights are found by supervxsed.trammg. By
ing the mixing coefficients, however, the density model p(x) in (5.61) ca.:;
used to assign error bars to the network outputs, based on the degree o
Movelty of the input vectors (Bishop, 1994b).
It is interesting to note that the K-means algorithm can be seen as a par-
ar limit of the EM optimization of a Gaussian mixture model From Sec-
ion 2.6.2, the EM update formula for a basis function centre is given by

Apy =n(x" — ;)

where 7 is the learning rate parameter. Note that this is simply the
Monro procedure (Section 2.4.1) for finding the root of a regression function
by the derivative of J with respect to ;. Once the centres of the basis functi
have been found in this way, the covariance matrices of the basis functions
be set to the covariances of the points assigned to the corresponding cl
Another unsupervised technique which has been used for assigning bas
tion centres is the Kohonen topographic feature map, also called a self-org
feature map (Kohonen, 1982). This algorithm leads to placement of a set
totype vectors in input space, each of which corresponds to a point on a
grid in a (usually two-dimensional) feature-map space. When the algorithm
converged, prototype vectors corresponding to nearby points on the feature &
grid have nearby locations in input space. This leads to a number of appli
for this algorithm including the projection of data into a two-dimensional
for visualization purposes. However, the imposition of the topographic prope
particularly if the data is not intrinsically two-dimensional (Section 8.6.1), 1

new _ 2o P(i")x" (5.63)
B = 5 Bl

i ili i ion j§ is gi in terms

here P(j|x) is the posterior probability of basis function j, and is given in |

of the ba(ills }nnctions and the mixing coefficients, using Bayes’ theorem, in the
I

190 5: Radial Basis Functions Ezercises 191

form

n_ 12 2
% =35 {ur(x™) — 1} wys exp (_ l|x 20};‘: I) (] a?ua) (5.68)
P(JiX) o ‘P(J)‘)b.?(x) R

p(x) B where ju;i denotes the ith component of ;. These expressions for the derivatives

“an then be used in conjunction with one of the standard optimization strategies
.cussed in Chapter 7.

The setting of the basis function parameters by supervised learning represex-lts
s non-linear optimization problem which will typically be computationally in-
onsive and may be prone to finding local minima of the error function. However,
ided the basis functions are reasonably well localized, any given input vector
only generate a significant activation in a small fraction of the basis func-
ns, and so only these functions will be significantly updated in response to that
put vector. Training procedures can therefore be speeded up significantly by
ntifying the relevant basis functions and thereby avoiding unnecessary compu-
on. Techniques for finding these units efficiently are described by Omohundro
987). Also, one of the unsupervised techniques described above can be used
initialize the basis function parameters, after which they can be ‘fine tuned’
g supervised procedures. However, one of the drawbacks of supervised train-
s of the basis functions is that there is no guarantee that they will remain
ized. Indeed, in numerical simulations it is found that a subset of the basis
nctions may evolve to have very broad responses (Moody and Darken, 1989).
, some of the main advantages of radial basis function networks, namely fast
n-stage training, and interpretability of the hidden unit representation, are
‘: if supervised training is adopted.

where p(x) is given by (5.61). Suppose we consider spherical Gaussian }
functions having a common width parameter ¢. Then the ratio of the po!
probabilities of two of the basis functions, for a particular data point x™, is ive
b

P(jlx™) %™ — w5l | ™ = gl | PG)
P(kjxn) “’x”{‘ Tt gr P(k)"

If we now take the limit & — 0, we see that

P(j|x") . 2 2 :
e R S S T

Thus, the probabilities for all of the kernels is zero except for the kernel
centre vector ;. is closest to x™. In this limit, therefore, the EM update
(5.63) reduces to the K-means update formula (5.59).

5.10 Supervised training

As we have already remarked, the use of unsupervised techniques to det:
the basis function parameters is not in general an optimal procedure so
the subsequent supervised training is concerned. The difficulty arises
the setting up of the basis functions using density estimation on the inp
takes no account of the target labels associated with that data. In order
the parameters of the basis functions to give optimal performance in comp
the required network outputs we should include the target data in the
procedure. That is, we should perform supervised, rather than unsupe
training.

The basis function parameters for regression can be found by treating t
sis function centres and widths, along with the second-layer weights, as ad
parameters to be determined by minimization of an error function. For the
of the sum-of-squares error (5.19), and spherical Gaussian basis functions (5
we obtain the following expressions for the derivatives of the error function W
respect to the basis function parameters '

.f ercises
B.1 (%) Consider a radial basis function network represented by (5.14) with

Gaussian basis functions having full covariance matrices of the form (5.16).
Derive expressions for the elements of the Jacobian matrix given by

ayk
;= — 5-69

5.2 (x %) Consider a radial basis function network with spherical Gaussian basis
of the form (5.15), network outputs given by (5.17) and a sum-of-squares
error function of the form (5.19). Derive expressions for elements of the
Hessian matrix given by

Hep= ﬁ‘?__ (5.70)

™ Bw 0w,)

where w, and w, are any two parameters in the network. Hint: the results
can conveniently be set out as six equations, one for each possible pair of
weight types (basis function centres, basis function widths, or second-layer
weights).

U | 1 Ao < e 35
gTi =3 {wk(x") — 17} wi; exp (_ llx 20;3 I) [I s,u,li (56

oy
n k 1

192 5: Radial Basis Functions

5.3 (xx) Consider the functional derivative (Appendix D) of the reg
functional given by (5.29), with respect to the function y(x). B
successive integration by parts, and making use of the identities

V(ab) = aVb+ bVa
V. (aVb) = aV? + Vb-Va

show that the operator PPis given by

PPy = Z 5 2, 1)1(V?)'y.

=0

It should be assumed that ‘boundary’ terms arising from the inte
parts can be neglected. Now find the Green’s function G(||x — /||
operator, defined by (5.24), as follows. First introduce the multidim
Fourier transform of G, in the form

Gllx—x1) = [Gl)exp {-is™ (x~x)} ds.

By substituting (5.74) into (5.73), and using the following form
Fourier transform of the delta function

§(x—x) = -(—i;lr?/exp {-isT(x—x')} ds

where d is the dimensionality of x and s, show that the Fourier tr
of the Green’s function is given by

6(s) =0 {~ 11}

Now substitute this result into (5.74) and, by using the results ”
Appendix B, show that the Green’s function is given by

1 1 12
= (2102)‘1/2 exp{_'é;g'"x_x" }'

5.4 (x) Consider general Gaussian basis functions of the form (5.16) and ¢
that all of the basis functions in the network share a common cova
matrix . Show that the mapping represented by such a network is €
alent to that of a network of spherical Gaussian basis functions ©
form (5.15), with a common variance parameter o2 = 1, proﬂde&.'
put vector x is first transformed by an appropriate linear transf
By making use of the results of Appendix A, find expressions relatin

G(llx—x'l))

Exercises 193

asformed input vector X and transformed basis function centres 2, to
corresponding original vectors x and p;.

In a multi-layer perceptron a hidden unit has a constant activation for
ut vectors which lie on a hyperplanar surface in input space given by
x + wo = const., while for a radial basis function network, with ba-
functions given by (5.15), a hidden unit has constant activation on a
perspherical surface defined by Ix — !J||2 = const. Show that, for suit-
ple choices of the parameters, these surfaces coincide if the input vectors
normalized to unit length, so that ||x|| = 1. Illustrate this equivalence
metrically for vectors in a three-dimensional input space.

%) Write a numerical implementation of the K-means clustering algo-
thm described in Section 5.9.3 using both the batch and on-line versions.

llustrate the operation of the algorithm by generating data sets in two di-
‘mensions from a mixture of Gaussian distributions, and plotting the data

ints together with the trajectories of the estimated means during the
course of the algorithm. Investigate how the results depend on the value

of K in relation to the number of Gaussian distributions, and how they

aepend on the variances of the distributions in relation to their separation.

S tudy the performance of the on-line version of the algorithm for differ-
‘ent values of the learning rate parameter n in (5.60), and compare the

algorithm with the batch version.
*+) Implement a radial basis function network for one input variable, one
output variable and Gaussian basis functions having a common variance

. parameter o2, Generate a set of data by sampling the function h(z) =
0.5 + 0.4sin(2nz) with added Gaussian noise, and with z values taken
- randomly from a uniform distribution in the interval (0,1). Set the basis
- function centres to a random subset of the z values, and use singular value
~ decomposition (Press et al., 1992) to find the network weights which min-
 imize the sum-of-squares error function. Investigate the dependence of the
~ network function on the number of basis function centres and on the value

of the variance parameter. Plot graphs of the form shown in Figure 5.3 to
illustrate the results.

***) Write down an analytic expression for the regularized matrix M in

(5.32) for the case of Gaussian basis functions given by (5.15). Extend the
software implementation of the previous exercise to include this form of
regularization. Consider the case in which the number of basis functions
equals the number of data points and in which ¢ is equal to roughly twice
the average separation of the input values. Investigate the effect of using
different values for the regularization coefficient)\, and show that, if the
value of A is either too small or too large, then the resulting network
mapping gives a poor approximation to the function h(z) from which the
data was generated.

6.1: Sum-of-squares error 195

density p(x) plays an important role in several aspects of neural networks,
ding procedures for choosing the basis function parameters in a radial basis
ion network (Section 5.9). However, for the purposes of making predictions
r new values of x, it is the conditional density p(t|x) which we need to

6
ERROR FUNCTIONS

M(;;st of the error functions which will be considered in this chapter can be
ated from the principle of maximum likelihood (Section 2.2). For a set of
g data {x",t"}, the likelihood can be written as

£ =[] o, t™)
In previous chapters we have made use of the sum-of-squares error "
which was motivated primarily by analytical simplicity. There are many
possible choices of error function which can also be considered, depend
the particular application. In this chapter we shall describe a variety of
error functions and discuss their relative merits.)

For regression problems we shall see that the basic goal is to model
ditional distribution of the output variables, conditioned on the input
This motivates the use of a sum-of-squares error function, and several i
properties of this error function will be explored in some detail.

For classification problems the goal is to model the posterior proba
class membership, again conditioned on the input variables. Although
of-squares error function can be used for classification (and can appro»
the posterior probabilities) we shall see that there are other, more appro
error functions which can be considered. Generally speaking, Sections 6.1
are concerned with error functions for regression problems, while the r il
sections are concerned primarily with error functions for classification.

As we have stressed several times, the central goal in network traini
to memorize the training data, but rather to model the underlying genert
the data, so that the best possible predictions for the output vector ¢
made when the trained network is subsequently presented with a new -
the input vector x. The most general and complete description of the g
of the data is in terms of the probability density p(x, t) in the joint inp
space. For associative prediction problems of the kind we are considerin
convenient to decompose the joint probability density into the product
conditional density of the target data, conditioned on the input data, ai
unconditional density of input data, so that

= [T pt"1x")p(x") (6.3)

here we have assumed that each data point (x",t") is drawn independently
n the same distribution, and hence we can multiply the probabilities. Instead
aximizing the likelihood, it is generally more convenient to minimize the
ve logarithm of the likelihood. These are equivalent procedures, since the
ve logarithm is a monotonic function. We therefore minimize

E=-InL=-) Inp(t"[x")— > Inp(x") (6.4)

re E is called an error function. As we shall see, a feed-forward neural network
be regarded as a framework for modelling the conditional probability density
x). The second term in (6.4) does not depend on the network parameters,
ind so represents an additive constant which can be dropped from the error
inction. We therefore have

E=-) Inp(t"|x"). (6.5)

Note t_nha.t the error function takes the form of a sum over patterns of an error
Brm for each pattern separately. This follows from the assumed independence of
data points under the given distribution. Different choices of error function
e from different assumptions about the form of the conditional distribution
\). For interpolation problems, the targets t consist of continuous quantities
Se values we are trying to predict, while for classification problems they
esent labels defining class membership or, more generally, estimates of the
abilities of class membership.

p(x, t) = p(t|x)p(x)

where p(t|x) denotes the probability density of t given that x takes a p
value, while p(x) represents the unconditional density of x and is given by

Sum-of-squares error

der the case of ¢ target variables ¢, where k = 1,...,¢, and suppose that

) = / pllict: stributions of the different target variables are independent, so that we can

196 6: Ervor Functions 6.1: Sum-of-squares error 197

write

l.\:ill-l

N
Z lly (x™; w) — 2. (6.12)

[
p(tlx) = [p(telx)-
k=1 Having found a set of values w* for the weights which minimizes the error,
ptimum value for o can then by found by minimization of E in (6.10) with
.ot to o. This minimization is easily performed analytically with the exphmt

We shall further assume that the distribution of the target data is Gaussian,
: uitive, result

specifically, we assume that the target variable t; is given by some deter
function of x with added Gaussian noise ¢, so that

1 N ¢
=3 Z {ve(x™; w*) — t7}? (6.13)

ne=l k=1

tx = hi(x) + €.

We now assume that the errors €, have a normal distribution with zero mes
and standard a deviation ¢ which does not depend on x or on k. Thus, 5 6
distribution of ¢ is given by

1 2
ple) = o)z &P (*2—?5) :

We now seek to model the functions hg(x) by a neural network with ou'
yk(x; w) where w is the set of weight parameters governing the neural ne
mapping. Using (6.7) and (6.8) we see that the probability distribution of
variables is given by

1 cw) — £)2
p(te|x) = EOE exp (_ {yr(x 20-)2 te})

where we have replaced the unknown function hi(x) by our model yi
Together with (6.6) and (6.5) this leads to the following expression for the
function

says that the optimal value of ¢ is proportional to the residual value of
sum-of-squares error function at its minimum. We shall return to this result

e have derived the sum-of-squares error function from the principle of maxi-
likelihood on the assumption of Gaussian distributed target data. Of course
use of a sum-of-squares error does not reguire the target data to have a Gaus-
distribution. Later in this chapter we shall consider the least-squares solution
example problem with a strongly non-Gaussian distribution. However, as
see, if we use a sum-of-squares error, then the results we obtain cannot
ish between the true distribution and any other distribution having the
mean and variance.

ote that it is sometimes convenient to assess the performance of networks
‘a different error function from that used to train them. For instance, in
{ erpolation problem the networks might be trained using a sum-of-squares
error function of the form

= 3 3 Iy w) — (6.14)

vhere the sum runs over all N patterns in the training set, whereas for network

Ne
E= yr(x™w) —t 2~l~j‘d’clnu:r-{-—ln 2m).
202 Z Z{ k) (g it would be more convenient to use a root-mean-square (RMS) error of

n=1k=1

We note that, for the purposes of error minimization, the second and third
on the right-hand side of (6.10) are independent of the weights w and
be omitted. Similarly, the overall factor of 1/02 in the first term can
omitted. We then finally obtain the familiar expression for the sum-of-squal
error function

_ ZalyCeiw?) —)" (6.15)
T lem - F[

% Z Z{Sﬂe (x™w) —tg}? 6.11 ®&t target vector

n=1k=

198 6+ Error Functions 6.1: Sum-of-squares error 199

_ i X . nimizing the sum-of-squares error (6.11) with respect to the biases first, we
=N z Ui obtain
ns=1 s
The RMS error (6.15) has the advantage, unlike (6.14), that its value di
grow with the size of the data set. If it has a value of unity then the
is predicting the test data ‘in the mean’ while a value of zero means
prediction of the test data.

OE N .
- = Z Zwkaj +wgg —1t% p =0 (6.22)

which can be solved explicitly for the biases to give

6.1.1 Linear output units

M
The mapping function of a multi-layer perceptron or a radial basis Wy = tg — Zwkﬁj (6.23)
network can be written in the form =

yk(x; w) = g(ax)

M =t .8t I
= E wh; 25 (x; W) K= N z th, Zj = N z z3. (6.24)
Fam n=l n=1

result (6.23) shows that the role of the biases is to compensate for the
ence between the averages (over the data set) of the target values, and the
hted sums of the averages of the hidden unit outputs.

we back-substitute the expression (6.23) into the sum-of-squares error we

where g(-) denotes the activation function of the output units, {wk;} denotes
set of weights (and biases) which connect directly to the output units, a
denotes the set of all other weights (and biases) in the network. The derival
of the sum-of-squares error (6.11) with respect to aj can be written as

oE - ronN n
Bar ~ g'(ag)(yk —tk)-

1 N e M 2
E= 3 Z Zw;:_f%}" - g (6.25)

then this derivative takes a particularly simple form

0E >
e > (R —th)- ty =tk =k, Z]' =z} - %;. (6.26)
n

! ¥e can now minimize this error with respect to the output weights wy; to gi
This allows the minimization with respect to the weights {wy;} (with the ' ¥ = i g

w held fixed) to be expressed as a linear optimization problem, which ¢: i i
solved in closed form as discussed in Section 3.4.3. Here we shall follow a s OF i Z Z st b zn o o
analysis, except that we shall find it convenient to make the bias par By £) i kj'Zjr =l 0% = (6.27)

explicit and deal with them separately.

We first write the network mapping in the form . -
g convenient at this point to introduce a matrix notation so that (T)nx = £,

5 *Jkj = wg; and (Z),; = Z'. We can then write (6.27) in the form

Yk = D WkjZj + Wo-

=1 ZTZWT - ZTT =0 (6.28)

200 6: Error Functions 6.1: Sum-of-squares error 201

where ZT denotes the transpose of Z. We can write an explicit solution f wo =t — WZz. (6.34)
weight matrix as
o consider the scalar product of y with the vector u, for an arbitrary input

wr=2ziT=0 Using the optimal weights given by (6.29), together with (6.33) and

here Z! is the pseudo-inverse of the matrix Z given b
where Z! is P o-inverse of the matrix Z given by uTy = uT(wo + Wa)

t — (7T =1T
zt = (277)'2". = uTE + ™17 (2N Tz - 3) (6.35)
Here we have assumed that the matrix (ZTZ) is non-singular. A more
discussion of the properties of the pseudo-inverse can be found in Sectio
For a single-layer network, this represents the optimal solution for the w
which can therefore be calculated explicitly. In the present case, howey
expression for the weights depends on the activations of the hidden unit;
themselves depend on the weights W. Thus, as the weights W change
learning, so the optimal values for the weights {wy;} will also change.
theless, it is still possible to exploit the linear nature of the partial opt
with respect to the output unit weights as part of an overall strategy for e
minimization, as discussed in Section 7.3. :

we have used the following property of matrix transposes (AB)T = BTAT.
(6.32), however, it follows that

(TTT), = uTt" =uT({t" -t) =0 (6.36)

we have used the linear constraint (6.32). Combining (6.35) and (6.36) we

uly =u"t (6.37)
B3 Lpieat: sumiles d so the network outputs exactly satisfy the same linear sum rule as the target
We shall see an application of this result in the next section. More generally,
set of targets satisfies several linear constraints simultaneously, then so will

the outputs of the network (Exercise 6.3).

The use of a sum-of-squares error function to determine the weights in a net
with linear output units implies an interesting sum rule for the network
(Lowe and Webb, 1991). Suppose that the target patterns used to tr

network satisfy an exact linear relation, so that for each pattern n we ha)
3 Interpretation of network outputs

We next derive an important result for the interpretation of the outputs of a net-
ork trained by minimizing a sum-of-squares error function. In particular, we
show that the outputs approximate the conditional averages of the target
a. This is a central result which has several important consequences for prac-
applications of neural networks. An understanding of its implications can
Ip to avoid some common mistakes, and lead to more effective use of network
etwork techniques.
~ Consider the limit in which the size N of the training data set goes to infinity.
In this limit we can replace the finite sum over patterns in the sum-of-squares
error with an integral of the form

uTt® +u=0

where u and up are constants. We now show that, if the final-layer
are determined by the optimal least-squares procedure outlined above,
outputs of the network will satisfy the same linear constraint for arbitrary
patterns.

Summing over all patterns n in (6.31) we find that the average target vi
t satisfies the relation ug = —u”t where the components of t are given by
Thus, the linear relation (6.31) can be written in the form

uTt” = uTt. x
=re . n, _4m2
The network outputs, given by (6.21), can be written in vector notation as B ;\}1_13100 oN r; Zk: {ve(x™ W) — 1k} (6.38)
y = Wz + wq. 1
=i Z /f {u(x; W) — ti}” p(ts, x) dty dx (6.39)
k

Similarly, the solution for the optimal biases given by (6.23) can be written a8

202 6: Error Functions 6.1: Sum-of-squares error 203
{]
1

where we have introduced an extra factor of 1/N into the definition of the g

of-squares error in order to make the limiting process meaningful. We now fagef

the joint distributions p(tx,x) into the product of the unconditional de A

function for the input data p(x), and the target data density conditional ¢ y(x)

input vector p(t|x), as in (6.1), to give

B % ;/ f {yr (5 w) — t,}° p(ti|x)p(x) dt dx. p(tlx)

Next we define the following conditional averages of the target data

(bl = f bt |) d % x

~ Figure 6.1. A schematic illustration of the property (6.46) that the network
" mapping which minimizes a sum-of-squares error function is given by the con-
~ ditional average of the target data. Here we consider a mapping from a single
| input variable x to a single target variable t. At any given value o of the input
! variable, the network output y(xo) is given by the average of ¢t with respect to
- the distribution p(t|zo) of the target variable, for that value of z.

(i) = [eip(euie) dee
We now write the term in brackets in (6.40) in the form

- oo | _3.12
{oe — t}” = {we — (tile) + (talx) — tic} re w* is the weight vector at the minimum of the error function. Equa-

6.46) is a key result and says that the network mapping is given by the
ional average of the target data, in other words by the regression of ¢y
nditioned on x. This result is illustrated schematically in Figure 6.1, and by a
mple example in Figure 6.2.
Before discussing the consequences of this important result we note that it is
dent on three key assumptions. First, the data set must be sufficiently large
it approximates an infinite data set. Second, the network function y(x; w)
be sufficiently general that there exists a choice of parameters which makes
first term in (6.45) sufficiently small. This second requirement implies that
number of adaptive weights (or equivalently the number of hidden units)
be sufficiently large. It is important that the two limits of large data set
large number of weights must be approached in a coupled way in order to
lieve the desired result. This important issue is discussed in Section 9.1 in the
ntext of generalization and the trade-off between bias and variance. The third
at is that the optimization of the network parameters is performed in such
ay as to find the appropriate minimum of the cost function. Techniques for
ameter optimization in neural networks are discussed in Chapter 7.
Note that the derivation of the result (6.46) did not depend on the choice of
ork architecture, or even whether we were using a neural network at all. It
required that the representation for the non-linear mapping be sufficiently
ral. The importance of neural networks is that they provide a practical
ework for approximating arbitrary non-linear multivariate mappings, and
therefore in principle approximate the conditional average to arbitrary ac-

= {uk — (tel%)}* + 2{yx — (tiel)H(telx) — tx}
+ {(telx) — ti}?
Next we substitute (6.44) into (6.40) and make use of (6.41) and (6.42). T

second term on the right-hand side of (6.44) then vanishes as a conseque
the integration over ¢;. The sum-of-squares error can then be written in the

B =5 3 [untxw) (ub)Vp(x) dx
k

1
+33 [- (el ?}pt) dx.
k
We now note that the second term in (6.45) is independent of the nef
mapping function y(x; w) and hence is independent of the network weigh!
term can be neglected. Since the integrand in the first term in (6.45) is

negative, the absolute minimum of the error function occurs when this first te
vanishes, which corresponds to the following result for the network mapping

Ye(x; w*) = (tk|x)

204 6: Error Functions 6.1: Sum-of-squares error 205

5—:%) = [{w) - tidpttuln(i = . (6.49)

ke use of (6.41) we then obtain (6.46) directly. The use of a functional
» here is equivalent to the earlier assumption that the class of functions
is very general.

many regression problems, the form of network mapping given by the
onal average (6.46) can be regarded as optimal. If the data is generated
s set of deterministic functions hx(x) with superimposed zero-mean noise
n the target data is given by

1.0

05

ty = hip(x") + €. (6.50)

work outputs, given by the conditional averages of the target data, then
e the form

0.0k
0.0 05 x 10

Yk (x) = (t|x) = (hi(%) + exlx) = he(x) (6.51)

Figure 6.2, A simple example of a network mapping which a.pproximazes' '
conditional average of the target data (shown by the circles) generated f
the function ¢ = x4 0.3 sin(27z) 4 ¢ where ¢ is a random variable drawn f;
uniform distribution in the range (—0.1,0.1). The solid curve shows the
of training a multi-layer perceptron network with five hidden units using a
of-squares error function. The network approximates the conditional av
of the target data, which gives a good representation of the function fr
which the data was generated.

(¢") = 0. Thus the network has averaged over the noise on the data and
ered the underlying deterministic function. Not all regression problems are
iple as this, however, as we shall see later.

te that the first integral in (6.45) is weighted by the unconditional density
We therefore see that the network function yx(x) pays a significant penalty
parting from the conditional average (tx|x) in regions of input space where
ensity p(x) of input data is high. In regions where p(x) is small, there is
penalty if the network output is a poor approximation to the conditional
This forms the basis of a simple procedure for assigning error bars to
k predictions, based on an estimate of the density p(x) (Bishop, 1994b).
If we return to (6.45) we see that the second term can be written in the form

4
We can easily see why the minimum of a sum-of-squares error is given:
average value of the target data by considering the simple error function

E(y) = (y—0)* + (y - b)?

where a and b are constants. Differentiation of E(y) with respect to y shows't
the minimum occurs at

3 3 [om0 d (6.52)
k

‘0#(x) represents the variance of the target data, as a function of x, and

Y™t = (a +b)/2 4

In other words, the minimum is given by the average of the target data. o U 2
more general property (6.46) is simply the extension of this result to conditi k(%) = (tklx) = (telx) (6:58)
averages. : b %

We can also derive (6.46) in a more direct way as follows. If we take th = ((tx — (tlx))"1x) (6.54)
of-squares error in the form (6.39) and set the functional derivative (Append
of E with respect to yx(x) to zero we obtain o /{tk — (tx|x) Pp(ti|x) dtx. (6.55)

the network mapping function is given by the conditional average (6.46), so

206 6: Error Functions 6.1: Sum-of-squares error 207

{

that the first term in (6.45) vanishes, then the residual error is given by
The value of the residual error is therefore be a measure of the average
of the target data. This is equivalent to the earlier result (6.13) obtained |
finite data set. It should be emphasized, however, that these are biased es
of the variance, as discussed in Section 2.2, and so they should be treated y
care in practical applications.

We originally derived the sum-of-squares error function from the prinej
of maximum likelihood by assuming that the distribution of the target
could be described by a Gaussian function with an x-dependent mean,
single global variance parameter. As we noted earlier, the sum-of-squares
does not require that the distribution of target variables be Gaussian. If
of-squares error is used, however, the quantities which can be determin
the x-dependent mean of the distribution (given by the outputs of the t
network) and a global averaged variance (given by the residual value
error function at its minimum). Thus, the sum-of-squares error function
distinguish between the true distribution, and a Gaussian distribution hay
the same x-dependent mean and average variance.

015 [nverse problems

fact that a least-squares solution approximates the conditional average of
» target data has an important consequence when neural networks are used
lve inverse problems. Many potential applications of neural networks fall
this category. Examples include the analysis of spectral data, tomographic
nstruction, control of industrial plant, and robot kinematics. For such prob-
there exists a well-defined forward problem which is characterized by a
jonal (i.e. single-valued) mapping. Often this corresponds to causality in a
wsical system. In the case of spectral reconstruction, for example, the forward
oblem corresponds to the evaluation of the spectrum when the parameters
tions, widths and amplitudes) of the spectral lines are prescribed. In prac-
applications we generally have to solve the corresponding inverse problem
hich the roles of input and output variables are interchanged. In the case
ectral analysis, this corresponds to the determination of the spectral line
neters from an observed spectrum. For inverse problems, the mapping can
ften be multi-valued, with values of the inputs for which there are several
values for the outputs. For example, there may be several choices for the
tral line parameters which give rise to the same observed spectrum. If a
squares approach is applied to an inverse problem, it will approximate the
nditional average of the target data, and this will frequently lead to extremely
performance (since the average of several solutions is not necessarily itself
ution).

s a simple illustration of this problem, consider the data set shown earlier
gure 6.2 where we saw how a network which approximates the conditional
age of the target data gives a good representation of the underlying gen-
r of the data. Suppose we now reverse the roles of the input and target
bles. Figure 6.3 shows the result of training a network of the same type as
e on the same data set, but with input and output variables interchanged.
network again tries to approximate the conditional average of the target
but this time the conditional average gives a very poor description of the
herator of the data. The problem can be traced to the intermediate values of
I Figure 6.3 where the target data is multi-valued. Predictions made by the
ed network in this region can be very poor. The problem cannot be solved
odifying the network architecture or the training algorithm, since it is a
amental consequence of using a sum-of-squares error function. For problems
olving many input and output variables, where visualization of the data is not
ghtforward, it can be very difficult to ascertain whether there are regions
put space for which the target data is multi-valued. One approach to such
blems is to go beyond the Gaussian description of the distribution of target
bles, and to find a more general model for the conditional density, as will
discussed in Section 6.4.

6.1.4 Outer product approzimation for the Hessian

In Section 4.10.2 we discussed a particular approximation to the Hessian
(the matrix of second derivatives of the error function with respect to the n¢
weights) for a sum-of-squares error function. This approximation is based
sum of outer products of first derivatives. Here we show that the appro
is exact in the infinite data limit, provided we are at the global minimum of
error function. Consider the error function in the form (6.45). Taking the s

derivatives with respect to two weights w, and w,; we obtain

25T (e

*';f{gw@%;—a(yk = (tki’i))}p(x) dx.

Using the result (6.46) that the outputs yx(x) of the trained network repres
the conditional averages of the target data, we see that the second term in (€
vanishes. The Hessian is therefore given by an integral of terms involvi
the products of first derivatives. For a finite data set, we can write this re
the form

PE 1 Oh — O Oy
ow, 0w, Fr;; Bw, 8w,

208 6: Error Functions 6.2: Minkowski error 209
1.0 2.0 " I T
| R=2
ly—11* I
? 1
1.0} : .
'R=1
0.5 :
1 R=10
0.0 : L
-2.0 -1.0 0.0 1.0 2.0
ly—tl
0.0 X : Figure 6.4. Plot of the function |y — t|® against |y — #| for various values of

R. This function forms the basis for the definition of the Minkowski-R error

0.0 05 x 10 b

Figure 6.3. An illustration of the problem which can arise when a least-squar
approach is applied to an inverse problem. This shows the same data
in Figure 6.2 but with the roles of input and output variables interch
The solid curve shows the result of training the same neural network as
Figure 6.2, again using a sum-of-squares error. This time the network givi
very poor fit to the data, as it again tries to represent the conditional ave
of the target values.

the Minkowski-R error. This reduces to the usual sum-of-squares error
R = 2. For the case of R = 1, the distribution function (6.58) is a Laplacian,
d the corresponding Minkowski-R measure (6.59) is called the city block metric
cause the distance between two points on a plane measured by this metric is
to the Euclidean distance covered by moving between the two points along
ments of lines parallel to the axes, as if moving along blocks in a city). More
ally, the distance metric |y — ¢|® is known as the Lz norm. The function
y— t|® is plotted against |y — t| for various values of R in Figure 6.4.

. The derivatives of the Minkowski-R error function with respect to the weights
n the network are given by

6.2 Minkowski error

We have derived the sum-of-squares error function from the principle o :
mum likelihood on the assumption of a Gaussian distribution of target dat:
can obtain more general error functions by considering a generalization

e I oYk
Gaussian distribution of the form == N} — 0 |R-1 n.ow) — th) 2k ;
§n Ek:fyk(x W) — G slgn(ye(xs W) —)5 (6.60)

e derivatives can be evaluated using the standard back-propagation proce-
discussed in Section 4.8. Examples of the application of the Minkowski-R
to networks trained using back-propagation are given in Hanson and Burr
1988) and Burrascano (1991).

R One of the potential difficulties of the standard sum-of-squares error is that it
feceives the largest contributions from the points which have the largest errors.
there are long tails on the distributions then the solution can be dominated
a very small number of points called outliers which have particularly large
Strors. This is illustrated by a simple example in Figure 6.5.

A similarly severe problem can also arise from incorrectly labelled data. For
ance, one single data point for which the target value has been incorrectly
elled by a large amount can completely invalidate the least-squares solution.

RBV/R <
ple) = 21"1/R) exp (—Ble|)

where I'(a) is the gamma function (defined on page 28), the parameter

trols the variance of the distribution, and the pre-factor in (6.58) ens
J p(€) de = 1. For the case of R = 2 this distribution reduces to a Ga
now consider the negative log-likelihood of a data set, given by (6.5) and
under the distribution (6.58). Omitting irrelevant constants, we obtain an eE
function of the form 1

E=Y"3 I w) — 17

n k=1

210 6: Error Functions 6.3: Input-dependent variance 211

| Input-dependent variance

we have assumed that the variance of the target data can be described
single global parameter o. In many practical applications, this will be a
assumption, and we now discuss more general models for the target data

pution. The sum-of-squares error is easily extended to allow each output to
eccribed by its own variance parameter oy. More generally, we might wish to
rmine how the variance of the data depends on the input vector x (Nix and
send, 1994). This can be done by adopting a more general description for the
litional distribution of the target data, and then writing down the negative
ikelihood in order to obtain a suitable error function. Thus, we write the
tional distribution of the target variables in the form

N 1 {yw(x;w) — ti}?
P(tklx)—mexp (v 20269) (6.63)

(a) (b)

Figure 6.5. Example of fitting a linear polynomial through a set of nois;
points by minimizing a sum-of-squares error. In (a) the line gives a good
resentation of the systematic aspects of the data. In (b) a single extra
point has been added which lies well away from the other data points, s
how it dominates the fitting of the line.

ng the negative logarithm of the likelihood function as before, and omitting
ve constants, we obtain

N
E= ZZ (hw,, -{3"%——;“)—}2) (6.64)

n=1

Techniques which attempt to solve this problem are referred to as r0b

tics, and a review in the context of conventional statistical methods can . f we now multiply by 1/N as before, and take the infinite-data limit, we obtain
in Huber (1981). The use of the Minkowski error with an R value less error function in the form

reduces the sensitivity to outliers. For instance, with R = 1, the minimum "
: 4+ foe0) —ta}?
tr dX. 6.65
E= E f f (lna > ag(x) p(tk|x)p(x) dix (6.65)

solution computes the conditional median of the data, rather than the ¢
tional mean (Exercise 6.5). The reason for this can be seen by considering
simple error

functions ox(x) can be modelled by adding further outputs to the neural

ork. We shall not consider this approach further, as it is a special case of

uch more general technique for modelling the full conditional distribution,
Which will be discussed shortly.
An alternative approach to determining an input-dependent variance (Satch-
Well, 1994) is based on the result (6.46) that the network mapping which mini-
s a sum-of-squares error is given by the conditional expectation of the target
. First a network is trained in the usual way by minimizing a sum-of-squares
or in which the t} form the targets. The outputs of this network, when pre-
ed with the trammg data input vectors x™, correspond to the conditional
ages of the target data. These averages are subtracted from the target val-
and the results are then squared and used as targets for a second network
ch is also trained using a sum-of-squares error function. The outputs of this
work then represent the conditional averages of {tx — (tx|x)}* and thus ap-
Proximate the variances o7 (x) given by (6.55).
This procedure can be justified directly as follows. Consider the infinite data

Ey) =) ly—t".
Minimizing E(y) with respect to y gives
> sign(y —t") =0
n

which is satisfied when y is the median of the points {t"} (i.e. the value for
the same number of points t” have values greater than y as have values less
y). If one of the t" is taken to some very large value, this has no effect 0!

solution for v. 4

212 6: Error Functions 6.4: Modelling conditional distributions 213
limit again, for which we can write the error function in the form (6.65
again assume that the functions yx(x) and o (x) have unlimited flexibil
we can first minimize E with respect to the yr by functional differentie input parameter conditional
give vector vector probability
density
SF {yr(x) — tx}
=0="7p(x f tr|x) dt
6yk () (2 (x} p(i } k
—>
which, after some rearrangement, gives the standard result P(tIX)
X) = (tk|x
k(%) = (tk(x) 1y neural parametric
network distribution

as before. We can similarly minimize E independently with respect to the fi
tions o (x) to give

OB _ o= 1 {yw(x) = t)? -
bok(x) 2 -p(x)f (crk(x) or(x)3)p(t"‘) dt

which is easily solved for of(x) to give

Figure 6.6. We can represent general conditional probability densities p(t|x)
by considering a parametric model for the distribution of t whose parameters
‘are determined by the outputs of a neural network which takes x as its input

yector.

n Chapter 2 we discussed a number of parametric techniques for modelling
nditional distributions. Suppose we use one of these techniques to model the
stribution p(t|@) of target variables t, where @ denotes the set of parameters
h govern the model distribution. If we allow the parameters € to be functions
e input vector x, then we can model conditional distributions. We can
e this by letting the components of 8(x) be given by the outputs of a
forward neural network which takes x as input. This leads to the combined
ity model and neural network structure shown in Figure 6.6. Provided we
der a sufficiently general density model, and a sufficiently flexible network,
ve a framework for approximating arbitrary conditional distributions.
or different choices of the parametric model, we obtain different represen-
ns for the conditional densities. For example, a single Gaussian model for
@) corresponds to the procedure described above in Section 6.3. Another pos-
ity is to use a linear combination of a fixed set of kernel functions. In this
the outputs of the network represent the coefficients in the linear combina-
(Bishop and Legleye, 1995), and we must ensure that the coefficients are
Sitive and sum to one in order to preserve the positivity and normalization of
e conditional density. We do not discuss this approach further as it is a special
5¢ of the more general technique which we consider next.
A powerful, general framework for modelling unconditional distributions,
Sed on the use of mizture models, was introduced in Section 2.6. Mixture
dels represent a distribution in terms of a linear combination of adaptive ker-
functions. If we apply this technique to the problem of modelling conditional
stributions we have

aR(%) = ({te — (telx)}*|x)

where we have used (6.67). We can then interpret (6.69) in terms of the tw
two-network approach described above. This technique is simple and
use of standard neural network software. Its principal limitation is tha
assumes a Gaussian form for the distribution function (since it makes
of the second-order statistics of the target data).

Since these approaches are based on maximum likelihood, they will giv
biased estimate of the variances as discussed above, and so will tend to
estimate the true variance. In extreme cases, such methods can discover
logical solutions in which the variance goes to zero, corresponding to an
likelihood, as discussed in the context of unconditional density estimati
Section 2.5.5.

6.4 Modelling conditional distributions

We can view the basic goal in training a feed-forward neural network as &
of modelling the statistical properties of the generator of the data, expres
terms of a conditional distribution function p(t|x). For the sum-of-squares
function, this corresponds to modelling the conditional distribution of the t:
data in terms of a Gaussian distribution with a global variance parameter
x-dependent mean. However, if the data has a complex structure, as for e
in Figure 6.3, then this particular choice of distribution can lead to a very
representation of the data. We therefore seek a general framework for modelli
conditional probability distributions.

214 6: Error Functions 6.4: Modelling conditional distributions 215

coefficients. For some applications this modular approach offers a number
vantages, and is discussed further in Section 9.7.

" The neural network in Figure 6.6 can be any standard feed-forward network
cture with universal approximation capabilities. Here we consider a multi-
perceptron, with a single hidden layer of sigmoidal units and an output
of linear units. For M components in the mixture model (6.70), the network
have M outputs denoted by z§' which determine the mixing coefficients, M
uts denoted by 27 which determine the kernel widths o;, and M X ¢ outputs
poted by 2% ;& Which determine the components ;i of the kernel centres p;.
e total number of network outputs is given by (¢+2) x M, as compared with
se usual ¢ outputs for a network used with a sum-of-squares error function.
In order to ensure that the mixing coefficients a;j(x) can be interpreted as

probabilities, they must satisfy the constraints

p(tlx) = Za; X) b5 (1)

where M is the number of components, or kernels, in the mixture. The par;
ters a;(x) are called mizing coefficients, and can be regarded as prior pra
ities (conditioned on x) of the target vector t having been generated fro;
Jth component of the mixture. Note that the mixing coefficients are taken te
functions of the input vector x. The function ¢;(t|x) represents the conditic
density of the target vector t for the jth kernel. Various choices for th
functions are possible. As in Chapter 2, however, we shall restrict atte
kernel functions which are Gaussian of the form

1 It — ()12
Y aj(x) =1 (6.72)
where the vector p;(x) represents the centre of the jth kernel, with comp T
Kk, and ¢ is the dimensionality of t. In (6.71) we have assumed that the cg 0<a;(x) <1 (6.73)
nents of the output vector are statistically independent within each of the < aj(x) < 1. 3

functions, and can be described by a common variance o; 2(x). This assum
can be relaxed in a straightforward way by introducing fu.ll covariance ma
for each Gaussian kernel, at the expense of a more complex formalism.
ciple, however, such a complication is not necessary, since a Gaussian
model, with kernels given by (6.71), can approximate any given density fun
to arbitrary accuracy, provided the mixing coefficients and the Gaussian p
ters (means and variances) are correctly chosen (McLachlan and Basford
Thus, the representation given by (6.70) and (6.71) is completely gener:
particular, it does not assume that the components of t are statistically
pendent, in contrast to the single-Gaussian representation used in (6.6) and
to derive the sum-of-squares error.

For any given value of x, the mixture model (6.70) provides a geners
malism for modelling an arbitrary conditional density function p(t|x). We
take the various parameters of the mixture model, namely the mixing coeff
@;(x), the means p;(x) and the variances 0-2 (x), to be governed by the ou
of a conventional neural network which takes x as its input. This technique
introduced in the form of the mizture-of-ezperts model (Jacobs et al., 1991
scribed in Section 9.7, and has since been discussed by other authors (Bi
1994a; Liu, 1994; Neuneier et al., 1994). By choosing a mixture model wit
ficient number of kernel functions, and a neural network with a sufficient n
of hidden units, this model can approximate as closely as desired any conditio
density function p(t|x). The original motivation for the mixture-of-experts uld require the corresponding z§ — —oo. The possibility of such results is

was to provide a mechanism for partitioning the solution to a problem be ussed in Section 2.6.1 in the context of mixture models for unconditional
several networks. This was achieved by using a separate network to determ density estimation.

the parameters of each kernel function, with a further network to determine

‘he first constraint also ensures that the distribution is correctly normalized,
at [p(t|x)dt = 1. These constraints can be satisfied by choosing a;(x) to
related to the corresponding networks outputs by a softmaz function (Bridle,
; Jacobs et al., 1991)

()
Sim1 exp(2f)

We shall encounter the softmax function again in the next section when we
iscuss error functions for classification problems.

- The variances o; represent scale parameters and so it is convenient to repre-
Sent them in terms of the exponentials of the corresponding network outputs

Cl:j = (6.74)

o; = exp(z]). (6.75)

a Bayesian framework (Exercise 10.13) this would correspond to the choice
Of & non-informative prior, assuming the corresponding network outputs z¢ had
rm probability distributions (Jacobs et al., 1991; Nowlan and Hinton, 1992).
S representation also has the additional benefit of helping to avoid patholog-
configurations in which one or more of the variances goes to zero, since this

216 6: Error Functions 6.4: Modelling conditional distributions 217

The centres y; represent location parameters, and again the notion of g
informative prior (Exercise 10.12) suggests that these be represented direg
the network outputs '

\Consider first the derivatives of E™ with respect to those network outputs
hich correspond to the mixing coefficients ;. Using (6.77) and (6.78) we obtain

OE™ Mhe
s (6.80)

.
Hik = Zjj-

As before, we can construct an error function from the likelihood by
(6.5) to give '

e now note that, as a result of the softmax transformation (6.74), the value
of ai depends on all of the network outputs which contribute to the mixing
pefficients, and so differentiating (6.74) we have

day

B2 Bikatk — etk (6.81)

M
E=-YIn{ > a(x")es (t"}x")

J=1

with ¢;(t|x) given by (6.71). The minimization of this error function wit from the chain rule we have

to the parameters of the neural network leads to a model for the conditions

sity of the target data. From this density function, any desired statistic oE" - Z oE" % (6.82)
the output variables can in principle be computed. 9z§ = day 0z ’
In order to minimize the error function, we need to calculate the derivat
of the error E with respect to the weights in the neural network. These Combining (6.80), (6.81) and (6.82) we then obtain
evaluated by using the standard back-propagation procedure, provided ¥
suitable expressions for the derivatives of the error with respect to the AE™"
of the network. Since the error function (6.77) is composed of a sum of i (6.83)

E =Y E™, one for each pattern, we can consider the derivatives 6} = 9
for a particular pattern n and then find the derivatives of E by s in,
all patterns. Note that, since the network output units have linear acti
functions g(a) = a, the quantities 6] can also be written as §E™ /8ax, and
equivalent to the ‘errors’ introduced in the discussion of error back-propa
in Section 4.8. These errors can be back-propagated through the network !
the derivatives with respect to the network weights. {
We have already remarked that the ¢; can be regarded as conditional
functions, with prior probabilities «;. As with the mixture models disc
Section 2.6, it is convenient to introduce the corresponding posterior probs
ties, which we obtain using Bayes’ theorem,

where we have used (6.79).
_ For the derivatives corresponding to the o; parameters we make use of (6.77)
ind (6.78), together with (6.71), to give

n dl 2
o2 —hwj{__g_"t Ll __“.}, (6.84)

an O'J- a;j

Using (6.75) we have

3Uj

o (6.85)

Q;;

M]
Zl=1 oy

as this leads to some simplification of the subsequent analysis. Note the

mj(x, t) =

ombining these together we then obtain

(6.78), the posterior probabilities sum to unity: BE" lIt = p;)I2
S = ome——al— — 3. (6.86)
M Zj o 3
Z 'ﬂ'j = 1 i .
=t Finally, since the parameters ;i are given directly by the Zjy. network out-

buts, we have, using (6.77) and (6.78), together with (6.71),

218 6: Error Functions 6.4: Modelling conditional distributions 219
1.0 1.0 \ T 7
\ I
I
o g
t \ '
05 \ / \’; 1
~
/
0.5 LA \
0.0 -
0.0 0.5 % 1.0
Figure 6.8. Plot of the priors a;(z) as a function of z for the three kernel func-
0.0° tions from the network used to plot Figure 6.7. At both small and large values

0.0 0.5 1.0 of z, where the conditional probability density of the target data is unimodal,

only one of the kernels has a prior probability which differs significantly from

Figure 6.7. Plot of the contours of the conditional probability density of !mero At intermediate values of z, where the conditional density is trimodal,

target data obtained from a multi-layer perceptron network trained fi’h‘?‘ three kernels have comparable priors.
same data as in Figure 6.3, but using the error function (6.77). The netwo 4

three Gaussian kernel functions, and uses a two-layer multi-layer pe; 1 (t|x) = / tp(t]x) dt (6.88)
with five ‘tanh’ sigmoidal units in the hidden layer, and nine outputs. I

OE™ _ | mik—ty I = Y aife /tqb-(t;x)dt (6.89)
32;‘,:_“‘?{ o? } bl ; () 5

)

An example of the application of these techniques to the estimation of
ditional densities is given in Figure 6.7, which shows the contours of co
density corresponding to the data set shown in Figure 6.3.

The outputs of the neural network, and hence the parameters in the
model, are necessarily continuous single-valued functions of the inpu
However, the model is able to produce a conditional density which is u
some values of z and trimodal for other values, as in Figure 6.7, by mod
the amplitudes of the mixing components, or priors, a;(x). This can be
Figure 6.8 which shows plots of the three priors a;(z) as functions of
be seen that for z = 0.2 and = = 0.8 only one of the three kernels has a
prior probability. At z = 0.5, however, all three kernels have significs

Once the network has been trained it can predict the conditiol
function of the target data for any given value of the input vector.
ditional density represents a complete description of the generator o
so far as the problem of predicting the value of the output vector is
From this density function we can calculate more specific quantities
be of interest in different applications. One of the simplest of these is
corresponding to the conditional average of the target data, given by

= a(x)m;(x) (6.90)
J

e we have used (6.70) and (6.71). This is equivalent to the function com-
d by a standard network trained by least squares, and so this network can
duce the conventional least-squares result as a special case. We can likewise
e the variance of the density function about the conditional average, to

s2(x) = (|It — (tlx)[?1x) (6.91)

(6.92)

= Za,-(x) {crj(x)2 +
j

we have used (6.70), (6.71) and (6.90). This is more general than the
onding least-squares result since this variance is allowed to be a general
n of x. Similar results can be obtained for other moments of the condi-

%) = 3 () (x)
]

220 6: Error Functions 6.4: Modelling conditional distributions 221
1.0 1.0
t 3
0.5 0.5
0.0 00®=

0.0 05 x 10
0.0 aE" 'l 48

Figure 6.10. Plot of the central value of the most probable kernel as a function

' of = from the network used to plot Figure 6.7. This gives a discontinuous

functional mapping from z to ¢ which at every value of x lies well insid? a

region of significant probability density. The diagram should be compared with

' i i ing in Fi 6.3 obtained from standard
the corresponding continuous mapping in Figure

least squares.

Figure 6.9. This shows a plot of (t|z) against = (solid curve) calculated
the conditional density in Figure 6.7 using (6.90), together with correspo:
plots of (t|z) + s(x) (dashed curves) obtained using (6.92),

tional distribution. Plots of the mean and variance, obtained from the condi
distribution in Figure 6.7, are shown in Figure 6.9.

For some applications, the distribution of the target data will consist
ited number of distinct branches, as is the case for the data shown in
In such cases we may be interested in finding an output value correspond
just one of the branches (as would be the case in many control applicat;
example). The most probable branch is the one which has the greatest as:
‘probability mass’. Since each component of the mixture model is norm
J ¢;(t|x)dt = 1, the most probable branch of the solution, assuming the
ponents are well separated and have negligible overlap, is given by

1 Periodic variables

far we have considered the problem of ‘regression’ for variables which live
1 the real axis (—oo, 00). However, a number of applications involve angle-like
put variables which live on a finite interval, usually (0, 27) and which are in-
cally periodic. Due to the periodicity, the techniques described so far cannot
applied directly. Here we show how the general framework discussed above
be extended to estimate the conditional distribution p(f|x) of a periodic
variable @, conditional on an input vector x (Bishop and Legleye, 1995).

The approach is again based on a mixture of kernel functions , but in this case
he kernel functions themselves are periodic, thereby ensuring that the overall
ty function will be periodic. To motivate this approach, consider the prob-
of modelling the distribution of a velocity vector v in two dimensions. Since
lives in a Euclidean plane, we can model the density function p(v) using a
ure of conventional spherical Gaussian kernels, where each kernel has the

argmax {o;(x)}.

In the mixture-of-experts model (Jacobs et al., 1991) this corresponds to s
the output of one of the component network modules. The required value
then given by the corresponding centre #;. Figure 6.10 shows the most pro
branch of the solution, as a function of x, for the same network as used
Figure 6.7.

Again, one of the limitations of using maximum likelihood techni
determine variance-like quantities such as the o}, is that it is biased (Section
In particular, it tends to underestimate the variance in regions where
limited data.

= 2 i 2
¢(va,vy) = 2;7exp {—*(v17 20’;’) _ L 20“;") } (6.94)

¢ (vz,vy) are the Cartesian components of v, and (pz, p1,) are the compo-
“of the centre p of the kernel. From this we can extract the conditional

222 6: Error Functions

distribution of the polar angle @ of the vector v, given a value for v =
is easily done with the transformation v, = vcos#, v, = vsiné, and
o to be the polar angle of pu, so that 1, = pcosf and py = psiné,
¢ = ||p2||. This leads to a distribution which can be written in the form

#(0)] exp {mcos(f —)}

= nly(m

where the normalization coefficient has been expressed in terms of the z
order modified Bessel function of the first kind, Io(m). The distribution
is known as a circular normal or von Mises distribution (Mardia, 197:
parameter m (which depends on v in our derivation) is analogous to t]
verse) variance parameter in a conventional normal distribution. Since
periodic, we can construct a general representation for the conditional
of a periodic variable by considering a mixture of circular normal ker
parameters governed by the outputs of a neural network. The weigh
network can again be found by maximizing the likelihood function def
a set of training data.

An example of the application of these techniques to the determin
wind direction from satellite radar scatterometer data is given in Bis
Legleye (1995). This is an inverse problem in which the target data
valued, For problems involving periodic variables in which the tar
effectively single-valued with respect to the input vector, then a single
normal kernel can be used.

An alternative approach to modelling conditional distributions of |
variables is discussed in Exercise 6.8. y

6.5 KEstimating posterior probabilities y

So far in this chapter we have focused on ‘regression’ problems in whie
target variable are continuous. We now turn to a consideration of error
for classification problems in which the target variables represent disc
labels (or, more generally, the probabilities of class membership).
When we use a neural network to solve a classification problem, there
distinct ways in which we can view the objectives of network training. At
pler level, we can arrange for the network to represent a non-linear dis
function so that, when a new input vector is presented to the trained n
the outputs provide a classification directly. The second approach, which is
general and more powerful, is to use the network to model the posterior
bilities of class membership. Typically there is one output unit for each p!
class, and the activation of each output unit represents the corresponding
terior probability p(Ck|x), where Cy is the kth class, and x is the input vt
These probabilities can then be used in a subsequent decision-making sta
arrive at a classification. . 1N
By arranging for the network outputs to approximate posterior proba
we can exploit a number of results which are not available if the netw
|

6.5: Estimating posterior probabilities 223

d simply as a non-linear discriminant (Richard and Lippmann, 1991). These
ude:
inimum error-rate decisions

From the discussion of optimal classification in Section 1.9 we know that, to
minimize the probability of misclassification, a new input vector should be
assigned to the class having the largest posterior probability. Note that the
network outputs need not be close to 0 or 1 if the class-conditional density
functions are overlapping. Heuristic procedures, such as applying extra
training using those patterns which fail to generate outputs close to the

target values, will be counterproductive, since this alters the distributions

and makes it less likely that the network will generate the correct Bayesian
probabilities.

ts sum to 1

Since the network outputs approximate posterior probabilities they should
sum to unity. This can be enforced explicitly as part of the choice of network
structure as we shall see. Also, the average of each network output over
all patterns in the training set should approximate the corresponding prior
class probabilities, since

P(C) = [PCup(x)dx= - T PEIK"). (696)

These estimated priors can be compared with the sample estimates of the
priors obtained from the fractions of patterns in each class within the
training data set. Differences between these two estimates are an indication
that the network is not modelling the posterior probabilities accurately
(Richard and Lippmann, 1991).

Co ipensating for different prior probabilities

In some of the conventional approaches to pattern classification discussed
in Chapter 1, the posterior probabilities were expressed through Bayes'
theorem in the form

_ p(x|Cx)P(Ck) 6.97

and the prior probabilities P(Cx) and class-conditional densities p(x|C)
Were estimated separately. The neural network approach, by contrast, pro-
vides direct estimates of the posterior probabilities. Sometimes the prior
probabilities expected when the network is in use differ from those repre-
sented by the training set. It is then it is a simple matter to use Bayes’
theorem (6.97) to make the necessary corrections to the network outputs.
This is achieved simply by dividing the network outputs by the prior prob-
abilities corresponding to the training set, multiplying them by the new

224 6: Error Functions

prior probabilities, and then normalizing the results. Changes in t
probabilities can therefore be accommodated without re-training
work. The prior probabilities for the training set may be estimated
by evaluating the fraction of the training set data points in e
Prior probabilities corresponding to the network’s operating envirg
can often be obtained very straightforwardly since only the class lal

needed and no input data is required. As an example, consider {‘.hg
lem of classifying medical images into ‘normal’ and ‘tumour’.
for screening purposes, we would expect a very small prior pro
‘tumour’. To obtain a good variety of tumour images in the tra
would therefore require huge numbers of training examples. An al
is to increase artificially the proportion of tumour images in the tr:
set, and then to compensate for the different priors on the test ds
described above. The prior probabilities for tumours in the general
lation can be obtained from medical statistics, without having to colles
corresponding images. Correction of the network outputs is then a s
matter of multiplication and division.

Combining the outputs of several networks
Rather than using a single network to solve a complete problem,
often benefit in breaking the problem down into smaller parts and txe
each part with a separate network. By dividing the network out;
the prior probabilities used during training, the network outputs
likelihoods scaled by the unconditional density of the input vectors.
scaled likelihoods can be multiplied together on the assumption
input vectors for the various networks are independent. Since the
factor is independent of class, a classifier based on the product of &
likelihoods will give the same results as one based on the true likelih
This approach has been successfully applied to problems in speech t
nition (Bourlard and Morgan, 1990; Singer and Lippmann, 1992).
Minimum risk

As discussed in Chapter 1, the goal of a classification system may n
always be to minimize the probability of misclassification. Different &

classifications may carry different penalties, and we may wish to min
the overall loss or risk (Section 1.10). Again the medical screening ¢
cation provides a good example. It may be far more serious to mis-cl
a tumour image as normal than to mis-classify a normal image as
a tumour. In this case, the posterior probabilities from the netw
be combined with a suitable matrix of loss coefficients to allow the
mum risk decision to be made. Again, no network re-training is requi
achieve this. However, if the required loss matrix elements are known b
the network is trained, then it may be better to modify the error fun
as will be discussed for the case of a sum-of-squares error in Section |

6.6: Sum-of-squares for classification 225

aipction ﬂl?‘eShOEdS
" In Section 1.10.1 we introduced the concept of a rejection threshold, which

is such that if all of the posterior probabilities fall below this threshold then
no classification decision is made. Alternative classification techniques can
then be applied to the rejected cases. This reflects the costs associated
with making the wrong decisions balanced against the cost of alternative

classification procedures. In the medical image classification problem, for

instance, it may be better not to try to classify doubtful images automati-
cally, but instead to have a human expert provide a decision. Rejection of
input vectors can be achieved in a principled way, provided the network
outputs represent posterior probabilities of class membership.

sequent sections of this chapter we show how the outputs of a network can

nterpreted as approximations to posterior probabilities, provided the error
stion used for network training is carefully chosen. We also show that some

functions allow networks to represent non-linear discriminants, even though

‘-output values themselves need not correspond to probabilities.

Sum-of-squares for classification

previous section we showed that, for a network trained by minimizing a
f-squares error function, the network outputs approximate the conditional
ges of the target data

yi(x) = (tilx) =] bp(tel) dbi. (6.98)

| the case of a classification problem, every input vector in the training set is
elled by its class membership, represented by a set of target values ti. The

s can be chosen according to a variety of schemes, but the most convenient
l-of-c coding in which, for an input vector x™ from class C;, we have

= 61 where &y, is the Kronecker delta symbol defined on page xiii. In this
the target values are precisely known and the density function in target

‘becomes singular and can be written as

Zé tr — Op1) P

p(telx) = (Cilx) (6.99)

€ P(Cy|x) is the probability that x belongs to class C;. If we now substitute

into (6.98) we obtain

Y (x) = P(Cy|x) (6.100)

O that the outputs of the network correspond to Bayesian posterior probabilities
fhite, 1989; Richard and Lippmann, 1991).

226 6: Error Functions 6.6: Sum-of-squares for classification 227

If the network outputs represent probabilities, then they should lie in’
range (0, 1) and should sum to 1. For a network with linear output units,
by minimizing a sum-of-squares error function, it was shown in Sectio
that if the target values satisfy a linear constraint, then the network outp
satisfy the same constraint for an arbitrary input vector. In the case of
coding scheme, the target values sum to unity for each pattern, and so ¢
work outputs will also always sum to unity. However, there is no guarant
they will lie in the range (0,1). In fact, the sum-of-squares error function
the most appropriate for classification problems. It was derived from m
likelihood on the assumption of Gaussian distributed target data. How
target values for a l-of-c coding scheme are binary, and hence far from
a Gaussian distribution. Later we discuss error measures which are more
propriate for classification problems. However, there are advantages in
sum-of-squares error, including the fact that the determination of the ou
weights in a network represents a linear optimization problem. The sign
of this result for radial basis function networks was described in Chapte
therefore discuss the use of a sum-of-squares error for classification prob
more detail before considering alternative choices of error function.

For a two-class problem, the 1-of-c target coding scheme described
leads to a network with two output units, one for each class, whose act
represent the corresponding probabilities of class membership. An alt
approach, however, is to use a single output y and a target coding which &
t" =1 if x™ is from class C; and " = 0 if x™ is from class Cs. In this
distribution of target values is given by

‘Writing (6.25) in matrix notation we obtain
= %'I}{(ZWT - T)(ZWT - T)T} (6.103)

o Z, W and T are defined on page 199. We now substitute the solution
29) for the optimal weights into (6.103) to give

E= -%Tr{(ZZTT _T)2ziT-T)T}. (6.104)
I'us‘mg some matrix manipulation (Exercise 6.9) we can write this in the form
E= %’I‘r{TTT —S5S5Y) (6.105)

St is given by

Sr=2"2=) (z"-3)(z"-2)" (6.106)

d the components of Z are defined by (6.24). We see that this can be interpreted
e total covariance matrix for the activations at the output of the final layer
en units with respect to the training data set. Similarly, Sp in (6.105) is
by

p(tk|x) = 6(t — 1)P(C1[x) + 6(2) P(C2|x). Sp = ZTTT"Z (6.107)

Sulstiburiag s It (0.6 poies hich can be interpreted (as we shall see) as a form of between-class covariance

y(x) = P(Cijx) ce the first term in the curly brackets in (6.105) depends only on the
data it is independent of the remaining weights W in the network. Thus,
zing the sum-of-squares error is equivalent to maximizing a particular
inant function defined with respect to the activations of the final-layer
BN units given by

and so the network output y(x) represents the posterior probability of the il
vector x belonging to class C;. The corresponding probability for class Cy
given by P(C3|x) =1 — y(x). |

6.6.1 Interpretation of hidden units

In Section 6.1.1 we derived the expression (6.29) for the final-layer weights
minimizes a sum-of-squares error, for networks with linear output units
stituting this result back into the error function we obtain an expression in
the only adaptive parameters are those associated with hidden units, wi
denote by w. This expression sheds light on the nature of the hidden un
resentation which a network learns, and indicates why multi-layer non
neural networks can be effective as pattern classification systems (W

Lowe, 1990). :

= ET[{SBS;}}. (6.108)

that if the matrix Sy is ill-conditioned, then the inverse matrix 83" should

aced by the pseudo-inverse SJr The criterion (6.108) has a clear similarity
le Flisher discriminant functlon which is discussed in Section 3.6. Nothing
18 specific to the multi-layer perceptron, or indeed to neural networks. The
t is obtained regardless of the functions z;(x; W) and applies to any
ed linear discriminant in which the basis functions contain adaptive

228 6: Error Functions 6.6: Sum-of-squares for classification 229

parameters.

The role played by the hidden units can now be stated as follows. The
in the final layer are adjusted to produce an optimum discrimination
classes of input vectors by means of a linear transformation. Minimiz
error of this linear discriminant requires that the input data undergo
linear transformation into the space spanned by the activations of th
units in such a way as to maximize the discriminant function given by (6

Further insight into the nature of the matrix Sp is obtained by co
a particular target coding scheme. For the 1-of-¢ target coding scheme
write (6.107) in the form (Exercise 6.10)

P %Tr{sss,;l} (6.111)

e hidden units. For the 1-of-c coding scheme, the corresponding between-
covariance matrix, given by (6.109), contains coefficients which depend on
the number of patterns in class Cx. Thus, the hidden unit representation
ned by maximizing this discriminant function will only be optimal for a
ular set of prior probabilities Ni /N. If the prior probabilities differ between
and test sets, then the feature extraction need not be optimal.
related dlfﬁculty arises if there are different costs associated with different
assifications, so that a general loss matrix needs to be considered. It has
ested (Lowe and Webb, 1990, 1991) that modifications to the form of
Sp = Z Ni(z* - 2)(z" - 2)" ﬁ:ﬁf-squm("es error to take account of tlZe loss matrix can lead to improved
g e extraction by the hidden layer, and hence to improved classification per-
where N} is the number of patterns in class Cx and Z* is the mean s

: 'I'o deal with different prior probabilities between the training set and the
vector of the hidden units for all training patterns in class Cy, and is de

set, Lowe and Webb (1990) modify the sum-of-squares error by introducing
ighting factor &, for each pattern n so that the error function becomes

- %Zzh{yk(xﬂ) —)2 (6.112)
Note that Sg in (6.109) differs from the conventional between-class co "oE
matrix introduced in Section 3.6 by having factors of N{ instead of Ny, in t
over classes. This represents a strong weighting of the feature extraction
in favour of classes with larger numbers of patterns. If there is a sign
difference between the prior probabilities for the training and test d
then this effect may be undesirable, and we shall shortly see how to cor
by modifying the sum-of-squares error measure. As discussed in Section 3. 6
are several ways to generalize Fisher’s original two-class discriminant crite:
several classes, all of which reduce to the original Fisher result as a spe
In general, there is no way to decide which of these will yield the best res
a two-class problem, the between-class covariance matrix given in (6.10
from the conventional one only by a multiplicative constant, so in this
network criterion is equivalent to the original Fisher expression.

In earlier work, Gallinari et al. (1988, 1991) showed that, for a netw
linear processing units with a 1-of-c target coding, the minimization of a sun
squares error gave a set of input-to-hidden weights which maximized a cr
which took the form of a ratio of determinants of between-class and total co!
ance matrices defined at the outputs of the hidden units. The results of
and Lowe (1990) contain this result as a special case.

there the weighting factors are given by

_ P(Cx)

Ky = P, for pattern n in class Cx (6.113)

P(Cy) is the prior probability of class Cy for the test data, and Py = Ni/N
corresponding (sample estimate of the) prior probability for the training
It is straightforward to show (Exercise 6.12) that the total covariance
S then becomes

Sy = Z C*) e ~ BT (6.114)

necCy

is the sample-based estimate of the total covariance matrix for data with
class probabilities P(Ck). In (6.114) the Z are given by

| 7= ; Plf\'f;") Yy 2 (6.115)

¥hich again is the sample-based estimate of the value which Z would take for
2 having the prior probabilities P(C;,) Similarly, assuming a l-of-c target

6.6.2 Weighted sum-of-squares

We have seen that, for networks with linear output units, minimizati
sum-of-squares error at the network outputs maximizes a particular non
feature extraction criterion

230 6: Error Functions 6.7; Cross-entropy for two classes 231

coding scheme, the between-class covariance matrix is modified to become \. i is a particular case of the binomial distribution called the Bernoulli dis-
| sbution. With this interpretation of the output unit activations, the likelihood
erving the training data set, assuming the data points are drawn indepen-
tly from this distribution, is then given by

[T @ -y (6.119)

mn

Sp =) N?P(Cy)*(z* -2)(z" -2)"
k

which is the sample-based estimate of the between-class covariance mg
data with prior probabilities P(Ck}
The effects of an arbitrary loss matrix can similarly be taken into
by modifying the target coding scheme so that, for a pattern n which is
as belonging to class C, the target vector has components ¢} =1 — L ,
Ly, represents the loss in assigning a pattern from class C; to class C
total covariance matrix is unaltered, while the between-class covariance
becomes (Exercise 6.13)

e {Z(l = Z)} {E(l ~ L) Ne (3 - E)T}
:

k ! 1

s usual, it is more convenient to minimize the negative logarithm of the like-
Lood. This leads to the cross-entropy error function (Hopfield, 1987; Baum
Wﬂczek, 1988; Solla et al., 1988; Hinton, 1989; Hampshire and Pearlmutter,
) in the form

==Y {t"Iny" + (1 —t")In(1 - y™)}. (6.120)

Je shall discuss the meaning of the term ‘entropy’ in Section 6.10. For the
fioment let us consider some elementary properties of this error function.

which reduces to the usual expression when Lj = 1 — §j. Examples Differentiating the error function with respect to 3" we obtain

application of these techniques to a problem in medical prognosis are

Lowe and Webb (1990). ﬁ - (yn . tn)

- A=) (6.121)
6.7 Cross-entropy for two classes y y y

We have seen that, for a 1-of-c target coding scheme, the outputs of a ni he absolute minimum of the error function occurs when

trained by minimizing a sum-of-squares error function approximate the po

probabilities of class membership, conditioned on the input vector. Howew T for all n. (6.122)

sum-of-squares error was obtained from the maximum likelihood pring
assuming the target data was generated from a smooth deterministic
with added Gaussian noise. This is clearly a sensible starting point for r
problems. For classification problems, however, the targets are binary var
and the Gaussian noise model does not provide a good description of
tribution. We therefore seek more appropriate choices of error function
To start with, we consider problems involving two classes. One app
such problems would be to use a network with two output units, one
class. This type of representation is discussed in Section 6.9. Here we di
alternative approach in which we consider a network with a single output ¥
would like the value of y to represent the posterior probability P(C;|x)
C;. The posterior probability of class C, will then by given by P(Cs|x)
This can be achieved if we consider a target coding scheme for which
the input vector belongs to class C; and t = 0 if it belongs to class Cs.
combine these into a single expression, so that the probability of observing
target value is

Section 3.1.3 we showed that, for a network with a single output y = g(a)
value is to be interpreted as a probability, it is appropriate to consider
istic activation function

1

S (6.123)

g(a) =
hich has the property

¢'(a) = g(a)(1 - g(a))- (6.124)

“omb ining (6.121) and (6.124) we see that the derivative of the error with respect
¥@ takes the simple form

= — =y" —t" (6.125)
p(tx) =y (1 -y)*"

232 6: Error Funclions 6.7: Cross-entropy for two classes 233

Here 6™ is the ‘error’ quantity which is back-propagated through the ne
order to compute the derivatives of the error function with respect to the
weights (Section 4.8). Note that (6.125) has the same form as obtaine
sum-of-squares error function and linear output units. We see that the
natural pairing of error function and output unit activation function whig
rise to this simple form for the derivative. Use of the logistic form of
function also leads to corresponding simplifications when evaluating the]
matrix (the matrix of second derivatives of the error function).

From (6.120) and (6.122), the value of the cross-entropy error function
minimum is given by

3-0 T
p(xIC)) p(x1C,)

2.0

1.0

Emin=—Y_{t"Int" + (1 — ") In(1 - t")}.

0.0
0.0 0.5 1.0

For the 1-of-¢ coding scheme this vanishes. However, the error function
is also the correct one to use when £™ is a continuous variable in the ra
representing the probability of the input vector x™ belonging to class
Section 6.10 and Exercise 6.15). In this case the minimum value (6.126
error need not vanish, and so it is convenient to subtract off this value fi
original error function to give a modified error of the form

¢ 6.11. Plots of the class-conditional densities used to generate a data set
» demonstrate the interpretation of network outputs as posterior probabilities.
total of 2000 data points were generated from these densities, using equal
_prior probabilities.

L, 1995). In this case we need to consider the distributions of the outputs of
den units, represented here by the vector z for the two classes. We can
ze the discussion by assuming that these class-conditional densities are
(] by

y" (1-y")
E=—- t"In=— + (1 —t")In —==~ .
Zn:{ g t =y
Since (6.126) is independent of the network outputs this does not
location of the minimum and so has no effect on network training. The m
error (6.127) always has its minimum at 0, irrespective of the particular tra
: : " : . ich is a member of the nential family of distributions (which includes
; NES e ‘e Hllustration of the inferpretation of network outpute SEy of the common distrilmns as slfecia.lycases such as Ga.m(ssia.n, binomial,
Sesi e cgjﬁlde&a a;ism'}::!e two—cla-ss prgblezl vgt.h 970 mp‘."t mmﬁil;:c? oulli, Poisson, and so on). The parameters 8 and ¢ control the form of the
f’lmFi D B L i iribution. In writing (6.128) we are implicitly assuming that the distributions
N R g El-Layer perceptron. il o A m?lts g only in the parameters @, and not in ¢. An example would be two Gaussian
activation functions, and one output unit having a logistic sigmoid & B i difort iheane: Birt with comiGR covREanGS Mk,

function, was trained by minimizing a cross-entropy error using 100 cyc e . g : = :
% w w in
the BFGS quasi-Newton algorithm (Section 7.10). The resulting networ g Bayes' theorem, we can write the posterior probability for class C;

ping function is shown, along with the true posterior probability calculated ¢
Bayes' theorem, in Figure 6.12.

p(2|Cs) = exp {A(ak) + B(z, ¢) + ezz} (6.128)

p(2|C1) P(C1)

Plale) = Sarenpien + pGIcHPEa)

6.7.1 Sigmoid activation functions

In Section 3.1.3, the logistic sigmoid activation function was motivated 1
single-layer network by the goal of ensuring that the network outputs repr = THe=a) (6.129)

posterior probabilities, with the assumption that the class-conditional de
can be approximated by normal distributions. We can apply a similar

; v h is a logistic sigmoid function, in which
to the network outputs in the case of multi-layered networks (Rumelhart g er

234 6: Error Functions 6.7: Cross-entropy for two classes 235

;.—I_, Properties of the cross-entropy error

suppose We write the network output, for a particular pattern n, in the form

L s — t" + €. Then the cross-entropy error function (6.127) can be written as
= — Z {t"In(1 +€"/t") + (1 —t")In(1 — €"/(1 = t"))} (6.134)
b hat the error function depends on the relative errors of the network outputs.
hould be compared with the sum-of-squares error function which depends
(squares of the) absolute errors. Minimization of the cross-entropy error
on will therefore tend to result in similar relative errors on both small
large target values. By contrast, the sum-of-squares error function tends to
0'00 0 05 10 similar absolute errors for each pattern, and will therefore give large relative

for small output values. This suggests that the cross-entropy error function
y to perform better than sum-of-squares at estimating small probabilities.

: Sl A For binary targets, with t" = 1 for an input vector x™ from class C; and
from the density functions in Figure 6.11. The solid curve shows the o . . . :
of the trained network as a function of the input variable z, while the ds ,.0 for inputs from class Cz, we can write the cross-entropy error function

curve shows the true posterior probability P(C;|z) calculated from the 34) in the form
conditional densities using Bayes’ theorem.

_ .. p(z|C1)P(Ch)
@ = @) P(C)

Using (6.128) we can write this in the form

X

Figure 6.12. The result of training a multi-layer perceptron on data gener:

E=-) In(l+€e")—) In(l-¢") (6.135)

neCy nE€Cy

here we have used zInz — 0 for z — 0. If we suppose that €" is small, then
e error function becomes

a=wrz+wp

E=)|" (6.136)

where we have defined .
we have expanded the logarithms using In(1 + 2) ~ z and noted that if

,1) then €® < 0 for inputs from class C; and €" > 0 for inputs from class
The result (6.136) has the form of the Minkowski-R error function for R = 1,
iScussed earlier. Compared to the sum-of-squares error function, this gives much
ger weight to smaller errors.
Ve have obtained the cross-entropy function by requiring that the network
t y represents the probability of an input vector x belonging to class C;. We
now confirm the consistency of this requirement by considering the minimum
e error function for an infinitely large data set, for which we can write (6.120)
L the form

W=91'—62

P(Cy)
P(C2)

Thus the network output is given by a logistic sigmoid activation function
on a weighted linear combination of the outputs of those hidden units which sé
connections to the output unit. |
It is clear that we can apply the above arguments to the activations of
units in a network. Provided such units use logistic sigmoid activation funt
we can interpret their outputs as probabilities of the presence of correspt
‘features’ conditioned on the inputs to the units.

wo = A(61) — A(82) +In

£~ f f {tlny(x) + (1 —) In(1 — y(x))} p(t}x)p(x) dtdx. (6.137)

he network function y(x) is independent of the target value ¢t we can write
+137) in the form

236 6: Error Functions 6.9: Cross-entropy for multiple classes 237

- now construct the likelihood function and take the negative logarithm in
"~ cual way, we obtain the error function in the form

- / {(tlx) Iny(x) + (1 = {tlx)) In(1 — y(x))} p(x) dx

where, as before, we have defined the conditional average of the target data .
E=-3 % {ttlnyf + (1 -} (1 —yP)}. (6.145)
n k=1

(t|x) = / tp(t|x) dt.
s this choice of error function, the network outputs should each have a lo-
If we now set the functional derivative (Appendix D) of (6.138) with sigmoidal activation function of the form (6.123). Again, for binary target

to y(x) to zero we see that the minimum of the error function occurs when ables t}, this error function vanishes at its minimum. If the ¢}t are probabil-
in the range (0, 1), the minimum of the error will depend on the particular
x) = (t|x)

, set, and so it is convenient to subtract off this minimum value to give
so that, as for the sum-of-squares error, the output of the network approxim Z Z o |/ (6.146)
P y £ tk + () T
the conditional average of the target data for the given input vector. o

target coding scheme which we have adopted we have
hich always has an absolute minimum value with respect to the {y7} of zero.

p(t|x) = 8(t — 1) P(C1]x) + 8(t) P(Ca|x).
Cross-entropy for multiple classes

w return to the conventional classification problem involving mutually
usive classes, and consider the form which the error function should take
the number of classes is greater than two. Consider a network with one
put) for each class, and target data which has a 1-of-c coding scheme, so
= 6y for a pattern n from class C;. The probability of observing the set
values t} = 6y, given an input vector x", is just p(Ci|x) = y. The value
conditional distribution for this pattern can therefore be written as

Substituting (6.141) into (6.139) we find
y(x) = P(C1[x)
as required.

6.8 Multiple independent attributes

In all of the classification problems which we have considered so far, the
been to assign new vectors to one of ¢ mutually exclusive classes. How
some applications we may wish to use a network to determine the prob b
of the presence or absence of a number of attributes which need not be mut
exclusive. In this case the network has multiple outputs, and the value 0
output variable y. represents the probability that the kth attribute is pre
If we treat the attributes as independent, then the distribution of target
will satisfy

p(t"[x™) H(y (6.147)

form the likelihood function, and take the negative logarithm as before, we
an error function of the form

=—3Y Ztk Inyp. (6.148)

€ n k=1
p(t}x) = [] p(telx). r
k=1 € absolute minimum of this error function with respect to the {y7} occurs

! Y =t} for all values of k and n. At the minimum the error function takes
We can now use (6.118) for each of the conditional distributions to give

Egin = -ch:t’,’:lntz. (6.149)

n k=1

p(tx) = [T v (2 —)™
k=1

238 6: Error Functions 6.9: Cross-entropy for multiple classes 239

For a 1-of-¢c coding so zscheme this minimum value is 0. However, the erro
(6.148) is still valid__ £, as we shall see, when t} is a continuous

range (0,1) represeng=3ting the probability that input x™ belongs to
this case the minimy g um of the error function need not vanish (it rep
entropy of the distril-§ _ bution of target variables, as will be discussed she:

p(zICk) = exp { A(0x) + B(z,6) + 0]z} (6.154)
i Bayes' theorem, the posterior probability of class Cj, is given by

p(2|Cx) P(Cx)

then convenient to sy z=ubtract off this minimum value, and hence obtain p(Cilz) = 3 (6.155)
function in the form e L P(2|C) P(C)
= stituting (6.154) into (6.155) and re-arranging we obtain
y;;) uting (
E=- thln | =%
2.2 (tz s
p(Ck|z) = 5 mcnlan] (6.156)
which is non-negativ=_<e, and which equals zero when y = ¢} for all k L k
We now consider —— the corresponding activation function which shoy
for the network outpe gout units. If the output values are to be interpre
abilities they must li§ g ie in the range (0, 1), and they must sum to unity: ' PR B (6.157)
be achicved by usings-2 a generalization of the logistic sigmoid activation fi G " t
which takes the forrem have defined
___exp(ax)
Yk = 5 explar) wy = 0y (6.158)
which is known as ¢y the normalized exponential, or softmaz activation wrp = A(6x) + In P(Cy). (6.159)

(Bridle, 1990). The term softmax is used because this activation f
resents a smooth ve-«=rsion of the winner-takes-all activation model in
unit with the larges-z=t input has output +1 while all other units have o!
If the exponentials i § in (6.151) are modified to have the form exp(Bak
winner-takes-all acti-# ivation is recovered in the limit § — oo. The softn
tion function can bes«= regarded as a generalization of the logistic func
it can be written in the form

ult (6.156) represents the final layer of a network with softmax activation
ons, and shows that (provided the distribution (6.154) is appropriate) the
can be interpreted as probabilities of class membership, conditioned on
utputs of the hidden units.

aluating the derivatives of the softmax error function we need to consider
nputs to all output units, and so we have (for pattern n)

! dE™ AE™ e
Hs - : 6.160
Yk =7 + exp(—Ayg) da %: By Oay ()
where 4; is given bv ey 151) we have
A =ar—In Z exp(ax) - i Yk Bkkt — Ykr Yk (6.161)
.] . Bay
k'#k _. it
. v € from (6.150) we have
As with the logis # istic sigmoid, we can give a very general motivation &
softmax activation £3 function by considering the posterior probability th BE™ b
den unit activation vector z belongs to class Ci, in which the class-cont Do = _E_ (6.162)

densities are assumesgwzd to belong to the family of exponential distributio

general form ting (6.161) and (6.162) into (6.160) we find

240 6: Error Functions 6.10: Entropy 241
0E"™ y
aak S yk k

300
which is the same result as found for both the sum-of-squares error

linear activation function) and the two-class cross-entropy error (with
activation function). Again, we see that there is a natural pairing of error
and activation function.

S=298 S=1.91

6.10 Entropy

The concept of entropy was originally developed by physicists in the co
equilibrium thermodynamics and later extended through the developme
tistical mechanics. It was introduced into information theory by Shannon
An understanding of basic information theory leads to further insights
entropy-based error measures discussed in this section. It also paves the "
an introduction to the minimum description length framework in Sectig - 00 0.5 10 00 056 10
Here we consider two distinct but related interpretations of entropy, (@) (b)
based on degree of disorder and the second based on information content.

Consider a probability density function p(z) for a single random varia gure 6.13. Examples of two histograms, together with their entropy values
It is convenient to represent the density function as a histogram in w fined by (6.166). The histograms were generated by sampling two Gaussian
z-axis has been divided into bins labelled by the integer i. Imagine cons functions with variance parameters ¢ = 0.4 and o = 0.08, and each contain
the histogram by putting a total of N identical discrete objects into 11000 points. Note that the more compact distribution has a lower entropy.
such that the ith bin contains N; objects. We wish to count the numl
distinet ways in which objects can be arranged, while still giving
same histogram. Since there are N ways of choosing the first object,
ways of choosing the second object, and so on, there a total of N! ways |
the N objects. However, we do not wish to count rearrangements of
within a single bin. For the ith bin there are N;! such rearrangements an
total number of distinct ways to arrange the objects, known as the multip
is given by

4 100} £

i L Al

pi = N;/N (as N — o00) represents the probability corresponding to the ith
he entropy therefore gives a measure of the number of different microstates
gements of objects in the bins) which can give rise to a given macrostate
a given set of probabilities p;). A very sharply peaked distribution has a very
entropy, whereas if the objects are spread out over many bins the entropy is
higher. The smallest value for the entropy is 0 and occurs when all of the
ity mass is concentrated in one bin (so that one of the p; is 1 and all
are 0). Conversely the largest entropy arises when all of the bins contain
probability mass, so that p; = 1/M where M is the total number of bins.
easily seen by maximizing (6.166) subject to the constraint), p; = 1
g a Lagrange multiplier (Appendix C). An example of two histograms, with
Tespective entropies, is shown in Figure 6.13.
continuous distributions (rather than histograms) we can take the limit
hich the number M of bins goes to infinity. If A is the width of each bin,
he probability mass in the ith bin is p; = p(z;)A, and so the entropy can
tten in the form

N!
i 17
The entropy is defined as (a constant times) the negative logarithm of the
tiplicity

1 1
=—-— =—— 1— i1} _'
§=-xhW=-F{nN ZInN} _|
¥ M
We now consider the limit N — oo, and make use of Stirling’s approximas S = lim Zp(x,‘-)A In {p(z;)A} (6.167)
InN!~ Nln N — N together with the relation }_; N; = N, to give ‘ ! Mt

: N; Ni\ _ .
S=_;JE?WZ(J_V_)ID(N)" Zp.lnpi

3 f p(a)Inp(z)dz + lim InA (6.168)

2492 &: Error Functions 6.10: Entropy 243

where we have used [p(z)dz = 1. The second term on the right-han
diverges in the limit M — oo. In order to define a meaningful entropy meg
for continuous distributions we discard this term, since it is independent of
and simply use the first term on the right-hand side of (6.168), which is ca
the differential entropy. This is reasonable, since if we measure the differe
entropy between two distributions, the second term in (6.168) would canc
distributions which are functions of several variables, we define the entr

be 2,

Je can solve for the Lagrange multipliers by back-substituting this expression
“to the constraint equations. This finally gives the expression for the maximizing
istribution in the form

G
p(e) = (—2;:55;75%1:{—%}. (6.176)

we see that the distribution having maximum entropy, for given mean and
ce, is the Gaussian.
a second viewpoint on the interpretation of entropy, let us consider the
t of information, or equivalently the ‘degree of surprise’, which is obtained
n we learn that a particular event has occurred. We expect that the informa-
will depend on the probability p of the event, since if p = 1 then the event is
iin to occur, and there is no surprise when the event is found to occur (and
information is received). Conversely, if the probability is low, then there
large degree of surprise in learning that it has occurred. We are therefore
g for a measure of information s(p) which is a continuous, monotonically
easing function of p and which is such that s(1) = 0. An appropriate ex-
sion can be obtained as follows, Consider two independent events A and B,
. probabilities p4 and pg. If we know that both events have occurred then
al information is s(papg). If, however, we are first told that A has oc-
, then the residual information on learning that B has occurred must be
PB) — 8(pa), which must equal s(pg) since knowledge that A has occurred
d not affect the information resulting from learning that B occurred (since

S= —»/p(x) In p(x) dx e___;

where x = (z1,...,74)T.

It is interesting to consider the form of distribution which gives rise to
maximum of the entropy function. In order to find a meaningful maximu
necessary to constrain the variance of the distribution. For the case of a
variable z on the infinite axis (—o0, 00), we maximize

S=—/_:p(:c)lnp(z)d:r (6.17

subject to the constraints that the distribution be normalized and that the me
and variance of the distribution have specified values

/ h p(z)de =1 (6.1 nts are independent). This leads to the following condition
-0
00) s(papp) = s(pa) + s(ps)- (6.177)
1P il 3 sl
- d this we can deduce that s(p?) = 2s(p) and by induction that s(pV) =

for integer N. Similarly, s(p) = s([p*/V]¥) = Ns(p'/") and by extension
Y

/W (z — p)?p(z) dz = o>.) = (M/N)s(p). This implies that

—00
_ 3(p*) = zs(p) (6.178)
Introducing Lagrange multipliers Ay, A and A3 (Appendix C) for each _
constraints, we can use calculus of variations (Appendix D) to maxin ® rational z and hence, by continuity, for real z. If we define z = — log, p, so
functional WP = (1/2)*, then
| I’
oo
/ p(z) {Inp(z) + A1 + Aoz + A3(z — p)?} dz — Ay — Do — Ago® (6.1 s(p) = s((1/2)%) = z5(1/2) = —s(1/2) log,(p). (6.179)
—00

conventional to choose s(1/2) = 1. The information is then expressed in
hary digits). From now on we shall consider logarithms to base e (natural
as) in which case the information is expressed in nats. We see that the
41t of information is proportional to the logarithm of the probability. This
S essentially because, for independent events, probabilities are multiplicative,

which leads to

P(-’B) = exp {—1 — A1 — Aoz — Mg — ﬂ)ﬂ} z (6‘ ‘ ;

244 6: Error Functions 6.11: General conditions for outputs to be probabilities 245

while information is additive.

Consider a random variable & which can take values ay with pro
p(ay). If a sender wishes to transmit the value of o to a receiver, then the
of information (in bits) which this requires is — Inp(ay) if the variable tal
value aj. Thus, the expected (average) information needed to transmit
of & is given by

=" Pox) InQ(aw). (6.183)
k

der first a network with ¢ outputs yx(x) representing the model probabili-
x to belong to the corresponding classes Ci. We shall suppose that we also
a set of target variables tj representing the corresponding true probabilities.
-on the cross-entropy becomes

S(a) = Zp(ak In (o) .
=3 tiInyi(x). (6.184)

which is the entropy of the random variable «. Thus S(e) as the average

of information received when the value of & is observed. The average lei +a set of N data points which are assumed to be drawn independently from

a binary message (in nats) needed to transmit the value of o is at least nmon distribution, the information is additive and hence the total cross-
the entropy of a. This is known as the noiseless coding theorem (Shannor is given by

Viterbi and Omura, 1979).

Returning to the case of continuous variables, denoted by the vector x; N ¢
note that in practice we do not know the true distribution p(x). If we enco - Z E th Iny(x™) (6.185)
value of x for transmission to a receiver, then we must (implicitly or exp n=1k=1

choose a distribution g(x) from which to construct the coding. The informa
needed to encode a value of x under this distribution is just —Ing(x)
variable x is drawn from a true distribution p(x) then the average info
needed to encode x is given by

can be used as an error function for network training. We see that this
error function is valid not only when the targets t} have a one-of-c coding
nting precise knowledge of the true classes of the data) but also when
anywhere in the range 0 < t£ < 1, subject to the constraint), t} =1,
sponding to probabilities of class membership.

two classes, we can consider a network with a single output y represent-
e model probability for membership of class C;, with corresponding true
bility ¢. The model probability for membership of class C; is then 1—y, and
orresponding true probability is 1 — ¢, Following the same line of argument
e we then arrive at the cross-entropy error function for two classes and
points in the form

—/p(x) Ing(x) dx

which is the cross-entropy between the distributions ¢(x) and p(x). Compadi
with (2.68) shows that this equals the negative log likelihood under
distribution g(x) when the true distribution is p(x). It is also equal to t
the Kullback-Leibler distance between p(x) and g(x), given by (2.70),
entropy of p(x) since

N
1 fp(x) g e / i E fp(x)mp(x) . -Z_j [t Iny(x") + (1 — ") In(1 — y(x))}. (6.186)

We can easily show that, of all possible distributions g(x), the choi
gives the smallest average information, i.e. the smallest value for
entropy, is the true distribution p(x) (Exercise 6.21). Since the entropy ¢
is independent of the distribution g(x), we see from (6.182) that minimi
the cross-entropy is equivalent to minimization of the Kullback-Leibler di

We can apply the concept of cross-entropy to the training of neural n
For a variable o which takes a discrete set of values oy we can write (6.182
the form |

General conditions for outputs to be probabilities

', we have considered three different error measures (sum-of-squares, cross-
Py for a single output, and cross-entropy for softmax networks) all of which
the network outputs to be interpreted as probabilities. We may therefore
e what conditions an error measure should satisfy in order that the net-
Outputs have this property. The discussion given here is based on that of
ire and Pearlmutter (1990).

246 6: Error Functions 6.11: General conditions for outputs to be probabilities 247

All of the error measures we are considering take the form of a sun
patterns of an error term for each pattern £ =) E™. We shall also tz
error to be a sum over terms for each output unit separately. This corres
to the assumption that the distributions of different target variables a
tically independent (which is not satisfied by the Gaussian mixture ba
considered earlier, or by the softmax error, for instance). Thus we wnte‘

= Z f(y;‘: t;:)
k=1

where f(-,-) is some function to be determined. We shall also assum
depends only on the magnitude of the difference between y; and #y, s

YR, t2) = F(Jyp — t2]). In the limit of an infinite data set, we can w
average (or expected) per-pattern error in the form

outputs of the network are to represent probabilities, so that yx(x) =
then the function f must satisfy the condition

ffil=9y) 1=y
T (6.193)

s of functions f which satisfies this condition is given by

f6) = [va-vra (6194)
||

s includes two important error functions which we have encountered already.
— 1 we obtain f(y) = y?/2 which gives the sum-of-squares error function.
tly, for r = 0 we obtain f(y) = —In(1 —y) = —In(1 — |y|) which gives rise
ss-entropy error function. To see this, consider a single output and note
(,t) = —In(1—|y—t|) = —In(y) if t =1 and f(y,t) = —In(1 - |y —¢[) =
—y) if t = 0. These can be combined into a single expression of the form

(E) = Z/ F(luk — te))p(t|x)p(x) dt dx.
—{tlny + (1 —) In(1 — y)}. (6.195)

If we use a 1-of-c target coding scheme, then from (6.99) we can write the
ditional distribution of the target variables in the form

p(tx) = H {Zﬁ ty — 6x1) P C;Ix)}

k=1 \ l=1

ng over all outputs, as in (6.187), and then over all patterns gives the
ntropy error for multiple independent attributes in the form (6. 145).

an example of an error function which does not satlsfy (6.193), consider
cowski-R error measure which is given by f(y) = y®. Substituting this
93) gives

1

We now substitute (6.189) into (6.188) and evaluate the integrals over the

: e ; : ; _ yR2 = (1-y)R? (6.196)
variables (which simply involves integrals of é-functions) to give

e] only satisfied if R = 2, corresponding to the sum-of-squares error. For

= - _ (2, the outputs of the network do not correspond to posterior probabilities.

Z / (@ =) P(Cilx) + F(e) 1 = PG} piix) dx do, however, represent non-linear discriminant functions, so that the min-

obability of mis-classification is obtained by assigning patterns to the

which the corresponding network output is largest. To see this, substi-

€ f(y) = y® into the condition (6.192) satisfied by the network outputs at
iminimum of the error function, to give

where we have used), P(Cx|x) = 1, and assumed that 0 < g < 1
the modulus signs can be omitted. The condition that the average per
error in (6.190) be minimized with respect to the y(x) is given by setti

functional derivative of (E) (Appendix D) to zero
P(Cx|x)"/ (-1

yk(x) = : (6.197)
oE ” P(Ci|x)/(B=1) 4+ [1 — P(Ci|x)]2/(B-1)
sl = (L= B)PC) + £/ L~ PGl = O (Cul) [~ P(Culx)]
_t'hat the yx only represent the posterior probabilities when R = 2, cor-
which gives iding to the sum-of-squares error. However, the decision boundaries cor-

d to the minimum mis-classification rate discriminant for all values of R

F(—yk) 1= P(Cklx) the ;. are monotonic functions of the posterior probabilities P(Ci|x).

fue) — P(Cklx)

248 6: Error Functions Ezercises 249

Exercises

6.1 (*) Throughout this chapter we have considered data in which
vectors x are known exactly, but the target vectors t are noisy.
instead the situation in which the target data is generated from a
function h(x) but where the input data is corrupted by additi
(Webb, 1994). Show that the sum-of-squares error, in the infin
limit, can be written as

(%) p;(x) and a?(x}, in terms of conditional averages, at the minimum
of this error. Note that the constraint >, a; = 1 should be enforced by
using a Lagrange multiplier (Appendix d) Discuss the interpretation of
these expressions.

r.\ Consider the circular normal distribution given by (6.95) and show that,
S e B — 0y < 1, the shape of the distribution is approximately Gaussian.

) In Section 6.4.1 we discussed a technique for modelling the conditional
sity p(6]x) of a periodic variable § based on a mixture of circular normal
ributions. Here we investigate an alternative approach which involves
finding a transformation from the periodic variable 8 € (0,2) to a Eu-
olidean variable y € (—o0,00), and then applying the Gaussian mixture
technique of Section 6.4 to the estimation of the conditional density p(6]x)
in x-space (Bishop and Legleye, 1995). Consider the density function de-
fined by the transformation

¥

E=3 [[Iytc+© ~ bl pix,€) dxde.

By changing variables to z = x + £, and using functional differ
(Appendix D), show that the least squares solution is given by

y(z) = / h(z - €)p(€]z) dé |

p(Blx) = Y B(6+ L2n|x) (6.201)

so that the optimum solution is again given by the conditional exp L=—00

of the target data. g - . . :
6.2 () Consider a model in which the target data is taken to have the where p(x|x) is a density function in x-space. Show that (6.201) saFlsﬁes
the periodicity requirement p(6 + 2m|x) = p(6|x). Also, show that, if the
'ensity function p(x|x) is normalized on the interval (—o0, c0), then the
sity p(6]x) will be normalized on (0,2r). The density function p(x|x)
now be modelled using a mixture of Gaussians ¢;(x|x) of the form

t" = y(x"; w) + "

where €™ is drawn from a zero mean Gaussian distribution havin;
covariance matrix ¥. Derive the likelihood function for a data
from this distribution, and hence write down the error function
of such an error function is called generalized least squares, and t
sum-of-squares error function corresponds to the special case 3 =

where I is the identity matrix. ‘Write down the error function given by the negative logarithm of the like-

6.3 (x) Consider a network with linear output units whose final-layer wei lihood of a set of data points {x™,8"}, and find expressions for the deriva-
are obtained by minimization of a sum-of-squares error function u tives of the error function with respect to the means and variances of the
pseudo-inverse matrix. Show that, if the target values for each sian components. Assuming that the mixing coefficients a; are deter-
pattern satisfy several linear constraints of the form (6.31) simultane d by a softmax function of the form (6.74), find the derivatives of the
then the outputs of the trained network will satisfy the same or function with respect to the corresponding network output variables
exactly for an arbitrary input vector. ‘. Note that, in a practical implementation, it is necessary to restrict

6.4 (x) Verify the normalization of the probability density function in 8 summation over L to a limited range. Since the Gaussian functions
Use the result I'(1/2) = /7 to show that the Gaussian distribution 'j(x_EX) have exponentially decaying tails, this can represent an extremely
special case corresponding to R = 2. i ©0d approximation in almost all cases.

6.5 (*) Write down an expression for the Minkowski-R error function (6. | Using the definition of the pseudo-inverse matrix given by (6.30), verify
R =1 in infinite data limit, and hence show that the network n the result (6.105) follows from the pseudo-inverse formula (6.104).
which minimizes the error is given by the conditional median of) Verify that, for a 1-of-c target coding scheme, the between-class covari-
data. ice matrix given by (6.107) reduces to the form (6.109).

6.6 (x*) Write down an expression for the conditional mixture den ‘The result (6.108) shows that minimizing a sum-of-squares error func-
function (6.77) in the limit of an infinite data set. Hence, by using for a network with linear output units, maximizes a particular non-
differentiation (Appendix D), find expressions satisfied by the q 1 discriminant function defined over the space of activations of the

M
Plxlx) = Y @ ()¢5 (xIx). (6.202)

j=1

250 6: Error Functions

hidden units. Show that if, instead of using 0 and 1 as the netwo
the values 0 and 1/y/Nj are used, where N is the number of p,
class Cy, then the between-class covariance matrix, given by (
comes

Sp =) _ Ni(# -32)(z" -2)T
k

where Z* is defined by (6.110). This is now the standard betwe

covariance matrix as introduced in Section 3.6.

6.12 (»x) Consider a weighted sum-of-squares error function of the form

in which the network outputs yj. are given by (6.21). Show that t
for the biases which minimizes the error function is given by

M
Wko = g — Z Wk;jZj
j=1

where we have introduced the following weighted averages

N n N mn
e 2;::1 Knlg = Zn=1 KnZj
73 N ? N
n=1%n Zn:l An

Use this result to show that the error function, with the biases set t¢

optimal values, can be written in the form
E = JTr{(ZW" - T)"KK(ZW™ - T))

where K = diag(kn*), (T)nk = I, (W)kj = wyy and (Z)n; = 2,
have defined '

?2=t2-fk, Z} =27 —Z;.

Show that (6.206) has the same form as the error function in (6.

with Z and T pre-multiplied by K. Hence show that the value of W

minimizes this error function is given by

wT = (Kz)'KT

Hence show that minimization of the error (6.206) is equivalent to m

mization of a criterion of the form
1 =1
Ji= ETF{SBST }
in which

Sp = Z"KTT"KZ

Ezercises 251

Sr = 2ZTKZ. (6.211)

Show that, for a 1-of-c target coding scheme, and for weighting factors xp,
given by (6.113), the total covariance matrix Sy is given by (6.114) and
the between-class covariance matrix Sp is given by (6.116).
13 (+) Suppose that, in Exercise 6.11, the target values had been set to ¢} =
" | — Ly for a pattern n belonging class C;, where Ly represents the loss
associated with assigning such a pattern to class Cj (loss matrices are
: ihtrod uced in Section 1.10). Show that the between-class covariance matrix
given by (6.107) takes the form (6.117). Verify that this reduces to the form
;(.6.109) when Ly, =1 — .
4(x) Consider the Hessian matrix for the cross-entropy error function (6.120)
for two classes and a single network output. Show that, in the limit of an
infinite data set, the terms involving second derivatives of the network
outputs, as well as some of the terms involving first derivatives, vanish
at the minimum of the error function as a consequence of the fact that
.~ the network outputs equal the conditional averages of the target data. Ex-
tend this result to the cross-entropy error (6.145) corresponding to several
independent attributes.
5 (%) Show that the entropy measure in (6.145), which was derived for targets
t; = 0,1, applies also in the case where the targets are probabilities with
values in the range (0,1). Do this by considering an extended data set in
which each pattern ¢} is replaced by a set of M patterns of which a fraction
Mt} are set to 1 and the remainder are set to 0, and then applying (6.145)
to this extended data set.
) Consider the error function (6.148), together with a network whose
- outputs are given by a softmax activation function (6.151), in the limit of
an infinite data set. Show that the network output functions yx(x) which
minimize the error are given by the conditional averages of the target data
(tx|x). Hint: since the {yx} are not independent, as a result of the constraint
2 1Yk = 1, consider the functional derivative (Appendix D) with respect
| 10 ai(x) instead.
7 (%) Consider the Hessian matrix for the error function (6.148) and a net-
work with a softmax output activation function (6.151) so that 3, yx(x) =
1. Show that the terms involving second derivatives of the network outputs
Vanish in the limit of infinite data, provided the network has been trained
’50 a minimum of the error function. Hint: make use of the result of Exer-
lise 6.16.
8(%) Consider a classification network in which the targets for training are
. Biven by ¢ = 1 — Ly for an input vector x" from class C;, where Ly
are the elements of a loss matrix, as discussed in Section 1.10. Use the
general result yx(x) = (tx|x) for the network outputs at the minimum of
the error function to show that the outputs are given by weighted posterior

i r

252 6: Error Functions

probabilities such that selection of the largest output corresponds tg
minimum-risk classification.
6.19 (x+) Generate histograms of the kind shown in Figure 6.13 for a
crete variable by sampling from a distribution consisting of a mi
two Gaussians. Evaluate numerically the entropy of the histograms
(6.166) and explore the dependence of the entropy on the parametes
the mixture model.
6.20 (x) Using the technique of functional differentiation (Appendix D)
gether with Lagrange multipliers (Appendix C), show that the pro
density function p(z) which maximizes the entropy

7
PARAMETER OPTIMIZATION ALGORITHMS

n previous chapters, the problem of learning in neural networks has been for-
ated in terms of the minimization of an error function E. This error is a
tion of the adaptive parameters (weights and biases) in the network, which
can conveniently group together into a single W-dimensional weight vector
s with components wy ... ww.

In Chapter 4 it was shown that, for a multi-layer perceptron, the derivatives

5= f p(z) Inp(z) da

subject to the constraints

/ p(z)dx =1 h error function with respect to the network parameters can be obtained in a

putationally efficient way using back-propagation. We shall see that the use

¢h gradient information is of central importance in finding algorithms for

/ zp(z)dr = p 4 k training which are sufficiently fast to be of practical use for large-scale
cations.

' The problem of minimizing continuous, differentiable functions of many vari-
is one which has been widely studied, and many of the conventional ap-
es to this problem are directly applicable to the training of neural net-
In this chapter we shall review several of the most important practical
hms. One of the simplest of these is gradient descent, which has been de-
d briefly in earlier chapters. Here we investigate gradient descent in more
and discuss its limitations. We then describe a number of heuristic modifi-
to gradient descent which aim to improve its performance. Next we review
mportant class of conventional optimization algorithms based on the con-
f conjugate gradients, including a relatively recent variation called scaled
ugate gradients. We then describe the other major class of conventional op-
tion algorithms known as quasi-Newton methods. Finally, we discuss the
1 Levenberg-Marquardt algorithm which is applicable specifically to a
-squares error function. There are many standard textbooks which cover
inear optimization techniques, including Polak (1971), Gill ef al. (1981),
s and Schnabel (1983), Luenberger (1984), and Fletcher (1987).
Is sometimes argued that learning algorithms for neural networks should
al (in the sense of the network diagram) so that the computations needed
ate each weight can be performed using information available locally to
Weight. This requirement may be motivated by interest in modelling biolog-
al systems or by the desire to implement network algorithms in parallel
8. Although the locality issue is relevant both to biological plausibility
hardware implementation, it represents only one facet of these issues,
Mmuch more careful analyses are required. Since our goal is to find the most

f I — p|Rp(z) dz = o®

is given by

= RI-UR |z — p|® Y
p(x) = m exp (—"—R;'E—-) 0.

where I'(a) is the gamma function defined on page 28.

6.21 (x) Show that the choice of distribution g(x) which minimizes th
entropy (6.181) is given by ¢(x) = p(x). To do this, consider the
derivative (Appendix D) of (6.181) with respect to g(x). This d
needs to be evaluated subject to the constraint

/q(x)dx=1

which can be imposed by using a Lagrange multiplier (Appendix 3
6.22 (x) By substituting (6.189) into (6.188) and evaluating the integral ¢
derive the result {6.190). >,

254 7: Parameter Oplimization Algorithms 7.1: Error surfaces 255

D

-
-

w

Figure 7.1. Geometrical picture of the error function E(w) as a surface
above weight space. Points A and B represent minima of the error fun
At any point C, the local gradient of the error surface is given by the
VE.

Figure 7.2. A schematic error function for a single parameter w, showing four
onary points at which the local gradient of the error function vanishes.
int A is a local minimum, point B is a local maximum, point C is a saddle-
point, and point D is the global minimum,

effective techniques for pattern recognition, there is little point in introd
necessary restrictions. We shall therefore regard the issue of locality as:
in the present context.

Most of the algorithms which are described in this chapter are ones w
been found to have good performance in a wide range of applications.
different algorithms will perform best on different problems and it is
not possible to recommend a single universal optimization algorithm
we highlight the relative advantages and limitations of different algo
they are discussed.

e VE denotes the gradient of E in weight space. The minimum for which
ue of the error function is smallest is called the global minimum while
minima are called local minima. There may also be other points which
the condition (7.1) such as local maxima or saddlepoints. Any vector w
ich this condition is satisfied is called a stationary point, and the different
of stationary point are illustrated schematically in Figure 7.2.
a consequence of the non-linearity of the error function, it is not in general
le to find closed-form solutions for the minima. Instead, we consider algo-
which involve a search through weight space consisting of a succession of
7.1 Error surfaces P8 of the form
The problem addressed in this chapter is to find a weight vector w which
imizes an error function E(w). It is useful to have a simple geometric
of the error minimization process, which can be obtained by viewing £
an error surface sitting above weight space, as shown in Figure 7.1.
works having a single layer of weights, linear output-unit activation
and a sum-of-squares error, the error function will be a quadratic
the weights. In this case the error surface will have a general multidi
parabolic form. There is then a single minimum (or possibly a single con
of degenerate minima), which can be located by solution of a set of couple
equations, as discussed in detail in Section 3.4.3. _
However, for more general networks, in particular those with more
layer of adaptive weights, the error function will typically be a highly 1
function of the weights, and there may exist many minima all of which

wiTH) — w(7) + Awlm) (7.2)

7 labels the iteration step. Different algorithms involve different choices
Weight vector increment Aw("™), For some algorithms, such as conjugate
its and the quasi-Newton algorithms discussed later, the error function is
ed not to increase as a result of a change to the weights (and hopefully
ease). One potential disadvantage of such algorithms is that if they reach
minimum they will remain there forever, as there is no mechanism for
" N0 escape (as this would require a temporary increase in the error function).
 Glloice of initial weights for the algorithm then determines which minimum
_l'ithm will converge to. Also, the presence of saddlepoints, or regions
the error function is very flat, can cause some iterative algorithms to
‘stuck’ for extensive periods of time, thereby mimicking local minima.
ent algorithms can exhibit different behaviour in the neighbourhood

num. If €(”) denotes the distance to the minimum at step 7, then
nce often has the general form

VE =0

256 7: Parameter Optimization Algorithms 7.2: Local quadratic approzimation 257

et (el)E Local quadratic approximation

nsiderable degree of insight into the optimization problem, and into the
us techniques for solving it, can be obtained by considering a local quadratic
roximation to the error function. Consider the Taylor expansion of E(w)
ound some point W in weight space

where L governs the order of convergence. Values of L = 1 and L = 2 are kng
respectively as linear and quadratic convergence. 1

In Section 4.4 we discussed the high degree of symmetry which ex
the weight space of a multi-layered neural network. For instance, a twe
network with M hidden units exhibits a symmetry factor of M12M. Tiy
any point in weight space, there will be M2 equivalent points which ge;
the same network mapping, and which therefore give rise to the same value
error function. Any local or global minimum will therefore be replicated a
number of times throughout weight space. Of course, in a practical applica
is irrelevant which of these many equivalent solutions we use. Furthermo
algorithms we shall be discussing make use of a local stepwise search th
weight space, and will be completely unaffected by the presence of the n
equivalent points elsewhere in weight space.

In Section 6.1.3 we showed that the sum-of-squares error function
limit of an infinite data set, can be written as the sum of two terms

E(w) = E(®) + (w—#)Tb + %(w — #)TH(w - ®) (7.6)
where b is defined to be the gradient of E evaluated at W
b= VE|, (7.7)

the Hessian matrix H is defined by

OFE

s . oy 7.8
1] 8“."{61”:3 {)

(H)

from (7.6), the corresponding local approximation for the gradient is given by

1
=52 [{ue(x w) = (tlx)} p(x) dx
24
1 VE =b+H(w-Ww). (7.9)
+= / t21x) — (tx|x)?}p(x) dx
2 ; teal) = (el Jet) oints w which are close to W, these expressions will give reasonable approx-
ons for the error and its gradient, and they form the basis for much of the
squent discussion of optimization algorithms.
sider the particular case of a local quadratic approximation around a
w* which is a minimum of the error function. In this case there is no linear
, since VE = 0 at w*, and (7.6) becomes

where yi(x;w) denotes the activation of output unit £ when the ne
presented with input vector x, and (¢x|x) denotes the conditional avera
corresponding target variable given by

X) = X dt .
(i) / i) E(w) = E(w") + %(w—w‘)TH(www‘) (7.10)

Since only the first term in (7.4) depends on the network weights, the
minimum of the error is obtained when yi (x; w) = (tx|x). This can be ¢
as the optimal solution, as discussed in Section 6.1.3. In practice we mus
with finite data sets, however. If the network is relatively complex (for in
if it has a large number of adaptive parameters) then the best generalizat
formance might be obtained from a local minimum, or from some other p
weight space which is not a minimum of the error. This leads to a consi
of techniques in which the generalization performance is monitored as
tion of time during the training, and the training is halted when the op!
generalization is achieved. Such methods are discussed briefly in Section 9.

e the Hessian is evaluated at w*. In order to interpret this geometrically,
r the eigenvalue equation for the Hessian matrix

Hl.'li = /\,‘l‘.‘." (711)

e the eigenvectors u; form a complete orthonormal set (Appendix A) so

u; uy = 8y (7.12)

v expand (w —w*) as a linear combination of the eigenvectors in the form

258 7: Parameter Optimization Algorithms 7.8: Linear output units 259

w—w"'= E o,
i

Substituting (7.13) into (7.10), and using (7.11) and (7.12), allows the'g
function to be written in the form

B(w) = E(w") + % > Nia

2

Equation (7.13) can be regarded as a transformation of the coordinate
in which the origin is translated to the point w*, and the axes are ro
align with the eigenvectors (through the orthogonal matrix whose col
the u;). This transformation is discussed in more detail in Appendix A.

A matrix H is said to be positive definite if

Y

‘Figure 7.3. In the neighbourhood of a minimum w", the error function can
e approximated by a quadratic function. Contours of constant error are then
ses whose axes are aligned with the eigenvectors u; of the Hessian ma-
with lengths that are inversely proportional to the square roots of the
_corresponding eigenvectors A;.

vIHv >0 for all v,

Since the eigenvectors {u;} form a complete set, an arbitrary vector v cai
written .
adient information can lead to significant improvements in the speed with
ch the minima of the error function can be located. We can easily see why
s0, as follows.

the quadratic approximation to the error function, given in (7.6), the
surface is specified by the quantities b and H, which contain a total of
'+ 3)/2 independent terms (since the matrix H is symmetric), where W
- dimensionality of w (i.e. the total number of adaptive parameters in the
rk). The location of the minimum of this quadratic approximation therefore
ds on O(W?2) parameters, and we should not expect to be able to locate the
num until we have gathered O(W?) independent pieces of information. If
ot make use of gradient information, we would expect to have to perform
O(W?) function evaluations, each of which would require O(W) steps.
‘the computational effort needed to find the minimum would scale like

v=> B
From (7.11) and (7.12) we then have
vTHv =Y BN

and so H will be positive definite if all of its eigenvalues are positive. In
coordinate system whose basis vectors are given by the eigenvectors {
contours of constant E are ellipses centred on the origin, whose axes are ¢
with the eigenvectors and whose lengths are inversely proportional to the.
roots of the eigenvalues, as indicated in Figure 7.3. For a one-dimensional W
space, a stationary point w* will be a minimum if ' compare this with an algorithm which makes use of the gradient infor-
Since each evaluation of VE brings W items of information, we might
to find the minimum of the function in O(W) gradient evaluations. Using
Propagation, each such evaluation takes only O(W) steps and so the min-
could now be found in O(W?) steps. This dramatically improved scaling
W strongly suggests that gradient information should be exploited, as is
for the optimization algorithms discussed in this chapter.

The corresponding result in d-dimensions is that the Hessian matrix,
at w*, should be positive definite (Exercise 7.1).

7.2.1 Use of gradient information
For most of the network models and error functions which are discussed il;
chapters, it is possible to evaluate the gradient of the error function
efficiently, for instance by means of the back-propagation procedure. L

3 Linear output units

cussed at length in Section 3.4.3, if a sum-of-squares error function is used,
network mapping depends linearly on the weights, then the minimization

260 7: Parameter Optimization Algorithms 7.4: Optimization in practice 261

s function networks has already been dealt with in Chapter 6. Here we shall
ourselves with multi-layer perceptrons having sigmoidal hidden-unit ac-
functions.

o majority of initialization procedures in current use involve setting the
< to randomly chosen small values. Random values are used in order to
roblems due to symmetries in the network. The initial weight values are
n to be small so that sigmoidal activation functions are not driven into
turation regions where ¢'(a) is very small (which would lead to small
and consequently a very flat error surface). If the weights are too small,
er, all of the sigmoidal activation functions will be approximately linear,
sh can again lead to slow training. This suggests that the summed inputs
sigmoidal functions should be of order unity. A random initialization of
ights requires that some choice be made for the distribution function from
e weights are generated. We now examine the choice of this distribution
le more detail.

e shall suppose that the input values to the network z;,...z4 have been
s0 as to have zero mean (z;) = 0 and unit variance (z ,) = 1, where the
on (-) will be used to denote an average both over the training data set and
all the choices of initial network weights. The pre-processing of input data
to network training, in order to achieve this normalization, is discussed
detail in Section 8.2. The weights are usually generated from a simple
tion, such as a spherically symmetric Gaussian, for convenience, and this
ally taken to have zero mean, since there is no reason to prefer any other
¢ point in weight space. The choice of variance o2 for the distribution can
portant, however. For a unit in the first hidden layer, the activation is given
Y = g(a) where

of the error function represents a linear problem, which can be solved e
a single step using singular value decomposition (SVD). If we consider ¢
general multi-layer network with linear output units, then the dependen:
network mapping on the final-layer weights will again be linear. This meang)
the partial optimization of a sum-of-squares error function with respect
weights (with all other parameters held fixed) can again be performed :
methods, as discussed in Section 3.4.3. The computational effort involved §
is often very much less than that required for general non-linear optimi;
which suggests that it may be worthwhile to use linear methods for ¢
layer weights, and non-linear methods for all other parameters. This leads
following hybrid procedure for optimizing the weights in such networks
and Lowe, 1988). P
Suppose the final-layer weights are collected together into a vector wi,
the remaining weights forming a vector w. The error function can then
pressed as E(wy, W), which is a quadratic function of wy. For any given %
of w we can perform a one-step exact minimization with respect to the wy W
SVD, in which W is held fixed. We denote the optimum w; by wp(W). J
ventional non-linear optimization method (such as conjugate gra«:lier:d;s‘,iJ
quasi-Newton methods to be described later) is used to minimize E wit
to w. Every time the value of W is changed, the weights wy, are recompute
can therefore regard the final layer weights w;, as evolving on a fast time-g
compared to the remaining weights W. Effectively, the non-linear optimiza
attempting to minimize a function E(wp (W), W) with respect to w. An
advantage of this method is that the dimensionality of the effective search
for the non-linear algorithm is reduced, and we might hope that this woul
duce the number of training iterations which is required to find a good sol
However, this is offset to some extent by the greater computational e
quired at each such step. Webb and Lowe (1988) show that, for some p
this hybrid approach can yield better solutions, or can require less compu
effort, than full non-linear optimization of the complete network.

d
a=) wa (7.19)
i=0

7.4 Optimization in practice the choice of weight values is uncorrelated with the inputs, the average of

In order to apply the algorithms described in this chapter to real pro
we need to address a variety of practical issues. Here we discuss procedu
initializing the weights in a network, criteria used to terminate traini
normalized error functions for assessing the performance of trained n

All of the training algorithms which we consider in this chapter E
initializing the weights in the network to some randomly chosen values.
already seen that optimization algorithms which proceed by a steady
reduction in the error function can become stuck in local minima. A
choice of initial weights is therefore potentially important in allowing the
ing algorithm to produce a good set of weights, and in addition may
improvements in the speed of training. Even stochastic algorithms such
ent descent, which have the possibility of escaping from local minima, can
strong sensitivity to the initial conditions. The initialization of weights for r8

Z(wt:‘:t) = Z(w: Ts) (7.20)

=0
€8 (z,) = 0. Next consider the variance of a
d d
= <(w;x;) ijzj > Z(w W z?) = o?d (7.21)
i=0 3=0 i=0

2 is the variance of the distribution of weights, and we have used the fact

262 7: Parameter Optimization Algorithms 7.5: Gradient descent 263

“ormance of a trained network. For a sum-of-squares error, an appropriate
o would be the normalized error function given by

that the weight values are uncorrelated and hence (w;w;) = 6,-_?-02, toget}
(z?) = 1. As we have discussed already, we would like a to be of order
that the activations of the hidden units are determined by the non-li
of the sigmoids, without saturating. From (7.21) this suggests that the
deviation of the distribution used to generate the initial weights shoul
o o d~1/2. A similar argument can be applied to the weights feeding
other unit in the network, if we assume that the outputs of hidden
appropriately distributed.
Since a particular training run is sensitive to the initial conditions
weights, it is common practice to train a particular network many times g
different weight initializations. This leads to a set of different networ
generalization performance can be compared by making use of independ
In this case it is possible to keep the best network and simply discard thy
der. However, improved prediction capability can often be achieved by
a commiitee of networks from amongst the better ones found during the
process, as discussed in Section 9.6. The use of multiple training runs als
a related role in building a mixture model for the distribution of weig
in the Bayesian framework, as discussed in Section 10.7. '
When using non-linear optimization algorithms, some choice must be
when to stop the training process. Some of the possible choices are list
1. Stop after a fixed number of iterations. The problem with this

is that it is difficult to know in advance how many iterations
appropriate, although an approximate idea can be obtained

5 | Salylen - o

= 122
SN o

t is the mean of the target data over the test set (Webb et al., 1988).
error function equals unity when the model is as good a predictor of the
t data as the simple model y = t, and equals zero if the model predicts
ata values exactly. A value of E of 0.1 will often prove adequate for simple
fication problems, while for regression applications a significantly smaller
may be needed. For reasons introduced in Chapter 1, and discussed at
er length in Chapter 9, the performance of the trained network should be
using a data set which is independent of the training data.
classification problems, it is appropriate to test the performance of the
network by assessing the number of misclassifications, or more generally
ue of the total loss (Section 1.10).

5 Gradient descent

C the simplest network training algorithms, and one which we have already
nntered several times in previous chapters, is gradient descent, sometimes
; cnown as steepest descent. In the batch version of gradient descent, we start
preliminary tests. If several networks are b‘?i“g trained (e.g.. Wik some initial guess for the weight vector (which is often chosen at random)
numbers of hidden units) then the appropriate number of iteration ted by w(©). We then iteratively update the weight vector such that, at step
be different for different networks. . e move a short distance in the direction of the greatest rate of decrease of
2. Stop when a predetermined amount of CPU (central processing unit)i or, i.e. in the direction of the negative gradient, evaluated at w(™):
has been used. Again, it is difficult to know what constitutes a
time unless some preliminary tests are performed first. Some adj
for different architectures may again be necessary.
3. Stop when the error function falls below some specified value. Th
from the problem that the specified value may never be reached,
limit on CPU time may also be required.
4. Stop when the relative change in error function falls below sor
fied value. This may lead to premature termination if the error
decreases relatively slowly during some part of the training run.
5. Stop training when the error measured using an independent val
set starts to increase. This approach is generally used as part of a 8
to optimize the generalization performance of the network, anc
discussed further in Section 9.2.4.

In practice some combination of the above methods may be employed
a largely empirical process of parameter optimization.

Since the value of the error function depends on the number of patts
useful to consider a normalized error function for the purposes of as

Aw™) = — VE| sy - (7.23)

that the gradient is re-evaluated at each step. In the sequential, or pattern-
 version of gradient descent, the error function gradient is evaluated for
€ pattern at a time, and the weights updated using

Aw(™) = —n VE*| (7.24)

the different patterns n in the training set can be considered in sequence, or
at random. The parameter 7) is called the learning rate, and, provided its
S sufficiently small, we expect that, in the batch version (7.23) of gradient
the value of E will decrease at each successive step, eventually leading
ht vector at which the condition (7.1) is satisfied.

the sequential update (7.24) we might also hope for a steady reduction
I since, for sufficiently small 5, the average direction of motion in weight
Should approximate the negative of the local gradient. In order to study this

264 7: Parameter Optimization Algorithms 7.5: CGradient descent

more carefully, we note that sequential gradient descent (7.24) is remini
the Robbins-Monro procedure (Section 2.4.1) for finding the zero of a reg
function (in this case the error function gradient). The analogy becomes py
and we are assured of convergence, if the learning rate parameter 7 is
decrease at each step of the algorithm in accordance with the requirements
theorem (Luo, 1991). These can be satisfied by choosing n{™ o 1/7, alf]
such a choice leads to very slow convergence. In practice, a constant value
often used as this generally leads to better results even though the guaran
convergence is lost. There is still a serious difficulty with this approach, hoy
If n is too large, the algorithm may overshoot leading to an increase in .
possibly to divergent oscillations resulting in a complete breakdown in the
rithm. Conversely, if 7 is chosen to be too small the search can proceed ex

" slowly, leading to very long computation times. Furthermore, the optimum va
for n will typically change during the course of the minimization. d
An important advantage of the sequential approach over batch metho:

if there is a high degree of redundant information in the data set. As a sim|
ample, suppose that we create a larger training set from the original on
by replicating the original data set ten times. Every evaluation of E then
ten times as long, and so a batch algorithm will take ten times as long ¢
given solution. By contrast, the sequential algorithm updates the weight
each pattern presentation, and so will be unaffected by the replication of
Later in this chapter we describe a number of powerful optimization algot
(such as conjugate gradients and quasi-Newton methods) which are intri
batch techniques. For such algorithms it is still possible to gain some
advantages of sequential techniques by grouping the data into blocks ai
senting the blocks sequentially as if each of them was representative of the
data set. Some experimentation may be needed to determine a suitable 8
the blocks.
Another potential advantage of the sequential approach is that, sin
stochastic algorithm, it has the possibility of escape from local minima.
in this chapter we shall discuss a number of algorithms which have the pri
that each step of the algorithm is guaranteed not to produce an increase
error function. If such an algorithm finds its way into a local minimum it
typically remain there indefinitely. '

Figure 7.4, Schematic illustration of fixed-step gradient descent for an error
function which has substantially different curvatures along different directions.
Ellipses depict contours of constant F, so that the error surface has the form of
~ along valley. The vectors u; and uy represent the eigenvectors of the Hessian
matrix. Note that, for most points in weight space, the local negative gradient
vector —V E does not point towards the minimum of the error function. Suc-
- cessive steps of gradient descent can oscillate across the valley, with very slow
progress along the valley towards the minimum.

uadratic approximation to the error function in the neighbourhood of the

nimum, discussed earlier in Section 7.2. From (7.10), (7.11) and (7.13), the
ent of the error function in this approximation can be written as

VE =) a;hu;. (7.25)

BYom (7.13) we also have

Aw =" Aaiu;. (7.26)

mbining (7.25) with (7.26) and the gradient descent formula (7.23), and using
orthonormality relation (7.12) for the eigenvectors of the Hessian, we obtain
2 following expression for the change in o; at each step of the gradient descent

7.5.1 Convergence

£t o s - Aa; = —nAiey (7.27)
As we have already indicated, one of the limitations of the gradient d |
technique is the need to choose a suitable value for the learning rate para Om which it follows that
n. The problems with gradient descent do not stop there, however. Xig
depicts the contours of E, for a hypothetical two-dimensional weight s Qv — (1 — pA;)adld (7.28)

which the curvature of E varies significantly with direction. At most points
error surface, the local gradient does not point directly towards the m
Gradient descent then takes many small steps to reach the minimum,
clearly a very inefficient procedure. :
We can gain deeper insight into the nature of this problem by con

old’ a:nd ‘new’ denote values before and after a weight update. Using the
rmality relation (7.12) for the eigenvectors, together with (7.13), we have

266 7: Parameter Optimization Algorithms 7.5: Gradient descent 267
uf(w—w") = o i L L (7.32)
dr 3‘[.[)‘,‘

and so ; can be interpreted as the distance to the minimum along the
u;. From (7.28) we see that these distances evolve independently such
each step, the distance along the direction of u; is multiplied by a factor (1
After a total of T' steps we have '

e w; represents any weight parameter in the network. These equations cor-
ond to the motion of a massless particle with position vector w moving in a
ential field E(w) subject to viscous drag with viscosity coefficient ™. They
-esent a set of stiff differential equations (ones characterized by several widely
ng time-scales) as a consequence of the fact that the Hessian matrix of-
as widely differing eigenvalues. The simple gradient descent formula (7.23)
ents a ‘fixed-step forward Euler’ technique for solving (7.32), which is a
icularly inefficient approach for stiff equations. Application of specialized
iques for solving stiff ordinary differential equations (Gear, 1971) to the
in (7.32) can give significant improvements in convergence time (Owens

o™ = (1 - p)Ta®

and so, provided |1 —)| < 1, the limit T — oo leads to oy = 0, wh
(7.29) shows that w = w* and so the weight vector has reached the n
of the error. Note that (7.30) demonstrates that gradient descent leads
convergence in the neighbourhood of a minimum. Also, convergence to
tionary point requires that all of the A; be positive, which in turn implies’
the stationary point is indeed a minimum (Exercise 7.1). 59 Momentum

By making 7 larger we can make the factor (1 — n);) smaller an
improve the speed of convergence. There is a limit to how large 5 can
however. We can permit (1—nA;) to go negative (which gives oscillating
o) but we must ensure that [1-7);| < 1 otherwise the o; values will dive
limits the value of) to 7 < 2/Anax Where Apax is the largest of the eig
The rate of convergence, however, is dominated by the smallest eig;
with 7 set to its largest permitted value, the convergence along the
corresponding to the smallest eigenvalue (the long axis of the ellipse in Fi

will be governed by
2'\min
(-52)

where Amin is the smallest eigenvalue. If the ratio Apyin/Amax (Whose recip
is known as the condition number of the Hessian) is very small, correspond
highly elongated elliptical error contours as in Figure 7.4, then progress to

very simple technique for dealing with the problem of widely differing eigen-
es is to add a momentum term to the gradient descent formula (Plaut et al.,
6). This effectively adds inertia to the motion through weight space (Exer-
17.3) and smoothes out the oscillations depicted in Figure 7.4. The modified
dient descent formula is given by

AW = —n VEB| iy + pAw™™ (7.33)
vhere 41 is called the momentum parameter.

understand the effect of the momentum term, consider first the motion
h a region of weight space for which the error surface has relatively low
ture, as indicated in Figure 7.5. If we make the approximation that the
ent is unchanging, then we can apply (7.33) iteratively to a long series of
ieight updates, and then sum the resulting arithmetic series to give

2
the minimum will be extremely slow. From our earlier discussion of g Aw = —nVE{l +p+p"+...} (7.34)
error surfaces, we might expect to be able to find the minimum exactly n
few as W (W +3)/2 error function evaluations. Gradient descent is an ext: = _1_‘L£VE (7.35)

inefficient algorithm for error function minimization, since the number of
evaluations can easily be very much greater than this. Later we shall el
algorithms which are guaranteed to find the minimum of a quadratic erro
exactly in a small, fixed number of steps which is O(W?).

The gradient descent procedure we have described so far involves f
succession of finite steps through weight space. We can instead imagine the
tion of the weight vector taking place continuously as a function of time
gradient descent rule is then replaced by a set of coupled non-linear
differential equations of the form

d we see that the result of the momentum term is to increase the effective
ng rate from 7 to n/(1 — p).

By contrast, in a region of high curvature in which the gradient descent is
Stillatory, as indicated in Figure 7.6, successive contributions from the momen-
term will tend to cancel, and the effective learning rate will be close to 7.
the momentum term can lead to faster convergence towards the minimum
ut causing divergent oscillations. A schematic illustration of the effect of
me.ntu.m term is shown in Figure 7.7. From (7.35) we see that p must lie

268 7: Parameter Optimization Algorithms 7.5: Gradient descent 269

Figure 7.7. Illustration of the effect of adding a momentum term to the gradient
descent algorithm, showing the more rapid progress along the valley of the error
function, compared with the unmodified gradient descent shown in Figure 7.4.

V.» w

m @ AL®
Aw Aw™ Aw ecent for neural network training by making various ad hoc modifications.

shall not attempt to review them all here as the literature is much too
nsive, and we will shortly be considering several robust, theoretically well-
ded optimization algorithms. Instead we consider a few illustrative examples
ch techniques which attempt to address various deficiencies of the basic
radient descent procedure.
One obvious problem with simple gradient descent plus momentum is that
contains two parameters, 77 and , whose values must be selected by trial and
The optimum values for these parameters will depend on the particular
slem, and will typically vary during training. We might therefore seek some
ure for setting these automatically as part of the training algorithm. One
approach is the bold driver technique (Vogl et al., 1988; Battiti, 1989).
sider the situation without a momentum term first. The idea is to check
her the error function has actually decreased after each step of the gradient
ent. If it has increased then the algorithm must have overshot the minimum
the minimum along the direction of the weight change) and so the learning
' parameter must have been too large. In this case the weight change is
one, and the learning rate is decreased. This process is repeated until a
ease in error is found. If, however, the error decreased at a given step, then
w weight values are accepted. However, the learning rate might have been
all, and so its value is increased. This leads to the following prescription
L PP updating the learning rate parameter:

Figure 7.5. With a fixed learning rate parameter, gradient descent do
surface with low curvature leads to successively smaller steps (linear

gence). In such a situation, the effect of a momentum term is similar t
increase in the effective learning rate parameter.

E Awﬂ) j

Figure 7.6. For a situation in which successive steps of gradient descent
oscillatory, a momentum term has little influence on the effective value of th
learning rate parameter.

The inclusion of momentum generally leads to a significant imp.
the performance of gradient descent. Nevertheless, the algorithm ren
tively inefficient. The inclusion of momentum also introduces a second
jt whose value needs to be chosen, in addition to that of the learning ré
rameter 7.

_] P1old if AE <0
Tnaw: = {aﬂnld if AE > 0. (759)

‘Parameter p is chosen to be slightly larger than unity (a typical value might

= 1.1) in order to avoid frequent occurrences of an error increase, since
ich cases the error evaluation is wasted. The parameter o is taken to be
antly less than unity (o = 0.5 is typical) so that the algorithm quickly
®rts to finding a step which decreases the error, again to minimize wasted
Aputation, Many variations of this heuristic are possible, such as increasing 7

7.5.3 Enhanced gradiznt descent

As we have seen, gradient descent, even with a momentum term included,
particularly efficient algorithm for error function minimization. There
numerous attempts in recent years to improve the performance of basic

270 7: Parameter Optimization Algorithms 7.5: Gradient descent 271

d 4 > 0 is a step-size parameter. This prescription is called the delta-delta
e (since, in Jacobs (1988) the notation 6; was used instead of g; to denote
, components of the local gradient vector). For the case of a quadratic error

e, it can be derived by minimizing the error with respect to the learning
parameters (Exercise 7.6). This rule does not work well in practice since it
1 lead to negative values for the learning rate, which results in uphill steps,
less the value of v is set very small, in which case the algorithm exhibits

improvement over conventional gradient descent. A modification to the
ithm, known as the delta-bar-delta rule is to take

linearly (by a fixed increment) rather than exponentially (by a fixed factor). If
include momentum in the bold driver algorithm, the momentum coefficient
be set to some fixed value (selected in an ad hoc fashion), but the weight up
is usually reset along the negative gradient direction after every occurrenc
error function increase, which is equivalent to setting the momentum coefficie
temporarily to zero (Vogl et al., 1988). '

A more principled approach to setting the optimal learning rate parar
was introduced by Le Cun et al. (1993). In Section 7.5.1 we showed
largest value which can be used for the learning rate parameter was gi
Nmax = 2/Amax, Where Ay is the largest eigenvalue of the Hessian matri

easily shown (Exercise 7.5) that if an arbitrary vector is alternately no) 5 if 5‘5"'” g§’) >0 (7.40)
and then multiplied by the Hessian, it eventually converges to Amax ti Ang = _ mgr) if §(f~1) g(ﬂ <0 i
corresponding eigenvector. The length of this vector then gives A\nayx itse ! : .

uation of the product of the Hessian with a vector can be performed efficiently

using the R{:}-operator technique discussed in Section 4.10.7. Once a su

value for the learning rate has been determined, the standard gradient d g}ﬂ {1 g)g‘(f) " 6,gi(r—x) (7.41)

technique is applied. .

We have already noted that the (negative) gradient vector need not
towards the error function minimum, even for a quadratic error surfac
dicated in Figure 7.4. In addition, we have seen that long narrow valleys.
error function, characterized by a Hessian matrix with widely differing e g
ues, can lead to very slow progress down the valley, as a consequence of th
to keep the learning rate small in order to avoid divergent oscillations
the valley. One approach that has been suggested for dealing with this
(Jacobs, 1988) is to introduce a separate learning rate for each weight i
network, with procedures for updating these learning rates during the trai
process. The gradient descent rule then becomes

t g is an exponentially weighted average of the current and previous val-
of g. This algorithm appears to work moderately well in practice, at least
ome problems. One of its obvious drawbacks, however, is that it now con-
four parameters (6, ¢, k and) if we include momentum. A more serious
ulty is that the algorithm rests on the assumption that we can regard the
ht parameters as being relatively independent. This would be the case for a
ratic error function if the Hessian matrix were diagonal (so that the major
the ellipse in Figure 7.3 were aligned with the weight axes). In practice,
weights in a typical neural network are strongly coupled, leading to a Hessian
atrix which is often far from diagonal. The solution to this problem lies in a
of standard optimization algorithms which we shall discuss shortly.

) T OFE 5
Awg)= -n” Gh other heuristic scheme, known as quickprop (Fahlman, 1988), also treats
e ights as if they were quasi-independent. The idea is to approximate the

‘surface, as a function of each of the weights, by a quadratic polynomial (i.e.
bola), and then to use two successive evaluations of the error function, and
uation of its gradient, to determine the coefficients of the polynomial. At
ext step of the iteration, the weight parameter is moved to the minimum of
arabola. This leads to an expression for the weight update at step T given
(Exercise 7.7)

Heuristically, we might wish to increase a particular learning rate w

derivative of E with respect to the corresponding parameter has the

on consecutive steps since this weight is moving steadily in the downhill

Conversely, if the sign of the gradient changes on consecutive steps, this

oscillation, and the learning rate parameter should be decreased,
One way to implement this is to take

(T) —_ (P (7=1) (r+1) 9")
An;’ =g g; Aw; = (.,._.1; — ™ Aw;"". (7.42)
9; 9;
where gl y 1 . ;
orithm can be started using a single step of gradient descent. This assumes
() dE result of the local quadratic fit is to give a parabola with a minimum.

9i awi‘" it leads to a parabola with a maximum, the algorithm can take an

272 7: Parameter Optimization Algorithms 7.6: Line search

uphill step. Also, some bound on the maximum size of step needs to be impes
to deal with the problem of a nearly flat parabola, and several other .
needed in order to get the algorithm to work in practice.

7.6 Line search

The algorithms which are described in this chapter involve taking a sequ nce
steps through weight space. It is convenient to consider each of these st
two parts. First we must decide the direction in which to move, and secong
must decide how far to move in that direction. With simple gradient descen
direction of each step is given by the local negative gradient of the erro
tion, and the step size is determined by an arbitrary learning rate pa
We might expect that a better procedure would be to move along the dire
of the negative gradient to find the point at which the error is minimized
generally we can consider some search direction in weight space, and
the minimum of the error function along that direction. This procedure
ferred to as a line search, and it forms the basis for several algorithms w
are considerably more powerful than gradient descent. We first consider how
searches can be implemented in practice.

Suppose that at step 7 in some algorithm the current weight vector i
and we wish to consider a particular search direction d(™) through weight
The minimum along the search direction then gives the next value for the
vector:

-
y

A

Figure 7.8. An example of an error function which depends on a parameter A
governing distance along the search direction, showing a minimum which has
been bracketed. The three points a < b < c are such that F(a) > E(b) and
E(c) > E(b). This ensures that the minimum lies somewhere in the interval

(a,c).

where N is the number of patterns in the data set. An error function gradient
aluation, however, requires a forward propagation, a backward propagation,
a set of multiplications to form the derivatives. It therefore needs ~ 5SNW
ations, although it does allow the error function itself to be evaluated as
On balance, the line search is slightly more efficient if it makes use of error
ion evaluations only.

jach line search proceeds in two stages. The first stage is to bracket the
um by finding three points a < b < ¢ along the search direction such that
> E(b) and E(c) > E(b), as shown in Figure 7.8. Since the error function
ntinuous, this ensures that there is a minimum somewhere in the interval
(Press et al., 1992). The second stage is to locate the minimum itself. Since
or function is smooth and continuous, this can be achieved by a process of
bolic interpolation. This involves fitting a quadratic polynomial to the error
m evaluated at three successive points, and then moving to the minimum
parabola, as illustrated in Figure 7.9. The process can be repeated by
ing the error function at the new point, and then fitting a new parabola
point and two of the previous points. In practice, several refinements are
cluded, leading to the very robust Brent’s algorithm (Brent, 1973). Line-
algorithms, and termination criteria, are reviewed in Luenberger (1984).
important issue concerns the accuracy with which the line searches are
brmed. Depending on the particular algorithm in which the line search is to
d; it may be wasteful to invest too much computational time in evaluating
Minimum along each search direction to high accuracy. We shall return to
Point later, For the moment, we make one comment regarding the limit of
Yy which can be achieved in a line search. Near a minimum at g, the
t function along the search direction can be approximated by

WD) — (r) 4 g
where the parameter A(") is chosen to minimize
E()) = E(w() 4+ Ad"),

This gives us an automatic procedure for setting the step length, once w
chosen the search direction.

The line search represents a one-dimensional minimization problem.
approach would be to proceed along the search direction in small steps,
ating the error function at each new position, and stop when the error
increase (Hush and Salas, 1988). It is possible, however, to find very much
efficient approaches (Press et al., 1992). Consider first the issue of wh
make use of gradient information in performing a line search. We have
argued that there is generally a substantial advantage to be gained from 1
gradient information for the general problem of seeking the minimum :
ror function E in the W-dimensional weight space. For the sub-problei
search, however, the argument is somewhat different. Since this is n
dimensional problem, both the value of the error function and the gradie
error function each represent just one piece of information. An error functic
culation requires one forward propagation and hence needs ~ 2NW ope

274 7: Parameter Optimization Algorithms 7.7: Conjugate gradients 275

g(“-l] \

] contours of
J‘ constant E
=
— _./
——
-..__..../ (z-1)
_ g
lr ®

Figure 7.9. An illustration of the process of parabolic interpolation used ¢
perform line-search minimization. The solid curve depicts the error as a fun
tion of distance A along the search direction, and the error is evaluated at
three points a < b < ¢ which are such that E(a) > E(b) and E(c) > E(
A parabola (shown dotted) is fitted to the three points a, b, c. The minim:
of the parabola, at d, gives an approximation to the minimum of E(M). Tl
process can be repeated by fitting another parabola through three points giv
by d and whichever of two of the previous points have the smallest error values.
(b and c in this example).

Figure 7.10. After a line minimization, the new gradient is orthogonal to the
line-search direction. Thus, if the search directions are alwayt? chnsen to co-
‘incide with the negative gradients of the error function, as indicated ht?re,
then successive search directions will be orthogonal, and the error function
minimization will typically proceed very slowly.

g iTat) = (7.47)
1
S §E"(A°){A =)’ g = VE. Thus, the gradient at the new minimum is orthogonal to the
ous search direction, as illustrated geometrically in Figure 7.10. Choosing
sive search directions to be the local (negative) gradient directions can
to the problem already indicated in Figure 7.4 in which the search point
tes on successive steps while making little progress towards the minimum.
algorithm can then take many steps to converge, even for a quadratic error

Thus A — Ao must typically be at least of the order of the square 100!
machine precision before the difference between E(\) and E()) is sigr f
This limits the accuracy with which the minimum can be found. For do

precision arithmetic this implies that the minimum can only be found to a relat
accuracy of approximately 3 x 1078, In practice is may be better to settle

much lower accuracy than this. e solution to this problem lies in choosing the successive search directions

such that, at each step of the algorithm, the component of the gradient
llel to the previous search direction, which has just been made zero, is un-
d (to lowest order). This is illustrated in Figure 7.11. Suppose we have
y performed a line minimization along the direction d{™), starting from
int w(™), to give the new point w(™*1). Then at the point w("+!) we have

7.7 Conjugate gradients

In the previous section we considered procedures for line-search minim
along a specified search direction. To apply line search to the problem
function minimization we need to choose a suitable search direction at each
of the algorithm. Suppose we have already minimized along a search di
given by the local negative gradient vector. We might suppose that the
direction at the next iteration should be given by the negative gradient
at the new position. However, the use of successive gradient vectors turns
general not to represent the best choice of search direction. To see why, ¥
that at the minimum of the line search we have, from (7.44)

g(wmt)Ta) = 0. (7.48)

& now choose the next search direction d("+1) such that, along this new direc-
 We retain the property that the component of the gradient parallel to the
€Vious search direction remains zero (to lowest order). Thus we require that

a

g(w(m™t) 4 AdT+NTad(M = (7.49)
F2

E(w™ +xd™) =0

276 7: Parameter Optimization Algorithms 7.7: Conjugate gradients 277

d the error function (7.51) is minimized at the point w* given, from (7.52), by

a” b+ Hw* = 0. (7.53)

Td® =0 I . : e
g < ' 5uppose we can find a set of W vectors (where W is the dimensionality of

X W‘elght. space) which are mutually conjugate with respect to H so that

- \ w{“l)
PR \\ djHd; =0 j#i (7.54)
\, ® hen it is easily shown that these vectors will be linearly independent if H is
w

tive definite (Exercise 7.8). Such vectors therefore form a complete, but non-
ogonal, basis set in weight space. Suppose we are starting from some point
and we wish to get to the minimum w* of the error function. The difference
eni the vectors wy and w” can be written as a linear combination of the
njugate direction vectors in the form

Figure 7.11. This diagram illustrates the concept of conjugate directions. S
pose a line search has been performed along the direction d(™ starting f
the point w'™), to give an error minimum along the search path at the poin
w(™1)_ The direction d("*? is said to be conjugate to the direction d(™

the component of the gradient parallel to the direction d(”, which has j w
b? made zero, remains zero (to lowest order) as we move along the direc w'—w; = Zaidg. (7.55)
d T+1) .
as shown in Figure 7.11. If we now expand (7.49) to first order in), and ng e that, if we define
that the zeroth-order term vanishes as a consequence of (7.48), we obtain
| j=1
dITHA™ = o wi =wi+ Y aid; (7.56)

=]
where H is the Hessian matrix evaluated at the point w{7*1), If the error
is quadratic, this relation holds for arbitrary values of A in (7.49) si
Hessian matrix is constant, and higher-order terms in the expansion of
in powers of A vanish. Search directions which satisfy (7.50) are said to
interfering or conjugate. In fact, we shall see that it is possible to co
sequence of successive search directions d{™) such that each direction is co.
to all previous directions, up to the dimensionality W of the search space.
leads naturally to the conjugate gradient optimization algorithm.

(7.55) can be written as an iterative equation in the form
Witl = W; + Q'JdJ (757)

"""represeuts a succession of steps parallel the conjugate directions, with step

s controlled by the parameters ;.

n order to find expressions for the a’s we multiply (7.55) by dTH and make

(7 53) to give

7.7.1 Quadratic error function

In order to introduce the conjugate gradient algorithm, we follow Johan W

al. (1992) and consider first the case of a quadratic error function of the fol ~dj (b +Hw,) = 21 a;d} Hd;. (7.58)
=

E(w) = Eo+bTw+ -;-WTHw
that the terms on the right-hand side of (7 58) decouple, a.llowmg an

in which the parameters b and H are constant, and H is assumed to be posit licit, solution for the s in the form

definite. The local gradient of this error function is given by
i : £ dj (b + Hw,)

= — . 7.59
w) =b + Hw & d}ﬁd ; ()

278 7: Parameter Optimization Algorithms 7.7: Conjugate gradients 279

d;gj+1 =0. (7.64)

i ly, from (7.63), we have

df(gj+1 —gj) =a;dfHd; =0 forallk<j<W. (7.65)

ag the technique of induction to (7.64) and (7.65) we obtain the result

Figure 7.12. Schematic illustration of the application of the conjugate gra
algorithm to the minimization of a two-dimensional quadratic error func i
The algorithm moves to the minimum of the error after two steps. This s
be compared with Figures 7.4 and 7.7,

dig;=0 forallk<j<W (7.66)

ired.
he next problem is how to construct a set of mutually conjugate directions.

‘can be achieved by selecting the first direction to be the negative gradient
g1, and then choosing each successive direction to be a linear combination
o current gradient and the previous search direction

Without this property, (7.58) would represent a set of coupled equations for
Ct',.

We can write (7.59) in a more convenient form as follows. From (
have

dfHw; = dTHw; dj41 = —gj+1 + G;d;. (7.67)

officients ; can be found by imposing the conjugacy condition (7.54)
gives

where we have again used the conjugacy condition (7.54). This allows the
merator on the right-hand side of (7.59) to be written in the form

g}‘-HHdJ'

d} (b +Hw;) = d](b+Hw;) = d"g; e _
J pl J ﬁ_‘,‘ d}‘HdJ

(7.68)
where g; = g(w;), and we have made use of (7.52). Thus, a; can be ¥ :
the form ct, it is easily shown by induction (Exercise 7.9) that successive use of the

ction given by (7.67) and (7.68) generates a set of W mutually conjugate

m (7.67) it follows that dj is given by a linear combination of all previous
t vectors
We now give a simple inductive argument to show that, if the weig

increment.(_ad using‘(7.57) with the a; given by (7.'62) then the- gradient . E‘Y{Sl- (7.69)
g; at the jth step is orthogonal to all previous conjugate directions. It 1 k - &4
follows that after W steps the components of the gradient along all d -
have been made zero, and so we will have arrived at the minimum of the g i (£.66) we then have
form. This is illustrated schematically for a two-dimensional space in Fig T
To derive the orthogonality property, we note from (7.52) that
gig; = me'g; forallk<j<W (7.70)

8i+1 — 85 = H(wj11 — w;) = a;Hd, =1

where we have used (7.57). We now take the scalar product of this equation :

he initial search direction is just d, = —g;, we can use (7.66) to show that
d;, and use the definition of a; given by (7.62), to give

0, so that the gradient at step j is orthogonal to the initial gradient. If
ly induction to (7.70) we find that the current gradient is orthogonal to

280 7: Parameter Optimization Algorithms 7.7: Conjugate gradients 281
all previous gradients B; = Bi185+1 +1Sg:+i (7.75)
gj ¥

gig;i =0 forallk<j < W.
that these three expressions for 3; are equivalent provided the error function
actly quadratic. In practice, the error function will not be quadratic, and
different expressions for §; can give different results. The Polak-Ribiere
is generally found to give slightly better results than the other expressions.
is probably due to the fact that, if the algorithm is making little progress,
t successive gradient vectors are very similar, the Polak-Ribiere form gives
| value for 3; so that the search direction in (7.67) tends to be reset to
negative gradient direction, which is equivalent to restarting the conjugate
nt. procedure.

‘We also wish to avoid the use of the Hessian matrix to evaluate ;. In fact,
he case of a quadratic error function, the correct value of a; can be found by
forming a line minimization along the search direction. To see this, consider a
dratic error (7.51) as a function of the parameter « along the search direction
starting at the point w;, given by

We have now developed an algorithm for finding the minimum of a g
quadratic error function in at most W steps. Starting from a randomly
point w1y, successive conjugate directions are constructed using (7.67) in
the parameters §; are given by (7.68). At each step the weight vector is
mented along the corresponding direction using (7.57) in which the par:
a; is given by (7.62).

7.7.2 The conjugate gradient algorithm

So far our discussion of conjugate gradients has been limited to quadrati
functions. For a general non-quadratic error function, the error in the neigl
hood of a given point will be approximately quadratic, and so we may hop
repeated application of the above procedure will lead to effective con
to a minimum of the error. The step length in this procedure is gove
the coefficient a; given by (7.62), and the search direction is determined
coefficient 3; given by (7.68). These expressions depend on the Hessian 1
H. For a non-quadratic error function, the Hessian matrix will depend .
current weight vector, and so will need to be re-evaluated at each step
algorithm. Since the evaluation of H is computationally costly for non-
neural networks, and since its evaluation would have to be done repeatec
would like to avoid having to use the Hessian. In fact, it turns out that t
efficients «; and 3; can be found without explicit knowledge of H. This I
the conjugate gradient algorithm (Hestenes and Stiefel, 1952; Press et al.,
Consider first the coefficient §;. If we substitute (7.63) into (7.68) we

b 1
B(w; + ad;) = Bo + b (w; + ad;) + 5 (W5 +ad;)TH(w; 4+ ad;). (7.76)

set the derivative of this expression with respect to a equal to zero we

dfg;
dTHd,

a;=— (7.77)

Te we have used the expression in (7.52) for the local gradient in the quadratic
roximation. We see that the result in (7.77) is equivalent to that found in
2). Thus, we can replace the explicit evaluation of o by a numerical proce-
imrolving a line minimization along the search direction d;.
‘We have seen that, for a quadratic error function, the con_]ugate gradient
rithm finds the minimum after at most W line minimizations, without cal-
ng the Hessian matrix. This clearly represents a significant improvement
simple gradient descent approach which could take a very large number of
to minimize even a quadratic error function. In practice, the error function
be far from quadratic. The algorithm therefore generally needs to be run
0y iterations until a sufficiently small error is obtained or until some other
lation criterion is reached. During the running of the algorithm, the conju-
f the search directions tends to deteriorate, and so it is common practice
M_ art the algorithm after every W steps by resetting the search vector to the
5; Bj RF ative gradient direction. More sophisticated restart procedures are described
vell (1977).
fe conjugate gradient algorithm has been derived on the assumption of a

gri1(8i+1 — &;)

Bi =
7 dl(gj+1 — &)

which is known as the Hestenes-Stiefel expression. From (7.66) and (7.
have

3 T
d;g; =—g;8;

which, together with a further use of (7.66), allows (7.72) to be written i
Polak-Ribiere form

B =

Similarly, we can use the orthogonality property (7.71) for the gradients to i
plify (7.74) further, resulting in the Fletcher-Reeves form

282 7: Parameter Optimization Algorithms 7.8: Scaled conjugate gradients 283

quadratic error function with a positive-definite Hessian matrix. For gen,
linear error functions, the local Hessian matrix need not be positive definit
search directions defined by the conjugate gradient algorithm need not
descent directions (Shanno, 1978). In practice, the use of robust line min
tion techniques ensures that the error can not increase at any step,
algorithms are generally found to have good performance in real appli

As we have seen, the conjugate gradient algorithm provides a minimi
technique which requires only the evaluation of the error function and its d
tives, and which, for a quadratic error function, is guaranteed to find
mum in at most W steps. Since the derivation has been relatively com
now summarize the key steps of the algorithm:

1. Choose an initial weight vector wy.
2. Evaluate the gradient vector g;, and set the initial search dlrecti ;_:

~me parameter whose value determines the termination criterion for each line
_h. The overall performance of the algorithm can be sensitive to the value
s parameter since a line search which is insufficiently accurate implies that
value of @; is not being determined correctly, while, an excessively accurate
h can represent a good deal of wasted computation.
gller (1993b) introduced the scaled conjugate gradient algorithm as a way
iding the line-search procedure of conventional conjugate gredients. First,
hat the Hessian matrix enters the formula (7.62) for a; only in the form
» Hessian multiplied by a vector d;. We saw in Section 4.10.7 that, for the
layer perceptron, and indeed for more general networks, the product of the
an with an arbitrary vector could be computed efficiently, in O(W) steps
training pattern), by using central differences or, more accurately, by using
R{-}-operator technique.
his suggests that, instead of using line minimization, which typically in-

—81. . : : :
3. At step j, minimize E(w; + ad;) with respect to a to give wjiy Ir several error function evaluations, each of which takes O(W) operations,
Cmind;. simply evaluate Hd; using the methods of Section 4.10.7. This simple ap-

h fails, however, because, in the case of a non-quadratic error function, the
matrix need not be positive definite. In this case, the denominator in
2) can become negative, and the weight update can lead to an increase in
value of the error function. The problem can be overcome by modifying the
n matrix to ensure that it is positive definite. This is achieved by adding
Hessian some multiple of the unit matrix, so that the Hessian becomes

4. Test to see if the stopping criterion is satisfied.

Evaluate the new gradient vector g;1.

6. Evaluate the new search direction using (7.67) in which g, is giver
Hestenes-Stiefel formula (7.72), the Polak-Ribiere formula (7.74) or
Fletcher-Reeves formula (7.75).

7. Set j = j+ 1 and go to 3.

Empirical results from the training of multi-layer perceptron network
conjugate gradients can be found in Watrous (1987), Webb et al. (1988), Ki
and Sangiovanni-Vincentelli (1989), Makram-Ebeid et al. (1989), Barnard |
and Johansson et al. (1992).

The batch form of gradient descent with momentum, discussed in Se
involves two arbitrary parameters A and u, where A determines the step
and y controls the momentum, i.e. the fraction of the previous step to be in
in the current step. A major problem with gradient descent is how to
values for A and pu, particularly since the optimum values will typica
from one iteration to the next. The conjugate gradient method can be
as a form of gradient descent with momentum, in which the parameters .
p are determined automatically at each iteration. The effective learning !
determined by line minimization, while the momentum is determined
parameter (3; in (7.72), (7.74) or (7.75) since this controls the search direct
through (7.67).

b

H+ I (7.78)

I is the unit matrix, and X > 0 is a scaling coefficient. Provided A is
ciently large, this modified Hessian is guaranteed to be positive definite. The
ula for the step length is then given by

dlg;

7.79
dTH,d; + 14,1 (7.79)

aj=—

€ the suffix j on), reflects the fact that the optimum value for this param-
€an vary from one iteration to the next. For large values of); the step size
ecomes small. Techniques such as this are well known in standard optimization
, Where they are called model trust region methods, because the model is
tectively only trusted in a smiall region around the current search point. The
of the trust region is governed by the parameter);, so that for large);
st region is small. The model-trust-region technique is considered in more
in the context of the Levenberg-Marquardt algorithm later in this chapter.
We now have to find a way to choose an appropriate value for Aj. From the
Ussion in Section 7.7.2 we know that the expression (7.79) with \; = 0 will

the weight vector to the minimum along the search direction provided (i)
or function can be represented by a quadratic form, and (ii) the denomi-

7.8 Scaled conjugate gradients
We have seen how the use of a line search allows the step size in the con,
gradient algorithm to be chosen without having to evaluate the Hessian m
However, the line search itself introduces some problems. In particular, e
minimization involves several error function evaluations, each of which
putationally expensive. Also, the line-search procedure itself necessarily in

284 7: Parameter Optimization Algorithms 7.9: Newton’s method 285

|

nator is positive (corresponding to a positive-definite Hessian). If either
conditions is not satisfied then the value of \; needs to be increased acec
Consider first the problem of a Hessian which is not positive definite,
denominator in the expression (7.79) for the a; can be written as

162) for aj, we obtain

2{E(w;) — E(wJ + a;d;)}
Q’Jd g;

Aj= (7.86)

. — dTH.d.; ld: 112
6; = dJ‘ H;d; + A;lld;]|*. e value of A; can then be adjusted using the following prescription (Fletcher,
For a positive-definite Hessian we have 6; > 0. If, however, §; < 0 thej
increase the value of A; in order to make §; > 0. Let the rmsed value

if A; > 0.75 then Aj+1 = A;/2 7.87
called A_, Then the corresponding raised value of §; is given by Ha ShAdH il (7:87)

5; = 6;+ (% — A\)lld; 1. if A; <0.25 then Aj4q = 4); (7.88)
ise set Aj+1 = A;. Note that, if A; < 0 so that the step would actually
to an increase in the error, then the weights are not updated, but instead
5 ; . ue of \; is increased in accordance with (7.88), and A; is re-evaluated.
Xi=2 (,\J. = .._2....) . i Sventually an error decrease will be obtained since, for sufficiently large A;, the
lld;11% hm will be taking a small step in the direction of the negative gradient.
two stages of increasing A; (if necessary) to ensure that §; is positive, and
ing \; according to the validity of the local quadratic approximation, are
n succession after each weight update.
ailed step-by-step descriptions of the algorithm can be found in Mgller
3b) and Williams (1991). Results from software simulations indicate that
rithm can sometimes offer a significant improvement in speed compared
entional conjugate gradient algorithms.

This will be positive if X; > \; — 8;//d;||%. Mgller (1993b) chooses to set

Substituting (7.82) into (7.81) gives

8; = —6; + Aslld;|* = —dTH;d;

which is therefore now positive. This value is used as the denominator in {
to compute the value of the step-size parameter a;.

We now consider the effects of the local quadratic assumption. In
where the quadratic approximation is good, the value of A; should be 1
while if the quadratic approximation is poor,); should be increased, so
size of the trust region reflects the accuracy of the local quadratic app
tion. This can be achieved by considering the comparison parameter def
(Fletcher, 1987)

' Newton’s method

 conjugate gradient algorithm, implicit use was made of second-order in-
ion about the error surface, represented by the local Hessian matrix. We
turn to a class of algorithms which make explicit use of the Hessian.

Jsing the local quadratic approximation, we can obtain directly an expression
bhe location of the minimum (or more generally the stationary point) of the
E(w;) — E(w; +a;d;) function. From (7.10) the gradient at any point w is given by
E(w;) — Eq(w; + a;d;)

A;=

g=VE=H(w-w" (7.89)
where Eg(w) is the local quadratic approximation to the error functi

neighbourhood of the point w, given by 0 the weight vector w* corresponding to the minimum of the error function

1
Eq(w; + a;d;) = E(w;) + a;dTg; + —a?d} H,d;.
a(w; 195) (3) e ER AR R w*=w-—H g (7.90)

From (7.84) we see that A; gives a measure of the accuracy of the g
approximation. If A; is close to 1 then the approximation is a good one

value of A; can be decreased. Conversely a small value of A; is an indi
A; should be increased. Substituting (7.85) into (7.84), and using the

ctor —H~'g is known as the Newton direction or the Newton step, and
basis for a variety of optimization strategies. Unlike the local gradient
, the Newton direction for a quadratic error surface, evaluated at any w,
directly at the minimum of the error function, as illustrated in Figure 7.13.

286 7: Parameter Optimization Algorithms 7.10: Quasi-Newton methods

we have used the Newton step formula d = -H™'g.
v from the neighbourhood of a minimum, the Hessian matrix need not
stive definite. The problem can be resolved by adopting the model trust
-;spproach, discussed earlier in Section 7.8, and described in more detail in
tion 7.11. This involves adding to the Hessian a positive-definite symmetric
- which comprises the unit matrix I times a constant factor A. Provided)
ently large, the new matrix

P

W H + I (7.92)

_H'Ig
be positive definite. The corresponding step direction is a compromise be-
the Newton direction and the negative gradient direction. For very small
of A we recover the Newton direction, while for large values of)\ the
approximates the negative gradient

Figure 7.13. Illustration of the Newton direction for a quadratic error
The local negative gradient vector —g(w) does not in general point to
the minimum of the error function, whereas the Newton direction —H
does.

Since the quadratic approximation used to obtain (7.90) is not exa
be necessary to apply (7.90) iteratively, with the Hessian being
each new search point. From (7.90), we see that the gradient desce
(7.23) corresponds to one step of the Newton formula (7.90), with
Hessian approximated by the unit matrix times 7, where 7 is the le
parameter.

There are several difficulties with such an approach, however. Fir:
evaluation of the Hessian for non-linear networks is computationally de
since it requires O(NW?) steps, where W is the number of weights
work and N is the number of patterns in the data set. This evaluatic
prohibitively expensive if done at each stage of an iterative algoritl

~(H+AI)"'g ~ —:l\-g- (7.93)

ill leaves the problem of computing and inverting the Hessian matrix.
roach is to approximate the Hessian by neglecting the off-diagonal terms
and Le Cun, 1989; Ricotti et al., 1988). This has the advantages that the
of the Hessian is trivial to compute, and the Newton update equations
uple into separate equations for each weight. The problem of negative
is dealt with by the simple heuristic of taking the modulus of the
derivative. This gives a Newton update for a weight w; in the form

the Hessian must be inverted, which requires O(W?) steps, and so R o (& E 5 A)_l OF (7.94)
putationally demanding. Third, the Newton step in (7.90) may mov - ow? Aw; '

maximum or a saddlepoint rather than a minimum. This occurs if
not positive definite, so that there exist directions of negative ci
the error is not guaranteed to be reduced at each iteration. Finally,
predicted by (7.90) may be sufficiently large that it takes us outsid
validity of the quadratic approximation. In this case the algorithm cou
unstable.
Nevertheless, by making various modifications to the full Newton
be turned into a practical optimization method. Note first that, if
positive definite (as is the case close to a minimum), then the New
always represents a descent direction, as can be seen by conside
directional derivative of the error function in the Newton direction e
some point w

is treated as a small positive constant. For the multi-layer perceptron, the
terms in the Hessian matrix can be computed by a back-propagation
as discussed in Section 4.10.1. A major drawback of this approach,
that the Hessian matrix for many neural network problems is typically

m diagonal,

Quasi-Newton methods

fady argued that a direct application of the Newton method, as given
» Would be computationally prohibitive since it would require O(NW?2)
to evaluate the Hessian matrix and @(W?3) operations to compute
Alternative approaches, known as quasi-Newton or variable metric
» are based on (7.90), but instead of calculating the Hessian directly,
‘evaluating its inverse, they build up an approximation to the inverse
°F & number of steps. As with conjugate gradients, these methods can
minimum of a quadratic form in at most W steps, giving an overall

-iE(w + Ad) =dTg=-g"H 'g<0
oA A=0

288 7: Parameter Optimization Algorithms 7.10: Quasi-Newton methods 289

computational cost which is O(NW?). wrH) = w(™) 4 (NG (7.100)
The quasi-Newton approach involves generating a sequence of matri

which represent increasingly accurate approximations to the inverse B
H~!, using only information on the first derivatives of the error function,
problems arising from Hessian matrices which are not positive definite are
by starting from a positive-definite matrix (such as the unit matrix) and ens
that the update procedure is such that the approximation to the inverse
is guaranteed to remain positive definite.

From the Newton formula (7.90) we see that the weight vectors at
and 7+ 1 are related to the corresponding gradients by

here o' is found by line minimization.
significant advantage of the quasi-Newton approach over the conjugate
ent method is that the line search does not need to be performed with
great accuracy since it does not form a critical factor in the algorithm. For
ugate gradients, the line minimizations need to be performed accurately in
der to ensure that the system of conjugate directions and orthogonal gradients
up correctly.

A potential disadvantage of the quasi-Newton method is that it requires the
se and update of a matrix G of size W x W. For small networks this is of
nsequence, but for networks with more than a few thousand weights it
d lead to prohibitive memory requirements. In such cases, techniques such
njugate gradients, which require only O(W) storage, have a significant ad-
€.
an W-dimensional quadratic form, the sequence of matrices G(*) is guar-
to converge exactly to the true Hessian after W steps, and the quasi-
on algorithm would find the exact minimum of the quadratic form after W
s, assuming the line minimizations were performed exactly. Results from the
ition of quasi-Newton methods to the training of neural networks can be
n Watrous (1987), Webb et al. (1988), and Barnard (1992).

which is known as the quasi-Newton condition. The approximation G
inverse Hessian is constructed so as to satisfy this condition also.

The two most commonly used update formulae are the Davidson—Fl
Powell (DFP) and the Broyden—Fletcher-Goldfarb-Shanno (BFGS) proce
Here we give only the BFGS expression, since this is generally regarded

superior:

G Ga pp” B (GOvvTG)

Ta(T) T

0.1 Limited memory quasi-Newton methods

0 (1978) investigated the accuracy needed for line searches in both conju-
gradient and quasi-Newton algorithms, and concluded that conjugate gra-
b algorithms require relatively accurate line searches, while quasi-Newton
ds remain robust even if the line searches are only performed to relatively
uracy. This implies that, for conjugate gradient methods, significant com-
tional effort needs to be expended on each line minimization.
fie advantage of conjugate gradient algorithms, however, is that they require
storage rather than the O(W?2) storage needed by quasi-Newton methods.
question therefore arises as to whether we can find an algorithm which uses
Storage but which does not require accurate line searches (Shanno, 1978).
to reduce the storage requirement of quasi-Newton methods is to replace
Proximate inverse Hessian matrix G at each step by the unit matrix. If
ke this substitution into the BFGS formula in (7.96), and multiply the
8 approximate inverse Hessian by the current gradient g{™*!), we obtain
= tOlowing expression for the search direction

where we have defined the following vectors: d
I

p = wir+l) _ w0

v =g _ g

P G(T)v
U= Ty - vIGhY

Derivations of this expression can be found in many standard texts on @
tion methods such as Polak (1971), or Luenberger (1984). It is straight
to verify by direct substitution that (7.96) does indeed satisfy the quasi-IN€
condition (7.95).

Initializing the procedure using the identity matrix corresponds to
first step in the direction of the negative gradient. At each step of the al
the direction —Gg is guaranteed to be a descent direction, since the n
is positive definite. However, the full Newton step given by (7.90) may
search outside the range of validity of the quadratic approximation. The
is to use a line-search algorithm (Section 7.6), as used with conjugate
to find the minimum of the error function along the search direction.

weight vector is updated using

d") = —glr+) 4 Ap 4 Bv (7.101)

Te the scalars A and B are defined by

290 7: Parameter Optimization Algorithms 7.11: The Levenberg-Marquardt algorithm 291

Wnew = Wold — (ZTZ)_lzTE(woid)- (7.108)

e (1 3 v:v) p'rg:ﬂ) N ng:H)
p'v PV pv

o that this has the same structure as the pseudo-inverse formula for linear

orks introduced in Section 3.4.3, as we would expect, since we are indeed

zing a sum-of-squares error function for a linear model.

the sum-of-squares error function (7.104), the elements of the Hessian

y take the form

o’E Oe™ e, 8%
ik = Bt zﬂ: {5:0‘1 G+ Bwidus } : {T108)

£ pTg(r+l)
pTv

and the vectors p and v are defined in (7.97) and (7.98). If exact line se
performed, then (7.101) produces search directions which are mutually e;
(Shanno, 1978). The difference compared with standard conjugate g
that if approximate line searches are used, the algorithm remains well
As with conjugate gradients, the algorithm is restarted in the directio;
negative gradient every W steps. This is known as the limited mem
algorithm, and has been applied to the problem of neural network
Battiti (1989).

fwe neglect the second term, then the Hessian can be written in the form
H=72"Z. (7.110)

7.11 The Levenberg—Marquardt algorithm

Many of the optimization algorithms we have discussed up to now he
general-purpose methods designed to work with a wide range of error
We now describe an algorithm designed specifically for minimizing
squares error.

Consider the sum-of-squares error function in the form

a linear network (7.110) is exact. We therefore see that (7.108) involves the
Hessian, as we might expect since it corresponds to the Newton step
ed to the linearized model in (7.105). For non-linear networks it represents
roximation, although we note that in the limit of an infinite data set
ression (7.110) is exact at the global minimum of the error function,
ussed in Section 6.1.4. Recall that in this approximation the Hessian is
ly easy to compute, since first derivatives with respect to network weights
AT btained very efficiently using back-propagation as shown in Section 4.8.3.

In principle, the update formula (7.108) could be applied iteratively in order
‘to minimize the error function. The problem with such an approach is that
lep size which is given by (7.108) could turn out to be relatively large, in
case the linear approximation (7.107) on which it is based would no longer
. In the Levenberg-Marquardt algorithm (Levenberg, 1944; Marquardt,
this problem is addressed by seeking to minimize the error function while
e same time trying to keep the step size small so as to ensure that the linear
mation remains valid. This is achieved by considering a modified error

iction of the form
|

_l n2___l 2

where €" is the error for the nth pattern, and € is a vector with ele
Suppose we are currently at a point w4 in weight space and we move to
Whew- If the displacement Wyew — Woiq is small then we can expand
vector € to first order in a Taylor series

E(wnew) = e(wold) + z(wnew = wold)

where we have defined the matrix Z with elements 1
E= 5 "e(wo]d) - Z(wnew - Wold)"2 o5 /\"wnaw = wold“z (7-111)
Oe™
(Z)‘ﬂi = aw_' ’ he .
i the parameter A governs the step size. For large values of) the value of

~ Woua|? will tend to be small. If we minimize the modified error (7.111)

The error function (7.104) can then be written as Yespect to Wiey, We obtain

lle(wold) =+ z(wnew = W"olcl)”2 . ii'_ Wnew = Wold — (ZTZ + AI)"ZTe(wold) (7.112)

If we minimize this error with respect to the new weights Wyew we ob!

b | =

E=

1 is the unit matrix. For very small values of the parameter A we recover
ewton formula, while for large values of A we recover standard gradient

292 7: Parameter Optimization Algorithms Ezercises 293

_ ua? ,_ (1—mA
U 1
and 7 is the continuous time variable. The equation of motion (7.114)
corresponds to the motion of a massive particle (i.e. one having inertia)
. with mass m moving downhill under a force —VE, subject to viscous drag
with viscosity coefficient v. This is the origin of the term ‘momentum’ in

7.33).
*g In (7.35) we considered the effect of a momentum term on gradient de-
. gcent through a region of weight space in which the error function gradient
~ could be taken to be approximately constant. This was based on summing
an arithmetic series after an infinite number of steps. Repeat this analysis
. more carefully for a finite number L of steps, by expressing the resulting
finite series as the difference of two infinite series. Hence obtain an expres-
sion for the weight vector w() in terms of the initial weight vector w(®,
the error gradient VE (assumed constant) and the parameters n and pu.
- Show that (7.35) is obtained in the limit L — oo.
) Consider an arbitrary vector v and suppose that we first normalize v so
~ that |v|| = 1 and then multiply the resulting vector by a real symmetric
matrix H. Show that, if this process of normalization and multiplication
by H is repeated many times, the resulting vector will converge towards
AmaxUmax Where Amay is the largest eigenvalue of H and .y is the corre-
sponding eigenvector. (Assume that the initial vector v is not orthogonal
0 Upax)-
) Consider a single-layer network having a mapping function given by

Y =D Wkili (7.116)
1

descent. In this latter case the step length is determined by A=, so thag
clear that, for sufficiently large values of A, the error will necessarily d
since (7.112) then generates a very small step in the direction of the
gradient. The Levenberg-Marquardt algorithm is an example of a
region approach in which the model (in this case the linearized appro
for the error function) is trusted only within some region around the cu
search point. The size of this region is governed by the value of A. y

In practice a value must be chosen for A and this value should vary ap,
ately during the minimization process. One common approach for setting
begin with some arbitrary value such as A = 0.1, and at each step moni
change in error E. If the error decreases after taking the step predicted by
the new weight vector is retained, the value of A is decreased by a factor
and the process repeated. If, however, the error increases, then A is i
by a factor of 10, the old weight vector is restored, and a new weight
computed. This is repeated until a decrease in E is obtained. Comparis
the Levenberg-Marquardt algorithm with other methods for training multi
perceptrons are given in Webb et al. (1988).

m (7.115)

Exercises

7.1 (*) Show that the stationary point w* of quadratic error surface of
(7.10) is a unique global minimum if, and only if, the Hessian
positive definite, so that all of its eigenvalues are positive. .

7.2 (x%) Consider a quadratic error error function in two-dimensions of thef

1 1

Verify that Ay and A are the eigenvalues of the Hessian matrix.
numerical implementation of the gradient descent algorithm, and
to the minimization of this error function for the case where the ratic
eigenvalues Ay/A; is large (say 10:1). Explore the convergence p:
of the algorithm for various values of the learning rate para
verify that the largest value of n which still leads to a reduction
determined by the ratio of the two eigenvalues, as discussed in Secti
Now include a momentum term and explore the convergence behavi
a function of both the learning rate and momentum parameters.
experiment, plot trajectories of the evolution of the weight vector
two-dimensional weight space, superimposed on contours of constan!

‘and a sum-of-squares error function of the form

E= —é— 3> Wk - tp)? (7.117)
n k

Wwith n labels the patterns, and k labels the output units. Suppose the
‘Weights are updated by a gradient descent rule in which each weight wy;
its own learning rate parameter 7x;, so that the value of wg; at time
‘step 7 is given by

7.3 () Take the continuous-time limit of (7.33) and show that leads wih = w{™Y — g ‘rfl = (7.118)
following equation of motion Owyy

_Use the above equations to find an expression for the error at step 7 in
‘terms of the weight values at step 7 — 1 and the learning rate parameters
D, Show that the derivative of the error function with respect to nﬁ) is
‘Biven by the delta-delta expression

d*w dw
mﬁ -+ UF =-VE

where

204 7: Parameter Optimization Algorithms

OE =

where
(1) — OF

=

7.7 (x) Derive the quickprop weight update formula (7.42) by foIlowmg
cussion given in the text.
7.8 (%) Consider a symmetric, positive-definite W x W matrix H, and sup,
there exists a set of W mutually conjugate directions d; sat:sfymg]

8
PRE-PROCESSING AND FEATURE EXTRACTION

T =
e ince neural networks can perform essentially arbitrary non-linear functional

ings between sets of variables, a single neural network could, in principle,
to map the raw input data directly onto the required final output values.
tice, for all but the simplest problems, such an approach will generally
poor results for a number of reasons which we shall discuss below. For most
tions it is necessary first to transform the data into some new represen-
n before training a neural network. To some extent, the general-purpose
e of a neural network mapping means that less emphasis has to be placed
reful optimization of this pre-processing than would be the case with simple
' techniques, for instance. Nevertheless, in many practical applications the
f pre-processing will be one of the most significant factors in determining
erformance of the final system.

1In the simplest case, pre-processing may take the form of a linear transforma-
on of the input data, and possibly also of the output data (where it is sometimes
post-processing). More complex pre-processing may involve reduction of
mensionality of the input data. The fact that such dimensionality reduction
d to improved performance may at first appear somewhat paradoxical,
it cannot increase the information content of the input data, and in most
will reduce it. The resolution is related to the curse of dimensionality dis-
 in Section 1.4.

ther important way in which network performance can be improved,
imes dramatically, is through the incorporation of prior knowledge, which
 to relevant information which might be used to develop a solution and
L is additional to that provided by the training data. Prior knowledge can
be incorporated into the network structure itself or into the pre-processing
Si-processing stages. It can also be used to modify the training process
gh the use of regularization, as discussed in Sections 9.2 and 10.1.2.

nal aspect of data preparation arises from the fact that real data often
glom a number of deficiencies such as missing input values or incorrect
=% Values.

5 chapter we shall focus primarily on classification problems. It should
sized, however, that most of the same general principles apply equally
on problems.

Show that the vectors d; must be linearly independent (i.e. that d;
be expressed as a linear combination of {d;} where j = 1,...
j#1).

7.9 (x) The purpose of this exercise is to show by induction that if s
search directions are constructed from (7.67) using the conjugacy
(7.68), that the first W such directions will all be mutually conj
know by construction that dj Hd; = 0. Now suppose that dHd
some given § < W and for all ¢ satisfying ¢ < j. Since d}'_t_ll-ldj
construction, we need to show that d},;Hd; = 0 for all i < j +
(7.67) we have

d}'_HHd; = —g;-r_,_lHd; - ﬁjd}'Hdi.

The second term in (7.122) vanishes by assumption. Show that
term also vanishes, by making use of (7.63) and (7.71). This comp
proof.

7.10 (x) Verify by direct substitution that the BFGS update formula
satisfies the Newton condition (7.95).

7.11 (%) Verify that replacement of the approximate inverse Hessian m
by the unit matrix I in the BFGS formula (7.96) leads to a Newton
—~G(™t1)g given by the limited memory BFGS expression (7.101).

206 8: Pre-processing and Feature Extraction 8.1: Pre-processing and post-processing 297
One of the most important forms of pre-processing involves a reduction in

ve dimensionality of the input data. At the simplest level this could involve

output ding a subset of the original inputs. Other approaches involve forming
data or non-linear combinations of the original variables to generate inputs for
post- network. Such combinations of inputs are sometimes called features, and the
processing of generating them is called feature eztraction. The principal motivation

= dimensionality reduction is that it can help to alleviate the worst effects

of the curse of dimensionality (Section 1.4). A network with fewer inputs has

ng%';:garlk or adaptive parameters to be determined, and these are more likely to be
erly constrained by a data set of limited size, leading to a network with

er generalization properties. In addition, a network with fewer weights may
e faster to train.
- As a rather extreme example, consider the hypothetical character recognition
blem discussed in Section 1.1. A 256 x 256 image has a total of 65536 pixels.
the most direct approach we could take each pixel as the input to a single large
ral network, which would give 65537 adaptive weights (including the bias)
very unit in the first hidden layer. This implies that a very large training
would be needed to ensure that the weights were well determined, and this
n implies that huge computational resources would be needed in order to
a suitable minimum of the error function. In practice such an approach is
y impractical. One technique for dimensionality reduction in this case is
averaging which involves grouping blocks of pixels together and replacing
of them with a single effective pixel whose grey-scale value is given by the
age of the grey-scale values of the original pixels in the block. It is clear that
nation is discarded by this process, and that if the blocks of pixels are too
then there will be insufficient information remaining in the pixel averaged
for effective classification. These averaged pixels are examples of features,
tis modified inputs formed from collections of the original inputs which might
ombined in linear or non-linear ways. For an image interpretation problem
often be possible to identify more appropriate features which retain more
e relevant information in the original image. For a medical classification
em, such features might include various measures of textures, while for a
blem involving detecting objects in images, it might be more appropriate to
t features involving geometrical parameters such as the lengths of edges
» areas of contiguous regions.
ly in most situations a reduction in the dimensionality of the input vec-
result in loss of information. One of the main goals in designing a good
TOcessing strategy is to ensure that as much of the relevant information as
Sible is retained. If too much information is lost in the pre-processing stage
the resulting reduction in performance more than offsets any improvement
from a reduction in dimensionality. Consider a classification problem in
an input vector x is to be assigned to one of ¢ classes Cx where k =1,...,c.
aimum probability of misclassification is obtained by assigning each input
I X to the class Cj, having the largest posterior probability P(Cx|x). We can
28rd these probabilities as examples of features. Since there are ¢ such features,

pre-
processing

input
data

Figure 8.1. Schematic illustration of the use of data pre-processing and p
processing in conjunction with a neural network mapping. i

8.1 Pre-processing and post-processing

In Chapter 1 we formulated the problem of pattern recognition in te
non-linear mapping from a set of input variables to a set of output variab
have already seen that a feed-forward neural network can in principle repi
arbitrary functional mapping between spaces of many dimensions, and so
appear that we could use a single network to map the raw input data d
onto the required output variables. In practice it is nearly always adva
to apply pre-processing transformations to the input data before it is pre
to a network. Similarly, the outputs of the network are often post-proce:
give the required output values. These steps are indicated in Figure 8.1, T
processing and post-processing steps may consist of simple fixed transfor:
determined by hand, or they may themselves involve some adaptive p
which are driven by the data. For practical applications, data pre-proce
often one of the most important stages in the development of solution,
choice of pre-processing steps can often have a significant effect on gener
performance.

Since the training of the neural network may involve an iterative alg
it will generally be convenient to process the whole training set using tl
processing transformations, and then use this transformed data set to (i
network. With applications involving on-line learning, each new data po
first be pre-processed before it is passed to the network. If post-p:
the network outputs is used, then the target data must be transform
the inverse of the post-processing transformation in order to generate the
values for the network outputs. When subsequent data is processed by the
network, it must first be passed through the pre-processing stage, then
the network, and finally through the post-processing transformation.

298 8: Pre-processing and Feature Extraction 8.2: Input normalization and encoding 209

and since they satisfy the relation Y, P(Ck|x) = 1, we see that in princip
independent features are sufficient to give the optimal classifier. In practi
course, we will not be able to obtain these probabilities easily, otherwise we
already have solved the problem. We may therefore need to retain a much
number of features in order to ensure that we do not discard too much
formation. This discussion highlights the rather artificial distinction bety
pre-processing stage and the classification or regression stage. If we can
sufficiently clever pre-processing then the remaining operations become t;
Clearly there is a balance to be found in the extent to which data proce
performed in the pre-processing and post-processing stages, and the extent
which it is performed by the network itself.

Note that the transformation in (8.2) is linear and so, for the case of a multi-
perceptron, it is in principle redundant since it could be combined with
inear transformation in the first layer of the network. In practice, however,
,ut normalization ensures that all of the input and target variables are of order
ty, in which case we expect that the network weights should also be of order
ty. The weights can then be given a suitable random initialization prior to
work training. Without the linear rescaling, we would need to find a solution
the weights in which some weight values had markedly different values from
hers.

Note that, in the case of a radial basis function network with spherically-
netric basis functions, it is particularly important to normalize the input
bles so that they span similar ranges. This is a consequence of the fact
the activation of a basis function is determined by the Euclidean distance [
een the input vector x and the basis function centre p; given by

8.2 Input normalization and encoding

One of the most common forms of pre-processing consists of a simpl
rescaling of the input variables. This is often useful if different variabl
typical values which differ significantly. In a system monitoring a chemical
for instance, two of the inputs might represent a temperature and a p ,‘
respectively. Depending on the units in which each of these is expressed,
may have values which differ by several orders of magnitude. Furtherm
typical sizes of the inputs may not reflect their relative importance in detes
the required outputs.

By applying a linear transformation we can arrange for all of the in
have similar values. To do this, we treat each of the input variables independ
and for each variable z; we calculate its mean Z; and variance o? with
to the training set, using

d
= llx = gl = Y {zi — i} (8.3)
i=1

e d is the dimensionality of the input space. If one of the input variables
much smaller range of values than the others, the value of [* will be very
sitive to this variable. In principle, an alternative to normalization of the
put data is to use basis functions with more general covariance matrices.

The simple linear rescaling in (8.2) treats the variables as independent. We
perform a more sophisticated linear rescaling, known as whitening, which
s also for correlations amongst the variables (Fukunaga, 1990). For conve-
we group the input variables z; into a vector x = (1, ...,24)T, which has

N
7 = 1 Z z? mean vector and covariance matrix with respect to the N data points of
N = e training set given by
N 1 &
‘2 _ Z I -— I‘ i = F Z x“
n=1 n=1
where n = 1,..., N labels the patterns. We then define a set of re-scaled v N .
given by = 1 1 (x" -X)(x" —-%)". (8.4)
n=

&

11 R
am _ E7 —T4
Tz = 3

04

We introduce the eigenvalue equation for the covariance matrix

It is easy to see that the transformed variables given by the Z]' have zero Tu; = Ajuy (8.5)
and unit standard deviation over the transformed training set. In the
regression problems it is often appropriate to apply a similar linear re

the target values.

"0 Wwe can define a vector of linearly transformed input variables given by

X = ATV2UT(x" -~ %) (8.6)

8: Pre-processing and Feature Ezxtraction 8.9: Missing data

2 Missing data
y practical applications it sometimes happens that the data suffers from defi-
ancies which should be remedied before the data is used for network training.
ommon problem is that some of the input values may be missing from the
t for some of the pattern vectors (Little and Rubin, 1987; Little, 1992). If
quantity of data available is sufficiently large, and the proportion of patterns
d is small, then the simplest solution is to discard those patterns from
ta set. Note that this approach is implicitly assuming that the mechanism
is responsible for the omission of data values is independent of the data
If the values which are missing depend on the data, then this approach

whitened
distribution

\
~ _W_ - modify the effective data distribution. An example would be a sensor which
digtr;i lBtzilon fails to produce an output signal when the signal value exceeds some
X, hen there is too little data to discard the deficient examples, or when the

rtion of deficient points is too high, it becomes important to make full use
information which is potentially available from the incomplete patterns.
er first the problem of unconditional density estimation, for the case of a
etric model based on a single Gaussian distribution. A common heuristic
imating the model parameters would be the following. The components ;
mean vector p are estimated from the values of z; for all of the data points
ich this value is available, irrespective of whether other input values are
ent. Similarly, the (7,7) element of the covariance matrix ¥ is found using
of data points for which values of both z; and z; are available. Such an
h, however, can lead to poor results (Ghahramani and Jordan, 1994b),
cated in Figure 8.3.

arious heuristics have also been proposed for dealing with missing input
11 regression and classification problems. For example, it is common to ‘fill
_missing input values first (Hand, 1981), and then train a feed-forward
k using some standard method. For example, each missing value might
laced by the mean of the corresponding variable over those patterns for
its value is available. This is prone to serious problems as discussed above.
elaborate approach is to express any variable which has missing values in
of & regression over the other variables using the available data, and then
: regression function to fill in the missing values. Again, this approach
S to cause problems as it underestimates the covariance in the data since
ession function is noise-free.

g data in density estimation problems can be dealt with in a princi-
by seeking a maximum likelihood solution, and using the expectation—
_ f.ion, or EM, algorithm to deal with missing data. In Section 2.6.2, the
Borithm was introduced as a technique for finding maximum likelihood
z for mixture models, in which hypothetical variables describing which
lent was responsible for generating each data point were introduced and
‘missing data’. The EM algorithm can similarly be applied to the prob-
riables missing from the data itself (Ghahramani and Jordan, 1994b).

Figure 8.2. Schematic illustration of the use of the eigenvectors u; (
with their corresponding eigenvalues);) of the covariance matrix of a di
bution to whiten the distribution so that its covariance matrix becon

unit matrix.

where we have defined
U = (ug,...,uq)
A = diag(Ay,...,Aq).

Then it is easy to verify that, in the transformed coordinates, the da
zero mean and a covariance matrix which is given by the unit matrix. |
illustrated schematically in Figure 8.2.

8.2.1 Discrete data

So far we have discussed data which takes the form of continuous vari :
may also have to deal with data taking on discrete values. In such cases i
venient to distinguish between ordinal variables which have a natural
and categorical variables which do not. An example of an ordinal
be a person’s age in years. Such data can simply be transformed
the corresponding values of a continuous variable. An example of a
variable would be a measurement which could take one of the valu

or blue. If these were to be represented as, for instance, the values 0.
1.0 of a single continuous input variable, this would impose an artifi
on the data. One way around this is to use a 1-of-c coding for the
similar to that discussed for target data in classification problems in S
In the above example this requires three input variables, with the thr
represented by input values of (1,0,0), (0,1,0) and (0,0,1).

302 8: Pre-processing and Feature Extraction 8.4: Time series prediction 303
A y
o ==ty
X2) 1
I
I
= I
X x 1
X X/ n I
x (S T .
——0—0 0>
» xt-z xt-l xt xnl
X

‘Figure 8.4. Sampling of a time series at discrete steps can be used to generate
‘a set of training data for a feed-forward network, Successive values of the
time-dependent variable z(r), given by z-_441,...,Z-, form the inputs to a
" feed-forward network, and the corresponding target value is given by z,41.

Figure 8.3. Schematic illustration of a set of data points in two dimen
For some of the data points (shown by the crosses) the values of both varia
are present, while for others (shown by the vertical lines) only the values
z1 are known. If the mean vector of the distribution is estimated using |
available values of each variable separately, then the result is a poor esti
as indicated by the square.

I such values Z_441, ..., to be the inputs to a feed-forward network, and
the next value z,41 as the target for the output of the network, as indicated
gure 8.4. By stepping along the time axis, we can create a training data set
ing of many sets of input values with corresponding target values. Once
network has been trained, it can be presented with a set of observed values
d+1,--., Ty and used to make a prediction for z,41. This is called one step
prediction. If the predictions themselves are cycled around to the inputs
network, then predictions can be made at further points =, and so on.
called multi-step ahead prediction, and is typically characterized by a
increasing divergence between the predicted and observed values as the
r of steps ahead is increased due to the accumulation of errors. The above
h is easily generalized to deal with several time-dependent variables in
orm of a time-dependent vector x(7).
ne drawback with this technique is the need to choose the time increment
N successive inputs, and this may require some empirical optimization.
er problem is that the time series may show an underlying trend, such as
ily increasing value, with more complex structure superimposed. This can
oved by fitting a simple (e.g. linear) function of time to the data, and then
ing off the predictions of this simple model. Such pre-processing is called
ending, and without it, a trained network would be forced to extrapolate
Presented with new data, and would therefore have poor performance.
ere is a key assumption which is implicit in this approach to time series
tion, which is that the statistical properties of the generator of the data
de-trending) are time-independent. Provided this is the case, then the pre-
ing described above has mapped the time series problem onto a static
10n approximation problem, to which a feed-forward network can be applied.

In fact the two problems can be tackled together, so that the parame
mixture model can be estimated, even when there is missing data. Sucl
niques can be applied to the determination of the basis function parame
a radial basis function network, as discussed in Section 5.9.4. They can
used to determine the density p(x,t) in the joint input-target space.
density, the conditional density p(t|x) can be evaluated, as can the
function (t|x).

In general, missing values should be treated by integration over &
responding variables (Ahmad and Tresp, 1993), weighted by the ap
distribution (Exercise 8.4). This requires that the input distribution it
modelled. A related approach is to fill in the missing data points with
drawn at random from this distribution (Lowe and Webb, 1990). It is 1
sible to generate many different ‘completions’ of a given input pattern wh
missing variables. This can be regarded as a simple Monte Carlo approxima
to the required integration over the input distribution (Section 10.9).

8.4 Time series prediction

Many potential applications of neural networks involve data x = x(7) W
varies as a function of time 7. The goal is often to predict the value of

time into the future. Techniques based on feed-forward networks, of th
described in earlier chapters, can be applied directly to such problems
the data is appropriately pre-processed first, Consider for simplicity
variable z(7). One common approach is to sample z(7) at regular int
generate a series of discrete values z,_1,@-, 2,41 and so on. We can

304 8: Pre-processing and Feature Eztraction 8.5; Feature selection 305

If, however, the generator of the data itself evolves with time, then this approg
is inappropriate and it becomes necessary for the network model to adapt te
data continuously so that it can ‘track’ the time variation. This requires on-
learning techniques, and raises a number of important issues, many of wh
at present largely unresolved and lie outside the scope of this book.

e trained relatively quickly (using linear matrix methods for instance) thereby
nitting a relatively large number of feature combinations to be explored. It
d be emphasized, however, that the feature selection and the classification
regression) stages should be ideally be optimized together, and that it is
aly because of practical constraints that we are often forced to treat them
dependently.
For regression problems, we can take the simple model to be a linear mapping
1 by a single-layer network with linear output units, which is equivalent to
multiplication with the addition of a bias vector. If the error function
network training is given by a sum-of-squares, we can use this same mea-
for feature selection. In this case, the optimal values for the weights and
in the linear mapping can be expressed in terms of a set of linear equa-
whose solution can be found quickly by using singular value decomposition
(101 343)
classification problems, the selection criterion should ideally be taken to
probability of misclassification, or more generally as the expected total
86 or risk. This could in principle be calculated by using either parametric or
ametric techniques to estimate the posterior probabilities for each class
nd, 1981). In practice, evaluation of this criterion directly is generally too
ex, and we have to resort instead to simpler criteria such as those based
s separability. We expect that a set of variables in which the classes are
separated will be a good set of variables for input to a neural network or
r classifier. Appropriate criteria for class separability, based on covariance
fices, were discussed in Section 3.6 in the context of the Fisher discriminant
‘generalizations.
we were able to use the full criterion of misclassification rate, we would
et that, as we reduce the number of features which are retained, the gener-
I performance of the system would improve (a consequence of the curse
lonality) until some optimal subset of features is reached, and that if
features are retained the performance will degrade. One of the limitations
simple selection criteria, such as those based on class separability, is
/ are incapable of modelling this phenomenon. For example, the Maha-
distance A? (Section 2.1.1) always increases as extra variables are added.
al such measures J satisfy a monotonicity property such that

8.5 Feature selection

One of the simplest techniques for dimensionality reduction is to select a
of the inputs, and to discard the remainder. This approach can be
there are inputs which carry little useful information for the solution
problem, or if there are very strong correlations between sets of inputs
the same information is repeated in several variables. It can be applied n
to the original data, but also to a set of candidate features constructed b
other means. For convenience we shall talk of feature selection, even thou
features might simply be the original input variables. Many of the id:
equally applicable to conventional approaches to pattern recognition, a
covered in a number of the standard books in this area including Hand |
Devijver and Kittler (1982) and Fukunaga (1990), and are reviewed in Si
and Sklansky (1988). ,

Any procedure for feature selection must be based on two compone:
a criterion must be defined by which it is possible to judge whether one
features is better than another. Second, a systematic procedure must
for searching through candidate subsets of features. In principle the
criterion should be the same as will be used to assess the complete s
as misclassification rate for a classification problem or sum-of-squares
a regression problem). Similarly, the search procedure could simply con
an exhaustive search of all possible subsets of features since this is in |
the only approach which is guaranteed to find the optimal subset. In a pi
application, however, we are often forced to consider simplified selection
as well as non-exhaustive search procedures in order to limit the comp’
complexity of the search process. We begin with a discussion of possible
criteria.

8.5.1 Selection criteria

It is clear that the optimal subset of features selected from a given
will depend, among other things, on the particular form of model (neur
or otherwise) with which they are to be used. Ideally the selection criteri
be obtained by training the network on the given subset of features, s
evaluating its performance on an independent set of test data. If the n
training procedure involves non-linear optimization, such an approach. €€ matrices. The inequality simply says that deleting features cannot
to be impractical since the training and testing process would have to be € error rate. As a consequence, criteria which satisfy the monotonicity
for each new choice of feature subset, and the computational requiremer 4Rt cannot be used to determine the optimum size for a set of variables
become too great. It is therefore common to use a simpler model, such a “nnot, be used to compare sets of different sizes. However, they do offer a
mapping, in order to select the features, and then use these features kWay to compare sets of variables having the same number,of Sbal
more sophisticated non-linear model. The simplified model is chosen so © :

J(X*) > J(X) (8.9)

€ X denotes a set of features, and X+ denotes a larger set of features which
the set X as a subset. This property is shared by criteria based on

306 8: Pre-processing and Feature Extraction 8.5: Feature selection 307

practice the removal of features can improve the error rate when we take
of the effects of a finite size data set. One approach to the set size probl

use conventional statistical tests to measure the significance of the imp A

in discrimination resulting from inclusion of extra variables (Hand, 19 00

other approach is to apply cross-validation techniques (Section 9.8.1) to % * %

models trained using different numbers of features, where the particular f

subset used for each model is determined by one of the approaches dis:

here. Op % x
Ooq : %

8.5.2 Search procedures

If we have a total of d possible features, then since each feature can be X, %

or absent, there are a total of 2¢ possible feature subsets which could be ¢
ered. For a relatively small number of features we might consider simply
exhaustive search. With 10 input variables, for example, there are 1024
subsets which it might be computationally feasible to consider. For large nu
of input variables, however, exhaustive search becomes prohibitively expe
Thus with 100 inputs there are over 10%° possible subsets, and exhaustive s
is impossible. If we have already decided that we want to extract pre
features then the number of combinations of features is given by

Figure 8.5. Example of data from two classes (represented by the crosses and
the circles respectively) as described by two feature variables z; and 3. If the
~ data was described by either feature alone then there would be strong overlap
~ of the two classes, while with if both features are used, as shown here, then
~ the classes are well separated.

, the order of the z's is irrelevant in defining the feature subset. A sufficient
ition for satisfying these constraints is that the z; should satisfy
d!

(d - d)\d! 21<2< ... <2\ (8.11)
‘allows us to construct a search tree, as shown in Figure 8.6 for the case of
original features from which we wish to select a subset of two. The features
exed by the labels 1, 2, 3, 4, 5, and the number next to each node denotes
ture which is eliminated at that node. Each possible subset of two features
d from a total of five is represented by one of the nodes at the bottom of
tree. At the first level down from the top of the tree, the highest value of z
h is considered is 3, since any higher value would not allow the constraint
) to be satisfied. Similar arguments are used to construct the rest of the
Now suppose that we wish to maximize a criterion J(d) and that the value
corresponding to the node shown at A is recorded as a threshold. If at any
in the search an intermediate node is encountered, such as that shown
B, for which the value of J is smaller than the threshold, then there is no

to evaluate any of the sets which lie below this node on the tree, since,
€onsequence of the monotonicity relation (8.9), such nodes necessarily have
S of the criterion which are smaller than the threshold. Thus, the nodes
b as solid circles in Figure 8.6 need not be evaluated. If at any point in the
1 a final-layer node is encountered which has a larger value for the criterion,

is value becomes the new threshold. The algorithm terminates when every
layer node has either been evaluated or excluded using the monotonicity
0. Note that, unlike exhaustive search applied to all possible subsets of d
es, this method requires evaluation of some of the intermediate sub-sets

which can be significantly smaller than 2¢, but which may still be impra
large in many applications. \
In principle it may be necessary to consider all possible subsets of f
since combinations of variables can provide significant information which !
available in any of the individual variables separately. This is illustrated
classes, and two features z; and z2, in Figure 8.5. Either feature taken al
strong overlap between the two classes, while if the two features are co
together then the classes form well-separated clusters. A similar effect can
with an arbitrary number of features so that, in the most general case, |
way to find the optimum subset is to perform exhaustive search.
If we are using a criterion which satisfies the monotonicity relation in (&
then there exists an accelerated search procedure known as branch and
(Narendra and Fukunaga, 1977). This method can also be applied in many
areas such as cluster analysis and searching for nearest neighbours. In the p!
context it will guarantee to find the best subset of given size, without
to evaluate all possible subsets. To understand this technique, we begin
cussing the exhaustive search procedure, which we set out as a tree
Consider an original set of d features z; where i = 1,...,d, and denof
indices of the M = d — d features which have been discarded by zj,.-:
where each z. can take the value 1,...,d. However, no two z. should t
same value, since that would represent a single feature being eliminated tWi

308 8: Pre-processing and Feature Extraction 8.5: Feature selection

(1) (2) (3) (4)

(13) (23) (34)

(123) (234)

igure 8.7. Sequential forward selection illustrated for a set of four input fea-

s, denoted by 1, 2, 3 and 4. The single best feature variable is chosen first,
then features are added one at a time such that at each stage the variable
chosen is the one which produces the greatest increase in the criterion function.

3 4. 8% 4 5§ 5 4 5 5§

Figure 8.6. A search tree for feature subset selection, for the case of a
five feature variables from which we wish to pick out the optimum sub
two variables. If a strictly monotonic selection criterion is being used,
node such as that at B is found which has a lower value for the criterion
some final-level node such as that at A, then all nodes below B (shown ass
black nodes) can be eliminated from the search. '

jain chosen on the basis of which of the possible candidates at that stage gives
the largest increase in the value of the selection criterion. One obvious
ty with this approach is that, if there are two feature variables of the kind
in Figure 8.5, such that either feature alone provides little discrimination,
vhere both features together are very effective, then the forward selection
ur:d may never find this combination since either feature alone would never
alternative is to start with the full set of d features and to eliminate them
a time. This gives rise to the technique of sequential backward elimination
ated in Figure 8.8. At each stage of the algorithm, one feature is deleted
| the set, chosen from amongst all available candidates as the one which gives
est reduction in the value of the selection criterion. This overcomes the
with the forward selection approach highlighted above, but is still not
eed to be optimal. The backward elimination algorithm requires a greater
of evaluations, however, since it considers numbers of features greater
S10r equal to d while the forward selection procedure considers numbers of
less than or equal to d.

e algorithms can be generalized in various ways in order to allow small
of features which are collectively useful to be selected (Devijver and
: 19?2}. For example, at the kth stage of the algorithm, we can add [
.-" *S using the sequential forward algorithm and then eliminate r features
1g the seqluentia.l backwards algorithm. Clearly there are many variations on
Heme giving a range of algorithms which search a larger range of feature

©iS at the price of increased computation.

which contain more than d variables. However, this is more than o
savings in not having to evaluate final-layer subsets which are excluded
monotonicity property. The basic branch and bound algorithm can be:
to generate a tree in which nodes with smaller values of the selection
tend to have larger numbers of successive branches (Fukunaga, 1990
lead to improvements in computational efficiency since nodes with sm
of the criterion are more likely to be eliminated from the search tree.

8.5.3 Sequential search techniques

The branch and bound algorithm for monotonic selection criteria
faster than exhaustive search but is still guaranteed to find the
set (of given size) which maximizes the criterion. In some applicatio
approach is still computationally too expensive, and we are then for
sider techniques which are significantly faster but which may give su
solutions. The simplest method would be to select those d features
individually the best (obtained by evaluating the selection criterior
feature at a time). This method, however, is likely to be highly
would only be optimal for selection criteria which can be expressed as th
the product, of the criterion evaluated for each feature individually, and
therefore only be appropriate if the features were completely indep nd
A better approach, known as sequential forward selection, is illu:
Figure 8.7. The procedure begins by considering each of the variables
and selecting the one which gives the largest value for the selection
each successive stage of the algorithm, one additional feature is added

310 8: Pre-processing and Feature Extraction 8.6: Principal component analysis 311

o the vectors u; satisfy the orthonormality relation

(1234) ll;-rllj = 5';3‘ (8.13)
which &;; is the Kronecker delta symbol defined on page xiii. Explicit expres-
s for the coefficients z; in (8.12) can be found by using (8.13) to give

(234) (134) (124) (123)
z=ulx (8.14)

nich can be regarded as a simple rotation of the coordinate system from the
jginal =’s to a new set of coordinates given by the z’s (Appendix A). Now
ose that we retain only a subset M < d of the basis vectors u;, so that
only M coefficients z;. The remaining coefficients will be replaced by
ts b; so that each vector x is approximated by an expression of the form

(24) (14) (12)

Figure 8.8. Sequential backward elimination of variables, again illustra
the case of four features. Starting with the complete set, features are elim
one at a time, such that at each stage the feature chosen for elimina

the one corresponding to the smallest reduction in the value of the M d
criterion, X= Z Zu; + Z biu;. (8.15)
i=1 i=M+1

8.6 Principal component analysis

represents a form of dimensionality reduction since the original vector x
h contained d degrees of freedom must now be approximated by a new
r z which has M < d degrees of freedom. Now consider a whole data set of
ors x" where n = 1,...,N. We wish to choose the basis vectors u; and
ficients b; such that the approximation given by (8.15), with the values

ermined by (8.14), gives the best approximation to the original vector x
age for the whole data set. The error in the vector x™ introduced by the

We have already discussed the problems which can arise in attempts
pattern recognition in high-dimensional spaces, and the potential ir
which can be achieved by first mapping the data into a space of
sionality. In general, a reduction in the dimensionality of the inpu
accompanied by a loss of some of the information which discrimina
different classes (or, more generally, which determines the target val
goal in dimensionality reduction is therefore to preserve as much of

information as possible. We have already discussed one approach to
ality reduction based on the selection of a subset of a given set o

inputs. Here we consider techniques for combining inputs together I 4 N
(generally smaller) set of features. The procedures we shall discuss in =K== z (2" — bi)u. (8.16)
i=M+1

tion rely entirely on the input data itself without reference to the ¢
target data, and can be regarded as a form of unsupervised learning. V
are of great practical significance, the neglect of the target data i
implies they can also be significantly sub-optimal, as we discuss in S

We begin our discussion of unsupervised techniques for dimen

€ can then define the best approximation to be that which minimizes the sum

N N d
duction by restricting our attention to linear transformations. Ol.l? B o= l _5n2 = 1 2
map vectors x™ in a d-dimensional space (zy,...,%4) onto vectors 2“ M=3 “Z:‘; llx™ = %% = 2 ; _%: i —bi) (8.17)

dimensional space (z1,...,2zy), where M < d. We first note that th
can be represented, without loss of generality, as a linear combination

y We have used the orthonormality relation (8.13). If we set the derivative
d orthonormal vectors u;

M With respect to b; to zero we find

X = Zz,u.

1 N
b= =ulx (8.18)

312 8: Pre-processing and Feature Eztraction 8.6: Principal component analysis 313

where we have defined the mean vector X to be
1 X

= Ef- z =
n=1

Using (8.14) and (8.18) we can write the sum-of-squares error (8.17) as.

Al

i=M+1n=1 X
d e 8.9. Schematic illustration of principal component analysis applied to
= 1 Z ul Sy, ata in two dimensions. In a linear projection down to one dimension, the
2 i= M1 yptimum choice of projection, in the sense of minimizing the sum-of-squares

or, is obtained by first subtracting off the mean X of the data set, and then
where X is the covariance matrix of the set of vectors {x"} and is gi R S R . e
‘eigenvectors and eigenvalues are found. The eigenvectors corresponding
M largest eigenvalues are retained and the input vectors x™ are projected
the eigenvectors to give the components of the transformed vectors z™ in
/ ensional space. Thus, in Figure 8.9, each two-dimensional data point
ormed to a single variable 2; representing the projection of the data
to the eigenvector uj.
rror introduced by a dimensionality reduction using principal compo-
alysis can be evaluated using (8.23). In some applications the original data
high dimensionality and we wish only to retain the first few principal
ments. In such cases use can be made of efficient algorithms which allow
the required eigenvectors, corresponding to the largest few eigenvalues, to
ted (Press et al., 1992).
have considered linear dimensionality reduction based on the sum-of-
S error criterion. It is possible to consider other criteria including data
ince measures and population entropy. These give rise to the same re-
' the optimal dimensionality reduction in terms of projections onto the
ors of 2 corresponding to the largest eigenvalues (Fukunaga, 1990).

2= (x"-%)E"-%)T.

There now remains the task of minimizing Ejs with respect to the
vectors u;. It is shown in Appendix E that the minimum occurs w
vectors satisfy

Eu,- = /\iu,-

so that they are the eigenvectors of the covariance matrix. Note
covariance matrix is real and symmetric, its eigenvectors can indeed
to be orthonormal as assumed. Substituting (8.22) into (8.20), and :
of the orthonormality relation (8.13), we obtain the value of the e
at the minimum in the form

Intrinsic dimensionality

Wwe are given a set of data vectors in a d-dimensional space, and we
ncipal component analysis and discover that the first d’ eigenvalues have
tly larger values than the remaining d—d’ eigenvalues. This tells us that
can be represented to a relatively high accuracy by projection onto the
€lgenvectors. We therefore discover that the effective dimensionality of
is less than the apparent dimensionality d, as a result of correlations
e data. However, principal component analysis is limited by virtue of

technique. It may therefore be unable to capture more complex
I correlations, and may therefore overestimate the true dimensionality

Thus, the minimum error is obtained by choosing the d— M smallest
and their corresponding eigenvectors, as the ones to discard.

The linear dimensionality reduction procedure derived above
Karhunen—Loéve transformation or principal component analysis and
at length in Jollife (1986). Each of the eigenvectors u; is called a pri
ponent. The technique is illustrated schematically in Figure 8.9 fo
data points in two dimensions.

In practice, the algorithm proceeds by first computing the mean
x™ and then subtracting off this mean. Then the covariance matrix is

314 8: Pre-processing and Feature Extraction 8.6: Principal component analysis 315

A J

X >

X

Figure 8.10. Example of a data set in two dimensions which has an i
dimensionality d’' = 1. The data can be specified not only in terms of th
variables ; and 2, but also in terms of the single parameter n. However,
ear dimensionality reduction technique, such as principal component a
is unable to detect the lower dimensionality.

] _.jgure 8.11. Addition of a small level of noise to data in two dimensions having
‘an intrinsic dimensionality of 1 can increase its intrinsic dimensionality to 2.
2 everthelas, the data can be represented to a good approximation by a single
riable 77 and for practical purposes can be regarded as having an intrinsic
dimensionality of 1.

of the data. This is illustrated schematically in Figure 8.10, for data poi
lie around the perimeter of a circle. Principal component analysis would
eigenvectors with equal eigenvalues (as a result of the symmetry of the
fact, however, the data could be described equally well by a single par
as shown. More generally, a data set in d dimensions is said to have an
dimensionality equal to d' if the data lies entirely within a d’-dimensi
space (Fukunaga, 1982).

Note that if the data is slightly noisy, then the intrinsic dimensiona
be increased. Figure 8.11 shows some data in two dimensions which
by a small level of noise. Strictly the data now lives in a two-dimension
but can nevertheless by represented to high accuracy by a single par

8.6.2 Neural networks for dimensionality reduction

Multi-layer neural networks can themselves be used to perform non-lin
sionality reduction, thereby overcoming some of the limitations of linear
component analysis. Consider first a multi-layer perceptron of the
in Figure 8.12, having d inputs, d output units and M hidden units, ¥
(Rumelhart et al., 1986). The targets used to train the network are s
input vectors themselves, so that the network is attempting to map
vector onto itself. Due to the reduced number of units in the first layer
reconstruction of all input vectors is not in general possible. The net#
trained by minimizing a sum-of-squares error of the form

Z Z{yk(x") 23}

r&wl k=1

X Xy
inputs

e 8.12. An auto-associative multi-layer perceptron having two layers of

g t-s Such a network is trained to map input vectors onto themselves by

limization of a sum-of-squares error. Even with non-linear units in the hid-

 layer, such a network is equivalent to linear principal component analysis.
8 have been omitted for clarity.

316 8: Pre-processing and Feature Eziraction 8.6: Principal component analysis 317

non-linear —p S(E)

non-linear —»

Y

x3
X

Figure 8.13. Addition of extra hidden layers of non-linear units to the n

of Figure 8.12 gives an auto-associative network which can perform a Figure 8.14. Geometrical interpretation of the mappings performed by the

network in Figure 8.13.

ion of the error in (8.24). We can view this network as two successive
nctional mappings F; and Fy. The first mapping F; projects the original d-
imensional data onto an M-dimensional sub-space S defined by the activations
units in the second hidden layer. Because of the presence of the first hidden
of non-linear units, this mapping is essentially arbitrary, and in particular
t restricted to being linear. Similarly the second half of the network defines
arbitrary functional mapping from the M-dimensional space back into the
nal d-dimensional space. This has a simple geometrical interpretation, as
cated for the case d = 3 and M = 2 in Figure 8.14. The function F; maps
an M-dimensional space S into a d-dimensional space and therefore defines
ay in which the space S is embedded within the original x-space. Since the
ping F, can be non-linear, the sub-space S can be non-planar, as indicated
Lthe figure. The mapping F then defines a projection of points in the original
nensional space into the M-dimensional sub-space S.
Such a network effectively performs a non-linear principal component analy-
t has the advantage of not being limited to linear transformations, although
ntains standard principal component analysis as a special case. However,
€ minimization of the error function is now a non-linear optimization problem,
fice the error function in (8.24) is no longer a quadratic function of the network
Hmneters. Computationally intensive non-linear optimization techniques must
Sed (Chapter 7), and there is the risk of finding a sub-optimal local minimum
€ error function. Also, the dimensionality of the sub-space must be specified
Gvance of training the network, so that in practice it may be necessary to
4 and compare several networks having different values of M. An example of
*€ application of this approach is given in Kramer (1991).

Such a network is said to form an auto-associative mapping. Error minis
in this case represents a form of unsupervised training, since no in
target data is provided. If the hidden units have linear activations fi
then it can be shown that the error function has a unique global min
that at this minimum the network performs a projection onto the M-dim
sub-space which is spanned by the first M principal components o
(Bourlard and Kamp, 1988; Baldi and Hornik, 1989). Thus, the vectors
which lead into the hidden units in Figure 8.12 form a basis set which spa
principal sub-space. (Note, however, that these vectors need not be orth
or normalized.) This result is not surprising, since both principal com
analysis and the neural network are using linear dimensionality red
are minimizing the same sum-of-squares error function.)

It might be thought that the limitations of a linear dimensionality red
could be overcome by using non-linear (sigmoidal) activation functi
hidden units in the network in Figure 8.12. However, it was shown by |
and Kamp (1988) that such non-linearities make no difference, and tha
mum error solution is again given by the projection onto the principal col
sub-space. There is therefore no advantage in using two-layer neural netw
perform dimensionality reduction. Standard techniques for principal ¢
analysis (based on singular value decomposition) are guaranteed to give
rect solution in finite time, and also generate an ordered set of eigenvaluess
corresponding orthonormal eigenvectors,

The situation is different, however, if additional hidden layers are
ted in the network. Consider the four-layer auto-associative network
Figure 8.13. Again the output units are linear, and the M units in the
hidden layer can also be linear. However, the first and third hidden
sigmoidal non-linear activation functions. The network is again train

318 8: Pre-processing and Feature Eztraction 8.7: Invariances and prior knowledge 319

; catlons

Note that in the example of Figure 8.15, a reduction of dimensionality us-
glsher s linear discriminant (Section 3.6) would yield the optimal projection
uz. This is a consequence of the fact that it takes account of the class
nation in selecting the projection vector. However, as we saw in Section 3.6,
problem with c classes, Fisher's linear technique can only find ¢ — 1 inde-
ent directions. For problems with few classes and high input dimensionality
may result in too drastic a reduction of dimensionality. Techniques such
ncipal component analysis do not suffer from this limitation and are able
y extract any number of orthogonal directions up to the dimensionality of the
al space.

is worth noting that there is an additional link between principal com-
t analysis and a class of linear neural network models which make use of
cations of the Hebb learning rule (Hebb, 1949). This form of learning in-
making changes to the value of a weight parameter in proportion to the
ion values of the two units which are linked by that weight. Such net-
can be made to perform principal component analysis of the data (Oja,
1089; Linsker, 1988; Sanger, 1989), and furthermore it can be arranged
 the welghts converge to orthonormal vectors along the principal component
. For practical applications, however, there would appear to be little
tage in using such approaches compared with standard numerical analysis
liques such as those described earlier.

»

X

Figure 8.15. An example of a simple classification problem for which
pal component analysis would discard the discriminatory information
dimensional data is taken from two Gaussian classes Cy and C2 depicted b
two ellipses. Dimensionality reduction to one dimension using principal ¢
ponent analysis would give a projection of the data onto the vector u;
would remove all ability to discriminate the two classes. The full di
tory capability can be preserved if instead the data is projected onto the
uz, which is the direction which would be obtained from linear discriminan
analysis.

1
" Invariances and prior knowledge

ghout this book we are considering the problem of setting up a multivariate
(for regression or classification) on the basis of a set of training data.
ny practical situations we have, in addition to the data itself, some general
fmation about the form which the mapping should take or some constraints
0 it should satisfy. This is referred to as prior knowledge, and its inclusion
etwork design process can often lead to substantial improvements in
nce.
* have already encountered one form of prior knowledge expressed as prior
: ities of class membership in a classification problem (Section 1.8). These
: {-ta_ken into account in an optimal way by direct use of Bayes’ theorem, or by
Pducing weighting factors in a sum-of-squares error function (Section 6.6.2).
concentrate on forms of prior knowledge concerned with various kinds of
ce. As we shall see, the required invariance properties can be built into
rocessing stage, or they can be included in the network structure itself.
the latter option does not strictly constitute part of the pre-processing, it
5sed in this chapter for convenience.

8.6.3 Limitations of unsupervised techniques

We have described both linear and non-linear unsupervised techniq
mensionality reduction. These can lead to significant improvements in
formance of subsequent regression or classification systems. It should b
sized, however, that methods based on unsupervised techniques take nc
of the target data, and can therefore give results which are substan
than optimal. A reduction in dimensionality generally involves the lo:
information, and it may happen that this information is very impo
subsequent regression or classification phase, even though it is of rel
importance for representation of the input data itself.

As a simple example, consider a classification problem involving :
in two dimensions taken from two Gaussian-distributed classes as
ure 8.15. Principal component analysis applied to this data would give
vectors u; and uy as shown. If the dimensionality of the data were to
to one dimension using principal component analysis, then the data 3
projected onto the vector u; since this has the larger eigenvalue. H
would lead to a complete loss of all discriminatory information, and
would have identical distributions in the one-dimensional space. By
projection onto the vector uz would give optimal class separation with 1
discriminatory information. Clearly this is an extreme example, and in
dimensionality reduction by unsupervised techniques can prove useful i

 ITnvariances

¥ practical applications it is known that the outputs in a classification or
on problem should be unchanged, or invariant, when the input is subject
~1ous transformations. An important example is the classification of objects

320 8: Pre-processing and Feature Eztraction 8.7: Invariances and prior knowledge 321

in two-dimensional images. A particular object should be assigned
classification even if it is rotated or translated within the image or if it
scaled (corresponding to the object moving towards or away from the
Such transformations produce significant changes in the raw data (exp
terms of the intensities at each of the pixels in the image) and yet
rise to the same output from the classification system. We shall use th
recognition example to illustrate the use of invariances in neural n
should be borne in mind, however, that the same general principles app
problem for which it is desired to incorporate invariance with respect ¢
transformations.

Broadly we can identify three basic approaches to the construction
ant classification (or regression) systems based on neural networks (B
Casasent, 1991):

1. The first approach is to train a network by example. This invo
ing within the training set a sufficiently large number of examp
effects of the various transformations. Thus, for translation invari
training set should include examples of objects at many different |
If suitable training data is not readily available then it can be gene
applying the transformations to the existing data, for example by
ing a single image to generate several images of the same object a
locations.

2. The second approach involves making a choice of pre-processing
corporates the required invariance properties. If features are extrai
the raw data which are themselves invariant, then any subsequ
sion or classification system will necessarily also respect these

3. The final option is to build the invariance properties into the ne
ture itself. One way to achieve this is through the use of shared ¥
and we shall consider two specific examples involving local recep
and higher-order networks. 4

While approach 1 is relatively straightforward, it suffers from the dis
of being inefficient in requiring a substantially expanded data set. It
result in a network which only approximately respects the invariance.
more, the network will be unable to deal with new inputs in which the
the transformation exceeds that encountered during training, as this
an extrapolation of the network inputs. Methods 2 and 3 achieve the
invariance properties without needing unnecessarily large data sets. In &
text of translation invariance, for instance, a network which has been
to recognize an object correctly at one position within an image can
the same object correctly at any position. In contrast to a network
method 1, such a network is able to extrapolate to new inputs if they €
the training data primarily by virtue of one of the transformations.

An alternative approach which also involves incorporating invariance
training, but which does not require artificial expansion of the data se
technique of tangent prop (Simard et al., 1992). Consider the effect of 2

-

Xy

Figure 8.16. Illustration of a two-dimensional input space showing the ef-
fect of a continuous transformation on a particular input vector x™. A one-
dimensional transformation, parametrized by the continuous variable a, ap-
plied to x™ causes it to sweep out a one-dimensional manifold M. Locally, the
effect of the transformation can be approximated by the tangent vector .

ion on a particular input pattern vector x™. Provided the transformation
inuous (such as translation or rotation, but not mirror reflection for in-
e) then the transformed pattern will sweep out a manifold M within the
ensional input space. This is illustrated in Figure 8.16, for the case of d = 2
mplicity. Suppose the transformation is governed by a single parameter o
might be rotation angle for instance). Then the sub-space M swept out
will be one-dimensional, and will be parametrized by «. Let the vector
results from acting on x™ by this transformation be denoted by s(e, x™)
is defined so that s(0,x™) = x™. Then the tangent to the curve M is given
the dil)rectiona.l derivative T = 8s/0a, and the tangent vector at the point x™
DY

5 = Bax) (8.25)
da |,)

T a transformation of the input vector, the network output vector will, in
) f:hange. The derivative of the activation of output unit & with respect
@ is given by

B o Oyp O
Pa = 2 Ba, Ba = 2 M (8.26)
i=1 ¥ i=1

Jii is the (k,i) element of the Jacobian matrix J, as discussed in Sec-
9. The result (8.26) can be used to modify the standard error function, so
' encourage local invariance in the neighbourhood of the data points, by the

322 8: Pre-processing and Feature Extraction 8.7: Invariances and prior knowledge 323

re (u,v) are Cartesian coordinates describing locations within the image,
v) represents the intensity of the image at location (u,v), and K(u,v) is
a kermel and is a fixed function whose form determines the particular
ents under consideration. In practice, an image is specified in terms of a
i+ array of pixels, and so the integrals in (8.29) are replaced by discrete sums

addition to the usual error function E of a regularization function
total error function of the form

E=E+vQ

where v is a regularization coefficient (Section 9.2) and
E E o(ui, v;) K (ui, vj) AuAv;. (8.30)
i J

The regularization function will be zero when the network mapping
invariant under the transformation in the neighbourhood of each patter
and the value of the parameter v determines the balance between the ne
fitting the training data and the network learning the invariance propert
In a practical implementation, the tangent vector 7™ can be approx
finite differences, by subtracting the original vector x™ from the co
vector after transformation using a small value of o, and dividing
smoothing of the data may also be required. The regularization functio:
on the network weights through the Jacobian J. A back-propagation fo
for computing the derivatives of the regularizer with respect to th
weights is easily obtained (Exercise 8.6) by extension of the techniques
in Chapter 4.
If the transformation is governed by L parameters (e.g. L = 2 for
of translation in a two-dimensional image) then the space M will ha
sionality L, and the corresponding regularizer is given by the sum of
the form (8.28), one for each transformation. If several transformatio:
sidered at the same time, and the network mapping is made invariar
separately, then it will be (locally) invariant to combinations of the
tions (Simard et al., 1992). A related technique, called tangent distance,
used to build invariance properties into distance-based methods such
neighbour classifiers (Simard et al., 1993).

Jhen the kernel function takes the form of simple powers we have regular mo-
ents which, in continuous notation, can be written

M = /fz(u,v)u‘v“‘ dudy (8.31)

o | and m are non-negative integers. We can define a corresponding set of
ation-invariant features, called central moments, by first subtracting off the
sof uand v

T, = / / 21, 9) (4 — B (v — B)™ dudy (8.32)

iere U = Myo/Moo and T = Mm/Muo Under a translation of the image

‘v) — z(u + Au,v + Av), and it is easy to verify that the moments de-
in (8.32) are invariant. Note that this neglects edge effects and assumes
the integrals in (8.32) run over (—oo,00). In practice, the use of moments
e discrete form (8.30) will give only approximate invariance under such
lormations.
milarly, under a change of scale we have z(u,v) — z(au, av). We can make
€ central moments invariant to scale by normalizing them to give
|

Mlm

Him = M GEm)/2 (8.33)
8.7.2 Invariance through pre-processing

The second approach which we shall consider for incorporating invari
erties into neural network mappings is by a suitable choice of pre-
One such technique involves the extraction of features from the o
data which are invariant under the required transformations. Such :
often based on moments of the original data. For inputs which consist)
dimensional image, the moments are defined by

// a(u, v) K (u,v) dudv

B again it is easy to verify that the normalized moments in (8.33) are simulta-
y invariant to translations and scaling. Similarly, we can use the moments
33) in turn to construct moments which are simultaneously invariant to
ation, scale and rotation (Exercise 8.7). For instance, the quantity

Ha20 + fo2 (8.34)

his property (Schalkoff, 1989). Other forms of moments can also be consid-
hich are based on different forms for the kernel function K (u,v) (Khotan-
nd Hong, 1990).

324 8: Pre-processing and Feature Eztraction 8.7: Invariances and prior knowledge -

X hidden
ZT L M layer 2

l hidden

layer 1

Xy
X3
inputs

Figure 8.17. Illustration of a three-dimensional input space showing tra
ries, such as M, which patterns sweep out under the action of transform
to which the network outputs should be invariant. A suitably chosen
constraints will define a sub-space 7 which intersects each trajectory p:
once. If new inputs are mapped onto this surface using the transform
then invariance is guaranteed.

A B

b

Figure 8.18.. 'Scht_amatic al:chitectura of a network for translation-invariant ob-
Ject recognition in two-dimensional images. In a practical system there may
be more than two layers between the input image and the outputs.

ances. While, strictly, this is not a form of pre-processing, it is treated here
onvenience. Again, we introduce this concept in the context of networks
-.u ct;ctr oll;ject recognition in two-dimensional images.)
nsider the network structure shown in Figure 8.18. i
&il: given by the intensities at each of the gixels inBa. ;Tég:;:iii;h:rﬁzg
: the first and secon.d layers are similarly arranged in two-dimensionai
0 reﬁ!ect the geometrical structure of the problem. Instead of having full
eCl.I.lOIlB between ?,djacent layers, each hidden unit receives inputs only
ts in a small region in the previous layer, known as a receptive field
ects the results of experiments in conventional image processing whicl';
3 E‘ns.trated the advantage of extracting local features from an image and
; lllrllmg them together to for:-:n higher-order features. Note that it also
- tias at?piizlof :]l:e mamm;han visua:I processing system. The network
i ¥y chosen so that there is some overlap between adjacent
f;ll:lc_lue o.f shar?d weights can then be used to build in some degree
0 ;:wafnaince 'mto the response of the network (Rumelhart et al.,
e al., 989; Lang et al., 1990). In the simplest case this involves
3 e &0:;] v:]ajlghfts from ea.cl? receptive field to be equal to the correspond-
e o 'the recep'tm.a fields of the other units in the same layer.
n object wh.lcl} faj‘ls within receptive field shown at A in Figure 8.18
5 u;?t aIfm:;f in h:dden_ layer 1, and which produces some activatior:
e tl-; 1e same object falls at the corresponding position in re-
£, then, as a consequence of the shared weights, the corresponding

One problem with the use of moments as input features is that cons
computational effort may be required for their evaluation, and this comg
must be repeated for each new input image. A second problem is th
of information is discarded in evaluating any particular moment, and 501
moments may be required in order to give good discrimination. '

An alternative, related approach to invariant pre-processing is to
any new inputs so as to satisfy some appropriately chosen set of
(Barnard and Casasent, 1991). This is illustrated schematically in
for a set of one-parameter transformations. Under the action of the
tions, each input vector sweeps out a trajectory M as discussed ear.
patterns which satisfy the constraints live on a sub-space T which i
trajectories. Note that the constraints must be chosen so that each
intersects the constraint surface at precisely one point. Any new in
is first transformed (thus moving it along its trajectory) until it
constraint surface. This transformed vector is then used as the input
work. As an example, suppose we wish to impose invariance to trans!
changes of scale. The constraints might then take the form that the 2
first moments Moo, Mig and Moy, given by (8.31), should have spe

Every image (for the training set or test set) is first transformed b}
and scaling until the constraints are satisfied.

8.7.3 Shared weights
The third approach to dealing with invariances, discussed above, i
turing the network itself in such a way that the network mapping :

326 8: Pre-processing and Feature Eztraction 8.7: Invariances and prior knowledge
327

unit in hidden layer 1 will have the same activation level. The units in the s
layer have fixed weights chosen so that each unit computes a simple ave
the activations of the units that fall within its receptive field. This allows
in the second layer to be relatively insensitive to moderate translations
the input image. However, it does preserve some positional information
allowing units in higher layers to detect more complex composite features
cally each successive layer has fewer units than previous layers, as inform
the spatial location of objects is gradually eliminated. This corresponds
use of a relatively high resolution to detect the presence of a feature in an eaf
layer, while using a lower resolution to represent the location of that feat
a subsequent layer.

In a practical network there may be several pairs of layers, with alterns
layers having fixed and adaptive weights. These gradually build up increa: _)
tolerance to shifts in the input image, so that the final output layer has a _;‘ﬁigiﬁ; ‘g;f Mf‘ meﬁe trmim"f‘ invariance on a second-order nework
which is almost entirely independent of the position of an object in t bt o i ot e hidden unit separately, weights from any pir of
field. - f:l)'lere t}lle line Z' i:f mm;rmed'm Sl Gano ‘frorfx any other pair i} ad 3,

As described so far, this network architecture has only one kind of 1~z can be obtained from the line i1-4; by translation.
field in each layer. In order to be able to extract several different kinds of | eration of weight parameters and are therefore i i
is necessary to provide several ‘planes’ of units in each hidden layer, ions. (The number of independent parameters erlmp_l':-f:tlcal for mgy appli-
units in a given plane sharing the same weights. Weight sharing can be en tresponding multivariate polynomial, and is dil:cu un(; = the Same s for the
during learning by initializing corresponding weights to the same (randon er, we can exploit the structure ’of a higher—o;:r r::th?):'T:osef 1.6-1.8.)

ipose in-

and then averaging the weight changes for all of the weights in one g
updating all of the corresponding weights by the same amount using the
weight change.

Network architectures of this form have been used in the zip code
tion system of Le Cun et al. (1989), and in the neocognitron of Fukush
(1983) and Fukushima (1988), for translation-invariant recognition of b
ten digits.

The use of receptive fields can dramatically reduce the number of
present in the network compared with a fully connected architecture.
it practical to treat pixel values in an image directly as inputs to a nt
In addition, the use of shared weights means that the number of indep
parameters in the network is much less than the number of weights, which

much smaller data sets to be used than would otherwise be necessary.
b

nces, and at the same time reduce significantl :

i . y the number of in

ts in the network, by using a form of weight sharing (Giles anddﬁmendem
E_’eran_toms e{.nd Lisboa, 1992). Consider the problem of incorporati, &:Well‘
fion invariance into a higher-order network. This can be achieved b%g rans-
tond-order network of the form Tusing a

zZj=g (Z: ; Wiiyig Iilzis) 3 (836)

31

Wer a translation, the value of the intensity in pixel i; will go from it: ypigi
es:;’ibzg ?; new value gi?'en b}: x; = T; where the translauonglcrz.ll
. y 8 vect.o.r from p:x(?l i1" to pixel i;. Thus the argumey of th
n function g(-) in (8.36) will be invariant if, for each unit § in he ﬁrs(:

8.7.4 Higher-order networks for encoding invariances *Uen layer, we have

In Section 4.5 we introduced the concept of a higher-order network base
units whose outputs are given by

d d d
=9 (wj + E Wjiy Tiy + Z Z WjiziaTiy Tiz T)

11=1 f1=1lig=1

el (8.37)

8 has a simple geometrical inter i indi

e pretation as indic in Fi

*1n the first l?idden layer takes inputs from two f;i}smmﬁ&fiit o
labelled iy and z‘;: in the figure. The constraint in (8.37) requis th
thumt in the first hidden layer, and for each possible pair of poiy i .
g ! e u{eights from any other pair of points, such as those at i, and ¢ - '-:he
obtained from #; and iy by translation, must be equal. I\;ote cé;w:ﬁ:

, such

where z; is an input, g(-) is a non-linear activation function and the w!
resent the weights. We have already remarked that such networks

328 8: Pre-processing and Feature Exiraction Ezercises 329

an approach would not work with a first-order network, since the con
the weights would force all weights into any given unit to be equal. Eq
would therefore take as input something proportional to the average of a
input pixel values and, while this would be translation invariant, there
no freedom left for the units to detect any structure in the image. Ed
as well as the discrete nature of the pixels, have been neglected here,
practice the invariance properties will be only approximately realized,

Higher-order networks can be made invariant to more complex tr
tions. Consider a general Kth-order unit

Z Z20 E :wjil.'".f!{xin Tk
ik

i1

(@ (b) i

Figure 8.20. Simultaneous translation, rotation and scale invariance can be
built into a third-order network provided weights from triplets of points which
correspond to similar triangles, such as those shown in (a) and (b), are con-
strained to be equal.

Under a particular geometrical transformation, z;, — zj = z;; where
at 4 is replaced by the pixel at ij. It follows that the expression in (8.38)
invariant provided

anating from any other triplet which can be obtained by any combination of
pslations, rotations and scalings (Reid et al., 1989). This means that corre-
sponding triplets lie at the vertices of similar triangles, in other words triangles
W have the same values of the angles encountered in the same order when
aversing the triangle in, say, a clockwise direction. This is illustrated in Fig-
re 8.20. Although the incorporation of constraints greatly reduces the number
ﬁ'ee parameters in higher-order networks, the use of such networks is not
lespread.

Wiy ooeyife = Wiy onine

As well as allowing invariances to be built into the network structure, the
tion of the constraints in (8.39) can greatly reduce the number of free par
in the network, and thereby dramatically reduce the size of data set ne
determine those weights.

Simultaneous translation and scale invariance can be built into a secon
network by demanding that, for each unit in the first hidden layer, an
pair of inputs 4; and i, the weights from i; and i, are constrained to equs
from any other pair i} and i, where the pair #{—i} can be obtained fro
by a combination of translation and scaling. This selects all pairs of po
that the line #{—i} is parallel to the line i;—43. There is a slight comp:
the case of scaling arising from the fact that the input image consists of (
pixels. If a given geometrical object is scaled by a factor A then the nu
pixels which it occupies is scaled by a factor A\2. If the image consists
pixels (value +1) on a white background (value 0) for instance, then t
of active pixels will be scaled by A%, which would spoil the scale inve
problem can be avoided by normahzmg the image, e.g. to a vector of unit
Note that this then gives fractional values for the inputs.

If we consider simultaneous translation, rotation and scale invarian
that any pair of points can be mapped to any other pair by a combination
transformations. Thus a second-order network would be constrained to'
weights to any hidden unit equal, which would again cause the activati
unit to be simply proportional to the average of the input values. We th
need to go to a third-order network. In this case, each unit takes mpu
three pixels in the image, and the weights must satisfy the constraint -
every triplet of pixels, and for every hidden unit, the weights must eg

ixercises

B.1 () Verify that the whitened input vector, given by (8.6), has zero mean and
~ a covariance matrix given by the identity matrix.

8.2 (x) Consider a radial basis function network with spherical Gaussian basis
functmns in which t.he Jth basis function is governed by a mean u; and a
variance parameter o2 (Section 5.2). Show that the effect of applying the
whitening transformatlon (8.6) to the original input data is equivalent to a
special case of the same network with general Gaussian basis functions gov-
erned by a general covariance matrix X; in which the original un-whitened
data is used. Obtain an expression for the corresponding mean B; and

covariance matrix X; in terms of the parameters of the original basis func-
* tions and of the whitening transformation.

43 (% +) Generate sets of data points in two dimensiorms using a variety of distri-
butions including Gaussian (with general covariance matrix) and mixtures
of Gaussians. For each data set, apply the whitening transformation (Sec-
tion 8.2) and produce scatter plots of the data points before and after
. transformation.

(%) Consider a trained classifier which can produce the posterior probabil-
ities P(Ck|x) for a new input vector x. Suppose that some of the values
of the input vector are missing, so that x can be partitioned into a sub-
vector X, of components whose values are missing; and a remaining vector

330 8: Pre-processing and Feature Extraction Ezercises 331

X whose values are present. Show that posterior probabilities, given where we have defined
the data X, are given by

5 &k = %, & = Db, (8.47)
P(CR) = o= [PICUR %)p(R, %) o o
p(X)

8.5 (x) Consider the problem of selecting M feature variables from a tota]
candidate variables, Find expressions for the number of criterion |
evaluations which must be performed for (i) exhaustive search, (i
tial forward selection, and (iii) sequential backward elimination. C
the case of choosing 10 features out of a set of 50 candidates, and e
the corresponding expressions for the number of evaluations by thes
methods.

8.6 (**) Consider a multi-layer perceptron with arbitrary feed-forwa
ogy, which is to be trained by minimizing the ‘tangent prop’ error f
(8.27) in which the regularizing function is given by (8.28). Show
regularization term) can be written as a sum over patterns of

the form i
. ™ 2
%= 2 Ek (Dyx)

Write down the back-propagation equations for §%, and hence derive a set
of back-propagation equations for the evaluation of the ¢.

8.7 () We have seen that the normalized moments pim defined by (8.33) are
. simultaneously invariant to translation and scaling. It follows that any
combination of such moments will also satisfy the same invariances. Show
that the moment defined in (8.34) is, additionally, invariant under rotation
§ — 6 + Af. Hint: this is most easily done by representing the moments
using polar coordinates centred on the point (%,7), so that the central
moments become

Mim =f/x(r,ﬂ)(rcosﬁ)‘(rsin&)"‘r dr df, (8.48)

~ and then making use of the relation sin®# + cos?# = 1. Which of the
following moments are rotation invariant?

where D is a differential operator defined by (8) (uao — poz)? + 4pud, (8.49)
4 2 2
e o -4 8.50
D Z ", (b) (u2o + po2)” — 4p1y (8.50)
¢ + 3p12)? — (321 + pos)? 8.51
By acting on the forward propagation equations (c) (ko + 3pra)" = (3piz1 + pos) el
(d) (so— 3m2)® + (3p21 — pos)®. (8.52)

z; = g(aj), e =) wjiz
i

with the operator D, show that Q" can be evaluated by forward pra
tion using the following equations: §

& = g'(aj)a;, ;= Z wj€i-

where we have defined the new variables
fj = DZ_.h GJ‘ = pﬂj.

Now show that the derivatives of Q" with respect to a weight
network can be written in the form

ann
= & {@kz +8F¢)
8"’1‘8 ;

9.1: Bias and variance 333

-ustable multiplicative parameter.

" In a practical application, we have to optimize the model complexity for the
s en training data set. One of the most important techniques for doing this is
cross-validation.

In Chapter 10 we discuss the Bayesian framework which provides a com-
imentary viewpoint to the one presented in this chapter. The bias-variance
sade-off is then no longer relevant, and we can in principle consider networks of
bitrarily high complexity without encountering over-fitting.

9
LEARNING AND GENERALIZATION

Bias and variance
As we have emphasized in several other chapters, the goal of network
is not to learn an exact representation of the training data itself, bu
to build a statistical model of the process which generates the data.
important if the network is to exhibit good generalization, that is, to
predictions for new inputs. In Section 1.5, we introduced the simple
of curve fitting using polynomials, and showed that a polynomial wit
coefficients gives poor predictions for new data, i.e. poor generalizatio
the polynomial function has too little flexibility. Conversely, a polynom
too many coefficients also gives poor generalization since it fits too mue
noise on the training data. The number of coefficients in the polynomial
the effective flexibility, or complexity, of the model.

This highlights the need to optimize the complexity of the model in orde
achieve the best generalization. Considerable insight into this phenon
be obtained by introducing the concept of the bias-variance trade-off,
the generalization error is decomposed into the sum of the bias squared
variance. A model which is too simple, or too inflexible, will have a 1
while one which has too much flexibility in relation to the particular
will have a large variance. Bias and variance are complementary quantit
the best generalization is obtained when we have the best compromise:
the conflicting requirements of small bias and small variance. _

In order to find the optimum balance between bias and variance We
to have a way of controlling the effective complexity of the model. In
of neural networks, the complexity can be varied by changing the nu
adaptive parameters in the network. This is called structural stabiliza
way to implement this in practice is to compare a range of models having
different numbers of hidden units. Alternatively, we can start with a
large network and prune out the least significant connections, either by
individual weights or by removing complete units. Similarly, we can !
a small network, and add units during the learning process, with t
arriving at an optimal network structure. Yet another way to reduce
to combine the output: of several networks together to form a commiti

The second principal approach to controlling the complexity of a 1
through the use of regularization which involves the addition of a pena
to the error function. We can control the degree of regularization
the effective complexity of the model, by scaling the regularization te

Section 1.5 we discussed the problem of curve fitting using polynomial func-
and we showed that there is an optimal number of coefficients for the
omial, for a given training set, in order to obtain the best represertation
the underlying systematic properties of the data, and hence to obtain the
;_i-f generalization on new data. This represents a trade-off between achieving a
d fit to the training data, and obtaining a reasonably smooth function which
over-fitted to the data. Similar considerations apply to the problem of
ity estimation, discussed in Chapter 2, where various smoothing parameters
hich control the trade-off between smoothing the model density function
ﬁttmg the data set. The same issues also arise in the supervised training of
networks.

key insight into this trade-off comes from the decomposition of error into
and variance components (Geman et al., 1992). We begin with a mathemat-
treatment of the bias-variance decomposition, and then discuss its implica-

convenient to consider the particular case of a model trained using a sum-

ares error function, although our conclusions will be much more general.

for notational simplicity, we shall consider a network having a single output

ough again this is not a significant limitation. We showed in Section 6.1.3

;3 sum-of-squares error, in the limit of an infinite data set, can be written
orm

= 5 [060 - ()50 dx

+3 / {(£21%) — (t)?}p(x) dx (91)

i p(x) is the unconditional density of the input data, and (t|x) denotes
iditional average, or regression, of the target data given by

(tx) = f tp(t]) dt (9.2)

334 9: Learning and Generalization 9.1: Bias and variance 335

'F
where p(t|x) is the conditional density of the target variable ¢ conditioned oy
input vector x. Similarly

= {y(x) = Eply()]}* + {Eply(x)] - (tix)}?

+2{y(x) — Eply(x)|HEpy(x)] — (t|x)}- (9.6)
(]x) = f £2p(t}x) dt.

1n order to compute the expression in (9.5) we take the expectation of both sides
of (9.6) over the ensemble of data sets D. We see that the third term on the

Note that the second term in (9.1) is independent of the network ioht-hand side of (9.6) vanishes, and we are left with

y(x) and hence is independent of the network weights. The optimal
function y(x), in the sense of minimizing the sum-of-squares error, i

£ — (t}%)}?
which makes the first term in (9.1) vanish, and is given by y(x) = (¢}; pl{y(x) = (tx)}]

second term represents the intrinsic noise in the data and sets a lower — = 2 — 2 9.7
the error which can be achieved. = ;[ED [y(x)lr (tlx)}"'l':"‘ﬂ[{y(x) fD{y(x)]} l (d)
In a practical situation we must deal with the problems arising from (bias)® variance

size data set. Suppose we consider a training set D consisting of N pattern
we use to determine our network model y(x). Now consider a whole ense
possible data sets, each containing N patterns, and each taken from
fixed joint distribution p(x,t). We have already argued that the optimal 1
mapping is given by the conditional average (f|x). A measure of how
actual mapping function y(x) is to the desired one is given by the in
the first term in (9.1):

It is worth studying the expressions in (9.7) closely. The bias measures the extent

which the average (over all data sets) of the network function differs from the
sired function (t|x). Conversely the variance measures the extent to which the
work function y(x)is sensitive to the particular choice of data set. Note that
3 expressions for bias and variance are functions of the input vector x. We can
o introduce corresponding average values for bias and variance by integrating
all x. By referring back to (9.1) we see that the appropriate weighting for
his integration is given by the unconditional density p(x), so that

{y(x) - (tlx)}*.

The value of this quantity will depend on the particular data set D on g 1 B 2
is trained. We can eliminate this dependence by considering an average (bias)” = b {Eply(x)] — (t[x)}*p(x) dx (9.8)
complete ensemble of data sets, which we write as
1
variance = -~ [&£ x) — Eply(x)]}]p(x) dx. 9.9
£D [{y(x) o (tix) }21 2 / D[{y() D[y{)]}]p() ()

. The meaning of the bias and variance terms can be illustrated by considering
) extreme limits for the choice of functional form for y(x). We shall suppose
Hat the target data for network training is generated from a smooth function
4x) to which zero mean random noise € is added, so that

where £p|-] denotes the expectation, or ensemble average, and we recall
function y(x) depends on the particular data set I which is used for
Note that this expression is itself a function of x.

If the network function were always a perfect predictor of the regres
tion (t[x) then this error would be zero. As we shall see, a non-zero
arise for essentially two distinct reasons. It may be that the network fu
is on average different from the regression function. This is called bias. &
natively, it may be that the network function is very sensitive to the partic
data set D, so that, at a given X, it is larger than the required value £
data sets, and smaller for other data sets. This is called variance. We ca
the decomposition into bias and variance explicit by writing (9.5) in s
different, but mathematically equivalent, form. First we expand the term
brackets in (9.5) to give)

{y(x) — (t1x)}* = {y(x) — Ep[u(x)] + Eny(x)] — (tIx)}*

‘ t" = h(x™) + €". (9.10)
that the optimal mapping function in this case is given by (¢|x) = h(x). One

of model for y(x) would be some fixed function g(x) which is completely
endent of the data set D, as indicated in Figure 9.1. It is clear that the
¢ tance term in (9.7) will vanish, since Ep[y(x)] = g(x) = y(x). However, the
term will typically be high since no attention at all was paid to the data, and
ess we have some prior knowledge which helps us to choose the function

336 9: Learning and Generalization 9.1: Bias and variance 337
Ep[{y(x) — Enly(X)])}’] = Ep[{y(x) — Mx)}?] = Ep[e’] (9.12)
A which is just the variance of the noise on the data, which could be substantial.
o h(x) ~ e see that there is a natural trade-off between bias and variance. A function
y \ °’f which is closely fitted to the data set will tend to have a large variance and

nce give a large expected error. We can decrease the variance by smoothing
function, but if this is taken too far then the bias becomes large and the
pected error is again large. This trade-off between bias and variance plays a
sucial role in the application of neural network techniques to practical problems.
We shall give a simple example of the dependence of bias and variance on the
affective model complexity in Section 9.8.1.

Y

0.1.1 Minimizing bias and variance

ave seen that, for any given size of data set, there is some optimal balance
een bias and variance which gives the smallest average generalization error.
n order to improve the performance of the network further we need to be able
g reduce the bias while at the same time also reducing the variance. One way
o achieve this is to use more data points. As we increase the number of data
ts we can afford to use more complex models, and therefore reduce bias,
le at the same time ensuring that each model is more heavily constrained
by the data, thereby also reducing variance. If we increase the number of data
s sufficiently rapidly in relation to the model complexity we can find a
ience of models such that both bias and variance decrease. Models such as
forward neural networks can in principle provide consistent estimators of
egression function, meaning that they can approximate the regression to
ary accuracy in the limit as the number of data points goes to infinity.
mit requires a subtle balance of network complexity against number of
oints to ensure that at each step both bias and variance are decreased.
ency has been widely studied in the context of conventional techniques
tistical pattern recognition. For feed-forward networks, White (1990) has
how the complexity of a two-layer network must grow in relation to the
f the data set in order to be consistent. This does not, however, tell us the
Hplexity required for any given number of data points. It also requires that the
er optimization algorithms are capable of finding the global minimum of
or function. Note that, even if both bias and variance can be reduced to
error on new data will still be non-zero as a result of the intrinsic noise
data given by the second term in (9.1).

ractice we are often limited in the number of training patterns available,
many applications this may indeed be a severe limitation. An alternative
1 to reducing both bias and variance becomes possible if we have some
lowledge concerning the unknown function h(x). Such knowledge can be
Constrain the model function y(x) in a way which is consistent with h(x)
therefore does not give rise to increased bias. Note that the bias—
HC€ problem implies that, for example, a simple linear model (single-layer
.;.) might, in some applications involving relatively small data sets, give

Figure 9.1. A schematic illustration of the meaning of bias and variance. Ci
denote a set of data points which have been generated from an -und
function h(z) (dashed curve) with the addition of noise. The goal is to ’
approximate h(z) as closely as possible. If we try to quel the da.ts by a
function g(z), then the bias will generally be high while the variance
Zero.

Figure 9.2. As in Figure 9.1, but in which a model is used which is
exact interpolant of the data points. In this case the bias is low but the

is high.

The opposite extreme is to take a function .which fits f:he trainin
fectly, such as the simple exact interpolant indicated in Figure 9.2.
the bias term vanishes at the data points themselves since

Eply(x)] = Eplh(x) + ¢] = h(x) = (t|x)

and the bias will typically be small in t'he neighbourhood of the data --'_."."-'
variance, however, will be significant since 4

338 9: Learning and Generalization 9.2: Regularization 339

superior performance to a more general non-linear model (such as a mult;

empirically that a regularizer of this form can lead to significant i
network) even though the latter contains the linear model as a special stion. B the

jn network generalization (Hinton, 1987). Some heuristic justification for the
weight-decay regularizer can be given as follows. We know that to produce an
-fitted mapping with regions of large curvature requires relatively large values
for the weights. For small values of the weights the network mapping represented
py a multi-layer perceptron is approximately linear, since the central region of a
oidal activation function can be approximated by a linear transformation.
By using a regularizer of the form (9.15), the weights are encouraged to be small.

Many I}etwm:k training algorithms make use of the derivatives of the total
I. ;iit:;c:):;n with respect to the network weights, which from (9.13) and (9.15)

9.2 Regularization
In Section 1.5 we saw that a polynomial with an excess of free coefficients
to generate mappings which have a lot of curvature and structure, as a
over-fitting to the noise on the training data. Similar behaviour also ari
more complex non-linear neural network models. The technique of
tion encourages smoother network mappings by adding a penalty Q to
function to give

é = E + VL.
VE=VE+vw. (9.16)
Here E is one of the standard error functions as discussed in Chapte
the parameter v controls the extent to which the penalty term Q
the form of the solution. Training is performed by minimizing the
function E, which requires that the derivatives of Q with respect to the
weights can be computed efficiently. A function y(x) which provides a
to the training data will give a small value for E, while one which is ver
will give a small value for Q. The resulting network mapping is & com
between fitting the data and minimizing Q. Regularization is discus
context of radial basis function networks in Section 5.4, and is given a !
interpretation in Section 10.1.
In this section we shall consider various forms for the regularization
Regularization techniques have been extensively studied in the context:
models for y(x). For the case of one input variable = and one output
the class of Tikhonov regularizers takes the form :

Q:%i/:h,(a:} (%’;)2@

r=0

ose that the data term E is absent and we consider training by simple gra-

descent in the continuous-time limit. The weight vector w(r) then evolves
time 7 according to

dw
& = NVE = —nuw (9.17)

iere 7 is the learning rate parameter. This equation has solution
w(T) = w(0) exp(—nvr) (9.18)

50 all of the weights decay exponentially to zero, which is the reason for the

€ of the term ‘weight decay’.

can gain some 'further insight into the behaviour of the weight-decay
er by cpns:dermg the particular case of a quadratic error function. A

quadratic error can be written in the form

1
where h, > 0forr =0,...,R—1, and hg > 0 (Tikhonov and A E(w) = Ey +bT"w + ;‘;wTHw (9.19)
Regularization has also been widely studied in the context of _
(Poggio et al., 1985). ::le Hessian 1'111 and the vector b are constants. The minimum of this error
=V Occurs at the point w* i 2 iafs ?
9.2.1 Weight decay point w* which, by differentiating (9.19), satisfies
One of the simplest forms of regularizer is called weight decay and consists

sum of the squares of the adaptive parameters in the network
1 2
=5 > v
i

where the sum runs over all weights and biases. In conventional
the use of this form of regularizer is called ridge regression. It has

b+ Hw" =0. (9.20)

Presence of the regularization term, the minimum moves int w
, to
from (9.13), satisfies B

b+ HwW + vw = 0. (9.21)

340 9: Learning and Generalization 9.2: Regularization 341

We can better interpret the effect of the weight-decay term if we rotate th

in weight space so as to diagonalize the Hessian matrix H (Appendix A). T

is done by considering the eigenvector equation for the Hessian given by
Hl.lj = ,_,-uj.

We can now expand w* and W in terms of the eigenvectors to give
w* = Zw}u,-, w= qu'_,-u_,-.
h i

Combining (9.20), (9.21) and (9.23), and using the orthonormality of the {§
we obtain the following relation between the minima of the original
regularized error functions

‘Figure 9.3. lllustration of the effect of a simple weight-decay re, izer on
‘a quadratic error function. The circle represents a contour along which the
‘weight-decay term is constant, and the ellipse represents a contour of constant
‘unregularized error. Note that the axes in weight space have been rotated to be
‘parallel with the principal axes of the original error surface, determined by the
genvectors of the corresponding Hessian matrix. The effect of the regularizer
is to shift the minimum of the error function from w* to w. This reduces the
ue of w; at the minimum significantly since this corresponds to a small
genvalue, while the value of w3, which corresponds to a large eigenvalue, is
y affected.

Wy = Aj w}.
4 Aj+£-r‘ J

The eigenvectors u; represent the principal directions of the quadratic
surface. Along those directions for which the corresponding eigenvalues :
tively large, so that A; > v, (9.24) shows that @; ~ w}, and so the
the error function is shifted very little. Conversely, along directions for w
eigenvalues are relatively small, so that \; < v, (9.24) shows that @]
and so the corresponding components of the minimum weight vector are
pressed. This effect is illustrated in Figure 9.3.

z; — T; = az; + b. (9.27)

e can arrange for the mapping performed by the network to be unchanged
g a corresponding linear transformation of the weights and biases from

9.2.2 Consistency of weight decay s to the units in the hidden layer of the form

One of the limitations of simple weight decay in the form (9.15) is that is®# _ 1

sistent with certain scaling properties of network mappings. To illustrate Wi —> Wy = —Wy (9.28)
consider a multi-layer perceptron network having a single hidden layer

output units, which performs a mapping from a set of input variabl = b

of output variables yx. The activation of a hidden unit in the first e i Zwﬁ' (9:29)

is given by '

arly, a linear transformation of the output variables of the network of the

zj=g (Z Wy T + w_,'a)
i

while the activations of the output units are given by

Yie = Uk = cyx +d (9.30)

by making a transformation of the second-layer weights using

Yk = E Wi 25 + Wko.

j Wkj — Wej = CWi;j (9.31)

Suppose we perform a linear transformation on the input data of t he fe Wio — Wko = CWko + d. (9.32)

342 9: Learning and Generalization 9.2: Regularization -

If we train one network using the original data and one network using data
which the input and/or target variables are transformed by one of the aba
ear transformations, then consistency requires that we should obtain eq
networks which differ only by the linear transformation of the weights as
Any regularizer should be consistent with this property, otherwise it arbi
favours one solution over another, equivalent one. Clearly, simple weight
(9.15) which treats all weights and biases on an equal footing does not .
this property.

We therefore look for a regularizer which is invariant under the linear tra
formations (9.28), (9.29), (9.31) and (9.32). In particular, the weights
be scale-invariant and the biases should be shift-invariant. Such a regulas
given by

V—;sz—%%}:wz

weW, weWy

Figure 9.4. Example of data generated by sampling the function

by_ (9.34), and adding Gaussian distributed rmclll:i noise with st’;i?;rjeg:ve:
ation of 0.05. The dashed curve shows the function h(z) and the solid curve
s%xows the result of fitting a radial basis function network without regulariza-
tion. There is one Gaussian basis function for each of the 30 data points, and
the T&ult is a strongly over-fitted network mapping. (This figure is idex;tical
to Figure 5.1, and is reproduced here for ease of comparison.)

where W, denotes the set of weights in the first layer, W2 denotes
weights in the second layer, and biases are excluded from the summation
the linear transformations of the weights given by (9.28), (9.29),
(9.32), the regularizer will remain unchanged provided the parameters v; all
are suitably rescaled. #

In Section 3.4.3 we showed that the role of the biases in the final la
a network with linear outputs, trained by minimizing a sum-of-sq
function, is to compensate for the difference between the mean (over
set) of the output vector from the network and the corresponding m
target values. It is therefore reasonable to exclude the biases from the
as we do not wish systematically to distort the mean network output. T
is then equal to the sample mean of the target data, and provides &
estimate of the true target mean.

Weight-decay regularizers can be motivated in the context of linear m
considering the sensitivity of the model predictions to noise on the inp
Minimization of this sensitivity leads naturally to a weight-decay reg
which the biases are excluded from the sum over weights (Exercise 9.
general case of non-linear networks is covered in detail later, when w
the training of networks with additive noise on the inputs.

and ax'iding Gaussian distributed random noise with zero mean and standard
lon ¢ = 0.05. There is one basis function centred on each data point, and
quently the network gives a strongly over-fitted solution. ’
_ YVe now include a weight-decay regularizer of the form (9.15) with the bias
rameter excluded from the summation, for reasons discussed above. Figure 9.5
] the_ effect of using a regularization coefficient of ¥ = 40. The netwm:k
pmg is now _much smoother and gives a much closer representation of the
lying function from which the data was generated (shown by the dashed
- The degree of smoothing is controlled by the regularization coefficient v,

glgrge a value of v leads to over-smoothing, as illustrated for » = 1000 in

Early stopping
9.2.3 A simple illustration of weight decay

As an illustration of the use of weight decay, we return to the exa
in Section 5.1 of modelling a noisy sine function using a radial b
network. In Figure 9.4 we show an example of a data set toge
network function obtained by minimizing a sum-of-squares error. Here d
generated by sampling the function h(z) given by ‘]

._ rnafuve to regularization as a way of controlling the effective complexity of
rk is the procedure of early stopping. The training of non-linear network
: Obzrresponds to an iterative reduction of the error function defined with

da set of training d?.ta. During a typical training session, this error
Y decreases as a function of the number of iterations in the algorithm.
Y‘of the algorithms described in Chapter 7 (such as conjugate gradients)

is a monotqnicauy decreasing function of the iteration index. However

Or measured with respect to independent data, generally called a validatim;

h(z) = 0.5 + 0.4sin(2rz)
“ten shows a decrease at, first, followed by an increase as the network starts

9: Learning and Generalization 9.2: Regularization 345

344

5 A
) E
y validation
0.5 training
1 T
Figure 9.7. A schematic illustration of the behaviour of training and validation
0.0 set errors during a typical training session, as a function of the iteration step
i 0.0 0.5 x 1.0 7. The goal of achieving the best generalization performance suggests that

training should be stopped at the point 7 corresponding to the minimum of

4 but with a weight-decay regularizer and the validation set error.

, showing the much smoother network
t with the underlying generator

Figure 9.5. As in Figure 9.
ularization coefficient v = 40
and the correspondingly closer agreemen
data, shown by the dashed curve.

rocess, corresponding to a steady increase in the effective complexity of the
l. Halting training before a minimum of the training error has been reached
represents a way of limiting the effective network complexity.

the case of a quadratic error function, early stopping should give rise to
behaviour to regularization using a simple weight-decay term. This can
iderstood from Figure 9.8. The axes in weight space have been rotated to
rallel to the eigenvectors of the Hessian matrix. If, in the absence of weight
, the weight vector starts at the origin and proceeds during training along
h which follows the local negative gradient vector, then the weight vector
ve initially parallel to the w, axis to a point corresponding roughly to
then move towards the minimum of the error function w*. This follows
e shape of the error surface and the widely differing eigenvalues of the
- Stopping at a point near W is therefore similar to weight decay. The
ship between early stopping and weight decay can be made quantitative,
ssed in Exercise 9.1, thereby showing that the quantity rn (where 7 is
ation index, and 7 is the learning rate parameter) plays the role of the
al of the regularization parameter v. This exercise also shows that the
® number of parameters in the network (i.e. the number of weights whose
S differ significantly from zero) grows during the course of training,

1.0 ¥

0.00.0 0.5 x L

Figure 9.6, As in Figure 9.5 but with v = 1000, showing the effect

too large a value for the regularization coefficient.

to over-fit. Training can therefore be stopped at ?he p;'lx;:: cf : :
respect to new data, as indicated in -Fig}lm 9.7, since g :
is expected to have the best generalization performance.

' Curvature-driven smoothing

Ve seen that over-fitted solutions are generally characterized by mappings
€ a lot of structure and relatively high curvature. This provided some
Otivation for weight-decay regularizers as a way of reducing the curva-

5 imes e € network function. A more direct approach is to consider a regularizer

. i case is sometimes €x : PP e & XERUIE

The behaviour of the ne!:woﬁ mb?rnif degrees of freedom in . alzes curvature explicitly. Since the curvature is governed by the sec-
tively in terms of the eﬁ‘te: 2::1_?23 small and then to grow d “tVatives of the network function, we can consider a regularizer of the
This number is suppose ' i

346 9: Learning and Generalization

|

-
-

W
w,

Figure 9.8. A schematic illustration of why early stopping can give s
results to weight decay in the case of a quadratic error function. The
shows a contour of constant error, and w* denotes the minimum of th

function. If the weight vector starts at the origin and moves accordin

the local negative gradient direction, then it will follow the path show

the curve. By stopping training early, a weight vector w is found whit

qualitatively similar to that obtained with a simple weight-decay reg

and training to the new minimum of the error, as can be seen by compz
with Figure 9.3. A precise quantitative relationship between early stop

and weight-decay regularization can be demonstrated formally for the
quadratic error surfaces (Exercise 9.1).

Note that this regularizer is a discrete version of the Tikhonov fo
Regularizers involving second derivatives also form the basis of the
interpolation technique of cubic splines (Wahba and Wold, 1975; De
The derivatives of (9.35) with respect to the weights for a multi-layer
can be obtained by an extension of the back-propagation procedu

1993).

9.3 Training with noise

We have discussed two approaches to controlling the effective comp
network mapping, based respectively on limiting the number of adapt
eters and on regularization. A third approach is the technique of
noise, which involves the addition of noise to the input vectors d

ing process. For sequential training algorithms, this can be done by ad
random vector to each input pattern before it is presented to the I
that, if the patterns are being recycled, a different random vector
time. For batch methods, a similar effect can be achieved by ref
data point a number of times and adding new random vectors ont

|

D

9.8: Training with noise 347

‘Heuristically, we might expect that the noise will © -

I ly, s smear out’ each data poi
and malfe it difficult for the network to fit individual data points preciselypoalliﬁ
. e W'lll red ucfe over-fitting. In practice, it has been demonstrated that tra:ming
th noise cgan indeed lead to improvements in network generalization (Sietsma
d l?ow. 1991). Wo: now show that training with noise is closely related to the
echnique of regularization (Bishop, 1995).

. Suppose we describe the noise on the in

| es > the puts by the random vector €, governed
by 5gme t?:iot;abihty distribution p(€). If we consider the limit ofea.n;g infinite
pumber of data points, i ion, i i
gkl p we can write the error function, in the absence of noise,

1
B=3 3 [[000) - 1 ntupte) (0.36)

iscussed m Section 6.1.3. If we now consider an infinite number of copies of
data point, each of ?Vhlch is perturbed by the addition of a noise vector
the mean error function defined over this expanded data set can be writtex;

~ 1
B=g Zk: f f f {ur(x + &) — t& }p(tx|x)p(x)B(£) dx dty dE. (9.37)

now assume that the noise amplitude is small, and expand the network
Bction as a Taylor series in powers of £ to give

3
1 9y
i by e
€=0 2 Z‘:;&EJ 8xg3zj E

1€ noise distribt!tion is generally chosen to have zero mean, and to be uncor-
between different inputs. Thus we have

B46) = (x)+ Y6 -5;‘: +0(€°). (9.38)
i 0

f E7(€) d = 0 f £€,5(€) d€ = s, (9.39)

hpar;m;:ter u‘represents the variance of the noise distribution. Sub-
iy u%ef aylor series expansion (9.38) into the error function (9.37), and
Hhg of (9.39) to integrate over the noise distribution, we obtain

E=E+.19 (9.40)

&'is the stand - i
n andard sum-of-squares error given by (9.36), and the extra term

el

9.4: Soft weight sharing 349

348 9: Learning and Generalization

ui — U to be small, only that their (conditional) average over ¢; be small.

The minimization of the sum-of-squares error with noise is therefore equiv-
alent (to first order in v) to the minimization of a regularized sum-of-squares
or without noise, where the regularizer, given by the first term in equation
(9.41), has the form

2 2)
Q= %;z / [{(%) 3 () - :k}%;:%’i}p(mx)pcxm:cdr :

This has the form of a regularization term added to the usual sum-of
error, with the coefficient of the regularizer determined by the noise
(Webb, 1994).

Provided the noise amplitude is small, so that the neglect of higher.
terms in the Taylor expansion is valid, the minimization of the sum-of-s
error with noise added to the input data is equivalent to the minimi
the regularized sum-of-squares error (9.40), with a regularization term
by (9.41), without the addition of noise. It should be noted, however, th
second term in the regularization function (9.41) involves second derivat
the network function, and so evaluation of the gradients of this error with r
to network weights will be computationally demanding. Furthermore, thi
is not positive definite, and so the error function is not a priori bounde
and is therefore unsuitable for use as the basis of a training algorithm.

We now consider the minimization of the regularized error (9.40) wit]
to the network function y(x), which allows us to show that the second «
tive terms can be neglected. This result is analogous to the one obtained
outer product approximation for the Hessian matrix in Section 6.1.4, in’
we showed that similar second-derivative terms also vanish. Thus, we ®
that the use of the regularization function (9.41) for network training
alent, for small values of the noise amplitude, to the use of a positive
regularization function which is of standard Tikhonov form and which
only first derivatives of the network function (Bishop, 1995).

As discussed at length in Section 6.1.3, the network function which m
the sum-of-squares error is given by the conditional average (tx|x) of ¢
values t;. From (9.40) we see that, in the presence of the regularization
the network function which minimizes the total error will have the form

G %;z;f (g—-if)zp(xjdx (9.44)

iere we have integrated out the t; variables. Note that the regularization func-
in equation (9.44) is not in general equivalent to that given in equation
41). However, the total regularized error in each case is minimized by the
e network function y(x), and hence by the same set of network weight val-
Thus, for the purposes of network training, we can replace the regularization
in equation (9.41) with the one in equation (9.44). In practice, we approx-
pate (9.44) by a sum over a finite set of N data points of the form

o ny 2
Q=§Er§§:2(%—%) . (9.45)

ives of this regularizer with respect to the network weights can be found
an extended back-propagation algorithm (Bishop, 1993).

s regularizer involves first derivatives of the network mapping function.
ed approach has been proposed by Drucker and Le Cun (1992) based
‘sum of derivatives of the error function itself with respect to the network
This choice of regularizer leads to a computationally efficient algorithm
uating the gradients of the regularization function with respect to the
ork weights. The algorithm is equivalent to forward and backward propa-
it :tl;;zugh an extended network architecture, and is termed double back-

yk(x) = (tk|x) + O(»).
Soft weight sharing

vay tq reduce the effective complexity of a network with a large number
tfl Is to constrain weights within certain groups to be equal. This is
imque of weight sharing which was discussed in Section 8.7.3 as a way
ding translation invariance into networks used for image interpretation.

applicable, however, to particular problems in which the form of the
its can be specified in advance. Here we consider a form of soft weight
(Nowlan and Hinton, 1992) in which the hard constraint of equal weights
by a form of regularization in which groups of weights are encouraged
similar values. Furthermore, the division of weights into groups, the mean
E Value for each group, and the spread of values within the groups, are all
4hed as part of the learning process.

Now consider the second term in equation (9.41) which depends on &&
derivatives of the network function. Making use of the definition of tk
tional average of the target data, given in equation (9.2), we can
term in the form

2
122 [(oo - (b} 4) o) .

Using (9.42) we see that, to lowest order in v, this term vanishes at t
of the total error function. Thus, only the first term in equation (9.41)
be retained. It should be emphasized that this result is a consequen
average over the target data, and so it does not require the individt

350 9: Learning and Generalization 9.4: Soft weight sharing

As discussed at length in Chapter 6, an error function can be regarde The total error function is then given by

the negative logarithm of a likelihood function. Thus, the simple weigh
regularizer (9.15) represents the negative logarithm of the likelihood of t
set of weight values under a Gaussian distribution centred on the origin.
this, consider a Gaussian of the form

E=E+10 (9.51)

where v is the regularization coefficient. This error is minimized both with respect
to the weights w; and with respect to the parameters a;, p; and o; of the
mixture model. If the weights were constant, then the pa.ra.mete;s of the Jmixt.ure
odel could be determined by using the EM re-estimation procedure discussed
j _Sectiop 2.6.2. However, the distribution of weights is itself evolving during
the learning process, and so to avoid numerical instability a joint optimization is
ormed simultaneously over the weights and the mixture model parameters.
can be done using one of the standard algorithms, such as the conjugate
ient or quasi-Newton methods, described in Chapter 7. The parameter v
wever, cannot be optimized in this way, since this would give v — 0 and a.r;
ﬁti_:ed‘solution, but must be found using techniques such as cross-validation
where W is the total number of weights. Taking the negative logari m 1;:31 (2:32:5:: lai';ef. ize th Pl Bl
D it ey rasiage. op o o0 irelgraat additive const S e ! 'mu.‘umlze-t e total error funci_non it is necessary to be able to
have seen, the weight-decay term has the effect of encouraging the weigl o corveives e SLispgct b0 kbt e SRabls Db, B6 do
it is convenient to regard the a;’s as prior probabilities, and to introduce

to form a cluster with values close to zero. _ - S M
We can encourage the weight values to form several groups, rather f 3 ponding posterior probabilities given by Bayes’ theorem in the form

Then the likelihood of the set of weight values under this distribution is gj
by y
I
w 1 1
=] [Nam — E : 2
E =1 p(w‘l) = (2F)W’!2 exp{ 2 - wl }

i=1

one group, by considering a probability distribution which is a mizture
sians. An introduction to Gaussian mixture models and their basic pro y(w) = _M)___ (9.52)
2ok ki (w) '

given in Section 2.6. The centres and variances of the Gaussian compo
well as the mixing coefficients, will be considered as adjustable paramet

determined as part of the learning process. Thus, we have a probabili y erivatives of the total error function with respect to the weights are then

by

of the form
= OF _ 0F (wi —
p(w) =Y a;¢;(w) B Bug T Z_ﬂ'j (wiJ——c;;;—j)- (9.53)
3

i=1
~ -efct of lthe regularization term is thus to pull each weight towards the
of the jth Gaussian, with a force proportional to the posterior probability

Gal.fs;;ian for the given weight. This is precisely the kind of effect which
seeking.

where a; are the mixing coefficients, and the component densities
Gaussians of the form :

1 (w — p;)? 4 ati :
i (W) = ——srs €XP{ — g ¢ . : atives of the error with respect to the cent; i
i(w) (e ?)1 7 { 20? g el torgive p e centres of the Gaussians are also
Forming the likelihood function in the usual way, and then taking ti oE Gty
logarithm, leads to a regularizing function of the form o = Z ;i (wi) L 2w,) (9.54)
i - o}

h& a Sim l 3 g m - - - -

ple intuitive interpretation, since it drives 1.

e 6] 15 towards an average
Weight valu;es, wezghted by the posterior probabilities that the respective
Were generated by component J- Similarly, the derivatives with respect

M
Q=- Zln (Z a;@(w;)) :

i=1

3592 9: Learning and Generalization 9.5: Growing and pruning algorithms 353
. oE OF oy
to the variances are given by _—y 9.60
Ov; ; Doy, 9y;j ()

8E 1 (wi—py)?
50'_,- =v i i (wi) (Er: - TL)

j together with (9.50), (9.52) and (9.59), we then obtain the required derivatives

‘ in the form
which drives o; towards the weighted average of the squa.rec'l de-viations of 1
weights around the corresponding centre xj, where the “fezghifmg coeffi
are again given by the posterior probability that each weight is genera
component j. Note that, in a practical implementation, new variables n;
by

%% = {oy = mj(wi)} (9.61)
i

where we have made use of 3. a; = 1. We see that a; is therefore driven towards
the average posterior probability for component j.

. In practice it is necessary to take some care over the initialization of the
ights in order to ensure that good solutions are found. One approach is to
e the initial weights from a uniform distribution over a finite interval, and
n initialize the components ¢;(w) to have means which are equally spaced over
interval, with equal priors, and variances equal to the spacing between the
acent means. This ensures that, for most of the weights, there is little initial
tribution to the error gradient from the regularization term, and so the initial
ution of the weights is primarily data-driven. Also, the posterior probabilities
roughly equal contributions over the complete set of weights, which helps
oid problems due to priors going to zero early in the optimization. Results
on several test problems (Nowlan and Hinton, 1992) show that this method can
ad to significantly better generalization than simple weight decay.

a3 = exp(1;)

are introduced, and the minimization is performed with respect to the n;,
ensures that the parameters o; remain positive. It also has the effect
couraging pathological solutions in which one or more of the o; goes to.
corresponding to a Gaussian component collapsing onto one ?f the w
rameter values. Such solutions are discussed in more detail in the co ite
Gaussian mixture models in Section 2.6. From a Bayesian perspective,
of a transformation of the form (9.56) can be motivated by a consideratio
non-informative priors (Section 10.4 and Exercise 10.13). -

For the derivatives with respect to the mixing coefficients a;, we need .
account of the constraints

ZC"J‘ =4, 0<a;<1 Growing and pruning algorithms
3 -_aa-chitect.ure of a neural network (number of units and topology of connec-
5) can have a significant impact on its performance in any particular ap-
ation. Various techniques have therefore been developed for optimizing the
litecture, in some cases as part of the network training process itself. It is
ant to distinguish between two distinct aspects of the architecture selec-
Problem. First, we need a systematic procedure for exploring some space of
le architectures, and this forms the subject of this section. Second, we need
Way of deciding which of the architectures considered should be selected.
18 usually determined by the requirement of achieving the best possible
1zation, and is discussed at length in Section 9.8.
i€ simplest approach to network structure optimization involves exhaustive
‘through a restricted class of network architectures. We might for instance
er the class of multi-layer perceptrons having two layers of weights with
Nnectivity between adjacent layers and no direct input-output connections.
"Ly aspect of the architecture which remains to be specified is the number
SF hidden units, and so we train a set of networks having a range of values
_and select the one which gives the best value for our performance crite-
5 approach can require significant computational effort and yet it only
a very restricted class of network models. If we expand the range of

which follow from the interpretation of the a; as prior probabiliti?s: 'h
done by expressing the mixing coefficients in terms of a set of auxiliary

{~;} using the softmaz function given by ;

RN
] Z:iﬁxP('Yk)

We can now minimize the error function with respect to the {7;}- " 1
derivatives of E with respect to +; we make use of

dag
— = djraj — @0k
oy

which follows from (9.58). Using the chain rule in the form

354 9: Learning and Generalization

models (by having multiple hidden layers and partial connectivity for examyj
we quickly reach the point of having insufficient computational resources
complete search. Note, however, that this is the approach which is most v
adopted in practice. Some justification can be found in the fact that, for th
layer architecture, we know that we can approximate any continuous functig
mapping to arbitrary accuracy (Section 4.3) provided M is sufficiently la
An obvious drawback of such an approach is that many different ne
have to be trained. This can in principle be avoided by considering a ne
which is initially relatively small and allowing new units and connections
added during training. A simple example of this would be to consider the ¢
networks having two layers of weights with full connections in each layer
start with a few hidden units and then add one unit at a time. Such an app
was considered by Bello (1992) who used the weights from one network
initial guess for training the next network (with the extra weights initiali
randomly). Techniques of this form are called growing algorithms and we
consider some examples for networks of threshold units, and then discuss
cascade correlation algorithm which uses sigmoidal units.
An alternative approach is to start with a relatively large network and g
ually remove either connections or complete units. These are known as pr
algorithms and we shall consider several specific examples. Note that, if
sharing is used, then several weights may be controlled by a single param
and if the parameter is set to zero then all the corresponding weights are del
A further possible approach to the design of network topology is to co
a complex network from several simpler network modules. We consider
portant examples of this, called network committees and miztures of
The latter allows a problem to be decomposed automatically into a nu
sub-problems, each of which is tackled by a separate network.

9.5.1 Ezact Boolean classification

As we emphasize at several points in this book, the goal in training a m
network is usually to achieve the best generalization on new data rathe
learn the training set accurately. However, for completeness we give h
review of two approaches to network construction algorithms which
a finite set of Boolean patterns exactly. We consider networks having
units and a single output, for binary input patterns belonging to two
Before discussing these algorithms in detail, we need first to consider :
fication to the usual perceptron learning algorithm known as the pocket algo
(Gallant, 1986b) designed to deal with data sets which are not linearly sej
The simple perceptron learning algorithm (Section 3.5) is guaranteed to
exact classification of the training data set if it is linearly separable. If
set is not linearly separable, then the algorithm does not converge. :
algorithm involves retaining a copy (‘in one’s pocket’) of the set of weigh
has so far survived unchanged for the longest number of pattern prese)
can be shown that, for a sufficiently long training time, this gives, with pr
ity arbitrarily close to unity, the set of weight values which produces the 8

9.5: Growing and pruning algorithms 355

Figure 9.9. The tiling algorithm builds a network in successive layers. In each
layer, the first unit added is the master unit (shown as the heavier circle)
which plays a special role. Successive layers are fully connected, and there are
no other interconnections in the network.

ble number of misclassifications. Note, however, that no upper bound on the

raining time needed for this to occur is known.
The tiling algorithm (Mezard and Nadal, 1989) builds a network in successive

s with each layer having fewer units than the previous layer, as indicated
igure 9.9. Note that the only interconnections in the network are between

acent layers. When a new layer is constructed, a single unit, called the master

is added and trained using the pocket algorithm. One requirement for the
ork is that each layer must form a ‘faithful’ representation of the data set,
er words two input patterns which belong to different classes must not
apped onto the same pattern of activations in any layer, otherwise it will
npossible for successive layers to separate them. This is achieved by adding
ancillary units to the layer, one at a time, leaving the weights to the
unit and any other ancillary units in that layer fixed. The geometrical
Pretation of this procedure is indicated in Figure 9.10. If the representation
stage is not faithful then there must exist patterns from different classes
I give rise to the same set of activations in that layer. The group of all
t patterns which give rise to those activations are identified and an extra
unit is added and trained (again using the pocket algorithm) on that

OUp. The process of searching for ambiguities, and adding ancillary units, is

ted until the representation is faithful. The whole process is repeated with
ext layer. It can be shown that at each layer the master unit produces fewer

sifications than the master unit in the previous layer. Thus, eventually
f the master units produces correct classification of all of the patterns, and
algorithm converges with a network of finite size.

We next consider the upstart algorithm (Frean, 1990) which is also guaranteed

356

to find a finite network which gives complete classification of a finite
However, it builds the network by adding extra units between existi
and the inputs, as indicated in Figure 9.11. All units take their inputs
from the inputs to the network, and have binary threshold activation
The algorithm begins by training a single unit using the pocket algorit!
‘parent’ unit will typically mis-classify some of the patterns, and so two ‘@
units are added, one to deal with the patterns for which the parent is in

off,

on. These units are connected to their parent with sufficiently large
positive weights respectively that they can reverse the output of the

9: Learning and Generalization

9.5: Growing and pruning algorithms 357

x| xd

Figure 9.11. The upstart algorithm adds new offspring units, at A and B,
to correct the mistakes made by the parent unit. The offspring themselves
generate offspring units, leading eventually to a network having a binary tree
structure.

Figure 9.10. Illustration of the role of the ancillary units in the tiling

rithm. The circles and crosses represent the patterns of activations of uni
a particular layer when the network is presented with input patterns from
different classes, The master unit in the next layer (whose decision boun
represented by the solid line) is trained to find the best linear separator of
classes, and then ancillary units (with decision boundaries given by the d
lines) are added so as to separate those patterns which are misclassified.

| patterns correctly using a finite number of units. This occurs because the
er of mistakes which successive offspring have to correct diminishes until
ally an offspring gets all of its patterns correct, which implies that its
produces the correct patterns, and so on all the way back up the network
he output unit. The final network has the form of a binary tree, although

ranches might be missing if they are not needed. However, this architecture
be reorganized into a two-layer network by removing the output connections
1 the units and moving all units into a single hidden layer (leaving their input
tions unchanged). A new output unit is then created, and new hidden-to-
t connections added. These connections can be learned with the perceptron
thm or found by explicit construction in a way which guarantees correct
cation of all patterns (Frean, 1990). In simulations it is found that the
it algorithm produces networks having fewer units than those found with
tiling algorithm. Other algorithms for tackling the Boolean classification
.(ggg;re been described by Gallant (1986a), Nadal (1989) and Marchand

and the other to deal with the patterns for which the parent is in

they are activated. The weights to the parent are frozen and the offSE Cascade corvelation

trained to produce the correct output for the corresponding incorrect [
while at the same time not spoiling the classification of the patterns wh
correct. The algorithm is called upstart because the offspring correct the
of their parents! We can always choose the weights and bias of an offspt
such that it only generates a non-zero output for one particular pattern
will then reduce the number of errors of the parent by one. In practice
are trained by the pocket algorithm and may do much better than j
one pattern. Once trained, the offspring weights are frozen, and they
parents for another layer of offspring, and so on.

Since the addition of each offspring unit reduces the number o
its parent by at least one, it is clear that the network must eventual

ent approach to network construction, applicable to problems with con-
$ output variables, is known as cascade-correlation (Fahlman and Lebiere,
and is based on networks of sigmoidal hidden units. The form of the net-
architecture is shown in Figure 9.12. To begin with there are no hidden
and every input is connected to every output unit by adjustable con-
Ons (the crosses in Figure 9.12). The output units may be linear or may
gmoidal non-linearities depending on the application. At this stage the
k has a single layer of weights and can be trained by a number of dif-
algorithms, as discussed in Chapters 3 and 7. Fahlman and Lebiere use
ckprop algorithm (Section 7.5.3). The network is trained for a period of
erned by some user-defined parameter (whose value is set empirically)

358 9: Learning and Generalization

outputs ¥,),

hidden
units

inputs
x 0

Xy

% @

Figure 9.12. Architecture of the cascade-correlation network. Large circles d
note processing units, small circles denote inputs, and the bias input is s
in black. Squares represent weights which are trained and then frozen
the crosses show weights which are retrained after the addition of each
unit. Hidden unit H; is added first, and then hidden unit H2, and so om

and then a sigmoidal hidden unit is added to the network. This is fol
further network training, alternating with the addition of hidden unit:
sufficiently small error is achieved. The addition of hidden units is dong
a way that, at each stage of the algorithm, only a single-layer system is
trained. Each new hidden unit takes inputs from all of the inputs to the a
plus the outputs of all existing hidden units, leading to the cascade s!
Figure 9.12. The hidden unit weights are first determined, and then the

9.5; Growing and pruning algorithms 359

+ere the sum runs over all inputs and all existing hidden units. In (9.62) the
sllowing average quantities are defined over the whole training set

L & L
IT=— T € = — 4
Z=5 .?:12 3 & =% n§=1€k' (9.64)

B derivative of S with respect to the weights of the new hidden unit are easily
pund in the form

a8
5 =+) (€ —#)g'z] (9.65)
i k n

ere the sign corresponds to the sign of the covariance inside the modulus bars
62). These derivatives can then be used with the quickprop algorithm to
e the weights for the new hidden unit. Once this has been done the unit
dded to the network and is connected to all output units by adaptive weights.
output-layer weights are now retrained (with all hidden unit weights fixed).
, this corresponds to a single-layer training problem, and is performed us-
mckprop These single-layer training problems can be expected to converge
rapidly. For linear output units, the output-layer weights, which minimize
-of-squares error, can be found quickly by pseudo-inverse techniques (Sec-
1 3.4.3). Note that, because the hidden unit weights are never changed, the
tions of the hidden units (for each of the input vectors from the train-
set) can be evaluated once for the whole of the training set, and these values
d repeatedly in the remainder of the algorithm, saving considerable compu-
onal effort. Benchmark results from this algorithm can be found in Fahlman
id Lebiere (1990).

added to the network. These weights are found by maximizing the ¢g 9.9 Saliency of weights

between the output of the unit and the residual error of the network
prior to the addition of that unit. This correlation (actually the cov

defined by

where € = (yx — ti) is the error of network output k, and z denotes

of the unit given by

(T

€ turn now to pruning algorithms which start with a relatively large network
id then remove connections in order to arrive at a suitable network architec-
Several of the approaches to network pruning are based on the following
?1 procedure, First, a relatively large network is trained using one of the
ard training algorithms. This network might for instance have a high degree
nectivity. Then the network is examined to assess the relative importance
Weights, and the least important are deleted. Typically this is followed by
further training of the pruned network, and the procedure of pruning and
g may be repeated for several cycles. Clearly, there are various choices to
e concerning how much training is applied at each stage, what fraction
‘Weights are pruned and so on. Usually these choices are made on a heuris-
3. The most important consideration, however, is how to decide which
should be removed.

the case of simple models it may be clear in which order the parameters
ild be deleted. With a polynomial, for instance, the higher-order coefficients

360 9: Learning and Generalization 9.5: Growing end pruning algorithms 361

would generally be deleted first since we expect the function we are tryij
represent to be relatively smooth. In the case of a neural network it is not oly
a priori which weights will be the least significant. We therefore need g
measure of the relative importance, or saliency, of different weights. 1

The simplest concept of saliency is to suppose that small weights ar
important than large weights, and to use the magnitude |w| of a weight
a measure of its importance. Such an approach clearly requires that th
and output variables are normalized appropriately (Section 8.2). Ho
has little theoretical motivation, and performs poorly in practice. We ¢
instead how to find a measure of saliency with a more principled justifi

Since network training is defined in terms of the minimization of an err
tion, it is natural to use the same error function to find a definition of s
In particular, we could define the saliency of a weight as the change in th
function which results from deletion (setting to zero) of that weight. Thi
be implemented by direct evaluation, so that, for each weight in the (&
network in turn, the weight is temporarily set to zero and the error f
re-evaluated. However, such an approach would be computationally de
(Exercise 9.7).

Consider instead the change in the error function due to small c
the values of the weights (Le Cun et al., 1990). If the weight w; is
w; + 6w; then the corresponding change in the error function E is given

, Choose a relatively large initial network architecture.

‘9. Train the network in the usual way until some stopping criterion is satisfied.
3. Compute the second derivatives Hy; for each of the weights, and hence
evaluate the saliencies Hj;w? /2.

4. Sort the weights by saliency and delete some of the low-saliency weights.
‘5. Go to 2 and repeat until some overall stopping criterion is reached.

fhis approach to weight elimination has been termed optimal brain damage
e Cun et al., 1990). In an application to the problem of recognition of hand-
tten zip codes, the technique allowed the number of free parameters in a
ork to be reduced by about a factor of 4 (from a network initially hav-
over 10000 free parameters) while giving a small increase in generalization
erformance and a substantial increase in the speed of the trained network.

The assumption that the Hessian for a network is diagonal, however, is fre-
uently a poor one. A procedure for determining the saliency of weights, known
timal brain surgeon, which does not make the assumption of a diagonal Hes-
n, was introduced by Hassibi and Stork (1993). This method also computes
ections to the remaining weights after deletion of a particular weight and
0 reduces the need for network retraining during the pruning phase. Suppose
ight w; is to be set to zero. The remaining weights are then adjusted so as
minimize the increase in error resulting from the deletion. We can write the
change in the weight vector in the form éw. Again, assuming the network
ady trained to a minimum of the error function, and neglecting third-order
, the change in the error resulting from this change to the weight vector
an be written

SE = Z 5w, 222H,,6w,5w,+0(5w)

here the Hj; the el ts of the Hessi atri
where the H;; are the elements of the Hessian matrix SE — %ﬁwTH6W. (9.69)
0’E
%= Bwdw; ow;’ ie change in the weight vector must satisfy

If we assume that the training process has converged, then the first e 6w +w; =0 (9.70)

(9.66) will vanish. Le Cun et al. (1990) approximate the Hessian by dis
the non-diagonal terms. Techniques for calculating the diagonal terms
Hessian for a multi-layer perceptron were described in Section 4.10.1. N
the higher-order terms in the expansion then reduces (9.66) to the form .

“I€ e; is a unit vector in weight space parallel to the w; axis. We need to
the éw which minimizes §F in (9.69), subject to the constraint (9.70).
S is most easily done by introducing a Lagrange multiplier (Exercise 9.8 and

ndix C), giving the following result for the optimal change in the weight
1 2 T
8B=3 ; Hibw?.

fw = —

j {H 1] B (9.71)
If a weight having an initial value w; is set to zero, then the increase ¥
will be given approximately by (9.68) with éw; = w;, and so the salien:
of the weights are given approximately by the quantities Hyw?/2. A

implementation would typically consist of the following steps:

M the corresponding value for the increase in the error in the form

2
i P

(9.72)

362 9: Learning and Generalization 9.5: Growing and pruning algorithms 363

9.5.4 Weight elimination

n Section 9.2.1 we discussed the use of a simple weight-decay term as a form of
oularization, to give a total error function of the form

.....- v 2
E=E+ -Q-X‘_:w,.. (9.73)

[his regularization term favours small weights, and so network training based on
nization of (9.73) will tend to reduce the magnitude of those weights which
not contributing significantly to a reduction in the error E. One procedure for
ning weights from a network would therefore be to train the network using
regularized error (9.73), and then remove weights whose values fall below
Figure 9.13. A schematic illustration of the error contours for a network some threshold.

a non-diagonal Hessian matrix, for two of the weights w; and w,. The ne One of the difficulties of the simple penalty term in (9.73), from the point of
is initially trained to the error minimum at w*. Weight pruning based on jew of network pruning, is that it tends to favour many small weights rather
magnitude of the weights would take the weight vector to the point A han a few large ones. To see this, consider two weights w; and wy feeding
elimination of the smaller weight w;. Conversely, optimal brain damage a unit from identical inputs, so that the weights are performing redundant
to removal of w; and moves the weight vector to B. Finally, optimal br The unregularized error E will be identical if we have two equal weights
Gurgeon remioves twn nd algo comuputes & correction to ‘the terainingy) = wp = w/2, or if we have one larger weight w; = w, and one zero weight
S enicaamionen the Wil VRCLOR YR.C) = 0. In the ﬁrst: case, the weight-decay term Y, w? = w?/2 while in the
ond case 2 ‘h‘J =mw?,

- This problem can be overcome by using a modified decay term of the form
fanson and Pratt, 1989; Lang and Hinton, 1990; Weigend et al., 1990)

e
A w,

Note that, if the Hessian is in fact diagonal, then these results reduce
corresponding results for the optimal brain damage technique discus
The inverse Hessian is evaluated using the sequential technique dise:
Section 4.10.3 which is itself based on the outer product approximation
Hessian, discussed in Section 4.10.2. In a practical implementation, the
brain surgeon algorithm proceeds by the following steps:
1. Train a relatively large network to a minimum of the error function.
2. Evaluate the inverse Hessian H™!.
3. Evaluate § F; for each value of ¢ using (9.72) and select the value of’ W
gives the smallest increase in error.
4. Update all of the weights in the network using the weight change
from (9.71).
5. Go to 3 and repeat until some stopping criterion is reached.
A comparison of pruning by weight magnitude, optimal brain damage
mal brain surgeon is shown schematically in Figure 9.13. Note that |
changes are evaluated in the quadratic approximation. Since the true
tion will be non-quadratic, it will be necessary to retrain the network .
period of weight pruning. Simulation results confirm that the optimal b ® Node pruning
geon technique is superior to optimal brain damage which is in turn suj =€ad of pruning individual weights from a network we can prune complete
magnitude-based pruning (Le Cun et al., 1990; Hassibi and Stork, 199 S, and several techniques for achieving this have been suggested. Mozer and
' isky (1989) adopt an algorithm based on alternate phases of training and
al of units. This requires a measure of the saliency s; of a unit, of which
‘Most natural definition would be the increase in the error function (measured

2
~ w;
E=E+uzm (9.74)
i 1

© is a parameter which sets a scale and is usually chosen to be of order
Use of this form of regularizer has been called weight elimination. As shown
ercise 9.9, for weight values somewhat larger than i this penalty term will
favour a few large weights rather than many small ones, and so is more
Y to eliminate weights from the network than is the simple weight-decay

in (9.73). This leads to a form of network pruning which is combined with
_tra.lnmg process itself, rather than alternating with it. In practice weight
will typically not be reduced to zero, but it would be possible to remove
s completely if their values fell below some small threshold. Note that this
thm involves the scale parameter @ whose value must be chosen by hand.

364 9: Learning and Generalization 9.6: Commiitees of networks 365

with respect to the training set) as a result of deleting a unit j e validation set might not be the one with the best performance on new test
- These drawbacks can be overcome by combining the networks together to
jorm a commaitee (Perrone and Cooper, 1993; Perrone, 1994). The importance of
uch an approach is that it can lead to significant improvements in the predictions
n new data, while involving little additional computational effort. In fact the
ormance of a committee can be better than the performance of the best single
work used in isolation. For notational convenience we consider networks with a
e output y, although the generalization to several outputs is straightforward.
ppose we have a set of L trained network models y;(x) where i = 1,..., L.
set might contain networks having different numbers of hidden units, or
orks with the same architecture but trained to different local minima of
rror function. It might even include different kinds of network models or
pmixture of network and conventional models. We denote the true regression
unction which we are seeking to approximate by h(x). Then we can write the
mapping function of each network as the desired function plus an error:

8; = E(without unit j) — E(with unit j).

As with individual weights, such a measure is relatively slow to evaluate
requires a complete pass through the data set for each unit, although it i
less computationally expensive to repeat the error measurement fo
than it is for each weight. To find a convenient approximation, we can ing
a factor a; which multiplies the summed input to each unit (except the
units), so that the forward propagation equations become

Zj =4q (O’j ij;z.-)
i

where the activation function g(-) is defined such that g(0) = 0, as woulg
case for g(a) = tanha, for example. Then with a; = 0 the unit is al
with a; = 1 the unit is present. Then (9.75) can be written as vi(x) = h(x) + €(x). (9.79)

8j = E(a; = 1) — E(a; =0) The average sum-of-squares error for model y;(x) can be written as

which can then be approximated by the derivative with respect to o;: B; = E[{yi(x) — h(x)}?] = €[] (9.80)

- OFE

§j=——

; : ere £[-] denotes the expectation, and corresponds to an integration over x
@5

ageal Weighted by the unconditional density of x so that
These derivatives are easily evaluated using an extension of the back-pro
algorithm (Exercise 9.10). Note that the c; do not actually appear in the
propagation equations, but are introduced simply as a convenient way
and evaluate, the s;. In order to make this approach work in pract;
and Smolensky (1989) found they had to use a Minkowski-R error wi
(Section 6.2), together with an exponentially weighted running aver
of 8; to smooth out fluctuations. Other forms of node-pruning algo
been considered by Hanson and Pratt (1989), Chauvin (1989) and Ji et a

8[52]_f- (x)p(x) dx. (9.81)

":é"' (9.80) the average error made by the networks acting individually is given

Exv = — ZE Z [€9). (9.82)

:=1 =1

We now introduce a simple form of committee. This involves taking the out-
1 of the committee to be the average of the outputs of the L networks which
dmprise the committee. Thus, we write the committee prediction in the form

9.6 Committees of networks

It is common practice in the application of neural networks to train ma
ent candidate networks and then to select the best, on the basis of p
on an independent validation set for instance, and to keep only this n
to discard the rest. There are two disadvantages with such an appros
all of the effort involved in training the remaining networks is wasted.
the generalization performance on the validation set has a random ca
due to the noise on the data, and so the network which had best perfc

ycom(x) = Z i(x). (9.83)

e error due to the committee can then be written as

366 9: Learning and Generalization

e [(% gy,-(x) - h(x))z:l =£ [(% gei) 2} .

9.6: Committees of networks 367

alized committee prediction given by a weighted combination of the predictions
of the members of the form

L
If we now make the assumption that the errors ¢;(x) have zero mean and'g YGEN(X) = Za,—yg(x) (9.89)
uncorrelated, so that i=1
Ele] =0, Elee;] =0 ifj#i &
[ei] [ei€s] i# =h(x)+ Y aei(x) (9.90)
i=1

then, using (9.82), we can relate the committee error (9.84) to the ave
of the networks acting separately as follows: where the parameters o; will be determined shortly. We now introduce the error

i correlation matrix C with elements given by
1 1 e]
Ecom = — E[?] = =E V. (9.8 |
L g [<] LA b Cij = Eles(x)e; (x)]. (9.91)

This represents the apparently rather dramatic result that the sum-of This allows the error due to the generalized committee to be written as

error can be reduced by a factor of L simply by averaging the predic

L networks. In practice, the reduction in error is generally much sm Egen = € [{ycen(x) — h(x)}?] (9.92)
this, because the errors €;(x) of different models are typically highly corn
and so assumption (9.85) does not hold. However, we can easily show ¢ L L
committee averaging process cannot produce an increase in the expe =g Z E; Zajcj (9.93)
by making use of Cauchy’s inequality in the form i=1 i=1
L 2 L ' L L
Ya| <Ly & =YY aia;Cy. (9.94)
i=1 i=1 | i=] j=1

can now determine optimal values for the a; by minimization of Eggn. In
tder to find a non-trivial minimum (i.e. a solution other than oy = 0 for all 4)
€ need to constrain the a;. This is most naturally done by requiring

which gives the result

Ecom < Eay.

L

Zcxi =, (995)

=1

Typically, some useful reduction in error is generally obtained, and the me

has the advantage of being trivial to implement. There is a significant

in processing speed for new data, but in many applications this will be i
The reduction in error can be viewed as arising from reduced :

to the averaging over many solutions. This suggests that the membe

committee should not individually be chosen to have optimal trade-ol

bias and variance, but should have relatively smaller bias, since the extra

can be removed by averaging. o \ p
The simple committee discussed so far involves averagi e predic

the individlfa.l networks. However, we might expect thﬁe memb ' 2 Z 2;Ci; +A=0 (9.96)

committee will typically make better predictions than other members i

therefore expect to be able to reduce the error still further if we g ! hich

weight to so]:ne committee members than to others. Thus, we consider a g€ €1 has the solution

fle motivation for the form of this form of constraint will be discussed shortly.
SIE a Lagrange multiplier A (Appendix C) to enforce this constraint, we see
18t the minimum of (9.94) occurs when

368 9: Learning and Generalization 9.7: Miztures of experts 369
A L = _.mbers relative to the committee prediction itself. As a result of the minus
o = _§ C")y- dgn in front of the second term on the right-hand side of (9.102) we see that,

we can increase the spread of predictions of the committee members without
pcreasing the errors of the individual members themselves, then the committee
vor will decrease, Furthermore, since this term is strictly negative, we can use
9.80), (9-82) and (9.102), together with a; = 1/L, to give

1
We can find the value of A by substituting (9.97) into the constraint —al
(9.95), which gives the solution for the o in the form

Zf:l(c_l):'j .
Fre1 i (C- Vg

Substituting (9.98) into (9.94) we find that the value of the error at the n
is given by

Egen < Bav (9.103)

Q; =

n keeping with (9.88) and (9.101).

: . One problem with the constraint (9.95) is that it does not prevent the weight-
10 coefficients in the committee from adopting large negative and positive values
hence giving extreme predictions from the committee even when each mem-
of the committee might be making sensible predictions. We might therefore
to constrain the coefficients further by insisting that, for each value of x, we
@ Yumin(X) < YGEN(X) € Ymax(X). This condition can be satisfied in general
equiring that o;; > 0 and Y, ; = 1 (Exercise 9.12). The minimization of the
mittee error subject to these two constraints is now a more difficult problem,

can be tackled using techniques of linear programming (Press et al., 1992).

The usefulness of committee averaging is not limited to the sum—of-squares
r, but applies to any error function which is convezr (Exercise 9.13). Sec-
10.7 shows how the concept of a committee arises naturally in a Bayesian
ramework.

-1

i L
Egen = (Z Y
i=1 j=1

In summary, to set up this generalized committee, we train L network
and then compute the correlation matrix C using a finite-sample approxima F
to (9.91) given by

N
1
Gy = 37 2 (lx") —)3y (") —£7)
=1 :
n D.7 Mixtures of experts

sider the problem of learning a mapping in which the form of the mapping is
rent for different regions of the input space. Although a single homogeneous
ork could be applied to this problem, we might expect that the task would
ade easier if we assigned different ‘expert’ networks to tackle each of the
rent regions, and then used an extra ‘gating’ network, which also sees the
t vector, to decide which of the experts should be used to determine the
utput.

If the problem has an obvious decomposition of this form, then it may be
Ossible to design the network architecture by hand. However, a more powerful
more general approach would be to discover a suitable decomposition as
of the learning process. This is achieved by the mizture-of-ezperts model
s et al., 1991), whose architecture is shown in Figure 9.14. All of the
networks, as well as the gating network, are trained together. The goal
he training procedure is to have the gating network learn an appropriate
position of the input space into different regions, with one of the expert
rks responsible for generating the outputs for input vectors falling within
*Ch region.

‘The key is in the definition of the error function, which has a similar form
b that discussed in Section 6.4 in the context of the problem of modelling con-

where ¢™ is the target value corresponding to input vector x”. We then f
evaluate the o; using (9.98), and then use (9.89) to make new predictio:

Since the generalized committee (9.89) is a special case of the simple
committee (9.83) we have the inequality

Egen < Ecowm.

The generalization error of a committee can be decomposed into
two terms (Exercise 9.11) to give (Krogh and Vedelsby, 1995)

€ [{vorn(x) — h()Y] = 3 it [{u() — h(x))’]

_ Z i€ [{y:i(x) — yarn(%)}?]

which is somewhat analogous to the bias-variance decomposition
Section 9.1. The first term depends only on the errors of individual
while the second term depends on the spread of predictions of the

370 9: Learning and Generalization 9.8: Model order selection 371
o minor respects. First, the variance parameters of the Gaussians here are set

to unity, whereas they were taken to be general functions of the input vector x

output . Section 6.4, although is it clearly straightforward to incorporate more general

ussian functions into the present model. Second, different networks are used
+o model the p;(x) and a;(x) here, whereas a single network was considered in
‘gaction 6.4.

 The mixture-of-experts network is trained by minimizing the error function
(9.104) simultaneously with respect to the weights in all of the expert networks
d in the gating network. When the trained network is used to make predictions
new inputs, the input vector is presented to the gating network and the largest
put is used to select one of the expert networks. The input vector is then
ssented to this expert network whose output p;(x) represents the prediction
the complete system for this input. This corresponds to the selection of the
probable branch of the conditional distribution on the assumption of weakly
apping Gaussians, as discussed on page 220.

It was also shown in Section 6.4 that the use of an error function based on a
mixture of Gaussians leads to an automatic soft clustering of the target vectors
nto groups associated with the Gaussian components. In the context of the
mixture-of-experts architecture it therefore leads to an automatic decomposition
| ”'the problem into distinct sub-tasks, each of which is effectively assigned to
e of the network modules.

Jacobs et al. (1991) demonstrate the performance of this algorithm on a
vowel recognition problem and show that it discovers a sensible decomposition
of the mapping. Jordan and Jacobs (1994) extend the mixture-of-experts model
nsidering a hierarchical system in which each expert network can itself
of a mixture-of-experts model complete with its own gating network.
can be repeated at any number of levels, leading to a tree structure. The
rarchical architecture then allows simple linear networks to be used for the
perts at the leaves of the tree, while still allowing the overall system to have
Xible modelling capabilities. Jordan and Jacobs (1994) have shown that the
A algorithm (Section 2.6.2) can be extended to provide an effective training

anism for such networks.

[networkj [networkj (natwork)
I\

input

Figure 9.14. Architecture of the mixture-of-experts modular network. The
ing network acts as a switch and, for any given input vector, decides whic
the expert networks will be used to determine the output.

ditional distributions, and it will be assumed that the reader is alread
with this material. The error function is given by the negative logarithm
likelihood with respect to a probability distribution given by a mixture
Gaussians of the form !

Zln {Za, (x™) b (t“]x“)}

fa=]

where the ¢;(t|x) are Gaussian functions given by

(60 = G exp { - LI,

These Gaussian functions have means p,;(x) which are functions of the
vector x, and are taken to have unit covariance matrices. There is
network for each Gaussian, and the output of the ith expert network is &
representing the corresponding mean p,(x) where x is the input ve
mixing coefficients a;(x) are determined by the outputs 7; of the gating
through a softmax activation function

Model order selection

is book, we have focused on the minimization of an error function as the
technique for determining values for the free parameters (the weights and
in a neural network. Such an approach, however, is unable to determine
Optimum number of such parameters (or equivalently the optimum size of
k), because an increase in the number of parameters in a network will
ally allow a smaller value of the error to be found. Our goal is to find a
ork which gives good predictions for new data, and this is typically not
. Hetwork which gives the smallest error with respect to the training data. In
Thus, the gating network has one output for each of the expert netwo . xs i‘:imge;z z‘;‘:ﬂ‘:::::ydzcmr:ﬁg; !;olr :':i:: ;g:‘:
indicated in Figure 9.14. This model differs from that discussed in Secti . Networks with too little flexibility will smooth out some of the underlying

exp(y)
ey exp(v)

i =

372 9: Learning and Generalization 9.8: Model order selection 373

structure in the data (corresponding to high bias), while networks which a
complex will over-fit the data (corresponding to high variance). In eit
the performance of the network on new data will be poor.

Similar considerations apply to the problem of determining the valy
continuous parameters such as the regularization coefficient v in a regu
error function of the form

3.0 T T T T
E (x10%)

20 | validation ’

E=E+19.

Too large a value for v leads to a network with large bias (unless the re 1.0 |
tion function happens to be completely consistent with the underlying s
of the data) while too small a value allows the network solution to
high a variance. This was illustrated in Figures 9.4, 9.5 and 9.6. Again,
minimization of E cannot be used to find the optimum value for v, s
gives v = 0 and an over-fitted solution.

We shall assume that the goal is to find a network having the best g
ization performance. This is usually the most difficult part of any pattern
nition problem, and is the one which typically limits the practical applica
neural networks. In some cases, however, other criteria might also be imps
For instance, speed of operation on a serial computer will be governed
size of the network, and we might be prepared to trade some generaliz
pability in return for a smaller network. We shall not discuss these p
further, but instead focus exclusively on the problem of generalization.,

0'0 1 1 L 1
0.0 1.0 20 30 40 5.0

Inv

Figure 9.15. Plot of training and validation set errors versus the logarithm
of the regularization coefficient, for the example used to plot Figure 9.4. A
validation set of 1000 points was used to obtain a good estimate of the gen-
eralization error. The validation error shows a minimum at Inv =~ 3.7, which
was the value used to plot Figure 9.5.

nction from which the data was generated (shown by the dashed curve in
e 9.5).
This example also provides a convenient opportunity to demonstrate the de-
endence of bias and variance on the effective network complexity. The values of
e average bias and variance were estimated using knowledge of the true under-
g generator of the data, given by the sine function h(z) in (9.34). For each
lue of Inv, 100 data sets, each containing 30 points, were generated by sam-
h(z) and adding noise. A radial basis function network (with 30 Gaussian
s functions, one centred on each data point as before) was then trained on
ach of the data sets to give a mapping y;(x) where i = 1,...,100. The average
ESponse of the networks is given by

9.8.1 Cross-validation o

Since our goal is to find the network having the best performance on ne
the simplest approach to the comparison of different networks is to eva
error function using data which is independent of that used for training.
networks are trained by minimization of an appropriate error function
with respect to a training data set. The performance of the networks
compared by evaluating the error function using an independent validati
and the network having the smallest error with respect to the validat
is selected. This approach is called the hold out method. Since this pro
can itself lead to some over-fitting to the validation set, the performance ot
selected network should be confirmed by measuring its performance on &t
independent set of data called a test set.

The application of this technique is illustrated in Figure 9.15 using
radial basis function example as used in plotting Figures 9.4, 9.5 and
we have plotted the error on the training set, as well as the generaliza! .
measured with respect to an independent validation set, as functions ©
logarithm of the regularization coefficient v. As expected, the training €
decreases steadily with decreasing v while the validation error shows a miz
at a value of Inv ~ 3.7, and thereafter increases with decreasing v. E
was plotted using this optimum value of v, and confirms the expectation
mapping with the best generalization is one which is closest to the und

1 100
¥(2) = 755 ‘; vi(). (9.108)

L“ mates of the integrated (bias)? and variance are then given by

(bias)* = 3 {g(z") — h(z")}* (9.109)

374 9: Learning and Generalization 9.8: Model order selection 375

2.0

1.5

1.0

05 L variance "“‘-..,i | I:l:l---- run §
- e
(bias)* i ! Figure 9.17. Schematic illustration of the partitioning of a data set into S seg-
010 il s v YT " ments for use in cross-validation. A network is trained S times, each time using
0.0 1.0 2.0 3.0 4.0 5.0 a version of the data set in which one of the segments (shown shaded) is omit-
ted. Each trained network is then tested on the data from the segment which
Inv was omitted during training, and the results averaged over all S networks.

Figure 9.16. Plots of estimated (bias)? and variance as functions of the
arithm of the regularization coefficient » for the radial basis function mo
used to plot Figure 9.15. Also shown is the sum of (bias)? and variance wh
shows a minimum at a value close to the minimum of the validation error
Figure 9.15. H

ce we could go to the extreme limit of S = N for a data set with N data
points, which involves NV separate training runs per network, each using (N —1)
data points. This limit is known as the leave-one-out method.

982 Stacked generalization
Section 9.6 we discussed the use of committees as a way of combining the pre-
ions of several trained networks, and we saw how this could lead to reduced
ors. The committee techniques are based only on the training data, however,
d so do not directly address the issue of model complexity optimization. Con-
sely, techniques such as cross-validation represent a winner-takes-all strategy
which only the best network is retained. The method of stacked generalization
olpert, 1992) provides a way of combining trained networks together which

partitioning of the data set (in a similar way to cross-validation) to find an
erall system with usually improved generalization performance.

~ Consider the modular network system shown in Figure 9.18. Here we see a set
Of M ‘level-0’ networks N to N, whose outputs are combined using a ‘level-1’
work /1. The idea is to train the level-0 networks first and then examine their
training set at random into S distinct segments. We then train a networ. haviour when generalizing. This provides a new training set which is used to
data from S —1 of the segments and test its performance, by evaluating t} *ain the level-1 network.
function, using the remaining segment. This process is repeated for each E The specific procedure for setting up the stacked generalization system is as
S possible choices for the segment which is omitted from the training p Ollows. Let the complete set of available data be denoted by D. We first leave
and the test errors averaged over all S results. The partitioning of the da a single data point from D as a validation point, and treat the remainder
illustrated in Figure 9.17. Such a procedure allows us to use a high propo E D as a training set. All level-0 networks are then trained using the training
the available data (a fraction 1 — 1/5) to train the networks, while also Partition and their outputs are measured using the validation data point. This
use of all data points in evaluating the cross-validation error. The dis: erates a single pattern for a new data set which will be used to train the
of such an approach is that it requires the training process to be repeated l-1 network N'. The inputs of this pattern consist of the outputs of all the
which in some circumstances could lead to a requirement for large amos 0 networks, and the target value is the corresponding target value from the
processing time. A typical choice for S might be S = 10, although if dat nal full data set. This process is now repeated with a different choice for

| oo
variance = Z 100 Z{yi(xn) -z}
n =1

1
Figure 9.16 shows the (bias)? and the variance of the radial basis function m
as functions of In». The minimum of the sum of (bias)? and variance o¢
a value of In» close to that at which the minimum validation error oc
Figure 9.15 as expected.

In practice, the availability of labelled data may be severely limit
we may not be able to afford the luxury of keeping aside part of the d
for model comparison purposes. In such cases we can adopt the proce
cross-validation (Stone, 1974, 1978; Wahba and Wold, 1975). Here we div

376 9: Learning and Generalization 8.9: Vapnik-Chervonenkis dimension 377

model which is too complex will have a large value for the criterion because the
complexity term is large. The minimum value for the criterion then represents
a trade-off between these two competing effects. For a sum-of-squares error a
typical form for such a criterion would be

/ "”kln ->yl\
e "’y:o >y, y

A

]
]
\ , /
Hy |y,

Figure 9.18. Stacked generalization combines the outputs of several ‘level-0'
networks N7,..., Ny using a ‘level-1’ network ! to give the final output.
The level-1 network corrects for the biases exhibited by the level-0 networks.

_2E 2w ,
PE-—F-FTV-G

(9.112)

:where E is the value of the sum-of-squares error with respect to the training set
after training is complete, N is the total number of data points in the training
set, W' is the number of adjustable parameters (weights) in the model, and o2 is
the variance of the noise on the data (which must be estimated).

Moody (1992) has generalized such criteria to deal with non-linear models
and to allow for the presence of a regularization term. By performing a local
linearization of the network mapping function he obtains a criterion, called the
generalized predietion error, of the form

the data point which is kept aside. After cycling through the full data sef
N points we have N patterns in the new data set, which is now used to
N, Finally, all of the level-0 networks are re-trained using the full data
Predictions on new data can now be made by presenting new input vectors
level-0 networks and taking their outputs as the inputs to the level-1 ne
whose output constitutes the predicted output. Wolpert (1992) gives arg
to suggest that the level-0 networks should contain a wide variety of di
models, while the level-1 network should provide a relatively smooth

GPE = 25 +—2—102

Sk (9.113)

where 7 is the effective number of parameters in the network, which for linear
networks is given by

and hence should have a relatively simple structure. A ;
There are many possible variations of stacked generalization. For ins T= Z T (9.114)
i=1 "

the data set is large, or if the level-0 networks are computationally in
train, we might leave aside a larger fraction of D than just a single da
when training the level-0 networks. Stacking can also be applied in a sl
modified form to improve the generalization of a single network, and it ca
be extended to more than two levels of networks (Wolpert, 1992).

Where)\; are the eigenvalues of the Hessian matrix of the unregularized error
€valuated at the error minimum, and v is the regularization coefficient. The
form of +y in (9.114) should be compared to the expression for the minimum of
e regularized error given by (9.24). The reason that v is the effective number
Parameters is that eigenvalues which satisfy A; > v contribute 1 to the sum
o (9.114), while eigenvalues which satisfy A; < v contribute 0 to the sum. We
S1all not discuss the origin of this criterion here, since we give a more general
fIscussion from the Bayesian perspective in Chapter 10.

9.8.3 Complezity criteria i

In conventional statistics, various criteria have been developed, often in &k
text of linear models, for assessing the generalization performance of &
models without the use of validation data. These include the Cp-statistic
lows, 1973), the final prediction error (Akaike, 1969), the Akaike info
criterion (Akaike, 1973) and the predicted squared error (Barron, 1984)
criteria take the general form of a prediction error (PE) which cons
sum of two terms

Vapnik—Chervonenkis dimension

he useful insight into generalization is obtained by considering the worst-
® performance for a particular trained network. The theory of this has been
*veloped mainly in the context of networks with binary inputs (Baum and
Saussler, 1989; Abu-Mostafa, 1989; Hertz et al., 1991). For simplicity we consider
*“tworks having a single binary output.

~ Suppose that the input vectors are generated from some probability distri-
tton P(x) and that the target data is given by a (noiseless) function h(x). For
" given model y(x), we can define the average generalization ability g(y) to

PE = training error + complexity term

where the complexity term represents a penalty which grows as the
free parameters in the model grows. Thus, if the model is too simple it °
a large value for the criterion because the residual training error is la

— =

—

378 9: Learning and Generalization 9.9: Vapnik—-Chervonenkis dimension 379

be the probability that y(x) = h(x) for the given distribution P(x). This sayg
that, if we pick an input vector x at random from the distribution P(x), the
the probability that the two functions will agree is given by g(y)-

In practice, we cannot calculate g(y) directly because we do not know th
true probability distribution P(x), nor do we know the function h(x). What y
typically do instead is to train a network using a set of N training pattei
give a network function y(x; w), and then measure the fraction of the train
set which the network correctly classifies, which we shall denote by gn(y). Iy
the limit of an infinite data set N — co we would expect to find gn(y) — 9(g
by definition of g(y). However, for a finite-size training set the network
tion y(x; w) will be partly tuned to the particular training set (the probl
over-fitting) and so we would expect gn(y) > g(y). For instance, the ne
might learn the training set perfectly, so that gx(y) = 1, and yet the predict
performance on new data drawn from the same distribution might be p oo
that g(y) < 1. We say that gn(y) is a biased estimate of g(y), since it is
atically different from the true value. It gives an over-optimistic estimate of 1
generalization performance of the network. 1

If we now consider the set of all functions {y} which the network
plement, we can study the maximum discrepancy which can occur bety
generalization performance estimated from the sample of size N and th
generalization g(v), given by

log,A

>
dyc N

Figure 9.19. General form of the growth function A(N) shown as a plot of
log, A versus N. The function initially grows like 2" up to some critical num-
ber of patterns, given by N = dvc, at which point the growth slows to become
a power law. The value dvc is called the Vapnik-Chervonenkis dimension.

ichotomies) which can be implemented by the network on a set of N input

ors x", where n = 1,..., N. The number of potential different patterns is
and if our network could represent all of these then A(N) = 2V, In this
e, it is clear that we cannot make the right-hand side of (9.116) smaller by
creasing N. In practice, our network will have a finite capacity, and so for
large enough N it will not be capable of representing all possible 2V patterns.
e general form of the function A(N) is shown in Figure 9.19. For small N it
like 2V, which says that the network can store exactly all of the training
ns. Beyond some critical number of patterns, however, the growth starts to
down. This critical number of patterns, denoted dyc, is called the Vapnik—
onenkis dimension, or VC dimension (Blumer et al., 1989; Abu-Mostafa,
3 and is a property of the particular network. In fact, it can be shown
(01 ~over, 1965; Vapnik and Chervonenkis, 1971) that the function A(N) is either
g Gentically equal to 2V for all N, or is bounded above by the relation

s lgn(y) — 9(¥)
v}

as this gives a worst-case measure of generalization performance. Given a Si
quantity €, a theorem due to Vapnik and Chervonenkis (1971) gives an UPE
bound on the probability of the difference in (9.115) exceeding e, given by

Pr (n?a]x (ol =g e) < 4A(2N) exp(~N/8)

where A(N) is known as the growth function and will be discussed shortiy A(N) < Nove 41, (9.117)
Since this result applies to any of the functions y which can be imple :
by the network, we can apply it to the particular function y(x; w) obtained
training the network on the given data set. Then (9.116) gives an upper
on the discrepancy between our estimate gy (y) of the prediction error
true generalization performance g(y). Our aim is to make this bound as
possible (i.e. make the right-hand side of (9.116) as small as possible),
can seek to do this by increasing the number N of training patterns.
for instance that we obtained perfect results (zero residual error) on the
data, so that gx(y) = 1. Then, for a given value of € if we could reduce
hand side of (9.116) to a small value § = 0.05, say, we would be 95% ce

9(y) >1-e
The function A(N) in (9.116) gives the number of distinct binary fun¢

@ this now has only polynomial growth, it is clear that we can make the
| hamzl side of (9.116) arbitrarily small by making N sufficiently large. This
1 Intuitively reasonable result. If there are so few patterns that the network
store them all perfectly, we cannot expect it to generalize. Only when the
l‘%: h_&s successfully learned a number of patterns which is much larger than
finsic storage capacity for random patterns (as measured by dyc) will the
k hsf.ve captured some of tke structure in the data, and only then can
2ct it to generalize to new data. Consider a set of data points which are
ated at random. The only way to learn all of the patterns in such a data
for the network to store the training patterns individually, which requires
“Work with dyc > N. For such data sets we cannot expect to find a network

380 9: Learning and Generalization

which generalizes.
The above results give us some idea of how many patterns we need to 1
train a network in order to get good generalization performance in terms
VC dimension of the network. Baum and Haussler (1989) considered mul
feed-forward networks of threshold units. For a network having a tot
units, and a total of W weights (including biases), they gave an upper bo:
the VC dimension in the form .

dvc < 2W logy(eM)

where e is the base of natural logarithms. They used this to show that,
number N of patterns, given by

w M
g ol
N> Elogz(e)

can be learned by the network such that a fraction 1—¢/2 are correctly
where 0 < € < 1/8, then there is a high probability that the network will cc
classify a fraction 1 — € of future examples drawn from the same distri

They also considered the case of networks having two layers of
units, and were able to find a lower bound on the VC dimension in th

dvc > 2| M/2|d

where |[M/2| denotes the largest integer which is less than or equal
and d is the number of inputs. For large two-layer networks we typica
Md ~ W (since most of the weights are in the first layer). From this ths
the approximate rule of thumb that to classify correctly a fraction 1 — €
examples requires a number of patterns at least equal to

Nmin g W/e.

Thus, for € = 0.1 this suggests that we need around ten times as many
patterns as there are weights in the network.

The VC dimension gives worst-case bounds on generalization. In
it only considers which functions can in principle be implemented by
work. Thus, it does not depend, for instance, on the presence or 4
regularizing function, since such a function does not completely rul
of weight values. We might hope that in practice we would achieve g
alization with fewer training patterns than the number predicted usi
dimension.

Exercises
9.1 (x+) Consider a quadratic error function of the form

Exercises 381

1

E=FEy+ E(W - W‘)TH(W —-w") {9.122)

where w* represents the minimum, and the Hessian matrix H is positive

definite and constant. Suppose the initial weight vector is w(® is chosen

to be at the origin, and is updated using simple gradient descent

w(m = w(r=1) _pyE (9.123)

where 7 denotes the step number, and 7 is the learning rate (which is

assumed to be small). Show that, after 7 steps, the components of the

weight vector parallel to the eigenvectors of H can be written

w = {1 (1 -)"} w (9.124)

where w; = w'u;, and u; and); are the eigenvectors and eigenvalues
respectively of H so that

Hu; = \u;. (9.125)

Show that, as 7 — oo this gives w(”) — w* as expected, provided |1 —
nAj| < 1. Now suppose that training is halted after a finite number 7
of steps. Show that the components of the weight vector parallel to the
eigenvectors of the Hessian satisfy

w_&') ~ w} when A; > (nr)~! (9.126)

|w_§"’J < |wj| when \; < (n7)7%. (9.127)
Compare this result to the corresponding result (9.24) obtained using reg-
ularization with simple weight decay, and hence show that (77)~! is anal-
ogous to the regularization parameter v. The above results also show that
the effective number of parameters in the network, as defined by (9.114),
grows as the training progresses.

-2 (%) Consider a linear network model with outputs

Yk =D Wkii + Wko (9.128)
i
and a sum-of-squares error function of the form
1 X
B=o5d > {u(x™) - 7)? (9.129)

n=1 k

‘Where n labels the patterns from the training set, and J denotes the target
values. Suppose that random noise, with components ¢;, is added to the

382 9: Learning and Generalization

input vectors. By averaging over the noise and assuming (e;) = 0 ag
(ei€j) = 6;;v show that this is equivalent to the use of a weight-deg
regularization term, with the biases wyp omitted, and noise-free data,
9.3 (**) Chauvin (1989) considered a regularizer given by the sum of the squag
of the activations of all the hidden units in the network. By using the cha
rule of calculus, derive a back-propagation algorithm for computing §
derivatives of such an error function with respect to the weights and biasg
in the network.
9.4 (x*) Consider the cross-entropy error function, in the limit of an infinj
data set, given by

E=- z f/ {ti Inyi(x) + (1 — &) In(1 — ye(x))} p(te|x)p(x) dx ,
k

(9.13
Following a similar argument to that given in Section 9.3 for the case
sum-of-squares error function, show that the addition of noise to the inpi
during training is equivalent to the use of a regularizer of the form

|
025 [[-) (22

_ 2
+ [yf’(“l _t;:)] %ﬂ‘ }p{tkiX)p(x) dx dty.

In Section 6.7.2 it was shown that, at the minimum of the unreg
error function, the network output approximates the conditional &
of the target data. Use this result to show that the second-derivative
in (9.131), as well as the second term in square brackets, vanishes.
9.5 (x*) Repeat Exercise 9.4 for the case of the log-likelihood error function
the form

E=- ti In ye(x)p(te|x)p(x) dx di
;/fk Ye\X)plle|X)D k

where the network outputs are given by the softmax function (Section
so that 3, yx(x) = 1. Again, derive the form of the regularizer, and
using the result of Exercise 6.16, that the second-derivative term cal
neglected when finding the minimum of the regularized error. Hence &
the final form of the regularization function.

9.6 (x) Consider a regularized error function of the form

E=E+v9

and suppose that the unregularized error E is minimized by a weigh
w*. Show that, if the regularization coefficient v is small, the weight Vel
W which minimizes the regularized error can be written in the Eormlé

i

Ezercises 383

w=w"—vHVQ (9.134)

where the gradient V2 and the Hessian H = VVE are evaluated at w =

w

9.7 (¥) Consider a multi-layer perceptron network with W weights and a train-

ing set with V patterns. Find approximate expressions for the number of
computational steps required to evaluate the saliency of the weights by
(i) temporary deletion of each weight in turn followed by re-evaluation of
the error function; (ii) use of the ‘optimal brain damage’ expression Hj;w?
for the saliency of the weights in which the diagonal approximation for
the Hessian matrix is used (Section 4.10.1); (iii) use of the ‘optimal brain
surgeon’ expression (9.72) together with the sequential update procedure
for evaluating the inverse of the Hessian (Section 4.10.3). Evaluate these
expressions for the case W = 300 and N = 5000.

9.8 (x) Use Lagrange multipliers (Appendix C) to verify that minimization of

(9.69), subject to the constraint (9.70), leads to the results (9.71) and
(9.72) for the change to the weight vector and the increase in error function
respectively, for the ‘optimal brain surgeon’ technique.

9.9 (+x) Consider the modified weight-decay term in (9.74) for the case of two

weights w; and wg which receive identical inputs and which feed the same
unit (so that the weights perform redundant tasks). Change variables to
s = (wy +wsy)/® and & = ws/w;. Show analytically that, for fixed s, the
value o = 1 is a stationary point of the weight-decay term. Plot graphs of
the value of the weight-decay term as a function of « for various values of
s. Hence show that, for s = 1 the regularization term has a single minimum
as a function of @ at a ~ 0.5, while for s = 2 there «re two minima at
a = 0 and o« — oo. We therefore see that, for weight values larger than
the characteristic scale i, the modified weight-decay term in (9.74) has the
desired effect of encouraging a few larger weights in preference to several
smaller ones.

9.10 () Derive a set of back-propagation equations for evaluation of the deriva-

tives in (9.78), for a network of general feed-forward topology having for-
ward propagation equations given by (9.76).

911 (x) Consider a committee defined by (9.89) in which the coefficients satisfy

the constraint (9.95). Verify the decomposition of the committee general-
ization error given by (9.102).

%12 (x) Consider a committee network of the form

vo(x) =): i (x) (9.135)

where y;(x) denote the functions corresponding to the individual networks

- in the committee. Suppose that, in order to ensure that the committee
- predictions remain within sensible limits, we require

384 9: Learning and Generalization

Ymin(X) < ye(x) < Ymax(x)

where Yumin(X) and Ymax(x) are the minimum and maximum outputs
members of the committee for that value of x. Show that, if the req

(9.136) is to be satisfied for any set of network ﬁmFﬁons {wi(x)}, th
necessary and sufficient conditions on the a; are given by

9.13 (x) Use Jensen's inequality (Exercise 2.13) to show that any error
E(y) which is a convex function of the network output y will sa
following inequality for committees of networks

Ecom < Eav
where Ecoy and Eay are defined in Section 9.6.

9.14 (%) Use the result (9.119) to estimate typical numbers of patterns
to get good generalization (better than, say, 95% correct on new

networks having d = 10 inputs and M = 30 threshold hidden units.

In this chapter we consider the application of Bayesian inference techniques to

10
BAYESIAN TECHNIQUES

al networks. A simple example of the Bayesian approach was described in
ion 2.3 where we considered the problem of inferring the mean of a one-

1. The conventional training method of error minimization arises from a par-
ticular approximation to the Bayesian approach.
Regularization can be given a natural interpretation in the Bayesian frame-
work.
. For regression problems, error bars, or confidence intervals, can be assigned
to the predictions generated by a network.
4. Bayesian methods allow the values of regularization coefficients to be se-
lected using only the training data, without the need to use separate train-
ing and validation data. Furthermore, the Bayesian approach allows rela-
tively large numbers of regularization coefficients to be used, which would
be computationally prohibitive if their values had to be optimized using
cross-validation.
. Similarly, the Bayesian approach allows different models (e.g. networks
with different numbers of hidden units, or different network types such as
multi-layer perceptrons and radial basis function networks) to be compared
using only the training data. More generally, it provides an objective and
principled framework for dealing with the issues of model complexity which
avoids many of the problems which arise when using maximum likelihood.
9. Bayesian methods allow choices to be made about where in input space new
data should be collected in order that it be the most informative (MacKay,
1992¢). Such use of the model itself to guide the collection of data during
~ training is known as active learning.
. The relative importance of different inputs can be determined using the
- Bayesian technique of automatic relevance determination (MacKay, 1994a,
1995b; Neal, 1994), based on the use of a separate regularization coeffi-
~ cient for each input. If a particular coefficient acquires a large value, this
“indicates that the corresponding input is irrelevant and can be eliminated.

386 10: Bayesian Techniques

Note that, in order to focus on the more basic issues, topics 6 and 7 will nog
discussed further. A

In earlier chapters network training was based on maximum likelihood
is equivalent to minimization of an error function. We emphasized that,
this framework, a more complex model is typically better able to fit the tr
data, but that this does not necessarily mean that it will give a small
with respect to new data. Models which are either too simple or too co
will give relatively poor approximations to the underlying process from
the data is generated. This was discussed in terms of the bias-variance
off in Section 9.1. It is therefore not clear, from the training error alone,
model will give the best generalization, and so we resorted to partitioning
data set to select an appropriate level of complexity, through such tech
as cross-validation (Section 9.8.1). The Bayesian approach, however, tre
issue of model complexity very differently, and in particular it allows all 0
available data to be used for ‘training’.

To gain some insight into how this comes about, consider a hypothe
ample of three different models, Hy, H2 and H3, which we suppose have sf
increasing flexibility, corresponding for instance to a steadily increasing o
of hidden units. Thus, each model consists of a specification of the network
tecture (number of units, type of activation function, etc.) and is governed &
number of adaptive parameters. By varying the values of these parameters, €
model can represent a range of input—output functions. The more comp
els, with a greater number of hidden units for instance, can represent
range of such functions. Suppose we have a set of input vectors (2,2
a corresponding set of target vectors D = (t!,...,t"). We can then consi

I\

10.1: Bayesian learning of network weights 387

p(DIs)

p(DIH)
p(DI,)

/J,;L e

D

D,

Figure -10.1. Schematic example of three models, 1, Hz and 3, which have
successively greater complexity, showing the probability (I-mowr; as the evi-
dence) of different data sets D given each model H;. We see that more com-
p%ex modlels can describe a greater range of data sets. Note, however, that the
distributions are normalized. Thus, when a particular data ;et Dy is ;Jbserved,

the model H; has a greater evidence than either the si
imore complir modal Ha: either the simpler model M, or the

erforming a weighted sum over the predicti
: ; predictions of all the models, where the
hting coefficients depend on the evidence. More probable models therefore

ntribute more strongly to the predicted output. Since the evidence can be
| thuatEd' using the training data, we see that Bayesian methods are able to deal
¥ith the issue of model complexity, without the need to use cross-validation.

-ﬁlLu ir{lportani_; concept in Bayesian inference is that of marginalization, which
iy ves mt.e'grat.mg out unwanted variables. Suppose we are discussing a model
With two variables w and a. Then the most complete description of these variables

posterior probability for each of the models, given the observed data set
Bayes' theorem this probability can be written in the form

p(D|H;)p(Hs) terms of the joint distribution p(w we are interes :
H;|D) = ~————~. LR plw,a). If e interested onl
p(H:|D) 2(D) bution of w then we should integrate out « as follows: i

The quantity p(H;) represents a prior probability for model H;. If we b
particular reason to prefer one model over another, then we would assig!
priors to all of the models. Since the denominator p(D) does not
the model, we see that different models can be compared by evaluating p{
which is called the evidence for the model H; (MacKay, 1992a). This is illus
schematically in Figure 10.1, where we see that the evidence favours mod
are neither too simple nor too complex.

This indicates that the Bayesian approach could be used to select a pa
model for which the evidence is largest. We might expect that the mod
the greatest evidence is also the one which will have the best generalizat
formance, and we shall discuss this issue in some detail in Section 10.6.
as we shall see in Section 10.7, the correct Bayesian approach is to _
the complete set of models. Predicted outputs for new input vectors are ol

p(w) = f p(w,) dov

- f plwla)p(a) da. (10.2)

bth:' predictive d%stribution for w is obtained by averaging the conditional
e:cton p(w|e) with a weighting factor given by the distribution p(a). We
ounter several examples of marginalization later in this chapter.

Bayesian learning of network weights

€ first problem we shall address is that of learning the weights in a neural

rk on the basis of a set of traini i
Rirk o basi aining data. In previous chapters we have
“ Maximum likelihood techniques (equivalent to the minimization of an error

388 10: Bayesian Technigues 10.1: Bayesian learning of network weights 380

function) which attempt to find a single set of values for the network weig
By contrast, the Bayesian approach considers a probability distribution funct
over weight space, representing the relative degrees of belief in different
for the weight vector. This function is initially set to some prior distrib
Once the data has been observed, it can be converted to a posterior distribi
through the use of Bayes’ theorem. The posterior distribution can then be
to evaluate the predictions of the trained network for new values of the
variables, as will be discussed in Section 10.2.

The use of Bayesian learning to infer parameter values from a set of tra
data was introduced in Section 2.3 in the context of parametric density
mation. There we gave a simple illustration which involved inferring the
of a Gaussian distribution. We shall see that the more complex problem
ferring the weights in a neural network proceeds in an analogous manng
simplicity of notation, we shall consider networks having a single output
able y, although the extension to many output variables is straightforwar
of the discussion in this chapter will concern function approximation prob
for the case of noise-free input data and noisy target data. The applic
of Bayesian methods to classification problems will be discussed briefly
tion 10.3. Bayesian inference for noise-free data has been studied by Sibisi (1
and the problem of interpolating data with noise on both dependent and
pendent variables has been discussed in the context of straight-line fi
Gull (1988a).

'and which ensures that the left-hand side of (10.3) gives unity when integrated
over all weight space. As we shall see shortly, the quantity p(D|w), which rep-
resents a model for the noise process on the target data, corresponds to the
Jikelihood function encountered in previous chapters.

Since the data set consists of input as well as target data, the input values

should strictly be included in Bayes’ theorem (10.3) which should therefore be
written in the form

p(D|w, X)p(w|X)
p(D|X)

p(w|D, X) = (10.5)

‘where &’ denotes the set of input vectors (x',...,x"). As we have already noted
in earlier chapters, however, feed-forward networks trained by supervised learn-
ing do not in general model the distribution p(x) of the input data. Thus X
‘always appears as a conditioning variable on the right-hand side of the proba-
bilities in (10.5). We shall therefore continue to omit it from now on in order to
8] pllfy the notation.

The picture of learning provided by the Bayesian formalism is as follows. We
with some prior distribution over the weights given by p(w). Since we gen-
ly have little idea at this stage of what the weight values should be, the prior
ght express some rather general properties such as smoothness of the net-
k function, but will otherwise leave the weight values fairly unconstrained.
e prior will therefore typically be a rather broad distribution, as indicated
ematically in Figure 10.2. Once we have observed the data, this prior dis-
ution can be converted to a posterior distribution using Bayes’ theorem in
fprm (10.3). This posterior distribution will be more compact, as indicated
Figure 10.2, expressing the fact that we have learned something about the
ent to which different weight values are consistent with the observed data. In
Ider to evaluate the posterior distribution we need to provide expressions for
*4€ prior distribution p(w) and for the likelihood function p(D|w).

10.1.1 Distribution of weights

We begin by considering the problem of training a network in which the ar
tecture (number of layers, number of hidden units, choice of activation functit
etc.) is given. In the conventional maximum likelihood approach, a single
set of weight values is determined by minimization of a suitable error fun
In the Bayesian framework, however, we consider a probability distributiol
weight values. In the absence of any data, this is described by a prior distrib
which we shall denote by p(w), and whose form we shall discuss shortly:
w = (wy,...,ww) denotes the vector of adaptive weight (and bias) par:
Let the target data from the training set be denoted by D = (A8)
we observe the data D we can write down an expression for the posterior:
ability distribution for the weights, which we denote by p(w|D), using

1012 Gaussian prior

first consider the prior probability distribution for the weights. This distri-
~ion should reflect any prior knowledge we have about the form of network
ing we expect to find. In general, we can write this distribution as an ex-

theorem Ponential of the form
_ p(D|w)p(w) 1
p(w|D) = = D p(w) = mexp(—aEw) (10.6)

where the denominator is a normalization factor which can be written fiere Zyy (a) is a normalization factor given by

p(D) = [o(DIw)p(w) dw Zw(0) = [exp(-aBw) dw (10.7)

390 10: Bayesian Techniques 10.1: Bayesian learning of network weights 391
A ! i :
p(wiD) 5.0 F I |
: 0
% :
O (iii)
0.0F---mnnmmnus W dmm e
W) |
Figure 10.2. Schematic plot of the prior distribution of weights p(w) and ‘ S50 O i i q
posterior distribution p(w|D) which arise in the Bayesian inference of netwr (@) ;
parameters. The most probable weight vector wyp corresponds to the . :)
"5-0 0.0 X 5.0

imum of the posterior distribution. In practice the posterior distribution
typically have a complex structure with many local maxima.

Figure 10.3. A simple data set consisting of two points from class C; (circles)
and two points from class C; (crosses), used to illustrate Bayesian learning in
neural networks. The numbers show the order in which the data points are
presented to the network.
|
sume that the value of a is known. We shall discuss how to treat a as part of
the learning process in Sections 10.4 and 10.5. A major advantage of the prior
(10.9) is that it is a Gaussian function, which simplifies some of the analy-
Thus, the evaluation of the normalization coefficient Zw () using (10.7) is
ghtforward, and gives

which ensures that [p(w)dw = 1. The role of the parameter o will be co
shortly.

The discussion of bias and variance in Section 9.1 indicates that a
network function will typically have better generalization than one which
fitted to the training data (assuming that the underlying function which
to approximate is indeed smooth). This is one of the motivations for re
tion techniques designed to encourage smooth network mappings. Such r
can be achieved by favouring small values for the network weights, and
gests the following simple form for Ew

w/2
2”) (10.10)

w = | —
By = llwl? = 5 3 u? S (a

=1
. Many other choices for the prior p(w) can also be considered. Williams (1995)
Iscusses a Laplacian prior of the form (10.6) with By = ¥, |wi|. Several
possibilities, including entropy-based priors, are discussed in Buntine and
“Yeigend (1991). The appropriate selection of priors for very large networks is
iscussed by Neal (1994).

where W is the total number of weights and biases in the network.
sponds to the use of a simple weight-decay regularizer, as we shall s
and gives a prior distribution of the form

(W) = 5 exp (~ 3 [wi[?) 0
W)= Zw () exp(2 Wil)~ U.1.3 Ezample of Bayesian learning

ustrate the concept of Bayesian learning in neural networks by considering
ple example of a single-layer network applied to a classification problem.
Input vectors are two-dimensional x = (z;,2,), and the data set consists of
' data points, two from each of two classes, as illustrated in Figure 10.3. The
“Work model has a single layer of weights, with a single logistic output given

Thus, when ||w|| is large, Eyw is large, and p(w) is small, and so this
prior distribution says that we expect the weight values to be small
large.

Since the parameter o itself controls the distribution of other p
(weights and biases), it is called a hyperparameter. To begin with, we

392 10: Bayesian Techniques

AN
At

2 ORI

SRR

NN
W

Figure 10.4. Plot of a Gaussian prior shown as a surface over a two-dimensional
weight space (w1, ws).

AL 1
y(x; w) = R —
Note that the weight vector w = (wy, w») is two-dimensional, and that there is
bias parameter. We shall choose a Gaussian prior distribution for the w
given by (10.9), in which the parameter « is given a fixed value of @ =
surface plot of this prior, as a function of the weight parameters w; and w3
shown in Figure 10.4.

From Section 6.7.1, we know that the output y(x; w) of the network in (10
can be interpreted as the probability of membership of class C;, given the
vector x. The probability of membership of class C; is then (1 —y). If we
that the target values are independent and identically distributed, the like!
function p(D|w) in Bayes’ theorem (10.3) will be given by a product of
one for each data point, where each factor is either y or (1 —) accord
whether the data point is from class C; or Cs. !

First, suppose we just consider the data points labelled (i) and (ii) in'
ure 10.3. Then we can calculate the posterior distribution of weights using B&
theorem (10.3). The resulting distribution is plotted in Figure 10.5. We
derstand the form of this distribution by first noting that the network
in (10.11) represents a sigmoidal ridge in which the value y = 0.5 (the
boundary for minimum probability of misclassification) is given by a line
through the origin in Figure 10.3. The two weight parameters w; and w; €
the orientation of this line and the slope of the sigmoid. Patterns (i)
cause weight vectors from approximately half of weight space to have e

10.1: Bayesian learning of network weights 393

Figure 10.5.lPlot of the posterior distribution obtained from the prior in Fig-
ure 10.4, using patterns (i) and (ii) from Figure 10.3. (Note that there is a
change of vertical scale compared to Figure 10.4.)

p(wiD)

Figure 10.6. Plot of the posterior distribution obtained after using all four
.P;-tterl?s from Figure 10.3. (Note that for convenience there is again a change
9 vertical scale compared to previous figures.)

Probabilities as they represent ‘decision surfaces’ with the wrong orienta-

: The remaining weight vectors are largely unaffected and so the shape of the

rior distribution in the corresponding region of weight space then reflects

4L of the prior distribution in Figure 10.4.
- Ve now include all four patterns from Figure 10.3, we obtain the posterior

bution shown in Figure 10.6. As a result of the way patterns (iii) and
e labelled, there is now no decision boundary which classifies all four

304 10: Bayesian Techniques 10.1: Bayesian learning of network weights 395
points perfectly. The most probable solution is one in which the sigmoid has g to give

particular orientation and slope, and solutions which differ significantly from this

have much lower probability. The posterior distribution of weights is therefon or\ /2

relatively narrow. Zp(B) = (F) (10.16)

10.1.4 Gaussian noise model

We turn now to more general architectures of feed-forward network, and tog
consideration of ‘regression’ problems. Later we shall return to a discussion ¢
Bayesian methods for classification.

In general, we can write the likelihood function in Bayes’ theorem (10.3)§
the form '

For the moment we shall treat § as a fixed, known constant. We shall return
to the problem of determining this parameter as part of the learning process in
' Gections 10.4 and 10.5.

10.1.5 Posterior distribution of weight values

Once we have chosen a prior distribution, and an expression for the likelihood
function, we can use Bayes’ theorem in the form (10.3) and (10.4) to find the
posterior distribution of the weights. Using our general expressions (10.6) and
(10.12) we obtain the posterior distribution in the form

p(Dlw) = —BED)

1
Zp(B) !

where Ep is an error function, and [is another example of a hyperparame

which will be discussed shortly. The function Zp(f) is a normalization p(w|D) = 2 exp(—BEp — aEyw) = 1 exp(—S(w)) (10.17)
given by Zs Zs §
Zo(p) = [exp(~BEp) dD
S(w) = BEp + aEw (10.18)
where [dD = [dt*...dt" represents an integration over the target variak
As in Section 6.1, we shall assume that the target data is generated
smooth function with additive zero-mean Gaussian noise, so that the probabil
of observing a data value ¢ for a given input vector x would be Zs(a,B) = fexp(—ﬁEp —aBEw)dw. (10.19)

~ Consider first the problem of finding the weight vector wyp corresponding to
maximum of the posterior distribution. This can be found by minimizing the
‘gative logarithm of (10.17) with respect to the weights. Since the normalizing

or ?,5- in (10.17) is independent of the weights, we see that this is equivalent
0 minimizing S(w) given by (10.18). For the particular prior distribution given
% (10.9) and noise model given by (10.15), this can be written in the form

plthe, w) < exp (~S{utxiw) ~ 1)

where y(x; w) represents a network function governing the mean of the d is

tion, w represents the corresponding network weight vector, and the para

B controls the variance of the noise. Provided the data points are drawn ing

pendently from this distribution, we have
B i

S(w) =5 3 {uaw) - "+ 2wl (10.20)

n=1 i=1

N
p(Dlw) = [] »(t"|x",w)

n=1

1 16 ! n, _tn}2
= _-Zu(ﬁ) exp | =3 g{y(x W)

The expression (10.13) for the normalization factor Zp(f) is then the prod
of N independent Gaussian integrals which are easily evaluated (Append®

"€ see that, apart from an overall multiplicative factor, this is precisely the
sum-of-squares error function with a weight-decay regularization term, as

Ussed in Section 9.2.1. Note that, if we are only interested in finding the

ht vector which minimizes this error function, the effective value of the

silarization parameter (the coefficient of the regularizing term) depends only

3 '!J_hl_*. ratio a/f, since an overall multiplicative factor is unimportant.

The most probable value for the weight vector, denoted by wyp, corresponds

396 10: Bayesian Techniques 10.1: Bayesian learning of network weights 397

to the maximum of the posterior probability, or equivalently to the minimum g analysis in Exercises 10.5 to 10.8.
the right-hand side in (10.20). If we consider a succession of training sets
increasing numbers N of patterns then we see that the first term in (10.2
grows with N while the second term does not. If o and B are fixed, then
increases, the first term becomes more and more dominant, until eventually ¢
second term becomes insignificant. The maximum likelihood solution is th
very good approximation to the most probable solution wuyp. Conversely,
very small data sets the prior term plays an important role in determini

location of the most probable solution.

10.1.7 Gaussian epprozimation to the posterior distribution

Given our particular choices for the noise model and the prior, the expressions
(10.17) and (10.20) defining the posterior distribution are exact (although in gen-
eral the normalization coefficient Zg(a,) cannot be evaluated analytically). In
~ practice we wish to evaluate the probability distribution of network predictions
as well as the evidences for the hyperparameters and for the model. These r(=z~1
quire integrations over weight space, and in order to make these integrals analyt-
ically tractable, we need to introduce some simplifying approximations. MacKay
(1992d) uses a Gaussian approximation for the posterior distribution. This is ob-
tained by considering the Taylor expansion of S(w) around its minimum value
and retaining terms up to second order so that

10.1.6 Consistent priors

We have seen that a quadratic prior, consisting of a sum over all weights "
biases) in the network, corresponds to a simple weight-decay regularizer. In
tion 9.2.2, we showed that this regularizer has an intrinsic inconsistency
the known scaling properties of network mappings. This led to a consid >
of weight-decay regularizers in which there is a different regularization coe
for weights in different layers, and in which biases are excluded. For a t¥ '
network, this suggests a prior of the form

Qg 2 Q2 2
p(w)ocexp(—? == Zw)

weW, weWa

S(w) = S(wwmp) + %(W — WMP)T A(w—wnmp) (10.24)

where the linear term has vanished since we are expanding around a minimum
‘of S(w). Here A is the Hessian matrix of the total (regularized) error function
with elements given by ’

A = VVSyup

where W; denotes the set of weights in the first layer, Wy denotes
weights in the second layer, and biases are excluded from the summation
that priors of this form are improper (they cannot be normalized) since
parameters are unconstrained. The use of improper priors can lead to
ties in selecting regularization coefficients and in model comparison wi
Bayesian framework, since the corresponding evidence is zero. It is
common to include separate priors for the biases.

More generally, we can consider priors in which the weights are div
any number of groups Wi so that]

p(w) ox exp (—% Zakuwui)
k

= BVVENP 4ol (10.25)

A variety of exact and approximate methods for evaluating the Hessian of the
error function Ep were discussed in Section 4.10.

 The expansion (10.24) leads to a posterior distribution which is now a Gaus-
Slan function of the weights, given by

p(w|D) = Zl‘ exp (—S(Wup) - 1ﬂ.wT AAw) (10.26)
p 2

ere A\\.: = W — wyp, and Z§ is the normalization constant appropriate to
Gaussian approximation. Some partial justification for this approximation
ies from the result of Walker (1969), which says that, under very general cir-
Stances, a posterior distribution will tend to a Gaussian in the limit where
number of data points goes to infinity. For very large data sets we might
expect the Gaussian approximation to be a good one. However, the pri-
motivation for the Gaussian approximation is that it allows a great deal
.~ Progress to be made analytically. Later we shall discuss techniques based on
.:‘éo-\' chain Monte Carlo integration which avoid this approximation.
, sing the results given in Appendix B, it is now straightforward to evaluate
rmalization factor Z§ for this Gaussian approximation, in terms of the
‘minant of the matrix A, to give

where

Iwig= 3 w?

weW,

For simplicity of exposition, we shall continue to use a Gaussiz
the form (10.9). The extension of the Bayesian analysis to account f
general prior (10.22) is straightforward, and the reader is led through

398 10: Bayesian Techniques

Z3(a, B) = e~ SOwme) (2m)W/2| A |71/2,

For a general non-linear network mapping function y(x; w), e.g. a multi-]
perceptron, there may be numerous local minima of the error function, son
which may be associated with symmetries in the network. For instance, if we
sider a multi-layer perceptron with two layers of weights, M hidden units,
anti-symmetric hidden unit activation functions (e.g. the ‘tanh’ function),
each distinct local minimum belongs to a family of 2M M! equivalent minim
discussed in Section 4.4. The weight vectors corresponding to these different:
ima are related by transformations which interchange the hidden units and re
the signs of the weights associated with individual hidden units. There ma
several families of such minima, where the different families are non-eq
and are not related by symmetry transformations. The single-Gaussian &
imation given by (10.26) clearly does not take multiple minima into ac
One approach is to approximate the posterior distribution by a sum of G
sians, once centred on each of the minima (MacKay, 1992d), and we shi
how to make use of this approximation in Section 10.7.

10.2 Distribution of network outputs

As we have seen, in the Bayesian formalism a ‘trained’ network is descr
terms of the posterior probability distribution of weight values. If we p:
new input vector to such a network, then the distribution of weights gi
to a distribution of network outputs, In addition, there will be a contributi
the output distribution arising from the assumed Gaussian noise on the ot
variables. Here we shall calculate the distribution of output values, usinj
single-Gaussian approximation introduced above. '

Using the rules of probability, we can write the distribution of outputs
given input vector x, in the form

p(tix, D) = f p(tix, w)p(w|D) dw

where p(w|D) is the posterior distribution of weights. The distribution p
is simply the model for the distribution of noise on the target data, for
value of the weight vector, and is given by (10.14).

In order to evaluate this distribution we shall make use of the _G
approximation (10.26) for the posterior distribution of weights, together
the expression (10.14) for the distribution of network outputs. This gives

p(t|x, D) /exp (-—g{t — y(x; w)}z) exp (—-;-AWTAAW) dw

where we have dropped any constant factors (i.e. factors independ
addition, we shall assume that the width of the posterior distribution (de

10.2: Distribution of network outputs 399

by the Hessian matrix A) is sufficiently narrow that we may approximate the
network function y(x; w) by its linear expansion around wyp

y(x;w) = y(x; wyp) + gTAw (10.30)
where
€= Vet - (10.31)

This allows us to write (10.29) in the form

p(t|x, D) o /exp (—g{t —ymp — g AW} — %AwTA&w) dw (10.32)

where ymp = y(x;wmp). The integral in (10.32) is easily evaluated (Exer-
cises 10.1 and 10.2) to give a Gaussian distribution of the form

1 (t — ymp)?
p(t|x, D) = W exp (——20—?——- (10.33)

‘where we have restored the normalization factor explicitly. This distribution has
‘a mean given by ymp, and a variance given by

.
3 +g A7 'g.
) We can interpret the standard deviation o; of the predictive distribution for ¢
28 an error bar on the mean value yyp. This error bar has two contributions, one
sing from the intrinsic noise on the target data, corresponding to the first term
1n (10.34), and one arising from the width of the posterior distribution of the
Betwork weights, corresponding to the second term in (10.34). When the noise
plitude is large, so that 3 is small, the noise term dominates, as indicated in
re 10.7. For a small noise amplitude (large value of 3) the variance of the
Output distribution is dominated by the contribution from the variance of the
Posterior distribution of weights, as shown in Figure 10.8.

We sce that the Bayesian formalism allows us to calculate error bars on
network outputs, instead of just providing a single ‘best guess’ output. In
© Practical implementation, we first find the most probable weights wyp by
S imizing the regularized error function S(w). We can then assign error bars
this network function by evaluating the Hessian matrix and using (10.34).
thods for the exact evaluation of the Hessian, as well as useful approximations,
Are discussed in Section 4.10.

of (10.34)

400

10: Bayesian Techniques

>

Wae w

Figure 10.7. The distribution of network outputs in the Bayesian formalism is
determined both by the posterior distribution of network weights p(w|D) and

by the variance A~ due to the intrinsic noise on the data. When the poste

distribution of weights is very narrow in relation to the noise variance, as sho

here, the width of the distribution of network outputs is determined prima
by the noise.

A p1Ix,D)

y(x;w)

Figure 10.8. As in Figure 10.7, but with a posterior distribution for the weig
which is relatively broad in comparison with the intrinsic noise on the da

showing how the width of the distribution over network outputs is now domi-

nated by the distribution of network weights.

10.2: Distribution of network outputs 401

2.0 T

1.0

0.0

1
|
|
I
[
|

-1.0
0.0 0.5 1.0

Figure 10.9. A simple example of the application of Bayesian methods to a
‘regression’ problem. Here 30 data points have been generated by sampling
the function (10.35), and the network consists of a multi-layer perceptron with
four hidden units having ‘tanh’ activation functions, and one linear output
unit. The solid curve shows the network function with the weight vector set
to wyp corresponding to the maximum of the posterior distribution, and the
dashed curves represent the =20} error bars from (10.34). Notice how the error
bars are larger in regions of low data density,

10.2.1 Ezample of Bayesian regression

As a simple illustration of the application of Bayesian techniques to a ‘regression’
‘Problem, we consider a one-input one-output example involving data generated
‘Irom the smooth function

h(z) = 0.5 + 0.4sin(27z) (10.35)

With additive Gaussian noise having a standard deviation of & = 0.05. Values for
Z were generated by sampling a Gaussian mixture distribution having two well-
parated components. A prior of the form (10.21) was used, and values of & and
7 Were chosen by an on-line re-estimation procedure described in Section 10.4.

. The network mapping corresponding to the most probable weight values is
wWn in Fxgure 10.9, together with the +2¢, error bars gwen by (10.34). We see

the error bars increasing in magnitude in regions of input space having low data
S€nsity. In this example the Hessian matrix was evaluated using exact analytical
*echniques, as discussed in Section 4.10.

402 10: Bayesian Techniques 10.8: Application to classification problems

10.2.2 Generalized linear networks 10.3 Application to classification problems

In Section 3.3 we discussed models having a single layer of adaptive wei
that, for linear output units, the network mapping function is a linear
of the weights. Such models can be written in the form

We now return briefly to a discussion of the application of Bayesian methods to
Flasmﬁcatmn problen-ls. Following MacKay (1992b) we consider problems involv-
ing twg classes. As discussed in Section 6.7, the likelihood function for the data
given by

M

x;w) =Y w;d;(x) = wlp(x). 2 .

y(x;w) ;,-;0 395 () p(Dlw) = Hy(xn)t 1 — y(x™))-t
n

If we continue to use a Gaussian noise model and a Gaussian prior on the = e (~GD

then the total error function is given by P [w)) (10.42)

‘where G is the cross-entropy error functi i b
8 a i y nction, given by
S(w) =5 3 _{t" — wTo(x")}* + ZlIwl*
o G(Djw) = =Y {t" Iny(x") + (1 — ") In(1 — y(x"))}. (10.43)
and hence is a quadratic function of the weights. Thus, the posterior distri "
of weights is exactly Gaussian, and only has a single maximum rather tha
multiple maxima which can arise with non-linear models. The most pre
weight vector wyp is described by a set of linear equations, which are
solved using the techniques described in Section 3.4.3. The network functio
then be written, without approximation, in the form '

;Ihe distribution (10.42) has the correct normalization since the target data "
take the values 0 or 1, and so the normalization ‘integral’ becomes a sum of
terms each of which is the product of factors of the form

exp(lny) +exp(ln(l - y)) =y +(1-y) = 1. (10.44)
R T
y(x;w) = ymp + @' Aw Note that there is no equivalent of the constant 3. This is because the targets are
_h%sumed to provide perfect class labels, and so there is no uncertainty associated

with their values.
Af‘ discussed in Section 6.7.1, it is appropriate to choose an output activation
function given by the logistic sigmoid of the form

where Aw = w — wyp as before. Also, the Hessian matrix A is given
by the outer product expression (Section 4.10.2) in the form

A = VISl = B B")(x")" + o
' s ey (10.45)

where I is the unit matrix. The distribution of network outputs is then
a Gaussian integral of the form a= 3 j Wiz is the weighted linear sum feeding into the output unit. This
. ; E { évatmn function allows the network output to be interpreted as the probability
p(tix, D) o f oxp (——{t) -—AWTAA“') i f€11x) that an input vector x belongs to class ;.

2 2 gain, we csl:.n introduce a prior distribution for the network weights in terms
& regularization term Ey, so that the posterior distribution becomes

which can be evaluated in the same way as (10.32) to give a distributio

. s . 2 d 'an 1
which is Gaussian with mean yyp and variance p(w|D) = Zs exp(—G —aEw) = —Zl exp (—=S(w)). (10.46)
1 s
g . TA—14. o T
o} 3 +o ¢ b'efore, this distribution can be approximated by a Gaussian centred on the

dmum posterior weight vector wyp

404 10: Bayesian Techniques 10.3: Application to classification problems 405
p(w|D) = = exp [—S(wwmp) — EQWT AAw (alx, D) = 1 (a — amp)? 10.53
Zg 2 PLSPG L) = (2ms?)1/2 exp| = 2¢2 (10.53)

where Z}% is the normalization constant appropriate to the Gaussian appros
tion, and Aw = w — wyp.

where the variance s? is given by

The probability of membership of class Cy for a new input vector x is gy $2(x) = gTA g, (10.54)
in the Bayesian framework by an integration over the distribution of n '
weights of the form We then have

P(Cy|x,D) = / P(C1|x, w)p(w|D) dw P(Cy|x,D) = f P(Cila)p(alx, D) da (10.55)
= [vxiwip(wiD) aw. = [s(@yptaix, D) do (10.56)

In the case of regression problems, the distribution of network outputs
by (10.33) is a Gaussian with mean yyp(x) = y(x; wnmp), so that the n
ized output corresponding to (10.49) coincides with the predictions
using the most probable weight vector alone (provided the posterior distri

‘where p(a|x, D) is given by (10.53) and g(a) is given by (10.45). Since the in-
tegral (10.56) does not have an analytic solution, MacKay (1992b) suggests the
following approximation

is sufficiently narrow that we can approximate y as a function of w by a lis i

function in tjl"xe neighbourhood of thep rx:'xost probagle weight vector). Fori P(Ci|x, D) ~ g(k(s)amp) (10.57)
tion problems, however, this result does not hold, since the network functi

no longer be approximated by a linear function of the network weights as

sequence of the sigmoidal activation function y = g(a) on the network 2\ —1/2

The process of marginalization then introduces some important modific K(8) = (1 + Esi-) (10.58)

the predictions made by the network.
MacKay (1992b) assumes that a (rather than y) is locally a linear func

of the weights and 5% is defined by (10.54).

Now compare the classification decisions obtained using the marginalized
output given by (10.56) with those obtained using the output ymp = g(amp)
Corresponding to the most probable weight vector. If the output is used to classify
the network input so as to minimize the probability of misclassification, then
the decision boundary corresponds to a network output of 0.5 (Section 1.8.1).
or the most probable output yyp = g(ame), the form of the logistic sigmoid
dctivation function (10.45) shows that yyp = 0.5 corresponds to a(x, wyp) = 0.
¥or the marginalized output (10.56) the decision boundary P(C; |x, D) = 0.5 also
“orresponds to a(x, wyp) = 0. This follows from (10.56) together with the fact
fat g(a) — 0.5 is anti-symmetric while the Gaussian (10.53) is symmetric. Thus,
if the marginalized outputs are used to classify new inputs directly on the basis
Ot the most probable class they will give the same results as would be obtained
YY using most probable outputs alone.)
However, if a more complex loss matrix is introduced or if a ‘reject option’
cluded (Section 1.10), then marginalization can have a significant effect on
decisions made by the network. The effects of marginalization for a simple
Vo-class problem are shown schematically in Figures 10.10 and 10.11 for the

a(x; w) = avp(x) + g7 (X)Aw

where Aw = w — wyp. The distribution of a then takes the form
palx, D) = [plalx, wip(w|D) dw

. f 5(a — anp — 8T Aw)p(w|D) dw

where 8(-) is the Dirac delta-function. We now use the Gaussian approxl
(10.47) for the posterior distribution p(w|D). Since the delta—functxon con!
requires that Aw be linearly related to a, and since the posterior weigl

bution is Gaussian, the distribution of a will also be Gaussian. The
variance of this Gaussian distribution are easily evaluated (Exercise 10.3) tol

406 10: Bayesian Technigques

Figure 10.10. A schematic plot of the posterior distribution of weights showing
the most probable weight vector wyp, and also two other weight vectors w'*
and w'® taken from the posterior distribution.

case of a single-layer network. Figure 10.10 shows the posterior distribu
network weights, and Figures 10.11 (a)-(¢) show examples of the netw
puts obtained by choosing weight vectors from various points in the po
distribution. The effect of marginalization (integration of the predictio
the posterior distribution) is shown in Figure 10.11 (d). Note that the d

boundary (corresponding to the central ¥y = 0.5 line) is the same as
ure 10.11 (a).

10.4 The evidence framework for a and /3

So far in this chapter, we have assumed that the values of the hyperpars
o and 3 are known. For most applications, however, we will have littl
suitable values for v and § (in some cases we may have an idea of t
level 3). The treatment of hyperparameters involves Occam’s razor (Secti
since the values of hyperparameters which give the best fit to the traini
in a maximum likelihood setting represent over-complex or over-flexible
which do not give the best generalization. 3
As we have discussed already, the correct Bayesian treatment for para

predictions. For example, the posterior distribution of network weights is
by

p(wiD) = [[ptow,cxp1D) dards

~ [[#tvia. Dinte D) dads.

10.4: The evidence framework for o and B 407

(a) (b)
o C o .c
(©) (d)

Figure 10.11. Schematic illustration of data from two classes (represented by
circles and crosses) showing the predictions made by a classifier with a single
layer of weights and a logistic sigmoid output unit. (a) shows the predictions
made by the network with the weights set to their most probable values wyp.
The three lines correspond to network outputs of 0.1, 0.5 and 0.9. A point such
as C, which is well outside the region containing the training data, is classified
with great confidence by this network. (b) and (c¢) show predictions made by
the weight vectors corresponding to w'*) and w(® in Figure 10.10. Notice how
the point C is classified differently by these two networks. (d) shows the effects
of marginalizing over the distribution of weights given in Figure 10.10. We see
that the probability contours spread out in regions where there is little data.
The point C is now assigned a probability close to 0.5 as we would expect.

Note that we have extended our notation to include dependencies on & and
€xplicitly in the various probability densities. Two approaches to the treatment
Of hyperparameters have been discussed in the literature. One of these performs
¢ infegrals over o and (analytically, and will be discussed in Section 10.5.
A alternative approach, known as the evidence approzimation, has been dis-

ed by MacKay (1992a, 1992d) and will be considered first. This framework

based on techniques developed by Gull (1988b, 1989) and Skilling (1991). It is
putationally equivalent to the type II mazimum likelihood (ML-II) method

“t conventional statistics (Berger, 1985).

. Let us suppose that the posterior probability distribution p(e, B|D) for the

yperparameters in (10.59) is sharply peaked around their most probable values

408 10: Bayesian Techniques 10.4: The evidence framework for e and 8 409

evaluated already. If we make the dependences on o and 3 explicit, then we can
write (10.4) in the form

amp and fyp. Then (10.59) can be written

p(wID) = p(wionse. Buee, D) | [p(cx D) dads
p(Dle, B) = f p(D|w, a, B)p(w|a, B) dw (10.63)

= p(wlamp, Amp, D). (

This says that we should find the values of the hyperparameters which ma = /p(D!w, B)p(wla) dw (10.64)
the posterior probability, and then perform the remaining calculations wi
hyperparameters set to these values. We shall discuss the validity of this appi
imation later, when we consider the alternative approach of exact integratic
In order to find app and Fyp, we need to evaluated the posterior distrib

of o and 3. This is given by

where we have made use of the fact that the prior is independent of [and
the likelihood function is independent of a. Using the exponential forms (10.6)
and (10.12) for the prior and likelihood distributions, together with (10.18) and
(10.19), we can then write this in the form

p(Dle, B)p(, B) 1 1 /
,B|D) = ———————""~ Dja,f) = ———— _
p(a, B|D) (D) p(D|e, B) Zo() Zw (@) exp (—S(w)) dw
which requires a choice for the prior p(c, 5). Since this represents a prior ¢ _ Zs(e,p)
hyperparameters, it is sometimes called a hyperprior. The distribution o = ZoB)Zw (@) (10.65)

parameters, for example, is governed by a parameter a which itself is d
by a distribution. Schemes such as this are called hierarchical models and ¢
extended to any number of levels. If we have no idea of what would be
values for o and 3, then we should choose a prior which in some sense
equal weight to all possible values. Such priors are called non-informative
discussed at length in Berger (1985). They often have the characteristic thal

For our particular choices of noise model and prior on the weights, we have
already evaluated Zp and Zw in (10.16) and (10.10) respectively. If we make
the Gaussian approximation for the posterior distribution of the weights, then
Zs is given by (10.27). The log of the evidence is then given by

cannot be normalized since the integral of the prior diverges. Priors for 1 - MP mp _ 1

this is the case are called improper. An example would be a prior for a par Inp(Dle, f) = —aEw" - BER" — 2 In|A| (10.66)
a which is taken to be uniform over an infinite interval (0, co). In fact,

are examples of scale parameters since they determine the scale of ||wi[? w No o N

the noise respectively. Non-informative priors for scale parameters are g i 2 o 2 e 2 In(2r). (10.67)

chosen to be uniform on a logarithmic scale as discussed in Exercise 10.13.

For the moment we shall suppose that the hyperprior p(c, 8) is chosen to
very insensitive to the values of o and S to reflect the fact that we have litth
of suitable values for these quantities. Later we shall discuss more formall)
to choose suitable hyperpriors. Since the denominator in (10.62) is ind
of a and 3, we see that the maximum-posterior values for these hyperp
are found by maximizing the likelihood term p(D|e, B). This term is c
evidence for o and 3. _

Note that the Bayesian analysis is proceeding in a hierarchical fashi
first level involves the determination of the distribution of weight val
the second level we are seeking the distribution of hyperparameter val
evidence p(D|a, 3) at this level of the hierarchy is given by the denomi
Bayes’ theorem (10.3) from the previous level.

We can easily express the evidence in terms of quantities which -

IWe first consider the problem of finding the maximum with respect to a. In
Order to differentiate In |A| with respect to o we first write A = H + oI, where
= VVEDp is the Hessian of the unregularized error function. If {Ai} (where

"' =1,...,W) denote the eigenvalues of H, then A has eigenvalues \; + o and
We have

d d
s DlAl=—=1a (1:_[(/\1- +a})

e

410 10: Bayesian Technigques 10.4: The evidence framework for o and 3 411
=Y 5= TA
: A+
A
where the last step follows from the fact that the eigenvalues of A~! are () -
3

a)~!. Note that this derivation has implicitly assumed that the eigenvalu
do not themselves depend on . For an error function Ep which is exs
quadratic function of the weights (as is the case for a linear network and a su
of-squares error function), the Hessian will be constant and this assumptio
be exact. For non-linear network models, the Hessian H will be a function
Since the Hessian is evaluated at wyp, and since wyp depends on a, we
the result (10.68) actually neglects terms involving d\;/da (MacKay, 1992a
With this approximation, the maximization of (10.67) with respect to
then straightforward with the result that, at the maximum,

[

Wy likelihood

U

Figure 10.12. Schematic diagram of two directions in weight space after rota-
tion of the axes to align with the eigenvectors of H. The circle shows a contour
of Ew while the ellipse shows a contour of Ep. In the direction w; the eigen-
value A; is small compared with o and so the quantity A1/(\1 + @) is close to
zero. In the direction wy the eigenvalue A; is large compared with o and so
the quantity Az/(Az + @) is close to 1.

w
MP _ a _
2EN =W - :)‘i+a~7
=1

where the quantity v is defined by

minimum of Ep, and so there is no guarantee that the eigenvalues \; will be
positive.

- We next consider the maximization of (10.67) with respect to 3. Since \; are
the eigenvalues of H = BVVEp it follows that); is directly proportional to
‘ and hence

This result can be given a simple and elegant interpretation (Gull, 1989). In
absence of any data, the most probable weight vector would be zero, and
0. The value of E}F represents the extent to which the weights are driven
from this value by the data. If we assume for the moment that the eig
A; are positive then the quantity v; = A;/(\; + @) is a quantity which lies
range 0 to 1. This can be interpreted geometrically if we imagine rotating the:
of weight space to align them with the eigenvectors of H as shown schema
in Figure 10.12. Directions for which \; > « will give a contribution
one in the sum in (10.70) and the corresponding component of the weight
is determined primarily by the data. Conversely, directions for which
will make a small contribution to the sum, and the corresponding compone
the weight vector is determined primarily by the prior and hence is red
a small value. (See also the discussions of weight-decay regularization anc
stopping in Sections 9.2.1 and 9.2.4 respectively). Thus v measures the efl
number of weights whose values are controlled by the data rather than
prior. Such weights are called well-determined parameters. The quantity 2
can be regarded as a x? (Press et aL, 1992) for the weights since it can be ¥
m the form 3, w? /0%, where oy = 1/a. The criterion (10.70) then s
X% =7 so that the x? for the weights is given by the number of well-d
parameters. Note that, since wyp corresponds to the minimum of S(w.
than the minimum of Ep(w), the Hessian H = fVVEp, is not evaluate

&
&

(10.71)

8|
l
I:h_[.?,’

- Thus we have

d d
@mIA[=E;ln(Af+a)

1 Ai
= — . 10.72
8 ; Aitao ()

This leads to the following condition satisfied at the maximum of (10.67) with
L"eﬁpect to B:

2BEYP =

—1. (10.73)
i=1

412 10: Bayesian Technigues

Again we can regard 28Ep = I(t" —y(x";w))?/o%, where 03, = 1/8, as
x? for the data term. Thus at the optimum value of 3 we have xj = N —.
every well-determined parameter, the data error is reduced by one unit, and
weight error is increased by one unit. From (10.18), (10.69) and (10.73) we seg
that the total error S(w), evaluated at wyp, satisfies the relation 2Syp = N,]

So far our analysis has assumed that the posterior distribution is described
by a single Gaussian function of the weights. As we have already observed, hoy
ever, this is not an adequate description of the posterior distribution in the
of non-linear networks since there are many minima present in the regulariz
error function S(w). The approach adopted by MacKay (1992d) is to note th
we are using a particular set of weights wyp to make predictions, correspond
ing to a particular local minimum of S(w). Thus, we can set the values of 0
and [appropriately for this particular solution, noting that different minim;
may require different values for these hyperparameters. The integral in (10.64
should therefore be interpreted not as an integral over the whole of weight s
but simply as an integral in the neighbourhood of the particular local minim
being considered. By considering a Gaussian approximation to the posterior
tribution in the neighbourhood of this minimum, we then arrive at the formali
for determining o and # derived above. Later we shall discuss how to deal
multiple minima.

In a practical implementation of this approach, we need to find the opti
o and [as well as the optimum weight vector wyp. A simple approach to
problem is to use a standard iterative training algorithm, of the kind describ
in Chapter 7, to find wyp, while periodically re-estimating the values of o
A using

a™™ = v/2Ew
B = (N —v)/2Ep

which follow from (10.69) and (10.73). The current estimates of & and /3 are uset
to evaluate the quantities on the right-hand sides of (10.74) and (10.75), anc
procedure is started by making some initial guess for the values of o and

The evidence approach to the determination of & and /3 is illustrated |
the same regression example as in Figure 10.9. The graph shown in Figure 1
was obtained by fixing f to its known true value, and shows a plot of v and
versus In . The value of v was found by evaluating the Hessian matrix u
exact analytic methods described in Section 4.10, and then finding its eigeny
spectrum. Figure 10.14 shows the corresponding plot of the log evidence f
versus In e. Comparison of Figures 10.13 and 10.14 shows that the maximu!
the evidence occurs approximately when the condition 2aEw = + is satisfit

As a very rough approximation, we can assume that all of the weight p
eters are well determined so that v = W, as we would expect to be the ca
we have large quantities of data so that N > W. In this case the re-esti

10.4: The evidence framework for o and 413
50.0 T T
25.0 =
20E,
Y
60 / |
-6.0 -4.0 -2.0 Ino 0.0

Figure 10.13. This shows a plot of the quantities v and 2a:Eyw versus In « for
the example problem shown in Figure 10.9. The parameter J is set to its true
value.

200.0 l .
Inp(Dlcr)
180.0 f !
160.0 - .
6.0 4.0 20 |hq 00

Figure 10.14. This shows a plot of the log evidence for o versus In o, corre-
sponding to the plots in Figure 10.13. Comparison with Figure 10.13 shows
that the maximum of the evidence occurs approximately when the condition
2aEw = v is satisfied. Again the value of 3 is set to its true value.

414 10: Bayesian Techniques 10.5: Integration over hyperparameters 415

formulae of (10.74) and (10.75) reduce to Substituting (10.67) into (10.82) and make use of (10.69) we obtain

o™ = W/2Ew L _ 7,15 ok 108
F. ztzlarne (10:88)

g% = N/2Ep

which are easily implemented and which avoid having to evaluate the He
and its eigenvalues, and are therefore computationally fast.

Having found the values of @ and # which maximize the evidence, we
construct a Gaussian approximation for the evidence p(D|lne,In), as a f
tion of In @ and In 3, centred on these maximum values. This will be useful
when we come to discuss model comparison. The evidence has been expre
terms of Ina and In 3 for reasons discussed on page 408. Here we shall
that there is no correlation between « and 3 in the posterior distribution.
ercise 10.11 shows that the off-diagonal terms in the correlation matrix
neglected in the Gaussian approximation. Considering g first, we write

- (10.84)

10.5 Integration over hyperparameters

The correct Bayesian treatment for hyperparameters involves marginalization,
in other words integration over all possible values. So far we have considered the
‘evidence framework in which this integration is approximated using (10.61), and
so the hyperparameters are fixed to their most probable values.

An alternative approach is to perform the integrations over o and g analyt-

(I8 — In Bup)? ically (Buntine and Weigend, 1991; Wolpert, 1993; MacKay, 1994b: Williams,
p(D|1n B) = p(D|In fup) exp e s (10.7 1995). This can be done by first writing the integral in the form
Ing

From (10.78) it follows that the variance can be calculated using p(w|D) = / / »(w,a, B|D) derdf3

1 a a 1

- e LT (ﬁgﬁ Inp(D| lnﬁ)) : = D) / f p(Dlw, B)p(w|a)p(e)p(B) da dp. (10.85)
Here we have used Bayes’ theorem in the form (10.3). We have then used
{D[w, a,B) = p(D|w,) since this is the likelihood term and is independent
Of o. Similarly, p(w|e, 8) = p(w|a) since this is the prior over the weights and
fience is independent of f. Finally, we have taken p(a,) = p(a)p(B) on the
ssumption that the two hyperparameters are independent.

) To evaluate the integral in (10.85) we need to make specific choices for the
Priors p(a) and p(fB). As discussed earlier, these priors should be expressed on
Ogarithmic scales. Thus, we can choose (improper) priors of the form p(Ina) = 1
and p(In) = 1 which imply

If we now substitute (10.67) into (10.79) and make use of (10.73) we obta

w
1 1 1 al;
=-(N-7)+53 — .
2, a7 2§ (a+)2

The second term in (10.80) consists of a sum of terms of the form a\;/(c:+Ag

If \; < « then this reduces to)\;/a < 1, while if A; > « then this redu
a/A; < 1. Significant contributions arise only if A; ~ c. Since there will typ:
be few such eigenvalues, we see that the second term in (10.80) can be neg

and we have 1 1
pla) = =, p(B) = =. (10.86)
a B
)
= o = T . "
Ofnp 2 S choice leads to straightforward analytic integrals over the hyperparameters.

Consider the integral over « in (10.85). Using (10.6) and (10.10 h
Similarly, we can evaluate the variance of the distribution for Ina () g (10.6) (10.10) we have
o0
1 [8 p(w) = / p(wle)p(e) da
T (aga" lnp(D]lna)) : 0

Tina

|

416 10: Bayesian Techniques 10.5: Integration over hyperparameters 417

updated using the re-estimation formulae (10.93) and (10.94) (MacKay, 1994b;
Williams, 1995). Notice that this corresponds precisely to the approximation
(10.76) and (10.77) to the evidence approach.

S | 1
= [z e (-am gda

oo
= (21r)'w/3f exp (—aEw) a1 =Ygy 10.5.1 Integration versus mazimization
0

Formally, Bayesian inference requires that we integrate over the hyperparame-
ters. In practice, one technique which we have considered above, which MacKay
(1994b) refers to as the ‘MAP’ approach (for mazimum posterior) is to perform
this integration analytically. An alternative approach is to use the evidence ap-
proximation, which involves finding the values of the hyperparameters which
maximize the evidence, and then performing subsequent analysis with the hy-
perparameters fixed to these values. Since the exact integration is so easily per-
formed, it might appear that this should be the preferred approach (Wolpert,
1993). As well as being exact, it has the advantage of saving the significant com-
putational effort of the evidence approximation, which has to be repeated afresh
for each new data set.

However, MacKay (1994b) has argued that in practice the evidence approx-
imation will often be expected to give superior results. The reason that this
could in principle be the case, even though formally we should integrate over
the hyperparameters, is that in practice with exact integration the remainder
of the Bayesian analysis cannot be carried through without introducing further
‘approximations, and these subsequent approximations can lead to much greater
inaccuracies than the evidence approach.

Consider the regularization parameter a. We have already seen that the ‘effec-
tive’ value for this parameter differs between the evidence and MAP approaches

(ZﬂEw)wf 2
where I is the standard gamma function (defined on page 28). The inte
over f can be performed in exactly the same way with the result

D(V/2) i
We can now write down the exact (rather than a.ppro:fima.te) un-norn
posterior distribution of the weights. The negative logarithm of this po:
corresponding to an error function, then takes the form

W
—Inp(w|D) = -I;-InED i In Ew + const. (1

The form (10.89) should be contrasted with the form of the log post
the weights for the case in which o and f are assumed to be known. From (1
this latter form can be written

—Inp(w|D) = BEp + aEw + const.

_Ziw?'

Thus, the MAP method effectively estimates an a based on the total number
of parameters, while the evidence method makes use of the number of well-
fetermined parameters. MacKay (1994b) attributes this difference to a bias in
‘the MAP approach which is analogous to the distinction between oy and on_;
(Section 2.2).

. The MAP approach gives an expression (10.89) for the exact posterior dis-
ribution of the weights. In order to make use of this expression in practice,
wever, it is necessary to make some approximations. Typically, this would
olve finding the maximum posterior weight vector wyp by a standard non-
ear optimization algorithm, and then fitting a Gaussian approximation around

aat = ij_wf o = L (10.95)
Note that the gradient of (10.90) is given by
—VInp(w|D) = BVEp + aVEw.
The gradient of (10.89) can be written in an analogous form as
~Vinp(w|D) = BeaVED + e VEwW

where we have defined

ae = W/2Ew s value (Buntine and Weigend, 1991). Clearly the MAP method is capable of
ng a true value for wyp, and so the value found within the evidence ap-
Per = N/2Ep. mation must be in error (to the extent that the two approaches differ).

wever, MacKay (1994b) has argued that the Gaussian approximation found
%Y the evidence approach finds a better representation for most of the volume

Thus, minimization of the error function of (10.89) could be implement 4
O the posterior probability distribution than does the MAP approach. Since

a minimization of (10.90) in which the values of feg and aeq are contint

418 10: Bayesian Technigues 10.6: Bayesian model comparison 419
the error bars around the most probable o and § determined from the evidenca

approximation are given by (10.84) and (10.81), we expect the evidence app

imation to be valid when ¥ > 1 and N — v > 1. A more thorough disc p(wID,3()

of the conditions for the validity of the evidence approximation are give::l
MacKay (1994b).

10.6 Bayesian model comparison

So far we have considered Bayesian methods for finding the most probable o
puts from a neural network, for estimating error bars on these outputs, P
for setting the values of regularization coefficients and noise parameters.
final application for Bayesian methods is to the comparison of different m
As we have already indicated, the Bayesian formalism automatically pen
highly complex models and so is able to pick out an optimal model witho
sorting to the use of independent data as in methods such as cross-valida
(Section 9.8.1).

Suppose we have a set of models H;, which might for example include mult
layer perceptron networks with various numbers of hidden units, radial b
function networks and linear models. From Bayes’ theorem we can write dows
the posterior probabilities of the various models H;, once we have obse ;
training data set D, in the form

Figure 10.15. An illustration of the Occam factor which arises in the formal-
ism for Bayesian model comparison. The prior probability p(w|H) is taken
to be uniform over some large region Awpsior. When the data arrives this col-
lapses to a posterior distribution p(w|D, H) with a width Awpesterioe. The ratio
Awposterior/ AWprior represents the Occam factor which penalizes the model for
having the particular posterior distribution of weights.

I as indicated in Figure 10.15. If we take the prior to be uniform over some large
interval Awpyior then (10.98) becomes

A "
_ p(D[H;) = p(Dlwwe, Hs) (—sz‘ﬂ) ; (10.99)
where P(H;) is the prior probability assigned to model H;, and the qu Rpor

p(D|H;), referred to as the evidence for H; (MacKay, 1992a). This evidenced
precisely the denominator in (10.62) in which we have made the conditions
dependence on the model H; explicit. If we have no reason to assign
priors to different models, then we can compare the relative probabili
different models on the basis of their evidence. Again, we note the hier
nature of this Bayesian framework, with the evidence at this level being
by the denominator of Bayes’ theorem at the previous level.

We can provide a simple interpretation of the evidence, and the way it
izes complex models, as follows (MacKay, 1992a). First, we write the el
in the form

The first term on the right-hand side is the likelihood evaluated for the most
probable weight values, while the second term, which is referred to as an Occam
factor and which has value < 1, penalizes the network for having this particular
Posterior distribution of weights. For a model with many parameters, each will
generate a similar Occam factor and so the evidence will be correspondingly
reduced. Similarly a model in which the parameters have to be finely tuned will
:ﬂso‘be penalized with a small Occam factor. A model which has a large best-fit
}ikehhood will receive a large contribution to the evidence. However, if the model
s also very complex then the Occam factor will be very small. The model with
'_‘.'-he 'largest evidence will be determined by the balance between needing large
likelihood (to fit the data well) and needing a relatively large Occam factor (so
p(DIH;) = fP(DI“’v Ho)p(wH;) dw. that the model is not too complex).

We can evaluate the evidence more precisely as follows. We first write
Now consider a single weight parameter w. If the posterior distribution is
peaked in weight space around the most probable value wyp, then we
proximate the integral by the value at the maximum times the width A
of the peak

P(D|H;) = / / p(D|e, B, Hi)p(a, BIH:) da d. (10.100)

The quantity p(D|a, 8, H;) is just the evidence for @ and # which we considered

. Earlier (with the depend i i :
p(DIH) ~ p(Dlwnp, Hi)P B Attt (ependence on the model again made explicit). Integration over

420 10: Bayesian Techniques

o and /3 is easily performed using the Gaussian appmx.imatio_n for the distributi
p(D|a, B, H;) introduced in Section 10.4, in which the variance parameters

given by (10.81) and (10.84). Consider the integration over 3. From (10.78)
can be written in the form

InB—InBup)?\ 1 o
P(DlﬁMP)fexP (*-(n—g—ggl"gL) mdlnﬁ =

(21'r)1f201 B
p(DlﬁMP)——ES%

where we have taken the prior distribution for In # to be constant over some large

region InQ which encompasses fyp as well as most of the probability ma
the Gaussian distribution. A similar argument applies to the parameter a.
we have

Ona TIng

p(DIH;) =~ p(Dlamp, Bup, Hi) 27 175 1o (10.102)

We can obtain an expression for Inp(D|amp, Bup, Hi) by using (10.67) and ¢

ting o = ap and = Bup-

The result (10.67) was obtained by integrating over the posterior distribut

p(w|D,H;) represented by a single Gaussian. As we have already re

for any given configuration of the weights (corresponding to the mean ©

Gaussian) there are many equivalent weight vectors re!at.ed by.symme
the network. Here we consider a two-layer network }mvmg M hlddfen
that the degree of redundancy is given by 2M M| as discussed in ?ect.lon
Occam factor which we are trying to estimate depends on the ratio ?f thse
of the posterior distribution in weight space to the vol'm.ne of the pr:z;.w-
expression for the prior (a Gaussian centred on the origin) already :
of the many equivalent configurations, we must ensure t.?xat our ex !
the posterior also takes these into account. 'I:hus, we must include an ¢ ; a.
of 2MM! in (10.102). Note that this implicitly assumes that there is neg

overlap between the Gaussian functions centred on each such minimum. V¢

discuss shortly what to do about the presence of other mi:?ima which ca
related to the current minimum by symmetry transformations.

Rather than evaluate the evidence (10.102) it is more convenient to %

its logarithm. Expressions for a3 and oo are give:n by (10.81) ak.I;d (
respectively. Omitting terms which are the same for different networks,

obtain

1
Inp(D|H:) = —ampENF — BupEY" — 3 In|A|

10.6: Bayesian model comparison 421

N
+%mam + 5 By +In M1 4210 M

1 2 1 2

The new quantity which we need to evaluate here is the determinant of the
Hessian matrix A.

In practice the accurate evaluation of the evidence can prove to be very
difficult. One of the reasons for this is that the Hessian is given by the product
of the eigenvalues and so is very sensitive to such errors. This was not the case
for the evaluation of ¥ used in the optimization of o and [since v depends
on the sum of the eigenvalues and so is less sensitive to errors in the small
eigenvalues. Furthermore, the determinant of the Hessian, which measures the
volume of the posterior distribution, will be dominated by the small eigenvalues
since these correspond to directions in which the distribution is relatively broad.
One approach is to take all eigenvalues which are below some (arbitrary) cut-off
€ and replace them by the value e. A check should then be made to determine if
the resulting model comparisons are sensitive to the value of this cut-off. Clearly

such an approach is far from satisfactory, and serves to highlight the difficulty of
determining the model evidence within the Gaussian approximation framework.

Since the Bayesian approach to model comparison incorporates a mechanism
for penalizing over-complex models, we might expect that the model with the

largest evidence would give the best results on unseen data, in other words that
it would have the best generalization properties. MacKay (1992d) and Thodberg
(1993) both report observing empirical (anti) correlation between model evidence
and generalization error. However, this correlation is far from perfect. Although
‘We expect some correlation between a model having high evidence and the model
Eeneralizing well, the evidence is not measuring the same thing as generalization
Performance. In particular, we can identify several distinctions between these

1. The test error is measured on a finite data set and so is a noisy quantity.

2. The evidence provides a quantitative measure of the relative probabilities
of different models. Although one particular model may have the highest
probability, there may be other models for which the probability is still
significant. Thus the model with the highest evidence will not necessarily
give the best performance. We shall return to this point shortly when we
discuss committees of networks.

3. If we had two different models which happened to give rise to the same
most-probable interpolant, then they would necessarily have the same gen-
eralization performance, but the more complex model would have a larger
Occam factor and hence would have a smaller evidence. Thus, for two mod-

els which make the same predictions, the Bayesian approach favours the
simpler model.

422 10: Bayesian Techniques

4. The generalization error, in the form considered above, is measured using
a network with weights set to the maximum of the posterior distribution,
The evidence, however, takes account of the complete posterior distributio '
around the most probable value. (As we noted in Section 10.3, however, for
the case of a Gaussian posterior distribution, and with a local linearization
of the network function, the integration over the posterior has no effect on
the network predictions.)

5. The Bayesian analysis implicitly assumes that the set of models under
consideration contains the ‘truth’ as a particular case. If all of the models
are poorly matched to the problem then the relative evidences of differe
models may be misleading. MacKay (1992d) argues that a poor correlat;

between evidence and generalization error can be used to infer the presenc
of limitations in the models.

An additional reason why the correlation between evidence and test error r
be poor is that there will be inaccuracies in evaluating the evidence. These
from the use of a Gaussian approximation to the posterior distribution,
are particularly important if the Hessian matrix has one or more very s
eigenvalues, as discussed above.
Further insight into the issue of model complexity in the Bayesian fr,
work has been provided by Neal (1994) who has argued that, provided the co
plete Bayesian analysis is performed without approximation, there is no
to limit the complexity of a model even when there is relatively little tra
data available. Many real-world applications of neural networks (for exam
the recognition of handwritten characters) involve a multitude of complica
and we do not expect them to be accurately solved by a simple network havin;
a few hidden units. Neal (1994) was therefore led to consider the behaviour
priors over weights in the limit as the number of hidden units tends to infini
He showed that, provided the parameters governing the priors are scaled
priately with the number of units, the resulting prior distributions over net
functions are well behaved in this limit. Such priors could in principle permi
use of very large networks. In practice, we may wish to limit the complexi
order to ensure that Gaussian assumptions are valid, or that Monte Carlo

niques (discussed in Section 10.9) can produce acceptable answers in reas
computational time.

10.7 Committees of networks

In Section 9.6 we discussed techniques for combining several network ‘mo

together in order to obtain improved performance. Here we shall see how
committees of networks arise naturally in the Bayesian framework. Whe
evaluated the evidence in (10.103) we took account of the multiple solutio

to symmetries in the network. We did not, however, allow for the pr
multiple, non-equivalent minima. If we train our network several times st:
from different random initial weight configurations then we will typically di
several such solutions. We can then model the posterior distribution us

10.7: Commitlees of networks 423

of Gaussians, one centred on each local minimum, in which we assume that there
is negligible overlap between the Gaussians.
Consider the predictions made by such a posterior distribution when the

network is presented with a new input vector. The posterior distribution of the
weights can be represented as

p(w|D) = 3 p(mi, w|D)

= >_p(wimi, D)P(m,|D) (10.104)

where m; denotes one of the non-equivalent minima and all of its symmetric
equivalents. This distribution is used to determine other quantities by integration

over the whole of weight space. For instance, the mean output predicted by the
committee is given by

§=meMMMDMW

=¥Hm@£

| y(x; w)p(w|my, D) dw

= P(mi|D)F; (10.105)

where I'; denotes the region of weight space surrounding the ith local minimum,
and ; is the corresponding network prediction averaged over this region. Here we
have assumed that there is negligible overlap between the distributions centred
on each minimum. From (10.105) we see that the predicted output is just a linear
combination of the predictions made by each of the networks corresponding to
distinct local minima, weighted by the posterior probability of that solution.
Note that, strictly speaking, in a practical implementation the weighting for
each minimum should be adjusted according to the probability of that minimum

being found by the particular parameter optimization algorithm being used,
With minima which are more likely to be discovered receiving less weight. For
large problems such an approach is infeasible, however, since each minimum will

typically only be seen once so that determination of the probabilities of finding
the minima will not be possible.

We can extend this result further by considering different models #;, such as

MNetworks with different numbers of hidden units or different kinds of models. In
the same way that variables such as hyperparameters are integrated out of the
‘model, so if our model space consists of several distinct models, then Bayesian

erence requires that, instead of just picking the most probable model, we

424 10: Bayesian Techniques 10.9: Monte Carlo methods 425

should sum over all models. The distribution of some quantity @, given a data

4. Repeat steps 1-3 for different random initial choices for the network weights
set D, can be written

in order to find different local minima. In principle, a check should be
made that the different solutions are not simply related by a symmetry
transformation of the network (Section 4.4).

5. Repeat steps 1-4 for a selection of different network models, and compare
their evidences using (10.103). Eigenvalues which are smaller than a cutoff
value are omitted from the sum in evaluating the log determinant of the
Hessian. If a committee of networks is to be used it is probably best to
choose a selection of the better networks on the basis of their evidences,
but then to use the techniques of Section 9.6 to compute suitable weighting
coeflicients.

p(Q|D) = Z_p(Q, M;|D)

= ZP(QIDI Hi)p(Hi|D)

which again is a linear combination of the predictions made by each model
arately, where the weighting coefficients are given by the posterior probabiliti
of the models. We can compute the weighting coefficients by evaluating
evidences, multiplying by the model priors, and then normalizing so that
coefficients sum to 1.

Committees bring two advantages. First they can lead to improved g
ization, as was noted in Section 9.6. This is to be expected since the e
from a single Gaussian to a Gaussian mixture provides a more accurate
for the posterior distribution of weights. The second benefit of conside;
committee is that the spread of predictions between members of the commi
makes a contribution to the estimated error bars on our predictions in add
to those identified already, leading to more accurate estimation of error bat

In practice, the direct application of such procedures generally leads
results since the integral over the Gaussian approximation to the posterior g
only a poor estimation of the evidence (Thodberg, 1993). A more pre
approach is to use the evidence simply as a rough indicator, and to sele
committee of networks whose members have reasonably high evidence, and
form linear, or non-linear, combinations of the outputs of the committee m
bers using techniques discussed in Section 9.6. Indeed, the method of
generalization (Section 9.8.2) can be viewed here as a cross-validatory apj
to estimating the posterior probabilities of the members of the committee.

Examples of the practical application of Bayesian techniques are given in Thod-
berg (1993) and MacKay (1995b).

10.9 Monte Carlo methods

In the conventional (maximum likelihood) approach to network training, the bulk
of the computational effort is concerned with optimization, in order to find the
minimum of an error function. By contrast, in the Bayesian approach, the cen-
tral operations require integration over multi-dimensional spaces. For example,
the evaluation of the distribution of network outputs involves an integral over
weight space given by (10.28). Similarly, the evaluation of the evidence for the
hyperparameters also involves an integral over weight space given by (10.64). So
far in this chapter, we have concentrated on the use of a Gaussian approximation
for the posterior distribution of the weights, which allows these integrals to be
performed analytically. This also allows the problem of integration to be replaced
again with one of optimization (needed to find the mean of the Gaussian dis-
tribution). If we wish to avoid the Gaussian approximation then we might seek
numerical techniques for evaluating the corresponding integrals directly.

Many standard numerical integration techniques, which can be used success-
fully for integrations over a small number of variables, are totally unsuitable for
integrals of the kind we are considering, which involve integration over spaces
of hundreds or thousands of weight parameters. For instance, if we try to sam-
Ple weight space on some regular grid then, since the number of grid points
8fows exponentially with the dimensionality (see the discussion of the ‘curse of
dimﬁnsionality’ in Section 1.4), the computational effort would be prohibitive.
We resort instead to various forms of random sampling of points in weight space.
Such methods are called Monte Carlo techniques.

The integrals we wish to evaluate take the form

10.8 Practical implementation of Bayesian techniques

Since we have covered a lot of ground in our discussion of Bayesian me

we summarize here the main steps needed to implement these technique

practical applications. We restrict attention to the evidence framework w
use of Gaussian approximations.

1. Choose initial values for the hyperparameters o and . Initialize the ¥

in the network using values drawn from the prior distribution.

9. Train the network using a standard non-linear optimization a

(Chapter 7) to minimize the total error function S(w). e

3. Every few cycles of the algorithm, re-estimate values f?r o a-nd

(10.74) and (10.75), with ~ calculated using (10.70). This requires €

tion of the Hessian matrix (Section 4.10) and evaluation of its el

spectrum.

I= f F(w)p(w|D) dw (10.107)

W

¥here p(w|D) represents posterior distribution of the weights, and F(w) is some
Hitegrand. The basic idea is to approximate (10.107) with the finite sum

426 10: Bayesian Techniques 10.9: Monte Carlo methods -
L .
1 1 ing an integral using (10.108) may be much | i
o) : o\ i . ar
e o > F(w:) (10.10 siidsranAsD. ger than if the vectors had been

i=1

) As it stands, such an approach does not yet achieve the desired aim of sam-
pling ;-;referentia.lly the regions where p(w|D) is large. This can be achieved b
a modification to the procedure, known as the Metropolis algorithm (Metropoli};
et al., 1953), which was developed to study the statistical mechanics of physical
systems. The idea is to make candidate steps of the form (10.11 1), but to re-
ject a proportion of the steps which lead to a reduction in the va.lue‘of p(w|D)
This must be done with great care, however, in order to ensure that resulti :
sample of weight vectors represents the required distribution. In the Metro :l'hi
algorithm this is achieved by using the following criterion: :

where {w;} represents a sample of weight vectors generated from the distribution
p(w|D). The key difficulty is that in general it is very difficult to generate a set
of vectors having the required distribution.]

One approach would be to consider some simpler distribution q(w)
which we can easily generate suitable vectors. We can then write

— [peePVD) oy g

if p(Wnew|D) > p(Woia| D) accept

if p(Wnew|D) < p(Woia| D) accept with probability P(Wnew|D) (10.112)
p(wo!dJD)

which makes use of the fact that we can easily evaluate p(w|D), even tho In terms of an error function E = —Inp, this can be expressed as
cannot easily generate vectors having this distribution. In fact we cannot

normalize p(w|D), and so we should modify (10.109) slightly and use if Epew < Eqiq accept

if Enew > Eoiq accept with probability exp {—(Eqew — Foid)} - FRE)

Tas i1 F(wa)p(wi|D)/q(w:)
S, B(wilD)/a(ws)

where p(w;| D) is the un-normalized distribution. This approach, whi
importance sampling, does not solve our problem, because for neural

_tl‘l?e candidate steps are generated in a way which satisfies the principle of de-
tailed balance. This requires that, if the current vector is w1, the probability of
generating a candidate vector wy must be the same as the probability of gener-
afing w; as the candidate vector if the current vector is w2. The random walk
the value of p(w|D) i typically very small except in extremely narrow reg formula (10.111), for example, with € governed by spherical Gaussian distribu
ot welghtsgace. Thus, Tov sy atviplé dholse ey (w), most of the vectors ion, clearly satisfies this property. The Metropolis algorithm has been used witl;
o ceal e whinds SN 1a B, i ao'a prohibitively large sample of ved Breat success in many applications. In the case of the Bayesian integrals needed
e vesivod o bulld piah KecEE S imation to the inte I neural networks, however, it can still prove to be deficient due to the stro
We must therefore face the task of generating a sample of vectors W r €orrelations in the posterior distribution, as illustrated in Figure 10.16 =
tative of the distribution p(w|D). To do this effectively, we must search A Thls problem can be tackled by taking account of information ml;ce;'njng the
weight space to find regions where p(w|D) is reasonably large. This ca 5. “ctent of p(w|D) and using this to choose search directions which favour re-
b eonaidecig ‘s ssuuetics o vecton, whte sach sucoessive Vot ons fo high posterior probability. For neural networks, the gradient information
the previous vector as well as having a random component. Such te ily obtained using back-propagation. Again great care must be taken t
o1 Mk chain Motite Catl ickhod, arid afe sevioo 1l Neal re that the gradient information is used in su::h a way that the distributi i
simplest example is a random walk in which at successive steps we ha y ,welght vectors which is generated corresponds to the required distributio(:ln
.-szt;ﬁu;et t:;r Elxcg;e?\)ring ::jhis, knowln ezs hybrid Monte Carlo, was developed
5 ’ , and was appli i
.;;"o by Neal (1992, 1994). = i
O.ne of the potential difficulties which still remains is the tendency for such
20 nthms.to spend a long time in the neighbourhood of poor local maxima of
robet.bxﬂty-(mrmponding to local minima of the regularized error function)
fail to discover good maxima which make a much more significant ccum;ri~I

#on to the integral. A standard technique for improving the situation is called

nf

Whew = Wold + €

where € is some small random vector, chosen for instance from a sp
sian distribution having a small variance parameter. Note that su
generated in this way will no longer be independent. As a result
dence, the number of vectors needed to achieve a given accuracy ill1

428 10: Bayesian Techniques 10.10: Minimum description length 429

difficulty in defining a suitable termination criterion. Despite these drawbacks,
Monte Carlo techniques offer a promising approach to Bayesian inference in the
context of neural networks.

10.10 Minimum description length

An alternative framework for discussing model complexity is provided by the
minimum description length principle (Rissanen, 1978). Although conceptually
very different, this approach leads to a formalism which is essentially identical to
the Bayesian one. Imagine that a ‘sender’ wishes to transmit a data set D to a
‘receiver’, as indicated in Figure 10.17, using a message of the shortest possible
length (where the length of the message might be measured by the number of
bits, for instance). One approach would be simply to transmit a suitably encoded
form of the data set itself using some fixed coding scheme with the assumption
that the data points are independent. However, if there are systematic aspects to
the data, the details of which are not known to the receiver in advance of seeing
the data, then we would expect to be able to use a shorter message if we first
transmit information specifying some model % which captures those aspects,
using a message of length L(H), and then send a second message specifying how
the actual data set differs from that predicted by the model. We can regard
L(H) as a measure of the complexity of the model, since a more complex model
will require more information to describe it. The message needed to send the
discrepancy information has length denoted by L(D|H), which can be viewed as
an error term. We shall suppose that the input data values are known already to
the receiver, since we are not trying to predict the input data, only the output
data. Thus the total length of the message which is sent is given by

-
-

Figure 10.16. When the standard Metropolis algorithm is applied to the eval-
uation of integrals in the Bayesian treatment of neural networks, a large pro-
portion of the candidate steps are rejected due to the high correlations in the
posterior distribution. Starting from the point w4, almost all potential steps.
(shown by the arrows) will lead to a decrease in p(w|D). This problem becomes
even more severe in spaces of higher dimensionality.

simulated annealing (following an analogy with physical systems) introducec
Kirkpatrick et al. (1983). For the standard Metropolis algorithm, this is a
by modifying (10.113) to give

if Epew < Eolq accept

Biow =E 10,114
if Enew > Eolq accept with probability exp { —(—“"-‘"—-—Ld)-} (2028

T description length = L(D|H) + L(H) (10.115)
l' .
where T is a parameter generally referred to as temperature. This algori ol complexity

Y

leads to a sequence of vectors which asymptotically represent the distribs
exp{—E(w|D)/T}. For T = 1 we recover the desired distribution. For T'
however, the system can explore weight space much more freely, and can
escape from local error function minima. Simulated annealing involves
with a large value for T' and then gradually reducing its value during the
of the simulation, giving the system a much better chance to settle into a
of high probability. The application of simulated annealing to the Monte C
algorithm for the Bayesian treatment of neural networks has been conside
Neal (1992, 1994) although was not found to be essential. _
By using the hybrid Monte Carlo algorithm it is possible to generate a
sample of weight vectors w; for practical applications of neural netv
reasonable computational time. For a given test input vector x, the correspon:
network predictions y(x; w;) represent a sample from the distribution p(y}:
This allows the uncertainties on the network outputs, associated with
input vector, to be assessed. The estimation of the evidence, however, re
difficult problem. Another significant problem with Monte Carlo methods

We can see that the goal of choosing the shortest description length leads to
a natural form of Occam’s razor. A very simple model will be a poor predictor
of the data, and so the errors will be large and this will lead to a large error
term in (10.115). Allowing for a more complex model can lead to a reduction in
the error contribution, but too complex a model will require a lot of information
to specify and hence will lead to a large complexity term in (10.115). Intuitively
We expect the shortest description length to occur when the model H gives an
dccurate representation of the statistical process which generated the data, and
We also expect that, on average, this model will have the best generalization
Properties.

In Section 6.10 we showed that, to transmit information about a quantity x
efficiently, a sender and receiver should agree on a suitable probability distribu-
tion p(z). The minimum amount of information, in bits, needed to transmit the
Value of z is then given by — log, p(z). If p(z) happens to be the true distribution
for g then this minimum amount of information will take a smaller value than for

430 10: Bayesian Techniques

L(DI#H) + L(#)
[sender I

Figure 10.17. Illustration of the concept of minimum description length. A
data set D can be fransmitted from a sender to a receiver by first sending a
prescription for a model H, using a message of length L(7), and then transmit-
ting the discrepancies between the data predicted by H and the actual data,
which represents a message of length L(D|H). The principle of minimum de~
scription length then selects as optimal that model which minimizes the total
information transmitted.

any other choice of distribution. For convenience we shall measure infor
using logarithms to base e in which case the information, given by — Inp(
measured in ‘nats’. This allows us to write the description length in (10.115)
the form :

description length = — Inp(D|H) — Inp(H) = —Inp(H|D) — Inp(D) (10
so that the description length is equivalent, up to an additive constant — Inp
to the negative logarithm of the posterior probability of the model given the

set.

We now consider the problem of determining the values for the wei
a network model. Suppose that we consider a particular weight vecto
we can regard as a ‘most probable’ set of weights. The cost of transmi
weights and the data given the model can be written as the sum of two ter
L(w,D|H) = —Inp(D|w,H) — In p(w|H)
where the second term on the right-hand side represents the cost of s
the weights, and the first term is the cost of specifying the data for given
of the weights (i.e. the cost of specifying the errors between the true val
the data and the values predicted by the model with the weights set to the
values). In order to transmit this information, the sender and receiver n
agree on specific forms for the distributions. Suppose we model the distri
of the weights as a zero mean Gaussian with variance o™?

a\W/2 & .ia
pwiH) = (=) exp{-ZlIwi?}
where W is the total number of weight parameters. Similarly let us supp
we model the distribution of errors by a Gaussian with variance !
the prediction y(x; w) made by the model

10.10: Minimum description length 431
A
p()
>
dx 2
Figure 10.18. When a continuous variable x is encoded to some finite precision
&z under a distribution p(z), the information required to describe the value of
the variable is given by the negative logarithm of the probability mass under
the distribution, shown by the shaded region.
N
6 s ﬁ n ny2
(L 2 . . 11
w0 = (57) w5 0w (10.119)
Then the description length (10.117) can be written in the form
B Q2
L(D|H) = Z(y 6||w1| + const. (10.120)
n=l

which we recognize as the standard sum-of-squares error function with a weight-
decay regularizer.

An additional consideration for continuous variables, which we have so far
ignored, is the precision with which they are encoded. We cannot specify a con-
tinuous quantity exactly since that would require an infinite message length,
s0 instead we specify its value to within some small tolerance éx. The message
length needed to do this is given by the negative logarithm of the probability
mass within this range of uncertainty, as indicated in Figure 10.18. If the tol-
erance 6z is sufficiently small, then this probability mass is given to a good
approximation by p(z)éz.

For the data term In p(D|w, H) the additional contribution from the precision
6D of the variables represents an irrelevant constant. For the weights, however,
the precision plays an important role, since if the weights are specified to a low
Precision they can be transmitted with a shorter message, but the errors on
the data will then typically be larger and hence will need a longer message to

transmit them. Again, there is a trade-off, which leads to an optimal level of

Precision for the weights. For the case of Gaussian distributions, the calculations

can be made explicitly (Wallace and Freeman, 1987). The optimal precision for
the weights is related to the posterior uncertainty in the parameters given by

432 10: Bayesian Techniques

A~ where A = —VVp(w|D,H). The value of the description length with
parameters set to their optimal values, and the weight precision set to its opti
value, is then equivalent to the Bayesian evidence given by (10.67).

So far we have considered the situation in which a ‘most probable’ set of
weight values is transmitted. As we have seen, however, the Bayesian appro
requires that we consider not just a single set of weights, but a posterior proba
ity distribution of weights. One way to see how this arises within the descript
length framework is through the ‘bits back’ argument of Hinton and van Ca
(1993). Suppose the sender and receiver have already agreed on some prior ¢
tribution p(w|H). The sender uses the data set D to compute the posterior
tribution and then picks a weight vector from this distribution, to within so
very fine tolerance dw, using a string of random bits. This weight, vector can
communicated to the receiver by encoding with respect to the prior, with
scription length of — In(p(w|H)éw). Having sent the weight vector, the data |
then be transmitted with description length — In(p(D|w, H)éD). Once the d
has been received, the receiver can then run the same training algorithm as u
by the sender and hence compute the posterior distribution, The receiver
then deduce the string of random bits which were used by the sender to pick
weight vector from the posterior distribution. Since these bits could be us
communicate some other, quite unrelated, message, they should not be inclug
in the description length cost. Thus, there is a ‘refund’ in the description 1
given by + In(p(w|D,H)éw), which is just the length of the bit string
to pick the weight vector from the posterior distribution with precision §w.
net description length is therefore given by

= In(p(w|H)éw) — In(p(D|w, H)6D) + In(p(w|D, H)éw)

= —Inp(D|H) —InéD (10.
where we have used Bayes’ theorem. This is the correct description length
encoding the data, given the model, to precision §D.
In this chapter we have considered two approaches to determining the p
rior distribution of the weights. The first is to find the maximum of the pc
distribution, and then to fit a Gaussian function centred on this maxim
second approach is to express the posterior distribution in terms of a
of representative vectors, generated using Monte Carlo techniques. We e
chapter by discussing briefly a third approach, known as ensemble learning,
again assumes a Gaussian distribution, but in which the mean and the var
are allowed to evolve during the learning process (Hinton and van Camp,
Learning can be expressed in terms of a minimization of the Kullback
distance (Section 2.5.5) between the model distribution and the true
In general this is not computationally tractable. However, for two-layer
with linear output units, and with the assumption that the covariance
of the model distribution is diagonal, the required derivatives can be ev:

Ezercises 433

to any desired precision. The hope is that the resulting distribution, which need
no longer be centred on the most probable weights, might give a better repre-
sentation of the posterior distribution. A potentially important limitation of this
approach, however, is the neglect of off-diagonal terms in the model distribution.

Exercises

10.1 (»*) Consider a Gaussian distribution of the form

L _@=0?
(@ro2)172 P\ " 552

and show that this distribution has mean 7 and variance o2 so that

/:; tp(t)dt =1

/ ” (t —1)%p(t) dt = o>,

p(t) = (10.122)

(10.123)

(10.124)

Using these results, show that the mean of the distribution (10.32) is given
by ymp and that its variance is given by (10.34). (Hint: in each case evaluate
the integral over ¢ first, and then evaluate the integral over w using the
techniques of Appendix B).

10.2 (xx) Use the results derived in Appendix B to evaluate the integral in
(10.32) directly. Do this by expanding the square in the exponent and
collecting together the terms which are quadratic in Aw. Then use the
result (B.22) to show that the distribution can be written as a Gaussian

of the form
p(t|x, D) = W exp (-%) (10.125)
in which the mean is given by
T=yup (10.126)
and the variance is given by
of = d — (10.127)
8- 3gT(A + BgegT) g

Simplify this expression for the variance by multiplying numerator and
denominator by the factor

g'(I+pA 'ggT)g (10.128)

434 10: Bayesian Techniques

where I is the unit matrix. Hence, using the general result (BC)™!
C~'B~!, show that the variance can be written in the form

o = % +gTA g, (10.129)

10.3 (xx) Use the results (10.123) and (10.124), together with the results ob-
tained in Appendix B, to show that the mean of the distribution (10. 52),

with p(w|D) given by (10.47), is given by ayp and that the variance is:
given by (10.54). p

10.4 (x*) The expressions (10.126) and (10.129) for the mean and variance o
the distribution of target values were derived after linearizing the network
mapping function around the most probable weights, using (10.30). Con-
sider this expansion taken to next order:

y(z; w) = y(z; wymp) + gTAw + %AwTGAw (10.13(1
where G = VVy|w, - By using (10.123) and (10.124) with p(t|D) given by

(10.32), and neglecting terms which are quartic in Aw, derive the follo
results for the mean and variance of the distribution of target values:

t=ymp + Tr(A 'Q)

% +gFA-ig— % {r(A'G)).
10.5 (x) The next four exercises develop the extension of the Bayesian forma
to the case of more general prior distributions given by (10.22) in wi
the weights are partitioned into groups labelled by k. First, show that
prior (10.22) can be written

o? =

where I is a matrix whose elements are all zero, except for some ele
on the leading diagonal I;; = 1 where i corresponds to a weight from g
k. Show that the normalization coefficient Zy is given by

or\ W/2
=)

k

where W is the number of weights in group k. Verify that the distribut
of network outputs is again given by (10.33), with variance given by (1!
in which the Hessian matrix A is given by

Ezercises 435

=BVVEp +) axly. (10.135)
k

10.6 (x) Consider a real, symmetric matrix A, whose elements depend on some
parameter . From the results given in Appendix A, we can diagonalize A
by using the eigenvector equation in the form

AVj =MN;Vj (10136)

and then defining the matrix V = (vy, ..., vw) so that VTAV = D where
D = diag(m1,.-.,nw). Use this result, together with the fact that V is an
orthogonal matrix so that VIV = VVT =1, to show that

) B , 0 }
-a-a-ln|A|_'n{A oA

10.7 (x*) For the weight prior (10.133) considered in Exercise 10.5, find an
expression for the logarithm of the evidence p(D|{ax},) analogous to
the expression given by (10.67). Use the result (10.137) to show that the
following conditions are satisfied when this log evidence is maximized with
respect to 8 and ay:

(10.137)

98Ep = N —~ (10.138)
20k Ewk = Tk (10.139)
where ¥ = 3, 7k, 2Bwk = w I;w, and
w=3" {'73 = (VTI,,V),,} (10.140)
j

J

Here 7; are the eigenvalues of A as in (10.136) with A given by (10.135).
Verify that, if all of the weights are included in the prior, and all of the
coefficients o, are constrained to a single common value «, then these
results reduce to the ones presented in the text for the simple weight-
decay prior (10.9). We see that the use of the more general prior (10.133)
requires the eigenvectors of the Hessian to be computed, as well as the
eigenvalues. The use of the standard weight-decay prior (10.9) requires
only the eigenvalues, leading to a saving of computational effort (Press et
al., 1992).

10.8 (xx) By using the results of the previous exercise, together with (10.79)
and analogous expressions for the variances of, ,, , show that the Gaussian
approximation for the evidence p(D|{cx},) around the most probable
values has variances given approximately by

1

a?n-ﬂ

=(N-9)/2 (10.141)

436

10.9 (%) Show that, for the logistic sigmoid g(a) given by (10.45), the fun

10.10 (x*xx) Consider the approximation (10.57) to the integral in (10.56).

10.11 (x*) Consider the Gaussian approximation for the distribution of /3 g

10.12 () Consider a probability density for a vector x, which is parame:

10: Bayesian Technigues

=M/2.
in ag

Hence show that the contribution to the logarithm of the model evidene ce
arising from the distribution of values of oy and g is given by 9

1o (525) +a (%)

(10.14

g(a) — 0.5 is anti-symmetric. Hence show that the marginalized netwo; ..
output P(C;|x, D) given by (10.56) is equal to 0.5 when ayp(x) =

vestigate the accuracy of this approximation by evaluating (10.56)
numerical integration (Press et al., 1992) with g(a) given by (10.45)
p(alD) given by (10.53). Plot a graph of P(C;|x, D) versus ayp for s*
by numerical integration of (10.56). Similarly, plot a graph of P(C;|x,]
obtained by evaluating the approximation (10.57), and also plot the diffe
ence between these two graphs on a suitably expanded vertical scale.

by (10.78), and the analogous result for p(D|In), in which the varis
are given by (10.81) and (10.84). In these expressions, any correlation b
tween o and 3 was neglected. Show that the reciprocal of the off-dia
term in the inverse covariance matrix for the more general Gaussian d
tribution p(D|Ina,In) is given by

35 (o p(Dlinc, inf)).

Evaluate this term using the expression for the log evidence given by (10
together with the results (10.68) and (10.71). Show that this term is
ligible compared to the diagonal terms, and hence that the assumptio
separable distributions for Ina and In g is justified.

by a vector . If the density takes the form

p(x|6) = f(x - 6) (10
then @ is said to be a location parameter. An example would be the n
vector in a normal distribution. We can obtain a non-informative p
(@) for the location parameter by the following argument (Berger, 1
Suppose that instead of observing x we observed x’ = x + ¢ where
a constant (this corresponds to a simple shift of the origin of the
nate system). Then the density of this new variable is f(x’ — @) :
@' = 6 + c. Since this has the same structure as the original density,

Ezercises 437

natural to require that the choice of prior be independent of this change in
coordinates. Thus we have

fA w68 = [v/(0)d0

where p'(@’) is the prior for ', and A is an arbitrary region of @-space.
Show that (10.146) requires that the prior must have the form p(@) =
const. This is an improper prior, since it cannot be normalized, and it is
conventional to take p(@) = 1.

10.13 (*) If a probability density can be written in the form

(10.146)

1 /%
plals) = <f (;) (10.147)
then s is known as a scale parameter. An example would be the standard
deviation parameter ¢ in a normal distribution of the form

plalo) = T3z e {—% (g)z} :

We wish to find a non-informative prior p(s) for the scale parameter s
(Berger, 1985). Suppose that instead of observing = we observe z’ = cz
where ¢ is a constant. Show that the density for z’ takes the form

oo ffect

rl (?)
where s/ = cs. Since this has the same structure as (10.147) we require
that the prior for s’, which we denote by p/(s’) be the same as the prior

for s. Thus we have
IRELE / p(s')ds’
A A

where A = (a,b) is any interval in (0, 00). Show that this implies that the
prior should take the form p(s) 1/s. Hence show that the prior for Ins
is constant. This is an improper prior, since it cannot be normalized, and
it is conventional to take p(s) =1/s.

10.14 (x) Consider the predlctwe distribution for a network output variable
given by (10.28) and suppose we approximate the integration over weight
space by using the Monte Carlo expression (10.108). Show that, for a noise

model given by the Gaussian (10.14), the mean and variance of the distri-
bution p(t|x, D) are given by

(10.148)

(10.149)

(10.150)

L
o at
= - E . 10.151
t T it y(x:wi) ()

438

10: Bayesian Techniques

Figure 10.19. An illustration of the technique of rejection sampling for gener-
ating values from a distribution p(w|D). Values are generated from a simpler
distribution governed by the function f(w) which satisfies f(w) > p(w|D).
These values are accepted with probability governed by the ratio p(w|D)/ f(w)
as described in the text.

Monte Carlo method for finding the most probable network interpo.
and for estimating corresponding error bars. It is based on the technique

erating values for a single variable w from a distribution p(w|D). We sh:
suppose that evaluating p(w|D) is straightforward, while generating valu
of w directly from this distribution is not. Consider a function f(w) whi
satisfies f(w) > p(w|D) for all w as shown in Figure 10.19, and suppose
that values of w are generated at random with a distribution proportio
to f(w). Verify that, if these values are accepted with probability giv
by the ratio p(w|D)/f(w) then the accepted values will be governed
the distribution p(w|D). (Hint: one way to do this is to use Figure 10.19
and to show the result geometrically.) We now apply this technique
the generation of weight vectors from the posterior distribution of net¥
weights. Suppose we choose f(w) = Ap(w) where A is a constant
p(w) is the prior weight distribution. Consider a likelihood function give
by (10.12) and use Bayes’ theorem in the form (10.3) to show that the co
dition f(w) > p(w|D) can be satisfied by choosing A~! = Zpp(D)
p(D) is the denominator in (10.3). Hence show that weight vectors can
generated from the posterior distribution simply by selecting them
the prior and then accepting them with probability given by exp(—28.
Implement this numerically for a simple regression problem by co.
ing a single-input single-output two-layer network with sigmoidal hidc
units and a linear output unit, together with a data set consisting
more than ten data points. Generate weight vectors from a Gaussian
given by (10.9) with a fixed suitably-chosen value of o, and select

Ezercises 439

with a likelihood function exp(—8Ep) having a fixed value of 8 and a
sum-of-squares error Ep until around 10 or 20 weight vectors have been
accepted. Techniques for generating numbers with a Gaussian distribution
are described in Press et al. (1992). Plot the corresponding set of network
functions on the same graph, together with the original data points. Use
the results of Exercise 10.14 to plot on a separate graph the Monte Carlo
estimates of the mean of the predictive distribution, as well as the error
bars, as functions of the input variable z. Note that rejection sampling is
not suitable as a practical technique for large-scale problems since the time

required by this algorithm grows exponentially with the number of data
points.

APPENDIX A
SYMMETRIC MATRICES

In several chapters we need to consider the properties of real, symmetric matri-
ces. Examples include Hessian matrices (whose elements are given by the seco;
derivatives of an error function with respect to the network weights) and co
ance matrices for Gaussian distributions. Symmetric matrices have the prop
that A;; = Aj;, or equivalently AT = A where AT denotes the transpose o

The inverse of a symmetric matrix is also symmetric. To see this we
from the definition of the inverse given by A~'A = I where I is the unit
and then use the general result that, for any two matrices A and B, we.
(AB)T = BTAT. This gives AT(A‘I] = I which, together with the s
property AT = A, shows that (A~!)T = A~! as required.

Eigenvector equation

We begin by considering the eigenvector equation for a symmetric matrix in the
form L

Aug = Ay
where A is a W x W matrix, and k = 1,..., W. The eigenvector equations

represent a set of coupled linear algebraic equations for the components u;
the eigenvectors, and can be written in matrix notation as

(A—D)U =

where D is a diagonal matrix whose elements consist of the eigenvalues Ak

A1
D= ('l‘)
Aw

and U is a matrix whose columns consist of the eigenvectors ug. The ne
and sufficient condition for the set of simultaneous equations represen
(A.2) to have a solution is that the determinant of the matrix of coef
vanishes, so that

|A~D| =

A: Symmetric Matrices 441

Since this is an Wth order equation it has precisely W roots.
We can show that the eigenvectors can be chosen to form an orthonormal
set, as follows. For any pair of eigenvectors u; and u, it follows from (A.1) that

u}‘Auk = Aku}‘uk (A.5)
I.IIAI.U = /\jufu_,-. (AS)
Subtracting these two equations, and using the symmetry property of A we find
(Ak = Aj)ufu; = 0. (A7)
Thus, for Ay # Aj, the eigenvectors must be orthogonal. If A = A;, then any
linear combination of the eigenvectors u; and uy will also be an eigenvector, and
this can be used to choose orthogonal linear combinations. A total of W orthog-
onal eigenvectors can be found, corresponding to the W solutions of (A.4). Note
that, if u is an eigenvector with eigenvalue Ay, then fuy is also an eigenvector,
for any non-zero f3, and has the same eigenvalue. This property can be used to
normalize the eigenvectors to unit length, so that they become an orthonormal

set satisfying
‘Ilzl.lj = 6;,_,-. (A..S)

If we multiply (A.1) by A~! we obtain

A~ ug = 2 ug (A.9)

50 we see that A~! has the same eigenvectors as A but with reciprocal eigenval-
ues.

Diagonalization

The matrix A can be diagonalized using the matrix U. From (A.1) and (A.8) it
follows that

UTAU =D (A.10)

where D is defined by (A.3). From (A.8) it follows that the matrix U is orthog-
onal, in other words it satisfies

UTu=uuT=1. (A.11)

Consider a vector x which is transformed by the orthogonal matrix U to give
a new vector

442 A: Symmetric Matrices

%¥=UTx.

As a consequence of the orthogonality property (A.11), the length of the vector
is preserved by this transformation:

I%[* = xTUUTx = |Ix|*.

Similarly, the angle between two vectors is also preserved

XiXg = x1 UUTxy = xF'xs.
1 i 1

Thus, the effect of multiplication by UT is equivalent to a rigid rotation of the
coordinate system. |

General quadratic form

There are several points in the book where we need to consider quadratic 3
tions of the form

F(x) =xTAx (A
where A is an arbitrary matrix. Note that we can, without loss of genera
assume that the matrix A is symmetric, since any anti-symmetric compo
would vanish on the right-hand side of (A.15). We can diagonalize this qua

form by using the orthogonal matrix U, whose columns are the eigenvecto
A, as follows: vectoss

F(x) = xTAx

=xTUUTAUUTx

where we have used (A.10), (A.11) and (A.12).

A matrix A is said to be positive definite if vIAv > 0 for any
vector v. It follows from (A.1) and (A.8) that the eigenvalues of a posit
definite matrix are all positive, since

A = uEAuk >0

If the matrix A in the quadratic form (A.15) is positive definite, then it follo

A: Symmetric Matrices 443

from (A.16) that the surfaces of const:a.nt F(x) are hyperellipsoids, with principal
axes having lengths proportional to A; k

B: Gaussian Integrals 445

where A is a W x W real symmetric matrix, w is a W-dimensional vector, and
the integration is over the whole of w-space. In order to evaluate this integral it
is convenient to consider the eigenvector equation for A in the form

APPENDIX B Aug = Aguy. (B.5)

GAUSSIAN INTEGRALS

Since A is real and symmetric, we can choose the eigenvectors to form a complete
orthonormal set

uiw = by
One variable
We begin by evaluating the following Gaussian integral

(v e ,\ 2
I'= exp | =52 dz.
-o0

This is easily done by considering the square of the integral, and then transform-
ing to polar coordinates:

e [()

bination of the eigenvectors

w
w= Z .
k=1

by

dw;
J = det (30:;,) det (uxi)

(B.6)

as discussed in Appendix A. We can then expand the vector w as a linear com-

(B.7)

The integration over the weight values dw; ...dww can now be replaced by an
integration over da; ...daw. The Jacobian of this change of variables is given

(B.8)

=/ f exp (——rg) rdrdf
o Jo 2

where uy; is the ith element of the vector ug, and ‘det’ denotes the determinant.
The uy; are also the elements of a matrix U whose columns are given by the uy,
and which is an orthogonal matrix, i.e. it satisfies UTU = I, since its columns

are orthonormal. Thus

o[l)

2

: = {det(U)}? = det(UT) det(U) = det(UTU) = det(I) = 1

whieze we havie ol | ualilos, Bost iship i T 0GR 05 = F DD RIS and hence |J| = 1. Using the orthonormality of the u; we have

using r? = u. Taking the square root we finally obtain
00 1/2
A 2 2m
[(-32)e=(3)"
Several variables

Consider the evaluation of the W-dimensional Gaussian integral

Iw = fexp (—-% TAw) dw

w
wlAw = Z /\kﬁg—
k=1

The various integrals over the o) now decouple, and so we can write

ty= 1 [o (-255)

Using the result (B.3) we obtain

(B.9)

(B.10)

(B.11)

446 B: Gaussian Integrals

o 1/2
(%)

Since the determinant of a matrix is given by the product of its eigenvalues,

w

Iw=]]

k=1

(B.12)

w
|A' = H)‘kl

k=1

(B.13)

we finally obtain
Iy = (2m)"/2|A|~Y/2,

Inclusion of linear term

which has an additional linear term, of the form
1 T
Ly = [exp o Aw+h'w) dw.

Again, it is convenient to work in terms of the eigenvectors of A. We first de ine
hy to be the projections of h onto the eigenvectors

he = hTug.

This again leads to a set of decoupled integrals over the ax of the form

i ool

Completing the square in the exponent, we have

A

2
k;k + h},ak) doyy.

Akef _ M he\? | hE
- 5 + hroy =) 7% N +2/\k’

If we now change integration variables to &y = ay — hx/Ax, we again obta
product of integrals which can be evaluated using (B.3) to give

W/2| A |-1/2 o~ 2
Iy = (2m)"W/2|A|~1/2 exp)
k=1

B: Gaussian Integrals 447

If we now apply A~! to both sides of (B.5) we see that A~! has the same
eigenvectors as A, but with eigenvalues A"

Ay = A\ ug (B.20)
Thus, using (B.6) and (B.16), we see that
h’I‘ 1 hi
A~h= —. B.21
; " (B.21)
Using this result in (B.19) we obtain our final result:
Iy = 2m)"/2|A| "2 exp (-;—hTA“lh) . (B.22)

APPENDIX C
LAGRANGE MULTIPLIERS

tipliers, is used to find the stationary points of a function of several variables
subject to one or more constraints.

Consider the problem of finding the minimum of a function f(z;,x2) subject
to a constraint relating x; and zo which we write in the form

g(z1,22) = 0.

One approach would be to solve the constraint equation (C.1) and thus exp:
x5 as a function of z; in the form x5 = h(z;). This can then be substituted
f(z1,22) to give a function of z; alone of the form f(z1, h(z1)). The maxi
with respect to z; could then be found by differentiation in the usual way,
give the stationary value 2, with the corresponding value of z, given
mglin = h(-’tli"i“).

One problem with this approach is that it may be difficult to find an anal
solution of the constraint equation which allows z, to be expressed as an expli
function of z;. Also, this approach treats z; and z, differently and so spoils
natural symmetry between these variables.

A more elegant, and often simpler, approach is based on the introductio
a parameter \ called a Lagrange multiplier. We motivate this technique fro
a geometrical perspective. Consider the case of d variables z,,...,zq which?
can group into a vector x. The constraint equation g(x) = 0 then represents
surface in x-space as indicated in Figure C.1. At any point P on the constr
surface, the gradient of the function f(x) is given by the vector Vf. To £
the stationary point of f(x) within the surface we can compute the compone
V| f of Vf which lies in the surface, and then set V| f = 0. Consider the
expansion of the function g(x) when we move a short distance from the p
in the form

g(x+€) = g(x) + e'Vg(x).

If the point x+ € is chosen to lie within the surface then we have g(x+¢€)
and hence €T Vg(x) = 0. Thus we see that the vector Vg is normal to the st
g(x) = 0. We can then obtain the component V| f which lies in the surfac
adding to Vf some multiple of the normal vector Vg so that

C: Lagrange Multipliers 449
1
X Vg
P v
VS g(x)=0
X

Figure C.1. A geometrical picture of the technique of Lagrange multipliers.
The gradient of a function f(x) at a point P is given by a vector Vf. We
wish to find the component of this vector lying within the constraint surface
g(x) = 0. This can be done by subtracting from Vf an appropriate multiple
of the vector normal to the constraint surface, given by Vg.

VW/f=Vf+2AVg (C.3)

where A is a Lagrange multiplier. It is convenient to introduce the Lagrangian
function given by

L(x,A) = f(x) + Ag(x). (C.4)
We then see that the vector VL is given by the right-hand side of (C.3) and so
the required stationarity condition is given by setting VL = 0. Furthermore, the
condition 0L/AA = 0 leads to the constraint equation g(x) = 0.

Thus to find the minimum of a function f(x) subject to the constraint
9(x) = 0 we define the Lagrangian function given by (C.4) and we then find the
stationary point of L(x,) with respect both to x and A. For a d-dimensional
vector x this gives d + 1 equations which determine both the stationary point
x* and the value of . If we are only interested in x* then we can eliminate A
from the stationarity equations without needing to find its value (hence the term
‘undetermined multiplier’).

As a simple example, suppose we wish to find the stationary point of the
function f(z1,z2) = z;z, subject to the constraint g(z1,22) =21+ 29 -1 =0.
The corresponding Lagrangian function is given by

L(x,)\) = 2122 + A(z) + 22 — 1). (C.5)

The conditions for (C.5) to be stationary with respect to z1, x5, and A then give
the following coupled equations:

450 C: Lagrange Multipliers

z2+A=0

z1+A=0

T +IQ-—1=0.

APPENDIX D

— e ; = (D,
Solution of these equations gives the stationary point as (z1,22) = (3,3) CALCULUS OF VARIATIONS

This technique can be applied directly to functions of more than two varial
Similarly it can be applied when there are several constraints simply by using V)
Lagrange multiplier A for each of the constraints gx(x) = 0 and constructing a.

Lagrangian function of the form At several points in this book we make use of the technique of functional differ-

entiation, also known as calculus of variations. Here we give a brief introduction
to this topic, using an analogy to conventional differentiation. We can regard a
function f(z) as a transformation which takes x as input, and which generates
) AT _ c Extensi f as output. For this function we can define its derivative df /dz by considering
This Lagrangian is then minimized with respect to x and {A}. g ; : the change in f(z) when the value of z is changed by a small amount 6z so that

L(x, {M}) = £(x) + D Akgr(x).
k

found in Dixon (1972, pages 88-93). 5= %63 +0(62%). (D.1)
A function of many variables f(z;,...,24) can be regarded as a transformation
which depends on a discrete set of independent variables. For such a function we
have

d
of=) %5”‘ + O(62?). (D.2)

i=1

In the same way, we can consider a functional, written as E[f], which takes
a function f(z) as input and returns a scalar value E. As an example of a

functional, consider
2
E[f]:f{(%) +f2}da: (D.3)

50 that the value of E[f] depends on the particular choice of the function f(z).
The concept of a functional derivative arises when we consider how much E(f]
changes when we make a small change §f(z) to the function f(z), where §f(z)
is a function of = which has small magnitude everywhere but which is otherwise
arbitrary. We denote the functional derivative of E|[f] with respect to f(z) by
SE /5 f(x), and define it by the following relation:

6E = E[f +6f] - EB[f] = %5,‘@;)&- + O(6£?). (D-4)

452 D: Caleulus of Variations

This can be seen as a natural extension of (D.2) where now E[f] depends on
a continuous set of variables, namely the values of f at all points z. As an
illustration, we can calculate the derivative of the functional given in (D.3):

E[f +6f] = E[f] + 2/ { @ Gy féf} dz + O(6f2). (D.5)

dz dz
This can be expressed in the form (D.4) if we integrate by parts, and assume

that the boundary term vanishes. We then obtain the following result for the
functional derivative:

6FE a*f ?
FRGSE T DI, T, 2f. B6)
e g T (D-6)
Note that, from (D.4) we also have the following useful result:

6f(z)

6f (')

where §(z) is the Dirac delta function. This result is easily verified by taking
E[f] = f(x) and then substituting (D.7) into (D.4). :

If we require that, to lowest order in §f(z), the functional E[f] be stationary
then from (D.4) we have |

=é(x—1z')

OB s tleyda=0.

o (D.8)

Since this must hold for an arbitrary choice of §f(z) we can choose 6f (z) =
8(z — z') where 6(z) is the Dirac delta function. Hence it follows that

.
8f(z)

so that, requiring the functional to be stationary with respect to arbitrary
ations in the function is equivalent to requiring that the functional deriva
vanish.

If we define a differential operator D = d/dz then (D.3) can be written as:

0

}.«7:/{(@3“)2 + f?} da.

Following the same argument as before we see that the functional derivati¥
becomes

e

D: Calculus of Variations 453

OF

570) = 2DDf(z) +2f()

(D.11)

where D = —d/dz is the adjoint operator to the operator D. Similar forms of ad-

joint operator arise in the discussion of radial basis functions and regularization
in Section 5.4.

-

E: Principal Components 455

symmetric without loss of generality, since the matrix UUT is symmetric as is
the unit matrix I, and hence any anti-symmetric component in M would vanish
in (E.3). Thus, we can write (E.4) in the form

APPENDIX E
PRINCIPAL COMPONENTS

SU = UM. (E.5)

Since, by construction, U has orthonormal columns, it is an orthogonal matrix
satisfying UTU = I. Thus we can write (E.5) in the equivalent form

A s . . II‘
In Section 8.6, we showed that the optimal linear dimensionality r-edu-cnon pro-
cedure (in the sense of least squares) was determined by minimization of the

following function:

UTsU =M. (E.6)

Clearly one solution of this equation is to choose M to be diagonal so that the
columns of U are the eigenvectors of X and the elements of M are its eigenvalues.

d However, this is not the only possible solution. Consider an arbitrary solution of

Ey = % Z Z {u:-f(x” = g)}z (E.5). The eigenvector equation for M can be written
i=M+1 n
MY = TA (E.7)
d
= % Z u} Sy, where A is a diagonal matrix of eigenvalues. Since M is symmetric, the eigen-
i=M+1 vector matrix ¥ can be chosen to have orthonormal columns. Thus ¥ is an

orthogonal matrix satisfying ¥* ¥ = I. From (E.7) we then have
where ¥ is the covariance matrix defined by (8.21). We now show that the solu-
tion to this problem can be expressed in terms of the eigenvectors and eigenvalues
of X,

It is clear that (E.1) has a non-trivial minimum with respect to the u; only
we impose some constraint. A suitable constraint is obtained by requiring the
to be orthonormal, and can be taken into account by the use of a set of Lagra
multipliers z;; (Appendix C). We therefore minimize the function

A=9TMW. (E.8)
Substituting (E.6) into (E.8) we obtain

A =3TUTSUY

d d d = (U)"5(UY)
B 1 T 1 T ;
Ey = wSui—= >) pi(ufu;—6y) S
2 i=§+l 2 i=M+1j=M+1 =U"XU (E.9)
This is conveniently written in matrix notation in the form where we have defined
By = 3T+ {UTSU} - 3T {M(UTU - 1) U=Uv. (E.10)
) " Using ®T = I we can write
where M is a matrix with elements p;;, U is a matmc- vfrh?se column.? co .
the eigenvectors u;, and I is the unit matrix. If we minimize (E.3) with res U= TwT (E.11)

to U we obtain

Thus, an arbitrary solution to (E.6) can be obtained from the particular solution
U by application of an orthogonal transformation given by ¥. We now note that
the value of the criterion E), is invariant under this transformation since

0=(T+2T)U-UM+MT).

By definition, the matrix X is symmetric. Also, the matrix M can be taken to b

456 E: Principal Components
Epy = %'ﬂ‘ {UTEU}

Tt {wﬁTzﬁwT}

I =

= %'n {7=0} (E.12)

where we have used the fact that the trace is invariant to cyclic permutations

of its argument, together with ¥TW¥ = I. Since all of the possible solutions
give the same value for the residual error E)s, we can choose whichever is most:

convenient. We therefore choose the solution given by U since, from (E.9), this
has columns which are the eigenvectors of X.

REFERENCES

Abu-Mostafa, Y. S. (1989). The Vapnik-Chervonenkis dimension: information
versus complexity in learning. Neural Computation 1 (3), 312-317.

Ahmad, S. and V. Tresp (1993). Some solutions to the missing feature problem
in vision. In S. J. Hanson, J. D. Cowan, and C. L. Giles (Eds.), Advances
in Neural Information Processing Systems, Volume 5, pp. 393-400. San
Mateo, CA: Morgan Kaufmann.

Aizerman, M. A., E. M. Braverman, and L. I. Rozonoer (1964). The proba-
bility problem of pattern recognition learning and the method of potential
functions. Automation and Remote Control 25, 1175-1190.

Akaike, H. (1969). Fitting autoregressive models for prediction. Annals of the
Institute of Statistical Mathematics 21, 243-247.

Akaike, H. (1973). Information theory and an extension of the maximum like-
lihood principle. In B. N. Petrov and F. Csdki (Eds.), 2nd International
Symposium on Information Theory, pp. 267-281. Tsahkadsov, Armenia,
USSR.

Albertini, F. and E. D. Sontag (1993). For neural networks, function deter-
mines form. Neural Networks 6 (7), 975-990.

Anderson, J. A. (1982). Logistic discrimination. In P. R. Krishnaiah and L. N.
Kanal (Eds.), Classification, Pattern Recognition and Reduction of Dimen-
sionality, Volume 2 of Handbook of Statistics, pp. 169-191. Amsterdam:
North Holland.

Anderson, J. A. and E. Rosenfeld (Eds.) (1988). Neurocomputing: Foundations
of Research. Cambridge, MA: MIT Press.

Anderson, T. W. (1958). An Introduction to Multivariate Statistical Analysis.
New York: John Wiley.

Arbib, M. A. (1987). Brains, Machines, and Mathematics (Second ed.), New
York: Springer-Verlag.

Arnold, V. 1. (1957). On functions of three variables. Doklady Akademiia Nauk
SSSR 114 (4), 679-681.

Baldi, P. and K. Hornik (1989). Neural networks and principal compo-
nent analysis: learning from examples without local minima. Neural Net-
works 2 (1), 53-58.

Barnard, E. (1992). Optimization for training neural nets. IJEEE Transactions
on Neural Networks 3 (2), 232-240.

Barnard, E. and D. Casasent (1991). Invariance and neural nets. JEEE Trans-
actions on Neural Networks 2 (5), 498-508.

Barron, A. R, (1984). Predicted squared error: a criterion for automatic model
selection. In 8. J. Farlow (Ed.), Self-Organizing Methods in Modelling, Vol-

458 References

ume 54 of Statistics: Textbooks and Monographs, pp. 87-103. New York:
Marcel Dekker.

Barron, A. R. (1993). Universal approximation bounds for superposition of
a sigmoidal function. IEEE Transactions on Information Theory 39 (3),|
930-945.

Barron, A. R. and R. L. Barron (1988). Statistical learning networks: a unify-
ing view. In E. J. Wegman, D. T. Gantz, and J. J. Miller (Eds.), Comput-
ing Science and Statistics: 20th Symposium on the Interface, pp. 192-203,
Fairfax, Virginia: American Statistical Association.

Battiti, R. (1989). Accelerated backpropagation learning: two optlmlzatlon
methods. Complex Systems 3, 331-342.

Baum, E. B. (1988). On the capabilities of multilayer perceptrons. Journal of
Complezity 4, 193-215.

Baum, E. B. and D. Haussler (1989). What size net gives valid generalization?
Neural Computation 1 (1), 151-160.

Baum, E. B. and F. Wilczek (1988). Supervised learning of probability distri-
butions by neural networks. In D. Z. Anderson (Ed.), Neural Information
Processing Systems, pp. 52-61. New York: American Institute of Physws.

Becker, S. and Y. Le Cun (1989). Improving the convergence of back-
propagation learning with second order methods. In D. Touretzky, G
Hinton, and T. J. Sejnowski (Eds.), Proceedings of the 1988 Connection
Models Summer School, pp. 29-37. San Mateo, CA: Morgan Kaufmann.

Bellman, R. (1961). Adaptive Control Processes: A Guided Tour. New Jersey:
Princeton University Press.

Bello, M. G. (1992). Enhanced training algorithms, and integrated train-
ing/architecture selection for multilayer perceptron networks. IEEE Trans-
actions on Neural Networks 3 (6), 864-875. .

Berger, J. O. (1985). Statistical Decision Theory and Bayesian Analysis (Sec-
ond ed.). New York: Springer-Verlag.

Bishop, C. M. (1991a). A fast procedure for retraining the multilayer percep-
tron. International Journal of Neural Systems 2 (3), 229-236. |

Bishop, C. M. (1991b). Improving the generalization properties of radial b
function neural networks. Neural Computation 3 (4), 579-588.

Bishop, C. M. (1992). Exact calculation of the Hessian matrix for the multi=
layer perceptron. Neural Computation 4 (4), 494-501. "

Bishop, C. M. (1993). Curvature-driven smoothing: a learning algorithm for
feedforward networks. IEEE Transactions on Neural Networks 4 (5), 882=
884,

Bishop, C. M. (1994a). Mixture density networks. Technical Report NC
4288, Neural Computing Research Group, Aston University, Birming
UK.

Bishop, C. M. (1994b). Novelty detection and neural network validation.
Proceedings: Vision, Image and Signal Processing 141 (4), 217-222. Speci?

References 459

issue on applications of neural networks.

Bishop, C. M. (1995). Training with noise is equivalent to Tikhonov regular-
ization. Neural Computation 7 (1), 108-116.

Bishop, C. M. and C. Legleye (1995). Estimating conditional probability densi-
ties for periodic variables. In D. S. Touretzky, G. Tesauro, and T. K. Leen
(Eds.), Advances in Neural Information Processing Systems, Volume 7.
Cambridge MA: MIT Press. In press.

Block, H. D. (1962). The perceptron: a model for brain functioning. Reviews
of Modern Physics 34 (1), 123-135. Reprinted in Anderson and Rosenfeld
(1988).

Blum, E. K. and L. K. Li (1991). Approximation theory and feedforward
networks. Neural Networks 4 (4), 511-515.

Blum, J. R. (1954). Multidimensional stochastic approximation methods. An-
nals of Mathematical Statistics 25, 737-744.

Blumer, A., A. Ehrenfeucht, D. Haussler, and M. K. Warmuth (1989). Learn-
ability and the Vapnik-Chervonenkis dimension. Journal of the Association
for Computing Machinery 36 (4), 929-965.

Bourlard, H. and Y. Kamp (1988). Auto-association by multilayer perceptrons
and singular value decomposition. Biological Cybernetics 59, 291-294.
Bourlard, H. and N. Morgan (1990). A continuous speech recognition system
embedding MLP into HMM. In D. S. Touretzky (Ed.), Advances in Neural
Information Processing Systems, Volume 2, pp. 186-193. San Mateo, CA:

Morgan Kaufmann.
Breiman, L., J. H. Friedman, R. A. Olshen, and C. J. Stone (1984). Classifi-
cation and regression trees. Blemont, CA: Wadsworth.
Brent, R. P. (1973). Algorithms for Minimization without Derivatives. Engle-
wood Cliffs, NJ: Prentice-Hall.

Bridle, J. S. (1990). Probabilistic interpretation of feedforward classification
network outputs, with relationships to statistical pattern recognition. In
F. Fogelman Soulié and J. Hérault (Eds.), Neurocomputing: Algorithms,
Architectures and Applications, pp. 227-236. New York: Springer-Verlag.

Brigham, E. O. (1974). The Fast Fourier Transform. Engelwood Cliffs:
Prentice-Hall.

Broomhead, D. S. and D. Lowe (1988). Multivariable functional interpolation
and adaptive networks. Complex Systems 2, 321-355.

Buntine, W. L. and A. S. Weigend (1991). Bayesian back-propagation. Com-
plex Systems 5, 603-643.

Buntine, W. L. and A. S. Weigend (1993). Computing second derivatives
in feed-forward networks: a review. IEEE Transactions on Neural Net-
works 5 (3), 480-488.

Burrascano, P. (1991). A norm selection criterion for the generalized delta
rule. IEEE Transactions on Neural Networks 2 (1), 125-130.

460 References

Chauvin, Y. (1989). A back-propagation algorithm with optimal use of hidden
units. In D. S. Touretzky (Ed.), Advances in Neural Information Processing
Systems, Volume 1, pp. 519-526. San Mateo, CA: Morgan Kaufmann.

Chen, A. M., H. Lu, and R. Hecht-Nielsen (1993). On the geometry of feedfor-
ward neural network error surfaces. Neural Computation 5 (6), 910-927.

Chen, S., S. A. Billings, and W. Luo (1989). Orthogonal least squares mehh-_
ods and their application to non-linear system identification. International
Journal of Control 50 (5), 1873-1896. .

Chen, S., C. F. N. Cowan, and P. M. Grant (1991). Orthogonal least squares
learning algorithm for radial basis function networks. IEEE Transactions
on Neural Networks 2 (2), 302-309.

statistical perspective. Statistical Science 9 (1), 2-54.
Cotter, N. E. (1990). The Stone-Weierstrass theorem and its application ta
neural networks. IEEE Transactions on Neural Networks 1 (4), 290-295.
Cover, T. M. (1965). Geometrical and statistical properties of systems of li
inequalities with applications in pattern recognition. JEEE Transactio
Electronic Computers 14, 326-334. 3
Cox, R. T. (1946). Probability, frequency and reasonable expectation. Amer-
ican Journal of Physics 14 (1), 1-13.
Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function.
Mathematics of Control, Signals and Systems 2, 304-314.
Day, N. E. (1969). Estimating the components of a mixture of normal distri-
butions. Biometrika 56 (3), 463-474.
De Boor, C. (1978). A Practical Guide to Splines. New York: Springer-Verls
Dempster, A. P., N. M. Laird, and D. B. Rubin (1977). Maximum likeliho
from incomplete data via the EM algorithm. Journal of the Royal Statis
Society, B 39 (1), 1-38. _
Dennis, J. E. and R. B. Schnabel (1983). Numerical Methods for Unconstrained
Optimization and Nonlinear Equations. Englewood Cliffs, NJ: Pren
Hall. .
Devijver, P. A. and J. Kittler (1982). Pattern Recognition: A Statistical Ap=
proach. Englewood Cliffs, NJ: Prentice-Hall, \
Devroye, L. (1986). Non-Uniform Random Variate Generation. New York:
Springer-Verlag.

Diaconis, P. and M. Shahshahani (1984). On nonlinear functions of linear
binations. SIAM Journal of Scienctific and Statistical Computing 5
175-191.

Dixon, L. C. W. (1972). Nonlinear Optimisation. London: English Univers
Press.

Drucker, H. and Y. Le Cun (1992). Improving generalization
mance using double back-propagation. IEEE Transactions on Neurat
works 3 (6), 991-997.

References 461

Duane, S., A. D. Kennedy, B. J. Pendleton, and D. Roweth (1987). Hybrid
Monte Carlo. Physics Letters B 195 (2), 216-222.

Duda, R. O. and P. E. Hart (1973). Pattern Classification and Scene Analysis.
New York: John Wiley.

Fahlman, S. E. (1988). Faster-learning variations on back-propagation: an em-
pirical study. In D. Touretzky, G. E. Hinton, and T. J. Sejnowski (Eds.),
Proceedings of the 1988 Connectionist Models Summer School, pp. 38-51.
San Mateo, CA: Morgan Kaufmann.

Fahlman, S. E. and C. Lebiere (1990). The cascade-correlation learning archi-
tecture. In D. S. Touretzky (Ed.), Advances in Neural Information Process-
ing Systems, Volume 2, pp. 524-532. San Mateo, CA: Morgan Kaufmann.

Fisher, R. A. (1936). The use of multiple measurements in taxonomic prob-
lems. Annals of Eugenies T, 179-188. Reprinted in Contributions to Math-
ematical Statistics, John Wiley: New York (1950).

Fletcher, R. (1987). Practical Methods of Optimization (Second ed.). New
York: John Wiley.

Frean, M. (1990). The upstart algorithm: a method for constructing and train-
ing feedforward neural networks. Neural Computation 2 (2), 198-209.
Friedman, J. H. (1991). Multivariate adaptive regression splines (with discus-

sion). Annals of Statistics 19 (1), 1-141.

Friedman, J. H. and W, Stuetzle (1981). Projection pursuit regression. Journal
of the American Statistical Association 76 (376), 817-823.

Fukunaga, K. (1982). Intrinsic dimensionality extraction. In P. R. Krishnaiah
and L. N. Kanal (Eds.), Classtfication, Pattern Recognition and Reduc-
tion of Dimensionality, Volume 2 of Handbook of Statistics, pp. 347-360.
Amsterdam: North Holland.

Fukunaga, K. (1990). Introduction to Statistical Pattern Recognition (Second
ed.). San Diego: Academic Press.

Fukunaga, K. and R. R. Hayes (1989). The reduced Parzen classifier. JEEE
Transactions on Pattern Analysis and Machine Intelligence 11 (4), 423-
425.

Fukunaga, K. and P. M. Narendra (1975). A branch and bound algorithm
for computing k-nearest neighbors. JEEE Transactions on Computers 24,
750-753.

Fukushima, K. (1988). Neocognitron: a hierarchical neural network capable of
visual pattern recognition. Neural Networks 1 (2), 119-130.

Fukushima, K., S. Miyake, and T. Ito (1983). Neocognitron: a neural network
model for a mechanism of visual pattern recognition. IEEE Transactions
on Systems, Man, and Cybernetics 13, 826-834.

Funahashi, K. (1989). On the approximate realization of continuous mappings
by neural networks. Neural Networks 2 (3), 183-192.

Gallant, A. R. and H. White (1992). On learning the derivatives of an unknown
mapping with multilayer feedforward networks. Neural Networks 5 (1),

462 References

129-138.

Gallant, S. I. (1986a). Optimal linear discriminants. In Proceedings of the
FEighth IEEE International Conference on Pattern Recognition, Volume 1,
pp. 849-852. Washington, DC: IEEE Computer Society.

Gallant, S. I. (1986b). Three constructive algorithms for network learning.
In Proceedings of the Eighth Annual Conference of the Cognitive Science
Society, pp. 652-660. Hillsdale, NJ: Lawrence Erlbaum.

Gallinari, P., S. Thiria, F. Badran, and F. F. Soulie (1991). On the rela-
tions between discriminant analysis and multilayer perceptrons. Neural
Networks 4 (3), 349-360.

Gallinari, P., S. Thiria, and F. F. Soulie (1988). Multi-layer perceptrons and
data analysis. In IEEE International Conference on Neural Networks, Vol-
ume 1, pp. 391-399. San Diego, CA: IEEE. _

Gates, G. W. (1972). The reduced nearest neighbor rule. IEEE Transactions
on Information Theory 18, 431-433.

Gear, C. W. (1971). Numerical Initial Value Problems in Ordinary Differential
Equations. Englewood Cliffs, NJ: Prentice-Hall.

Geman, S., E. Bienenstock, and R. Doursat (1992). Neural networks and the
bias/variance dilema. Neural Computation 4 (1), 1-58.

Ghahramani, Z. and M. I. Jordan (1994a). Learning from incomplete data.
Technical Report CBCL 108, Massachusetts Institute of Technology.

Ghahramani, Z. and M. I. Jordan (1994b). Supervised learning from incom-
plete data via an EM appproach. In J. D. Cowan, G. T. Tesauro, and
J. Alspector (Eds.), Advances in Neural Information Processing Systems,
Volume 6, pp. 120-127. San Mateo, CA: Morgan Kaufmann. {

Ghosh, J. and Y. Shin (1992). Efficient higher-order neural networks for classi-
fication and function approximation. International Journal of Neural Sys-
tems 3 (4), 323-350. |

Gibson, G. J. and C. F. N. Cowan (1990). On the decision regions of multilayer
perceptrons. Proceedings of the IEEE T8 (10), 1590-1594.

Giles, C. L. and T. Maxwell (1987). Learning, invariance, and generalization
in high-order neural networks. Applied Optics 26 (23), 4972-4978.

Gill, P. E.,, W. Murray, and M. H. Wright (1981). Practical Optimization.
London: Academic Press.

Girosi, F. and T. Poggio (1989). Representation properties of networks: Kol-
mogorov’s theorem is irrelevant. Neural Computation 1 (4), 465-469.
Girosi, F. and T. Poggio (1990). Networks and the best approximation prop-

erty. Biological Cybernetics 63, 169-176.

Golub, G. and W. Kahan (1965). Calculating the singular values and pseudo-
inverse of a matrix. STAM Numerical Analysis, B 2 (2), 205-224.

Gull, S. F. (1988a). Bayesian data analysis — straight-line fitting. In J. Skillin{
(Ed.), Mazimum Entropy and Bayesian Methods, Cambridge, pp. 511-5.
Dordrecht: Kluwer.

References 463

Gull, S. F. (1988b). Bayesian inductive inference and maximum entropy. In
G. J. Erickson and C. R. Smith (Eds.), Mazimum-Entropy and Bayesian
Methods in Science and Engineering, Vol. 1: Foundations, pp. 53-74. Dor-
drecht: Kluwer.

Gull, S. F. (1989). Developments in maximum entropy data analysis. In
J. Skilling (Ed.), Mazimum Entropy and Bayesian Methods, Cambridge,
1988, pp. 53-71. Dordrecht: Kluwer.

Hampshire, J. B. and B. Pearlmutter (1990). Equivalence proofs for multi-
layer perceptron classifiers and the Bayesian discriminant function. In D. S.
Touretzky, J. L. Elman, T. J. Sejnowski, and G. E. Hinton (Eds.), Proceed-
ings of the 1990 Connectionist Models Summer School, pp. 1569-172. San
Mateo, CA: Morgan Kaufmann.

Hand, D. J. (1981). Discrimination and Classification. New York: John Wiley.

Hand, D. J. and B. G. Batchelor (1978). Experiments on the edited condensed
nearest neighbour rule. Information Sciences 14, 171-180.

Hanson, S. J. and D. J. Burr (1988). Minkowski-r back-propagation: learning
in connectionist models with non-Euclidean error signals. In D. Anderson
(Ed.), Neural Information Processing Systems, pp. 348-357. New York:
American Institute of Physics.

Hanson, S. J. and L. Y. Pratt (1989). Comparing biases for minimal network
construction with back-propagation. In D. S. Touretzky (Ed.), Advances
in Neural Information Processing Systems, Volume 1, pp. 177-185. San
Mateo, CA: Morgan Kaufmann.

Hart, P. E. (1968). The condensed nearest neighbor rule. IEEE Transactions
on Information Theory 14, 515-516.

Hartman, E. J., J. D. Keeler, and J. M. Kowalski (1990). Layered neural
networks with Gaussian hidden units as universal approximations. Neural
Computation 2 (2), 210-215.

Hassibi, B. and D. G. Stork (1993). Second order derivatives for network prun-
ing: optimal brain surgeon. In S. J. Hanson, J. D. Cowan, and C. L. Giles
(Eds.), Advances in Neural Information Processing Systems, Volume 5, pp.
164-171. San Mateo, CA: Morgan Kaufmann.

Hastie, T. J. and R. J. Tibshirani (1990). Generalized Additive Models. Lon-
don: Chapman & Hall.

Hebb, D. O. (1949). The Organization of Behaviour. New York: John Wiley.

Hecht-Nielsen, R. (1989). Theory of the back-propagation neural network. In
Proceedings of the International Joint Conference on Neural Networks, Vol-
ume 1, pp. 593-605. San Diego, CA: IEEE.

Hertz, J., A. Krogh, and R. G. Palmer (1991). Introduction to the Theory of
Neural Computation. Redwood City, CA: Addison Wesley.

Hestenes, M. R. and E. Stiefel (1952). Methods of conjugate gradients for
solving linear systems. Journal of Research of the National Bureau of Stan-
dards 49 _(6), 409-436.

464 References

Hilbert, D. (1900). Mathematische probleme. Nachrichten der Akademie der
Wissenschaften Géttingen, 290-329.

Hinton, G. E. (1987). Learning translation invariant recognition in massively
parallel networks. In J. W. de Bakker, A. J. Nijman, and P. C. Treleaven
(Eds.), Proceedings PARLE Conference on Parallel Architectures and Lan-
guages Europe, pp. 1-13. Berlin: Springer-Verlag.

Hinton, G. E. (1989). Connectionist learning procedures. Artificial Intelli-
gence 40, 185-234.

Hinton, G. E. and D. van Camp (1993). Keeping neural networks simple by
minimizing the description length of the weights. In Proceedings of the
Sizth Annual Conference on Computational Learning Theory, pp. 5-13.

Hopfield, J. J. (1987). Learning algorithms and probability distributions in_
feed-forward and feed-back networks. Proceedings of the National Academy
of Sciences 84, 8429-8433.

Hornik, K. (1991). Approximation capabilities of multilayer feedforward nel;-
works. Neural Networks 4 (2), 251-257.

Hornik, K., M. Stinchcombe, and H. White (1989). Multilayer feedforward
networks are universal approximators. Neural Networks 2 (5), 359-366. 1

Hornik, K., M. Stinchcombe, and H. White (1990). Universal approximation |
of an unknown mapping and its derivatives using multilayer feedforward
networks. Neural Networks 3 (5), 551-560. '

Huang, W. Y. and R. P. Lippmann (1988). Neural net and traditional clas- ,‘
sifiers. In D. Z. Anderson (Ed.), Neural Information Processing Systems,
pp. 387-396. New York: American Institute of Physics.

Huber, P. J. (1981). Robust Statistics. New York: John Wiley.

Huber, P. J. (1985). Projection pursuit. Annals of Statistics 13 (2), 435-475.

Hush, D. R. and J. M. Salas (1988). Improving the learning rate of back-
propagation with the gradient re-use algorithm. In IEEE International
Conference on Neural Networks, Volume 1, pp. 441-447. San Diego, CL
IEEE.

Hwang, J. N., 8. R. Lay, M. Maechler, R. D. Martin, and J. Schimert 1994)~
R.egressuon modelling in back-propagation and projection pursuit learning.
IEEE Transactions on Neural Networks 5 (3), 342-353.

Ito, Y. (1991). Representation of functions by superpositions of a step or sig~
moid function and their applications to neural network theory. Neural Nei-
works 4 (3), 385-394.

Ivakhnenko, A. G. (1971). Polynomial theory of complex systems. IEEE Trans-
actions on Systems, Man, and Cybernetics 1 (4), 364-378. i

Jabri, M. and B. Flower (1991). Weight perturbation: an optimal archltea*
ture and learning technique for analog VLSI feedforward and rec
multilayer networks. Neural Computation 3 (4), 546-565.

Jacobs, R. A. (1988). Increased rates of convergence through learning rat
adaptation. Neural Networks 1 (4), 295-307.

References 465

Jacobs, R. A., M. L. Jordan, S. J. Nowlan, and G. E. Hinton (1991). Adaptive
mixtures of local experts. Neural Computation 3 (1), 79-87.

Jaynes, E. T. (1986). Bayesian methods: general background. In J. H. Justice
(Ed.), Mazimum Entropy and Bayesian Methods in Applied Statistics, pp.
1-25. Cambridge University Press.

Ji, C., R. R. Snapp, and D. Psaltis (1990). Generalizing smoothness constraints
from discrete samples. Neural Computation 2 (2), 188-197.

Johansson, E. M., F. U. Dowla, and D. M. Goodman (1992). Backpropagation
learning for multilayer feedforward neural networks using the conjugate
gradient method. International Journal of Neural Systems 2 (4), 291-301.

Jollife, I. T. (1986). Principal Component Analysis. New York: Springer-
Verlag.

Jones, L. K. (1987). On a conjecture of Huber concerning the convergence of
projection pursuit regression. Annals of Statistics 15 (2), 880-882.

Jones, L. K. (1990). Constructive approximations for neural networks by sig-
moidal functions. Proceedings of the IEEE T8 (10), 1586-1589.

Jones, L. K. (1992). A simple lemma on greedy approximation in Hilbert space
and convergence rates for projection pursuit regression and neural network
training. Annals of Statistics 20 (1), 608-613.

Jordan, M. I. and R. A. Jacobs (1994). Hierarchical mixtures of experts and
the EM algorithm. Neural Computation 6 (2), 181-214.

Kahane, J. P. (1975). Sur le theoreme de superposition de Kolmogorov. Journal
of Approzimation Theory 13, 229-234.

Kailath, T. (1980). Linear Systems. Englewood Cliffs, NJ: Prentice-Hall.

Khotanzad, A. and Y. H. Hong (1990). Invariant image recognition by Zernike
moments. [EEE Transactions on Pattern Analysis and Machine Intelli-
gence 12 (5), 489-497.

Kiefer, J. and J. Wolfowitz (1952). Stochastic estimation of the maximum of
a regression function. Annals of Mathematical Statistics 23, 462-466.

Kirkpatrick, S., C. D. Gelatt, and M. P. Vecchi (1983). Optimization by sim-
ulated annealing. Science 220 (4598), 671-680.

Kohonen, T, (1982). Self-organized formation of topologically correct feature
maps. Biological Cybernetics 43, 59-69. Reprinted in Anderson and Rosen-
feld (1988).

Kolmogorov, A. N. (1957). On the representation of continuous functions of
several variables by superposition of continuous functions of one variable
and addition. Doklady Akademiia Nauk SSSR 114 (5), 953-956.

Kraaijveld, M. and R. Duin (1991). Generalization capabilities of minimal
kernel-based networks. In Proceedings of the International Joint Confer-
ence on Neural Networks, Volume 1, pp. 843-848. New York: IEEE.

Kramer, A. H. and A. Sangiovanni-Vincentelli (1989). Efficient parallel learn-
ing algorithms for neural networks. In D. S. Touretzky (Ed.), Advances in

466 References

Neural Information Processing Systems, Volume 1, pp. 40-48. San Mateo,
CA: Morgan Kaufmann.
Kramer, M. A. (1991). Nonlinear principal component analysis using autoas-
sociative neural networks. AIChe Journal 37 (2), 233-243.
Kreinovich, V. Y. (1991). Arbitrary nonlinearity is sufficient to represent all
functions by neural networks: a theorem. Neural Networks 4 (3), 381-383.
Krogh, A. and J. Vedelsby (1995). Neural network ensembles, cross validation
and active learning. In D. S. Touretzky, G. Tesauro, and T. K. Leen (Eds.),
Advances in Neural Information Processing Systems, Volume 7. Cambridge
MA: MIT Press. In press.
Kullback, S. (1959). Information Theory and Statistics. New York: Dover Pub-
lications.
Kullback, S. and R. A. Leibler (1951). On information and sufficiency. Annals
of Mathematical Statistics 22, 79-86.
Kurkové, V. (1991). Kolmogorov’s theorem is relevant. Neural Computa-
tion 3 (4), 617-622.
Kurkové, V. (1992). Kolmogorov’s theorem and multilayer neural networks.
Neural Networks 5 (3), 501-506.
Kurkova, V. and P. C. Kainen (1994). Functionally equivalent feed-forward
neural networks. Neural Computation 6 (3), 543-558.
Lang, K. J. a.nd G. E. Hmton (1990) Dimensionality reduction and pnor

Neural Information Processing System Volume 2, pp. 178 185. San Ma- |
teo, CA: Morgan Kaufmann.

Lang, K. J., A. H. Waibel, and G. E. Hinton (1990). A time-delay neural
network a.rchltecture for isolated word recognition. Neural Networks 3 (1),
23-43.

Lapedes, A. and R. Farber (1988). How neural nets work. In D. Z. Anderson
(Ed.), Neural Information Processing Systems, pp. 442-456. New York:
American Institute of Physics.

Le Cun, Y., B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard,
and L. D. Jackel (1989). Backpropagation applied to handwritten zip code
recognition. Neural Computation 1 (4), 541-551.

Le Cun, Y., J. S. Denker, and S. A. Solla (1990). Optimal brain damage. In
D. S. Touretzky (Ed.), Advances in Neural Information Processing Sys-
tems, Volume 2, pp. 598-605. San Mateo, CA: Morgan Kaufmann.

Le Cun, Y., P. Y. Simard, and B. Pearlmutter (1993). Automatic learning
rate maximization by on-line estimation of the Hessian’s eigenvectors. In
S. J. Hanson, J. D. Cowan, and C. L. Giles (Eds.), Advances in Neural
Information Processing Systems, Volume 5, pp. 156-163. San Mateo, CA:
Morgan Kaufmann.

Levenberg, K. (1944). A method for the solution of certain non-linear problems
in least squares. Quarterly Journal of Applied Mathematics II (2), 164-168.

References 467

Lewis, P. M. and C. L. Coates (1967). Threshold Logic. New York: John Wiley.

Linde, Y., A. Buzo, and R. M. Gray (1980). An algorithm for vector quantizer
design. IEEE Transactions on Communications 28 (1), 84-95.

Linsker, R. (1988). Self-organization in a perceptual network. IEEE Com-
puter 21, 105-117.

Lippmann, R. P. (1987). An introduction to computing with neural nets. IEEE
ASSP Magazine, April, 4-22,

Little, R. J. A. (1992). Regression with missing X's: a review. Journal of the
American Statistical Association 87 (420), 1227-1237.

Little, R. J. A. and D. B. Rubin (1987). Statistical Analysis with Missing Data.
New York: John Wiley.

Liu, Y. (1994). Robust parameter estimation and model selection for neural
network regression. In J. D. Cowan, G. Tesauro, and J. Alspector (Eds.),
Advances in Neural Information Processing Systems, Volume 6, pp. 192-
199. San Mateo, CA: Morgan Kaufmann.

Lloyd, S. P. (1982). Least squares quantization in PCM. IEEE Transactions
on Information Theory 28 (2), 129-137.

Lonstaff, I. D. and J. F. Cross (1987). A pattern recognition approach to
understanding the multi-layer perceptron. Pattern Recognition Letters 5,
315-319.

Lorentz, G. G. (1976). On the 13th problem of Hilbert. In Proceedings of
Symposia in Pure Mathematics, pp. 419-429. Providence, RI: American
Mathematical Society.

Lowe, D. (1995). Radial basis function networks. In M. A. Arbib (Ed.), The
Handbook of Brain Theory and Neural Networks. Cambridge, MA: MIT
Press. To be published.

Lowe, D. and A. R. Webb (1990). Exploiting prior knowledge in network op-
timization: an illustration from medical prognosis. Network: Computation
in Neural Systems 1 (3), 299-323.

Lowe, D. and A. R. Webb (1991). Optimized feature extraction and the Bayes
decision in feed-forward classifier networks. JEEE Transactions on Pattern
Analysis and Machine Intelligence 13 (4), 355-364.

Luenberger, D. G. (1984). Linear and Nonlinear Programming (Second ed.).
Reading, MA: Addison-Wesley.

Luo, Z. Q. (1991). On the convergence of the LMS algorithm with adaptive
learning rate for linear feedforward networks. Neural Computation 3 (2),
226-245.

Luttrell, S. P. (1994). Partitioned mixture distribution: an adaptive Bayesian
network for low-level image processing. IEE Proceedings on Vision, Image
and Signal Processing 141 (4), 251-260.

MacKay, D. J. C. (1992a). Bayesian interpolation. Neural Computation 4 (3),
415-447.

468 References

MacKay, D. J. C. (1992b). The evidence framework applied to classification
networks. Neural Computation 4 (5), 720-736. -

MacKay, D. J. C. (1992c). Information-based objective functions for active
data selection. Neural Computation 4 (4), 590-604.

MacKay, D. J. C. (1992d). A practical Bayesian framework for back-
propagation networks. Neural Computation 4 (3), 448-472.

MacKay, D. J. C. (1994a). Bayesian methods for backpropagation networks. Iu,
E. Domany, J. L. van Hemmen, and K. Schulten (Eds.), Models of New ..4_
Networks III, Chapter 6. New York: Springer-Verlag.

MacKay, D. J. C. (1994b). Hyperparameters: optimise or integrate out? In
G. Heidbreder (Ed.), Mazimum Entropy and Bayesian Methods, Santa
Barbara 1998. Dordrecht: Kluwer. 3

MacKay, D. J. C. (1995a). Bayesian neural networks and density networks.
Nuclear Instruments and Methods in Physics Research, A 354 (1), 73-80.

MacKay, D. J. C. (1995b). Bayesian non-linear modelling for the 1993 energy
prediction competition. In G. Heidbreder (Ed.), Mazimum Entropy
Bayesian Methods, Santa Barbara 1993. Dordrecht: Kluwer.

MacQueen, J. (1967). Some methods for classification and analysis of multi-
variate observations. In L. M. LeCam and J. Neyman (Eds.), Proceeding.
the Fifth Berkeley Symposium on Mathematical Statistics and Probabil
Volume I, pp. 281-297. Berkeley: University of California Press.

Makram-Ebeid, S., J. A. Sirat, and J. R. Viala (1989). A rationalized
propagation learning algorithm. In Proceedings of the International Jo
Conference on Neural Networks, Volume 2, pp. 373-380. New Jersey: I

Mallows, C. L. (1973). Some comments on C,. Technometrics 15, 661-6T

Marchand, M., M. Golea, and P. Rujan (1990). A convergence theorem
sequential learning in two-layer perceptrons. Europhysics Letters 11
487-492.

Mardia, K. V. (1972). Statistics of Directional Data. London: Academic Pre

Marquardt, D. W. (1963). An algorithm for least-squares estimation of
linear parameters. Journal of the Society of Industrial and Applied
ematics 11 (2), 431-441.

McCulloch, W. 8. and W. Pitts (1943). A logical calculus of the ideas imn
nent in nervous activity. Bulletin of Mathematical Biophysics 5, 115-1
Reprinted in Anderson and Rosenfeld (1988).

McLachlan, G. J. and K. E. Basford (1988). Mizture Models: Inference
Applications to Clustering. New York: Marcel Dekker.

Metropolis, N., A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller,
E. Teller (1953). Equation of state calculations by fast computing &
chines. Journal of Chemical Physics 21 (6), 1087-1092. \

Mezard, M. and J. P. Nadal (1989). Learning in feedforward layered netw
The tiling algorithm. Journal of Physies, A 22, 2191-2203.

References 469

Micchelli, C. A. (1986). Interpolation of scattered data: distance matrices and
conditionally positive definite functions. Constructive Approzimations 2,
11-22.

Minsky, M. L. and S. A. Papert (1969). Perceptrons. Cambridge, MA: MIT
Press. Expanded Edition 1990.

Mpgller, M. (1993a). Efficient Training of Feed-Forward Neural Networks.
Ph.D. thesis, Aarhus University, Denmark.

Mgller, M. (1993b). A scaled conjugate gradient algorithm for fast supervised
learning. Newral Networks 6 (4), 525-533.

Moody, J. and C. J. Darken (1989). Fast learning in networks of locally-tuned
processing units. Neural Computation 1 (2), 281-294.

Moody, J. E. (1992). The effective number of parameters: an analysis of gener-
alization and regularization in nonlinear learning systems. In J. E. Moody,
S. J. Hanson, and R. P. Lippmann (Eds.), Advances in Neural Informa-
tion Processing Systems, Volume 4, pp. 847-854. San Mateo, CA: Morgan
Kaufmann.

Mozer, M. C. and P. Smolensky (1989). Skeletonization: a technique for trim-
ming the fat from a network via relevance assessment. In D. S. Touretzky
(Ed.), Advances in Neural Information Processing Systems, Volume 1, pp.
107-115. San Mateo, CA: Morgan Kaufmann.

Nadal, J. P. (1989). Study of a growth algorithm for a feedforward network.
International Journal of Neural Systems 1 (1), 55-59.

Nadaraya, E. A. (1964). On estimating regression. Theory of Probability and
its Applications 9 (1), 141-142.

Narendra, P. M. and K. Fukunaga (1977). A branch and bound algorithm for
feature subset selection. JEEE Transactions on Computers 26 (9), 917-
922.

Neal, R. M. (1992). Bayesian training of backpropagation networks by the
hybrid Monte Carlo method. Technical Report CRG-TR-92-1, Department
of Computer Science, University of Toronto, Canada.

Neal, R. M. (1993). Probabilistic inference using Markov chain Monte Carlo
methods. Technical Report CRG-TR-93-1, Department of Computer Sci-
ence, University of Toronto, Cananda.

Neal, R. M. (1994). Bayesian Learning for Neural Networks. Ph.D. thesis,
University of Toronto, Canada.

Neuneier, R., F. Hergert, W. Finnof, and D. Ormoneit (1994). Estimation
of conditional densities: a comparison of approaches. In M. Marinaro and
P. G. Morasso (Eds.), Proceedings ICANN*94 International Conference on
Artificial Neural Networks, Volume 1, pp. 689-692. Springer-Verlag.

Nilsson, N. J. (1965). Learning Machines. New York: McGraw-Hill. Reprinted

as The Mathematical Foundations of Learning Machines, Morgan Kauf-
mann, (1990).

470 References

Niranjan, M., A. J. Robinson, and F. Fallside (1989). Pattern recognition with
potential functions in the context of neural networks. In M. Pietikidinen
and J. Roning (Eds.), Proceedings Sizth Scandinavian Conference on Im-~
age Analysis, Oulu, Finland, Volume 1, pp. 96-103. Pattern Recognition
Society of Finland. i

Nix, A. D. and A. S. Weigend (1994). Estimating the mean and variance of the
target probability distribution. In Proceedings of the IEEE International

Conference on Neural Networks, Volume 1, pp. 55-60. New York: IEEE,

Nowlan, S. J. and G. E. Hinton (1992). Simplifying neural networks by so&,’!
weight sharing. Neural Computation 4 (4), 473-493.

Oja, E. (1982). A simplified neuron model as a principal component analyzer.
Journal of Mathematical Biology 15, 267-273.

Oja, E. (1989). Neural networks, principal components, and subspaces. Inter-
national Journal of Neural Systems 1 (1), 61-68.

Omohundro, S. M. (1987). Efficient algorithms with neural network behavio .
Complex Systems 1, 273-347.

Owens, A. J. and D. L. Filkin (1989). Efficient training of the backpropaga-
tion network by solving a system of stiff ordinary differential equati
In Proceedings of the International Joint Conference on Neural Netwo
Volume 2, pp. 381-386. San Diego: IEEE, i

Park, J. and I. W. Sandberg (1991). Universal approximation using radial
basis function networks. Neural Computation 3 (2), 246-257.

Park, J. and I. W. Sandberg (1993). Approximation and radial basis functic
networks. Neural Computation 5 (2), 305-316.

Parker, D. B. (1985). Learning logic. Technical Report TR-47, Cambri
MA: MIT Center for Research in Computational Economics and Ma
ment Science. »

Parzen, E. (1962). On estimation of a probability density function and mode.
Annals of Mathematical Statistics 33, 1065-1076.

Pearlmutter, B. A. (1994). Fast exact multiplication by the Hessian. Neural
Computation 6 (1), 147-160.

Perantonis, S. J. and P. J. G. Lisboa (1992). Translation, rotation, and s
invariant pattern recognition by high-order neural networks and mo!

classifiers. IEEE Transactions on Neural Networks 3 (2), 241-251. -

Perrone, M. P. (1994). General averaging results for convex optimization, In
M. C. Mozer et al. (Eds.), Proceedings 1993 Connectionist Models Sum
School, pp. 364-371. Hillsdale, NJ: Lawrence Erlbaum.

Perrone, M. P. and L. N. Cooper (1993). When networks disagree: ense
methods for hybrid neural networks. In R. J. Mammone (Ed.), Arf
Neural Networks for Speech and Vision, pp. 126-142. London: Chaj
& Hall.

Plaut, D., S. Nowlan, and G. E. Hinton (1986). Experiments on learning
back propagation. Technical Report CMU-CS-86-126, Department of

References 471

puter Science, Carnegie Mellon University, Pittsburgh, PA.

Poggio, T. and F. Girosi (1990a). Networks for approximation and learning.
Proceedings of the IEEE T8 (9), 1481-1497.

Poggio, T. and F. Girosi (1990b). Regularization algorithms for learning that
are equivalent to multilayer networks. Science 247, 978-982.

Poggio, T., V. Torre, and C. Koch (1985). Computational vision and regular-
ization theory. Nature 317 (26), 314-319.

Polak, E. (1971). Computational Methods in Optimization: A Unified Ap-
proach. New York: Academic Press.

Powell, M. J. D. (1977). Restart procedures for the conjugate gradient method.
Mathematical Programming 12, 241-254.

Powell, M. J. D. (1987). Radial basis functions for multivariable interpolation:
a review. In J. C. Mason and M. G. Cox (Eds.), Algorithms for Approzi-
mation, pp. 143-167. Oxford: Clarendon Press.

Press, W. H., 8. A. Teukolsky, W. T. Vetterling, and B. P. Flannery (1992).
Numerical Recipes in C: The Art of Scientific Computing (Second ed.).
Cambridge University Press.

Quinlan, J. R. (1986). Induction of decision trees. Machine Learning 1, 81-106.

Rao, C. R. and S. K. Mitra (1971). Generalized Inverse of Matrices and Its
Applications. New York: John Wiley.

Redner, R. A. and H. F. Walker (1984). Mixtyre densities, mw:imumﬁkslihoad
and the EM algorithm. STAM Review 26 (2), 195-239. Wi yheniia

Reid, M. B., L. Spirkovska, and E. Ochoa (1989). Rapid trémiﬁf?of%
order neural networks for invariant pattern recognition. In Pr of
the International Joint Conference on Neural Netwadés, Volume 1, pp.
689-602. San Diego, CA: IEEE. i

Richard, M. D. and R. P. Lippmann (1991). Neural network elassiﬁat :
Bayesian a-posteriori probabilities. Neural Computation 3 (4), 461

Ricotti, L. P., S. Ragazzini, and G. Martinelli (1988). Leammgofwnrd‘ﬂﬁ@ﬁ!
a sub—opt.lma.i secondorder backpropagation neural network. In 3
of the IEEE International Conference on Neural Networks, Volume 1 pps
355-361. San Diego, CA: IEEE.

Ripley, B. D. (1994). Neural networks and related methods for clas
Journal of the Royal Statistical Society, B 56 (3), 409-456.

Rissanen, J. (1978). Modelling by shortest data description. Automatica 14,
465-471.

Robbins, H. and S. Monro (1951). A stochastic approximation method. Annals
of Mathematical Statistics 22, 400-407.

Rosenblatt, F. (1962). Principles of Neurodynamics: Perceptrons and the The-
ory of Brain Mechanisms. Washington DC: Spartan.

Rosenblatt, M. (1956). Remarks on some nonparametric estimates of a density
function. Annals of Mathematical Statistics 27, 832-837.

472 References

.i.

Rumelha.rt D.E., R Durbin, R. Golden. and Y. Chauvin (1995). Backpropa-

propagatwn Theory, Arckztectums, and Apphcatmns, pp. 1-34. Hlllsda.le,
NJ: Lawrence Erlbaum.

Rumelhart, D. E., G. E. Hinton, and R. J. Williams (1986). Learning internal
representations by error propagation. In D. E. Rumelhart, J. L. McClel-
land, and the PDP Research Group (Eds.), Parallel Distributed Process-
ing: Explorations in the Microstructure of Cognition, Volume 1: Founda-
tions, pp. 318-362. Cambridge, MA: MIT Press. Reprinted in Anderson
and Rosenfeld (1988).

Sanger, T. D. (1989). Optimal unsupervised learning in a single-layer linear
feed-forward neural network. Neural Networks 2 (6), 459-473.

Satchwell, C. (1994). Neural networks for stochastic problems: more than one

Shanno, D. F. (1978). Con_;ugate gradmnt. methods with inexact searches-.—
Mathematics of Operations Research 3 (3), 244-256. _
Shannon, C. E. (1948). A mathematical theory of communication. The B"_'
System Technical Joumal 27 (3), 379-423 and 623-656.

(Eds) Ma.nmum entropy and Bayman methods, Laramie, 1990 pp
355. Dordrecht: Kluwer.

Siedlecki, W, and J. Sklansky (1988). On automatic feature selection. Int
national Journal of Pattern Recognition and Artificial Intelligence 2 (2)y
197-220.

Sietsma, J. and R. J. F. Dow (1991). Creating artificial neural networks that
generalize. Neural Networks 4 (1), 67-79.

Silverman, B. W. (1986). Density Estimation for Statistics and Data Analy
London: Chapman & Hall.

Simard, P., Y. Le Cun, and J. Denker (1993). Efficient pattern recogn
using a new transformation distance. In S. J. Hanson, J. D. Cowan,
C. L. Giles (Eds.), Advances in Neural Information Processing Systen
Volume 5, pp. 50-58. San Mateo, CA: Morgan Kaufmann. {

Simard, P., B. Victorri, Y. Le Cun, and J. Denker (1992). Tangent prop =
a formahsm for specifying selected invariances in an adaptive network.

J. E. Moody, S. J. Hanson, and R. P. Lippmann (Eds.), Advances in Ne

References 473

Information Processing Systems, Volume 4, pp. 895-903. San Mateo, CA:
Morgan Kaufmann,

Singer, E. and R. P. Lippmann (1992). Improved hidden Markov model speech
recognition using radial basis function networks. In J. E. Moody, S. J. Han-
son, and R. P. Lippmann (Eds.), Advances in Neural Information Process-
ing Systems, Volume 4, pp. 159-166. San Mateo, CA: Morgan Kaufmann.

Skilling, J. (1991). On parameter estimation and quantified MaxEnt. In W. T.
Grandy and L. H. Schick (Eds.), Mazimum Entropy and Bayesian Methods,
Laramie, 1990, pp. 267-273. Dordrecht: Kluwer.

Solla, S. A., E. Levin, and M. Fleisher (1988). Accelerated learning in layered
neural networks. Complez Systems 2, 625-640.

Specht, D. F. (1990). Probabilistic neural networks. Neural Networks 3 (1),
109-118.

Sprecher, D. A. (1965). On the structure of continuous functions of several
variables. Transactions of the American Mathematical Society 115, 340—
355.

Stinchecombe, M. and H. White (1989). Universal approximation using feed-
forward networks with non-sigmoid hidden layer activation functions. In
Proceedings of the International Joint Conference on Neural Networks, Vol-
ume 1, pp. 613-618. San Diego: IEEE.

Stone, M. (1974). Cross-validatory choice and assessment of statistical predic-
tions. Journal of the Royal Statistical Society, B 36 (1), 111-147.

Stone, M. (1978). Cross-validation: A review. Math. Operationsforsch. Statist.
Ser. Statistics 9 (1), 127-139.

Sussmann, H. J. (1992). Uniqueness of the weights for minimal feedforward
nets with a given input-output map. Neural Networks 5 (4), 589-593.
Tatsuoka, M. M. (1971). Multivariate Analysis: Technigques for Educational

and Psychological Research. New York: John Wiley.

Thodberg, H. H. (1993). Ace of Bayes: application of neural networks with
pruning. Technical Report 1132E, The Danish Meat Research Institute,
Maglegaardsvej 2, DK-4000 Roskilde, Denmark.

Tikhonov, A. N. and V. Y. Arsenin (1977). Solutions of Ill-Posed Problems.
Washington, DC: V. H, Winston.

Titterington, D. M., A. F. M. Smith, and U. E. Makov (1985). Statistical
Analysis of Finite Mizture Distributions. New York: John Wiley.

Travén, H. G. C. (1991). A neural network approach to statistical pattern clas-
sification by ‘semiparametric’ estimation of probability density functions.
IEEE Transactions on Neural Networks 2 (3), 366-377.

Vapnik, V. N. and A. Y. Chervonenkis (1971). On the uniform convergence of
relative frequencies of events to their probabilities. Theory of Probability
and its Applications 16 (2), 264280,

Viterbi, A. J. and J. K. Omura (1979). Principles of Digital Communication
and Coding. New York: McGraw-Hill.

474 References

Vitushkin, A. G. (1954). On Hilbert’s thirteenth problem. Doklady Akademiia
Nauk SSSR 95, 701-704.

Vogl, T. P., J. K. Mangis, A. K. Rigler, W. T. Zink, and D. L. Alkon (1988).
Accelerating the convergence of the back-propagation method. Biological
Cybernetics 59, 257-263.

Wahba, G. and S. Wold (1975). A completely automatic French curve: fitting
spline functions by cross-validation. Communications in Statistics, Series
A4 (1), 117

Walker, A. M. (1969). On the asymptotic behaviour of posterior distributions.
Journal of the Royal Statistical Society, B 31 (1), 80-88.

Wallace, C. S. and P. R. Freeman (1987). Estimation and inference by compact
coding. Journal of the Royal Statistical Society, B 49 (3), 240-265.

Watrous, R. L. (1987). Learning algorithms for connectionist networks: applied
gradient methods of nonlinear optimization. In Proceedings IEEE First
International Conference on Neural Networks, Volume 2, pp. 619-627. San
Diego: IEEE.

Watson, G. S. (1964). Smooth regression analysis. Sankhya: The Indian Jour-
nal of Statistics. Series A 26, 369-372.

Webb, A. R. (1994). Functional approximation by feed-forward networks: a
least-squares approach to generalisation. IEEE Transactions on Neural
Networks 5 (3), 363-371.

Webb, A. R. and D. Lowe (1988). A hybrid optimisation strategy for adaptive
feed-forward layered networks. RSRE Memorandum 4193, Royal Signals
and Radar Establishment, St Andrews Road, Malvern, UK.

Webb, A. R. and D. Lowe (1990). The optimised internal representation of mul-
tilayer classifier networks performs nonlinear discriminant analysis. Neural
Networks 3 (4), 367-375.

Webb, A. R., D. Lowe, and M. D. Bedworth (1988). A comparison of non-linear
optimisation strategies for feed-forward adaptive layered networks. RS:
Memorandum 4157, Royal Signals and Radar Establishment, St And
Road, Malvern, UK.

Weigend, A. S., B. A. Huberman, and D. E. Rumelhart (1990). Predi
the future: a connectionist approach. International Journal of Neural
tems 1 (3), 193-209. _

Werbos, P. J. (1974). Beyond regression: new tools for prediction and analy
in the behavioural sciences. Ph.D. thesis, Harvard University, Boston, M

White, H. (1989). Learning in artificial neural networks: a statistical perspe
tive. Neural Computation 1 (4), 425-464. _

White, H. (1990). Connectionist nonparametric regression: multilayer &
forward networks can learn arbitrary mappings. Neural Networks 3 (8
535-549.

Widrow, B. and M. E. Hoff (1960). Adaptive switching circuits. In
WESCON Convention Record, Volume 4, pp. 96-104. New York. Re

References 475

in Anderson and Rosenfeld (1988).

Widrow, B. and M. A. Lehr (1990). 30 years of adaptive neural networks: per-
ceptron, madeline, and backpropagation. Proceedings of the IEEE 78 (9),
1415-1442.

Wieland, A. and R. Leighton (1987). Geometric analysis of neural network
capabilities. In Proceedings of the First IEEE International Conference on
Neural Networks, Volume 3, pp. 385-392. San Diego, CA: IEEE.

Williams, P. M. (1991). A Marquardt algorithm for choosing the step-size
in backpropagation learning with conjugate gradients. Technical Report
CSRP 299, University of Sussex, Brighton, UK.

Williams, P. M. (1995). Bayesian regularization and pruning using a Laplace
prior. Neural Computation 7 (1), 117-143,

Wolpert, D. H. (1992). Stacked generalization. Neural Networks 5 (2), 241-
259.

Wolpert, D. H. (1993). On the use of evidence in neural networks. In S. J.
Hanson, J. D. Cowan, and C. L. Giles (Eds.), Advances in Neural Informa-

tion Processing Systems, Volume 5, pp. 539-546. San Mateo, CA: Morgan
Kaufmann.

INDEX

1-of-c coding scheme, 225, 300

activation function, 82
Heaviside, 84, 121-122
logistic sigmoid, 82
tanh, 127
active learning, 385
adaline, 98
adaline learning rule, 97
adaptive parameters, see weights
additive models, 136-137
adjoint operator, 173, 453
Akaike information criterion, 376
ARD, see automatic relevance determina-
tion
asymmetric divergence, see Kullback-
Leibler distance
auto-associative network, 316
automatic relevance determination, 385

back-propagation, 140-148
efficiency, 146-147
terminology, 141
backward elimination, 309
basis functions, 88, 165
batch learning, 263
Bayes' theorem, 17-23
Bayesian inference, 42-46
Bayesian statistics, 21
Bernoulli distribution, 84
best approximation property, 169
between-class covariance matrix, 108
BFGS algorithm, 288
bias
statistical, 41, 333-338, 373-374
bias parameter, 78
as extra weight, 80, 118
bias-variance trade-off, 333-338, 373-374
binomial distribution, 52
biological models, 83-84
bits, 243
‘bits back’ argument, 432
bold driver algorithm, 269
bracketing a minimum, 273
branch and bound algorithm, 306
Brent's algorithm, 273 .

CART, see classification and regression
trees
cascade correlation, 357-359
categorical variables, 300
central differences, 147, 154
central limit theorem, 37
central moments, 323
chi-squared statistic, 410
circular normal distribution, 222
city-block metric, 209
class-conditional probability, 18, 61
classification, 5
classification and regression trees, 137
clustering algorithms, 187-189
committees of networks, 364-369, 422-424
complete data, 69
complexity, 14-15
complexity criteria, 376-377
condition number, 266
conditional average of target data, 202
conditional median, 210
conditional probability, 17, 194, 212-222
confidence intervals, 385
conjugate gradients, 274-282
conjugate prior, 43
consistent estimators, 337
consistent priors, 396-397
convex decision region, 80-81, 123
convex function, 75, 369
convex hull, 113
covariance matrix, 35, 108, 111
Cp-statistic, 376
credit assignment problem, 140
cross-entropy, 244
cross-entropy error function
independent attributes, 236-237
multiple classes, 237-240
two classes, 230-232
cross-validation, 372-375
curse of dimensionality, 7-9, 51, 297
curvature, 15, 175
curvature-driven smoothing, 345-346

data set, 2

Davidson~Fletcher-Powell algorithm, 288
de-trending, 303

decision boundary, 4

478

decision making, 20

decision regions, 24

decision surface, see decision boundary
degrees of freedom, 11

delta-bar-delta algorithm, 270-271

Index

feed-forward networks, 120-121

final prediction error, 376

finite differences, 147, 158

Fisher's discriminant, 105-112, 227
relation to least-squares, 109-110

histograms, 3, 50-51

hold out method, 372

hybrid Monte Carlo, 427

hybrid optimization algorithm, 259-260
hyperparameter, 390

Indez

linear sum rules, 200-201

local learning algorithms, 253-254
local minima, 255

localized basis functions, 165
location parameter, 216, 436-437

density estimation Fletcher-Reeves formula, 280 hyperprior, 408 logistic discrimination, 82-85
and radial basis functions, 183-185 forward problems, 207 logistic sigmoid, 82, 232-234
kernel methods, 53-55, 177 forward propagation, 142 ID3, 137 loss matrix, 27

non-parametric, 33
parametric, 33
Parzen windows, 53
semi-parametric, 33, 60
detailed balance, 427
diameter-limited perceptron, 104
dichotomy, 86
differential entropy, 242
dimensionality reduction, 296-298
discrete data, 300
discriminant function, 25-27
distributed representation, 182
double back-propagation, 349

early stopping, 343-345
relation to weight decay, 380-381

effective number of parameters, 377, 410

efficiency of back-propagation, 146-147
EM algorithm, 65-72, 301
relation to K-means, 189-190
ensemble learning, 432-433
entropy, 240-245
differential, 242
equivalent minima, 133, 256, 398
error back-propagation, 140-148
efficiency, 146-147
terminology, 141
error bars, 189, 399
error function
convex, 369
error surfaces, 254-256
Euler-Lagrange equations, 173
evidence, 386, 408, 418
evidence approximation, 407

forward selection, 308
frequentist statistics, 21
function approximation, 6
functional, 451

Gaussian, 34-38
basis functions, 165
mixture model, 189-190, 350
prior, 389-391
generalization, 2, 11
and evidence, 421-422
generalized additive models, 136-137
generalized least squares, 248
generalized linear discriminant, 88-89
generalized linear network, 402
generalized prediction error, 377
global minimum, 255
gradient descent, 263-272
batch, 263
convergence, 264-267
pattern-based, 263
Green's function, 173
growing algorithms, 353-359
growth function, 378

Heaviside activation function, 121-122
Heaviside step function, 84
Hebb rule, 319
Hessian matrix, 150-160
central differences, 154
diagonal approximation, 151-152
exact evaluation, 154-158, 160
fast multiplication by, 158-160
finite differences, 154
inverse, 153-154

1
A
= |
i |

importance sampling, 426
improper prior, 396, 408
incomplete data, 61, 69
inference, 20

input normalization, 298-300
intrinsic dimensionality, 313-314
invariance, 6, 320, 323

inverse Hessian, 153154

inverse problems, 207

Jacobian matrix, 148-150
Jensen's inequality, 66, 75
joint probability, 17

K-means algorithm, 187-189

as limit of EM, 189-190
K-nearest-neighbours, 55-57

classification rule, 57
Karhunen-Loéve transformation, 312
kernel density estimation, 53-55
kernel function, 53

periodic, 221
kernel regression, 177-179
Kiefer-Wolfowitz algorithm, 48
Kohonen topographic mapping, 188
Kolmogorov’s theorem, 137-140
Kullback-Leibler distance, 59, 244

Lagrange multipliers, 448-450

Laplacian distribution, 209, 391

layered networks, 117-120
counting convention, 119
linear, 121

learning, see training

learning-rate parameter, 263

Lk norm, 209

madeline III learning rule, 148
Mahalanobis distance, 35
marginal distribution, 37
marginalization, 387

Markov chain Monte Carlo, 426

479

MARS, see multivariate adaptive regres-

sion splines
maximum likelihood, 195
for Gaussian, 40-42
for mixture model, 62-73
ML-II, 407
relation to Bayes, 45

McCulloch and Pitts neuron model, 83-84

mean of distribution, 34-35
Metropolis algorithm, 427

minimum description length, 429-433

minimum risk decisions, 27, 224
Minkowski error function, 208-210
mislabelled data, 209

missing data, 301-302

missing values, 69

mixing parameters, 60

mixture models, 59-73, 212-222
mixture of experts, 214, 369-371
ML-II, 407

MLP, see multi-layer perceptron
model order selection, 371-377

model trust region, 283, 287, 201-292

moments, 322-324

momentum, 267-268

Monte Carlo methods, 425-429
multi-layer perceptron, 116

and radial basis functions, 182-183
multi-quadric function, 166

leave-one-out method, 375
Levenberg-Marquardt algorithm, 290-292
Levenberg-Marquardt approximation, multi-step ahead prediction, 303

152, 206 multivariate adaptive regression splines,
Levenberg-Marquardt approximation, 206 137
likelihood function, 23, 40

singularities, 58, 63

limited memory BFGS algorithm, 289-290
line search techniques, 272-274

exact interpolation, 164-166 outer product approximation, 152-153
exclusive-OR, 86, 104 206
expectation, 22, 46 positive definite, 258
expectation maximization algorithm, see two-layer network, 157-158
EM algorithm Hestenes-Stiefel formula, 280
expected loss, 27 hidden units, 16, 117
interpretation, 226-228, 234
hierarchical models, 408 4
higher-order network, 133-135, 161, &

Nadaraya-Watson estimator, 178
nats, 243, 430

fast multiplication by Hessian, 158-160
nearest-neighbour rule, 57

fast re-training, 150, 162-163

feature extraction, 6, 297 329 l{nm dllﬁﬂml:ﬂ:lllts. 38, 77-85 neocognitron, 326
features, 2 Hinton diagram, 119 ' linear separability, 85-88 network diagram, 62, 79, 117, 168

480 Indez

neuron, 83-84

Newton direction, 285

Newton's method, 285-287

node perturbation, 148

node pruning, 363-364

noiseless coding theorem, 244

non-informative prior, 408, 436-437

non-interfering, see conjugate

non-linear principal component analysis,
317

non-parametric density estimation, 33

normal distribution, 34-38

normal equations, 91

normalized exponential, see softmax

novelty, 189

numerical differentiation, 147-148

Occam factor, 419

Occam's razor, 14, 406, 429
one-step-ahead prediction, 303
optimal brain damage, 361
optimal brain surgeon, 361
order of convergence, 256
order-limited perceptron, 105
ordinal variables, 300
orthogonal least squares, 187
outer product Hessian, 206
outliers, 209

over-fitting, 11

parametric density estimation, 33
Parzen estimator, 53, 177
pattern recognition, 1
statistical, 17
pattern-based learning, 263
perceptron, 84, 98-105
convergence theorem, 100-103
diameter-limited, 104
learning algorithm, 100
order-limited, 105
perceptron criterion, 99
periodic variables, 221-222
pixel averaging, 297
pocket algorithm, 103, 354
Polak-Ribiere formula, 280
polynomial
curve fitting, 9-13
higher-order, 16, 30
positive-definite Hessian, 258
post-processing, 296
posterior distribution, 389
posterior probability, 18
in mixture model, 61

potential functions, 182
PPR, see projection pursuit regression
pre-processing, 6, 296-298
predicted squared error, 376
principal components, 310-313, 454-456
prior
conjugate, 43
consistency, 396-397
entropic, 391
improper, 396, 408
in mixture model, 61
knowledge, 6, 295
non-informative, 408, 436-437
probability, 17
probability
conditional, 17
density, 21
joint, 17
posterior, 18
prior, 17
processing units, 80
projection pursuit regression, 135-136
prototypes, 39, 183
pruning algorithms, 354
pseudo-inverse, 92-95

quasi-Newton methods, 287-290
quickprop algorithm, 271-272

R-operator, 158-160
radial basis functions
best approximation, 169
clustering algorithms, 187-189 I
density estimation, 177-179, 183-185
exact interpolation, 164-166 ol
for classification, 179-182
Gaussian mixtures, 189-190
Hessian matrix, 191
Jacobian matrix, 191
network training, 170-171
neural networks, 167-169
noisy interpolation, 176-177
orthogonal least squares, 187
regularization, 171-175
relation to multi-layer perceptron,
183
supervised training, 190-191
random walk, 426
RBF, see radial basis functions
re-estimation formulae, 412, 417
re-training of network, 150, 162-163
receptive field, 104, 325 é
regression, 5]
regression function, 47, 203

regular moments, 323

regularization, 15, 171-175, 338-353, 385
weight decay, 338-343, 395

reinforcement learning, 10

reject option, 28

rejection sampling, 438-439

rejection threshold, 28

reproducing densities, 43

ridge regression, 338

risk, 27

RMS error, 197

Robbins-Monro algorithm, 46-49

robot kinematics, 207

robust statistics, 210

root-mean-square error, 197

rotation invariance, 320, 323

saddlepoints, 255
saliency of weights, 360
sample, 2, 426
average, 41
scale invariance, 6, 320, 323
scale parameter, 215, 408, 437
scaled conjugate gradients, 282-285
search direction, 272
Fletcher-Reeves, 280
Hestenes—Stiefel, 280
Polak-Ribiere, 280
self-organizing feature map, 188
semi-parametric density estimation, 33, 60
sequential backward elimination, 309
sequential forward selection, 308
sequential learning, 46-49, 263
shared weights, 324-326
sigmoid activation function, 82, 232-234
simply-connected decision regions, 80-81
simulated annealing, 428
singular value decomposition, 93, 171, 260
smoothing parameter, 57-59
smoothness of mapping, 171-173
soft weight sharing, 349-353
softmax, 215, 238-240
spectral analysis, 207
spline function, 165
stacked generalization, 375-376, 424
standard deviation, 34
stationary points, 255
statistical bias, 41, 333-338, 373-374
statistical independence, 36
steepest descent, see gradient descent
stiff differential equations, 267
stochastic parameter estimation, 46-49,
72-73

Index 481

stopping criteria, 262
strict interpolation, see exact interpolation
structural stabilization, 332
sum-of-squares error function, 89-97, 195-
207

for classification, 225-230
supervised learning, 10

radial basis functions, 190-191
SVD, see singular value decomposition
symmetries

weight space, 133, 256
synapses, 84

tangent distance, 322

tangent prop, 320-322

tanh activation function, 127
target values, 9

temperature parameter, 428
template, 39, 122

test error functions, 262-263

test set, 10, 372

thin-plate spline function, 165
threshold, 78 ' _
threshold activation function, 121-122
threshold logic functions, 87
Tikhonov regularization, 338
tiling algorithm, 355

time-series prediction, 302-304
tomography, 207

topographic mapping, 188

total covariance matrix, 111
training set, 5, 372

translation invariance, 6, 320, 323
type II maximum likelihood, 407

undetermined multipliers, see Lagrange
multipliers

unsupervised learning, 10, 318-319

upstart algorithm, 355-357

validation set, 372
Vapnik-Chervonenkis dimension, see VC
dimension

variable-metric methods, 287-290
variance

parameter, 34-35, 73-74

statistical, 333-338, 373-374
VC dimension, 377-380
von Mises distribution, 222

weight decay, 338-343
and pruning, 363
consistency, 340342

weight elimination, 363

482

weight initialization, 260-262

weight space, 254
symmetries, 133, 256

weight vector, 253

weights, 5

well-determined parameters, 410

Indez

whitening transformation, 299-300
‘Widrow-Hoff learning rule, 97
within-class covariance matrix, 108

XOR, see exclusive-OR

	PatternRecognitionCover.jpg
	PrefaceAndContents001.jpg
	PrefaceAndContents002.jpg
	PrefaceAndContents003.jpg
	PrefaceAndContents004.jpg
	PrefaceAndContents005.jpg
	PrefaceAndContents006.jpg
	PrefaceAndContents007.jpg
	PrefaceAndContents008.jpg
	Page000-001.jpg
	Page002-003.jpg
	Page004-005.jpg
	Page006-007.jpg
	Page008-009.jpg
	Page010-011.jpg
	Page012-013.jpg
	Page014-015.jpg
	Page016-017.jpg
	Page018-019.jpg
	Page020-021.jpg
	Page022-023.jpg
	Page024-025.jpg
	Page026-027.jpg
	Page028-029.jpg
	Page030-031.jpg
	Page032-033.jpg
	Page034-035.jpg
	Page036-037.jpg
	Page038-039.jpg
	Page040-041.jpg
	Page042-043.jpg
	Page044-045.jpg
	Page046-047.jpg
	Page048-049.jpg
	Page050-051.jpg
	Page052-053.jpg
	Page054-055.jpg
	Page056-057.jpg
	Page058-059.jpg
	Page060-061.jpg
	Page062-063.jpg
	Page064-065.jpg
	Page066-067.jpg
	Page068-069.jpg
	Page070-071.jpg
	Page072-073.jpg
	Page074-075.jpg
	Page076-077.jpg
	Page078-079.jpg
	Page080-081.jpg
	Page082-083.jpg
	Page084-085.jpg
	Page086-087.jpg
	Page088-089.jpg
	Page090-091.jpg
	Page092-093.jpg
	Page094-095.jpg
	Page096-097.jpg
	Page098-099.jpg
	Page100-101.jpg
	Page102-103.jpg
	Page104-105.jpg
	Page106-107.jpg
	Page108-109.jpg
	Page110-111.jpg
	Page112-113.jpg
	Page114-115.jpg
	Page116-117.jpg
	Page118-119.jpg
	Page120-121.jpg
	Page122-123.jpg
	Page124-125.jpg
	Page126-127.jpg
	Page128-129.jpg
	Page130-131.jpg
	Page132-133.jpg
	Page134-135.jpg
	Page136-137.jpg
	Page138-139.jpg
	Page140-141.jpg
	Page142-143.jpg
	Page144-145.jpg
	Page146-147.jpg
	Page148-149.jpg
	Page150-151.jpg
	Page152-153.jpg
	Page154-155.jpg
	Page156-157.jpg
	Page158-159.jpg
	Page160-161.jpg
	Page162-163.jpg
	Page164-165.jpg
	Page166-167.jpg
	Page168-169.jpg
	Page170-171.jpg
	Page172-173.jpg
	Page174-175.jpg
	Page176-177.jpg
	Page178-179.jpg
	Page180-181.jpg
	Page182-183.jpg
	Page184-185.jpg
	Page186-187.jpg
	Page188-189.jpg
	Page190-191.jpg
	Page192-193.jpg
	Page194-195.jpg
	Page196-197.jpg
	Page198-199.jpg
	Page200-201.jpg
	Page202-203.jpg
	Page204-205.jpg
	Page206-207.jpg
	Page208-209.jpg
	Page210-211.jpg
	Page212-213.jpg
	Page214-215.jpg
	Page216-217.jpg
	Page218-219.jpg
	Page220-221.jpg
	Page222-223.jpg
	Page224-225.jpg
	Page226-227.jpg
	Page228-229.jpg
	Page230-231.jpg
	Page232-233.jpg
	Page234-235.jpg
	Page236-237.jpg
	Page238-239.jpg
	Page240-241.jpg
	Page242-243.jpg
	Page244-245.jpg
	Page246-247.jpg
	Page248-249.jpg
	Page250-251.jpg
	Page252-253.jpg
	Page254-255.jpg
	Page256-257.jpg
	Page258-259.jpg
	Page260-261.jpg
	Page262-263.jpg
	Page264-265.jpg
	Page266-267.jpg
	Page268-269.jpg
	Page270-271.jpg
	Page272-273.jpg
	Page274-275.jpg
	Page276-277.jpg
	Page278-279.jpg
	Page280-281.jpg
	Page282-283.jpg
	Page284-285.jpg
	Page286-287.jpg
	Page288-289.jpg
	Page290-291.jpg
	Page292-293.jpg
	Page294-295.jpg
	Page296-297.jpg
	Page298-299.jpg
	Page300-301.jpg
	Page302-303.jpg
	Page304-305.jpg
	Page306-307.jpg
	Page308-309.jpg
	Page310-311.jpg
	Page312-313.jpg
	Page314-315.jpg
	Page316-317.jpg
	Page318-319.jpg
	Page320-321.jpg
	Page322-323.jpg
	Page324-325.jpg
	Page326-327.jpg
	Page328-329.jpg
	Page330-331.jpg
	Page332-333.jpg
	Page334-335.jpg
	Page336-337.jpg
	Page338-339.jpg
	Page340-341.jpg
	Page342-343.jpg
	Page344-345.jpg
	Page346-347.jpg
	Page348-349.jpg
	Page350-351.jpg
	Page352-353.jpg
	Page354-355.jpg
	Page356-357.jpg
	Page358-359.jpg
	Page360-361.jpg
	Page362-363.jpg
	Page364-365.jpg
	Page366-367.jpg
	Page368-369.jpg
	Page370-371.jpg
	Page372-373.jpg
	Page374-375.jpg
	Page376-377.jpg
	Page378-379.jpg
	Page380-381.jpg
	Page382-383.jpg
	Page384-385.jpg
	Page386-387.jpg
	Page388-389.jpg
	Page390-391.jpg
	Page392-393.jpg
	Page394-395.jpg
	Page396-397.jpg
	Page398-399.jpg
	Page400-401.jpg
	Page402-403.jpg
	Page404-405.jpg
	Page406-407.jpg
	Page408-409.jpg
	Page410-411.jpg
	Page412-413.jpg
	Page414-415.jpg
	Page416-417.jpg
	Page418-419.jpg
	Page420-421.jpg
	Page422-423.jpg
	Page424-425.jpg
	Page426-427.jpg
	Page428-429.jpg
	Page430-431.jpg
	Page432-433.jpg
	Page434-435.jpg
	Page436-437.jpg
	Page438-439.jpg
	Page440-441.jpg
	Page442-443.jpg
	Page444-445.jpg
	Page446-447.jpg
	Page448-449.jpg
	Page450-451.jpg
	Page452-453.jpg
	Page454-455.jpg
	Page456-457.jpg
	Page458-459.jpg
	Page460-461.jpg
	Page462-463.jpg
	Page464-465.jpg
	Page466-467.jpg
	Page468-469.jpg
	Page470-471.jpg
	Page472-473.jpg
	Page474-475.jpg
	Page476-477.jpg
	Page478-479.jpg
	Page480-481.jpg
	Page482-483.jpg

